]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - kernel/printk/printk.c
Merge remote-tracking branches 'asoc/topic/msm8916', 'asoc/topic/mtk', 'asoc/topic...
[mirror_ubuntu-jammy-kernel.git] / kernel / printk / printk.c
... / ...
CommitLineData
1/*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/tty.h>
22#include <linux/tty_driver.h>
23#include <linux/console.h>
24#include <linux/init.h>
25#include <linux/jiffies.h>
26#include <linux/nmi.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/delay.h>
30#include <linux/smp.h>
31#include <linux/security.h>
32#include <linux/bootmem.h>
33#include <linux/memblock.h>
34#include <linux/syscalls.h>
35#include <linux/crash_core.h>
36#include <linux/kdb.h>
37#include <linux/ratelimit.h>
38#include <linux/kmsg_dump.h>
39#include <linux/syslog.h>
40#include <linux/cpu.h>
41#include <linux/notifier.h>
42#include <linux/rculist.h>
43#include <linux/poll.h>
44#include <linux/irq_work.h>
45#include <linux/utsname.h>
46#include <linux/ctype.h>
47#include <linux/uio.h>
48#include <linux/sched/clock.h>
49#include <linux/sched/debug.h>
50#include <linux/sched/task_stack.h>
51
52#include <linux/uaccess.h>
53#include <asm/sections.h>
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/printk.h>
57
58#include "console_cmdline.h"
59#include "braille.h"
60#include "internal.h"
61
62int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67};
68
69/*
70 * Low level drivers may need that to know if they can schedule in
71 * their unblank() callback or not. So let's export it.
72 */
73int oops_in_progress;
74EXPORT_SYMBOL(oops_in_progress);
75
76/*
77 * console_sem protects the console_drivers list, and also
78 * provides serialisation for access to the entire console
79 * driver system.
80 */
81static DEFINE_SEMAPHORE(console_sem);
82struct console *console_drivers;
83EXPORT_SYMBOL_GPL(console_drivers);
84
85#ifdef CONFIG_LOCKDEP
86static struct lockdep_map console_lock_dep_map = {
87 .name = "console_lock"
88};
89#endif
90
91enum devkmsg_log_bits {
92 __DEVKMSG_LOG_BIT_ON = 0,
93 __DEVKMSG_LOG_BIT_OFF,
94 __DEVKMSG_LOG_BIT_LOCK,
95};
96
97enum devkmsg_log_masks {
98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
101};
102
103/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104#define DEVKMSG_LOG_MASK_DEFAULT 0
105
106static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107
108static int __control_devkmsg(char *str)
109{
110 if (!str)
111 return -EINVAL;
112
113 if (!strncmp(str, "on", 2)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 return 2;
116 } else if (!strncmp(str, "off", 3)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 return 3;
119 } else if (!strncmp(str, "ratelimit", 9)) {
120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 return 9;
122 }
123 return -EINVAL;
124}
125
126static int __init control_devkmsg(char *str)
127{
128 if (__control_devkmsg(str) < 0)
129 return 1;
130
131 /*
132 * Set sysctl string accordingly:
133 */
134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "on", 2);
137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 strncpy(devkmsg_log_str, "off", 3);
140 }
141 /* else "ratelimit" which is set by default. */
142
143 /*
144 * Sysctl cannot change it anymore. The kernel command line setting of
145 * this parameter is to force the setting to be permanent throughout the
146 * runtime of the system. This is a precation measure against userspace
147 * trying to be a smarta** and attempting to change it up on us.
148 */
149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150
151 return 0;
152}
153__setup("printk.devkmsg=", control_devkmsg);
154
155char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156
157int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 void __user *buffer, size_t *lenp, loff_t *ppos)
159{
160 char old_str[DEVKMSG_STR_MAX_SIZE];
161 unsigned int old;
162 int err;
163
164 if (write) {
165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 return -EINVAL;
167
168 old = devkmsg_log;
169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 }
171
172 err = proc_dostring(table, write, buffer, lenp, ppos);
173 if (err)
174 return err;
175
176 if (write) {
177 err = __control_devkmsg(devkmsg_log_str);
178
179 /*
180 * Do not accept an unknown string OR a known string with
181 * trailing crap...
182 */
183 if (err < 0 || (err + 1 != *lenp)) {
184
185 /* ... and restore old setting. */
186 devkmsg_log = old;
187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188
189 return -EINVAL;
190 }
191 }
192
193 return 0;
194}
195
196/*
197 * Number of registered extended console drivers.
198 *
199 * If extended consoles are present, in-kernel cont reassembly is disabled
200 * and each fragment is stored as a separate log entry with proper
201 * continuation flag so that every emitted message has full metadata. This
202 * doesn't change the result for regular consoles or /proc/kmsg. For
203 * /dev/kmsg, as long as the reader concatenates messages according to
204 * consecutive continuation flags, the end result should be the same too.
205 */
206static int nr_ext_console_drivers;
207
208/*
209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210 * macros instead of functions so that _RET_IP_ contains useful information.
211 */
212#define down_console_sem() do { \
213 down(&console_sem);\
214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215} while (0)
216
217static int __down_trylock_console_sem(unsigned long ip)
218{
219 int lock_failed;
220 unsigned long flags;
221
222 /*
223 * Here and in __up_console_sem() we need to be in safe mode,
224 * because spindump/WARN/etc from under console ->lock will
225 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 */
227 printk_safe_enter_irqsave(flags);
228 lock_failed = down_trylock(&console_sem);
229 printk_safe_exit_irqrestore(flags);
230
231 if (lock_failed)
232 return 1;
233 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 return 0;
235}
236#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237
238static void __up_console_sem(unsigned long ip)
239{
240 unsigned long flags;
241
242 mutex_release(&console_lock_dep_map, 1, ip);
243
244 printk_safe_enter_irqsave(flags);
245 up(&console_sem);
246 printk_safe_exit_irqrestore(flags);
247}
248#define up_console_sem() __up_console_sem(_RET_IP_)
249
250/*
251 * This is used for debugging the mess that is the VT code by
252 * keeping track if we have the console semaphore held. It's
253 * definitely not the perfect debug tool (we don't know if _WE_
254 * hold it and are racing, but it helps tracking those weird code
255 * paths in the console code where we end up in places I want
256 * locked without the console sempahore held).
257 */
258static int console_locked, console_suspended;
259
260/*
261 * If exclusive_console is non-NULL then only this console is to be printed to.
262 */
263static struct console *exclusive_console;
264
265/*
266 * Array of consoles built from command line options (console=)
267 */
268
269#define MAX_CMDLINECONSOLES 8
270
271static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272
273static int preferred_console = -1;
274int console_set_on_cmdline;
275EXPORT_SYMBOL(console_set_on_cmdline);
276
277/* Flag: console code may call schedule() */
278static int console_may_schedule;
279
280/*
281 * The printk log buffer consists of a chain of concatenated variable
282 * length records. Every record starts with a record header, containing
283 * the overall length of the record.
284 *
285 * The heads to the first and last entry in the buffer, as well as the
286 * sequence numbers of these entries are maintained when messages are
287 * stored.
288 *
289 * If the heads indicate available messages, the length in the header
290 * tells the start next message. A length == 0 for the next message
291 * indicates a wrap-around to the beginning of the buffer.
292 *
293 * Every record carries the monotonic timestamp in microseconds, as well as
294 * the standard userspace syslog level and syslog facility. The usual
295 * kernel messages use LOG_KERN; userspace-injected messages always carry
296 * a matching syslog facility, by default LOG_USER. The origin of every
297 * message can be reliably determined that way.
298 *
299 * The human readable log message directly follows the message header. The
300 * length of the message text is stored in the header, the stored message
301 * is not terminated.
302 *
303 * Optionally, a message can carry a dictionary of properties (key/value pairs),
304 * to provide userspace with a machine-readable message context.
305 *
306 * Examples for well-defined, commonly used property names are:
307 * DEVICE=b12:8 device identifier
308 * b12:8 block dev_t
309 * c127:3 char dev_t
310 * n8 netdev ifindex
311 * +sound:card0 subsystem:devname
312 * SUBSYSTEM=pci driver-core subsystem name
313 *
314 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315 * follows directly after a '=' character. Every property is terminated by
316 * a '\0' character. The last property is not terminated.
317 *
318 * Example of a message structure:
319 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
320 * 0008 34 00 record is 52 bytes long
321 * 000a 0b 00 text is 11 bytes long
322 * 000c 1f 00 dictionary is 23 bytes long
323 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
324 * 0010 69 74 27 73 20 61 20 6c "it's a l"
325 * 69 6e 65 "ine"
326 * 001b 44 45 56 49 43 "DEVIC"
327 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
328 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
329 * 67 "g"
330 * 0032 00 00 00 padding to next message header
331 *
332 * The 'struct printk_log' buffer header must never be directly exported to
333 * userspace, it is a kernel-private implementation detail that might
334 * need to be changed in the future, when the requirements change.
335 *
336 * /dev/kmsg exports the structured data in the following line format:
337 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338 *
339 * Users of the export format should ignore possible additional values
340 * separated by ',', and find the message after the ';' character.
341 *
342 * The optional key/value pairs are attached as continuation lines starting
343 * with a space character and terminated by a newline. All possible
344 * non-prinatable characters are escaped in the "\xff" notation.
345 */
346
347enum log_flags {
348 LOG_NOCONS = 1, /* already flushed, do not print to console */
349 LOG_NEWLINE = 2, /* text ended with a newline */
350 LOG_PREFIX = 4, /* text started with a prefix */
351 LOG_CONT = 8, /* text is a fragment of a continuation line */
352};
353
354struct printk_log {
355 u64 ts_nsec; /* timestamp in nanoseconds */
356 u16 len; /* length of entire record */
357 u16 text_len; /* length of text buffer */
358 u16 dict_len; /* length of dictionary buffer */
359 u8 facility; /* syslog facility */
360 u8 flags:5; /* internal record flags */
361 u8 level:3; /* syslog level */
362}
363#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364__packed __aligned(4)
365#endif
366;
367
368/*
369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
370 * within the scheduler's rq lock. It must be released before calling
371 * console_unlock() or anything else that might wake up a process.
372 */
373DEFINE_RAW_SPINLOCK(logbuf_lock);
374
375/*
376 * Helper macros to lock/unlock logbuf_lock and switch between
377 * printk-safe/unsafe modes.
378 */
379#define logbuf_lock_irq() \
380 do { \
381 printk_safe_enter_irq(); \
382 raw_spin_lock(&logbuf_lock); \
383 } while (0)
384
385#define logbuf_unlock_irq() \
386 do { \
387 raw_spin_unlock(&logbuf_lock); \
388 printk_safe_exit_irq(); \
389 } while (0)
390
391#define logbuf_lock_irqsave(flags) \
392 do { \
393 printk_safe_enter_irqsave(flags); \
394 raw_spin_lock(&logbuf_lock); \
395 } while (0)
396
397#define logbuf_unlock_irqrestore(flags) \
398 do { \
399 raw_spin_unlock(&logbuf_lock); \
400 printk_safe_exit_irqrestore(flags); \
401 } while (0)
402
403#ifdef CONFIG_PRINTK
404DECLARE_WAIT_QUEUE_HEAD(log_wait);
405/* the next printk record to read by syslog(READ) or /proc/kmsg */
406static u64 syslog_seq;
407static u32 syslog_idx;
408static size_t syslog_partial;
409
410/* index and sequence number of the first record stored in the buffer */
411static u64 log_first_seq;
412static u32 log_first_idx;
413
414/* index and sequence number of the next record to store in the buffer */
415static u64 log_next_seq;
416static u32 log_next_idx;
417
418/* the next printk record to write to the console */
419static u64 console_seq;
420static u32 console_idx;
421
422/* the next printk record to read after the last 'clear' command */
423static u64 clear_seq;
424static u32 clear_idx;
425
426#define PREFIX_MAX 32
427#define LOG_LINE_MAX (1024 - PREFIX_MAX)
428
429#define LOG_LEVEL(v) ((v) & 0x07)
430#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
431
432/* record buffer */
433#define LOG_ALIGN __alignof__(struct printk_log)
434#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436static char *log_buf = __log_buf;
437static u32 log_buf_len = __LOG_BUF_LEN;
438
439/* Return log buffer address */
440char *log_buf_addr_get(void)
441{
442 return log_buf;
443}
444
445/* Return log buffer size */
446u32 log_buf_len_get(void)
447{
448 return log_buf_len;
449}
450
451/* human readable text of the record */
452static char *log_text(const struct printk_log *msg)
453{
454 return (char *)msg + sizeof(struct printk_log);
455}
456
457/* optional key/value pair dictionary attached to the record */
458static char *log_dict(const struct printk_log *msg)
459{
460 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461}
462
463/* get record by index; idx must point to valid msg */
464static struct printk_log *log_from_idx(u32 idx)
465{
466 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467
468 /*
469 * A length == 0 record is the end of buffer marker. Wrap around and
470 * read the message at the start of the buffer.
471 */
472 if (!msg->len)
473 return (struct printk_log *)log_buf;
474 return msg;
475}
476
477/* get next record; idx must point to valid msg */
478static u32 log_next(u32 idx)
479{
480 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481
482 /* length == 0 indicates the end of the buffer; wrap */
483 /*
484 * A length == 0 record is the end of buffer marker. Wrap around and
485 * read the message at the start of the buffer as *this* one, and
486 * return the one after that.
487 */
488 if (!msg->len) {
489 msg = (struct printk_log *)log_buf;
490 return msg->len;
491 }
492 return idx + msg->len;
493}
494
495/*
496 * Check whether there is enough free space for the given message.
497 *
498 * The same values of first_idx and next_idx mean that the buffer
499 * is either empty or full.
500 *
501 * If the buffer is empty, we must respect the position of the indexes.
502 * They cannot be reset to the beginning of the buffer.
503 */
504static int logbuf_has_space(u32 msg_size, bool empty)
505{
506 u32 free;
507
508 if (log_next_idx > log_first_idx || empty)
509 free = max(log_buf_len - log_next_idx, log_first_idx);
510 else
511 free = log_first_idx - log_next_idx;
512
513 /*
514 * We need space also for an empty header that signalizes wrapping
515 * of the buffer.
516 */
517 return free >= msg_size + sizeof(struct printk_log);
518}
519
520static int log_make_free_space(u32 msg_size)
521{
522 while (log_first_seq < log_next_seq &&
523 !logbuf_has_space(msg_size, false)) {
524 /* drop old messages until we have enough contiguous space */
525 log_first_idx = log_next(log_first_idx);
526 log_first_seq++;
527 }
528
529 if (clear_seq < log_first_seq) {
530 clear_seq = log_first_seq;
531 clear_idx = log_first_idx;
532 }
533
534 /* sequence numbers are equal, so the log buffer is empty */
535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 return 0;
537
538 return -ENOMEM;
539}
540
541/* compute the message size including the padding bytes */
542static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543{
544 u32 size;
545
546 size = sizeof(struct printk_log) + text_len + dict_len;
547 *pad_len = (-size) & (LOG_ALIGN - 1);
548 size += *pad_len;
549
550 return size;
551}
552
553/*
554 * Define how much of the log buffer we could take at maximum. The value
555 * must be greater than two. Note that only half of the buffer is available
556 * when the index points to the middle.
557 */
558#define MAX_LOG_TAKE_PART 4
559static const char trunc_msg[] = "<truncated>";
560
561static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 u16 *dict_len, u32 *pad_len)
563{
564 /*
565 * The message should not take the whole buffer. Otherwise, it might
566 * get removed too soon.
567 */
568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 if (*text_len > max_text_len)
570 *text_len = max_text_len;
571 /* enable the warning message */
572 *trunc_msg_len = strlen(trunc_msg);
573 /* disable the "dict" completely */
574 *dict_len = 0;
575 /* compute the size again, count also the warning message */
576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577}
578
579/* insert record into the buffer, discard old ones, update heads */
580static int log_store(int facility, int level,
581 enum log_flags flags, u64 ts_nsec,
582 const char *dict, u16 dict_len,
583 const char *text, u16 text_len)
584{
585 struct printk_log *msg;
586 u32 size, pad_len;
587 u16 trunc_msg_len = 0;
588
589 /* number of '\0' padding bytes to next message */
590 size = msg_used_size(text_len, dict_len, &pad_len);
591
592 if (log_make_free_space(size)) {
593 /* truncate the message if it is too long for empty buffer */
594 size = truncate_msg(&text_len, &trunc_msg_len,
595 &dict_len, &pad_len);
596 /* survive when the log buffer is too small for trunc_msg */
597 if (log_make_free_space(size))
598 return 0;
599 }
600
601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 /*
603 * This message + an additional empty header does not fit
604 * at the end of the buffer. Add an empty header with len == 0
605 * to signify a wrap around.
606 */
607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 log_next_idx = 0;
609 }
610
611 /* fill message */
612 msg = (struct printk_log *)(log_buf + log_next_idx);
613 memcpy(log_text(msg), text, text_len);
614 msg->text_len = text_len;
615 if (trunc_msg_len) {
616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 msg->text_len += trunc_msg_len;
618 }
619 memcpy(log_dict(msg), dict, dict_len);
620 msg->dict_len = dict_len;
621 msg->facility = facility;
622 msg->level = level & 7;
623 msg->flags = flags & 0x1f;
624 if (ts_nsec > 0)
625 msg->ts_nsec = ts_nsec;
626 else
627 msg->ts_nsec = local_clock();
628 memset(log_dict(msg) + dict_len, 0, pad_len);
629 msg->len = size;
630
631 /* insert message */
632 log_next_idx += msg->len;
633 log_next_seq++;
634
635 return msg->text_len;
636}
637
638int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639
640static int syslog_action_restricted(int type)
641{
642 if (dmesg_restrict)
643 return 1;
644 /*
645 * Unless restricted, we allow "read all" and "get buffer size"
646 * for everybody.
647 */
648 return type != SYSLOG_ACTION_READ_ALL &&
649 type != SYSLOG_ACTION_SIZE_BUFFER;
650}
651
652int check_syslog_permissions(int type, int source)
653{
654 /*
655 * If this is from /proc/kmsg and we've already opened it, then we've
656 * already done the capabilities checks at open time.
657 */
658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 goto ok;
660
661 if (syslog_action_restricted(type)) {
662 if (capable(CAP_SYSLOG))
663 goto ok;
664 /*
665 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 * a warning.
667 */
668 if (capable(CAP_SYS_ADMIN)) {
669 pr_warn_once("%s (%d): Attempt to access syslog with "
670 "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 "(deprecated).\n",
672 current->comm, task_pid_nr(current));
673 goto ok;
674 }
675 return -EPERM;
676 }
677ok:
678 return security_syslog(type);
679}
680EXPORT_SYMBOL_GPL(check_syslog_permissions);
681
682static void append_char(char **pp, char *e, char c)
683{
684 if (*pp < e)
685 *(*pp)++ = c;
686}
687
688static ssize_t msg_print_ext_header(char *buf, size_t size,
689 struct printk_log *msg, u64 seq)
690{
691 u64 ts_usec = msg->ts_nsec;
692
693 do_div(ts_usec, 1000);
694
695 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
696 (msg->facility << 3) | msg->level, seq, ts_usec,
697 msg->flags & LOG_CONT ? 'c' : '-');
698}
699
700static ssize_t msg_print_ext_body(char *buf, size_t size,
701 char *dict, size_t dict_len,
702 char *text, size_t text_len)
703{
704 char *p = buf, *e = buf + size;
705 size_t i;
706
707 /* escape non-printable characters */
708 for (i = 0; i < text_len; i++) {
709 unsigned char c = text[i];
710
711 if (c < ' ' || c >= 127 || c == '\\')
712 p += scnprintf(p, e - p, "\\x%02x", c);
713 else
714 append_char(&p, e, c);
715 }
716 append_char(&p, e, '\n');
717
718 if (dict_len) {
719 bool line = true;
720
721 for (i = 0; i < dict_len; i++) {
722 unsigned char c = dict[i];
723
724 if (line) {
725 append_char(&p, e, ' ');
726 line = false;
727 }
728
729 if (c == '\0') {
730 append_char(&p, e, '\n');
731 line = true;
732 continue;
733 }
734
735 if (c < ' ' || c >= 127 || c == '\\') {
736 p += scnprintf(p, e - p, "\\x%02x", c);
737 continue;
738 }
739
740 append_char(&p, e, c);
741 }
742 append_char(&p, e, '\n');
743 }
744
745 return p - buf;
746}
747
748/* /dev/kmsg - userspace message inject/listen interface */
749struct devkmsg_user {
750 u64 seq;
751 u32 idx;
752 struct ratelimit_state rs;
753 struct mutex lock;
754 char buf[CONSOLE_EXT_LOG_MAX];
755};
756
757static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
758{
759 char *buf, *line;
760 int level = default_message_loglevel;
761 int facility = 1; /* LOG_USER */
762 struct file *file = iocb->ki_filp;
763 struct devkmsg_user *user = file->private_data;
764 size_t len = iov_iter_count(from);
765 ssize_t ret = len;
766
767 if (!user || len > LOG_LINE_MAX)
768 return -EINVAL;
769
770 /* Ignore when user logging is disabled. */
771 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
772 return len;
773
774 /* Ratelimit when not explicitly enabled. */
775 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
776 if (!___ratelimit(&user->rs, current->comm))
777 return ret;
778 }
779
780 buf = kmalloc(len+1, GFP_KERNEL);
781 if (buf == NULL)
782 return -ENOMEM;
783
784 buf[len] = '\0';
785 if (!copy_from_iter_full(buf, len, from)) {
786 kfree(buf);
787 return -EFAULT;
788 }
789
790 /*
791 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
792 * the decimal value represents 32bit, the lower 3 bit are the log
793 * level, the rest are the log facility.
794 *
795 * If no prefix or no userspace facility is specified, we
796 * enforce LOG_USER, to be able to reliably distinguish
797 * kernel-generated messages from userspace-injected ones.
798 */
799 line = buf;
800 if (line[0] == '<') {
801 char *endp = NULL;
802 unsigned int u;
803
804 u = simple_strtoul(line + 1, &endp, 10);
805 if (endp && endp[0] == '>') {
806 level = LOG_LEVEL(u);
807 if (LOG_FACILITY(u) != 0)
808 facility = LOG_FACILITY(u);
809 endp++;
810 len -= endp - line;
811 line = endp;
812 }
813 }
814
815 printk_emit(facility, level, NULL, 0, "%s", line);
816 kfree(buf);
817 return ret;
818}
819
820static ssize_t devkmsg_read(struct file *file, char __user *buf,
821 size_t count, loff_t *ppos)
822{
823 struct devkmsg_user *user = file->private_data;
824 struct printk_log *msg;
825 size_t len;
826 ssize_t ret;
827
828 if (!user)
829 return -EBADF;
830
831 ret = mutex_lock_interruptible(&user->lock);
832 if (ret)
833 return ret;
834
835 logbuf_lock_irq();
836 while (user->seq == log_next_seq) {
837 if (file->f_flags & O_NONBLOCK) {
838 ret = -EAGAIN;
839 logbuf_unlock_irq();
840 goto out;
841 }
842
843 logbuf_unlock_irq();
844 ret = wait_event_interruptible(log_wait,
845 user->seq != log_next_seq);
846 if (ret)
847 goto out;
848 logbuf_lock_irq();
849 }
850
851 if (user->seq < log_first_seq) {
852 /* our last seen message is gone, return error and reset */
853 user->idx = log_first_idx;
854 user->seq = log_first_seq;
855 ret = -EPIPE;
856 logbuf_unlock_irq();
857 goto out;
858 }
859
860 msg = log_from_idx(user->idx);
861 len = msg_print_ext_header(user->buf, sizeof(user->buf),
862 msg, user->seq);
863 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
864 log_dict(msg), msg->dict_len,
865 log_text(msg), msg->text_len);
866
867 user->idx = log_next(user->idx);
868 user->seq++;
869 logbuf_unlock_irq();
870
871 if (len > count) {
872 ret = -EINVAL;
873 goto out;
874 }
875
876 if (copy_to_user(buf, user->buf, len)) {
877 ret = -EFAULT;
878 goto out;
879 }
880 ret = len;
881out:
882 mutex_unlock(&user->lock);
883 return ret;
884}
885
886static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
887{
888 struct devkmsg_user *user = file->private_data;
889 loff_t ret = 0;
890
891 if (!user)
892 return -EBADF;
893 if (offset)
894 return -ESPIPE;
895
896 logbuf_lock_irq();
897 switch (whence) {
898 case SEEK_SET:
899 /* the first record */
900 user->idx = log_first_idx;
901 user->seq = log_first_seq;
902 break;
903 case SEEK_DATA:
904 /*
905 * The first record after the last SYSLOG_ACTION_CLEAR,
906 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
907 * changes no global state, and does not clear anything.
908 */
909 user->idx = clear_idx;
910 user->seq = clear_seq;
911 break;
912 case SEEK_END:
913 /* after the last record */
914 user->idx = log_next_idx;
915 user->seq = log_next_seq;
916 break;
917 default:
918 ret = -EINVAL;
919 }
920 logbuf_unlock_irq();
921 return ret;
922}
923
924static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
925{
926 struct devkmsg_user *user = file->private_data;
927 int ret = 0;
928
929 if (!user)
930 return POLLERR|POLLNVAL;
931
932 poll_wait(file, &log_wait, wait);
933
934 logbuf_lock_irq();
935 if (user->seq < log_next_seq) {
936 /* return error when data has vanished underneath us */
937 if (user->seq < log_first_seq)
938 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
939 else
940 ret = POLLIN|POLLRDNORM;
941 }
942 logbuf_unlock_irq();
943
944 return ret;
945}
946
947static int devkmsg_open(struct inode *inode, struct file *file)
948{
949 struct devkmsg_user *user;
950 int err;
951
952 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
953 return -EPERM;
954
955 /* write-only does not need any file context */
956 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
957 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
958 SYSLOG_FROM_READER);
959 if (err)
960 return err;
961 }
962
963 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
964 if (!user)
965 return -ENOMEM;
966
967 ratelimit_default_init(&user->rs);
968 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
969
970 mutex_init(&user->lock);
971
972 logbuf_lock_irq();
973 user->idx = log_first_idx;
974 user->seq = log_first_seq;
975 logbuf_unlock_irq();
976
977 file->private_data = user;
978 return 0;
979}
980
981static int devkmsg_release(struct inode *inode, struct file *file)
982{
983 struct devkmsg_user *user = file->private_data;
984
985 if (!user)
986 return 0;
987
988 ratelimit_state_exit(&user->rs);
989
990 mutex_destroy(&user->lock);
991 kfree(user);
992 return 0;
993}
994
995const struct file_operations kmsg_fops = {
996 .open = devkmsg_open,
997 .read = devkmsg_read,
998 .write_iter = devkmsg_write,
999 .llseek = devkmsg_llseek,
1000 .poll = devkmsg_poll,
1001 .release = devkmsg_release,
1002};
1003
1004#ifdef CONFIG_CRASH_CORE
1005/*
1006 * This appends the listed symbols to /proc/vmcore
1007 *
1008 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1009 * obtain access to symbols that are otherwise very difficult to locate. These
1010 * symbols are specifically used so that utilities can access and extract the
1011 * dmesg log from a vmcore file after a crash.
1012 */
1013void log_buf_vmcoreinfo_setup(void)
1014{
1015 VMCOREINFO_SYMBOL(log_buf);
1016 VMCOREINFO_SYMBOL(log_buf_len);
1017 VMCOREINFO_SYMBOL(log_first_idx);
1018 VMCOREINFO_SYMBOL(clear_idx);
1019 VMCOREINFO_SYMBOL(log_next_idx);
1020 /*
1021 * Export struct printk_log size and field offsets. User space tools can
1022 * parse it and detect any changes to structure down the line.
1023 */
1024 VMCOREINFO_STRUCT_SIZE(printk_log);
1025 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1026 VMCOREINFO_OFFSET(printk_log, len);
1027 VMCOREINFO_OFFSET(printk_log, text_len);
1028 VMCOREINFO_OFFSET(printk_log, dict_len);
1029}
1030#endif
1031
1032/* requested log_buf_len from kernel cmdline */
1033static unsigned long __initdata new_log_buf_len;
1034
1035/* we practice scaling the ring buffer by powers of 2 */
1036static void __init log_buf_len_update(unsigned size)
1037{
1038 if (size)
1039 size = roundup_pow_of_two(size);
1040 if (size > log_buf_len)
1041 new_log_buf_len = size;
1042}
1043
1044/* save requested log_buf_len since it's too early to process it */
1045static int __init log_buf_len_setup(char *str)
1046{
1047 unsigned size = memparse(str, &str);
1048
1049 log_buf_len_update(size);
1050
1051 return 0;
1052}
1053early_param("log_buf_len", log_buf_len_setup);
1054
1055#ifdef CONFIG_SMP
1056#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1057
1058static void __init log_buf_add_cpu(void)
1059{
1060 unsigned int cpu_extra;
1061
1062 /*
1063 * archs should set up cpu_possible_bits properly with
1064 * set_cpu_possible() after setup_arch() but just in
1065 * case lets ensure this is valid.
1066 */
1067 if (num_possible_cpus() == 1)
1068 return;
1069
1070 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1071
1072 /* by default this will only continue through for large > 64 CPUs */
1073 if (cpu_extra <= __LOG_BUF_LEN / 2)
1074 return;
1075
1076 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1077 __LOG_CPU_MAX_BUF_LEN);
1078 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1079 cpu_extra);
1080 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1081
1082 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1083}
1084#else /* !CONFIG_SMP */
1085static inline void log_buf_add_cpu(void) {}
1086#endif /* CONFIG_SMP */
1087
1088void __init setup_log_buf(int early)
1089{
1090 unsigned long flags;
1091 char *new_log_buf;
1092 int free;
1093
1094 if (log_buf != __log_buf)
1095 return;
1096
1097 if (!early && !new_log_buf_len)
1098 log_buf_add_cpu();
1099
1100 if (!new_log_buf_len)
1101 return;
1102
1103 if (early) {
1104 new_log_buf =
1105 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1106 } else {
1107 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1108 LOG_ALIGN);
1109 }
1110
1111 if (unlikely(!new_log_buf)) {
1112 pr_err("log_buf_len: %ld bytes not available\n",
1113 new_log_buf_len);
1114 return;
1115 }
1116
1117 logbuf_lock_irqsave(flags);
1118 log_buf_len = new_log_buf_len;
1119 log_buf = new_log_buf;
1120 new_log_buf_len = 0;
1121 free = __LOG_BUF_LEN - log_next_idx;
1122 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1123 logbuf_unlock_irqrestore(flags);
1124
1125 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1126 pr_info("early log buf free: %d(%d%%)\n",
1127 free, (free * 100) / __LOG_BUF_LEN);
1128}
1129
1130static bool __read_mostly ignore_loglevel;
1131
1132static int __init ignore_loglevel_setup(char *str)
1133{
1134 ignore_loglevel = true;
1135 pr_info("debug: ignoring loglevel setting.\n");
1136
1137 return 0;
1138}
1139
1140early_param("ignore_loglevel", ignore_loglevel_setup);
1141module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1142MODULE_PARM_DESC(ignore_loglevel,
1143 "ignore loglevel setting (prints all kernel messages to the console)");
1144
1145static bool suppress_message_printing(int level)
1146{
1147 return (level >= console_loglevel && !ignore_loglevel);
1148}
1149
1150#ifdef CONFIG_BOOT_PRINTK_DELAY
1151
1152static int boot_delay; /* msecs delay after each printk during bootup */
1153static unsigned long long loops_per_msec; /* based on boot_delay */
1154
1155static int __init boot_delay_setup(char *str)
1156{
1157 unsigned long lpj;
1158
1159 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1160 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1161
1162 get_option(&str, &boot_delay);
1163 if (boot_delay > 10 * 1000)
1164 boot_delay = 0;
1165
1166 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1167 "HZ: %d, loops_per_msec: %llu\n",
1168 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1169 return 0;
1170}
1171early_param("boot_delay", boot_delay_setup);
1172
1173static void boot_delay_msec(int level)
1174{
1175 unsigned long long k;
1176 unsigned long timeout;
1177
1178 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1179 || suppress_message_printing(level)) {
1180 return;
1181 }
1182
1183 k = (unsigned long long)loops_per_msec * boot_delay;
1184
1185 timeout = jiffies + msecs_to_jiffies(boot_delay);
1186 while (k) {
1187 k--;
1188 cpu_relax();
1189 /*
1190 * use (volatile) jiffies to prevent
1191 * compiler reduction; loop termination via jiffies
1192 * is secondary and may or may not happen.
1193 */
1194 if (time_after(jiffies, timeout))
1195 break;
1196 touch_nmi_watchdog();
1197 }
1198}
1199#else
1200static inline void boot_delay_msec(int level)
1201{
1202}
1203#endif
1204
1205static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1206module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1207
1208static size_t print_time(u64 ts, char *buf)
1209{
1210 unsigned long rem_nsec;
1211
1212 if (!printk_time)
1213 return 0;
1214
1215 rem_nsec = do_div(ts, 1000000000);
1216
1217 if (!buf)
1218 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1219
1220 return sprintf(buf, "[%5lu.%06lu] ",
1221 (unsigned long)ts, rem_nsec / 1000);
1222}
1223
1224static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1225{
1226 size_t len = 0;
1227 unsigned int prefix = (msg->facility << 3) | msg->level;
1228
1229 if (syslog) {
1230 if (buf) {
1231 len += sprintf(buf, "<%u>", prefix);
1232 } else {
1233 len += 3;
1234 if (prefix > 999)
1235 len += 3;
1236 else if (prefix > 99)
1237 len += 2;
1238 else if (prefix > 9)
1239 len++;
1240 }
1241 }
1242
1243 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1244 return len;
1245}
1246
1247static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1248{
1249 const char *text = log_text(msg);
1250 size_t text_size = msg->text_len;
1251 size_t len = 0;
1252
1253 do {
1254 const char *next = memchr(text, '\n', text_size);
1255 size_t text_len;
1256
1257 if (next) {
1258 text_len = next - text;
1259 next++;
1260 text_size -= next - text;
1261 } else {
1262 text_len = text_size;
1263 }
1264
1265 if (buf) {
1266 if (print_prefix(msg, syslog, NULL) +
1267 text_len + 1 >= size - len)
1268 break;
1269
1270 len += print_prefix(msg, syslog, buf + len);
1271 memcpy(buf + len, text, text_len);
1272 len += text_len;
1273 buf[len++] = '\n';
1274 } else {
1275 /* SYSLOG_ACTION_* buffer size only calculation */
1276 len += print_prefix(msg, syslog, NULL);
1277 len += text_len;
1278 len++;
1279 }
1280
1281 text = next;
1282 } while (text);
1283
1284 return len;
1285}
1286
1287static int syslog_print(char __user *buf, int size)
1288{
1289 char *text;
1290 struct printk_log *msg;
1291 int len = 0;
1292
1293 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1294 if (!text)
1295 return -ENOMEM;
1296
1297 while (size > 0) {
1298 size_t n;
1299 size_t skip;
1300
1301 logbuf_lock_irq();
1302 if (syslog_seq < log_first_seq) {
1303 /* messages are gone, move to first one */
1304 syslog_seq = log_first_seq;
1305 syslog_idx = log_first_idx;
1306 syslog_partial = 0;
1307 }
1308 if (syslog_seq == log_next_seq) {
1309 logbuf_unlock_irq();
1310 break;
1311 }
1312
1313 skip = syslog_partial;
1314 msg = log_from_idx(syslog_idx);
1315 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1316 if (n - syslog_partial <= size) {
1317 /* message fits into buffer, move forward */
1318 syslog_idx = log_next(syslog_idx);
1319 syslog_seq++;
1320 n -= syslog_partial;
1321 syslog_partial = 0;
1322 } else if (!len){
1323 /* partial read(), remember position */
1324 n = size;
1325 syslog_partial += n;
1326 } else
1327 n = 0;
1328 logbuf_unlock_irq();
1329
1330 if (!n)
1331 break;
1332
1333 if (copy_to_user(buf, text + skip, n)) {
1334 if (!len)
1335 len = -EFAULT;
1336 break;
1337 }
1338
1339 len += n;
1340 size -= n;
1341 buf += n;
1342 }
1343
1344 kfree(text);
1345 return len;
1346}
1347
1348static int syslog_print_all(char __user *buf, int size, bool clear)
1349{
1350 char *text;
1351 int len = 0;
1352
1353 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1354 if (!text)
1355 return -ENOMEM;
1356
1357 logbuf_lock_irq();
1358 if (buf) {
1359 u64 next_seq;
1360 u64 seq;
1361 u32 idx;
1362
1363 /*
1364 * Find first record that fits, including all following records,
1365 * into the user-provided buffer for this dump.
1366 */
1367 seq = clear_seq;
1368 idx = clear_idx;
1369 while (seq < log_next_seq) {
1370 struct printk_log *msg = log_from_idx(idx);
1371
1372 len += msg_print_text(msg, true, NULL, 0);
1373 idx = log_next(idx);
1374 seq++;
1375 }
1376
1377 /* move first record forward until length fits into the buffer */
1378 seq = clear_seq;
1379 idx = clear_idx;
1380 while (len > size && seq < log_next_seq) {
1381 struct printk_log *msg = log_from_idx(idx);
1382
1383 len -= msg_print_text(msg, true, NULL, 0);
1384 idx = log_next(idx);
1385 seq++;
1386 }
1387
1388 /* last message fitting into this dump */
1389 next_seq = log_next_seq;
1390
1391 len = 0;
1392 while (len >= 0 && seq < next_seq) {
1393 struct printk_log *msg = log_from_idx(idx);
1394 int textlen;
1395
1396 textlen = msg_print_text(msg, true, text,
1397 LOG_LINE_MAX + PREFIX_MAX);
1398 if (textlen < 0) {
1399 len = textlen;
1400 break;
1401 }
1402 idx = log_next(idx);
1403 seq++;
1404
1405 logbuf_unlock_irq();
1406 if (copy_to_user(buf + len, text, textlen))
1407 len = -EFAULT;
1408 else
1409 len += textlen;
1410 logbuf_lock_irq();
1411
1412 if (seq < log_first_seq) {
1413 /* messages are gone, move to next one */
1414 seq = log_first_seq;
1415 idx = log_first_idx;
1416 }
1417 }
1418 }
1419
1420 if (clear) {
1421 clear_seq = log_next_seq;
1422 clear_idx = log_next_idx;
1423 }
1424 logbuf_unlock_irq();
1425
1426 kfree(text);
1427 return len;
1428}
1429
1430int do_syslog(int type, char __user *buf, int len, int source)
1431{
1432 bool clear = false;
1433 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1434 int error;
1435
1436 error = check_syslog_permissions(type, source);
1437 if (error)
1438 goto out;
1439
1440 switch (type) {
1441 case SYSLOG_ACTION_CLOSE: /* Close log */
1442 break;
1443 case SYSLOG_ACTION_OPEN: /* Open log */
1444 break;
1445 case SYSLOG_ACTION_READ: /* Read from log */
1446 error = -EINVAL;
1447 if (!buf || len < 0)
1448 goto out;
1449 error = 0;
1450 if (!len)
1451 goto out;
1452 if (!access_ok(VERIFY_WRITE, buf, len)) {
1453 error = -EFAULT;
1454 goto out;
1455 }
1456 error = wait_event_interruptible(log_wait,
1457 syslog_seq != log_next_seq);
1458 if (error)
1459 goto out;
1460 error = syslog_print(buf, len);
1461 break;
1462 /* Read/clear last kernel messages */
1463 case SYSLOG_ACTION_READ_CLEAR:
1464 clear = true;
1465 /* FALL THRU */
1466 /* Read last kernel messages */
1467 case SYSLOG_ACTION_READ_ALL:
1468 error = -EINVAL;
1469 if (!buf || len < 0)
1470 goto out;
1471 error = 0;
1472 if (!len)
1473 goto out;
1474 if (!access_ok(VERIFY_WRITE, buf, len)) {
1475 error = -EFAULT;
1476 goto out;
1477 }
1478 error = syslog_print_all(buf, len, clear);
1479 break;
1480 /* Clear ring buffer */
1481 case SYSLOG_ACTION_CLEAR:
1482 syslog_print_all(NULL, 0, true);
1483 break;
1484 /* Disable logging to console */
1485 case SYSLOG_ACTION_CONSOLE_OFF:
1486 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1487 saved_console_loglevel = console_loglevel;
1488 console_loglevel = minimum_console_loglevel;
1489 break;
1490 /* Enable logging to console */
1491 case SYSLOG_ACTION_CONSOLE_ON:
1492 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1493 console_loglevel = saved_console_loglevel;
1494 saved_console_loglevel = LOGLEVEL_DEFAULT;
1495 }
1496 break;
1497 /* Set level of messages printed to console */
1498 case SYSLOG_ACTION_CONSOLE_LEVEL:
1499 error = -EINVAL;
1500 if (len < 1 || len > 8)
1501 goto out;
1502 if (len < minimum_console_loglevel)
1503 len = minimum_console_loglevel;
1504 console_loglevel = len;
1505 /* Implicitly re-enable logging to console */
1506 saved_console_loglevel = LOGLEVEL_DEFAULT;
1507 error = 0;
1508 break;
1509 /* Number of chars in the log buffer */
1510 case SYSLOG_ACTION_SIZE_UNREAD:
1511 logbuf_lock_irq();
1512 if (syslog_seq < log_first_seq) {
1513 /* messages are gone, move to first one */
1514 syslog_seq = log_first_seq;
1515 syslog_idx = log_first_idx;
1516 syslog_partial = 0;
1517 }
1518 if (source == SYSLOG_FROM_PROC) {
1519 /*
1520 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 * for pending data, not the size; return the count of
1522 * records, not the length.
1523 */
1524 error = log_next_seq - syslog_seq;
1525 } else {
1526 u64 seq = syslog_seq;
1527 u32 idx = syslog_idx;
1528
1529 error = 0;
1530 while (seq < log_next_seq) {
1531 struct printk_log *msg = log_from_idx(idx);
1532
1533 error += msg_print_text(msg, true, NULL, 0);
1534 idx = log_next(idx);
1535 seq++;
1536 }
1537 error -= syslog_partial;
1538 }
1539 logbuf_unlock_irq();
1540 break;
1541 /* Size of the log buffer */
1542 case SYSLOG_ACTION_SIZE_BUFFER:
1543 error = log_buf_len;
1544 break;
1545 default:
1546 error = -EINVAL;
1547 break;
1548 }
1549out:
1550 return error;
1551}
1552
1553SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1554{
1555 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1556}
1557
1558/*
1559 * Call the console drivers, asking them to write out
1560 * log_buf[start] to log_buf[end - 1].
1561 * The console_lock must be held.
1562 */
1563static void call_console_drivers(const char *ext_text, size_t ext_len,
1564 const char *text, size_t len)
1565{
1566 struct console *con;
1567
1568 trace_console_rcuidle(text, len);
1569
1570 if (!console_drivers)
1571 return;
1572
1573 for_each_console(con) {
1574 if (exclusive_console && con != exclusive_console)
1575 continue;
1576 if (!(con->flags & CON_ENABLED))
1577 continue;
1578 if (!con->write)
1579 continue;
1580 if (!cpu_online(smp_processor_id()) &&
1581 !(con->flags & CON_ANYTIME))
1582 continue;
1583 if (con->flags & CON_EXTENDED)
1584 con->write(con, ext_text, ext_len);
1585 else
1586 con->write(con, text, len);
1587 }
1588}
1589
1590int printk_delay_msec __read_mostly;
1591
1592static inline void printk_delay(void)
1593{
1594 if (unlikely(printk_delay_msec)) {
1595 int m = printk_delay_msec;
1596
1597 while (m--) {
1598 mdelay(1);
1599 touch_nmi_watchdog();
1600 }
1601 }
1602}
1603
1604/*
1605 * Continuation lines are buffered, and not committed to the record buffer
1606 * until the line is complete, or a race forces it. The line fragments
1607 * though, are printed immediately to the consoles to ensure everything has
1608 * reached the console in case of a kernel crash.
1609 */
1610static struct cont {
1611 char buf[LOG_LINE_MAX];
1612 size_t len; /* length == 0 means unused buffer */
1613 struct task_struct *owner; /* task of first print*/
1614 u64 ts_nsec; /* time of first print */
1615 u8 level; /* log level of first message */
1616 u8 facility; /* log facility of first message */
1617 enum log_flags flags; /* prefix, newline flags */
1618} cont;
1619
1620static void cont_flush(void)
1621{
1622 if (cont.len == 0)
1623 return;
1624
1625 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1626 NULL, 0, cont.buf, cont.len);
1627 cont.len = 0;
1628}
1629
1630static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1631{
1632 /*
1633 * If ext consoles are present, flush and skip in-kernel
1634 * continuation. See nr_ext_console_drivers definition. Also, if
1635 * the line gets too long, split it up in separate records.
1636 */
1637 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1638 cont_flush();
1639 return false;
1640 }
1641
1642 if (!cont.len) {
1643 cont.facility = facility;
1644 cont.level = level;
1645 cont.owner = current;
1646 cont.ts_nsec = local_clock();
1647 cont.flags = flags;
1648 }
1649
1650 memcpy(cont.buf + cont.len, text, len);
1651 cont.len += len;
1652
1653 // The original flags come from the first line,
1654 // but later continuations can add a newline.
1655 if (flags & LOG_NEWLINE) {
1656 cont.flags |= LOG_NEWLINE;
1657 cont_flush();
1658 }
1659
1660 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1661 cont_flush();
1662
1663 return true;
1664}
1665
1666static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1667{
1668 /*
1669 * If an earlier line was buffered, and we're a continuation
1670 * write from the same process, try to add it to the buffer.
1671 */
1672 if (cont.len) {
1673 if (cont.owner == current && (lflags & LOG_CONT)) {
1674 if (cont_add(facility, level, lflags, text, text_len))
1675 return text_len;
1676 }
1677 /* Otherwise, make sure it's flushed */
1678 cont_flush();
1679 }
1680
1681 /* Skip empty continuation lines that couldn't be added - they just flush */
1682 if (!text_len && (lflags & LOG_CONT))
1683 return 0;
1684
1685 /* If it doesn't end in a newline, try to buffer the current line */
1686 if (!(lflags & LOG_NEWLINE)) {
1687 if (cont_add(facility, level, lflags, text, text_len))
1688 return text_len;
1689 }
1690
1691 /* Store it in the record log */
1692 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1693}
1694
1695asmlinkage int vprintk_emit(int facility, int level,
1696 const char *dict, size_t dictlen,
1697 const char *fmt, va_list args)
1698{
1699 static char textbuf[LOG_LINE_MAX];
1700 char *text = textbuf;
1701 size_t text_len = 0;
1702 enum log_flags lflags = 0;
1703 unsigned long flags;
1704 int printed_len = 0;
1705 bool in_sched = false;
1706
1707 if (level == LOGLEVEL_SCHED) {
1708 level = LOGLEVEL_DEFAULT;
1709 in_sched = true;
1710 }
1711
1712 boot_delay_msec(level);
1713 printk_delay();
1714
1715 /* This stops the holder of console_sem just where we want him */
1716 logbuf_lock_irqsave(flags);
1717 /*
1718 * The printf needs to come first; we need the syslog
1719 * prefix which might be passed-in as a parameter.
1720 */
1721 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1722
1723 /* mark and strip a trailing newline */
1724 if (text_len && text[text_len-1] == '\n') {
1725 text_len--;
1726 lflags |= LOG_NEWLINE;
1727 }
1728
1729 /* strip kernel syslog prefix and extract log level or control flags */
1730 if (facility == 0) {
1731 int kern_level;
1732
1733 while ((kern_level = printk_get_level(text)) != 0) {
1734 switch (kern_level) {
1735 case '0' ... '7':
1736 if (level == LOGLEVEL_DEFAULT)
1737 level = kern_level - '0';
1738 /* fallthrough */
1739 case 'd': /* KERN_DEFAULT */
1740 lflags |= LOG_PREFIX;
1741 break;
1742 case 'c': /* KERN_CONT */
1743 lflags |= LOG_CONT;
1744 }
1745
1746 text_len -= 2;
1747 text += 2;
1748 }
1749 }
1750
1751 if (level == LOGLEVEL_DEFAULT)
1752 level = default_message_loglevel;
1753
1754 if (dict)
1755 lflags |= LOG_PREFIX|LOG_NEWLINE;
1756
1757 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1758
1759 logbuf_unlock_irqrestore(flags);
1760
1761 /* If called from the scheduler, we can not call up(). */
1762 if (!in_sched) {
1763 /*
1764 * Try to acquire and then immediately release the console
1765 * semaphore. The release will print out buffers and wake up
1766 * /dev/kmsg and syslog() users.
1767 */
1768 if (console_trylock())
1769 console_unlock();
1770 }
1771
1772 return printed_len;
1773}
1774EXPORT_SYMBOL(vprintk_emit);
1775
1776asmlinkage int vprintk(const char *fmt, va_list args)
1777{
1778 return vprintk_func(fmt, args);
1779}
1780EXPORT_SYMBOL(vprintk);
1781
1782asmlinkage int printk_emit(int facility, int level,
1783 const char *dict, size_t dictlen,
1784 const char *fmt, ...)
1785{
1786 va_list args;
1787 int r;
1788
1789 va_start(args, fmt);
1790 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1791 va_end(args);
1792
1793 return r;
1794}
1795EXPORT_SYMBOL(printk_emit);
1796
1797int vprintk_default(const char *fmt, va_list args)
1798{
1799 int r;
1800
1801#ifdef CONFIG_KGDB_KDB
1802 /* Allow to pass printk() to kdb but avoid a recursion. */
1803 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1804 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1805 return r;
1806 }
1807#endif
1808 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1809
1810 return r;
1811}
1812EXPORT_SYMBOL_GPL(vprintk_default);
1813
1814/**
1815 * printk - print a kernel message
1816 * @fmt: format string
1817 *
1818 * This is printk(). It can be called from any context. We want it to work.
1819 *
1820 * We try to grab the console_lock. If we succeed, it's easy - we log the
1821 * output and call the console drivers. If we fail to get the semaphore, we
1822 * place the output into the log buffer and return. The current holder of
1823 * the console_sem will notice the new output in console_unlock(); and will
1824 * send it to the consoles before releasing the lock.
1825 *
1826 * One effect of this deferred printing is that code which calls printk() and
1827 * then changes console_loglevel may break. This is because console_loglevel
1828 * is inspected when the actual printing occurs.
1829 *
1830 * See also:
1831 * printf(3)
1832 *
1833 * See the vsnprintf() documentation for format string extensions over C99.
1834 */
1835asmlinkage __visible int printk(const char *fmt, ...)
1836{
1837 va_list args;
1838 int r;
1839
1840 va_start(args, fmt);
1841 r = vprintk_func(fmt, args);
1842 va_end(args);
1843
1844 return r;
1845}
1846EXPORT_SYMBOL(printk);
1847
1848#else /* CONFIG_PRINTK */
1849
1850#define LOG_LINE_MAX 0
1851#define PREFIX_MAX 0
1852
1853static u64 syslog_seq;
1854static u32 syslog_idx;
1855static u64 console_seq;
1856static u32 console_idx;
1857static u64 log_first_seq;
1858static u32 log_first_idx;
1859static u64 log_next_seq;
1860static char *log_text(const struct printk_log *msg) { return NULL; }
1861static char *log_dict(const struct printk_log *msg) { return NULL; }
1862static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1863static u32 log_next(u32 idx) { return 0; }
1864static ssize_t msg_print_ext_header(char *buf, size_t size,
1865 struct printk_log *msg,
1866 u64 seq) { return 0; }
1867static ssize_t msg_print_ext_body(char *buf, size_t size,
1868 char *dict, size_t dict_len,
1869 char *text, size_t text_len) { return 0; }
1870static void call_console_drivers(const char *ext_text, size_t ext_len,
1871 const char *text, size_t len) {}
1872static size_t msg_print_text(const struct printk_log *msg,
1873 bool syslog, char *buf, size_t size) { return 0; }
1874static bool suppress_message_printing(int level) { return false; }
1875
1876#endif /* CONFIG_PRINTK */
1877
1878#ifdef CONFIG_EARLY_PRINTK
1879struct console *early_console;
1880
1881asmlinkage __visible void early_printk(const char *fmt, ...)
1882{
1883 va_list ap;
1884 char buf[512];
1885 int n;
1886
1887 if (!early_console)
1888 return;
1889
1890 va_start(ap, fmt);
1891 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1892 va_end(ap);
1893
1894 early_console->write(early_console, buf, n);
1895}
1896#endif
1897
1898static int __add_preferred_console(char *name, int idx, char *options,
1899 char *brl_options)
1900{
1901 struct console_cmdline *c;
1902 int i;
1903
1904 /*
1905 * See if this tty is not yet registered, and
1906 * if we have a slot free.
1907 */
1908 for (i = 0, c = console_cmdline;
1909 i < MAX_CMDLINECONSOLES && c->name[0];
1910 i++, c++) {
1911 if (strcmp(c->name, name) == 0 && c->index == idx) {
1912 if (!brl_options)
1913 preferred_console = i;
1914 return 0;
1915 }
1916 }
1917 if (i == MAX_CMDLINECONSOLES)
1918 return -E2BIG;
1919 if (!brl_options)
1920 preferred_console = i;
1921 strlcpy(c->name, name, sizeof(c->name));
1922 c->options = options;
1923 braille_set_options(c, brl_options);
1924
1925 c->index = idx;
1926 return 0;
1927}
1928/*
1929 * Set up a console. Called via do_early_param() in init/main.c
1930 * for each "console=" parameter in the boot command line.
1931 */
1932static int __init console_setup(char *str)
1933{
1934 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1935 char *s, *options, *brl_options = NULL;
1936 int idx;
1937
1938 if (_braille_console_setup(&str, &brl_options))
1939 return 1;
1940
1941 /*
1942 * Decode str into name, index, options.
1943 */
1944 if (str[0] >= '0' && str[0] <= '9') {
1945 strcpy(buf, "ttyS");
1946 strncpy(buf + 4, str, sizeof(buf) - 5);
1947 } else {
1948 strncpy(buf, str, sizeof(buf) - 1);
1949 }
1950 buf[sizeof(buf) - 1] = 0;
1951 options = strchr(str, ',');
1952 if (options)
1953 *(options++) = 0;
1954#ifdef __sparc__
1955 if (!strcmp(str, "ttya"))
1956 strcpy(buf, "ttyS0");
1957 if (!strcmp(str, "ttyb"))
1958 strcpy(buf, "ttyS1");
1959#endif
1960 for (s = buf; *s; s++)
1961 if (isdigit(*s) || *s == ',')
1962 break;
1963 idx = simple_strtoul(s, NULL, 10);
1964 *s = 0;
1965
1966 __add_preferred_console(buf, idx, options, brl_options);
1967 console_set_on_cmdline = 1;
1968 return 1;
1969}
1970__setup("console=", console_setup);
1971
1972/**
1973 * add_preferred_console - add a device to the list of preferred consoles.
1974 * @name: device name
1975 * @idx: device index
1976 * @options: options for this console
1977 *
1978 * The last preferred console added will be used for kernel messages
1979 * and stdin/out/err for init. Normally this is used by console_setup
1980 * above to handle user-supplied console arguments; however it can also
1981 * be used by arch-specific code either to override the user or more
1982 * commonly to provide a default console (ie from PROM variables) when
1983 * the user has not supplied one.
1984 */
1985int add_preferred_console(char *name, int idx, char *options)
1986{
1987 return __add_preferred_console(name, idx, options, NULL);
1988}
1989
1990bool console_suspend_enabled = true;
1991EXPORT_SYMBOL(console_suspend_enabled);
1992
1993static int __init console_suspend_disable(char *str)
1994{
1995 console_suspend_enabled = false;
1996 return 1;
1997}
1998__setup("no_console_suspend", console_suspend_disable);
1999module_param_named(console_suspend, console_suspend_enabled,
2000 bool, S_IRUGO | S_IWUSR);
2001MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2002 " and hibernate operations");
2003
2004/**
2005 * suspend_console - suspend the console subsystem
2006 *
2007 * This disables printk() while we go into suspend states
2008 */
2009void suspend_console(void)
2010{
2011 if (!console_suspend_enabled)
2012 return;
2013 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2014 console_lock();
2015 console_suspended = 1;
2016 up_console_sem();
2017}
2018
2019void resume_console(void)
2020{
2021 if (!console_suspend_enabled)
2022 return;
2023 down_console_sem();
2024 console_suspended = 0;
2025 console_unlock();
2026}
2027
2028/**
2029 * console_cpu_notify - print deferred console messages after CPU hotplug
2030 * @cpu: unused
2031 *
2032 * If printk() is called from a CPU that is not online yet, the messages
2033 * will be printed on the console only if there are CON_ANYTIME consoles.
2034 * This function is called when a new CPU comes online (or fails to come
2035 * up) or goes offline.
2036 */
2037static int console_cpu_notify(unsigned int cpu)
2038{
2039 if (!cpuhp_tasks_frozen) {
2040 /* If trylock fails, someone else is doing the printing */
2041 if (console_trylock())
2042 console_unlock();
2043 }
2044 return 0;
2045}
2046
2047/**
2048 * console_lock - lock the console system for exclusive use.
2049 *
2050 * Acquires a lock which guarantees that the caller has
2051 * exclusive access to the console system and the console_drivers list.
2052 *
2053 * Can sleep, returns nothing.
2054 */
2055void console_lock(void)
2056{
2057 might_sleep();
2058
2059 down_console_sem();
2060 if (console_suspended)
2061 return;
2062 console_locked = 1;
2063 console_may_schedule = 1;
2064}
2065EXPORT_SYMBOL(console_lock);
2066
2067/**
2068 * console_trylock - try to lock the console system for exclusive use.
2069 *
2070 * Try to acquire a lock which guarantees that the caller has exclusive
2071 * access to the console system and the console_drivers list.
2072 *
2073 * returns 1 on success, and 0 on failure to acquire the lock.
2074 */
2075int console_trylock(void)
2076{
2077 if (down_trylock_console_sem())
2078 return 0;
2079 if (console_suspended) {
2080 up_console_sem();
2081 return 0;
2082 }
2083 console_locked = 1;
2084 /*
2085 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2086 * safe to schedule (e.g. calling printk while holding a spin_lock),
2087 * because preempt_disable()/preempt_enable() are just barriers there
2088 * and preempt_count() is always 0.
2089 *
2090 * RCU read sections have a separate preemption counter when
2091 * PREEMPT_RCU enabled thus we must take extra care and check
2092 * rcu_preempt_depth(), otherwise RCU read sections modify
2093 * preempt_count().
2094 */
2095 console_may_schedule = !oops_in_progress &&
2096 preemptible() &&
2097 !rcu_preempt_depth();
2098 return 1;
2099}
2100EXPORT_SYMBOL(console_trylock);
2101
2102int is_console_locked(void)
2103{
2104 return console_locked;
2105}
2106
2107/*
2108 * Check if we have any console that is capable of printing while cpu is
2109 * booting or shutting down. Requires console_sem.
2110 */
2111static int have_callable_console(void)
2112{
2113 struct console *con;
2114
2115 for_each_console(con)
2116 if ((con->flags & CON_ENABLED) &&
2117 (con->flags & CON_ANYTIME))
2118 return 1;
2119
2120 return 0;
2121}
2122
2123/*
2124 * Can we actually use the console at this time on this cpu?
2125 *
2126 * Console drivers may assume that per-cpu resources have been allocated. So
2127 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2128 * call them until this CPU is officially up.
2129 */
2130static inline int can_use_console(void)
2131{
2132 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2133}
2134
2135/**
2136 * console_unlock - unlock the console system
2137 *
2138 * Releases the console_lock which the caller holds on the console system
2139 * and the console driver list.
2140 *
2141 * While the console_lock was held, console output may have been buffered
2142 * by printk(). If this is the case, console_unlock(); emits
2143 * the output prior to releasing the lock.
2144 *
2145 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2146 *
2147 * console_unlock(); may be called from any context.
2148 */
2149void console_unlock(void)
2150{
2151 static char ext_text[CONSOLE_EXT_LOG_MAX];
2152 static char text[LOG_LINE_MAX + PREFIX_MAX];
2153 static u64 seen_seq;
2154 unsigned long flags;
2155 bool wake_klogd = false;
2156 bool do_cond_resched, retry;
2157
2158 if (console_suspended) {
2159 up_console_sem();
2160 return;
2161 }
2162
2163 /*
2164 * Console drivers are called with interrupts disabled, so
2165 * @console_may_schedule should be cleared before; however, we may
2166 * end up dumping a lot of lines, for example, if called from
2167 * console registration path, and should invoke cond_resched()
2168 * between lines if allowable. Not doing so can cause a very long
2169 * scheduling stall on a slow console leading to RCU stall and
2170 * softlockup warnings which exacerbate the issue with more
2171 * messages practically incapacitating the system.
2172 *
2173 * console_trylock() is not able to detect the preemptive
2174 * context reliably. Therefore the value must be stored before
2175 * and cleared after the the "again" goto label.
2176 */
2177 do_cond_resched = console_may_schedule;
2178again:
2179 console_may_schedule = 0;
2180
2181 /*
2182 * We released the console_sem lock, so we need to recheck if
2183 * cpu is online and (if not) is there at least one CON_ANYTIME
2184 * console.
2185 */
2186 if (!can_use_console()) {
2187 console_locked = 0;
2188 up_console_sem();
2189 return;
2190 }
2191
2192 for (;;) {
2193 struct printk_log *msg;
2194 size_t ext_len = 0;
2195 size_t len;
2196
2197 printk_safe_enter_irqsave(flags);
2198 raw_spin_lock(&logbuf_lock);
2199 if (seen_seq != log_next_seq) {
2200 wake_klogd = true;
2201 seen_seq = log_next_seq;
2202 }
2203
2204 if (console_seq < log_first_seq) {
2205 len = sprintf(text, "** %u printk messages dropped ** ",
2206 (unsigned)(log_first_seq - console_seq));
2207
2208 /* messages are gone, move to first one */
2209 console_seq = log_first_seq;
2210 console_idx = log_first_idx;
2211 } else {
2212 len = 0;
2213 }
2214skip:
2215 if (console_seq == log_next_seq)
2216 break;
2217
2218 msg = log_from_idx(console_idx);
2219 if (suppress_message_printing(msg->level)) {
2220 /*
2221 * Skip record we have buffered and already printed
2222 * directly to the console when we received it, and
2223 * record that has level above the console loglevel.
2224 */
2225 console_idx = log_next(console_idx);
2226 console_seq++;
2227 goto skip;
2228 }
2229
2230 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2231 if (nr_ext_console_drivers) {
2232 ext_len = msg_print_ext_header(ext_text,
2233 sizeof(ext_text),
2234 msg, console_seq);
2235 ext_len += msg_print_ext_body(ext_text + ext_len,
2236 sizeof(ext_text) - ext_len,
2237 log_dict(msg), msg->dict_len,
2238 log_text(msg), msg->text_len);
2239 }
2240 console_idx = log_next(console_idx);
2241 console_seq++;
2242 raw_spin_unlock(&logbuf_lock);
2243
2244 stop_critical_timings(); /* don't trace print latency */
2245 call_console_drivers(ext_text, ext_len, text, len);
2246 start_critical_timings();
2247 printk_safe_exit_irqrestore(flags);
2248
2249 if (do_cond_resched)
2250 cond_resched();
2251 }
2252 console_locked = 0;
2253
2254 /* Release the exclusive_console once it is used */
2255 if (unlikely(exclusive_console))
2256 exclusive_console = NULL;
2257
2258 raw_spin_unlock(&logbuf_lock);
2259
2260 up_console_sem();
2261
2262 /*
2263 * Someone could have filled up the buffer again, so re-check if there's
2264 * something to flush. In case we cannot trylock the console_sem again,
2265 * there's a new owner and the console_unlock() from them will do the
2266 * flush, no worries.
2267 */
2268 raw_spin_lock(&logbuf_lock);
2269 retry = console_seq != log_next_seq;
2270 raw_spin_unlock(&logbuf_lock);
2271 printk_safe_exit_irqrestore(flags);
2272
2273 if (retry && console_trylock())
2274 goto again;
2275
2276 if (wake_klogd)
2277 wake_up_klogd();
2278}
2279EXPORT_SYMBOL(console_unlock);
2280
2281/**
2282 * console_conditional_schedule - yield the CPU if required
2283 *
2284 * If the console code is currently allowed to sleep, and
2285 * if this CPU should yield the CPU to another task, do
2286 * so here.
2287 *
2288 * Must be called within console_lock();.
2289 */
2290void __sched console_conditional_schedule(void)
2291{
2292 if (console_may_schedule)
2293 cond_resched();
2294}
2295EXPORT_SYMBOL(console_conditional_schedule);
2296
2297void console_unblank(void)
2298{
2299 struct console *c;
2300
2301 /*
2302 * console_unblank can no longer be called in interrupt context unless
2303 * oops_in_progress is set to 1..
2304 */
2305 if (oops_in_progress) {
2306 if (down_trylock_console_sem() != 0)
2307 return;
2308 } else
2309 console_lock();
2310
2311 console_locked = 1;
2312 console_may_schedule = 0;
2313 for_each_console(c)
2314 if ((c->flags & CON_ENABLED) && c->unblank)
2315 c->unblank();
2316 console_unlock();
2317}
2318
2319/**
2320 * console_flush_on_panic - flush console content on panic
2321 *
2322 * Immediately output all pending messages no matter what.
2323 */
2324void console_flush_on_panic(void)
2325{
2326 /*
2327 * If someone else is holding the console lock, trylock will fail
2328 * and may_schedule may be set. Ignore and proceed to unlock so
2329 * that messages are flushed out. As this can be called from any
2330 * context and we don't want to get preempted while flushing,
2331 * ensure may_schedule is cleared.
2332 */
2333 console_trylock();
2334 console_may_schedule = 0;
2335 console_unlock();
2336}
2337
2338/*
2339 * Return the console tty driver structure and its associated index
2340 */
2341struct tty_driver *console_device(int *index)
2342{
2343 struct console *c;
2344 struct tty_driver *driver = NULL;
2345
2346 console_lock();
2347 for_each_console(c) {
2348 if (!c->device)
2349 continue;
2350 driver = c->device(c, index);
2351 if (driver)
2352 break;
2353 }
2354 console_unlock();
2355 return driver;
2356}
2357
2358/*
2359 * Prevent further output on the passed console device so that (for example)
2360 * serial drivers can disable console output before suspending a port, and can
2361 * re-enable output afterwards.
2362 */
2363void console_stop(struct console *console)
2364{
2365 console_lock();
2366 console->flags &= ~CON_ENABLED;
2367 console_unlock();
2368}
2369EXPORT_SYMBOL(console_stop);
2370
2371void console_start(struct console *console)
2372{
2373 console_lock();
2374 console->flags |= CON_ENABLED;
2375 console_unlock();
2376}
2377EXPORT_SYMBOL(console_start);
2378
2379static int __read_mostly keep_bootcon;
2380
2381static int __init keep_bootcon_setup(char *str)
2382{
2383 keep_bootcon = 1;
2384 pr_info("debug: skip boot console de-registration.\n");
2385
2386 return 0;
2387}
2388
2389early_param("keep_bootcon", keep_bootcon_setup);
2390
2391/*
2392 * The console driver calls this routine during kernel initialization
2393 * to register the console printing procedure with printk() and to
2394 * print any messages that were printed by the kernel before the
2395 * console driver was initialized.
2396 *
2397 * This can happen pretty early during the boot process (because of
2398 * early_printk) - sometimes before setup_arch() completes - be careful
2399 * of what kernel features are used - they may not be initialised yet.
2400 *
2401 * There are two types of consoles - bootconsoles (early_printk) and
2402 * "real" consoles (everything which is not a bootconsole) which are
2403 * handled differently.
2404 * - Any number of bootconsoles can be registered at any time.
2405 * - As soon as a "real" console is registered, all bootconsoles
2406 * will be unregistered automatically.
2407 * - Once a "real" console is registered, any attempt to register a
2408 * bootconsoles will be rejected
2409 */
2410void register_console(struct console *newcon)
2411{
2412 int i;
2413 unsigned long flags;
2414 struct console *bcon = NULL;
2415 struct console_cmdline *c;
2416 static bool has_preferred;
2417
2418 if (console_drivers)
2419 for_each_console(bcon)
2420 if (WARN(bcon == newcon,
2421 "console '%s%d' already registered\n",
2422 bcon->name, bcon->index))
2423 return;
2424
2425 /*
2426 * before we register a new CON_BOOT console, make sure we don't
2427 * already have a valid console
2428 */
2429 if (console_drivers && newcon->flags & CON_BOOT) {
2430 /* find the last or real console */
2431 for_each_console(bcon) {
2432 if (!(bcon->flags & CON_BOOT)) {
2433 pr_info("Too late to register bootconsole %s%d\n",
2434 newcon->name, newcon->index);
2435 return;
2436 }
2437 }
2438 }
2439
2440 if (console_drivers && console_drivers->flags & CON_BOOT)
2441 bcon = console_drivers;
2442
2443 if (!has_preferred || bcon || !console_drivers)
2444 has_preferred = preferred_console >= 0;
2445
2446 /*
2447 * See if we want to use this console driver. If we
2448 * didn't select a console we take the first one
2449 * that registers here.
2450 */
2451 if (!has_preferred) {
2452 if (newcon->index < 0)
2453 newcon->index = 0;
2454 if (newcon->setup == NULL ||
2455 newcon->setup(newcon, NULL) == 0) {
2456 newcon->flags |= CON_ENABLED;
2457 if (newcon->device) {
2458 newcon->flags |= CON_CONSDEV;
2459 has_preferred = true;
2460 }
2461 }
2462 }
2463
2464 /*
2465 * See if this console matches one we selected on
2466 * the command line.
2467 */
2468 for (i = 0, c = console_cmdline;
2469 i < MAX_CMDLINECONSOLES && c->name[0];
2470 i++, c++) {
2471 if (!newcon->match ||
2472 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2473 /* default matching */
2474 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2475 if (strcmp(c->name, newcon->name) != 0)
2476 continue;
2477 if (newcon->index >= 0 &&
2478 newcon->index != c->index)
2479 continue;
2480 if (newcon->index < 0)
2481 newcon->index = c->index;
2482
2483 if (_braille_register_console(newcon, c))
2484 return;
2485
2486 if (newcon->setup &&
2487 newcon->setup(newcon, c->options) != 0)
2488 break;
2489 }
2490
2491 newcon->flags |= CON_ENABLED;
2492 if (i == preferred_console) {
2493 newcon->flags |= CON_CONSDEV;
2494 has_preferred = true;
2495 }
2496 break;
2497 }
2498
2499 if (!(newcon->flags & CON_ENABLED))
2500 return;
2501
2502 /*
2503 * If we have a bootconsole, and are switching to a real console,
2504 * don't print everything out again, since when the boot console, and
2505 * the real console are the same physical device, it's annoying to
2506 * see the beginning boot messages twice
2507 */
2508 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2509 newcon->flags &= ~CON_PRINTBUFFER;
2510
2511 /*
2512 * Put this console in the list - keep the
2513 * preferred driver at the head of the list.
2514 */
2515 console_lock();
2516 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2517 newcon->next = console_drivers;
2518 console_drivers = newcon;
2519 if (newcon->next)
2520 newcon->next->flags &= ~CON_CONSDEV;
2521 } else {
2522 newcon->next = console_drivers->next;
2523 console_drivers->next = newcon;
2524 }
2525
2526 if (newcon->flags & CON_EXTENDED)
2527 if (!nr_ext_console_drivers++)
2528 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2529
2530 if (newcon->flags & CON_PRINTBUFFER) {
2531 /*
2532 * console_unlock(); will print out the buffered messages
2533 * for us.
2534 */
2535 logbuf_lock_irqsave(flags);
2536 console_seq = syslog_seq;
2537 console_idx = syslog_idx;
2538 logbuf_unlock_irqrestore(flags);
2539 /*
2540 * We're about to replay the log buffer. Only do this to the
2541 * just-registered console to avoid excessive message spam to
2542 * the already-registered consoles.
2543 */
2544 exclusive_console = newcon;
2545 }
2546 console_unlock();
2547 console_sysfs_notify();
2548
2549 /*
2550 * By unregistering the bootconsoles after we enable the real console
2551 * we get the "console xxx enabled" message on all the consoles -
2552 * boot consoles, real consoles, etc - this is to ensure that end
2553 * users know there might be something in the kernel's log buffer that
2554 * went to the bootconsole (that they do not see on the real console)
2555 */
2556 pr_info("%sconsole [%s%d] enabled\n",
2557 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2558 newcon->name, newcon->index);
2559 if (bcon &&
2560 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2561 !keep_bootcon) {
2562 /* We need to iterate through all boot consoles, to make
2563 * sure we print everything out, before we unregister them.
2564 */
2565 for_each_console(bcon)
2566 if (bcon->flags & CON_BOOT)
2567 unregister_console(bcon);
2568 }
2569}
2570EXPORT_SYMBOL(register_console);
2571
2572int unregister_console(struct console *console)
2573{
2574 struct console *a, *b;
2575 int res;
2576
2577 pr_info("%sconsole [%s%d] disabled\n",
2578 (console->flags & CON_BOOT) ? "boot" : "" ,
2579 console->name, console->index);
2580
2581 res = _braille_unregister_console(console);
2582 if (res)
2583 return res;
2584
2585 res = 1;
2586 console_lock();
2587 if (console_drivers == console) {
2588 console_drivers=console->next;
2589 res = 0;
2590 } else if (console_drivers) {
2591 for (a=console_drivers->next, b=console_drivers ;
2592 a; b=a, a=b->next) {
2593 if (a == console) {
2594 b->next = a->next;
2595 res = 0;
2596 break;
2597 }
2598 }
2599 }
2600
2601 if (!res && (console->flags & CON_EXTENDED))
2602 nr_ext_console_drivers--;
2603
2604 /*
2605 * If this isn't the last console and it has CON_CONSDEV set, we
2606 * need to set it on the next preferred console.
2607 */
2608 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2609 console_drivers->flags |= CON_CONSDEV;
2610
2611 console->flags &= ~CON_ENABLED;
2612 console_unlock();
2613 console_sysfs_notify();
2614 return res;
2615}
2616EXPORT_SYMBOL(unregister_console);
2617
2618/*
2619 * Initialize the console device. This is called *early*, so
2620 * we can't necessarily depend on lots of kernel help here.
2621 * Just do some early initializations, and do the complex setup
2622 * later.
2623 */
2624void __init console_init(void)
2625{
2626 initcall_t *call;
2627
2628 /* Setup the default TTY line discipline. */
2629 n_tty_init();
2630
2631 /*
2632 * set up the console device so that later boot sequences can
2633 * inform about problems etc..
2634 */
2635 call = __con_initcall_start;
2636 while (call < __con_initcall_end) {
2637 (*call)();
2638 call++;
2639 }
2640}
2641
2642/*
2643 * Some boot consoles access data that is in the init section and which will
2644 * be discarded after the initcalls have been run. To make sure that no code
2645 * will access this data, unregister the boot consoles in a late initcall.
2646 *
2647 * If for some reason, such as deferred probe or the driver being a loadable
2648 * module, the real console hasn't registered yet at this point, there will
2649 * be a brief interval in which no messages are logged to the console, which
2650 * makes it difficult to diagnose problems that occur during this time.
2651 *
2652 * To mitigate this problem somewhat, only unregister consoles whose memory
2653 * intersects with the init section. Note that code exists elsewhere to get
2654 * rid of the boot console as soon as the proper console shows up, so there
2655 * won't be side-effects from postponing the removal.
2656 */
2657static int __init printk_late_init(void)
2658{
2659 struct console *con;
2660 int ret;
2661
2662 for_each_console(con) {
2663 if (!keep_bootcon && con->flags & CON_BOOT) {
2664 /*
2665 * Make sure to unregister boot consoles whose data
2666 * resides in the init section before the init section
2667 * is discarded. Boot consoles whose data will stick
2668 * around will automatically be unregistered when the
2669 * proper console replaces them.
2670 */
2671 if (init_section_intersects(con, sizeof(*con)))
2672 unregister_console(con);
2673 }
2674 }
2675 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2676 console_cpu_notify);
2677 WARN_ON(ret < 0);
2678 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2679 console_cpu_notify, NULL);
2680 WARN_ON(ret < 0);
2681 return 0;
2682}
2683late_initcall(printk_late_init);
2684
2685#if defined CONFIG_PRINTK
2686/*
2687 * Delayed printk version, for scheduler-internal messages:
2688 */
2689#define PRINTK_PENDING_WAKEUP 0x01
2690#define PRINTK_PENDING_OUTPUT 0x02
2691
2692static DEFINE_PER_CPU(int, printk_pending);
2693
2694static void wake_up_klogd_work_func(struct irq_work *irq_work)
2695{
2696 int pending = __this_cpu_xchg(printk_pending, 0);
2697
2698 if (pending & PRINTK_PENDING_OUTPUT) {
2699 /* If trylock fails, someone else is doing the printing */
2700 if (console_trylock())
2701 console_unlock();
2702 }
2703
2704 if (pending & PRINTK_PENDING_WAKEUP)
2705 wake_up_interruptible(&log_wait);
2706}
2707
2708static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2709 .func = wake_up_klogd_work_func,
2710 .flags = IRQ_WORK_LAZY,
2711};
2712
2713void wake_up_klogd(void)
2714{
2715 preempt_disable();
2716 if (waitqueue_active(&log_wait)) {
2717 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2718 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2719 }
2720 preempt_enable();
2721}
2722
2723int printk_deferred(const char *fmt, ...)
2724{
2725 va_list args;
2726 int r;
2727
2728 preempt_disable();
2729 va_start(args, fmt);
2730 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2731 va_end(args);
2732
2733 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2734 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2735 preempt_enable();
2736
2737 return r;
2738}
2739
2740/*
2741 * printk rate limiting, lifted from the networking subsystem.
2742 *
2743 * This enforces a rate limit: not more than 10 kernel messages
2744 * every 5s to make a denial-of-service attack impossible.
2745 */
2746DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2747
2748int __printk_ratelimit(const char *func)
2749{
2750 return ___ratelimit(&printk_ratelimit_state, func);
2751}
2752EXPORT_SYMBOL(__printk_ratelimit);
2753
2754/**
2755 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2756 * @caller_jiffies: pointer to caller's state
2757 * @interval_msecs: minimum interval between prints
2758 *
2759 * printk_timed_ratelimit() returns true if more than @interval_msecs
2760 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2761 * returned true.
2762 */
2763bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2764 unsigned int interval_msecs)
2765{
2766 unsigned long elapsed = jiffies - *caller_jiffies;
2767
2768 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2769 return false;
2770
2771 *caller_jiffies = jiffies;
2772 return true;
2773}
2774EXPORT_SYMBOL(printk_timed_ratelimit);
2775
2776static DEFINE_SPINLOCK(dump_list_lock);
2777static LIST_HEAD(dump_list);
2778
2779/**
2780 * kmsg_dump_register - register a kernel log dumper.
2781 * @dumper: pointer to the kmsg_dumper structure
2782 *
2783 * Adds a kernel log dumper to the system. The dump callback in the
2784 * structure will be called when the kernel oopses or panics and must be
2785 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2786 */
2787int kmsg_dump_register(struct kmsg_dumper *dumper)
2788{
2789 unsigned long flags;
2790 int err = -EBUSY;
2791
2792 /* The dump callback needs to be set */
2793 if (!dumper->dump)
2794 return -EINVAL;
2795
2796 spin_lock_irqsave(&dump_list_lock, flags);
2797 /* Don't allow registering multiple times */
2798 if (!dumper->registered) {
2799 dumper->registered = 1;
2800 list_add_tail_rcu(&dumper->list, &dump_list);
2801 err = 0;
2802 }
2803 spin_unlock_irqrestore(&dump_list_lock, flags);
2804
2805 return err;
2806}
2807EXPORT_SYMBOL_GPL(kmsg_dump_register);
2808
2809/**
2810 * kmsg_dump_unregister - unregister a kmsg dumper.
2811 * @dumper: pointer to the kmsg_dumper structure
2812 *
2813 * Removes a dump device from the system. Returns zero on success and
2814 * %-EINVAL otherwise.
2815 */
2816int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2817{
2818 unsigned long flags;
2819 int err = -EINVAL;
2820
2821 spin_lock_irqsave(&dump_list_lock, flags);
2822 if (dumper->registered) {
2823 dumper->registered = 0;
2824 list_del_rcu(&dumper->list);
2825 err = 0;
2826 }
2827 spin_unlock_irqrestore(&dump_list_lock, flags);
2828 synchronize_rcu();
2829
2830 return err;
2831}
2832EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2833
2834static bool always_kmsg_dump;
2835module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2836
2837/**
2838 * kmsg_dump - dump kernel log to kernel message dumpers.
2839 * @reason: the reason (oops, panic etc) for dumping
2840 *
2841 * Call each of the registered dumper's dump() callback, which can
2842 * retrieve the kmsg records with kmsg_dump_get_line() or
2843 * kmsg_dump_get_buffer().
2844 */
2845void kmsg_dump(enum kmsg_dump_reason reason)
2846{
2847 struct kmsg_dumper *dumper;
2848 unsigned long flags;
2849
2850 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2851 return;
2852
2853 rcu_read_lock();
2854 list_for_each_entry_rcu(dumper, &dump_list, list) {
2855 if (dumper->max_reason && reason > dumper->max_reason)
2856 continue;
2857
2858 /* initialize iterator with data about the stored records */
2859 dumper->active = true;
2860
2861 logbuf_lock_irqsave(flags);
2862 dumper->cur_seq = clear_seq;
2863 dumper->cur_idx = clear_idx;
2864 dumper->next_seq = log_next_seq;
2865 dumper->next_idx = log_next_idx;
2866 logbuf_unlock_irqrestore(flags);
2867
2868 /* invoke dumper which will iterate over records */
2869 dumper->dump(dumper, reason);
2870
2871 /* reset iterator */
2872 dumper->active = false;
2873 }
2874 rcu_read_unlock();
2875}
2876
2877/**
2878 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2879 * @dumper: registered kmsg dumper
2880 * @syslog: include the "<4>" prefixes
2881 * @line: buffer to copy the line to
2882 * @size: maximum size of the buffer
2883 * @len: length of line placed into buffer
2884 *
2885 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2886 * record, and copy one record into the provided buffer.
2887 *
2888 * Consecutive calls will return the next available record moving
2889 * towards the end of the buffer with the youngest messages.
2890 *
2891 * A return value of FALSE indicates that there are no more records to
2892 * read.
2893 *
2894 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2895 */
2896bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2897 char *line, size_t size, size_t *len)
2898{
2899 struct printk_log *msg;
2900 size_t l = 0;
2901 bool ret = false;
2902
2903 if (!dumper->active)
2904 goto out;
2905
2906 if (dumper->cur_seq < log_first_seq) {
2907 /* messages are gone, move to first available one */
2908 dumper->cur_seq = log_first_seq;
2909 dumper->cur_idx = log_first_idx;
2910 }
2911
2912 /* last entry */
2913 if (dumper->cur_seq >= log_next_seq)
2914 goto out;
2915
2916 msg = log_from_idx(dumper->cur_idx);
2917 l = msg_print_text(msg, syslog, line, size);
2918
2919 dumper->cur_idx = log_next(dumper->cur_idx);
2920 dumper->cur_seq++;
2921 ret = true;
2922out:
2923 if (len)
2924 *len = l;
2925 return ret;
2926}
2927
2928/**
2929 * kmsg_dump_get_line - retrieve one kmsg log line
2930 * @dumper: registered kmsg dumper
2931 * @syslog: include the "<4>" prefixes
2932 * @line: buffer to copy the line to
2933 * @size: maximum size of the buffer
2934 * @len: length of line placed into buffer
2935 *
2936 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2937 * record, and copy one record into the provided buffer.
2938 *
2939 * Consecutive calls will return the next available record moving
2940 * towards the end of the buffer with the youngest messages.
2941 *
2942 * A return value of FALSE indicates that there are no more records to
2943 * read.
2944 */
2945bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2946 char *line, size_t size, size_t *len)
2947{
2948 unsigned long flags;
2949 bool ret;
2950
2951 logbuf_lock_irqsave(flags);
2952 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2953 logbuf_unlock_irqrestore(flags);
2954
2955 return ret;
2956}
2957EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2958
2959/**
2960 * kmsg_dump_get_buffer - copy kmsg log lines
2961 * @dumper: registered kmsg dumper
2962 * @syslog: include the "<4>" prefixes
2963 * @buf: buffer to copy the line to
2964 * @size: maximum size of the buffer
2965 * @len: length of line placed into buffer
2966 *
2967 * Start at the end of the kmsg buffer and fill the provided buffer
2968 * with as many of the the *youngest* kmsg records that fit into it.
2969 * If the buffer is large enough, all available kmsg records will be
2970 * copied with a single call.
2971 *
2972 * Consecutive calls will fill the buffer with the next block of
2973 * available older records, not including the earlier retrieved ones.
2974 *
2975 * A return value of FALSE indicates that there are no more records to
2976 * read.
2977 */
2978bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2979 char *buf, size_t size, size_t *len)
2980{
2981 unsigned long flags;
2982 u64 seq;
2983 u32 idx;
2984 u64 next_seq;
2985 u32 next_idx;
2986 size_t l = 0;
2987 bool ret = false;
2988
2989 if (!dumper->active)
2990 goto out;
2991
2992 logbuf_lock_irqsave(flags);
2993 if (dumper->cur_seq < log_first_seq) {
2994 /* messages are gone, move to first available one */
2995 dumper->cur_seq = log_first_seq;
2996 dumper->cur_idx = log_first_idx;
2997 }
2998
2999 /* last entry */
3000 if (dumper->cur_seq >= dumper->next_seq) {
3001 logbuf_unlock_irqrestore(flags);
3002 goto out;
3003 }
3004
3005 /* calculate length of entire buffer */
3006 seq = dumper->cur_seq;
3007 idx = dumper->cur_idx;
3008 while (seq < dumper->next_seq) {
3009 struct printk_log *msg = log_from_idx(idx);
3010
3011 l += msg_print_text(msg, true, NULL, 0);
3012 idx = log_next(idx);
3013 seq++;
3014 }
3015
3016 /* move first record forward until length fits into the buffer */
3017 seq = dumper->cur_seq;
3018 idx = dumper->cur_idx;
3019 while (l > size && seq < dumper->next_seq) {
3020 struct printk_log *msg = log_from_idx(idx);
3021
3022 l -= msg_print_text(msg, true, NULL, 0);
3023 idx = log_next(idx);
3024 seq++;
3025 }
3026
3027 /* last message in next interation */
3028 next_seq = seq;
3029 next_idx = idx;
3030
3031 l = 0;
3032 while (seq < dumper->next_seq) {
3033 struct printk_log *msg = log_from_idx(idx);
3034
3035 l += msg_print_text(msg, syslog, buf + l, size - l);
3036 idx = log_next(idx);
3037 seq++;
3038 }
3039
3040 dumper->next_seq = next_seq;
3041 dumper->next_idx = next_idx;
3042 ret = true;
3043 logbuf_unlock_irqrestore(flags);
3044out:
3045 if (len)
3046 *len = l;
3047 return ret;
3048}
3049EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3050
3051/**
3052 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3053 * @dumper: registered kmsg dumper
3054 *
3055 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3056 * kmsg_dump_get_buffer() can be called again and used multiple
3057 * times within the same dumper.dump() callback.
3058 *
3059 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3060 */
3061void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3062{
3063 dumper->cur_seq = clear_seq;
3064 dumper->cur_idx = clear_idx;
3065 dumper->next_seq = log_next_seq;
3066 dumper->next_idx = log_next_idx;
3067}
3068
3069/**
3070 * kmsg_dump_rewind - reset the interator
3071 * @dumper: registered kmsg dumper
3072 *
3073 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3074 * kmsg_dump_get_buffer() can be called again and used multiple
3075 * times within the same dumper.dump() callback.
3076 */
3077void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3078{
3079 unsigned long flags;
3080
3081 logbuf_lock_irqsave(flags);
3082 kmsg_dump_rewind_nolock(dumper);
3083 logbuf_unlock_irqrestore(flags);
3084}
3085EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3086
3087static char dump_stack_arch_desc_str[128];
3088
3089/**
3090 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3091 * @fmt: printf-style format string
3092 * @...: arguments for the format string
3093 *
3094 * The configured string will be printed right after utsname during task
3095 * dumps. Usually used to add arch-specific system identifiers. If an
3096 * arch wants to make use of such an ID string, it should initialize this
3097 * as soon as possible during boot.
3098 */
3099void __init dump_stack_set_arch_desc(const char *fmt, ...)
3100{
3101 va_list args;
3102
3103 va_start(args, fmt);
3104 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3105 fmt, args);
3106 va_end(args);
3107}
3108
3109/**
3110 * dump_stack_print_info - print generic debug info for dump_stack()
3111 * @log_lvl: log level
3112 *
3113 * Arch-specific dump_stack() implementations can use this function to
3114 * print out the same debug information as the generic dump_stack().
3115 */
3116void dump_stack_print_info(const char *log_lvl)
3117{
3118 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3119 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3120 print_tainted(), init_utsname()->release,
3121 (int)strcspn(init_utsname()->version, " "),
3122 init_utsname()->version);
3123
3124 if (dump_stack_arch_desc_str[0] != '\0')
3125 printk("%sHardware name: %s\n",
3126 log_lvl, dump_stack_arch_desc_str);
3127
3128 print_worker_info(log_lvl, current);
3129}
3130
3131/**
3132 * show_regs_print_info - print generic debug info for show_regs()
3133 * @log_lvl: log level
3134 *
3135 * show_regs() implementations can use this function to print out generic
3136 * debug information.
3137 */
3138void show_regs_print_info(const char *log_lvl)
3139{
3140 dump_stack_print_info(log_lvl);
3141
3142 printk("%stask: %p task.stack: %p\n",
3143 log_lvl, current, task_stack_page(current));
3144}
3145
3146#endif