]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - kernel/rcu/tree.c
rcu: Don't disable preemption for Tiny and Tree RCU readers
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/module.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
50#include <linux/kernel_stat.h>
51#include <linux/wait.h>
52#include <linux/kthread.h>
53#include <linux/prefetch.h>
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
56#include <linux/random.h>
57#include <linux/trace_events.h>
58#include <linux/suspend.h>
59
60#include "tree.h"
61#include "rcu.h"
62
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
69/* Data structures. */
70
71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
74static struct lock_class_key rcu_exp_sched_class[RCU_NUM_LVLS];
75
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
84#ifdef CONFIG_TRACING
85# define DEFINE_RCU_TPS(sname) \
86static char sname##_varname[] = #sname; \
87static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
88# define RCU_STATE_NAME(sname) sname##_varname
89#else
90# define DEFINE_RCU_TPS(sname)
91# define RCU_STATE_NAME(sname) __stringify(sname)
92#endif
93
94#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
95DEFINE_RCU_TPS(sname) \
96static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
97struct rcu_state sname##_state = { \
98 .level = { &sname##_state.node[0] }, \
99 .rda = &sname##_data, \
100 .call = cr, \
101 .fqs_state = RCU_GP_IDLE, \
102 .gpnum = 0UL - 300UL, \
103 .completed = 0UL - 300UL, \
104 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
105 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
106 .orphan_donetail = &sname##_state.orphan_donelist, \
107 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
108 .name = RCU_STATE_NAME(sname), \
109 .abbr = sabbr, \
110}
111
112RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
113RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
114
115static struct rcu_state *const rcu_state_p;
116static struct rcu_data __percpu *const rcu_data_p;
117LIST_HEAD(rcu_struct_flavors);
118
119/* Dump rcu_node combining tree at boot to verify correct setup. */
120static bool dump_tree;
121module_param(dump_tree, bool, 0444);
122/* Control rcu_node-tree auto-balancing at boot time. */
123static bool rcu_fanout_exact;
124module_param(rcu_fanout_exact, bool, 0444);
125/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
126static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
127module_param(rcu_fanout_leaf, int, 0444);
128int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
129/* Number of rcu_nodes at specified level. */
130static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
131int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
132
133/*
134 * The rcu_scheduler_active variable transitions from zero to one just
135 * before the first task is spawned. So when this variable is zero, RCU
136 * can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_sched() to a simple barrier(). When this variable
138 * is one, RCU must actually do all the hard work required to detect real
139 * grace periods. This variable is also used to suppress boot-time false
140 * positives from lockdep-RCU error checking.
141 */
142int rcu_scheduler_active __read_mostly;
143EXPORT_SYMBOL_GPL(rcu_scheduler_active);
144
145/*
146 * The rcu_scheduler_fully_active variable transitions from zero to one
147 * during the early_initcall() processing, which is after the scheduler
148 * is capable of creating new tasks. So RCU processing (for example,
149 * creating tasks for RCU priority boosting) must be delayed until after
150 * rcu_scheduler_fully_active transitions from zero to one. We also
151 * currently delay invocation of any RCU callbacks until after this point.
152 *
153 * It might later prove better for people registering RCU callbacks during
154 * early boot to take responsibility for these callbacks, but one step at
155 * a time.
156 */
157static int rcu_scheduler_fully_active __read_mostly;
158
159static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
160static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164
165/* rcuc/rcub kthread realtime priority */
166#ifdef CONFIG_RCU_KTHREAD_PRIO
167static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
168#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
169static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
171module_param(kthread_prio, int, 0644);
172
173/* Delay in jiffies for grace-period initialization delays, debug only. */
174
175#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
176static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
177module_param(gp_preinit_delay, int, 0644);
178#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179static const int gp_preinit_delay;
180#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181
182#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
183static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
184module_param(gp_init_delay, int, 0644);
185#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186static const int gp_init_delay;
187#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188
189#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
190static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
191module_param(gp_cleanup_delay, int, 0644);
192#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193static const int gp_cleanup_delay;
194#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195
196/*
197 * Number of grace periods between delays, normalized by the duration of
198 * the delay. The longer the the delay, the more the grace periods between
199 * each delay. The reason for this normalization is that it means that,
200 * for non-zero delays, the overall slowdown of grace periods is constant
201 * regardless of the duration of the delay. This arrangement balances
202 * the need for long delays to increase some race probabilities with the
203 * need for fast grace periods to increase other race probabilities.
204 */
205#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
206
207/*
208 * Track the rcutorture test sequence number and the update version
209 * number within a given test. The rcutorture_testseq is incremented
210 * on every rcutorture module load and unload, so has an odd value
211 * when a test is running. The rcutorture_vernum is set to zero
212 * when rcutorture starts and is incremented on each rcutorture update.
213 * These variables enable correlating rcutorture output with the
214 * RCU tracing information.
215 */
216unsigned long rcutorture_testseq;
217unsigned long rcutorture_vernum;
218
219/*
220 * Compute the mask of online CPUs for the specified rcu_node structure.
221 * This will not be stable unless the rcu_node structure's ->lock is
222 * held, but the bit corresponding to the current CPU will be stable
223 * in most contexts.
224 */
225unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
226{
227 return READ_ONCE(rnp->qsmaskinitnext);
228}
229
230/*
231 * Return true if an RCU grace period is in progress. The READ_ONCE()s
232 * permit this function to be invoked without holding the root rcu_node
233 * structure's ->lock, but of course results can be subject to change.
234 */
235static int rcu_gp_in_progress(struct rcu_state *rsp)
236{
237 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
238}
239
240/*
241 * Note a quiescent state. Because we do not need to know
242 * how many quiescent states passed, just if there was at least
243 * one since the start of the grace period, this just sets a flag.
244 * The caller must have disabled preemption.
245 */
246void rcu_sched_qs(void)
247{
248 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data.gpnum),
251 TPS("cpuqs"));
252 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
253 }
254}
255
256void rcu_bh_qs(void)
257{
258 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
259 trace_rcu_grace_period(TPS("rcu_bh"),
260 __this_cpu_read(rcu_bh_data.gpnum),
261 TPS("cpuqs"));
262 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
263 }
264}
265
266static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
267
268static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
270 .dynticks = ATOMIC_INIT(1),
271#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
272 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
273 .dynticks_idle = ATOMIC_INIT(1),
274#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
275};
276
277DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
278EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
279
280/*
281 * Let the RCU core know that this CPU has gone through the scheduler,
282 * which is a quiescent state. This is called when the need for a
283 * quiescent state is urgent, so we burn an atomic operation and full
284 * memory barriers to let the RCU core know about it, regardless of what
285 * this CPU might (or might not) do in the near future.
286 *
287 * We inform the RCU core by emulating a zero-duration dyntick-idle
288 * period, which we in turn do by incrementing the ->dynticks counter
289 * by two.
290 */
291static void rcu_momentary_dyntick_idle(void)
292{
293 unsigned long flags;
294 struct rcu_data *rdp;
295 struct rcu_dynticks *rdtp;
296 int resched_mask;
297 struct rcu_state *rsp;
298
299 local_irq_save(flags);
300
301 /*
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
304 */
305 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 raw_cpu_write(rcu_sched_qs_mask, 0);
307
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp) {
310 rdp = raw_cpu_ptr(rsp->rda);
311 if (!(resched_mask & rsp->flavor_mask))
312 continue;
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 if (READ_ONCE(rdp->mynode->completed) !=
315 READ_ONCE(rdp->cond_resched_completed))
316 continue;
317
318 /*
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
322 * further.
323 */
324 rdtp = this_cpu_ptr(&rcu_dynticks);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp->dynticks); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
328 break;
329 }
330 local_irq_restore(flags);
331}
332
333/*
334 * Note a context switch. This is a quiescent state for RCU-sched,
335 * and requires special handling for preemptible RCU.
336 * The caller must have disabled preemption.
337 */
338void rcu_note_context_switch(void)
339{
340 barrier(); /* Avoid RCU read-side critical sections leaking down. */
341 trace_rcu_utilization(TPS("Start context switch"));
342 rcu_sched_qs();
343 rcu_preempt_note_context_switch();
344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
345 rcu_momentary_dyntick_idle();
346 trace_rcu_utilization(TPS("End context switch"));
347 barrier(); /* Avoid RCU read-side critical sections leaking up. */
348}
349EXPORT_SYMBOL_GPL(rcu_note_context_switch);
350
351/*
352 * Register a quiescent state for all RCU flavors. If there is an
353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354 * dyntick-idle quiescent state visible to other CPUs (but only for those
355 * RCU flavors in desperate need of a quiescent state, which will normally
356 * be none of them). Either way, do a lightweight quiescent state for
357 * all RCU flavors.
358 *
359 * The barrier() calls are redundant in the common case when this is
360 * called externally, but just in case this is called from within this
361 * file.
362 *
363 */
364void rcu_all_qs(void)
365{
366 barrier(); /* Avoid RCU read-side critical sections leaking down. */
367 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
368 rcu_momentary_dyntick_idle();
369 this_cpu_inc(rcu_qs_ctr);
370 barrier(); /* Avoid RCU read-side critical sections leaking up. */
371}
372EXPORT_SYMBOL_GPL(rcu_all_qs);
373
374static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
375static long qhimark = 10000; /* If this many pending, ignore blimit. */
376static long qlowmark = 100; /* Once only this many pending, use blimit. */
377
378module_param(blimit, long, 0444);
379module_param(qhimark, long, 0444);
380module_param(qlowmark, long, 0444);
381
382static ulong jiffies_till_first_fqs = ULONG_MAX;
383static ulong jiffies_till_next_fqs = ULONG_MAX;
384
385module_param(jiffies_till_first_fqs, ulong, 0644);
386module_param(jiffies_till_next_fqs, ulong, 0644);
387
388/*
389 * How long the grace period must be before we start recruiting
390 * quiescent-state help from rcu_note_context_switch().
391 */
392static ulong jiffies_till_sched_qs = HZ / 20;
393module_param(jiffies_till_sched_qs, ulong, 0644);
394
395static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
396 struct rcu_data *rdp);
397static void force_qs_rnp(struct rcu_state *rsp,
398 int (*f)(struct rcu_data *rsp, bool *isidle,
399 unsigned long *maxj),
400 bool *isidle, unsigned long *maxj);
401static void force_quiescent_state(struct rcu_state *rsp);
402static int rcu_pending(void);
403
404/*
405 * Return the number of RCU batches started thus far for debug & stats.
406 */
407unsigned long rcu_batches_started(void)
408{
409 return rcu_state_p->gpnum;
410}
411EXPORT_SYMBOL_GPL(rcu_batches_started);
412
413/*
414 * Return the number of RCU-sched batches started thus far for debug & stats.
415 */
416unsigned long rcu_batches_started_sched(void)
417{
418 return rcu_sched_state.gpnum;
419}
420EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
421
422/*
423 * Return the number of RCU BH batches started thus far for debug & stats.
424 */
425unsigned long rcu_batches_started_bh(void)
426{
427 return rcu_bh_state.gpnum;
428}
429EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
430
431/*
432 * Return the number of RCU batches completed thus far for debug & stats.
433 */
434unsigned long rcu_batches_completed(void)
435{
436 return rcu_state_p->completed;
437}
438EXPORT_SYMBOL_GPL(rcu_batches_completed);
439
440/*
441 * Return the number of RCU-sched batches completed thus far for debug & stats.
442 */
443unsigned long rcu_batches_completed_sched(void)
444{
445 return rcu_sched_state.completed;
446}
447EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
448
449/*
450 * Return the number of RCU BH batches completed thus far for debug & stats.
451 */
452unsigned long rcu_batches_completed_bh(void)
453{
454 return rcu_bh_state.completed;
455}
456EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
457
458/*
459 * Force a quiescent state.
460 */
461void rcu_force_quiescent_state(void)
462{
463 force_quiescent_state(rcu_state_p);
464}
465EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
466
467/*
468 * Force a quiescent state for RCU BH.
469 */
470void rcu_bh_force_quiescent_state(void)
471{
472 force_quiescent_state(&rcu_bh_state);
473}
474EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
475
476/*
477 * Force a quiescent state for RCU-sched.
478 */
479void rcu_sched_force_quiescent_state(void)
480{
481 force_quiescent_state(&rcu_sched_state);
482}
483EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
484
485/*
486 * Show the state of the grace-period kthreads.
487 */
488void show_rcu_gp_kthreads(void)
489{
490 struct rcu_state *rsp;
491
492 for_each_rcu_flavor(rsp) {
493 pr_info("%s: wait state: %d ->state: %#lx\n",
494 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
495 /* sched_show_task(rsp->gp_kthread); */
496 }
497}
498EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
499
500/*
501 * Record the number of times rcutorture tests have been initiated and
502 * terminated. This information allows the debugfs tracing stats to be
503 * correlated to the rcutorture messages, even when the rcutorture module
504 * is being repeatedly loaded and unloaded. In other words, we cannot
505 * store this state in rcutorture itself.
506 */
507void rcutorture_record_test_transition(void)
508{
509 rcutorture_testseq++;
510 rcutorture_vernum = 0;
511}
512EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
513
514/*
515 * Send along grace-period-related data for rcutorture diagnostics.
516 */
517void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
518 unsigned long *gpnum, unsigned long *completed)
519{
520 struct rcu_state *rsp = NULL;
521
522 switch (test_type) {
523 case RCU_FLAVOR:
524 rsp = rcu_state_p;
525 break;
526 case RCU_BH_FLAVOR:
527 rsp = &rcu_bh_state;
528 break;
529 case RCU_SCHED_FLAVOR:
530 rsp = &rcu_sched_state;
531 break;
532 default:
533 break;
534 }
535 if (rsp != NULL) {
536 *flags = READ_ONCE(rsp->gp_flags);
537 *gpnum = READ_ONCE(rsp->gpnum);
538 *completed = READ_ONCE(rsp->completed);
539 return;
540 }
541 *flags = 0;
542 *gpnum = 0;
543 *completed = 0;
544}
545EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
546
547/*
548 * Record the number of writer passes through the current rcutorture test.
549 * This is also used to correlate debugfs tracing stats with the rcutorture
550 * messages.
551 */
552void rcutorture_record_progress(unsigned long vernum)
553{
554 rcutorture_vernum++;
555}
556EXPORT_SYMBOL_GPL(rcutorture_record_progress);
557
558/*
559 * Does the CPU have callbacks ready to be invoked?
560 */
561static int
562cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
563{
564 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
565 rdp->nxttail[RCU_DONE_TAIL] != NULL;
566}
567
568/*
569 * Return the root node of the specified rcu_state structure.
570 */
571static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
572{
573 return &rsp->node[0];
574}
575
576/*
577 * Is there any need for future grace periods?
578 * Interrupts must be disabled. If the caller does not hold the root
579 * rnp_node structure's ->lock, the results are advisory only.
580 */
581static int rcu_future_needs_gp(struct rcu_state *rsp)
582{
583 struct rcu_node *rnp = rcu_get_root(rsp);
584 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
585 int *fp = &rnp->need_future_gp[idx];
586
587 return READ_ONCE(*fp);
588}
589
590/*
591 * Does the current CPU require a not-yet-started grace period?
592 * The caller must have disabled interrupts to prevent races with
593 * normal callback registry.
594 */
595static int
596cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
597{
598 int i;
599
600 if (rcu_gp_in_progress(rsp))
601 return 0; /* No, a grace period is already in progress. */
602 if (rcu_future_needs_gp(rsp))
603 return 1; /* Yes, a no-CBs CPU needs one. */
604 if (!rdp->nxttail[RCU_NEXT_TAIL])
605 return 0; /* No, this is a no-CBs (or offline) CPU. */
606 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
607 return 1; /* Yes, this CPU has newly registered callbacks. */
608 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
609 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
610 ULONG_CMP_LT(READ_ONCE(rsp->completed),
611 rdp->nxtcompleted[i]))
612 return 1; /* Yes, CBs for future grace period. */
613 return 0; /* No grace period needed. */
614}
615
616/*
617 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
618 *
619 * If the new value of the ->dynticks_nesting counter now is zero,
620 * we really have entered idle, and must do the appropriate accounting.
621 * The caller must have disabled interrupts.
622 */
623static void rcu_eqs_enter_common(long long oldval, bool user)
624{
625 struct rcu_state *rsp;
626 struct rcu_data *rdp;
627 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
628
629 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
630 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
631 !user && !is_idle_task(current)) {
632 struct task_struct *idle __maybe_unused =
633 idle_task(smp_processor_id());
634
635 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
636 ftrace_dump(DUMP_ORIG);
637 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
638 current->pid, current->comm,
639 idle->pid, idle->comm); /* must be idle task! */
640 }
641 for_each_rcu_flavor(rsp) {
642 rdp = this_cpu_ptr(rsp->rda);
643 do_nocb_deferred_wakeup(rdp);
644 }
645 rcu_prepare_for_idle();
646 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
647 smp_mb__before_atomic(); /* See above. */
648 atomic_inc(&rdtp->dynticks);
649 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
650 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
651 atomic_read(&rdtp->dynticks) & 0x1);
652 rcu_dynticks_task_enter();
653
654 /*
655 * It is illegal to enter an extended quiescent state while
656 * in an RCU read-side critical section.
657 */
658 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
659 "Illegal idle entry in RCU read-side critical section.");
660 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
661 "Illegal idle entry in RCU-bh read-side critical section.");
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
663 "Illegal idle entry in RCU-sched read-side critical section.");
664}
665
666/*
667 * Enter an RCU extended quiescent state, which can be either the
668 * idle loop or adaptive-tickless usermode execution.
669 */
670static void rcu_eqs_enter(bool user)
671{
672 long long oldval;
673 struct rcu_dynticks *rdtp;
674
675 rdtp = this_cpu_ptr(&rcu_dynticks);
676 oldval = rdtp->dynticks_nesting;
677 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
678 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
679 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
680 rdtp->dynticks_nesting = 0;
681 rcu_eqs_enter_common(oldval, user);
682 } else {
683 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
684 }
685}
686
687/**
688 * rcu_idle_enter - inform RCU that current CPU is entering idle
689 *
690 * Enter idle mode, in other words, -leave- the mode in which RCU
691 * read-side critical sections can occur. (Though RCU read-side
692 * critical sections can occur in irq handlers in idle, a possibility
693 * handled by irq_enter() and irq_exit().)
694 *
695 * We crowbar the ->dynticks_nesting field to zero to allow for
696 * the possibility of usermode upcalls having messed up our count
697 * of interrupt nesting level during the prior busy period.
698 */
699void rcu_idle_enter(void)
700{
701 unsigned long flags;
702
703 local_irq_save(flags);
704 rcu_eqs_enter(false);
705 rcu_sysidle_enter(0);
706 local_irq_restore(flags);
707}
708EXPORT_SYMBOL_GPL(rcu_idle_enter);
709
710#ifdef CONFIG_NO_HZ_FULL
711/**
712 * rcu_user_enter - inform RCU that we are resuming userspace.
713 *
714 * Enter RCU idle mode right before resuming userspace. No use of RCU
715 * is permitted between this call and rcu_user_exit(). This way the
716 * CPU doesn't need to maintain the tick for RCU maintenance purposes
717 * when the CPU runs in userspace.
718 */
719void rcu_user_enter(void)
720{
721 rcu_eqs_enter(1);
722}
723#endif /* CONFIG_NO_HZ_FULL */
724
725/**
726 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
727 *
728 * Exit from an interrupt handler, which might possibly result in entering
729 * idle mode, in other words, leaving the mode in which read-side critical
730 * sections can occur.
731 *
732 * This code assumes that the idle loop never does anything that might
733 * result in unbalanced calls to irq_enter() and irq_exit(). If your
734 * architecture violates this assumption, RCU will give you what you
735 * deserve, good and hard. But very infrequently and irreproducibly.
736 *
737 * Use things like work queues to work around this limitation.
738 *
739 * You have been warned.
740 */
741void rcu_irq_exit(void)
742{
743 unsigned long flags;
744 long long oldval;
745 struct rcu_dynticks *rdtp;
746
747 local_irq_save(flags);
748 rdtp = this_cpu_ptr(&rcu_dynticks);
749 oldval = rdtp->dynticks_nesting;
750 rdtp->dynticks_nesting--;
751 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
752 rdtp->dynticks_nesting < 0);
753 if (rdtp->dynticks_nesting)
754 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
755 else
756 rcu_eqs_enter_common(oldval, true);
757 rcu_sysidle_enter(1);
758 local_irq_restore(flags);
759}
760
761/*
762 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
763 *
764 * If the new value of the ->dynticks_nesting counter was previously zero,
765 * we really have exited idle, and must do the appropriate accounting.
766 * The caller must have disabled interrupts.
767 */
768static void rcu_eqs_exit_common(long long oldval, int user)
769{
770 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
771
772 rcu_dynticks_task_exit();
773 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
774 atomic_inc(&rdtp->dynticks);
775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
776 smp_mb__after_atomic(); /* See above. */
777 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
778 !(atomic_read(&rdtp->dynticks) & 0x1));
779 rcu_cleanup_after_idle();
780 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 !user && !is_idle_task(current)) {
783 struct task_struct *idle __maybe_unused =
784 idle_task(smp_processor_id());
785
786 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
787 oldval, rdtp->dynticks_nesting);
788 ftrace_dump(DUMP_ORIG);
789 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
790 current->pid, current->comm,
791 idle->pid, idle->comm); /* must be idle task! */
792 }
793}
794
795/*
796 * Exit an RCU extended quiescent state, which can be either the
797 * idle loop or adaptive-tickless usermode execution.
798 */
799static void rcu_eqs_exit(bool user)
800{
801 struct rcu_dynticks *rdtp;
802 long long oldval;
803
804 rdtp = this_cpu_ptr(&rcu_dynticks);
805 oldval = rdtp->dynticks_nesting;
806 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
807 if (oldval & DYNTICK_TASK_NEST_MASK) {
808 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
809 } else {
810 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
811 rcu_eqs_exit_common(oldval, user);
812 }
813}
814
815/**
816 * rcu_idle_exit - inform RCU that current CPU is leaving idle
817 *
818 * Exit idle mode, in other words, -enter- the mode in which RCU
819 * read-side critical sections can occur.
820 *
821 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
822 * allow for the possibility of usermode upcalls messing up our count
823 * of interrupt nesting level during the busy period that is just
824 * now starting.
825 */
826void rcu_idle_exit(void)
827{
828 unsigned long flags;
829
830 local_irq_save(flags);
831 rcu_eqs_exit(false);
832 rcu_sysidle_exit(0);
833 local_irq_restore(flags);
834}
835EXPORT_SYMBOL_GPL(rcu_idle_exit);
836
837#ifdef CONFIG_NO_HZ_FULL
838/**
839 * rcu_user_exit - inform RCU that we are exiting userspace.
840 *
841 * Exit RCU idle mode while entering the kernel because it can
842 * run a RCU read side critical section anytime.
843 */
844void rcu_user_exit(void)
845{
846 rcu_eqs_exit(1);
847}
848#endif /* CONFIG_NO_HZ_FULL */
849
850/**
851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
852 *
853 * Enter an interrupt handler, which might possibly result in exiting
854 * idle mode, in other words, entering the mode in which read-side critical
855 * sections can occur.
856 *
857 * Note that the Linux kernel is fully capable of entering an interrupt
858 * handler that it never exits, for example when doing upcalls to
859 * user mode! This code assumes that the idle loop never does upcalls to
860 * user mode. If your architecture does do upcalls from the idle loop (or
861 * does anything else that results in unbalanced calls to the irq_enter()
862 * and irq_exit() functions), RCU will give you what you deserve, good
863 * and hard. But very infrequently and irreproducibly.
864 *
865 * Use things like work queues to work around this limitation.
866 *
867 * You have been warned.
868 */
869void rcu_irq_enter(void)
870{
871 unsigned long flags;
872 struct rcu_dynticks *rdtp;
873 long long oldval;
874
875 local_irq_save(flags);
876 rdtp = this_cpu_ptr(&rcu_dynticks);
877 oldval = rdtp->dynticks_nesting;
878 rdtp->dynticks_nesting++;
879 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
880 rdtp->dynticks_nesting == 0);
881 if (oldval)
882 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
883 else
884 rcu_eqs_exit_common(oldval, true);
885 rcu_sysidle_exit(1);
886 local_irq_restore(flags);
887}
888
889/**
890 * rcu_nmi_enter - inform RCU of entry to NMI context
891 *
892 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
893 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
894 * that the CPU is active. This implementation permits nested NMIs, as
895 * long as the nesting level does not overflow an int. (You will probably
896 * run out of stack space first.)
897 */
898void rcu_nmi_enter(void)
899{
900 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
901 int incby = 2;
902
903 /* Complain about underflow. */
904 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
905
906 /*
907 * If idle from RCU viewpoint, atomically increment ->dynticks
908 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
909 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
910 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
911 * to be in the outermost NMI handler that interrupted an RCU-idle
912 * period (observation due to Andy Lutomirski).
913 */
914 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
915 smp_mb__before_atomic(); /* Force delay from prior write. */
916 atomic_inc(&rdtp->dynticks);
917 /* atomic_inc() before later RCU read-side crit sects */
918 smp_mb__after_atomic(); /* See above. */
919 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
920 incby = 1;
921 }
922 rdtp->dynticks_nmi_nesting += incby;
923 barrier();
924}
925
926/**
927 * rcu_nmi_exit - inform RCU of exit from NMI context
928 *
929 * If we are returning from the outermost NMI handler that interrupted an
930 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
931 * to let the RCU grace-period handling know that the CPU is back to
932 * being RCU-idle.
933 */
934void rcu_nmi_exit(void)
935{
936 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
937
938 /*
939 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
940 * (We are exiting an NMI handler, so RCU better be paying attention
941 * to us!)
942 */
943 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
944 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
945
946 /*
947 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
948 * leave it in non-RCU-idle state.
949 */
950 if (rdtp->dynticks_nmi_nesting != 1) {
951 rdtp->dynticks_nmi_nesting -= 2;
952 return;
953 }
954
955 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
956 rdtp->dynticks_nmi_nesting = 0;
957 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
958 smp_mb__before_atomic(); /* See above. */
959 atomic_inc(&rdtp->dynticks);
960 smp_mb__after_atomic(); /* Force delay to next write. */
961 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
962}
963
964/**
965 * __rcu_is_watching - are RCU read-side critical sections safe?
966 *
967 * Return true if RCU is watching the running CPU, which means that
968 * this CPU can safely enter RCU read-side critical sections. Unlike
969 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
970 * least disabled preemption.
971 */
972bool notrace __rcu_is_watching(void)
973{
974 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
975}
976
977/**
978 * rcu_is_watching - see if RCU thinks that the current CPU is idle
979 *
980 * If the current CPU is in its idle loop and is neither in an interrupt
981 * or NMI handler, return true.
982 */
983bool notrace rcu_is_watching(void)
984{
985 bool ret;
986
987 preempt_disable_notrace();
988 ret = __rcu_is_watching();
989 preempt_enable_notrace();
990 return ret;
991}
992EXPORT_SYMBOL_GPL(rcu_is_watching);
993
994#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
995
996/*
997 * Is the current CPU online? Disable preemption to avoid false positives
998 * that could otherwise happen due to the current CPU number being sampled,
999 * this task being preempted, its old CPU being taken offline, resuming
1000 * on some other CPU, then determining that its old CPU is now offline.
1001 * It is OK to use RCU on an offline processor during initial boot, hence
1002 * the check for rcu_scheduler_fully_active. Note also that it is OK
1003 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1004 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1005 * offline to continue to use RCU for one jiffy after marking itself
1006 * offline in the cpu_online_mask. This leniency is necessary given the
1007 * non-atomic nature of the online and offline processing, for example,
1008 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1009 * notifiers.
1010 *
1011 * This is also why RCU internally marks CPUs online during the
1012 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1013 *
1014 * Disable checking if in an NMI handler because we cannot safely report
1015 * errors from NMI handlers anyway.
1016 */
1017bool rcu_lockdep_current_cpu_online(void)
1018{
1019 struct rcu_data *rdp;
1020 struct rcu_node *rnp;
1021 bool ret;
1022
1023 if (in_nmi())
1024 return true;
1025 preempt_disable();
1026 rdp = this_cpu_ptr(&rcu_sched_data);
1027 rnp = rdp->mynode;
1028 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1029 !rcu_scheduler_fully_active;
1030 preempt_enable();
1031 return ret;
1032}
1033EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1034
1035#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1036
1037/**
1038 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1039 *
1040 * If the current CPU is idle or running at a first-level (not nested)
1041 * interrupt from idle, return true. The caller must have at least
1042 * disabled preemption.
1043 */
1044static int rcu_is_cpu_rrupt_from_idle(void)
1045{
1046 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1047}
1048
1049/*
1050 * Snapshot the specified CPU's dynticks counter so that we can later
1051 * credit them with an implicit quiescent state. Return 1 if this CPU
1052 * is in dynticks idle mode, which is an extended quiescent state.
1053 */
1054static int dyntick_save_progress_counter(struct rcu_data *rdp,
1055 bool *isidle, unsigned long *maxj)
1056{
1057 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1058 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1059 if ((rdp->dynticks_snap & 0x1) == 0) {
1060 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1061 return 1;
1062 } else {
1063 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1064 rdp->mynode->gpnum))
1065 WRITE_ONCE(rdp->gpwrap, true);
1066 return 0;
1067 }
1068}
1069
1070/*
1071 * Return true if the specified CPU has passed through a quiescent
1072 * state by virtue of being in or having passed through an dynticks
1073 * idle state since the last call to dyntick_save_progress_counter()
1074 * for this same CPU, or by virtue of having been offline.
1075 */
1076static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1077 bool *isidle, unsigned long *maxj)
1078{
1079 unsigned int curr;
1080 int *rcrmp;
1081 unsigned int snap;
1082
1083 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1084 snap = (unsigned int)rdp->dynticks_snap;
1085
1086 /*
1087 * If the CPU passed through or entered a dynticks idle phase with
1088 * no active irq/NMI handlers, then we can safely pretend that the CPU
1089 * already acknowledged the request to pass through a quiescent
1090 * state. Either way, that CPU cannot possibly be in an RCU
1091 * read-side critical section that started before the beginning
1092 * of the current RCU grace period.
1093 */
1094 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1095 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1096 rdp->dynticks_fqs++;
1097 return 1;
1098 }
1099
1100 /*
1101 * Check for the CPU being offline, but only if the grace period
1102 * is old enough. We don't need to worry about the CPU changing
1103 * state: If we see it offline even once, it has been through a
1104 * quiescent state.
1105 *
1106 * The reason for insisting that the grace period be at least
1107 * one jiffy old is that CPUs that are not quite online and that
1108 * have just gone offline can still execute RCU read-side critical
1109 * sections.
1110 */
1111 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1112 return 0; /* Grace period is not old enough. */
1113 barrier();
1114 if (cpu_is_offline(rdp->cpu)) {
1115 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1116 rdp->offline_fqs++;
1117 return 1;
1118 }
1119
1120 /*
1121 * A CPU running for an extended time within the kernel can
1122 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1123 * even context-switching back and forth between a pair of
1124 * in-kernel CPU-bound tasks cannot advance grace periods.
1125 * So if the grace period is old enough, make the CPU pay attention.
1126 * Note that the unsynchronized assignments to the per-CPU
1127 * rcu_sched_qs_mask variable are safe. Yes, setting of
1128 * bits can be lost, but they will be set again on the next
1129 * force-quiescent-state pass. So lost bit sets do not result
1130 * in incorrect behavior, merely in a grace period lasting
1131 * a few jiffies longer than it might otherwise. Because
1132 * there are at most four threads involved, and because the
1133 * updates are only once every few jiffies, the probability of
1134 * lossage (and thus of slight grace-period extension) is
1135 * quite low.
1136 *
1137 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1138 * is set too high, we override with half of the RCU CPU stall
1139 * warning delay.
1140 */
1141 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1142 if (ULONG_CMP_GE(jiffies,
1143 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1144 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1145 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1146 WRITE_ONCE(rdp->cond_resched_completed,
1147 READ_ONCE(rdp->mynode->completed));
1148 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1149 WRITE_ONCE(*rcrmp,
1150 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1151 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1152 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1153 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1154 /* Time to beat on that CPU again! */
1155 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1156 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1157 }
1158 }
1159
1160 return 0;
1161}
1162
1163static void record_gp_stall_check_time(struct rcu_state *rsp)
1164{
1165 unsigned long j = jiffies;
1166 unsigned long j1;
1167
1168 rsp->gp_start = j;
1169 smp_wmb(); /* Record start time before stall time. */
1170 j1 = rcu_jiffies_till_stall_check();
1171 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1172 rsp->jiffies_resched = j + j1 / 2;
1173 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1174}
1175
1176/*
1177 * Complain about starvation of grace-period kthread.
1178 */
1179static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1180{
1181 unsigned long gpa;
1182 unsigned long j;
1183
1184 j = jiffies;
1185 gpa = READ_ONCE(rsp->gp_activity);
1186 if (j - gpa > 2 * HZ)
1187 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1188 rsp->name, j - gpa,
1189 rsp->gpnum, rsp->completed,
1190 rsp->gp_flags, rsp->gp_state,
1191 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1192}
1193
1194/*
1195 * Dump stacks of all tasks running on stalled CPUs.
1196 */
1197static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1198{
1199 int cpu;
1200 unsigned long flags;
1201 struct rcu_node *rnp;
1202
1203 rcu_for_each_leaf_node(rsp, rnp) {
1204 raw_spin_lock_irqsave(&rnp->lock, flags);
1205 if (rnp->qsmask != 0) {
1206 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1207 if (rnp->qsmask & (1UL << cpu))
1208 dump_cpu_task(rnp->grplo + cpu);
1209 }
1210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1211 }
1212}
1213
1214static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1215{
1216 int cpu;
1217 long delta;
1218 unsigned long flags;
1219 unsigned long gpa;
1220 unsigned long j;
1221 int ndetected = 0;
1222 struct rcu_node *rnp = rcu_get_root(rsp);
1223 long totqlen = 0;
1224
1225 /* Only let one CPU complain about others per time interval. */
1226
1227 raw_spin_lock_irqsave(&rnp->lock, flags);
1228 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1229 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1230 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1231 return;
1232 }
1233 WRITE_ONCE(rsp->jiffies_stall,
1234 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1236
1237 /*
1238 * OK, time to rat on our buddy...
1239 * See Documentation/RCU/stallwarn.txt for info on how to debug
1240 * RCU CPU stall warnings.
1241 */
1242 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1243 rsp->name);
1244 print_cpu_stall_info_begin();
1245 rcu_for_each_leaf_node(rsp, rnp) {
1246 raw_spin_lock_irqsave(&rnp->lock, flags);
1247 ndetected += rcu_print_task_stall(rnp);
1248 if (rnp->qsmask != 0) {
1249 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1250 if (rnp->qsmask & (1UL << cpu)) {
1251 print_cpu_stall_info(rsp,
1252 rnp->grplo + cpu);
1253 ndetected++;
1254 }
1255 }
1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1257 }
1258
1259 print_cpu_stall_info_end();
1260 for_each_possible_cpu(cpu)
1261 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1262 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1263 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1264 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1265 if (ndetected) {
1266 rcu_dump_cpu_stacks(rsp);
1267 } else {
1268 if (READ_ONCE(rsp->gpnum) != gpnum ||
1269 READ_ONCE(rsp->completed) == gpnum) {
1270 pr_err("INFO: Stall ended before state dump start\n");
1271 } else {
1272 j = jiffies;
1273 gpa = READ_ONCE(rsp->gp_activity);
1274 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1275 rsp->name, j - gpa, j, gpa,
1276 jiffies_till_next_fqs,
1277 rcu_get_root(rsp)->qsmask);
1278 /* In this case, the current CPU might be at fault. */
1279 sched_show_task(current);
1280 }
1281 }
1282
1283 /* Complain about tasks blocking the grace period. */
1284 rcu_print_detail_task_stall(rsp);
1285
1286 rcu_check_gp_kthread_starvation(rsp);
1287
1288 force_quiescent_state(rsp); /* Kick them all. */
1289}
1290
1291static void print_cpu_stall(struct rcu_state *rsp)
1292{
1293 int cpu;
1294 unsigned long flags;
1295 struct rcu_node *rnp = rcu_get_root(rsp);
1296 long totqlen = 0;
1297
1298 /*
1299 * OK, time to rat on ourselves...
1300 * See Documentation/RCU/stallwarn.txt for info on how to debug
1301 * RCU CPU stall warnings.
1302 */
1303 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1304 print_cpu_stall_info_begin();
1305 print_cpu_stall_info(rsp, smp_processor_id());
1306 print_cpu_stall_info_end();
1307 for_each_possible_cpu(cpu)
1308 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1309 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1310 jiffies - rsp->gp_start,
1311 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1312
1313 rcu_check_gp_kthread_starvation(rsp);
1314
1315 rcu_dump_cpu_stacks(rsp);
1316
1317 raw_spin_lock_irqsave(&rnp->lock, flags);
1318 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1319 WRITE_ONCE(rsp->jiffies_stall,
1320 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1321 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1322
1323 /*
1324 * Attempt to revive the RCU machinery by forcing a context switch.
1325 *
1326 * A context switch would normally allow the RCU state machine to make
1327 * progress and it could be we're stuck in kernel space without context
1328 * switches for an entirely unreasonable amount of time.
1329 */
1330 resched_cpu(smp_processor_id());
1331}
1332
1333static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1334{
1335 unsigned long completed;
1336 unsigned long gpnum;
1337 unsigned long gps;
1338 unsigned long j;
1339 unsigned long js;
1340 struct rcu_node *rnp;
1341
1342 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1343 return;
1344 j = jiffies;
1345
1346 /*
1347 * Lots of memory barriers to reject false positives.
1348 *
1349 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1350 * then rsp->gp_start, and finally rsp->completed. These values
1351 * are updated in the opposite order with memory barriers (or
1352 * equivalent) during grace-period initialization and cleanup.
1353 * Now, a false positive can occur if we get an new value of
1354 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1355 * the memory barriers, the only way that this can happen is if one
1356 * grace period ends and another starts between these two fetches.
1357 * Detect this by comparing rsp->completed with the previous fetch
1358 * from rsp->gpnum.
1359 *
1360 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1361 * and rsp->gp_start suffice to forestall false positives.
1362 */
1363 gpnum = READ_ONCE(rsp->gpnum);
1364 smp_rmb(); /* Pick up ->gpnum first... */
1365 js = READ_ONCE(rsp->jiffies_stall);
1366 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1367 gps = READ_ONCE(rsp->gp_start);
1368 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1369 completed = READ_ONCE(rsp->completed);
1370 if (ULONG_CMP_GE(completed, gpnum) ||
1371 ULONG_CMP_LT(j, js) ||
1372 ULONG_CMP_GE(gps, js))
1373 return; /* No stall or GP completed since entering function. */
1374 rnp = rdp->mynode;
1375 if (rcu_gp_in_progress(rsp) &&
1376 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1377
1378 /* We haven't checked in, so go dump stack. */
1379 print_cpu_stall(rsp);
1380
1381 } else if (rcu_gp_in_progress(rsp) &&
1382 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1383
1384 /* They had a few time units to dump stack, so complain. */
1385 print_other_cpu_stall(rsp, gpnum);
1386 }
1387}
1388
1389/**
1390 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1391 *
1392 * Set the stall-warning timeout way off into the future, thus preventing
1393 * any RCU CPU stall-warning messages from appearing in the current set of
1394 * RCU grace periods.
1395 *
1396 * The caller must disable hard irqs.
1397 */
1398void rcu_cpu_stall_reset(void)
1399{
1400 struct rcu_state *rsp;
1401
1402 for_each_rcu_flavor(rsp)
1403 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1404}
1405
1406/*
1407 * Initialize the specified rcu_data structure's default callback list
1408 * to empty. The default callback list is the one that is not used by
1409 * no-callbacks CPUs.
1410 */
1411static void init_default_callback_list(struct rcu_data *rdp)
1412{
1413 int i;
1414
1415 rdp->nxtlist = NULL;
1416 for (i = 0; i < RCU_NEXT_SIZE; i++)
1417 rdp->nxttail[i] = &rdp->nxtlist;
1418}
1419
1420/*
1421 * Initialize the specified rcu_data structure's callback list to empty.
1422 */
1423static void init_callback_list(struct rcu_data *rdp)
1424{
1425 if (init_nocb_callback_list(rdp))
1426 return;
1427 init_default_callback_list(rdp);
1428}
1429
1430/*
1431 * Determine the value that ->completed will have at the end of the
1432 * next subsequent grace period. This is used to tag callbacks so that
1433 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1434 * been dyntick-idle for an extended period with callbacks under the
1435 * influence of RCU_FAST_NO_HZ.
1436 *
1437 * The caller must hold rnp->lock with interrupts disabled.
1438 */
1439static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1440 struct rcu_node *rnp)
1441{
1442 /*
1443 * If RCU is idle, we just wait for the next grace period.
1444 * But we can only be sure that RCU is idle if we are looking
1445 * at the root rcu_node structure -- otherwise, a new grace
1446 * period might have started, but just not yet gotten around
1447 * to initializing the current non-root rcu_node structure.
1448 */
1449 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1450 return rnp->completed + 1;
1451
1452 /*
1453 * Otherwise, wait for a possible partial grace period and
1454 * then the subsequent full grace period.
1455 */
1456 return rnp->completed + 2;
1457}
1458
1459/*
1460 * Trace-event helper function for rcu_start_future_gp() and
1461 * rcu_nocb_wait_gp().
1462 */
1463static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1464 unsigned long c, const char *s)
1465{
1466 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1467 rnp->completed, c, rnp->level,
1468 rnp->grplo, rnp->grphi, s);
1469}
1470
1471/*
1472 * Start some future grace period, as needed to handle newly arrived
1473 * callbacks. The required future grace periods are recorded in each
1474 * rcu_node structure's ->need_future_gp field. Returns true if there
1475 * is reason to awaken the grace-period kthread.
1476 *
1477 * The caller must hold the specified rcu_node structure's ->lock.
1478 */
1479static bool __maybe_unused
1480rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1481 unsigned long *c_out)
1482{
1483 unsigned long c;
1484 int i;
1485 bool ret = false;
1486 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1487
1488 /*
1489 * Pick up grace-period number for new callbacks. If this
1490 * grace period is already marked as needed, return to the caller.
1491 */
1492 c = rcu_cbs_completed(rdp->rsp, rnp);
1493 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1494 if (rnp->need_future_gp[c & 0x1]) {
1495 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1496 goto out;
1497 }
1498
1499 /*
1500 * If either this rcu_node structure or the root rcu_node structure
1501 * believe that a grace period is in progress, then we must wait
1502 * for the one following, which is in "c". Because our request
1503 * will be noticed at the end of the current grace period, we don't
1504 * need to explicitly start one. We only do the lockless check
1505 * of rnp_root's fields if the current rcu_node structure thinks
1506 * there is no grace period in flight, and because we hold rnp->lock,
1507 * the only possible change is when rnp_root's two fields are
1508 * equal, in which case rnp_root->gpnum might be concurrently
1509 * incremented. But that is OK, as it will just result in our
1510 * doing some extra useless work.
1511 */
1512 if (rnp->gpnum != rnp->completed ||
1513 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1514 rnp->need_future_gp[c & 0x1]++;
1515 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1516 goto out;
1517 }
1518
1519 /*
1520 * There might be no grace period in progress. If we don't already
1521 * hold it, acquire the root rcu_node structure's lock in order to
1522 * start one (if needed).
1523 */
1524 if (rnp != rnp_root) {
1525 raw_spin_lock(&rnp_root->lock);
1526 smp_mb__after_unlock_lock();
1527 }
1528
1529 /*
1530 * Get a new grace-period number. If there really is no grace
1531 * period in progress, it will be smaller than the one we obtained
1532 * earlier. Adjust callbacks as needed. Note that even no-CBs
1533 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1534 */
1535 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1536 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1537 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1538 rdp->nxtcompleted[i] = c;
1539
1540 /*
1541 * If the needed for the required grace period is already
1542 * recorded, trace and leave.
1543 */
1544 if (rnp_root->need_future_gp[c & 0x1]) {
1545 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1546 goto unlock_out;
1547 }
1548
1549 /* Record the need for the future grace period. */
1550 rnp_root->need_future_gp[c & 0x1]++;
1551
1552 /* If a grace period is not already in progress, start one. */
1553 if (rnp_root->gpnum != rnp_root->completed) {
1554 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1555 } else {
1556 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1557 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1558 }
1559unlock_out:
1560 if (rnp != rnp_root)
1561 raw_spin_unlock(&rnp_root->lock);
1562out:
1563 if (c_out != NULL)
1564 *c_out = c;
1565 return ret;
1566}
1567
1568/*
1569 * Clean up any old requests for the just-ended grace period. Also return
1570 * whether any additional grace periods have been requested. Also invoke
1571 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1572 * waiting for this grace period to complete.
1573 */
1574static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1575{
1576 int c = rnp->completed;
1577 int needmore;
1578 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1579
1580 rcu_nocb_gp_cleanup(rsp, rnp);
1581 rnp->need_future_gp[c & 0x1] = 0;
1582 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1583 trace_rcu_future_gp(rnp, rdp, c,
1584 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1585 return needmore;
1586}
1587
1588/*
1589 * Awaken the grace-period kthread for the specified flavor of RCU.
1590 * Don't do a self-awaken, and don't bother awakening when there is
1591 * nothing for the grace-period kthread to do (as in several CPUs
1592 * raced to awaken, and we lost), and finally don't try to awaken
1593 * a kthread that has not yet been created.
1594 */
1595static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1596{
1597 if (current == rsp->gp_kthread ||
1598 !READ_ONCE(rsp->gp_flags) ||
1599 !rsp->gp_kthread)
1600 return;
1601 wake_up(&rsp->gp_wq);
1602}
1603
1604/*
1605 * If there is room, assign a ->completed number to any callbacks on
1606 * this CPU that have not already been assigned. Also accelerate any
1607 * callbacks that were previously assigned a ->completed number that has
1608 * since proven to be too conservative, which can happen if callbacks get
1609 * assigned a ->completed number while RCU is idle, but with reference to
1610 * a non-root rcu_node structure. This function is idempotent, so it does
1611 * not hurt to call it repeatedly. Returns an flag saying that we should
1612 * awaken the RCU grace-period kthread.
1613 *
1614 * The caller must hold rnp->lock with interrupts disabled.
1615 */
1616static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1617 struct rcu_data *rdp)
1618{
1619 unsigned long c;
1620 int i;
1621 bool ret;
1622
1623 /* If the CPU has no callbacks, nothing to do. */
1624 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1625 return false;
1626
1627 /*
1628 * Starting from the sublist containing the callbacks most
1629 * recently assigned a ->completed number and working down, find the
1630 * first sublist that is not assignable to an upcoming grace period.
1631 * Such a sublist has something in it (first two tests) and has
1632 * a ->completed number assigned that will complete sooner than
1633 * the ->completed number for newly arrived callbacks (last test).
1634 *
1635 * The key point is that any later sublist can be assigned the
1636 * same ->completed number as the newly arrived callbacks, which
1637 * means that the callbacks in any of these later sublist can be
1638 * grouped into a single sublist, whether or not they have already
1639 * been assigned a ->completed number.
1640 */
1641 c = rcu_cbs_completed(rsp, rnp);
1642 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1643 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1644 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1645 break;
1646
1647 /*
1648 * If there are no sublist for unassigned callbacks, leave.
1649 * At the same time, advance "i" one sublist, so that "i" will
1650 * index into the sublist where all the remaining callbacks should
1651 * be grouped into.
1652 */
1653 if (++i >= RCU_NEXT_TAIL)
1654 return false;
1655
1656 /*
1657 * Assign all subsequent callbacks' ->completed number to the next
1658 * full grace period and group them all in the sublist initially
1659 * indexed by "i".
1660 */
1661 for (; i <= RCU_NEXT_TAIL; i++) {
1662 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1663 rdp->nxtcompleted[i] = c;
1664 }
1665 /* Record any needed additional grace periods. */
1666 ret = rcu_start_future_gp(rnp, rdp, NULL);
1667
1668 /* Trace depending on how much we were able to accelerate. */
1669 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1670 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1671 else
1672 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1673 return ret;
1674}
1675
1676/*
1677 * Move any callbacks whose grace period has completed to the
1678 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1679 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1680 * sublist. This function is idempotent, so it does not hurt to
1681 * invoke it repeatedly. As long as it is not invoked -too- often...
1682 * Returns true if the RCU grace-period kthread needs to be awakened.
1683 *
1684 * The caller must hold rnp->lock with interrupts disabled.
1685 */
1686static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1687 struct rcu_data *rdp)
1688{
1689 int i, j;
1690
1691 /* If the CPU has no callbacks, nothing to do. */
1692 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1693 return false;
1694
1695 /*
1696 * Find all callbacks whose ->completed numbers indicate that they
1697 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1698 */
1699 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1700 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1701 break;
1702 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1703 }
1704 /* Clean up any sublist tail pointers that were misordered above. */
1705 for (j = RCU_WAIT_TAIL; j < i; j++)
1706 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1707
1708 /* Copy down callbacks to fill in empty sublists. */
1709 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1710 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1711 break;
1712 rdp->nxttail[j] = rdp->nxttail[i];
1713 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1714 }
1715
1716 /* Classify any remaining callbacks. */
1717 return rcu_accelerate_cbs(rsp, rnp, rdp);
1718}
1719
1720/*
1721 * Update CPU-local rcu_data state to record the beginnings and ends of
1722 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1723 * structure corresponding to the current CPU, and must have irqs disabled.
1724 * Returns true if the grace-period kthread needs to be awakened.
1725 */
1726static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1727 struct rcu_data *rdp)
1728{
1729 bool ret;
1730
1731 /* Handle the ends of any preceding grace periods first. */
1732 if (rdp->completed == rnp->completed &&
1733 !unlikely(READ_ONCE(rdp->gpwrap))) {
1734
1735 /* No grace period end, so just accelerate recent callbacks. */
1736 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1737
1738 } else {
1739
1740 /* Advance callbacks. */
1741 ret = rcu_advance_cbs(rsp, rnp, rdp);
1742
1743 /* Remember that we saw this grace-period completion. */
1744 rdp->completed = rnp->completed;
1745 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1746 }
1747
1748 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1749 /*
1750 * If the current grace period is waiting for this CPU,
1751 * set up to detect a quiescent state, otherwise don't
1752 * go looking for one.
1753 */
1754 rdp->gpnum = rnp->gpnum;
1755 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1756 rdp->passed_quiesce = 0;
1757 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1758 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1759 zero_cpu_stall_ticks(rdp);
1760 WRITE_ONCE(rdp->gpwrap, false);
1761 }
1762 return ret;
1763}
1764
1765static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1766{
1767 unsigned long flags;
1768 bool needwake;
1769 struct rcu_node *rnp;
1770
1771 local_irq_save(flags);
1772 rnp = rdp->mynode;
1773 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1774 rdp->completed == READ_ONCE(rnp->completed) &&
1775 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1776 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1777 local_irq_restore(flags);
1778 return;
1779 }
1780 smp_mb__after_unlock_lock();
1781 needwake = __note_gp_changes(rsp, rnp, rdp);
1782 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1783 if (needwake)
1784 rcu_gp_kthread_wake(rsp);
1785}
1786
1787static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1788{
1789 if (delay > 0 &&
1790 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1791 schedule_timeout_uninterruptible(delay);
1792}
1793
1794/*
1795 * Initialize a new grace period. Return 0 if no grace period required.
1796 */
1797static int rcu_gp_init(struct rcu_state *rsp)
1798{
1799 unsigned long oldmask;
1800 struct rcu_data *rdp;
1801 struct rcu_node *rnp = rcu_get_root(rsp);
1802
1803 WRITE_ONCE(rsp->gp_activity, jiffies);
1804 raw_spin_lock_irq(&rnp->lock);
1805 smp_mb__after_unlock_lock();
1806 if (!READ_ONCE(rsp->gp_flags)) {
1807 /* Spurious wakeup, tell caller to go back to sleep. */
1808 raw_spin_unlock_irq(&rnp->lock);
1809 return 0;
1810 }
1811 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1812
1813 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1814 /*
1815 * Grace period already in progress, don't start another.
1816 * Not supposed to be able to happen.
1817 */
1818 raw_spin_unlock_irq(&rnp->lock);
1819 return 0;
1820 }
1821
1822 /* Advance to a new grace period and initialize state. */
1823 record_gp_stall_check_time(rsp);
1824 /* Record GP times before starting GP, hence smp_store_release(). */
1825 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1826 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1827 raw_spin_unlock_irq(&rnp->lock);
1828
1829 /*
1830 * Apply per-leaf buffered online and offline operations to the
1831 * rcu_node tree. Note that this new grace period need not wait
1832 * for subsequent online CPUs, and that quiescent-state forcing
1833 * will handle subsequent offline CPUs.
1834 */
1835 rcu_for_each_leaf_node(rsp, rnp) {
1836 rcu_gp_slow(rsp, gp_preinit_delay);
1837 raw_spin_lock_irq(&rnp->lock);
1838 smp_mb__after_unlock_lock();
1839 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1840 !rnp->wait_blkd_tasks) {
1841 /* Nothing to do on this leaf rcu_node structure. */
1842 raw_spin_unlock_irq(&rnp->lock);
1843 continue;
1844 }
1845
1846 /* Record old state, apply changes to ->qsmaskinit field. */
1847 oldmask = rnp->qsmaskinit;
1848 rnp->qsmaskinit = rnp->qsmaskinitnext;
1849
1850 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1851 if (!oldmask != !rnp->qsmaskinit) {
1852 if (!oldmask) /* First online CPU for this rcu_node. */
1853 rcu_init_new_rnp(rnp);
1854 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1855 rnp->wait_blkd_tasks = true;
1856 else /* Last offline CPU and can propagate. */
1857 rcu_cleanup_dead_rnp(rnp);
1858 }
1859
1860 /*
1861 * If all waited-on tasks from prior grace period are
1862 * done, and if all this rcu_node structure's CPUs are
1863 * still offline, propagate up the rcu_node tree and
1864 * clear ->wait_blkd_tasks. Otherwise, if one of this
1865 * rcu_node structure's CPUs has since come back online,
1866 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1867 * checks for this, so just call it unconditionally).
1868 */
1869 if (rnp->wait_blkd_tasks &&
1870 (!rcu_preempt_has_tasks(rnp) ||
1871 rnp->qsmaskinit)) {
1872 rnp->wait_blkd_tasks = false;
1873 rcu_cleanup_dead_rnp(rnp);
1874 }
1875
1876 raw_spin_unlock_irq(&rnp->lock);
1877 }
1878
1879 /*
1880 * Set the quiescent-state-needed bits in all the rcu_node
1881 * structures for all currently online CPUs in breadth-first order,
1882 * starting from the root rcu_node structure, relying on the layout
1883 * of the tree within the rsp->node[] array. Note that other CPUs
1884 * will access only the leaves of the hierarchy, thus seeing that no
1885 * grace period is in progress, at least until the corresponding
1886 * leaf node has been initialized. In addition, we have excluded
1887 * CPU-hotplug operations.
1888 *
1889 * The grace period cannot complete until the initialization
1890 * process finishes, because this kthread handles both.
1891 */
1892 rcu_for_each_node_breadth_first(rsp, rnp) {
1893 rcu_gp_slow(rsp, gp_init_delay);
1894 raw_spin_lock_irq(&rnp->lock);
1895 smp_mb__after_unlock_lock();
1896 rdp = this_cpu_ptr(rsp->rda);
1897 rcu_preempt_check_blocked_tasks(rnp);
1898 rnp->qsmask = rnp->qsmaskinit;
1899 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1900 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1901 WRITE_ONCE(rnp->completed, rsp->completed);
1902 if (rnp == rdp->mynode)
1903 (void)__note_gp_changes(rsp, rnp, rdp);
1904 rcu_preempt_boost_start_gp(rnp);
1905 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1906 rnp->level, rnp->grplo,
1907 rnp->grphi, rnp->qsmask);
1908 raw_spin_unlock_irq(&rnp->lock);
1909 cond_resched_rcu_qs();
1910 WRITE_ONCE(rsp->gp_activity, jiffies);
1911 }
1912
1913 return 1;
1914}
1915
1916/*
1917 * Helper function for wait_event_interruptible_timeout() wakeup
1918 * at force-quiescent-state time.
1919 */
1920static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1921{
1922 struct rcu_node *rnp = rcu_get_root(rsp);
1923
1924 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1925 *gfp = READ_ONCE(rsp->gp_flags);
1926 if (*gfp & RCU_GP_FLAG_FQS)
1927 return true;
1928
1929 /* The current grace period has completed. */
1930 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1931 return true;
1932
1933 return false;
1934}
1935
1936/*
1937 * Do one round of quiescent-state forcing.
1938 */
1939static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1940{
1941 int fqs_state = fqs_state_in;
1942 bool isidle = false;
1943 unsigned long maxj;
1944 struct rcu_node *rnp = rcu_get_root(rsp);
1945
1946 WRITE_ONCE(rsp->gp_activity, jiffies);
1947 rsp->n_force_qs++;
1948 if (fqs_state == RCU_SAVE_DYNTICK) {
1949 /* Collect dyntick-idle snapshots. */
1950 if (is_sysidle_rcu_state(rsp)) {
1951 isidle = true;
1952 maxj = jiffies - ULONG_MAX / 4;
1953 }
1954 force_qs_rnp(rsp, dyntick_save_progress_counter,
1955 &isidle, &maxj);
1956 rcu_sysidle_report_gp(rsp, isidle, maxj);
1957 fqs_state = RCU_FORCE_QS;
1958 } else {
1959 /* Handle dyntick-idle and offline CPUs. */
1960 isidle = true;
1961 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1962 }
1963 /* Clear flag to prevent immediate re-entry. */
1964 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1965 raw_spin_lock_irq(&rnp->lock);
1966 smp_mb__after_unlock_lock();
1967 WRITE_ONCE(rsp->gp_flags,
1968 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1969 raw_spin_unlock_irq(&rnp->lock);
1970 }
1971 return fqs_state;
1972}
1973
1974/*
1975 * Clean up after the old grace period.
1976 */
1977static void rcu_gp_cleanup(struct rcu_state *rsp)
1978{
1979 unsigned long gp_duration;
1980 bool needgp = false;
1981 int nocb = 0;
1982 struct rcu_data *rdp;
1983 struct rcu_node *rnp = rcu_get_root(rsp);
1984
1985 WRITE_ONCE(rsp->gp_activity, jiffies);
1986 raw_spin_lock_irq(&rnp->lock);
1987 smp_mb__after_unlock_lock();
1988 gp_duration = jiffies - rsp->gp_start;
1989 if (gp_duration > rsp->gp_max)
1990 rsp->gp_max = gp_duration;
1991
1992 /*
1993 * We know the grace period is complete, but to everyone else
1994 * it appears to still be ongoing. But it is also the case
1995 * that to everyone else it looks like there is nothing that
1996 * they can do to advance the grace period. It is therefore
1997 * safe for us to drop the lock in order to mark the grace
1998 * period as completed in all of the rcu_node structures.
1999 */
2000 raw_spin_unlock_irq(&rnp->lock);
2001
2002 /*
2003 * Propagate new ->completed value to rcu_node structures so
2004 * that other CPUs don't have to wait until the start of the next
2005 * grace period to process their callbacks. This also avoids
2006 * some nasty RCU grace-period initialization races by forcing
2007 * the end of the current grace period to be completely recorded in
2008 * all of the rcu_node structures before the beginning of the next
2009 * grace period is recorded in any of the rcu_node structures.
2010 */
2011 rcu_for_each_node_breadth_first(rsp, rnp) {
2012 raw_spin_lock_irq(&rnp->lock);
2013 smp_mb__after_unlock_lock();
2014 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2015 WARN_ON_ONCE(rnp->qsmask);
2016 WRITE_ONCE(rnp->completed, rsp->gpnum);
2017 rdp = this_cpu_ptr(rsp->rda);
2018 if (rnp == rdp->mynode)
2019 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2020 /* smp_mb() provided by prior unlock-lock pair. */
2021 nocb += rcu_future_gp_cleanup(rsp, rnp);
2022 raw_spin_unlock_irq(&rnp->lock);
2023 cond_resched_rcu_qs();
2024 WRITE_ONCE(rsp->gp_activity, jiffies);
2025 rcu_gp_slow(rsp, gp_cleanup_delay);
2026 }
2027 rnp = rcu_get_root(rsp);
2028 raw_spin_lock_irq(&rnp->lock);
2029 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2030 rcu_nocb_gp_set(rnp, nocb);
2031
2032 /* Declare grace period done. */
2033 WRITE_ONCE(rsp->completed, rsp->gpnum);
2034 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2035 rsp->fqs_state = RCU_GP_IDLE;
2036 rdp = this_cpu_ptr(rsp->rda);
2037 /* Advance CBs to reduce false positives below. */
2038 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2039 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2040 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2041 trace_rcu_grace_period(rsp->name,
2042 READ_ONCE(rsp->gpnum),
2043 TPS("newreq"));
2044 }
2045 raw_spin_unlock_irq(&rnp->lock);
2046}
2047
2048/*
2049 * Body of kthread that handles grace periods.
2050 */
2051static int __noreturn rcu_gp_kthread(void *arg)
2052{
2053 int fqs_state;
2054 int gf;
2055 unsigned long j;
2056 int ret;
2057 struct rcu_state *rsp = arg;
2058 struct rcu_node *rnp = rcu_get_root(rsp);
2059
2060 rcu_bind_gp_kthread();
2061 for (;;) {
2062
2063 /* Handle grace-period start. */
2064 for (;;) {
2065 trace_rcu_grace_period(rsp->name,
2066 READ_ONCE(rsp->gpnum),
2067 TPS("reqwait"));
2068 rsp->gp_state = RCU_GP_WAIT_GPS;
2069 wait_event_interruptible(rsp->gp_wq,
2070 READ_ONCE(rsp->gp_flags) &
2071 RCU_GP_FLAG_INIT);
2072 rsp->gp_state = RCU_GP_DONE_GPS;
2073 /* Locking provides needed memory barrier. */
2074 if (rcu_gp_init(rsp))
2075 break;
2076 cond_resched_rcu_qs();
2077 WRITE_ONCE(rsp->gp_activity, jiffies);
2078 WARN_ON(signal_pending(current));
2079 trace_rcu_grace_period(rsp->name,
2080 READ_ONCE(rsp->gpnum),
2081 TPS("reqwaitsig"));
2082 }
2083
2084 /* Handle quiescent-state forcing. */
2085 fqs_state = RCU_SAVE_DYNTICK;
2086 j = jiffies_till_first_fqs;
2087 if (j > HZ) {
2088 j = HZ;
2089 jiffies_till_first_fqs = HZ;
2090 }
2091 ret = 0;
2092 for (;;) {
2093 if (!ret)
2094 rsp->jiffies_force_qs = jiffies + j;
2095 trace_rcu_grace_period(rsp->name,
2096 READ_ONCE(rsp->gpnum),
2097 TPS("fqswait"));
2098 rsp->gp_state = RCU_GP_WAIT_FQS;
2099 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2100 rcu_gp_fqs_check_wake(rsp, &gf), j);
2101 rsp->gp_state = RCU_GP_DOING_FQS;
2102 /* Locking provides needed memory barriers. */
2103 /* If grace period done, leave loop. */
2104 if (!READ_ONCE(rnp->qsmask) &&
2105 !rcu_preempt_blocked_readers_cgp(rnp))
2106 break;
2107 /* If time for quiescent-state forcing, do it. */
2108 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2109 (gf & RCU_GP_FLAG_FQS)) {
2110 trace_rcu_grace_period(rsp->name,
2111 READ_ONCE(rsp->gpnum),
2112 TPS("fqsstart"));
2113 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2114 trace_rcu_grace_period(rsp->name,
2115 READ_ONCE(rsp->gpnum),
2116 TPS("fqsend"));
2117 cond_resched_rcu_qs();
2118 WRITE_ONCE(rsp->gp_activity, jiffies);
2119 } else {
2120 /* Deal with stray signal. */
2121 cond_resched_rcu_qs();
2122 WRITE_ONCE(rsp->gp_activity, jiffies);
2123 WARN_ON(signal_pending(current));
2124 trace_rcu_grace_period(rsp->name,
2125 READ_ONCE(rsp->gpnum),
2126 TPS("fqswaitsig"));
2127 }
2128 j = jiffies_till_next_fqs;
2129 if (j > HZ) {
2130 j = HZ;
2131 jiffies_till_next_fqs = HZ;
2132 } else if (j < 1) {
2133 j = 1;
2134 jiffies_till_next_fqs = 1;
2135 }
2136 }
2137
2138 /* Handle grace-period end. */
2139 rsp->gp_state = RCU_GP_CLEANUP;
2140 rcu_gp_cleanup(rsp);
2141 rsp->gp_state = RCU_GP_CLEANED;
2142 }
2143}
2144
2145/*
2146 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2147 * in preparation for detecting the next grace period. The caller must hold
2148 * the root node's ->lock and hard irqs must be disabled.
2149 *
2150 * Note that it is legal for a dying CPU (which is marked as offline) to
2151 * invoke this function. This can happen when the dying CPU reports its
2152 * quiescent state.
2153 *
2154 * Returns true if the grace-period kthread must be awakened.
2155 */
2156static bool
2157rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2158 struct rcu_data *rdp)
2159{
2160 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2161 /*
2162 * Either we have not yet spawned the grace-period
2163 * task, this CPU does not need another grace period,
2164 * or a grace period is already in progress.
2165 * Either way, don't start a new grace period.
2166 */
2167 return false;
2168 }
2169 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2170 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2171 TPS("newreq"));
2172
2173 /*
2174 * We can't do wakeups while holding the rnp->lock, as that
2175 * could cause possible deadlocks with the rq->lock. Defer
2176 * the wakeup to our caller.
2177 */
2178 return true;
2179}
2180
2181/*
2182 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2183 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2184 * is invoked indirectly from rcu_advance_cbs(), which would result in
2185 * endless recursion -- or would do so if it wasn't for the self-deadlock
2186 * that is encountered beforehand.
2187 *
2188 * Returns true if the grace-period kthread needs to be awakened.
2189 */
2190static bool rcu_start_gp(struct rcu_state *rsp)
2191{
2192 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2193 struct rcu_node *rnp = rcu_get_root(rsp);
2194 bool ret = false;
2195
2196 /*
2197 * If there is no grace period in progress right now, any
2198 * callbacks we have up to this point will be satisfied by the
2199 * next grace period. Also, advancing the callbacks reduces the
2200 * probability of false positives from cpu_needs_another_gp()
2201 * resulting in pointless grace periods. So, advance callbacks
2202 * then start the grace period!
2203 */
2204 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2205 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2206 return ret;
2207}
2208
2209/*
2210 * Report a full set of quiescent states to the specified rcu_state
2211 * data structure. This involves cleaning up after the prior grace
2212 * period and letting rcu_start_gp() start up the next grace period
2213 * if one is needed. Note that the caller must hold rnp->lock, which
2214 * is released before return.
2215 */
2216static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2217 __releases(rcu_get_root(rsp)->lock)
2218{
2219 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2220 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2221 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2222 rcu_gp_kthread_wake(rsp);
2223}
2224
2225/*
2226 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2227 * Allows quiescent states for a group of CPUs to be reported at one go
2228 * to the specified rcu_node structure, though all the CPUs in the group
2229 * must be represented by the same rcu_node structure (which need not be a
2230 * leaf rcu_node structure, though it often will be). The gps parameter
2231 * is the grace-period snapshot, which means that the quiescent states
2232 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2233 * must be held upon entry, and it is released before return.
2234 */
2235static void
2236rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2237 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2238 __releases(rnp->lock)
2239{
2240 unsigned long oldmask = 0;
2241 struct rcu_node *rnp_c;
2242
2243 /* Walk up the rcu_node hierarchy. */
2244 for (;;) {
2245 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2246
2247 /*
2248 * Our bit has already been cleared, or the
2249 * relevant grace period is already over, so done.
2250 */
2251 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2252 return;
2253 }
2254 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2255 rnp->qsmask &= ~mask;
2256 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2257 mask, rnp->qsmask, rnp->level,
2258 rnp->grplo, rnp->grphi,
2259 !!rnp->gp_tasks);
2260 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2261
2262 /* Other bits still set at this level, so done. */
2263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2264 return;
2265 }
2266 mask = rnp->grpmask;
2267 if (rnp->parent == NULL) {
2268
2269 /* No more levels. Exit loop holding root lock. */
2270
2271 break;
2272 }
2273 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2274 rnp_c = rnp;
2275 rnp = rnp->parent;
2276 raw_spin_lock_irqsave(&rnp->lock, flags);
2277 smp_mb__after_unlock_lock();
2278 oldmask = rnp_c->qsmask;
2279 }
2280
2281 /*
2282 * Get here if we are the last CPU to pass through a quiescent
2283 * state for this grace period. Invoke rcu_report_qs_rsp()
2284 * to clean up and start the next grace period if one is needed.
2285 */
2286 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2287}
2288
2289/*
2290 * Record a quiescent state for all tasks that were previously queued
2291 * on the specified rcu_node structure and that were blocking the current
2292 * RCU grace period. The caller must hold the specified rnp->lock with
2293 * irqs disabled, and this lock is released upon return, but irqs remain
2294 * disabled.
2295 */
2296static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2297 struct rcu_node *rnp, unsigned long flags)
2298 __releases(rnp->lock)
2299{
2300 unsigned long gps;
2301 unsigned long mask;
2302 struct rcu_node *rnp_p;
2303
2304 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2305 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2306 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2307 return; /* Still need more quiescent states! */
2308 }
2309
2310 rnp_p = rnp->parent;
2311 if (rnp_p == NULL) {
2312 /*
2313 * Only one rcu_node structure in the tree, so don't
2314 * try to report up to its nonexistent parent!
2315 */
2316 rcu_report_qs_rsp(rsp, flags);
2317 return;
2318 }
2319
2320 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2321 gps = rnp->gpnum;
2322 mask = rnp->grpmask;
2323 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2324 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2325 smp_mb__after_unlock_lock();
2326 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2327}
2328
2329/*
2330 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2331 * structure. This must be either called from the specified CPU, or
2332 * called when the specified CPU is known to be offline (and when it is
2333 * also known that no other CPU is concurrently trying to help the offline
2334 * CPU). The lastcomp argument is used to make sure we are still in the
2335 * grace period of interest. We don't want to end the current grace period
2336 * based on quiescent states detected in an earlier grace period!
2337 */
2338static void
2339rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2340{
2341 unsigned long flags;
2342 unsigned long mask;
2343 bool needwake;
2344 struct rcu_node *rnp;
2345
2346 rnp = rdp->mynode;
2347 raw_spin_lock_irqsave(&rnp->lock, flags);
2348 smp_mb__after_unlock_lock();
2349 if ((rdp->passed_quiesce == 0 &&
2350 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2351 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2352 rdp->gpwrap) {
2353
2354 /*
2355 * The grace period in which this quiescent state was
2356 * recorded has ended, so don't report it upwards.
2357 * We will instead need a new quiescent state that lies
2358 * within the current grace period.
2359 */
2360 rdp->passed_quiesce = 0; /* need qs for new gp. */
2361 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2362 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2363 return;
2364 }
2365 mask = rdp->grpmask;
2366 if ((rnp->qsmask & mask) == 0) {
2367 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2368 } else {
2369 rdp->qs_pending = 0;
2370
2371 /*
2372 * This GP can't end until cpu checks in, so all of our
2373 * callbacks can be processed during the next GP.
2374 */
2375 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2376
2377 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2378 /* ^^^ Released rnp->lock */
2379 if (needwake)
2380 rcu_gp_kthread_wake(rsp);
2381 }
2382}
2383
2384/*
2385 * Check to see if there is a new grace period of which this CPU
2386 * is not yet aware, and if so, set up local rcu_data state for it.
2387 * Otherwise, see if this CPU has just passed through its first
2388 * quiescent state for this grace period, and record that fact if so.
2389 */
2390static void
2391rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2392{
2393 /* Check for grace-period ends and beginnings. */
2394 note_gp_changes(rsp, rdp);
2395
2396 /*
2397 * Does this CPU still need to do its part for current grace period?
2398 * If no, return and let the other CPUs do their part as well.
2399 */
2400 if (!rdp->qs_pending)
2401 return;
2402
2403 /*
2404 * Was there a quiescent state since the beginning of the grace
2405 * period? If no, then exit and wait for the next call.
2406 */
2407 if (!rdp->passed_quiesce &&
2408 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2409 return;
2410
2411 /*
2412 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2413 * judge of that).
2414 */
2415 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2416}
2417
2418/*
2419 * Send the specified CPU's RCU callbacks to the orphanage. The
2420 * specified CPU must be offline, and the caller must hold the
2421 * ->orphan_lock.
2422 */
2423static void
2424rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2425 struct rcu_node *rnp, struct rcu_data *rdp)
2426{
2427 /* No-CBs CPUs do not have orphanable callbacks. */
2428 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2429 return;
2430
2431 /*
2432 * Orphan the callbacks. First adjust the counts. This is safe
2433 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2434 * cannot be running now. Thus no memory barrier is required.
2435 */
2436 if (rdp->nxtlist != NULL) {
2437 rsp->qlen_lazy += rdp->qlen_lazy;
2438 rsp->qlen += rdp->qlen;
2439 rdp->n_cbs_orphaned += rdp->qlen;
2440 rdp->qlen_lazy = 0;
2441 WRITE_ONCE(rdp->qlen, 0);
2442 }
2443
2444 /*
2445 * Next, move those callbacks still needing a grace period to
2446 * the orphanage, where some other CPU will pick them up.
2447 * Some of the callbacks might have gone partway through a grace
2448 * period, but that is too bad. They get to start over because we
2449 * cannot assume that grace periods are synchronized across CPUs.
2450 * We don't bother updating the ->nxttail[] array yet, instead
2451 * we just reset the whole thing later on.
2452 */
2453 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2454 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2455 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2456 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2457 }
2458
2459 /*
2460 * Then move the ready-to-invoke callbacks to the orphanage,
2461 * where some other CPU will pick them up. These will not be
2462 * required to pass though another grace period: They are done.
2463 */
2464 if (rdp->nxtlist != NULL) {
2465 *rsp->orphan_donetail = rdp->nxtlist;
2466 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2467 }
2468
2469 /*
2470 * Finally, initialize the rcu_data structure's list to empty and
2471 * disallow further callbacks on this CPU.
2472 */
2473 init_callback_list(rdp);
2474 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2475}
2476
2477/*
2478 * Adopt the RCU callbacks from the specified rcu_state structure's
2479 * orphanage. The caller must hold the ->orphan_lock.
2480 */
2481static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2482{
2483 int i;
2484 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2485
2486 /* No-CBs CPUs are handled specially. */
2487 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2488 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2489 return;
2490
2491 /* Do the accounting first. */
2492 rdp->qlen_lazy += rsp->qlen_lazy;
2493 rdp->qlen += rsp->qlen;
2494 rdp->n_cbs_adopted += rsp->qlen;
2495 if (rsp->qlen_lazy != rsp->qlen)
2496 rcu_idle_count_callbacks_posted();
2497 rsp->qlen_lazy = 0;
2498 rsp->qlen = 0;
2499
2500 /*
2501 * We do not need a memory barrier here because the only way we
2502 * can get here if there is an rcu_barrier() in flight is if
2503 * we are the task doing the rcu_barrier().
2504 */
2505
2506 /* First adopt the ready-to-invoke callbacks. */
2507 if (rsp->orphan_donelist != NULL) {
2508 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2509 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2510 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2511 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2512 rdp->nxttail[i] = rsp->orphan_donetail;
2513 rsp->orphan_donelist = NULL;
2514 rsp->orphan_donetail = &rsp->orphan_donelist;
2515 }
2516
2517 /* And then adopt the callbacks that still need a grace period. */
2518 if (rsp->orphan_nxtlist != NULL) {
2519 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2520 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2521 rsp->orphan_nxtlist = NULL;
2522 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2523 }
2524}
2525
2526/*
2527 * Trace the fact that this CPU is going offline.
2528 */
2529static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2530{
2531 RCU_TRACE(unsigned long mask);
2532 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2533 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2534
2535 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2536 return;
2537
2538 RCU_TRACE(mask = rdp->grpmask);
2539 trace_rcu_grace_period(rsp->name,
2540 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2541 TPS("cpuofl"));
2542}
2543
2544/*
2545 * All CPUs for the specified rcu_node structure have gone offline,
2546 * and all tasks that were preempted within an RCU read-side critical
2547 * section while running on one of those CPUs have since exited their RCU
2548 * read-side critical section. Some other CPU is reporting this fact with
2549 * the specified rcu_node structure's ->lock held and interrupts disabled.
2550 * This function therefore goes up the tree of rcu_node structures,
2551 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2552 * the leaf rcu_node structure's ->qsmaskinit field has already been
2553 * updated
2554 *
2555 * This function does check that the specified rcu_node structure has
2556 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2557 * prematurely. That said, invoking it after the fact will cost you
2558 * a needless lock acquisition. So once it has done its work, don't
2559 * invoke it again.
2560 */
2561static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2562{
2563 long mask;
2564 struct rcu_node *rnp = rnp_leaf;
2565
2566 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2567 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2568 return;
2569 for (;;) {
2570 mask = rnp->grpmask;
2571 rnp = rnp->parent;
2572 if (!rnp)
2573 break;
2574 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2575 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2576 rnp->qsmaskinit &= ~mask;
2577 rnp->qsmask &= ~mask;
2578 if (rnp->qsmaskinit) {
2579 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2580 return;
2581 }
2582 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2583 }
2584}
2585
2586/*
2587 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2588 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2589 * bit masks.
2590 */
2591static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2592{
2593 unsigned long flags;
2594 unsigned long mask;
2595 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2596 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2597
2598 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2599 return;
2600
2601 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2602 mask = rdp->grpmask;
2603 raw_spin_lock_irqsave(&rnp->lock, flags);
2604 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2605 rnp->qsmaskinitnext &= ~mask;
2606 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2607}
2608
2609/*
2610 * The CPU has been completely removed, and some other CPU is reporting
2611 * this fact from process context. Do the remainder of the cleanup,
2612 * including orphaning the outgoing CPU's RCU callbacks, and also
2613 * adopting them. There can only be one CPU hotplug operation at a time,
2614 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2615 */
2616static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2617{
2618 unsigned long flags;
2619 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2620 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2621
2622 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2623 return;
2624
2625 /* Adjust any no-longer-needed kthreads. */
2626 rcu_boost_kthread_setaffinity(rnp, -1);
2627
2628 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2629 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2630 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2631 rcu_adopt_orphan_cbs(rsp, flags);
2632 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2633
2634 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2635 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2636 cpu, rdp->qlen, rdp->nxtlist);
2637}
2638
2639/*
2640 * Invoke any RCU callbacks that have made it to the end of their grace
2641 * period. Thottle as specified by rdp->blimit.
2642 */
2643static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2644{
2645 unsigned long flags;
2646 struct rcu_head *next, *list, **tail;
2647 long bl, count, count_lazy;
2648 int i;
2649
2650 /* If no callbacks are ready, just return. */
2651 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2652 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2653 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2654 need_resched(), is_idle_task(current),
2655 rcu_is_callbacks_kthread());
2656 return;
2657 }
2658
2659 /*
2660 * Extract the list of ready callbacks, disabling to prevent
2661 * races with call_rcu() from interrupt handlers.
2662 */
2663 local_irq_save(flags);
2664 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665 bl = rdp->blimit;
2666 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2667 list = rdp->nxtlist;
2668 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2669 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2670 tail = rdp->nxttail[RCU_DONE_TAIL];
2671 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2672 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2673 rdp->nxttail[i] = &rdp->nxtlist;
2674 local_irq_restore(flags);
2675
2676 /* Invoke callbacks. */
2677 count = count_lazy = 0;
2678 while (list) {
2679 next = list->next;
2680 prefetch(next);
2681 debug_rcu_head_unqueue(list);
2682 if (__rcu_reclaim(rsp->name, list))
2683 count_lazy++;
2684 list = next;
2685 /* Stop only if limit reached and CPU has something to do. */
2686 if (++count >= bl &&
2687 (need_resched() ||
2688 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2689 break;
2690 }
2691
2692 local_irq_save(flags);
2693 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2694 is_idle_task(current),
2695 rcu_is_callbacks_kthread());
2696
2697 /* Update count, and requeue any remaining callbacks. */
2698 if (list != NULL) {
2699 *tail = rdp->nxtlist;
2700 rdp->nxtlist = list;
2701 for (i = 0; i < RCU_NEXT_SIZE; i++)
2702 if (&rdp->nxtlist == rdp->nxttail[i])
2703 rdp->nxttail[i] = tail;
2704 else
2705 break;
2706 }
2707 smp_mb(); /* List handling before counting for rcu_barrier(). */
2708 rdp->qlen_lazy -= count_lazy;
2709 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2710 rdp->n_cbs_invoked += count;
2711
2712 /* Reinstate batch limit if we have worked down the excess. */
2713 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2714 rdp->blimit = blimit;
2715
2716 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2717 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2718 rdp->qlen_last_fqs_check = 0;
2719 rdp->n_force_qs_snap = rsp->n_force_qs;
2720 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2721 rdp->qlen_last_fqs_check = rdp->qlen;
2722 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2723
2724 local_irq_restore(flags);
2725
2726 /* Re-invoke RCU core processing if there are callbacks remaining. */
2727 if (cpu_has_callbacks_ready_to_invoke(rdp))
2728 invoke_rcu_core();
2729}
2730
2731/*
2732 * Check to see if this CPU is in a non-context-switch quiescent state
2733 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2734 * Also schedule RCU core processing.
2735 *
2736 * This function must be called from hardirq context. It is normally
2737 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2738 * false, there is no point in invoking rcu_check_callbacks().
2739 */
2740void rcu_check_callbacks(int user)
2741{
2742 trace_rcu_utilization(TPS("Start scheduler-tick"));
2743 increment_cpu_stall_ticks();
2744 if (user || rcu_is_cpu_rrupt_from_idle()) {
2745
2746 /*
2747 * Get here if this CPU took its interrupt from user
2748 * mode or from the idle loop, and if this is not a
2749 * nested interrupt. In this case, the CPU is in
2750 * a quiescent state, so note it.
2751 *
2752 * No memory barrier is required here because both
2753 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2754 * variables that other CPUs neither access nor modify,
2755 * at least not while the corresponding CPU is online.
2756 */
2757
2758 rcu_sched_qs();
2759 rcu_bh_qs();
2760
2761 } else if (!in_softirq()) {
2762
2763 /*
2764 * Get here if this CPU did not take its interrupt from
2765 * softirq, in other words, if it is not interrupting
2766 * a rcu_bh read-side critical section. This is an _bh
2767 * critical section, so note it.
2768 */
2769
2770 rcu_bh_qs();
2771 }
2772 rcu_preempt_check_callbacks();
2773 if (rcu_pending())
2774 invoke_rcu_core();
2775 if (user)
2776 rcu_note_voluntary_context_switch(current);
2777 trace_rcu_utilization(TPS("End scheduler-tick"));
2778}
2779
2780/*
2781 * Scan the leaf rcu_node structures, processing dyntick state for any that
2782 * have not yet encountered a quiescent state, using the function specified.
2783 * Also initiate boosting for any threads blocked on the root rcu_node.
2784 *
2785 * The caller must have suppressed start of new grace periods.
2786 */
2787static void force_qs_rnp(struct rcu_state *rsp,
2788 int (*f)(struct rcu_data *rsp, bool *isidle,
2789 unsigned long *maxj),
2790 bool *isidle, unsigned long *maxj)
2791{
2792 unsigned long bit;
2793 int cpu;
2794 unsigned long flags;
2795 unsigned long mask;
2796 struct rcu_node *rnp;
2797
2798 rcu_for_each_leaf_node(rsp, rnp) {
2799 cond_resched_rcu_qs();
2800 mask = 0;
2801 raw_spin_lock_irqsave(&rnp->lock, flags);
2802 smp_mb__after_unlock_lock();
2803 if (rnp->qsmask == 0) {
2804 if (rcu_state_p == &rcu_sched_state ||
2805 rsp != rcu_state_p ||
2806 rcu_preempt_blocked_readers_cgp(rnp)) {
2807 /*
2808 * No point in scanning bits because they
2809 * are all zero. But we might need to
2810 * priority-boost blocked readers.
2811 */
2812 rcu_initiate_boost(rnp, flags);
2813 /* rcu_initiate_boost() releases rnp->lock */
2814 continue;
2815 }
2816 if (rnp->parent &&
2817 (rnp->parent->qsmask & rnp->grpmask)) {
2818 /*
2819 * Race between grace-period
2820 * initialization and task exiting RCU
2821 * read-side critical section: Report.
2822 */
2823 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2824 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2825 continue;
2826 }
2827 }
2828 cpu = rnp->grplo;
2829 bit = 1;
2830 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2831 if ((rnp->qsmask & bit) != 0) {
2832 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2833 mask |= bit;
2834 }
2835 }
2836 if (mask != 0) {
2837 /* Idle/offline CPUs, report (releases rnp->lock. */
2838 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2839 } else {
2840 /* Nothing to do here, so just drop the lock. */
2841 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2842 }
2843 }
2844}
2845
2846/*
2847 * Force quiescent states on reluctant CPUs, and also detect which
2848 * CPUs are in dyntick-idle mode.
2849 */
2850static void force_quiescent_state(struct rcu_state *rsp)
2851{
2852 unsigned long flags;
2853 bool ret;
2854 struct rcu_node *rnp;
2855 struct rcu_node *rnp_old = NULL;
2856
2857 /* Funnel through hierarchy to reduce memory contention. */
2858 rnp = __this_cpu_read(rsp->rda->mynode);
2859 for (; rnp != NULL; rnp = rnp->parent) {
2860 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2861 !raw_spin_trylock(&rnp->fqslock);
2862 if (rnp_old != NULL)
2863 raw_spin_unlock(&rnp_old->fqslock);
2864 if (ret) {
2865 rsp->n_force_qs_lh++;
2866 return;
2867 }
2868 rnp_old = rnp;
2869 }
2870 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2871
2872 /* Reached the root of the rcu_node tree, acquire lock. */
2873 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2874 smp_mb__after_unlock_lock();
2875 raw_spin_unlock(&rnp_old->fqslock);
2876 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2877 rsp->n_force_qs_lh++;
2878 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2879 return; /* Someone beat us to it. */
2880 }
2881 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2882 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2883 rcu_gp_kthread_wake(rsp);
2884}
2885
2886/*
2887 * This does the RCU core processing work for the specified rcu_state
2888 * and rcu_data structures. This may be called only from the CPU to
2889 * whom the rdp belongs.
2890 */
2891static void
2892__rcu_process_callbacks(struct rcu_state *rsp)
2893{
2894 unsigned long flags;
2895 bool needwake;
2896 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2897
2898 WARN_ON_ONCE(rdp->beenonline == 0);
2899
2900 /* Update RCU state based on any recent quiescent states. */
2901 rcu_check_quiescent_state(rsp, rdp);
2902
2903 /* Does this CPU require a not-yet-started grace period? */
2904 local_irq_save(flags);
2905 if (cpu_needs_another_gp(rsp, rdp)) {
2906 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2907 needwake = rcu_start_gp(rsp);
2908 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2909 if (needwake)
2910 rcu_gp_kthread_wake(rsp);
2911 } else {
2912 local_irq_restore(flags);
2913 }
2914
2915 /* If there are callbacks ready, invoke them. */
2916 if (cpu_has_callbacks_ready_to_invoke(rdp))
2917 invoke_rcu_callbacks(rsp, rdp);
2918
2919 /* Do any needed deferred wakeups of rcuo kthreads. */
2920 do_nocb_deferred_wakeup(rdp);
2921}
2922
2923/*
2924 * Do RCU core processing for the current CPU.
2925 */
2926static void rcu_process_callbacks(struct softirq_action *unused)
2927{
2928 struct rcu_state *rsp;
2929
2930 if (cpu_is_offline(smp_processor_id()))
2931 return;
2932 trace_rcu_utilization(TPS("Start RCU core"));
2933 for_each_rcu_flavor(rsp)
2934 __rcu_process_callbacks(rsp);
2935 trace_rcu_utilization(TPS("End RCU core"));
2936}
2937
2938/*
2939 * Schedule RCU callback invocation. If the specified type of RCU
2940 * does not support RCU priority boosting, just do a direct call,
2941 * otherwise wake up the per-CPU kernel kthread. Note that because we
2942 * are running on the current CPU with softirqs disabled, the
2943 * rcu_cpu_kthread_task cannot disappear out from under us.
2944 */
2945static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2946{
2947 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2948 return;
2949 if (likely(!rsp->boost)) {
2950 rcu_do_batch(rsp, rdp);
2951 return;
2952 }
2953 invoke_rcu_callbacks_kthread();
2954}
2955
2956static void invoke_rcu_core(void)
2957{
2958 if (cpu_online(smp_processor_id()))
2959 raise_softirq(RCU_SOFTIRQ);
2960}
2961
2962/*
2963 * Handle any core-RCU processing required by a call_rcu() invocation.
2964 */
2965static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2966 struct rcu_head *head, unsigned long flags)
2967{
2968 bool needwake;
2969
2970 /*
2971 * If called from an extended quiescent state, invoke the RCU
2972 * core in order to force a re-evaluation of RCU's idleness.
2973 */
2974 if (!rcu_is_watching())
2975 invoke_rcu_core();
2976
2977 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2978 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2979 return;
2980
2981 /*
2982 * Force the grace period if too many callbacks or too long waiting.
2983 * Enforce hysteresis, and don't invoke force_quiescent_state()
2984 * if some other CPU has recently done so. Also, don't bother
2985 * invoking force_quiescent_state() if the newly enqueued callback
2986 * is the only one waiting for a grace period to complete.
2987 */
2988 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2989
2990 /* Are we ignoring a completed grace period? */
2991 note_gp_changes(rsp, rdp);
2992
2993 /* Start a new grace period if one not already started. */
2994 if (!rcu_gp_in_progress(rsp)) {
2995 struct rcu_node *rnp_root = rcu_get_root(rsp);
2996
2997 raw_spin_lock(&rnp_root->lock);
2998 smp_mb__after_unlock_lock();
2999 needwake = rcu_start_gp(rsp);
3000 raw_spin_unlock(&rnp_root->lock);
3001 if (needwake)
3002 rcu_gp_kthread_wake(rsp);
3003 } else {
3004 /* Give the grace period a kick. */
3005 rdp->blimit = LONG_MAX;
3006 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3007 *rdp->nxttail[RCU_DONE_TAIL] != head)
3008 force_quiescent_state(rsp);
3009 rdp->n_force_qs_snap = rsp->n_force_qs;
3010 rdp->qlen_last_fqs_check = rdp->qlen;
3011 }
3012 }
3013}
3014
3015/*
3016 * RCU callback function to leak a callback.
3017 */
3018static void rcu_leak_callback(struct rcu_head *rhp)
3019{
3020}
3021
3022/*
3023 * Helper function for call_rcu() and friends. The cpu argument will
3024 * normally be -1, indicating "currently running CPU". It may specify
3025 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3026 * is expected to specify a CPU.
3027 */
3028static void
3029__call_rcu(struct rcu_head *head, rcu_callback_t func,
3030 struct rcu_state *rsp, int cpu, bool lazy)
3031{
3032 unsigned long flags;
3033 struct rcu_data *rdp;
3034
3035 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3036 if (debug_rcu_head_queue(head)) {
3037 /* Probable double call_rcu(), so leak the callback. */
3038 WRITE_ONCE(head->func, rcu_leak_callback);
3039 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3040 return;
3041 }
3042 head->func = func;
3043 head->next = NULL;
3044
3045 /*
3046 * Opportunistically note grace-period endings and beginnings.
3047 * Note that we might see a beginning right after we see an
3048 * end, but never vice versa, since this CPU has to pass through
3049 * a quiescent state betweentimes.
3050 */
3051 local_irq_save(flags);
3052 rdp = this_cpu_ptr(rsp->rda);
3053
3054 /* Add the callback to our list. */
3055 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3056 int offline;
3057
3058 if (cpu != -1)
3059 rdp = per_cpu_ptr(rsp->rda, cpu);
3060 if (likely(rdp->mynode)) {
3061 /* Post-boot, so this should be for a no-CBs CPU. */
3062 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3063 WARN_ON_ONCE(offline);
3064 /* Offline CPU, _call_rcu() illegal, leak callback. */
3065 local_irq_restore(flags);
3066 return;
3067 }
3068 /*
3069 * Very early boot, before rcu_init(). Initialize if needed
3070 * and then drop through to queue the callback.
3071 */
3072 BUG_ON(cpu != -1);
3073 WARN_ON_ONCE(!rcu_is_watching());
3074 if (!likely(rdp->nxtlist))
3075 init_default_callback_list(rdp);
3076 }
3077 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3078 if (lazy)
3079 rdp->qlen_lazy++;
3080 else
3081 rcu_idle_count_callbacks_posted();
3082 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3083 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3084 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3085
3086 if (__is_kfree_rcu_offset((unsigned long)func))
3087 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3088 rdp->qlen_lazy, rdp->qlen);
3089 else
3090 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3091
3092 /* Go handle any RCU core processing required. */
3093 __call_rcu_core(rsp, rdp, head, flags);
3094 local_irq_restore(flags);
3095}
3096
3097/*
3098 * Queue an RCU-sched callback for invocation after a grace period.
3099 */
3100void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3101{
3102 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3103}
3104EXPORT_SYMBOL_GPL(call_rcu_sched);
3105
3106/*
3107 * Queue an RCU callback for invocation after a quicker grace period.
3108 */
3109void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3110{
3111 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3112}
3113EXPORT_SYMBOL_GPL(call_rcu_bh);
3114
3115/*
3116 * Queue an RCU callback for lazy invocation after a grace period.
3117 * This will likely be later named something like "call_rcu_lazy()",
3118 * but this change will require some way of tagging the lazy RCU
3119 * callbacks in the list of pending callbacks. Until then, this
3120 * function may only be called from __kfree_rcu().
3121 */
3122void kfree_call_rcu(struct rcu_head *head,
3123 rcu_callback_t func)
3124{
3125 __call_rcu(head, func, rcu_state_p, -1, 1);
3126}
3127EXPORT_SYMBOL_GPL(kfree_call_rcu);
3128
3129/*
3130 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3131 * any blocking grace-period wait automatically implies a grace period
3132 * if there is only one CPU online at any point time during execution
3133 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3134 * occasionally incorrectly indicate that there are multiple CPUs online
3135 * when there was in fact only one the whole time, as this just adds
3136 * some overhead: RCU still operates correctly.
3137 */
3138static inline int rcu_blocking_is_gp(void)
3139{
3140 int ret;
3141
3142 might_sleep(); /* Check for RCU read-side critical section. */
3143 preempt_disable();
3144 ret = num_online_cpus() <= 1;
3145 preempt_enable();
3146 return ret;
3147}
3148
3149/**
3150 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3151 *
3152 * Control will return to the caller some time after a full rcu-sched
3153 * grace period has elapsed, in other words after all currently executing
3154 * rcu-sched read-side critical sections have completed. These read-side
3155 * critical sections are delimited by rcu_read_lock_sched() and
3156 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3157 * local_irq_disable(), and so on may be used in place of
3158 * rcu_read_lock_sched().
3159 *
3160 * This means that all preempt_disable code sequences, including NMI and
3161 * non-threaded hardware-interrupt handlers, in progress on entry will
3162 * have completed before this primitive returns. However, this does not
3163 * guarantee that softirq handlers will have completed, since in some
3164 * kernels, these handlers can run in process context, and can block.
3165 *
3166 * Note that this guarantee implies further memory-ordering guarantees.
3167 * On systems with more than one CPU, when synchronize_sched() returns,
3168 * each CPU is guaranteed to have executed a full memory barrier since the
3169 * end of its last RCU-sched read-side critical section whose beginning
3170 * preceded the call to synchronize_sched(). In addition, each CPU having
3171 * an RCU read-side critical section that extends beyond the return from
3172 * synchronize_sched() is guaranteed to have executed a full memory barrier
3173 * after the beginning of synchronize_sched() and before the beginning of
3174 * that RCU read-side critical section. Note that these guarantees include
3175 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3176 * that are executing in the kernel.
3177 *
3178 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3179 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3180 * to have executed a full memory barrier during the execution of
3181 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3182 * again only if the system has more than one CPU).
3183 *
3184 * This primitive provides the guarantees made by the (now removed)
3185 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3186 * guarantees that rcu_read_lock() sections will have completed.
3187 * In "classic RCU", these two guarantees happen to be one and
3188 * the same, but can differ in realtime RCU implementations.
3189 */
3190void synchronize_sched(void)
3191{
3192 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3193 lock_is_held(&rcu_lock_map) ||
3194 lock_is_held(&rcu_sched_lock_map),
3195 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3196 if (rcu_blocking_is_gp())
3197 return;
3198 if (rcu_gp_is_expedited())
3199 synchronize_sched_expedited();
3200 else
3201 wait_rcu_gp(call_rcu_sched);
3202}
3203EXPORT_SYMBOL_GPL(synchronize_sched);
3204
3205/**
3206 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3207 *
3208 * Control will return to the caller some time after a full rcu_bh grace
3209 * period has elapsed, in other words after all currently executing rcu_bh
3210 * read-side critical sections have completed. RCU read-side critical
3211 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3212 * and may be nested.
3213 *
3214 * See the description of synchronize_sched() for more detailed information
3215 * on memory ordering guarantees.
3216 */
3217void synchronize_rcu_bh(void)
3218{
3219 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3220 lock_is_held(&rcu_lock_map) ||
3221 lock_is_held(&rcu_sched_lock_map),
3222 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3223 if (rcu_blocking_is_gp())
3224 return;
3225 if (rcu_gp_is_expedited())
3226 synchronize_rcu_bh_expedited();
3227 else
3228 wait_rcu_gp(call_rcu_bh);
3229}
3230EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3231
3232/**
3233 * get_state_synchronize_rcu - Snapshot current RCU state
3234 *
3235 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3236 * to determine whether or not a full grace period has elapsed in the
3237 * meantime.
3238 */
3239unsigned long get_state_synchronize_rcu(void)
3240{
3241 /*
3242 * Any prior manipulation of RCU-protected data must happen
3243 * before the load from ->gpnum.
3244 */
3245 smp_mb(); /* ^^^ */
3246
3247 /*
3248 * Make sure this load happens before the purportedly
3249 * time-consuming work between get_state_synchronize_rcu()
3250 * and cond_synchronize_rcu().
3251 */
3252 return smp_load_acquire(&rcu_state_p->gpnum);
3253}
3254EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3255
3256/**
3257 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3258 *
3259 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3260 *
3261 * If a full RCU grace period has elapsed since the earlier call to
3262 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3263 * synchronize_rcu() to wait for a full grace period.
3264 *
3265 * Yes, this function does not take counter wrap into account. But
3266 * counter wrap is harmless. If the counter wraps, we have waited for
3267 * more than 2 billion grace periods (and way more on a 64-bit system!),
3268 * so waiting for one additional grace period should be just fine.
3269 */
3270void cond_synchronize_rcu(unsigned long oldstate)
3271{
3272 unsigned long newstate;
3273
3274 /*
3275 * Ensure that this load happens before any RCU-destructive
3276 * actions the caller might carry out after we return.
3277 */
3278 newstate = smp_load_acquire(&rcu_state_p->completed);
3279 if (ULONG_CMP_GE(oldstate, newstate))
3280 synchronize_rcu();
3281}
3282EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3283
3284/**
3285 * get_state_synchronize_sched - Snapshot current RCU-sched state
3286 *
3287 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3288 * to determine whether or not a full grace period has elapsed in the
3289 * meantime.
3290 */
3291unsigned long get_state_synchronize_sched(void)
3292{
3293 /*
3294 * Any prior manipulation of RCU-protected data must happen
3295 * before the load from ->gpnum.
3296 */
3297 smp_mb(); /* ^^^ */
3298
3299 /*
3300 * Make sure this load happens before the purportedly
3301 * time-consuming work between get_state_synchronize_sched()
3302 * and cond_synchronize_sched().
3303 */
3304 return smp_load_acquire(&rcu_sched_state.gpnum);
3305}
3306EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3307
3308/**
3309 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3310 *
3311 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3312 *
3313 * If a full RCU-sched grace period has elapsed since the earlier call to
3314 * get_state_synchronize_sched(), just return. Otherwise, invoke
3315 * synchronize_sched() to wait for a full grace period.
3316 *
3317 * Yes, this function does not take counter wrap into account. But
3318 * counter wrap is harmless. If the counter wraps, we have waited for
3319 * more than 2 billion grace periods (and way more on a 64-bit system!),
3320 * so waiting for one additional grace period should be just fine.
3321 */
3322void cond_synchronize_sched(unsigned long oldstate)
3323{
3324 unsigned long newstate;
3325
3326 /*
3327 * Ensure that this load happens before any RCU-destructive
3328 * actions the caller might carry out after we return.
3329 */
3330 newstate = smp_load_acquire(&rcu_sched_state.completed);
3331 if (ULONG_CMP_GE(oldstate, newstate))
3332 synchronize_sched();
3333}
3334EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3335
3336/* Adjust sequence number for start of update-side operation. */
3337static void rcu_seq_start(unsigned long *sp)
3338{
3339 WRITE_ONCE(*sp, *sp + 1);
3340 smp_mb(); /* Ensure update-side operation after counter increment. */
3341 WARN_ON_ONCE(!(*sp & 0x1));
3342}
3343
3344/* Adjust sequence number for end of update-side operation. */
3345static void rcu_seq_end(unsigned long *sp)
3346{
3347 smp_mb(); /* Ensure update-side operation before counter increment. */
3348 WRITE_ONCE(*sp, *sp + 1);
3349 WARN_ON_ONCE(*sp & 0x1);
3350}
3351
3352/* Take a snapshot of the update side's sequence number. */
3353static unsigned long rcu_seq_snap(unsigned long *sp)
3354{
3355 unsigned long s;
3356
3357 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3358 s = (READ_ONCE(*sp) + 3) & ~0x1;
3359 smp_mb(); /* Above access must not bleed into critical section. */
3360 return s;
3361}
3362
3363/*
3364 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3365 * full update-side operation has occurred.
3366 */
3367static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3368{
3369 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3370}
3371
3372/* Wrapper functions for expedited grace periods. */
3373static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3374{
3375 rcu_seq_start(&rsp->expedited_sequence);
3376}
3377static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3378{
3379 rcu_seq_end(&rsp->expedited_sequence);
3380 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3381}
3382static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3383{
3384 return rcu_seq_snap(&rsp->expedited_sequence);
3385}
3386static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3387{
3388 return rcu_seq_done(&rsp->expedited_sequence, s);
3389}
3390
3391/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3392static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3393 struct rcu_data *rdp,
3394 atomic_long_t *stat, unsigned long s)
3395{
3396 if (rcu_exp_gp_seq_done(rsp, s)) {
3397 if (rnp)
3398 mutex_unlock(&rnp->exp_funnel_mutex);
3399 else if (rdp)
3400 mutex_unlock(&rdp->exp_funnel_mutex);
3401 /* Ensure test happens before caller kfree(). */
3402 smp_mb__before_atomic(); /* ^^^ */
3403 atomic_long_inc(stat);
3404 return true;
3405 }
3406 return false;
3407}
3408
3409/*
3410 * Funnel-lock acquisition for expedited grace periods. Returns a
3411 * pointer to the root rcu_node structure, or NULL if some other
3412 * task did the expedited grace period for us.
3413 */
3414static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3415{
3416 struct rcu_data *rdp;
3417 struct rcu_node *rnp0;
3418 struct rcu_node *rnp1 = NULL;
3419
3420 /*
3421 * First try directly acquiring the root lock in order to reduce
3422 * latency in the common case where expedited grace periods are
3423 * rare. We check mutex_is_locked() to avoid pathological levels of
3424 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3425 */
3426 rnp0 = rcu_get_root(rsp);
3427 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3428 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3429 if (sync_exp_work_done(rsp, rnp0, NULL,
3430 &rsp->expedited_workdone0, s))
3431 return NULL;
3432 return rnp0;
3433 }
3434 }
3435
3436 /*
3437 * Each pass through the following loop works its way
3438 * up the rcu_node tree, returning if others have done the
3439 * work or otherwise falls through holding the root rnp's
3440 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3441 * can be inexact, as it is just promoting locality and is not
3442 * strictly needed for correctness.
3443 */
3444 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3445 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3446 return NULL;
3447 mutex_lock(&rdp->exp_funnel_mutex);
3448 rnp0 = rdp->mynode;
3449 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3450 if (sync_exp_work_done(rsp, rnp1, rdp,
3451 &rsp->expedited_workdone2, s))
3452 return NULL;
3453 mutex_lock(&rnp0->exp_funnel_mutex);
3454 if (rnp1)
3455 mutex_unlock(&rnp1->exp_funnel_mutex);
3456 else
3457 mutex_unlock(&rdp->exp_funnel_mutex);
3458 rnp1 = rnp0;
3459 }
3460 if (sync_exp_work_done(rsp, rnp1, rdp,
3461 &rsp->expedited_workdone3, s))
3462 return NULL;
3463 return rnp1;
3464}
3465
3466/* Invoked on each online non-idle CPU for expedited quiescent state. */
3467static int synchronize_sched_expedited_cpu_stop(void *data)
3468{
3469 struct rcu_data *rdp = data;
3470 struct rcu_state *rsp = rdp->rsp;
3471
3472 /* We are here: If we are last, do the wakeup. */
3473 rdp->exp_done = true;
3474 if (atomic_dec_and_test(&rsp->expedited_need_qs))
3475 wake_up(&rsp->expedited_wq);
3476 return 0;
3477}
3478
3479static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3480{
3481 int cpu;
3482 unsigned long jiffies_stall;
3483 unsigned long jiffies_start;
3484 struct rcu_data *rdp;
3485 int ret;
3486
3487 jiffies_stall = rcu_jiffies_till_stall_check();
3488 jiffies_start = jiffies;
3489
3490 for (;;) {
3491 ret = wait_event_interruptible_timeout(
3492 rsp->expedited_wq,
3493 !atomic_read(&rsp->expedited_need_qs),
3494 jiffies_stall);
3495 if (ret > 0)
3496 return;
3497 if (ret < 0) {
3498 /* Hit a signal, disable CPU stall warnings. */
3499 wait_event(rsp->expedited_wq,
3500 !atomic_read(&rsp->expedited_need_qs));
3501 return;
3502 }
3503 pr_err("INFO: %s detected expedited stalls on CPUs: {",
3504 rsp->name);
3505 for_each_online_cpu(cpu) {
3506 rdp = per_cpu_ptr(rsp->rda, cpu);
3507
3508 if (rdp->exp_done)
3509 continue;
3510 pr_cont(" %d", cpu);
3511 }
3512 pr_cont(" } %lu jiffies s: %lu\n",
3513 jiffies - jiffies_start, rsp->expedited_sequence);
3514 for_each_online_cpu(cpu) {
3515 rdp = per_cpu_ptr(rsp->rda, cpu);
3516
3517 if (rdp->exp_done)
3518 continue;
3519 dump_cpu_task(cpu);
3520 }
3521 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3522 }
3523}
3524
3525/**
3526 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3527 *
3528 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3529 * approach to force the grace period to end quickly. This consumes
3530 * significant time on all CPUs and is unfriendly to real-time workloads,
3531 * so is thus not recommended for any sort of common-case code. In fact,
3532 * if you are using synchronize_sched_expedited() in a loop, please
3533 * restructure your code to batch your updates, and then use a single
3534 * synchronize_sched() instead.
3535 *
3536 * This implementation can be thought of as an application of sequence
3537 * locking to expedited grace periods, but using the sequence counter to
3538 * determine when someone else has already done the work instead of for
3539 * retrying readers.
3540 */
3541void synchronize_sched_expedited(void)
3542{
3543 int cpu;
3544 unsigned long s;
3545 struct rcu_node *rnp;
3546 struct rcu_state *rsp = &rcu_sched_state;
3547
3548 /* Take a snapshot of the sequence number. */
3549 s = rcu_exp_gp_seq_snap(rsp);
3550
3551 if (!try_get_online_cpus()) {
3552 /* CPU hotplug operation in flight, fall back to normal GP. */
3553 wait_rcu_gp(call_rcu_sched);
3554 atomic_long_inc(&rsp->expedited_normal);
3555 return;
3556 }
3557 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3558
3559 rnp = exp_funnel_lock(rsp, s);
3560 if (rnp == NULL) {
3561 put_online_cpus();
3562 return; /* Someone else did our work for us. */
3563 }
3564
3565 rcu_exp_gp_seq_start(rsp);
3566
3567 /* Stop each CPU that is online, non-idle, and not us. */
3568 init_waitqueue_head(&rsp->expedited_wq);
3569 atomic_set(&rsp->expedited_need_qs, 1); /* Extra count avoids race. */
3570 for_each_online_cpu(cpu) {
3571 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3572 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3573
3574 rdp->exp_done = false;
3575
3576 /* Skip our CPU and any idle CPUs. */
3577 if (raw_smp_processor_id() == cpu ||
3578 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3579 continue;
3580 atomic_inc(&rsp->expedited_need_qs);
3581 stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop,
3582 rdp, &rdp->exp_stop_work);
3583 }
3584
3585 /* Remove extra count and, if necessary, wait for CPUs to stop. */
3586 if (!atomic_dec_and_test(&rsp->expedited_need_qs))
3587 synchronize_sched_expedited_wait(rsp);
3588
3589 rcu_exp_gp_seq_end(rsp);
3590 mutex_unlock(&rnp->exp_funnel_mutex);
3591
3592 put_online_cpus();
3593}
3594EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3595
3596/*
3597 * Check to see if there is any immediate RCU-related work to be done
3598 * by the current CPU, for the specified type of RCU, returning 1 if so.
3599 * The checks are in order of increasing expense: checks that can be
3600 * carried out against CPU-local state are performed first. However,
3601 * we must check for CPU stalls first, else we might not get a chance.
3602 */
3603static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3604{
3605 struct rcu_node *rnp = rdp->mynode;
3606
3607 rdp->n_rcu_pending++;
3608
3609 /* Check for CPU stalls, if enabled. */
3610 check_cpu_stall(rsp, rdp);
3611
3612 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3613 if (rcu_nohz_full_cpu(rsp))
3614 return 0;
3615
3616 /* Is the RCU core waiting for a quiescent state from this CPU? */
3617 if (rcu_scheduler_fully_active &&
3618 rdp->qs_pending && !rdp->passed_quiesce &&
3619 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3620 rdp->n_rp_qs_pending++;
3621 } else if (rdp->qs_pending &&
3622 (rdp->passed_quiesce ||
3623 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3624 rdp->n_rp_report_qs++;
3625 return 1;
3626 }
3627
3628 /* Does this CPU have callbacks ready to invoke? */
3629 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3630 rdp->n_rp_cb_ready++;
3631 return 1;
3632 }
3633
3634 /* Has RCU gone idle with this CPU needing another grace period? */
3635 if (cpu_needs_another_gp(rsp, rdp)) {
3636 rdp->n_rp_cpu_needs_gp++;
3637 return 1;
3638 }
3639
3640 /* Has another RCU grace period completed? */
3641 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3642 rdp->n_rp_gp_completed++;
3643 return 1;
3644 }
3645
3646 /* Has a new RCU grace period started? */
3647 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3648 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3649 rdp->n_rp_gp_started++;
3650 return 1;
3651 }
3652
3653 /* Does this CPU need a deferred NOCB wakeup? */
3654 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3655 rdp->n_rp_nocb_defer_wakeup++;
3656 return 1;
3657 }
3658
3659 /* nothing to do */
3660 rdp->n_rp_need_nothing++;
3661 return 0;
3662}
3663
3664/*
3665 * Check to see if there is any immediate RCU-related work to be done
3666 * by the current CPU, returning 1 if so. This function is part of the
3667 * RCU implementation; it is -not- an exported member of the RCU API.
3668 */
3669static int rcu_pending(void)
3670{
3671 struct rcu_state *rsp;
3672
3673 for_each_rcu_flavor(rsp)
3674 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3675 return 1;
3676 return 0;
3677}
3678
3679/*
3680 * Return true if the specified CPU has any callback. If all_lazy is
3681 * non-NULL, store an indication of whether all callbacks are lazy.
3682 * (If there are no callbacks, all of them are deemed to be lazy.)
3683 */
3684static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3685{
3686 bool al = true;
3687 bool hc = false;
3688 struct rcu_data *rdp;
3689 struct rcu_state *rsp;
3690
3691 for_each_rcu_flavor(rsp) {
3692 rdp = this_cpu_ptr(rsp->rda);
3693 if (!rdp->nxtlist)
3694 continue;
3695 hc = true;
3696 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3697 al = false;
3698 break;
3699 }
3700 }
3701 if (all_lazy)
3702 *all_lazy = al;
3703 return hc;
3704}
3705
3706/*
3707 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3708 * the compiler is expected to optimize this away.
3709 */
3710static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3711 int cpu, unsigned long done)
3712{
3713 trace_rcu_barrier(rsp->name, s, cpu,
3714 atomic_read(&rsp->barrier_cpu_count), done);
3715}
3716
3717/*
3718 * RCU callback function for _rcu_barrier(). If we are last, wake
3719 * up the task executing _rcu_barrier().
3720 */
3721static void rcu_barrier_callback(struct rcu_head *rhp)
3722{
3723 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3724 struct rcu_state *rsp = rdp->rsp;
3725
3726 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3727 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3728 complete(&rsp->barrier_completion);
3729 } else {
3730 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3731 }
3732}
3733
3734/*
3735 * Called with preemption disabled, and from cross-cpu IRQ context.
3736 */
3737static void rcu_barrier_func(void *type)
3738{
3739 struct rcu_state *rsp = type;
3740 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3741
3742 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3743 atomic_inc(&rsp->barrier_cpu_count);
3744 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3745}
3746
3747/*
3748 * Orchestrate the specified type of RCU barrier, waiting for all
3749 * RCU callbacks of the specified type to complete.
3750 */
3751static void _rcu_barrier(struct rcu_state *rsp)
3752{
3753 int cpu;
3754 struct rcu_data *rdp;
3755 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3756
3757 _rcu_barrier_trace(rsp, "Begin", -1, s);
3758
3759 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3760 mutex_lock(&rsp->barrier_mutex);
3761
3762 /* Did someone else do our work for us? */
3763 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3764 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3765 smp_mb(); /* caller's subsequent code after above check. */
3766 mutex_unlock(&rsp->barrier_mutex);
3767 return;
3768 }
3769
3770 /* Mark the start of the barrier operation. */
3771 rcu_seq_start(&rsp->barrier_sequence);
3772 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3773
3774 /*
3775 * Initialize the count to one rather than to zero in order to
3776 * avoid a too-soon return to zero in case of a short grace period
3777 * (or preemption of this task). Exclude CPU-hotplug operations
3778 * to ensure that no offline CPU has callbacks queued.
3779 */
3780 init_completion(&rsp->barrier_completion);
3781 atomic_set(&rsp->barrier_cpu_count, 1);
3782 get_online_cpus();
3783
3784 /*
3785 * Force each CPU with callbacks to register a new callback.
3786 * When that callback is invoked, we will know that all of the
3787 * corresponding CPU's preceding callbacks have been invoked.
3788 */
3789 for_each_possible_cpu(cpu) {
3790 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3791 continue;
3792 rdp = per_cpu_ptr(rsp->rda, cpu);
3793 if (rcu_is_nocb_cpu(cpu)) {
3794 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3795 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3796 rsp->barrier_sequence);
3797 } else {
3798 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3799 rsp->barrier_sequence);
3800 smp_mb__before_atomic();
3801 atomic_inc(&rsp->barrier_cpu_count);
3802 __call_rcu(&rdp->barrier_head,
3803 rcu_barrier_callback, rsp, cpu, 0);
3804 }
3805 } else if (READ_ONCE(rdp->qlen)) {
3806 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3807 rsp->barrier_sequence);
3808 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3809 } else {
3810 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3811 rsp->barrier_sequence);
3812 }
3813 }
3814 put_online_cpus();
3815
3816 /*
3817 * Now that we have an rcu_barrier_callback() callback on each
3818 * CPU, and thus each counted, remove the initial count.
3819 */
3820 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3821 complete(&rsp->barrier_completion);
3822
3823 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3824 wait_for_completion(&rsp->barrier_completion);
3825
3826 /* Mark the end of the barrier operation. */
3827 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3828 rcu_seq_end(&rsp->barrier_sequence);
3829
3830 /* Other rcu_barrier() invocations can now safely proceed. */
3831 mutex_unlock(&rsp->barrier_mutex);
3832}
3833
3834/**
3835 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3836 */
3837void rcu_barrier_bh(void)
3838{
3839 _rcu_barrier(&rcu_bh_state);
3840}
3841EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3842
3843/**
3844 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3845 */
3846void rcu_barrier_sched(void)
3847{
3848 _rcu_barrier(&rcu_sched_state);
3849}
3850EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3851
3852/*
3853 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3854 * first CPU in a given leaf rcu_node structure coming online. The caller
3855 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3856 * disabled.
3857 */
3858static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3859{
3860 long mask;
3861 struct rcu_node *rnp = rnp_leaf;
3862
3863 for (;;) {
3864 mask = rnp->grpmask;
3865 rnp = rnp->parent;
3866 if (rnp == NULL)
3867 return;
3868 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3869 rnp->qsmaskinit |= mask;
3870 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3871 }
3872}
3873
3874/*
3875 * Do boot-time initialization of a CPU's per-CPU RCU data.
3876 */
3877static void __init
3878rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3879{
3880 static struct lock_class_key rcu_exp_sched_rdp_class;
3881 unsigned long flags;
3882 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3883 struct rcu_node *rnp = rcu_get_root(rsp);
3884
3885 /* Set up local state, ensuring consistent view of global state. */
3886 raw_spin_lock_irqsave(&rnp->lock, flags);
3887 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3888 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3889 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3890 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3891 rdp->cpu = cpu;
3892 rdp->rsp = rsp;
3893 mutex_init(&rdp->exp_funnel_mutex);
3894 rcu_boot_init_nocb_percpu_data(rdp);
3895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3896 if (rsp == &rcu_sched_state)
3897 lockdep_set_class_and_name(&rdp->exp_funnel_mutex,
3898 &rcu_exp_sched_rdp_class,
3899 "rcu_data_exp_sched");
3900}
3901
3902/*
3903 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3904 * offline event can be happening at a given time. Note also that we
3905 * can accept some slop in the rsp->completed access due to the fact
3906 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3907 */
3908static void
3909rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3910{
3911 unsigned long flags;
3912 unsigned long mask;
3913 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3914 struct rcu_node *rnp = rcu_get_root(rsp);
3915
3916 /* Set up local state, ensuring consistent view of global state. */
3917 raw_spin_lock_irqsave(&rnp->lock, flags);
3918 rdp->beenonline = 1; /* We have now been online. */
3919 rdp->qlen_last_fqs_check = 0;
3920 rdp->n_force_qs_snap = rsp->n_force_qs;
3921 rdp->blimit = blimit;
3922 if (!rdp->nxtlist)
3923 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3924 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3925 rcu_sysidle_init_percpu_data(rdp->dynticks);
3926 atomic_set(&rdp->dynticks->dynticks,
3927 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3928 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3929
3930 /*
3931 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3932 * propagation up the rcu_node tree will happen at the beginning
3933 * of the next grace period.
3934 */
3935 rnp = rdp->mynode;
3936 mask = rdp->grpmask;
3937 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3938 smp_mb__after_unlock_lock();
3939 rnp->qsmaskinitnext |= mask;
3940 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3941 rdp->completed = rnp->completed;
3942 rdp->passed_quiesce = false;
3943 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3944 rdp->qs_pending = false;
3945 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3946 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3947}
3948
3949static void rcu_prepare_cpu(int cpu)
3950{
3951 struct rcu_state *rsp;
3952
3953 for_each_rcu_flavor(rsp)
3954 rcu_init_percpu_data(cpu, rsp);
3955}
3956
3957/*
3958 * Handle CPU online/offline notification events.
3959 */
3960int rcu_cpu_notify(struct notifier_block *self,
3961 unsigned long action, void *hcpu)
3962{
3963 long cpu = (long)hcpu;
3964 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3965 struct rcu_node *rnp = rdp->mynode;
3966 struct rcu_state *rsp;
3967
3968 switch (action) {
3969 case CPU_UP_PREPARE:
3970 case CPU_UP_PREPARE_FROZEN:
3971 rcu_prepare_cpu(cpu);
3972 rcu_prepare_kthreads(cpu);
3973 rcu_spawn_all_nocb_kthreads(cpu);
3974 break;
3975 case CPU_ONLINE:
3976 case CPU_DOWN_FAILED:
3977 rcu_boost_kthread_setaffinity(rnp, -1);
3978 break;
3979 case CPU_DOWN_PREPARE:
3980 rcu_boost_kthread_setaffinity(rnp, cpu);
3981 break;
3982 case CPU_DYING:
3983 case CPU_DYING_FROZEN:
3984 for_each_rcu_flavor(rsp)
3985 rcu_cleanup_dying_cpu(rsp);
3986 break;
3987 case CPU_DYING_IDLE:
3988 for_each_rcu_flavor(rsp) {
3989 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3990 }
3991 break;
3992 case CPU_DEAD:
3993 case CPU_DEAD_FROZEN:
3994 case CPU_UP_CANCELED:
3995 case CPU_UP_CANCELED_FROZEN:
3996 for_each_rcu_flavor(rsp) {
3997 rcu_cleanup_dead_cpu(cpu, rsp);
3998 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3999 }
4000 break;
4001 default:
4002 break;
4003 }
4004 return NOTIFY_OK;
4005}
4006
4007static int rcu_pm_notify(struct notifier_block *self,
4008 unsigned long action, void *hcpu)
4009{
4010 switch (action) {
4011 case PM_HIBERNATION_PREPARE:
4012 case PM_SUSPEND_PREPARE:
4013 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4014 rcu_expedite_gp();
4015 break;
4016 case PM_POST_HIBERNATION:
4017 case PM_POST_SUSPEND:
4018 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4019 rcu_unexpedite_gp();
4020 break;
4021 default:
4022 break;
4023 }
4024 return NOTIFY_OK;
4025}
4026
4027/*
4028 * Spawn the kthreads that handle each RCU flavor's grace periods.
4029 */
4030static int __init rcu_spawn_gp_kthread(void)
4031{
4032 unsigned long flags;
4033 int kthread_prio_in = kthread_prio;
4034 struct rcu_node *rnp;
4035 struct rcu_state *rsp;
4036 struct sched_param sp;
4037 struct task_struct *t;
4038
4039 /* Force priority into range. */
4040 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4041 kthread_prio = 1;
4042 else if (kthread_prio < 0)
4043 kthread_prio = 0;
4044 else if (kthread_prio > 99)
4045 kthread_prio = 99;
4046 if (kthread_prio != kthread_prio_in)
4047 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4048 kthread_prio, kthread_prio_in);
4049
4050 rcu_scheduler_fully_active = 1;
4051 for_each_rcu_flavor(rsp) {
4052 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4053 BUG_ON(IS_ERR(t));
4054 rnp = rcu_get_root(rsp);
4055 raw_spin_lock_irqsave(&rnp->lock, flags);
4056 rsp->gp_kthread = t;
4057 if (kthread_prio) {
4058 sp.sched_priority = kthread_prio;
4059 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4060 }
4061 wake_up_process(t);
4062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4063 }
4064 rcu_spawn_nocb_kthreads();
4065 rcu_spawn_boost_kthreads();
4066 return 0;
4067}
4068early_initcall(rcu_spawn_gp_kthread);
4069
4070/*
4071 * This function is invoked towards the end of the scheduler's initialization
4072 * process. Before this is called, the idle task might contain
4073 * RCU read-side critical sections (during which time, this idle
4074 * task is booting the system). After this function is called, the
4075 * idle tasks are prohibited from containing RCU read-side critical
4076 * sections. This function also enables RCU lockdep checking.
4077 */
4078void rcu_scheduler_starting(void)
4079{
4080 WARN_ON(num_online_cpus() != 1);
4081 WARN_ON(nr_context_switches() > 0);
4082 rcu_scheduler_active = 1;
4083}
4084
4085/*
4086 * Compute the per-level fanout, either using the exact fanout specified
4087 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4088 */
4089static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4090{
4091 int i;
4092
4093 if (rcu_fanout_exact) {
4094 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4095 for (i = rcu_num_lvls - 2; i >= 0; i--)
4096 levelspread[i] = RCU_FANOUT;
4097 } else {
4098 int ccur;
4099 int cprv;
4100
4101 cprv = nr_cpu_ids;
4102 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4103 ccur = levelcnt[i];
4104 levelspread[i] = (cprv + ccur - 1) / ccur;
4105 cprv = ccur;
4106 }
4107 }
4108}
4109
4110/*
4111 * Helper function for rcu_init() that initializes one rcu_state structure.
4112 */
4113static void __init rcu_init_one(struct rcu_state *rsp,
4114 struct rcu_data __percpu *rda)
4115{
4116 static const char * const buf[] = RCU_NODE_NAME_INIT;
4117 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4118 static const char * const exp[] = RCU_EXP_NAME_INIT;
4119 static const char * const exp_sched[] = RCU_EXP_SCHED_NAME_INIT;
4120 static u8 fl_mask = 0x1;
4121
4122 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4123 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4124 int cpustride = 1;
4125 int i;
4126 int j;
4127 struct rcu_node *rnp;
4128
4129 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4130
4131 /* Silence gcc 4.8 false positive about array index out of range. */
4132 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4133 panic("rcu_init_one: rcu_num_lvls out of range");
4134
4135 /* Initialize the level-tracking arrays. */
4136
4137 for (i = 0; i < rcu_num_lvls; i++)
4138 levelcnt[i] = num_rcu_lvl[i];
4139 for (i = 1; i < rcu_num_lvls; i++)
4140 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4141 rcu_init_levelspread(levelspread, levelcnt);
4142 rsp->flavor_mask = fl_mask;
4143 fl_mask <<= 1;
4144
4145 /* Initialize the elements themselves, starting from the leaves. */
4146
4147 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4148 cpustride *= levelspread[i];
4149 rnp = rsp->level[i];
4150 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4151 raw_spin_lock_init(&rnp->lock);
4152 lockdep_set_class_and_name(&rnp->lock,
4153 &rcu_node_class[i], buf[i]);
4154 raw_spin_lock_init(&rnp->fqslock);
4155 lockdep_set_class_and_name(&rnp->fqslock,
4156 &rcu_fqs_class[i], fqs[i]);
4157 rnp->gpnum = rsp->gpnum;
4158 rnp->completed = rsp->completed;
4159 rnp->qsmask = 0;
4160 rnp->qsmaskinit = 0;
4161 rnp->grplo = j * cpustride;
4162 rnp->grphi = (j + 1) * cpustride - 1;
4163 if (rnp->grphi >= nr_cpu_ids)
4164 rnp->grphi = nr_cpu_ids - 1;
4165 if (i == 0) {
4166 rnp->grpnum = 0;
4167 rnp->grpmask = 0;
4168 rnp->parent = NULL;
4169 } else {
4170 rnp->grpnum = j % levelspread[i - 1];
4171 rnp->grpmask = 1UL << rnp->grpnum;
4172 rnp->parent = rsp->level[i - 1] +
4173 j / levelspread[i - 1];
4174 }
4175 rnp->level = i;
4176 INIT_LIST_HEAD(&rnp->blkd_tasks);
4177 rcu_init_one_nocb(rnp);
4178 mutex_init(&rnp->exp_funnel_mutex);
4179 if (rsp == &rcu_sched_state)
4180 lockdep_set_class_and_name(
4181 &rnp->exp_funnel_mutex,
4182 &rcu_exp_sched_class[i], exp_sched[i]);
4183 else
4184 lockdep_set_class_and_name(
4185 &rnp->exp_funnel_mutex,
4186 &rcu_exp_class[i], exp[i]);
4187 }
4188 }
4189
4190 init_waitqueue_head(&rsp->gp_wq);
4191 rnp = rsp->level[rcu_num_lvls - 1];
4192 for_each_possible_cpu(i) {
4193 while (i > rnp->grphi)
4194 rnp++;
4195 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4196 rcu_boot_init_percpu_data(i, rsp);
4197 }
4198 list_add(&rsp->flavors, &rcu_struct_flavors);
4199}
4200
4201/*
4202 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4203 * replace the definitions in tree.h because those are needed to size
4204 * the ->node array in the rcu_state structure.
4205 */
4206static void __init rcu_init_geometry(void)
4207{
4208 ulong d;
4209 int i;
4210 int rcu_capacity[RCU_NUM_LVLS];
4211
4212 /*
4213 * Initialize any unspecified boot parameters.
4214 * The default values of jiffies_till_first_fqs and
4215 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4216 * value, which is a function of HZ, then adding one for each
4217 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4218 */
4219 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4220 if (jiffies_till_first_fqs == ULONG_MAX)
4221 jiffies_till_first_fqs = d;
4222 if (jiffies_till_next_fqs == ULONG_MAX)
4223 jiffies_till_next_fqs = d;
4224
4225 /* If the compile-time values are accurate, just leave. */
4226 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4227 nr_cpu_ids == NR_CPUS)
4228 return;
4229 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4230 rcu_fanout_leaf, nr_cpu_ids);
4231
4232 /*
4233 * The boot-time rcu_fanout_leaf parameter is only permitted
4234 * to increase the leaf-level fanout, not decrease it. Of course,
4235 * the leaf-level fanout cannot exceed the number of bits in
4236 * the rcu_node masks. Complain and fall back to the compile-
4237 * time values if these limits are exceeded.
4238 */
4239 if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4240 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4241 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4242 WARN_ON(1);
4243 return;
4244 }
4245
4246 /*
4247 * Compute number of nodes that can be handled an rcu_node tree
4248 * with the given number of levels.
4249 */
4250 rcu_capacity[0] = rcu_fanout_leaf;
4251 for (i = 1; i < RCU_NUM_LVLS; i++)
4252 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4253
4254 /*
4255 * The tree must be able to accommodate the configured number of CPUs.
4256 * If this limit is exceeded than we have a serious problem elsewhere.
4257 */
4258 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
4259 panic("rcu_init_geometry: rcu_capacity[] is too small");
4260
4261 /* Calculate the number of levels in the tree. */
4262 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4263 }
4264 rcu_num_lvls = i + 1;
4265
4266 /* Calculate the number of rcu_nodes at each level of the tree. */
4267 for (i = 0; i < rcu_num_lvls; i++) {
4268 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4269 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4270 }
4271
4272 /* Calculate the total number of rcu_node structures. */
4273 rcu_num_nodes = 0;
4274 for (i = 0; i < rcu_num_lvls; i++)
4275 rcu_num_nodes += num_rcu_lvl[i];
4276}
4277
4278/*
4279 * Dump out the structure of the rcu_node combining tree associated
4280 * with the rcu_state structure referenced by rsp.
4281 */
4282static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4283{
4284 int level = 0;
4285 struct rcu_node *rnp;
4286
4287 pr_info("rcu_node tree layout dump\n");
4288 pr_info(" ");
4289 rcu_for_each_node_breadth_first(rsp, rnp) {
4290 if (rnp->level != level) {
4291 pr_cont("\n");
4292 pr_info(" ");
4293 level = rnp->level;
4294 }
4295 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4296 }
4297 pr_cont("\n");
4298}
4299
4300void __init rcu_init(void)
4301{
4302 int cpu;
4303
4304 rcu_early_boot_tests();
4305
4306 rcu_bootup_announce();
4307 rcu_init_geometry();
4308 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4309 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4310 if (dump_tree)
4311 rcu_dump_rcu_node_tree(&rcu_sched_state);
4312 __rcu_init_preempt();
4313 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4314
4315 /*
4316 * We don't need protection against CPU-hotplug here because
4317 * this is called early in boot, before either interrupts
4318 * or the scheduler are operational.
4319 */
4320 cpu_notifier(rcu_cpu_notify, 0);
4321 pm_notifier(rcu_pm_notify, 0);
4322 for_each_online_cpu(cpu)
4323 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4324}
4325
4326#include "tree_plugin.h"