]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - kernel/sched/core.c
sched: Fix the PREEMPT_ACTIVE check in __trace_sched_switch_state()
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
... / ...
CommitLineData
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 if (delta < 0)
127 return;
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
130}
131
132/*
133 * Debugging: various feature bits
134 */
135
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
139const_debug unsigned int sysctl_sched_features =
140#include "features.h"
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
149static const char * const sched_feat_names[] = {
150#include "features.h"
151};
152
153#undef SCHED_FEAT
154
155static int sched_feat_show(struct seq_file *m, void *v)
156{
157 int i;
158
159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
163 }
164 seq_puts(m, "\n");
165
166 return 0;
167}
168
169#ifdef HAVE_JUMP_LABEL
170
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
187}
188
189static void sched_feat_enable(int i)
190{
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
199static int sched_feat_set(char *cmp)
200{
201 int i;
202 int neg = 0;
203
204 if (strncmp(cmp, "NO_", 3) == 0) {
205 neg = 1;
206 cmp += 3;
207 }
208
209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 if (neg) {
212 sysctl_sched_features &= ~(1UL << i);
213 sched_feat_disable(i);
214 } else {
215 sysctl_sched_features |= (1UL << i);
216 sched_feat_enable(i);
217 }
218 break;
219 }
220 }
221
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
232 struct inode *inode;
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
246 i = sched_feat_set(cmp);
247 mutex_unlock(&inode->i_mutex);
248 if (i == __SCHED_FEAT_NR)
249 return -EINVAL;
250
251 *ppos += cnt;
252
253 return cnt;
254}
255
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
261static const struct file_operations sched_feat_fops = {
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
267};
268
269static __init int sched_init_debug(void)
270{
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
277#endif /* CONFIG_SCHED_DEBUG */
278
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
293/*
294 * period over which we measure -rt task cpu usage in us.
295 * default: 1s
296 */
297unsigned int sysctl_sched_rt_period = 1000000;
298
299__read_mostly int scheduler_running;
300
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
306
307/*
308 * __task_rq_lock - lock the rq @p resides on.
309 */
310static inline struct rq *__task_rq_lock(struct task_struct *p)
311 __acquires(rq->lock)
312{
313 struct rq *rq;
314
315 lockdep_assert_held(&p->pi_lock);
316
317 for (;;) {
318 rq = task_rq(p);
319 raw_spin_lock(&rq->lock);
320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 return rq;
322 raw_spin_unlock(&rq->lock);
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
326 }
327}
328
329/*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 __acquires(p->pi_lock)
334 __acquires(rq->lock)
335{
336 struct rq *rq;
337
338 for (;;) {
339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 rq = task_rq(p);
341 raw_spin_lock(&rq->lock);
342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 return rq;
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
349 }
350}
351
352static void __task_rq_unlock(struct rq *rq)
353 __releases(rq->lock)
354{
355 raw_spin_unlock(&rq->lock);
356}
357
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 __releases(rq->lock)
361 __releases(p->pi_lock)
362{
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365}
366
367/*
368 * this_rq_lock - lock this runqueue and disable interrupts.
369 */
370static struct rq *this_rq_lock(void)
371 __acquires(rq->lock)
372{
373 struct rq *rq;
374
375 local_irq_disable();
376 rq = this_rq();
377 raw_spin_lock(&rq->lock);
378
379 return rq;
380}
381
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
385 */
386
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
403 raw_spin_lock(&rq->lock);
404 update_rq_clock(rq);
405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 raw_spin_unlock(&rq->lock);
407
408 return HRTIMER_NORESTART;
409}
410
411#ifdef CONFIG_SMP
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
425{
426 struct rq *rq = arg;
427
428 raw_spin_lock(&rq->lock);
429 __hrtick_restart(rq);
430 rq->hrtick_csd_pending = 0;
431 raw_spin_unlock(&rq->lock);
432}
433
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
439void hrtick_start(struct rq *rq, u64 delay)
440{
441 struct hrtimer *timer = &rq->hrtick_timer;
442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
451
452 hrtimer_set_expires(timer, time);
453
454 if (rq == this_rq()) {
455 __hrtick_restart(rq);
456 } else if (!rq->hrtick_csd_pending) {
457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 rq->hrtick_csd_pending = 1;
459 }
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
474 hrtick_clear(cpu_rq(cpu));
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
481static __init void init_hrtick(void)
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
491void hrtick_start(struct rq *rq, u64 delay)
492{
493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 HRTIMER_MODE_REL_PINNED, 0);
495}
496
497static inline void init_hrtick(void)
498{
499}
500#endif /* CONFIG_SMP */
501
502static void init_rq_hrtick(struct rq *rq)
503{
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
506
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
511
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
514}
515#else /* CONFIG_SCHED_HRTICK */
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
524static inline void init_hrtick(void)
525{
526}
527#endif /* CONFIG_SCHED_HRTICK */
528
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
592#endif
593
594/*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601void resched_curr(struct rq *rq)
602{
603 struct task_struct *curr = rq->curr;
604 int cpu;
605
606 lockdep_assert_held(&rq->lock);
607
608 if (test_tsk_need_resched(curr))
609 return;
610
611 cpu = cpu_of(rq);
612
613 if (cpu == smp_processor_id()) {
614 set_tsk_need_resched(curr);
615 set_preempt_need_resched();
616 return;
617 }
618
619 if (set_nr_and_not_polling(curr))
620 smp_send_reschedule(cpu);
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
623}
624
625void resched_cpu(int cpu)
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 return;
632 resched_curr(rq);
633 raw_spin_unlock_irqrestore(&rq->lock, flags);
634}
635
636#ifdef CONFIG_SMP
637#ifdef CONFIG_NO_HZ_COMMON
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
646int get_nohz_timer_target(int pinned)
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
655 rcu_read_lock();
656 for_each_domain(cpu, sd) {
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
663 }
664unlock:
665 rcu_read_unlock();
666 return cpu;
667}
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
678static void wake_up_idle_cpu(int cpu)
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
685 if (set_nr_and_not_polling(rq->idle))
686 smp_send_reschedule(cpu);
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
689}
690
691static bool wake_up_full_nohz_cpu(int cpu)
692{
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
699 if (tick_nohz_full_cpu(cpu)) {
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
702 tick_nohz_full_kick_cpu(cpu);
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
711 if (!wake_up_full_nohz_cpu(cpu))
712 wake_up_idle_cpu(cpu);
713}
714
715static inline bool got_nohz_idle_kick(void)
716{
717 int cpu = smp_processor_id();
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
731}
732
733#else /* CONFIG_NO_HZ_COMMON */
734
735static inline bool got_nohz_idle_kick(void)
736{
737 return false;
738}
739
740#endif /* CONFIG_NO_HZ_COMMON */
741
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
750 if (this_rq()->nr_running > 1)
751 return false;
752
753 return true;
754}
755#endif /* CONFIG_NO_HZ_FULL */
756
757void sched_avg_update(struct rq *rq)
758{
759 s64 period = sched_avg_period();
760
761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
771}
772
773#endif /* CONFIG_SMP */
774
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777/*
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
782 */
783int walk_tg_tree_from(struct task_group *from,
784 tg_visitor down, tg_visitor up, void *data)
785{
786 struct task_group *parent, *child;
787 int ret;
788
789 parent = from;
790
791down:
792 ret = (*down)(parent, data);
793 if (ret)
794 goto out;
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
802 ret = (*up)(parent, data);
803 if (ret || parent == from)
804 goto out;
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
810out:
811 return ret;
812}
813
814int tg_nop(struct task_group *tg, void *data)
815{
816 return 0;
817}
818#endif
819
820static void set_load_weight(struct task_struct *p)
821{
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
829 load->weight = scale_load(WEIGHT_IDLEPRIO);
830 load->inv_weight = WMULT_IDLEPRIO;
831 return;
832 }
833
834 load->weight = scale_load(prio_to_weight[prio]);
835 load->inv_weight = prio_to_wmult[prio];
836}
837
838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839{
840 update_rq_clock(rq);
841 sched_info_queued(rq, p);
842 p->sched_class->enqueue_task(rq, p, flags);
843}
844
845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846{
847 update_rq_clock(rq);
848 sched_info_dequeued(rq, p);
849 p->sched_class->dequeue_task(rq, p, flags);
850}
851
852void activate_task(struct rq *rq, struct task_struct *p, int flags)
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
857 enqueue_task(rq, p, flags);
858}
859
860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
865 dequeue_task(rq, p, flags);
866}
867
868static void update_rq_clock_task(struct rq *rq, s64 delta)
869{
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_key_false((&paravirt_steal_rq_enabled))) {
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
909 rq->prev_steal_time_rq += steal;
910 delta -= steal;
911 }
912#endif
913
914 rq->clock_task += delta;
915
916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
920}
921
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
952/*
953 * __normal_prio - return the priority that is based on the static prio
954 */
955static inline int __normal_prio(struct task_struct *p)
956{
957 return p->static_prio;
958}
959
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
967static inline int normal_prio(struct task_struct *p)
968{
969 int prio;
970
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
987static int effective_prio(struct task_struct *p)
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1005 */
1006inline int task_curr(const struct task_struct *p)
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
1013 int oldprio)
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021}
1022
1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq->skip_clock_update = 1;
1046}
1047
1048#ifdef CONFIG_SMP
1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050{
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1058
1059#ifdef CONFIG_LOCKDEP
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 * see task_group().
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
1073#endif
1074
1075 trace_sched_migrate_task(p, new_cpu);
1076
1077 if (task_cpu(p) != new_cpu) {
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
1080 p->se.nr_migrations++;
1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 }
1083
1084 __set_task_cpu(p, new_cpu);
1085}
1086
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
1089 if (task_on_rq_queued(p)) {
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
1186 return ret;
1187}
1188
1189struct migration_arg {
1190 struct task_struct *task;
1191 int dest_cpu;
1192};
1193
1194static int migration_cpu_stop(void *data);
1195
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213{
1214 unsigned long flags;
1215 int running, queued;
1216 unsigned long ncsw;
1217 struct rq *rq;
1218
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
1227
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
1242 cpu_relax();
1243 }
1244
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
1251 trace_sched_wait_task(p);
1252 running = task_running(rq, p);
1253 queued = task_on_rq_queued(p);
1254 ncsw = 0;
1255 if (!match_state || p->state == match_state)
1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 task_rq_unlock(rq, p, &flags);
1258
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
1275
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
1281 * So if it was still runnable (but just not actively
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
1285 if (unlikely(queued)) {
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 continue;
1291 }
1292
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
1300
1301 return ncsw;
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
1317void kick_process(struct task_struct *p)
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
1327EXPORT_SYMBOL_GPL(kick_process);
1328#endif /* CONFIG_SMP */
1329
1330#ifdef CONFIG_SMP
1331/*
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333 */
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
1340
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
1358 }
1359
1360 for (;;) {
1361 /* Any allowed, online CPU? */
1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
1369
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 task_pid_nr(p), p->comm, cpu);
1398 }
1399 }
1400
1401 return dest_cpu;
1402}
1403
1404/*
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406 */
1407static inline
1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409{
1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 !cpu_online(cpu)))
1424 cpu = select_fallback_rq(task_cpu(p), p);
1425
1426 return cpu;
1427}
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
1434#endif
1435
1436static void
1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438{
1439#ifdef CONFIG_SCHEDSTATS
1440 struct rq *rq = this_rq();
1441
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 rcu_read_lock();
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
1459 rcu_read_unlock();
1460 }
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
1468 schedstat_inc(p, se.statistics.nr_wakeups);
1469
1470 if (wake_flags & WF_SYNC)
1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
1478 activate_task(rq, p, en_flags);
1479 p->on_rq = TASK_ON_RQ_QUEUED;
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
1484}
1485
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
1489static void
1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491{
1492 check_preempt_curr(rq, p, wake_flags);
1493 trace_sched_wakeup(p, true);
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
1500 if (rq->idle_stamp) {
1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 u64 max = 2*rq->max_idle_balance_cost;
1503
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
1507 rq->avg_idle = max;
1508
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
1538 if (task_on_rq_queued(p)) {
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
1549#ifdef CONFIG_SMP
1550void sched_ttwu_pending(void)
1551{
1552 struct rq *rq = this_rq();
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
1555 unsigned long flags;
1556
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
1561
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
1569}
1570
1571void scheduler_ipi(void)
1572{
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
1578 preempt_fold_need_resched();
1579
1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
1597 sched_ttwu_pending();
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
1602 if (unlikely(got_nohz_idle_kick())) {
1603 this_rq()->idle_balance = 1;
1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 }
1606 irq_exit();
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
1619}
1620
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
1640bool cpus_share_cache(int this_cpu, int that_cpu)
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
1644#endif /* CONFIG_SMP */
1645
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
1650#if defined(CONFIG_SMP)
1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
1661}
1662
1663/**
1664 * try_to_wake_up - wake up a thread
1665 * @p: the thread to be awakened
1666 * @state: the mask of task states that can be woken
1667 * @wake_flags: wake modifier flags (WF_*)
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
1675 * Return: %true if @p was woken up, %false if it was already running.
1676 * or @state didn't match @p's state.
1677 */
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680{
1681 unsigned long flags;
1682 int cpu, success = 0;
1683
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 if (!(p->state & state))
1693 goto out;
1694
1695 success = 1; /* we're going to change ->state */
1696 cpu = task_cpu(p);
1697
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1700
1701#ifdef CONFIG_SMP
1702 /*
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
1705 */
1706 while (p->on_cpu)
1707 cpu_relax();
1708 /*
1709 * Pairs with the smp_wmb() in finish_lock_switch().
1710 */
1711 smp_rmb();
1712
1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 p->state = TASK_WAKING;
1715
1716 if (p->sched_class->task_waking)
1717 p->sched_class->task_waking(p);
1718
1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
1722 set_task_cpu(p, cpu);
1723 }
1724#endif /* CONFIG_SMP */
1725
1726 ttwu_queue(p, cpu);
1727stat:
1728 ttwu_stat(p, cpu, wake_flags);
1729out:
1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731
1732 return success;
1733}
1734
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
1739 * Put @p on the run-queue if it's not already there. The caller must
1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741 * the current task.
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
1746
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
1751 lockdep_assert_held(&rq->lock);
1752
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
1759 if (!(p->state & TASK_NORMAL))
1760 goto out;
1761
1762 if (!task_on_rq_queued(p))
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
1765 ttwu_do_wakeup(rq, p, 0);
1766 ttwu_stat(p, smp_processor_id(), 0);
1767out:
1768 raw_spin_unlock(&p->pi_lock);
1769}
1770
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
1783int wake_up_process(struct task_struct *p)
1784{
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1787}
1788EXPORT_SYMBOL(wake_up_process);
1789
1790int wake_up_state(struct task_struct *p, unsigned int state)
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816{
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
1822 p->se.prev_sum_exec_runtime = 0;
1823 p->se.nr_migrations = 0;
1824 p->se.vruntime = 0;
1825 INIT_LIST_HEAD(&p->se.group_node);
1826
1827#ifdef CONFIG_SCHEDSTATS
1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829#endif
1830
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 __dl_clear_params(p);
1834
1835 INIT_LIST_HEAD(&p->rt.run_list);
1836
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 p->numa_work.next = &p->numa_work;
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
1863#endif /* CONFIG_NUMA_BALANCING */
1864}
1865
1866#ifdef CONFIG_NUMA_BALANCING
1867#ifdef CONFIG_SCHED_DEBUG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
1881}
1882#endif /* CONFIG_SCHED_DEBUG */
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911{
1912 unsigned long flags;
1913 int cpu = get_cpu();
1914
1915 __sched_fork(clone_flags, p);
1916 /*
1917 * We mark the process as running here. This guarantees that
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
1921 p->state = TASK_RUNNING;
1922
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 p->policy = SCHED_NORMAL;
1934 p->static_prio = NICE_TO_PRIO(0);
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
1941
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
1948
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
1955 p->sched_class = &fair_sched_class;
1956 }
1957
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 set_task_cpu(p, cpu);
1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971
1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 if (likely(sched_info_on()))
1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1975#endif
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
1978#endif
1979 init_task_preempt_count(p);
1980#ifdef CONFIG_SMP
1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983#endif
1984
1985 put_cpu();
1986 return 0;
1987}
1988
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
2013static inline int dl_bw_cpus(int i)
2014{
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
2031static inline int dl_bw_cpus(int i)
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 u64 period = attr->sched_period ?: attr->sched_deadline;
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 int cpus, err = -1;
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
2083 cpus = dl_bw_cpus(task_cpu(p));
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
2111void wake_up_new_task(struct task_struct *p)
2112{
2113 unsigned long flags;
2114 struct rq *rq;
2115
2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
2122 */
2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124#endif
2125
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
2128 rq = __task_rq_lock(p);
2129 activate_task(rq, p, 0);
2130 p->on_rq = TASK_ON_RQ_QUEUED;
2131 trace_sched_wakeup_new(p, true);
2132 check_preempt_curr(rq, p, WF_FORK);
2133#ifdef CONFIG_SMP
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
2136#endif
2137 task_rq_unlock(rq, p, &flags);
2138}
2139
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144 * @notifier: notifier struct to register
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
2167
2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
2177
2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
2195
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
2199 * @prev: the current task that is being switched out
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
2212{
2213 trace_sched_switch(prev, next);
2214 sched_info_switch(rq, prev, next);
2215 perf_event_task_sched_out(prev, next);
2216 fire_sched_out_preempt_notifiers(prev, next);
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
2221/**
2222 * finish_task_switch - clean up after a task-switch
2223 * @rq: runqueue associated with task-switch
2224 * @prev: the thread we just switched away from.
2225 *
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
2232 * so, we finish that here outside of the runqueue lock. (Doing it
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 __releases(rq->lock)
2238{
2239 struct mm_struct *mm = rq->prev_mm;
2240 long prev_state;
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
2249 * The test for TASK_DEAD must occur while the runqueue locks are
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
2255 prev_state = prev->state;
2256 vtime_task_switch(prev);
2257 finish_arch_switch(prev);
2258 perf_event_task_sched_in(prev, current);
2259 finish_lock_switch(rq, prev);
2260 finish_arch_post_lock_switch();
2261
2262 fire_sched_in_preempt_notifiers(current);
2263 if (mm)
2264 mmdrop(mm);
2265 if (unlikely(prev_state == TASK_DEAD)) {
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
2272 */
2273 kprobe_flush_task(prev);
2274 put_task_struct(prev);
2275 }
2276
2277 tick_nohz_task_switch(current);
2278}
2279
2280#ifdef CONFIG_SMP
2281
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
2288 raw_spin_lock_irqsave(&rq->lock, flags);
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
2298
2299static inline void post_schedule(struct rq *rq)
2300{
2301}
2302
2303#endif
2304
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 __releases(rq->lock)
2311{
2312 struct rq *rq = this_rq();
2313
2314 finish_task_switch(rq, prev);
2315
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
2321
2322 if (current->set_child_tid)
2323 put_user(task_pid_vnr(current), current->set_child_tid);
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
2330static inline void
2331context_switch(struct rq *rq, struct task_struct *prev,
2332 struct task_struct *next)
2333{
2334 struct mm_struct *mm, *oldmm;
2335
2336 prepare_task_switch(rq, prev, next);
2337
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
2345 arch_start_context_switch(prev);
2346
2347 if (!mm) {
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
2354 if (!prev->mm) {
2355 prev->active_mm = NULL;
2356 rq->prev_mm = oldmm;
2357 }
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365
2366 context_tracking_task_switch(prev, next);
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
2377}
2378
2379/*
2380 * nr_running and nr_context_switches:
2381 *
2382 * externally visible scheduler statistics: current number of runnable
2383 * threads, total number of context switches performed since bootup.
2384 */
2385unsigned long nr_running(void)
2386{
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
2393}
2394
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
2407unsigned long long nr_context_switches(void)
2408{
2409 int i;
2410 unsigned long long sum = 0;
2411
2412 for_each_possible_cpu(i)
2413 sum += cpu_rq(i)->nr_switches;
2414
2415 return sum;
2416}
2417
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
2421
2422 for_each_possible_cpu(i)
2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424
2425 return sum;
2426}
2427
2428unsigned long nr_iowait_cpu(int cpu)
2429{
2430 struct rq *this = cpu_rq(cpu);
2431 return atomic_read(&this->nr_iowait);
2432}
2433
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
2441#ifdef CONFIG_SMP
2442
2443/*
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
2446 */
2447void sched_exec(void)
2448{
2449 struct task_struct *p = current;
2450 unsigned long flags;
2451 int dest_cpu;
2452
2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
2457
2458 if (likely(cpu_active(dest_cpu))) {
2459 struct migration_arg arg = { p, dest_cpu };
2460
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 return;
2464 }
2465unlock:
2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467}
2468
2469#endif
2470
2471DEFINE_PER_CPU(struct kernel_stat, kstat);
2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476
2477/*
2478 * Return any ns on the sched_clock that have not yet been accounted in
2479 * @p in case that task is currently running.
2480 *
2481 * Called with task_rq_lock() held on @rq.
2482 */
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485 u64 ns = 0;
2486
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
2493 update_rq_clock(rq);
2494 ns = rq_clock_task(rq) - p->se.exec_start;
2495 if ((s64)ns < 0)
2496 ns = 0;
2497 }
2498
2499 return ns;
2500}
2501
2502unsigned long long task_delta_exec(struct task_struct *p)
2503{
2504 unsigned long flags;
2505 struct rq *rq;
2506 u64 ns = 0;
2507
2508 rq = task_rq_lock(p, &flags);
2509 ns = do_task_delta_exec(p, rq);
2510 task_rq_unlock(rq, p, &flags);
2511
2512 return ns;
2513}
2514
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522 unsigned long flags;
2523 struct rq *rq;
2524 u64 ns = 0;
2525
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 /*
2528 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 * So we have a optimization chance when the task's delta_exec is 0.
2530 * Reading ->on_cpu is racy, but this is ok.
2531 *
2532 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 * If we race with it entering cpu, unaccounted time is 0. This is
2534 * indistinguishable from the read occurring a few cycles earlier.
2535 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 * been accounted, so we're correct here as well.
2537 */
2538 if (!p->on_cpu || !task_on_rq_queued(p))
2539 return p->se.sum_exec_runtime;
2540#endif
2541
2542 rq = task_rq_lock(p, &flags);
2543 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2544 task_rq_unlock(rq, p, &flags);
2545
2546 return ns;
2547}
2548
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
2552 */
2553void scheduler_tick(void)
2554{
2555 int cpu = smp_processor_id();
2556 struct rq *rq = cpu_rq(cpu);
2557 struct task_struct *curr = rq->curr;
2558
2559 sched_clock_tick();
2560
2561 raw_spin_lock(&rq->lock);
2562 update_rq_clock(rq);
2563 curr->sched_class->task_tick(rq, curr, 0);
2564 update_cpu_load_active(rq);
2565 raw_spin_unlock(&rq->lock);
2566
2567 perf_event_task_tick();
2568
2569#ifdef CONFIG_SMP
2570 rq->idle_balance = idle_cpu(cpu);
2571 trigger_load_balance(rq);
2572#endif
2573 rq_last_tick_reset(rq);
2574}
2575
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
2587 *
2588 * Return: Maximum deferment in nanoseconds.
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592 struct rq *rq = this_rq();
2593 unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595 next = rq->last_sched_tick + HZ;
2596
2597 if (time_before_eq(next, now))
2598 return 0;
2599
2600 return jiffies_to_nsecs(next - now);
2601}
2602#endif
2603
2604notrace unsigned long get_parent_ip(unsigned long addr)
2605{
2606 if (in_lock_functions(addr)) {
2607 addr = CALLER_ADDR2;
2608 if (in_lock_functions(addr))
2609 addr = CALLER_ADDR3;
2610 }
2611 return addr;
2612}
2613
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 defined(CONFIG_PREEMPT_TRACER))
2616
2617void preempt_count_add(int val)
2618{
2619#ifdef CONFIG_DEBUG_PREEMPT
2620 /*
2621 * Underflow?
2622 */
2623 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 return;
2625#endif
2626 __preempt_count_add(val);
2627#ifdef CONFIG_DEBUG_PREEMPT
2628 /*
2629 * Spinlock count overflowing soon?
2630 */
2631 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 PREEMPT_MASK - 10);
2633#endif
2634 if (preempt_count() == val) {
2635 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637 current->preempt_disable_ip = ip;
2638#endif
2639 trace_preempt_off(CALLER_ADDR0, ip);
2640 }
2641}
2642EXPORT_SYMBOL(preempt_count_add);
2643NOKPROBE_SYMBOL(preempt_count_add);
2644
2645void preempt_count_sub(int val)
2646{
2647#ifdef CONFIG_DEBUG_PREEMPT
2648 /*
2649 * Underflow?
2650 */
2651 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2652 return;
2653 /*
2654 * Is the spinlock portion underflowing?
2655 */
2656 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 !(preempt_count() & PREEMPT_MASK)))
2658 return;
2659#endif
2660
2661 if (preempt_count() == val)
2662 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2663 __preempt_count_sub(val);
2664}
2665EXPORT_SYMBOL(preempt_count_sub);
2666NOKPROBE_SYMBOL(preempt_count_sub);
2667
2668#endif
2669
2670/*
2671 * Print scheduling while atomic bug:
2672 */
2673static noinline void __schedule_bug(struct task_struct *prev)
2674{
2675 if (oops_in_progress)
2676 return;
2677
2678 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 prev->comm, prev->pid, preempt_count());
2680
2681 debug_show_held_locks(prev);
2682 print_modules();
2683 if (irqs_disabled())
2684 print_irqtrace_events(prev);
2685#ifdef CONFIG_DEBUG_PREEMPT
2686 if (in_atomic_preempt_off()) {
2687 pr_err("Preemption disabled at:");
2688 print_ip_sym(current->preempt_disable_ip);
2689 pr_cont("\n");
2690 }
2691#endif
2692 dump_stack();
2693 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2694}
2695
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
2704 /*
2705 * Test if we are atomic. Since do_exit() needs to call into
2706 * schedule() atomically, we ignore that path. Otherwise whine
2707 * if we are scheduling when we should not.
2708 */
2709 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2710 __schedule_bug(prev);
2711 rcu_sleep_check();
2712
2713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2715 schedstat_inc(this_rq(), sched_count);
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
2722pick_next_task(struct rq *rq, struct task_struct *prev)
2723{
2724 const struct sched_class *class = &fair_sched_class;
2725 struct task_struct *p;
2726
2727 /*
2728 * Optimization: we know that if all tasks are in
2729 * the fair class we can call that function directly:
2730 */
2731 if (likely(prev->sched_class == class &&
2732 rq->nr_running == rq->cfs.h_nr_running)) {
2733 p = fair_sched_class.pick_next_task(rq, prev);
2734 if (unlikely(p == RETRY_TASK))
2735 goto again;
2736
2737 /* assumes fair_sched_class->next == idle_sched_class */
2738 if (unlikely(!p))
2739 p = idle_sched_class.pick_next_task(rq, prev);
2740
2741 return p;
2742 }
2743
2744again:
2745 for_each_class(class) {
2746 p = class->pick_next_task(rq, prev);
2747 if (p) {
2748 if (unlikely(p == RETRY_TASK))
2749 goto again;
2750 return p;
2751 }
2752 }
2753
2754 BUG(); /* the idle class will always have a runnable task */
2755}
2756
2757/*
2758 * __schedule() is the main scheduler function.
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 * paths. For example, see arch/x86/entry_64.S.
2766 *
2767 * To drive preemption between tasks, the scheduler sets the flag in timer
2768 * interrupt handler scheduler_tick().
2769 *
2770 * 3. Wakeups don't really cause entry into schedule(). They add a
2771 * task to the run-queue and that's it.
2772 *
2773 * Now, if the new task added to the run-queue preempts the current
2774 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 * called on the nearest possible occasion:
2776 *
2777 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 * - in syscall or exception context, at the next outmost
2780 * preempt_enable(). (this might be as soon as the wake_up()'s
2781 * spin_unlock()!)
2782 *
2783 * - in IRQ context, return from interrupt-handler to
2784 * preemptible context
2785 *
2786 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 * then at the next:
2788 *
2789 * - cond_resched() call
2790 * - explicit schedule() call
2791 * - return from syscall or exception to user-space
2792 * - return from interrupt-handler to user-space
2793 */
2794static void __sched __schedule(void)
2795{
2796 struct task_struct *prev, *next;
2797 unsigned long *switch_count;
2798 struct rq *rq;
2799 int cpu;
2800
2801need_resched:
2802 preempt_disable();
2803 cpu = smp_processor_id();
2804 rq = cpu_rq(cpu);
2805 rcu_note_context_switch(cpu);
2806 prev = rq->curr;
2807
2808 schedule_debug(prev);
2809
2810 if (sched_feat(HRTICK))
2811 hrtick_clear(rq);
2812
2813 /*
2814 * Make sure that signal_pending_state()->signal_pending() below
2815 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 * done by the caller to avoid the race with signal_wake_up().
2817 */
2818 smp_mb__before_spinlock();
2819 raw_spin_lock_irq(&rq->lock);
2820
2821 switch_count = &prev->nivcsw;
2822 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2823 if (unlikely(signal_pending_state(prev->state, prev))) {
2824 prev->state = TASK_RUNNING;
2825 } else {
2826 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 prev->on_rq = 0;
2828
2829 /*
2830 * If a worker went to sleep, notify and ask workqueue
2831 * whether it wants to wake up a task to maintain
2832 * concurrency.
2833 */
2834 if (prev->flags & PF_WQ_WORKER) {
2835 struct task_struct *to_wakeup;
2836
2837 to_wakeup = wq_worker_sleeping(prev, cpu);
2838 if (to_wakeup)
2839 try_to_wake_up_local(to_wakeup);
2840 }
2841 }
2842 switch_count = &prev->nvcsw;
2843 }
2844
2845 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2846 update_rq_clock(rq);
2847
2848 next = pick_next_task(rq, prev);
2849 clear_tsk_need_resched(prev);
2850 clear_preempt_need_resched();
2851 rq->skip_clock_update = 0;
2852
2853 if (likely(prev != next)) {
2854 rq->nr_switches++;
2855 rq->curr = next;
2856 ++*switch_count;
2857
2858 context_switch(rq, prev, next); /* unlocks the rq */
2859 /*
2860 * The context switch have flipped the stack from under us
2861 * and restored the local variables which were saved when
2862 * this task called schedule() in the past. prev == current
2863 * is still correct, but it can be moved to another cpu/rq.
2864 */
2865 cpu = smp_processor_id();
2866 rq = cpu_rq(cpu);
2867 } else
2868 raw_spin_unlock_irq(&rq->lock);
2869
2870 post_schedule(rq);
2871
2872 sched_preempt_enable_no_resched();
2873 if (need_resched())
2874 goto need_resched;
2875}
2876
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
2879 if (!tsk->state || tsk_is_pi_blocked(tsk))
2880 return;
2881 /*
2882 * If we are going to sleep and we have plugged IO queued,
2883 * make sure to submit it to avoid deadlocks.
2884 */
2885 if (blk_needs_flush_plug(tsk))
2886 blk_schedule_flush_plug(tsk);
2887}
2888
2889asmlinkage __visible void __sched schedule(void)
2890{
2891 struct task_struct *tsk = current;
2892
2893 sched_submit_work(tsk);
2894 __schedule();
2895}
2896EXPORT_SYMBOL(schedule);
2897
2898#ifdef CONFIG_CONTEXT_TRACKING
2899asmlinkage __visible void __sched schedule_user(void)
2900{
2901 /*
2902 * If we come here after a random call to set_need_resched(),
2903 * or we have been woken up remotely but the IPI has not yet arrived,
2904 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 * we find a better solution.
2906 */
2907 user_exit();
2908 schedule();
2909 user_enter();
2910}
2911#endif
2912
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
2920 sched_preempt_enable_no_resched();
2921 schedule();
2922 preempt_disable();
2923}
2924
2925#ifdef CONFIG_PREEMPT
2926/*
2927 * this is the entry point to schedule() from in-kernel preemption
2928 * off of preempt_enable. Kernel preemptions off return from interrupt
2929 * occur there and call schedule directly.
2930 */
2931asmlinkage __visible void __sched notrace preempt_schedule(void)
2932{
2933 /*
2934 * If there is a non-zero preempt_count or interrupts are disabled,
2935 * we do not want to preempt the current task. Just return..
2936 */
2937 if (likely(!preemptible()))
2938 return;
2939
2940 do {
2941 __preempt_count_add(PREEMPT_ACTIVE);
2942 __schedule();
2943 __preempt_count_sub(PREEMPT_ACTIVE);
2944
2945 /*
2946 * Check again in case we missed a preemption opportunity
2947 * between schedule and now.
2948 */
2949 barrier();
2950 } while (need_resched());
2951}
2952NOKPROBE_SYMBOL(preempt_schedule);
2953EXPORT_SYMBOL(preempt_schedule);
2954
2955#ifdef CONFIG_CONTEXT_TRACKING
2956/**
2957 * preempt_schedule_context - preempt_schedule called by tracing
2958 *
2959 * The tracing infrastructure uses preempt_enable_notrace to prevent
2960 * recursion and tracing preempt enabling caused by the tracing
2961 * infrastructure itself. But as tracing can happen in areas coming
2962 * from userspace or just about to enter userspace, a preempt enable
2963 * can occur before user_exit() is called. This will cause the scheduler
2964 * to be called when the system is still in usermode.
2965 *
2966 * To prevent this, the preempt_enable_notrace will use this function
2967 * instead of preempt_schedule() to exit user context if needed before
2968 * calling the scheduler.
2969 */
2970asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2971{
2972 enum ctx_state prev_ctx;
2973
2974 if (likely(!preemptible()))
2975 return;
2976
2977 do {
2978 __preempt_count_add(PREEMPT_ACTIVE);
2979 /*
2980 * Needs preempt disabled in case user_exit() is traced
2981 * and the tracer calls preempt_enable_notrace() causing
2982 * an infinite recursion.
2983 */
2984 prev_ctx = exception_enter();
2985 __schedule();
2986 exception_exit(prev_ctx);
2987
2988 __preempt_count_sub(PREEMPT_ACTIVE);
2989 barrier();
2990 } while (need_resched());
2991}
2992EXPORT_SYMBOL_GPL(preempt_schedule_context);
2993#endif /* CONFIG_CONTEXT_TRACKING */
2994
2995#endif /* CONFIG_PREEMPT */
2996
2997/*
2998 * this is the entry point to schedule() from kernel preemption
2999 * off of irq context.
3000 * Note, that this is called and return with irqs disabled. This will
3001 * protect us against recursive calling from irq.
3002 */
3003asmlinkage __visible void __sched preempt_schedule_irq(void)
3004{
3005 enum ctx_state prev_state;
3006
3007 /* Catch callers which need to be fixed */
3008 BUG_ON(preempt_count() || !irqs_disabled());
3009
3010 prev_state = exception_enter();
3011
3012 do {
3013 __preempt_count_add(PREEMPT_ACTIVE);
3014 local_irq_enable();
3015 __schedule();
3016 local_irq_disable();
3017 __preempt_count_sub(PREEMPT_ACTIVE);
3018
3019 /*
3020 * Check again in case we missed a preemption opportunity
3021 * between schedule and now.
3022 */
3023 barrier();
3024 } while (need_resched());
3025
3026 exception_exit(prev_state);
3027}
3028
3029int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3030 void *key)
3031{
3032 return try_to_wake_up(curr->private, mode, wake_flags);
3033}
3034EXPORT_SYMBOL(default_wake_function);
3035
3036#ifdef CONFIG_RT_MUTEXES
3037
3038/*
3039 * rt_mutex_setprio - set the current priority of a task
3040 * @p: task
3041 * @prio: prio value (kernel-internal form)
3042 *
3043 * This function changes the 'effective' priority of a task. It does
3044 * not touch ->normal_prio like __setscheduler().
3045 *
3046 * Used by the rt_mutex code to implement priority inheritance
3047 * logic. Call site only calls if the priority of the task changed.
3048 */
3049void rt_mutex_setprio(struct task_struct *p, int prio)
3050{
3051 int oldprio, queued, running, enqueue_flag = 0;
3052 struct rq *rq;
3053 const struct sched_class *prev_class;
3054
3055 BUG_ON(prio > MAX_PRIO);
3056
3057 rq = __task_rq_lock(p);
3058
3059 /*
3060 * Idle task boosting is a nono in general. There is one
3061 * exception, when PREEMPT_RT and NOHZ is active:
3062 *
3063 * The idle task calls get_next_timer_interrupt() and holds
3064 * the timer wheel base->lock on the CPU and another CPU wants
3065 * to access the timer (probably to cancel it). We can safely
3066 * ignore the boosting request, as the idle CPU runs this code
3067 * with interrupts disabled and will complete the lock
3068 * protected section without being interrupted. So there is no
3069 * real need to boost.
3070 */
3071 if (unlikely(p == rq->idle)) {
3072 WARN_ON(p != rq->curr);
3073 WARN_ON(p->pi_blocked_on);
3074 goto out_unlock;
3075 }
3076
3077 trace_sched_pi_setprio(p, prio);
3078 oldprio = p->prio;
3079 prev_class = p->sched_class;
3080 queued = task_on_rq_queued(p);
3081 running = task_current(rq, p);
3082 if (queued)
3083 dequeue_task(rq, p, 0);
3084 if (running)
3085 put_prev_task(rq, p);
3086
3087 /*
3088 * Boosting condition are:
3089 * 1. -rt task is running and holds mutex A
3090 * --> -dl task blocks on mutex A
3091 *
3092 * 2. -dl task is running and holds mutex A
3093 * --> -dl task blocks on mutex A and could preempt the
3094 * running task
3095 */
3096 if (dl_prio(prio)) {
3097 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3098 if (!dl_prio(p->normal_prio) ||
3099 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3100 p->dl.dl_boosted = 1;
3101 p->dl.dl_throttled = 0;
3102 enqueue_flag = ENQUEUE_REPLENISH;
3103 } else
3104 p->dl.dl_boosted = 0;
3105 p->sched_class = &dl_sched_class;
3106 } else if (rt_prio(prio)) {
3107 if (dl_prio(oldprio))
3108 p->dl.dl_boosted = 0;
3109 if (oldprio < prio)
3110 enqueue_flag = ENQUEUE_HEAD;
3111 p->sched_class = &rt_sched_class;
3112 } else {
3113 if (dl_prio(oldprio))
3114 p->dl.dl_boosted = 0;
3115 p->sched_class = &fair_sched_class;
3116 }
3117
3118 p->prio = prio;
3119
3120 if (running)
3121 p->sched_class->set_curr_task(rq);
3122 if (queued)
3123 enqueue_task(rq, p, enqueue_flag);
3124
3125 check_class_changed(rq, p, prev_class, oldprio);
3126out_unlock:
3127 __task_rq_unlock(rq);
3128}
3129#endif
3130
3131void set_user_nice(struct task_struct *p, long nice)
3132{
3133 int old_prio, delta, queued;
3134 unsigned long flags;
3135 struct rq *rq;
3136
3137 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3138 return;
3139 /*
3140 * We have to be careful, if called from sys_setpriority(),
3141 * the task might be in the middle of scheduling on another CPU.
3142 */
3143 rq = task_rq_lock(p, &flags);
3144 /*
3145 * The RT priorities are set via sched_setscheduler(), but we still
3146 * allow the 'normal' nice value to be set - but as expected
3147 * it wont have any effect on scheduling until the task is
3148 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3149 */
3150 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3151 p->static_prio = NICE_TO_PRIO(nice);
3152 goto out_unlock;
3153 }
3154 queued = task_on_rq_queued(p);
3155 if (queued)
3156 dequeue_task(rq, p, 0);
3157
3158 p->static_prio = NICE_TO_PRIO(nice);
3159 set_load_weight(p);
3160 old_prio = p->prio;
3161 p->prio = effective_prio(p);
3162 delta = p->prio - old_prio;
3163
3164 if (queued) {
3165 enqueue_task(rq, p, 0);
3166 /*
3167 * If the task increased its priority or is running and
3168 * lowered its priority, then reschedule its CPU:
3169 */
3170 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3171 resched_curr(rq);
3172 }
3173out_unlock:
3174 task_rq_unlock(rq, p, &flags);
3175}
3176EXPORT_SYMBOL(set_user_nice);
3177
3178/*
3179 * can_nice - check if a task can reduce its nice value
3180 * @p: task
3181 * @nice: nice value
3182 */
3183int can_nice(const struct task_struct *p, const int nice)
3184{
3185 /* convert nice value [19,-20] to rlimit style value [1,40] */
3186 int nice_rlim = nice_to_rlimit(nice);
3187
3188 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3189 capable(CAP_SYS_NICE));
3190}
3191
3192#ifdef __ARCH_WANT_SYS_NICE
3193
3194/*
3195 * sys_nice - change the priority of the current process.
3196 * @increment: priority increment
3197 *
3198 * sys_setpriority is a more generic, but much slower function that
3199 * does similar things.
3200 */
3201SYSCALL_DEFINE1(nice, int, increment)
3202{
3203 long nice, retval;
3204
3205 /*
3206 * Setpriority might change our priority at the same moment.
3207 * We don't have to worry. Conceptually one call occurs first
3208 * and we have a single winner.
3209 */
3210 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3211 nice = task_nice(current) + increment;
3212
3213 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3214 if (increment < 0 && !can_nice(current, nice))
3215 return -EPERM;
3216
3217 retval = security_task_setnice(current, nice);
3218 if (retval)
3219 return retval;
3220
3221 set_user_nice(current, nice);
3222 return 0;
3223}
3224
3225#endif
3226
3227/**
3228 * task_prio - return the priority value of a given task.
3229 * @p: the task in question.
3230 *
3231 * Return: The priority value as seen by users in /proc.
3232 * RT tasks are offset by -200. Normal tasks are centered
3233 * around 0, value goes from -16 to +15.
3234 */
3235int task_prio(const struct task_struct *p)
3236{
3237 return p->prio - MAX_RT_PRIO;
3238}
3239
3240/**
3241 * idle_cpu - is a given cpu idle currently?
3242 * @cpu: the processor in question.
3243 *
3244 * Return: 1 if the CPU is currently idle. 0 otherwise.
3245 */
3246int idle_cpu(int cpu)
3247{
3248 struct rq *rq = cpu_rq(cpu);
3249
3250 if (rq->curr != rq->idle)
3251 return 0;
3252
3253 if (rq->nr_running)
3254 return 0;
3255
3256#ifdef CONFIG_SMP
3257 if (!llist_empty(&rq->wake_list))
3258 return 0;
3259#endif
3260
3261 return 1;
3262}
3263
3264/**
3265 * idle_task - return the idle task for a given cpu.
3266 * @cpu: the processor in question.
3267 *
3268 * Return: The idle task for the cpu @cpu.
3269 */
3270struct task_struct *idle_task(int cpu)
3271{
3272 return cpu_rq(cpu)->idle;
3273}
3274
3275/**
3276 * find_process_by_pid - find a process with a matching PID value.
3277 * @pid: the pid in question.
3278 *
3279 * The task of @pid, if found. %NULL otherwise.
3280 */
3281static struct task_struct *find_process_by_pid(pid_t pid)
3282{
3283 return pid ? find_task_by_vpid(pid) : current;
3284}
3285
3286/*
3287 * This function initializes the sched_dl_entity of a newly becoming
3288 * SCHED_DEADLINE task.
3289 *
3290 * Only the static values are considered here, the actual runtime and the
3291 * absolute deadline will be properly calculated when the task is enqueued
3292 * for the first time with its new policy.
3293 */
3294static void
3295__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3296{
3297 struct sched_dl_entity *dl_se = &p->dl;
3298
3299 init_dl_task_timer(dl_se);
3300 dl_se->dl_runtime = attr->sched_runtime;
3301 dl_se->dl_deadline = attr->sched_deadline;
3302 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3303 dl_se->flags = attr->sched_flags;
3304 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3305 dl_se->dl_throttled = 0;
3306 dl_se->dl_new = 1;
3307 dl_se->dl_yielded = 0;
3308}
3309
3310/*
3311 * sched_setparam() passes in -1 for its policy, to let the functions
3312 * it calls know not to change it.
3313 */
3314#define SETPARAM_POLICY -1
3315
3316static void __setscheduler_params(struct task_struct *p,
3317 const struct sched_attr *attr)
3318{
3319 int policy = attr->sched_policy;
3320
3321 if (policy == SETPARAM_POLICY)
3322 policy = p->policy;
3323
3324 p->policy = policy;
3325
3326 if (dl_policy(policy))
3327 __setparam_dl(p, attr);
3328 else if (fair_policy(policy))
3329 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3330
3331 /*
3332 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3333 * !rt_policy. Always setting this ensures that things like
3334 * getparam()/getattr() don't report silly values for !rt tasks.
3335 */
3336 p->rt_priority = attr->sched_priority;
3337 p->normal_prio = normal_prio(p);
3338 set_load_weight(p);
3339}
3340
3341/* Actually do priority change: must hold pi & rq lock. */
3342static void __setscheduler(struct rq *rq, struct task_struct *p,
3343 const struct sched_attr *attr)
3344{
3345 __setscheduler_params(p, attr);
3346
3347 /*
3348 * If we get here, there was no pi waiters boosting the
3349 * task. It is safe to use the normal prio.
3350 */
3351 p->prio = normal_prio(p);
3352
3353 if (dl_prio(p->prio))
3354 p->sched_class = &dl_sched_class;
3355 else if (rt_prio(p->prio))
3356 p->sched_class = &rt_sched_class;
3357 else
3358 p->sched_class = &fair_sched_class;
3359}
3360
3361static void
3362__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3363{
3364 struct sched_dl_entity *dl_se = &p->dl;
3365
3366 attr->sched_priority = p->rt_priority;
3367 attr->sched_runtime = dl_se->dl_runtime;
3368 attr->sched_deadline = dl_se->dl_deadline;
3369 attr->sched_period = dl_se->dl_period;
3370 attr->sched_flags = dl_se->flags;
3371}
3372
3373/*
3374 * This function validates the new parameters of a -deadline task.
3375 * We ask for the deadline not being zero, and greater or equal
3376 * than the runtime, as well as the period of being zero or
3377 * greater than deadline. Furthermore, we have to be sure that
3378 * user parameters are above the internal resolution of 1us (we
3379 * check sched_runtime only since it is always the smaller one) and
3380 * below 2^63 ns (we have to check both sched_deadline and
3381 * sched_period, as the latter can be zero).
3382 */
3383static bool
3384__checkparam_dl(const struct sched_attr *attr)
3385{
3386 /* deadline != 0 */
3387 if (attr->sched_deadline == 0)
3388 return false;
3389
3390 /*
3391 * Since we truncate DL_SCALE bits, make sure we're at least
3392 * that big.
3393 */
3394 if (attr->sched_runtime < (1ULL << DL_SCALE))
3395 return false;
3396
3397 /*
3398 * Since we use the MSB for wrap-around and sign issues, make
3399 * sure it's not set (mind that period can be equal to zero).
3400 */
3401 if (attr->sched_deadline & (1ULL << 63) ||
3402 attr->sched_period & (1ULL << 63))
3403 return false;
3404
3405 /* runtime <= deadline <= period (if period != 0) */
3406 if ((attr->sched_period != 0 &&
3407 attr->sched_period < attr->sched_deadline) ||
3408 attr->sched_deadline < attr->sched_runtime)
3409 return false;
3410
3411 return true;
3412}
3413
3414/*
3415 * check the target process has a UID that matches the current process's
3416 */
3417static bool check_same_owner(struct task_struct *p)
3418{
3419 const struct cred *cred = current_cred(), *pcred;
3420 bool match;
3421
3422 rcu_read_lock();
3423 pcred = __task_cred(p);
3424 match = (uid_eq(cred->euid, pcred->euid) ||
3425 uid_eq(cred->euid, pcred->uid));
3426 rcu_read_unlock();
3427 return match;
3428}
3429
3430static int __sched_setscheduler(struct task_struct *p,
3431 const struct sched_attr *attr,
3432 bool user)
3433{
3434 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3435 MAX_RT_PRIO - 1 - attr->sched_priority;
3436 int retval, oldprio, oldpolicy = -1, queued, running;
3437 int policy = attr->sched_policy;
3438 unsigned long flags;
3439 const struct sched_class *prev_class;
3440 struct rq *rq;
3441 int reset_on_fork;
3442
3443 /* may grab non-irq protected spin_locks */
3444 BUG_ON(in_interrupt());
3445recheck:
3446 /* double check policy once rq lock held */
3447 if (policy < 0) {
3448 reset_on_fork = p->sched_reset_on_fork;
3449 policy = oldpolicy = p->policy;
3450 } else {
3451 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3452
3453 if (policy != SCHED_DEADLINE &&
3454 policy != SCHED_FIFO && policy != SCHED_RR &&
3455 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3456 policy != SCHED_IDLE)
3457 return -EINVAL;
3458 }
3459
3460 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3461 return -EINVAL;
3462
3463 /*
3464 * Valid priorities for SCHED_FIFO and SCHED_RR are
3465 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3466 * SCHED_BATCH and SCHED_IDLE is 0.
3467 */
3468 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3469 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3470 return -EINVAL;
3471 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3472 (rt_policy(policy) != (attr->sched_priority != 0)))
3473 return -EINVAL;
3474
3475 /*
3476 * Allow unprivileged RT tasks to decrease priority:
3477 */
3478 if (user && !capable(CAP_SYS_NICE)) {
3479 if (fair_policy(policy)) {
3480 if (attr->sched_nice < task_nice(p) &&
3481 !can_nice(p, attr->sched_nice))
3482 return -EPERM;
3483 }
3484
3485 if (rt_policy(policy)) {
3486 unsigned long rlim_rtprio =
3487 task_rlimit(p, RLIMIT_RTPRIO);
3488
3489 /* can't set/change the rt policy */
3490 if (policy != p->policy && !rlim_rtprio)
3491 return -EPERM;
3492
3493 /* can't increase priority */
3494 if (attr->sched_priority > p->rt_priority &&
3495 attr->sched_priority > rlim_rtprio)
3496 return -EPERM;
3497 }
3498
3499 /*
3500 * Can't set/change SCHED_DEADLINE policy at all for now
3501 * (safest behavior); in the future we would like to allow
3502 * unprivileged DL tasks to increase their relative deadline
3503 * or reduce their runtime (both ways reducing utilization)
3504 */
3505 if (dl_policy(policy))
3506 return -EPERM;
3507
3508 /*
3509 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3510 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3511 */
3512 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3513 if (!can_nice(p, task_nice(p)))
3514 return -EPERM;
3515 }
3516
3517 /* can't change other user's priorities */
3518 if (!check_same_owner(p))
3519 return -EPERM;
3520
3521 /* Normal users shall not reset the sched_reset_on_fork flag */
3522 if (p->sched_reset_on_fork && !reset_on_fork)
3523 return -EPERM;
3524 }
3525
3526 if (user) {
3527 retval = security_task_setscheduler(p);
3528 if (retval)
3529 return retval;
3530 }
3531
3532 /*
3533 * make sure no PI-waiters arrive (or leave) while we are
3534 * changing the priority of the task:
3535 *
3536 * To be able to change p->policy safely, the appropriate
3537 * runqueue lock must be held.
3538 */
3539 rq = task_rq_lock(p, &flags);
3540
3541 /*
3542 * Changing the policy of the stop threads its a very bad idea
3543 */
3544 if (p == rq->stop) {
3545 task_rq_unlock(rq, p, &flags);
3546 return -EINVAL;
3547 }
3548
3549 /*
3550 * If not changing anything there's no need to proceed further,
3551 * but store a possible modification of reset_on_fork.
3552 */
3553 if (unlikely(policy == p->policy)) {
3554 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3555 goto change;
3556 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3557 goto change;
3558 if (dl_policy(policy))
3559 goto change;
3560
3561 p->sched_reset_on_fork = reset_on_fork;
3562 task_rq_unlock(rq, p, &flags);
3563 return 0;
3564 }
3565change:
3566
3567 if (user) {
3568#ifdef CONFIG_RT_GROUP_SCHED
3569 /*
3570 * Do not allow realtime tasks into groups that have no runtime
3571 * assigned.
3572 */
3573 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3574 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3575 !task_group_is_autogroup(task_group(p))) {
3576 task_rq_unlock(rq, p, &flags);
3577 return -EPERM;
3578 }
3579#endif
3580#ifdef CONFIG_SMP
3581 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3582 cpumask_t *span = rq->rd->span;
3583
3584 /*
3585 * Don't allow tasks with an affinity mask smaller than
3586 * the entire root_domain to become SCHED_DEADLINE. We
3587 * will also fail if there's no bandwidth available.
3588 */
3589 if (!cpumask_subset(span, &p->cpus_allowed) ||
3590 rq->rd->dl_bw.bw == 0) {
3591 task_rq_unlock(rq, p, &flags);
3592 return -EPERM;
3593 }
3594 }
3595#endif
3596 }
3597
3598 /* recheck policy now with rq lock held */
3599 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3600 policy = oldpolicy = -1;
3601 task_rq_unlock(rq, p, &flags);
3602 goto recheck;
3603 }
3604
3605 /*
3606 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3607 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3608 * is available.
3609 */
3610 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3611 task_rq_unlock(rq, p, &flags);
3612 return -EBUSY;
3613 }
3614
3615 p->sched_reset_on_fork = reset_on_fork;
3616 oldprio = p->prio;
3617
3618 /*
3619 * Special case for priority boosted tasks.
3620 *
3621 * If the new priority is lower or equal (user space view)
3622 * than the current (boosted) priority, we just store the new
3623 * normal parameters and do not touch the scheduler class and
3624 * the runqueue. This will be done when the task deboost
3625 * itself.
3626 */
3627 if (rt_mutex_check_prio(p, newprio)) {
3628 __setscheduler_params(p, attr);
3629 task_rq_unlock(rq, p, &flags);
3630 return 0;
3631 }
3632
3633 queued = task_on_rq_queued(p);
3634 running = task_current(rq, p);
3635 if (queued)
3636 dequeue_task(rq, p, 0);
3637 if (running)
3638 put_prev_task(rq, p);
3639
3640 prev_class = p->sched_class;
3641 __setscheduler(rq, p, attr);
3642
3643 if (running)
3644 p->sched_class->set_curr_task(rq);
3645 if (queued) {
3646 /*
3647 * We enqueue to tail when the priority of a task is
3648 * increased (user space view).
3649 */
3650 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3651 }
3652
3653 check_class_changed(rq, p, prev_class, oldprio);
3654 task_rq_unlock(rq, p, &flags);
3655
3656 rt_mutex_adjust_pi(p);
3657
3658 return 0;
3659}
3660
3661static int _sched_setscheduler(struct task_struct *p, int policy,
3662 const struct sched_param *param, bool check)
3663{
3664 struct sched_attr attr = {
3665 .sched_policy = policy,
3666 .sched_priority = param->sched_priority,
3667 .sched_nice = PRIO_TO_NICE(p->static_prio),
3668 };
3669
3670 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3671 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3672 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3673 policy &= ~SCHED_RESET_ON_FORK;
3674 attr.sched_policy = policy;
3675 }
3676
3677 return __sched_setscheduler(p, &attr, check);
3678}
3679/**
3680 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3681 * @p: the task in question.
3682 * @policy: new policy.
3683 * @param: structure containing the new RT priority.
3684 *
3685 * Return: 0 on success. An error code otherwise.
3686 *
3687 * NOTE that the task may be already dead.
3688 */
3689int sched_setscheduler(struct task_struct *p, int policy,
3690 const struct sched_param *param)
3691{
3692 return _sched_setscheduler(p, policy, param, true);
3693}
3694EXPORT_SYMBOL_GPL(sched_setscheduler);
3695
3696int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3697{
3698 return __sched_setscheduler(p, attr, true);
3699}
3700EXPORT_SYMBOL_GPL(sched_setattr);
3701
3702/**
3703 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3704 * @p: the task in question.
3705 * @policy: new policy.
3706 * @param: structure containing the new RT priority.
3707 *
3708 * Just like sched_setscheduler, only don't bother checking if the
3709 * current context has permission. For example, this is needed in
3710 * stop_machine(): we create temporary high priority worker threads,
3711 * but our caller might not have that capability.
3712 *
3713 * Return: 0 on success. An error code otherwise.
3714 */
3715int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3716 const struct sched_param *param)
3717{
3718 return _sched_setscheduler(p, policy, param, false);
3719}
3720
3721static int
3722do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3723{
3724 struct sched_param lparam;
3725 struct task_struct *p;
3726 int retval;
3727
3728 if (!param || pid < 0)
3729 return -EINVAL;
3730 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3731 return -EFAULT;
3732
3733 rcu_read_lock();
3734 retval = -ESRCH;
3735 p = find_process_by_pid(pid);
3736 if (p != NULL)
3737 retval = sched_setscheduler(p, policy, &lparam);
3738 rcu_read_unlock();
3739
3740 return retval;
3741}
3742
3743/*
3744 * Mimics kernel/events/core.c perf_copy_attr().
3745 */
3746static int sched_copy_attr(struct sched_attr __user *uattr,
3747 struct sched_attr *attr)
3748{
3749 u32 size;
3750 int ret;
3751
3752 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3753 return -EFAULT;
3754
3755 /*
3756 * zero the full structure, so that a short copy will be nice.
3757 */
3758 memset(attr, 0, sizeof(*attr));
3759
3760 ret = get_user(size, &uattr->size);
3761 if (ret)
3762 return ret;
3763
3764 if (size > PAGE_SIZE) /* silly large */
3765 goto err_size;
3766
3767 if (!size) /* abi compat */
3768 size = SCHED_ATTR_SIZE_VER0;
3769
3770 if (size < SCHED_ATTR_SIZE_VER0)
3771 goto err_size;
3772
3773 /*
3774 * If we're handed a bigger struct than we know of,
3775 * ensure all the unknown bits are 0 - i.e. new
3776 * user-space does not rely on any kernel feature
3777 * extensions we dont know about yet.
3778 */
3779 if (size > sizeof(*attr)) {
3780 unsigned char __user *addr;
3781 unsigned char __user *end;
3782 unsigned char val;
3783
3784 addr = (void __user *)uattr + sizeof(*attr);
3785 end = (void __user *)uattr + size;
3786
3787 for (; addr < end; addr++) {
3788 ret = get_user(val, addr);
3789 if (ret)
3790 return ret;
3791 if (val)
3792 goto err_size;
3793 }
3794 size = sizeof(*attr);
3795 }
3796
3797 ret = copy_from_user(attr, uattr, size);
3798 if (ret)
3799 return -EFAULT;
3800
3801 /*
3802 * XXX: do we want to be lenient like existing syscalls; or do we want
3803 * to be strict and return an error on out-of-bounds values?
3804 */
3805 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3806
3807 return 0;
3808
3809err_size:
3810 put_user(sizeof(*attr), &uattr->size);
3811 return -E2BIG;
3812}
3813
3814/**
3815 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3816 * @pid: the pid in question.
3817 * @policy: new policy.
3818 * @param: structure containing the new RT priority.
3819 *
3820 * Return: 0 on success. An error code otherwise.
3821 */
3822SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3823 struct sched_param __user *, param)
3824{
3825 /* negative values for policy are not valid */
3826 if (policy < 0)
3827 return -EINVAL;
3828
3829 return do_sched_setscheduler(pid, policy, param);
3830}
3831
3832/**
3833 * sys_sched_setparam - set/change the RT priority of a thread
3834 * @pid: the pid in question.
3835 * @param: structure containing the new RT priority.
3836 *
3837 * Return: 0 on success. An error code otherwise.
3838 */
3839SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3840{
3841 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3842}
3843
3844/**
3845 * sys_sched_setattr - same as above, but with extended sched_attr
3846 * @pid: the pid in question.
3847 * @uattr: structure containing the extended parameters.
3848 * @flags: for future extension.
3849 */
3850SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3851 unsigned int, flags)
3852{
3853 struct sched_attr attr;
3854 struct task_struct *p;
3855 int retval;
3856
3857 if (!uattr || pid < 0 || flags)
3858 return -EINVAL;
3859
3860 retval = sched_copy_attr(uattr, &attr);
3861 if (retval)
3862 return retval;
3863
3864 if ((int)attr.sched_policy < 0)
3865 return -EINVAL;
3866
3867 rcu_read_lock();
3868 retval = -ESRCH;
3869 p = find_process_by_pid(pid);
3870 if (p != NULL)
3871 retval = sched_setattr(p, &attr);
3872 rcu_read_unlock();
3873
3874 return retval;
3875}
3876
3877/**
3878 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3879 * @pid: the pid in question.
3880 *
3881 * Return: On success, the policy of the thread. Otherwise, a negative error
3882 * code.
3883 */
3884SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3885{
3886 struct task_struct *p;
3887 int retval;
3888
3889 if (pid < 0)
3890 return -EINVAL;
3891
3892 retval = -ESRCH;
3893 rcu_read_lock();
3894 p = find_process_by_pid(pid);
3895 if (p) {
3896 retval = security_task_getscheduler(p);
3897 if (!retval)
3898 retval = p->policy
3899 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3900 }
3901 rcu_read_unlock();
3902 return retval;
3903}
3904
3905/**
3906 * sys_sched_getparam - get the RT priority of a thread
3907 * @pid: the pid in question.
3908 * @param: structure containing the RT priority.
3909 *
3910 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3911 * code.
3912 */
3913SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3914{
3915 struct sched_param lp = { .sched_priority = 0 };
3916 struct task_struct *p;
3917 int retval;
3918
3919 if (!param || pid < 0)
3920 return -EINVAL;
3921
3922 rcu_read_lock();
3923 p = find_process_by_pid(pid);
3924 retval = -ESRCH;
3925 if (!p)
3926 goto out_unlock;
3927
3928 retval = security_task_getscheduler(p);
3929 if (retval)
3930 goto out_unlock;
3931
3932 if (task_has_rt_policy(p))
3933 lp.sched_priority = p->rt_priority;
3934 rcu_read_unlock();
3935
3936 /*
3937 * This one might sleep, we cannot do it with a spinlock held ...
3938 */
3939 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3940
3941 return retval;
3942
3943out_unlock:
3944 rcu_read_unlock();
3945 return retval;
3946}
3947
3948static int sched_read_attr(struct sched_attr __user *uattr,
3949 struct sched_attr *attr,
3950 unsigned int usize)
3951{
3952 int ret;
3953
3954 if (!access_ok(VERIFY_WRITE, uattr, usize))
3955 return -EFAULT;
3956
3957 /*
3958 * If we're handed a smaller struct than we know of,
3959 * ensure all the unknown bits are 0 - i.e. old
3960 * user-space does not get uncomplete information.
3961 */
3962 if (usize < sizeof(*attr)) {
3963 unsigned char *addr;
3964 unsigned char *end;
3965
3966 addr = (void *)attr + usize;
3967 end = (void *)attr + sizeof(*attr);
3968
3969 for (; addr < end; addr++) {
3970 if (*addr)
3971 return -EFBIG;
3972 }
3973
3974 attr->size = usize;
3975 }
3976
3977 ret = copy_to_user(uattr, attr, attr->size);
3978 if (ret)
3979 return -EFAULT;
3980
3981 return 0;
3982}
3983
3984/**
3985 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3986 * @pid: the pid in question.
3987 * @uattr: structure containing the extended parameters.
3988 * @size: sizeof(attr) for fwd/bwd comp.
3989 * @flags: for future extension.
3990 */
3991SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3992 unsigned int, size, unsigned int, flags)
3993{
3994 struct sched_attr attr = {
3995 .size = sizeof(struct sched_attr),
3996 };
3997 struct task_struct *p;
3998 int retval;
3999
4000 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4001 size < SCHED_ATTR_SIZE_VER0 || flags)
4002 return -EINVAL;
4003
4004 rcu_read_lock();
4005 p = find_process_by_pid(pid);
4006 retval = -ESRCH;
4007 if (!p)
4008 goto out_unlock;
4009
4010 retval = security_task_getscheduler(p);
4011 if (retval)
4012 goto out_unlock;
4013
4014 attr.sched_policy = p->policy;
4015 if (p->sched_reset_on_fork)
4016 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4017 if (task_has_dl_policy(p))
4018 __getparam_dl(p, &attr);
4019 else if (task_has_rt_policy(p))
4020 attr.sched_priority = p->rt_priority;
4021 else
4022 attr.sched_nice = task_nice(p);
4023
4024 rcu_read_unlock();
4025
4026 retval = sched_read_attr(uattr, &attr, size);
4027 return retval;
4028
4029out_unlock:
4030 rcu_read_unlock();
4031 return retval;
4032}
4033
4034long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4035{
4036 cpumask_var_t cpus_allowed, new_mask;
4037 struct task_struct *p;
4038 int retval;
4039
4040 rcu_read_lock();
4041
4042 p = find_process_by_pid(pid);
4043 if (!p) {
4044 rcu_read_unlock();
4045 return -ESRCH;
4046 }
4047
4048 /* Prevent p going away */
4049 get_task_struct(p);
4050 rcu_read_unlock();
4051
4052 if (p->flags & PF_NO_SETAFFINITY) {
4053 retval = -EINVAL;
4054 goto out_put_task;
4055 }
4056 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4057 retval = -ENOMEM;
4058 goto out_put_task;
4059 }
4060 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4061 retval = -ENOMEM;
4062 goto out_free_cpus_allowed;
4063 }
4064 retval = -EPERM;
4065 if (!check_same_owner(p)) {
4066 rcu_read_lock();
4067 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4068 rcu_read_unlock();
4069 goto out_free_new_mask;
4070 }
4071 rcu_read_unlock();
4072 }
4073
4074 retval = security_task_setscheduler(p);
4075 if (retval)
4076 goto out_free_new_mask;
4077
4078
4079 cpuset_cpus_allowed(p, cpus_allowed);
4080 cpumask_and(new_mask, in_mask, cpus_allowed);
4081
4082 /*
4083 * Since bandwidth control happens on root_domain basis,
4084 * if admission test is enabled, we only admit -deadline
4085 * tasks allowed to run on all the CPUs in the task's
4086 * root_domain.
4087 */
4088#ifdef CONFIG_SMP
4089 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4090 rcu_read_lock();
4091 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4092 retval = -EBUSY;
4093 rcu_read_unlock();
4094 goto out_free_new_mask;
4095 }
4096 rcu_read_unlock();
4097 }
4098#endif
4099again:
4100 retval = set_cpus_allowed_ptr(p, new_mask);
4101
4102 if (!retval) {
4103 cpuset_cpus_allowed(p, cpus_allowed);
4104 if (!cpumask_subset(new_mask, cpus_allowed)) {
4105 /*
4106 * We must have raced with a concurrent cpuset
4107 * update. Just reset the cpus_allowed to the
4108 * cpuset's cpus_allowed
4109 */
4110 cpumask_copy(new_mask, cpus_allowed);
4111 goto again;
4112 }
4113 }
4114out_free_new_mask:
4115 free_cpumask_var(new_mask);
4116out_free_cpus_allowed:
4117 free_cpumask_var(cpus_allowed);
4118out_put_task:
4119 put_task_struct(p);
4120 return retval;
4121}
4122
4123static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4124 struct cpumask *new_mask)
4125{
4126 if (len < cpumask_size())
4127 cpumask_clear(new_mask);
4128 else if (len > cpumask_size())
4129 len = cpumask_size();
4130
4131 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4132}
4133
4134/**
4135 * sys_sched_setaffinity - set the cpu affinity of a process
4136 * @pid: pid of the process
4137 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138 * @user_mask_ptr: user-space pointer to the new cpu mask
4139 *
4140 * Return: 0 on success. An error code otherwise.
4141 */
4142SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4143 unsigned long __user *, user_mask_ptr)
4144{
4145 cpumask_var_t new_mask;
4146 int retval;
4147
4148 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4149 return -ENOMEM;
4150
4151 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4152 if (retval == 0)
4153 retval = sched_setaffinity(pid, new_mask);
4154 free_cpumask_var(new_mask);
4155 return retval;
4156}
4157
4158long sched_getaffinity(pid_t pid, struct cpumask *mask)
4159{
4160 struct task_struct *p;
4161 unsigned long flags;
4162 int retval;
4163
4164 rcu_read_lock();
4165
4166 retval = -ESRCH;
4167 p = find_process_by_pid(pid);
4168 if (!p)
4169 goto out_unlock;
4170
4171 retval = security_task_getscheduler(p);
4172 if (retval)
4173 goto out_unlock;
4174
4175 raw_spin_lock_irqsave(&p->pi_lock, flags);
4176 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4177 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4178
4179out_unlock:
4180 rcu_read_unlock();
4181
4182 return retval;
4183}
4184
4185/**
4186 * sys_sched_getaffinity - get the cpu affinity of a process
4187 * @pid: pid of the process
4188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4190 *
4191 * Return: 0 on success. An error code otherwise.
4192 */
4193SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4194 unsigned long __user *, user_mask_ptr)
4195{
4196 int ret;
4197 cpumask_var_t mask;
4198
4199 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4200 return -EINVAL;
4201 if (len & (sizeof(unsigned long)-1))
4202 return -EINVAL;
4203
4204 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4205 return -ENOMEM;
4206
4207 ret = sched_getaffinity(pid, mask);
4208 if (ret == 0) {
4209 size_t retlen = min_t(size_t, len, cpumask_size());
4210
4211 if (copy_to_user(user_mask_ptr, mask, retlen))
4212 ret = -EFAULT;
4213 else
4214 ret = retlen;
4215 }
4216 free_cpumask_var(mask);
4217
4218 return ret;
4219}
4220
4221/**
4222 * sys_sched_yield - yield the current processor to other threads.
4223 *
4224 * This function yields the current CPU to other tasks. If there are no
4225 * other threads running on this CPU then this function will return.
4226 *
4227 * Return: 0.
4228 */
4229SYSCALL_DEFINE0(sched_yield)
4230{
4231 struct rq *rq = this_rq_lock();
4232
4233 schedstat_inc(rq, yld_count);
4234 current->sched_class->yield_task(rq);
4235
4236 /*
4237 * Since we are going to call schedule() anyway, there's
4238 * no need to preempt or enable interrupts:
4239 */
4240 __release(rq->lock);
4241 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4242 do_raw_spin_unlock(&rq->lock);
4243 sched_preempt_enable_no_resched();
4244
4245 schedule();
4246
4247 return 0;
4248}
4249
4250static void __cond_resched(void)
4251{
4252 __preempt_count_add(PREEMPT_ACTIVE);
4253 __schedule();
4254 __preempt_count_sub(PREEMPT_ACTIVE);
4255}
4256
4257int __sched _cond_resched(void)
4258{
4259 if (should_resched()) {
4260 __cond_resched();
4261 return 1;
4262 }
4263 return 0;
4264}
4265EXPORT_SYMBOL(_cond_resched);
4266
4267/*
4268 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4269 * call schedule, and on return reacquire the lock.
4270 *
4271 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4272 * operations here to prevent schedule() from being called twice (once via
4273 * spin_unlock(), once by hand).
4274 */
4275int __cond_resched_lock(spinlock_t *lock)
4276{
4277 int resched = should_resched();
4278 int ret = 0;
4279
4280 lockdep_assert_held(lock);
4281
4282 if (spin_needbreak(lock) || resched) {
4283 spin_unlock(lock);
4284 if (resched)
4285 __cond_resched();
4286 else
4287 cpu_relax();
4288 ret = 1;
4289 spin_lock(lock);
4290 }
4291 return ret;
4292}
4293EXPORT_SYMBOL(__cond_resched_lock);
4294
4295int __sched __cond_resched_softirq(void)
4296{
4297 BUG_ON(!in_softirq());
4298
4299 if (should_resched()) {
4300 local_bh_enable();
4301 __cond_resched();
4302 local_bh_disable();
4303 return 1;
4304 }
4305 return 0;
4306}
4307EXPORT_SYMBOL(__cond_resched_softirq);
4308
4309/**
4310 * yield - yield the current processor to other threads.
4311 *
4312 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4313 *
4314 * The scheduler is at all times free to pick the calling task as the most
4315 * eligible task to run, if removing the yield() call from your code breaks
4316 * it, its already broken.
4317 *
4318 * Typical broken usage is:
4319 *
4320 * while (!event)
4321 * yield();
4322 *
4323 * where one assumes that yield() will let 'the other' process run that will
4324 * make event true. If the current task is a SCHED_FIFO task that will never
4325 * happen. Never use yield() as a progress guarantee!!
4326 *
4327 * If you want to use yield() to wait for something, use wait_event().
4328 * If you want to use yield() to be 'nice' for others, use cond_resched().
4329 * If you still want to use yield(), do not!
4330 */
4331void __sched yield(void)
4332{
4333 set_current_state(TASK_RUNNING);
4334 sys_sched_yield();
4335}
4336EXPORT_SYMBOL(yield);
4337
4338/**
4339 * yield_to - yield the current processor to another thread in
4340 * your thread group, or accelerate that thread toward the
4341 * processor it's on.
4342 * @p: target task
4343 * @preempt: whether task preemption is allowed or not
4344 *
4345 * It's the caller's job to ensure that the target task struct
4346 * can't go away on us before we can do any checks.
4347 *
4348 * Return:
4349 * true (>0) if we indeed boosted the target task.
4350 * false (0) if we failed to boost the target.
4351 * -ESRCH if there's no task to yield to.
4352 */
4353int __sched yield_to(struct task_struct *p, bool preempt)
4354{
4355 struct task_struct *curr = current;
4356 struct rq *rq, *p_rq;
4357 unsigned long flags;
4358 int yielded = 0;
4359
4360 local_irq_save(flags);
4361 rq = this_rq();
4362
4363again:
4364 p_rq = task_rq(p);
4365 /*
4366 * If we're the only runnable task on the rq and target rq also
4367 * has only one task, there's absolutely no point in yielding.
4368 */
4369 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4370 yielded = -ESRCH;
4371 goto out_irq;
4372 }
4373
4374 double_rq_lock(rq, p_rq);
4375 if (task_rq(p) != p_rq) {
4376 double_rq_unlock(rq, p_rq);
4377 goto again;
4378 }
4379
4380 if (!curr->sched_class->yield_to_task)
4381 goto out_unlock;
4382
4383 if (curr->sched_class != p->sched_class)
4384 goto out_unlock;
4385
4386 if (task_running(p_rq, p) || p->state)
4387 goto out_unlock;
4388
4389 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4390 if (yielded) {
4391 schedstat_inc(rq, yld_count);
4392 /*
4393 * Make p's CPU reschedule; pick_next_entity takes care of
4394 * fairness.
4395 */
4396 if (preempt && rq != p_rq)
4397 resched_curr(p_rq);
4398 }
4399
4400out_unlock:
4401 double_rq_unlock(rq, p_rq);
4402out_irq:
4403 local_irq_restore(flags);
4404
4405 if (yielded > 0)
4406 schedule();
4407
4408 return yielded;
4409}
4410EXPORT_SYMBOL_GPL(yield_to);
4411
4412/*
4413 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4414 * that process accounting knows that this is a task in IO wait state.
4415 */
4416void __sched io_schedule(void)
4417{
4418 struct rq *rq = raw_rq();
4419
4420 delayacct_blkio_start();
4421 atomic_inc(&rq->nr_iowait);
4422 blk_flush_plug(current);
4423 current->in_iowait = 1;
4424 schedule();
4425 current->in_iowait = 0;
4426 atomic_dec(&rq->nr_iowait);
4427 delayacct_blkio_end();
4428}
4429EXPORT_SYMBOL(io_schedule);
4430
4431long __sched io_schedule_timeout(long timeout)
4432{
4433 struct rq *rq = raw_rq();
4434 long ret;
4435
4436 delayacct_blkio_start();
4437 atomic_inc(&rq->nr_iowait);
4438 blk_flush_plug(current);
4439 current->in_iowait = 1;
4440 ret = schedule_timeout(timeout);
4441 current->in_iowait = 0;
4442 atomic_dec(&rq->nr_iowait);
4443 delayacct_blkio_end();
4444 return ret;
4445}
4446
4447/**
4448 * sys_sched_get_priority_max - return maximum RT priority.
4449 * @policy: scheduling class.
4450 *
4451 * Return: On success, this syscall returns the maximum
4452 * rt_priority that can be used by a given scheduling class.
4453 * On failure, a negative error code is returned.
4454 */
4455SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4456{
4457 int ret = -EINVAL;
4458
4459 switch (policy) {
4460 case SCHED_FIFO:
4461 case SCHED_RR:
4462 ret = MAX_USER_RT_PRIO-1;
4463 break;
4464 case SCHED_DEADLINE:
4465 case SCHED_NORMAL:
4466 case SCHED_BATCH:
4467 case SCHED_IDLE:
4468 ret = 0;
4469 break;
4470 }
4471 return ret;
4472}
4473
4474/**
4475 * sys_sched_get_priority_min - return minimum RT priority.
4476 * @policy: scheduling class.
4477 *
4478 * Return: On success, this syscall returns the minimum
4479 * rt_priority that can be used by a given scheduling class.
4480 * On failure, a negative error code is returned.
4481 */
4482SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4483{
4484 int ret = -EINVAL;
4485
4486 switch (policy) {
4487 case SCHED_FIFO:
4488 case SCHED_RR:
4489 ret = 1;
4490 break;
4491 case SCHED_DEADLINE:
4492 case SCHED_NORMAL:
4493 case SCHED_BATCH:
4494 case SCHED_IDLE:
4495 ret = 0;
4496 }
4497 return ret;
4498}
4499
4500/**
4501 * sys_sched_rr_get_interval - return the default timeslice of a process.
4502 * @pid: pid of the process.
4503 * @interval: userspace pointer to the timeslice value.
4504 *
4505 * this syscall writes the default timeslice value of a given process
4506 * into the user-space timespec buffer. A value of '0' means infinity.
4507 *
4508 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4509 * an error code.
4510 */
4511SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4512 struct timespec __user *, interval)
4513{
4514 struct task_struct *p;
4515 unsigned int time_slice;
4516 unsigned long flags;
4517 struct rq *rq;
4518 int retval;
4519 struct timespec t;
4520
4521 if (pid < 0)
4522 return -EINVAL;
4523
4524 retval = -ESRCH;
4525 rcu_read_lock();
4526 p = find_process_by_pid(pid);
4527 if (!p)
4528 goto out_unlock;
4529
4530 retval = security_task_getscheduler(p);
4531 if (retval)
4532 goto out_unlock;
4533
4534 rq = task_rq_lock(p, &flags);
4535 time_slice = 0;
4536 if (p->sched_class->get_rr_interval)
4537 time_slice = p->sched_class->get_rr_interval(rq, p);
4538 task_rq_unlock(rq, p, &flags);
4539
4540 rcu_read_unlock();
4541 jiffies_to_timespec(time_slice, &t);
4542 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4543 return retval;
4544
4545out_unlock:
4546 rcu_read_unlock();
4547 return retval;
4548}
4549
4550static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4551
4552void sched_show_task(struct task_struct *p)
4553{
4554 unsigned long free = 0;
4555 int ppid;
4556 unsigned state;
4557
4558 state = p->state ? __ffs(p->state) + 1 : 0;
4559 printk(KERN_INFO "%-15.15s %c", p->comm,
4560 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4561#if BITS_PER_LONG == 32
4562 if (state == TASK_RUNNING)
4563 printk(KERN_CONT " running ");
4564 else
4565 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4566#else
4567 if (state == TASK_RUNNING)
4568 printk(KERN_CONT " running task ");
4569 else
4570 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4571#endif
4572#ifdef CONFIG_DEBUG_STACK_USAGE
4573 free = stack_not_used(p);
4574#endif
4575 rcu_read_lock();
4576 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577 rcu_read_unlock();
4578 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4579 task_pid_nr(p), ppid,
4580 (unsigned long)task_thread_info(p)->flags);
4581
4582 print_worker_info(KERN_INFO, p);
4583 show_stack(p, NULL);
4584}
4585
4586void show_state_filter(unsigned long state_filter)
4587{
4588 struct task_struct *g, *p;
4589
4590#if BITS_PER_LONG == 32
4591 printk(KERN_INFO
4592 " task PC stack pid father\n");
4593#else
4594 printk(KERN_INFO
4595 " task PC stack pid father\n");
4596#endif
4597 rcu_read_lock();
4598 for_each_process_thread(g, p) {
4599 /*
4600 * reset the NMI-timeout, listing all files on a slow
4601 * console might take a lot of time:
4602 */
4603 touch_nmi_watchdog();
4604 if (!state_filter || (p->state & state_filter))
4605 sched_show_task(p);
4606 }
4607
4608 touch_all_softlockup_watchdogs();
4609
4610#ifdef CONFIG_SCHED_DEBUG
4611 sysrq_sched_debug_show();
4612#endif
4613 rcu_read_unlock();
4614 /*
4615 * Only show locks if all tasks are dumped:
4616 */
4617 if (!state_filter)
4618 debug_show_all_locks();
4619}
4620
4621void init_idle_bootup_task(struct task_struct *idle)
4622{
4623 idle->sched_class = &idle_sched_class;
4624}
4625
4626/**
4627 * init_idle - set up an idle thread for a given CPU
4628 * @idle: task in question
4629 * @cpu: cpu the idle task belongs to
4630 *
4631 * NOTE: this function does not set the idle thread's NEED_RESCHED
4632 * flag, to make booting more robust.
4633 */
4634void init_idle(struct task_struct *idle, int cpu)
4635{
4636 struct rq *rq = cpu_rq(cpu);
4637 unsigned long flags;
4638
4639 raw_spin_lock_irqsave(&rq->lock, flags);
4640
4641 __sched_fork(0, idle);
4642 idle->state = TASK_RUNNING;
4643 idle->se.exec_start = sched_clock();
4644
4645 do_set_cpus_allowed(idle, cpumask_of(cpu));
4646 /*
4647 * We're having a chicken and egg problem, even though we are
4648 * holding rq->lock, the cpu isn't yet set to this cpu so the
4649 * lockdep check in task_group() will fail.
4650 *
4651 * Similar case to sched_fork(). / Alternatively we could
4652 * use task_rq_lock() here and obtain the other rq->lock.
4653 *
4654 * Silence PROVE_RCU
4655 */
4656 rcu_read_lock();
4657 __set_task_cpu(idle, cpu);
4658 rcu_read_unlock();
4659
4660 rq->curr = rq->idle = idle;
4661 idle->on_rq = TASK_ON_RQ_QUEUED;
4662#if defined(CONFIG_SMP)
4663 idle->on_cpu = 1;
4664#endif
4665 raw_spin_unlock_irqrestore(&rq->lock, flags);
4666
4667 /* Set the preempt count _outside_ the spinlocks! */
4668 init_idle_preempt_count(idle, cpu);
4669
4670 /*
4671 * The idle tasks have their own, simple scheduling class:
4672 */
4673 idle->sched_class = &idle_sched_class;
4674 ftrace_graph_init_idle_task(idle, cpu);
4675 vtime_init_idle(idle, cpu);
4676#if defined(CONFIG_SMP)
4677 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4678#endif
4679}
4680
4681#ifdef CONFIG_SMP
4682/*
4683 * move_queued_task - move a queued task to new rq.
4684 *
4685 * Returns (locked) new rq. Old rq's lock is released.
4686 */
4687static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4688{
4689 struct rq *rq = task_rq(p);
4690
4691 lockdep_assert_held(&rq->lock);
4692
4693 dequeue_task(rq, p, 0);
4694 p->on_rq = TASK_ON_RQ_MIGRATING;
4695 set_task_cpu(p, new_cpu);
4696 raw_spin_unlock(&rq->lock);
4697
4698 rq = cpu_rq(new_cpu);
4699
4700 raw_spin_lock(&rq->lock);
4701 BUG_ON(task_cpu(p) != new_cpu);
4702 p->on_rq = TASK_ON_RQ_QUEUED;
4703 enqueue_task(rq, p, 0);
4704 check_preempt_curr(rq, p, 0);
4705
4706 return rq;
4707}
4708
4709void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4710{
4711 if (p->sched_class && p->sched_class->set_cpus_allowed)
4712 p->sched_class->set_cpus_allowed(p, new_mask);
4713
4714 cpumask_copy(&p->cpus_allowed, new_mask);
4715 p->nr_cpus_allowed = cpumask_weight(new_mask);
4716}
4717
4718/*
4719 * This is how migration works:
4720 *
4721 * 1) we invoke migration_cpu_stop() on the target CPU using
4722 * stop_one_cpu().
4723 * 2) stopper starts to run (implicitly forcing the migrated thread
4724 * off the CPU)
4725 * 3) it checks whether the migrated task is still in the wrong runqueue.
4726 * 4) if it's in the wrong runqueue then the migration thread removes
4727 * it and puts it into the right queue.
4728 * 5) stopper completes and stop_one_cpu() returns and the migration
4729 * is done.
4730 */
4731
4732/*
4733 * Change a given task's CPU affinity. Migrate the thread to a
4734 * proper CPU and schedule it away if the CPU it's executing on
4735 * is removed from the allowed bitmask.
4736 *
4737 * NOTE: the caller must have a valid reference to the task, the
4738 * task must not exit() & deallocate itself prematurely. The
4739 * call is not atomic; no spinlocks may be held.
4740 */
4741int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4742{
4743 unsigned long flags;
4744 struct rq *rq;
4745 unsigned int dest_cpu;
4746 int ret = 0;
4747
4748 rq = task_rq_lock(p, &flags);
4749
4750 if (cpumask_equal(&p->cpus_allowed, new_mask))
4751 goto out;
4752
4753 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4754 ret = -EINVAL;
4755 goto out;
4756 }
4757
4758 do_set_cpus_allowed(p, new_mask);
4759
4760 /* Can the task run on the task's current CPU? If so, we're done */
4761 if (cpumask_test_cpu(task_cpu(p), new_mask))
4762 goto out;
4763
4764 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4765 if (task_running(rq, p) || p->state == TASK_WAKING) {
4766 struct migration_arg arg = { p, dest_cpu };
4767 /* Need help from migration thread: drop lock and wait. */
4768 task_rq_unlock(rq, p, &flags);
4769 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4770 tlb_migrate_finish(p->mm);
4771 return 0;
4772 } else if (task_on_rq_queued(p))
4773 rq = move_queued_task(p, dest_cpu);
4774out:
4775 task_rq_unlock(rq, p, &flags);
4776
4777 return ret;
4778}
4779EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4780
4781/*
4782 * Move (not current) task off this cpu, onto dest cpu. We're doing
4783 * this because either it can't run here any more (set_cpus_allowed()
4784 * away from this CPU, or CPU going down), or because we're
4785 * attempting to rebalance this task on exec (sched_exec).
4786 *
4787 * So we race with normal scheduler movements, but that's OK, as long
4788 * as the task is no longer on this CPU.
4789 *
4790 * Returns non-zero if task was successfully migrated.
4791 */
4792static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4793{
4794 struct rq *rq;
4795 int ret = 0;
4796
4797 if (unlikely(!cpu_active(dest_cpu)))
4798 return ret;
4799
4800 rq = cpu_rq(src_cpu);
4801
4802 raw_spin_lock(&p->pi_lock);
4803 raw_spin_lock(&rq->lock);
4804 /* Already moved. */
4805 if (task_cpu(p) != src_cpu)
4806 goto done;
4807
4808 /* Affinity changed (again). */
4809 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4810 goto fail;
4811
4812 /*
4813 * If we're not on a rq, the next wake-up will ensure we're
4814 * placed properly.
4815 */
4816 if (task_on_rq_queued(p))
4817 rq = move_queued_task(p, dest_cpu);
4818done:
4819 ret = 1;
4820fail:
4821 raw_spin_unlock(&rq->lock);
4822 raw_spin_unlock(&p->pi_lock);
4823 return ret;
4824}
4825
4826#ifdef CONFIG_NUMA_BALANCING
4827/* Migrate current task p to target_cpu */
4828int migrate_task_to(struct task_struct *p, int target_cpu)
4829{
4830 struct migration_arg arg = { p, target_cpu };
4831 int curr_cpu = task_cpu(p);
4832
4833 if (curr_cpu == target_cpu)
4834 return 0;
4835
4836 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4837 return -EINVAL;
4838
4839 /* TODO: This is not properly updating schedstats */
4840
4841 trace_sched_move_numa(p, curr_cpu, target_cpu);
4842 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4843}
4844
4845/*
4846 * Requeue a task on a given node and accurately track the number of NUMA
4847 * tasks on the runqueues
4848 */
4849void sched_setnuma(struct task_struct *p, int nid)
4850{
4851 struct rq *rq;
4852 unsigned long flags;
4853 bool queued, running;
4854
4855 rq = task_rq_lock(p, &flags);
4856 queued = task_on_rq_queued(p);
4857 running = task_current(rq, p);
4858
4859 if (queued)
4860 dequeue_task(rq, p, 0);
4861 if (running)
4862 put_prev_task(rq, p);
4863
4864 p->numa_preferred_nid = nid;
4865
4866 if (running)
4867 p->sched_class->set_curr_task(rq);
4868 if (queued)
4869 enqueue_task(rq, p, 0);
4870 task_rq_unlock(rq, p, &flags);
4871}
4872#endif
4873
4874/*
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
4878 */
4879static int migration_cpu_stop(void *data)
4880{
4881 struct migration_arg *arg = data;
4882
4883 /*
4884 * The original target cpu might have gone down and we might
4885 * be on another cpu but it doesn't matter.
4886 */
4887 local_irq_disable();
4888 /*
4889 * We need to explicitly wake pending tasks before running
4890 * __migrate_task() such that we will not miss enforcing cpus_allowed
4891 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4892 */
4893 sched_ttwu_pending();
4894 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4895 local_irq_enable();
4896 return 0;
4897}
4898
4899#ifdef CONFIG_HOTPLUG_CPU
4900
4901/*
4902 * Ensures that the idle task is using init_mm right before its cpu goes
4903 * offline.
4904 */
4905void idle_task_exit(void)
4906{
4907 struct mm_struct *mm = current->active_mm;
4908
4909 BUG_ON(cpu_online(smp_processor_id()));
4910
4911 if (mm != &init_mm) {
4912 switch_mm(mm, &init_mm, current);
4913 finish_arch_post_lock_switch();
4914 }
4915 mmdrop(mm);
4916}
4917
4918/*
4919 * Since this CPU is going 'away' for a while, fold any nr_active delta
4920 * we might have. Assumes we're called after migrate_tasks() so that the
4921 * nr_active count is stable.
4922 *
4923 * Also see the comment "Global load-average calculations".
4924 */
4925static void calc_load_migrate(struct rq *rq)
4926{
4927 long delta = calc_load_fold_active(rq);
4928 if (delta)
4929 atomic_long_add(delta, &calc_load_tasks);
4930}
4931
4932static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4933{
4934}
4935
4936static const struct sched_class fake_sched_class = {
4937 .put_prev_task = put_prev_task_fake,
4938};
4939
4940static struct task_struct fake_task = {
4941 /*
4942 * Avoid pull_{rt,dl}_task()
4943 */
4944 .prio = MAX_PRIO + 1,
4945 .sched_class = &fake_sched_class,
4946};
4947
4948/*
4949 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4950 * try_to_wake_up()->select_task_rq().
4951 *
4952 * Called with rq->lock held even though we'er in stop_machine() and
4953 * there's no concurrency possible, we hold the required locks anyway
4954 * because of lock validation efforts.
4955 */
4956static void migrate_tasks(unsigned int dead_cpu)
4957{
4958 struct rq *rq = cpu_rq(dead_cpu);
4959 struct task_struct *next, *stop = rq->stop;
4960 int dest_cpu;
4961
4962 /*
4963 * Fudge the rq selection such that the below task selection loop
4964 * doesn't get stuck on the currently eligible stop task.
4965 *
4966 * We're currently inside stop_machine() and the rq is either stuck
4967 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4968 * either way we should never end up calling schedule() until we're
4969 * done here.
4970 */
4971 rq->stop = NULL;
4972
4973 /*
4974 * put_prev_task() and pick_next_task() sched
4975 * class method both need to have an up-to-date
4976 * value of rq->clock[_task]
4977 */
4978 update_rq_clock(rq);
4979
4980 for ( ; ; ) {
4981 /*
4982 * There's this thread running, bail when that's the only
4983 * remaining thread.
4984 */
4985 if (rq->nr_running == 1)
4986 break;
4987
4988 next = pick_next_task(rq, &fake_task);
4989 BUG_ON(!next);
4990 next->sched_class->put_prev_task(rq, next);
4991
4992 /* Find suitable destination for @next, with force if needed. */
4993 dest_cpu = select_fallback_rq(dead_cpu, next);
4994 raw_spin_unlock(&rq->lock);
4995
4996 __migrate_task(next, dead_cpu, dest_cpu);
4997
4998 raw_spin_lock(&rq->lock);
4999 }
5000
5001 rq->stop = stop;
5002}
5003
5004#endif /* CONFIG_HOTPLUG_CPU */
5005
5006#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5007
5008static struct ctl_table sd_ctl_dir[] = {
5009 {
5010 .procname = "sched_domain",
5011 .mode = 0555,
5012 },
5013 {}
5014};
5015
5016static struct ctl_table sd_ctl_root[] = {
5017 {
5018 .procname = "kernel",
5019 .mode = 0555,
5020 .child = sd_ctl_dir,
5021 },
5022 {}
5023};
5024
5025static struct ctl_table *sd_alloc_ctl_entry(int n)
5026{
5027 struct ctl_table *entry =
5028 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5029
5030 return entry;
5031}
5032
5033static void sd_free_ctl_entry(struct ctl_table **tablep)
5034{
5035 struct ctl_table *entry;
5036
5037 /*
5038 * In the intermediate directories, both the child directory and
5039 * procname are dynamically allocated and could fail but the mode
5040 * will always be set. In the lowest directory the names are
5041 * static strings and all have proc handlers.
5042 */
5043 for (entry = *tablep; entry->mode; entry++) {
5044 if (entry->child)
5045 sd_free_ctl_entry(&entry->child);
5046 if (entry->proc_handler == NULL)
5047 kfree(entry->procname);
5048 }
5049
5050 kfree(*tablep);
5051 *tablep = NULL;
5052}
5053
5054static int min_load_idx = 0;
5055static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5056
5057static void
5058set_table_entry(struct ctl_table *entry,
5059 const char *procname, void *data, int maxlen,
5060 umode_t mode, proc_handler *proc_handler,
5061 bool load_idx)
5062{
5063 entry->procname = procname;
5064 entry->data = data;
5065 entry->maxlen = maxlen;
5066 entry->mode = mode;
5067 entry->proc_handler = proc_handler;
5068
5069 if (load_idx) {
5070 entry->extra1 = &min_load_idx;
5071 entry->extra2 = &max_load_idx;
5072 }
5073}
5074
5075static struct ctl_table *
5076sd_alloc_ctl_domain_table(struct sched_domain *sd)
5077{
5078 struct ctl_table *table = sd_alloc_ctl_entry(14);
5079
5080 if (table == NULL)
5081 return NULL;
5082
5083 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5084 sizeof(long), 0644, proc_doulongvec_minmax, false);
5085 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5086 sizeof(long), 0644, proc_doulongvec_minmax, false);
5087 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5088 sizeof(int), 0644, proc_dointvec_minmax, true);
5089 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5090 sizeof(int), 0644, proc_dointvec_minmax, true);
5091 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5092 sizeof(int), 0644, proc_dointvec_minmax, true);
5093 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5094 sizeof(int), 0644, proc_dointvec_minmax, true);
5095 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5096 sizeof(int), 0644, proc_dointvec_minmax, true);
5097 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5098 sizeof(int), 0644, proc_dointvec_minmax, false);
5099 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5100 sizeof(int), 0644, proc_dointvec_minmax, false);
5101 set_table_entry(&table[9], "cache_nice_tries",
5102 &sd->cache_nice_tries,
5103 sizeof(int), 0644, proc_dointvec_minmax, false);
5104 set_table_entry(&table[10], "flags", &sd->flags,
5105 sizeof(int), 0644, proc_dointvec_minmax, false);
5106 set_table_entry(&table[11], "max_newidle_lb_cost",
5107 &sd->max_newidle_lb_cost,
5108 sizeof(long), 0644, proc_doulongvec_minmax, false);
5109 set_table_entry(&table[12], "name", sd->name,
5110 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5111 /* &table[13] is terminator */
5112
5113 return table;
5114}
5115
5116static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5117{
5118 struct ctl_table *entry, *table;
5119 struct sched_domain *sd;
5120 int domain_num = 0, i;
5121 char buf[32];
5122
5123 for_each_domain(cpu, sd)
5124 domain_num++;
5125 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5126 if (table == NULL)
5127 return NULL;
5128
5129 i = 0;
5130 for_each_domain(cpu, sd) {
5131 snprintf(buf, 32, "domain%d", i);
5132 entry->procname = kstrdup(buf, GFP_KERNEL);
5133 entry->mode = 0555;
5134 entry->child = sd_alloc_ctl_domain_table(sd);
5135 entry++;
5136 i++;
5137 }
5138 return table;
5139}
5140
5141static struct ctl_table_header *sd_sysctl_header;
5142static void register_sched_domain_sysctl(void)
5143{
5144 int i, cpu_num = num_possible_cpus();
5145 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5146 char buf[32];
5147
5148 WARN_ON(sd_ctl_dir[0].child);
5149 sd_ctl_dir[0].child = entry;
5150
5151 if (entry == NULL)
5152 return;
5153
5154 for_each_possible_cpu(i) {
5155 snprintf(buf, 32, "cpu%d", i);
5156 entry->procname = kstrdup(buf, GFP_KERNEL);
5157 entry->mode = 0555;
5158 entry->child = sd_alloc_ctl_cpu_table(i);
5159 entry++;
5160 }
5161
5162 WARN_ON(sd_sysctl_header);
5163 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5164}
5165
5166/* may be called multiple times per register */
5167static void unregister_sched_domain_sysctl(void)
5168{
5169 if (sd_sysctl_header)
5170 unregister_sysctl_table(sd_sysctl_header);
5171 sd_sysctl_header = NULL;
5172 if (sd_ctl_dir[0].child)
5173 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5174}
5175#else
5176static void register_sched_domain_sysctl(void)
5177{
5178}
5179static void unregister_sched_domain_sysctl(void)
5180{
5181}
5182#endif
5183
5184static void set_rq_online(struct rq *rq)
5185{
5186 if (!rq->online) {
5187 const struct sched_class *class;
5188
5189 cpumask_set_cpu(rq->cpu, rq->rd->online);
5190 rq->online = 1;
5191
5192 for_each_class(class) {
5193 if (class->rq_online)
5194 class->rq_online(rq);
5195 }
5196 }
5197}
5198
5199static void set_rq_offline(struct rq *rq)
5200{
5201 if (rq->online) {
5202 const struct sched_class *class;
5203
5204 for_each_class(class) {
5205 if (class->rq_offline)
5206 class->rq_offline(rq);
5207 }
5208
5209 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5210 rq->online = 0;
5211 }
5212}
5213
5214/*
5215 * migration_call - callback that gets triggered when a CPU is added.
5216 * Here we can start up the necessary migration thread for the new CPU.
5217 */
5218static int
5219migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5220{
5221 int cpu = (long)hcpu;
5222 unsigned long flags;
5223 struct rq *rq = cpu_rq(cpu);
5224
5225 switch (action & ~CPU_TASKS_FROZEN) {
5226
5227 case CPU_UP_PREPARE:
5228 rq->calc_load_update = calc_load_update;
5229 break;
5230
5231 case CPU_ONLINE:
5232 /* Update our root-domain */
5233 raw_spin_lock_irqsave(&rq->lock, flags);
5234 if (rq->rd) {
5235 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5236
5237 set_rq_online(rq);
5238 }
5239 raw_spin_unlock_irqrestore(&rq->lock, flags);
5240 break;
5241
5242#ifdef CONFIG_HOTPLUG_CPU
5243 case CPU_DYING:
5244 sched_ttwu_pending();
5245 /* Update our root-domain */
5246 raw_spin_lock_irqsave(&rq->lock, flags);
5247 if (rq->rd) {
5248 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5249 set_rq_offline(rq);
5250 }
5251 migrate_tasks(cpu);
5252 BUG_ON(rq->nr_running != 1); /* the migration thread */
5253 raw_spin_unlock_irqrestore(&rq->lock, flags);
5254 break;
5255
5256 case CPU_DEAD:
5257 calc_load_migrate(rq);
5258 break;
5259#endif
5260 }
5261
5262 update_max_interval();
5263
5264 return NOTIFY_OK;
5265}
5266
5267/*
5268 * Register at high priority so that task migration (migrate_all_tasks)
5269 * happens before everything else. This has to be lower priority than
5270 * the notifier in the perf_event subsystem, though.
5271 */
5272static struct notifier_block migration_notifier = {
5273 .notifier_call = migration_call,
5274 .priority = CPU_PRI_MIGRATION,
5275};
5276
5277static void __cpuinit set_cpu_rq_start_time(void)
5278{
5279 int cpu = smp_processor_id();
5280 struct rq *rq = cpu_rq(cpu);
5281 rq->age_stamp = sched_clock_cpu(cpu);
5282}
5283
5284static int sched_cpu_active(struct notifier_block *nfb,
5285 unsigned long action, void *hcpu)
5286{
5287 switch (action & ~CPU_TASKS_FROZEN) {
5288 case CPU_STARTING:
5289 set_cpu_rq_start_time();
5290 return NOTIFY_OK;
5291 case CPU_DOWN_FAILED:
5292 set_cpu_active((long)hcpu, true);
5293 return NOTIFY_OK;
5294 default:
5295 return NOTIFY_DONE;
5296 }
5297}
5298
5299static int sched_cpu_inactive(struct notifier_block *nfb,
5300 unsigned long action, void *hcpu)
5301{
5302 unsigned long flags;
5303 long cpu = (long)hcpu;
5304 struct dl_bw *dl_b;
5305
5306 switch (action & ~CPU_TASKS_FROZEN) {
5307 case CPU_DOWN_PREPARE:
5308 set_cpu_active(cpu, false);
5309
5310 /* explicitly allow suspend */
5311 if (!(action & CPU_TASKS_FROZEN)) {
5312 bool overflow;
5313 int cpus;
5314
5315 rcu_read_lock_sched();
5316 dl_b = dl_bw_of(cpu);
5317
5318 raw_spin_lock_irqsave(&dl_b->lock, flags);
5319 cpus = dl_bw_cpus(cpu);
5320 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5321 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5322
5323 rcu_read_unlock_sched();
5324
5325 if (overflow)
5326 return notifier_from_errno(-EBUSY);
5327 }
5328 return NOTIFY_OK;
5329 }
5330
5331 return NOTIFY_DONE;
5332}
5333
5334static int __init migration_init(void)
5335{
5336 void *cpu = (void *)(long)smp_processor_id();
5337 int err;
5338
5339 /* Initialize migration for the boot CPU */
5340 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5341 BUG_ON(err == NOTIFY_BAD);
5342 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5343 register_cpu_notifier(&migration_notifier);
5344
5345 /* Register cpu active notifiers */
5346 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5347 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5348
5349 return 0;
5350}
5351early_initcall(migration_init);
5352#endif
5353
5354#ifdef CONFIG_SMP
5355
5356static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5357
5358#ifdef CONFIG_SCHED_DEBUG
5359
5360static __read_mostly int sched_debug_enabled;
5361
5362static int __init sched_debug_setup(char *str)
5363{
5364 sched_debug_enabled = 1;
5365
5366 return 0;
5367}
5368early_param("sched_debug", sched_debug_setup);
5369
5370static inline bool sched_debug(void)
5371{
5372 return sched_debug_enabled;
5373}
5374
5375static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5376 struct cpumask *groupmask)
5377{
5378 struct sched_group *group = sd->groups;
5379 char str[256];
5380
5381 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5382 cpumask_clear(groupmask);
5383
5384 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5385
5386 if (!(sd->flags & SD_LOAD_BALANCE)) {
5387 printk("does not load-balance\n");
5388 if (sd->parent)
5389 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5390 " has parent");
5391 return -1;
5392 }
5393
5394 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5395
5396 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5397 printk(KERN_ERR "ERROR: domain->span does not contain "
5398 "CPU%d\n", cpu);
5399 }
5400 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5401 printk(KERN_ERR "ERROR: domain->groups does not contain"
5402 " CPU%d\n", cpu);
5403 }
5404
5405 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5406 do {
5407 if (!group) {
5408 printk("\n");
5409 printk(KERN_ERR "ERROR: group is NULL\n");
5410 break;
5411 }
5412
5413 /*
5414 * Even though we initialize ->capacity to something semi-sane,
5415 * we leave capacity_orig unset. This allows us to detect if
5416 * domain iteration is still funny without causing /0 traps.
5417 */
5418 if (!group->sgc->capacity_orig) {
5419 printk(KERN_CONT "\n");
5420 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5421 break;
5422 }
5423
5424 if (!cpumask_weight(sched_group_cpus(group))) {
5425 printk(KERN_CONT "\n");
5426 printk(KERN_ERR "ERROR: empty group\n");
5427 break;
5428 }
5429
5430 if (!(sd->flags & SD_OVERLAP) &&
5431 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5432 printk(KERN_CONT "\n");
5433 printk(KERN_ERR "ERROR: repeated CPUs\n");
5434 break;
5435 }
5436
5437 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5438
5439 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5440
5441 printk(KERN_CONT " %s", str);
5442 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5443 printk(KERN_CONT " (cpu_capacity = %d)",
5444 group->sgc->capacity);
5445 }
5446
5447 group = group->next;
5448 } while (group != sd->groups);
5449 printk(KERN_CONT "\n");
5450
5451 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5452 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5453
5454 if (sd->parent &&
5455 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5456 printk(KERN_ERR "ERROR: parent span is not a superset "
5457 "of domain->span\n");
5458 return 0;
5459}
5460
5461static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462{
5463 int level = 0;
5464
5465 if (!sched_debug_enabled)
5466 return;
5467
5468 if (!sd) {
5469 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5470 return;
5471 }
5472
5473 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5474
5475 for (;;) {
5476 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5477 break;
5478 level++;
5479 sd = sd->parent;
5480 if (!sd)
5481 break;
5482 }
5483}
5484#else /* !CONFIG_SCHED_DEBUG */
5485# define sched_domain_debug(sd, cpu) do { } while (0)
5486static inline bool sched_debug(void)
5487{
5488 return false;
5489}
5490#endif /* CONFIG_SCHED_DEBUG */
5491
5492static int sd_degenerate(struct sched_domain *sd)
5493{
5494 if (cpumask_weight(sched_domain_span(sd)) == 1)
5495 return 1;
5496
5497 /* Following flags need at least 2 groups */
5498 if (sd->flags & (SD_LOAD_BALANCE |
5499 SD_BALANCE_NEWIDLE |
5500 SD_BALANCE_FORK |
5501 SD_BALANCE_EXEC |
5502 SD_SHARE_CPUCAPACITY |
5503 SD_SHARE_PKG_RESOURCES |
5504 SD_SHARE_POWERDOMAIN)) {
5505 if (sd->groups != sd->groups->next)
5506 return 0;
5507 }
5508
5509 /* Following flags don't use groups */
5510 if (sd->flags & (SD_WAKE_AFFINE))
5511 return 0;
5512
5513 return 1;
5514}
5515
5516static int
5517sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5518{
5519 unsigned long cflags = sd->flags, pflags = parent->flags;
5520
5521 if (sd_degenerate(parent))
5522 return 1;
5523
5524 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5525 return 0;
5526
5527 /* Flags needing groups don't count if only 1 group in parent */
5528 if (parent->groups == parent->groups->next) {
5529 pflags &= ~(SD_LOAD_BALANCE |
5530 SD_BALANCE_NEWIDLE |
5531 SD_BALANCE_FORK |
5532 SD_BALANCE_EXEC |
5533 SD_SHARE_CPUCAPACITY |
5534 SD_SHARE_PKG_RESOURCES |
5535 SD_PREFER_SIBLING |
5536 SD_SHARE_POWERDOMAIN);
5537 if (nr_node_ids == 1)
5538 pflags &= ~SD_SERIALIZE;
5539 }
5540 if (~cflags & pflags)
5541 return 0;
5542
5543 return 1;
5544}
5545
5546static void free_rootdomain(struct rcu_head *rcu)
5547{
5548 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5549
5550 cpupri_cleanup(&rd->cpupri);
5551 cpudl_cleanup(&rd->cpudl);
5552 free_cpumask_var(rd->dlo_mask);
5553 free_cpumask_var(rd->rto_mask);
5554 free_cpumask_var(rd->online);
5555 free_cpumask_var(rd->span);
5556 kfree(rd);
5557}
5558
5559static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5560{
5561 struct root_domain *old_rd = NULL;
5562 unsigned long flags;
5563
5564 raw_spin_lock_irqsave(&rq->lock, flags);
5565
5566 if (rq->rd) {
5567 old_rd = rq->rd;
5568
5569 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5570 set_rq_offline(rq);
5571
5572 cpumask_clear_cpu(rq->cpu, old_rd->span);
5573
5574 /*
5575 * If we dont want to free the old_rd yet then
5576 * set old_rd to NULL to skip the freeing later
5577 * in this function:
5578 */
5579 if (!atomic_dec_and_test(&old_rd->refcount))
5580 old_rd = NULL;
5581 }
5582
5583 atomic_inc(&rd->refcount);
5584 rq->rd = rd;
5585
5586 cpumask_set_cpu(rq->cpu, rd->span);
5587 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5588 set_rq_online(rq);
5589
5590 raw_spin_unlock_irqrestore(&rq->lock, flags);
5591
5592 if (old_rd)
5593 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5594}
5595
5596static int init_rootdomain(struct root_domain *rd)
5597{
5598 memset(rd, 0, sizeof(*rd));
5599
5600 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5601 goto out;
5602 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5603 goto free_span;
5604 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5605 goto free_online;
5606 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5607 goto free_dlo_mask;
5608
5609 init_dl_bw(&rd->dl_bw);
5610 if (cpudl_init(&rd->cpudl) != 0)
5611 goto free_dlo_mask;
5612
5613 if (cpupri_init(&rd->cpupri) != 0)
5614 goto free_rto_mask;
5615 return 0;
5616
5617free_rto_mask:
5618 free_cpumask_var(rd->rto_mask);
5619free_dlo_mask:
5620 free_cpumask_var(rd->dlo_mask);
5621free_online:
5622 free_cpumask_var(rd->online);
5623free_span:
5624 free_cpumask_var(rd->span);
5625out:
5626 return -ENOMEM;
5627}
5628
5629/*
5630 * By default the system creates a single root-domain with all cpus as
5631 * members (mimicking the global state we have today).
5632 */
5633struct root_domain def_root_domain;
5634
5635static void init_defrootdomain(void)
5636{
5637 init_rootdomain(&def_root_domain);
5638
5639 atomic_set(&def_root_domain.refcount, 1);
5640}
5641
5642static struct root_domain *alloc_rootdomain(void)
5643{
5644 struct root_domain *rd;
5645
5646 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5647 if (!rd)
5648 return NULL;
5649
5650 if (init_rootdomain(rd) != 0) {
5651 kfree(rd);
5652 return NULL;
5653 }
5654
5655 return rd;
5656}
5657
5658static void free_sched_groups(struct sched_group *sg, int free_sgc)
5659{
5660 struct sched_group *tmp, *first;
5661
5662 if (!sg)
5663 return;
5664
5665 first = sg;
5666 do {
5667 tmp = sg->next;
5668
5669 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5670 kfree(sg->sgc);
5671
5672 kfree(sg);
5673 sg = tmp;
5674 } while (sg != first);
5675}
5676
5677static void free_sched_domain(struct rcu_head *rcu)
5678{
5679 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5680
5681 /*
5682 * If its an overlapping domain it has private groups, iterate and
5683 * nuke them all.
5684 */
5685 if (sd->flags & SD_OVERLAP) {
5686 free_sched_groups(sd->groups, 1);
5687 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5688 kfree(sd->groups->sgc);
5689 kfree(sd->groups);
5690 }
5691 kfree(sd);
5692}
5693
5694static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5695{
5696 call_rcu(&sd->rcu, free_sched_domain);
5697}
5698
5699static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5700{
5701 for (; sd; sd = sd->parent)
5702 destroy_sched_domain(sd, cpu);
5703}
5704
5705/*
5706 * Keep a special pointer to the highest sched_domain that has
5707 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5708 * allows us to avoid some pointer chasing select_idle_sibling().
5709 *
5710 * Also keep a unique ID per domain (we use the first cpu number in
5711 * the cpumask of the domain), this allows us to quickly tell if
5712 * two cpus are in the same cache domain, see cpus_share_cache().
5713 */
5714DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5715DEFINE_PER_CPU(int, sd_llc_size);
5716DEFINE_PER_CPU(int, sd_llc_id);
5717DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5718DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5719DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5720
5721static void update_top_cache_domain(int cpu)
5722{
5723 struct sched_domain *sd;
5724 struct sched_domain *busy_sd = NULL;
5725 int id = cpu;
5726 int size = 1;
5727
5728 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5729 if (sd) {
5730 id = cpumask_first(sched_domain_span(sd));
5731 size = cpumask_weight(sched_domain_span(sd));
5732 busy_sd = sd->parent; /* sd_busy */
5733 }
5734 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5735
5736 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5737 per_cpu(sd_llc_size, cpu) = size;
5738 per_cpu(sd_llc_id, cpu) = id;
5739
5740 sd = lowest_flag_domain(cpu, SD_NUMA);
5741 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5742
5743 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5744 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5745}
5746
5747/*
5748 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5749 * hold the hotplug lock.
5750 */
5751static void
5752cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5753{
5754 struct rq *rq = cpu_rq(cpu);
5755 struct sched_domain *tmp;
5756
5757 /* Remove the sched domains which do not contribute to scheduling. */
5758 for (tmp = sd; tmp; ) {
5759 struct sched_domain *parent = tmp->parent;
5760 if (!parent)
5761 break;
5762
5763 if (sd_parent_degenerate(tmp, parent)) {
5764 tmp->parent = parent->parent;
5765 if (parent->parent)
5766 parent->parent->child = tmp;
5767 /*
5768 * Transfer SD_PREFER_SIBLING down in case of a
5769 * degenerate parent; the spans match for this
5770 * so the property transfers.
5771 */
5772 if (parent->flags & SD_PREFER_SIBLING)
5773 tmp->flags |= SD_PREFER_SIBLING;
5774 destroy_sched_domain(parent, cpu);
5775 } else
5776 tmp = tmp->parent;
5777 }
5778
5779 if (sd && sd_degenerate(sd)) {
5780 tmp = sd;
5781 sd = sd->parent;
5782 destroy_sched_domain(tmp, cpu);
5783 if (sd)
5784 sd->child = NULL;
5785 }
5786
5787 sched_domain_debug(sd, cpu);
5788
5789 rq_attach_root(rq, rd);
5790 tmp = rq->sd;
5791 rcu_assign_pointer(rq->sd, sd);
5792 destroy_sched_domains(tmp, cpu);
5793
5794 update_top_cache_domain(cpu);
5795}
5796
5797/* cpus with isolated domains */
5798static cpumask_var_t cpu_isolated_map;
5799
5800/* Setup the mask of cpus configured for isolated domains */
5801static int __init isolated_cpu_setup(char *str)
5802{
5803 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5804 cpulist_parse(str, cpu_isolated_map);
5805 return 1;
5806}
5807
5808__setup("isolcpus=", isolated_cpu_setup);
5809
5810struct s_data {
5811 struct sched_domain ** __percpu sd;
5812 struct root_domain *rd;
5813};
5814
5815enum s_alloc {
5816 sa_rootdomain,
5817 sa_sd,
5818 sa_sd_storage,
5819 sa_none,
5820};
5821
5822/*
5823 * Build an iteration mask that can exclude certain CPUs from the upwards
5824 * domain traversal.
5825 *
5826 * Asymmetric node setups can result in situations where the domain tree is of
5827 * unequal depth, make sure to skip domains that already cover the entire
5828 * range.
5829 *
5830 * In that case build_sched_domains() will have terminated the iteration early
5831 * and our sibling sd spans will be empty. Domains should always include the
5832 * cpu they're built on, so check that.
5833 *
5834 */
5835static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5836{
5837 const struct cpumask *span = sched_domain_span(sd);
5838 struct sd_data *sdd = sd->private;
5839 struct sched_domain *sibling;
5840 int i;
5841
5842 for_each_cpu(i, span) {
5843 sibling = *per_cpu_ptr(sdd->sd, i);
5844 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5845 continue;
5846
5847 cpumask_set_cpu(i, sched_group_mask(sg));
5848 }
5849}
5850
5851/*
5852 * Return the canonical balance cpu for this group, this is the first cpu
5853 * of this group that's also in the iteration mask.
5854 */
5855int group_balance_cpu(struct sched_group *sg)
5856{
5857 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5858}
5859
5860static int
5861build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5862{
5863 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5864 const struct cpumask *span = sched_domain_span(sd);
5865 struct cpumask *covered = sched_domains_tmpmask;
5866 struct sd_data *sdd = sd->private;
5867 struct sched_domain *sibling;
5868 int i;
5869
5870 cpumask_clear(covered);
5871
5872 for_each_cpu(i, span) {
5873 struct cpumask *sg_span;
5874
5875 if (cpumask_test_cpu(i, covered))
5876 continue;
5877
5878 sibling = *per_cpu_ptr(sdd->sd, i);
5879
5880 /* See the comment near build_group_mask(). */
5881 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5882 continue;
5883
5884 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5885 GFP_KERNEL, cpu_to_node(cpu));
5886
5887 if (!sg)
5888 goto fail;
5889
5890 sg_span = sched_group_cpus(sg);
5891 if (sibling->child)
5892 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5893 else
5894 cpumask_set_cpu(i, sg_span);
5895
5896 cpumask_or(covered, covered, sg_span);
5897
5898 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5899 if (atomic_inc_return(&sg->sgc->ref) == 1)
5900 build_group_mask(sd, sg);
5901
5902 /*
5903 * Initialize sgc->capacity such that even if we mess up the
5904 * domains and no possible iteration will get us here, we won't
5905 * die on a /0 trap.
5906 */
5907 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5908 sg->sgc->capacity_orig = sg->sgc->capacity;
5909
5910 /*
5911 * Make sure the first group of this domain contains the
5912 * canonical balance cpu. Otherwise the sched_domain iteration
5913 * breaks. See update_sg_lb_stats().
5914 */
5915 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5916 group_balance_cpu(sg) == cpu)
5917 groups = sg;
5918
5919 if (!first)
5920 first = sg;
5921 if (last)
5922 last->next = sg;
5923 last = sg;
5924 last->next = first;
5925 }
5926 sd->groups = groups;
5927
5928 return 0;
5929
5930fail:
5931 free_sched_groups(first, 0);
5932
5933 return -ENOMEM;
5934}
5935
5936static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5937{
5938 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939 struct sched_domain *child = sd->child;
5940
5941 if (child)
5942 cpu = cpumask_first(sched_domain_span(child));
5943
5944 if (sg) {
5945 *sg = *per_cpu_ptr(sdd->sg, cpu);
5946 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5948 }
5949
5950 return cpu;
5951}
5952
5953/*
5954 * build_sched_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
5956 * and ->cpu_capacity to 0.
5957 *
5958 * Assumes the sched_domain tree is fully constructed
5959 */
5960static int
5961build_sched_groups(struct sched_domain *sd, int cpu)
5962{
5963 struct sched_group *first = NULL, *last = NULL;
5964 struct sd_data *sdd = sd->private;
5965 const struct cpumask *span = sched_domain_span(sd);
5966 struct cpumask *covered;
5967 int i;
5968
5969 get_group(cpu, sdd, &sd->groups);
5970 atomic_inc(&sd->groups->ref);
5971
5972 if (cpu != cpumask_first(span))
5973 return 0;
5974
5975 lockdep_assert_held(&sched_domains_mutex);
5976 covered = sched_domains_tmpmask;
5977
5978 cpumask_clear(covered);
5979
5980 for_each_cpu(i, span) {
5981 struct sched_group *sg;
5982 int group, j;
5983
5984 if (cpumask_test_cpu(i, covered))
5985 continue;
5986
5987 group = get_group(i, sdd, &sg);
5988 cpumask_setall(sched_group_mask(sg));
5989
5990 for_each_cpu(j, span) {
5991 if (get_group(j, sdd, NULL) != group)
5992 continue;
5993
5994 cpumask_set_cpu(j, covered);
5995 cpumask_set_cpu(j, sched_group_cpus(sg));
5996 }
5997
5998 if (!first)
5999 first = sg;
6000 if (last)
6001 last->next = sg;
6002 last = sg;
6003 }
6004 last->next = first;
6005
6006 return 0;
6007}
6008
6009/*
6010 * Initialize sched groups cpu_capacity.
6011 *
6012 * cpu_capacity indicates the capacity of sched group, which is used while
6013 * distributing the load between different sched groups in a sched domain.
6014 * Typically cpu_capacity for all the groups in a sched domain will be same
6015 * unless there are asymmetries in the topology. If there are asymmetries,
6016 * group having more cpu_capacity will pickup more load compared to the
6017 * group having less cpu_capacity.
6018 */
6019static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6020{
6021 struct sched_group *sg = sd->groups;
6022
6023 WARN_ON(!sg);
6024
6025 do {
6026 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027 sg = sg->next;
6028 } while (sg != sd->groups);
6029
6030 if (cpu != group_balance_cpu(sg))
6031 return;
6032
6033 update_group_capacity(sd, cpu);
6034 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6035}
6036
6037/*
6038 * Initializers for schedule domains
6039 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040 */
6041
6042static int default_relax_domain_level = -1;
6043int sched_domain_level_max;
6044
6045static int __init setup_relax_domain_level(char *str)
6046{
6047 if (kstrtoint(str, 0, &default_relax_domain_level))
6048 pr_warn("Unable to set relax_domain_level\n");
6049
6050 return 1;
6051}
6052__setup("relax_domain_level=", setup_relax_domain_level);
6053
6054static void set_domain_attribute(struct sched_domain *sd,
6055 struct sched_domain_attr *attr)
6056{
6057 int request;
6058
6059 if (!attr || attr->relax_domain_level < 0) {
6060 if (default_relax_domain_level < 0)
6061 return;
6062 else
6063 request = default_relax_domain_level;
6064 } else
6065 request = attr->relax_domain_level;
6066 if (request < sd->level) {
6067 /* turn off idle balance on this domain */
6068 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6069 } else {
6070 /* turn on idle balance on this domain */
6071 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6072 }
6073}
6074
6075static void __sdt_free(const struct cpumask *cpu_map);
6076static int __sdt_alloc(const struct cpumask *cpu_map);
6077
6078static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079 const struct cpumask *cpu_map)
6080{
6081 switch (what) {
6082 case sa_rootdomain:
6083 if (!atomic_read(&d->rd->refcount))
6084 free_rootdomain(&d->rd->rcu); /* fall through */
6085 case sa_sd:
6086 free_percpu(d->sd); /* fall through */
6087 case sa_sd_storage:
6088 __sdt_free(cpu_map); /* fall through */
6089 case sa_none:
6090 break;
6091 }
6092}
6093
6094static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095 const struct cpumask *cpu_map)
6096{
6097 memset(d, 0, sizeof(*d));
6098
6099 if (__sdt_alloc(cpu_map))
6100 return sa_sd_storage;
6101 d->sd = alloc_percpu(struct sched_domain *);
6102 if (!d->sd)
6103 return sa_sd_storage;
6104 d->rd = alloc_rootdomain();
6105 if (!d->rd)
6106 return sa_sd;
6107 return sa_rootdomain;
6108}
6109
6110/*
6111 * NULL the sd_data elements we've used to build the sched_domain and
6112 * sched_group structure so that the subsequent __free_domain_allocs()
6113 * will not free the data we're using.
6114 */
6115static void claim_allocations(int cpu, struct sched_domain *sd)
6116{
6117 struct sd_data *sdd = sd->private;
6118
6119 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6121
6122 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6123 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6124
6125 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6127}
6128
6129#ifdef CONFIG_NUMA
6130static int sched_domains_numa_levels;
6131enum numa_topology_type sched_numa_topology_type;
6132static int *sched_domains_numa_distance;
6133int sched_max_numa_distance;
6134static struct cpumask ***sched_domains_numa_masks;
6135static int sched_domains_curr_level;
6136#endif
6137
6138/*
6139 * SD_flags allowed in topology descriptions.
6140 *
6141 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6142 * SD_SHARE_PKG_RESOURCES - describes shared caches
6143 * SD_NUMA - describes NUMA topologies
6144 * SD_SHARE_POWERDOMAIN - describes shared power domain
6145 *
6146 * Odd one out:
6147 * SD_ASYM_PACKING - describes SMT quirks
6148 */
6149#define TOPOLOGY_SD_FLAGS \
6150 (SD_SHARE_CPUCAPACITY | \
6151 SD_SHARE_PKG_RESOURCES | \
6152 SD_NUMA | \
6153 SD_ASYM_PACKING | \
6154 SD_SHARE_POWERDOMAIN)
6155
6156static struct sched_domain *
6157sd_init(struct sched_domain_topology_level *tl, int cpu)
6158{
6159 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6160 int sd_weight, sd_flags = 0;
6161
6162#ifdef CONFIG_NUMA
6163 /*
6164 * Ugly hack to pass state to sd_numa_mask()...
6165 */
6166 sched_domains_curr_level = tl->numa_level;
6167#endif
6168
6169 sd_weight = cpumask_weight(tl->mask(cpu));
6170
6171 if (tl->sd_flags)
6172 sd_flags = (*tl->sd_flags)();
6173 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6174 "wrong sd_flags in topology description\n"))
6175 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6176
6177 *sd = (struct sched_domain){
6178 .min_interval = sd_weight,
6179 .max_interval = 2*sd_weight,
6180 .busy_factor = 32,
6181 .imbalance_pct = 125,
6182
6183 .cache_nice_tries = 0,
6184 .busy_idx = 0,
6185 .idle_idx = 0,
6186 .newidle_idx = 0,
6187 .wake_idx = 0,
6188 .forkexec_idx = 0,
6189
6190 .flags = 1*SD_LOAD_BALANCE
6191 | 1*SD_BALANCE_NEWIDLE
6192 | 1*SD_BALANCE_EXEC
6193 | 1*SD_BALANCE_FORK
6194 | 0*SD_BALANCE_WAKE
6195 | 1*SD_WAKE_AFFINE
6196 | 0*SD_SHARE_CPUCAPACITY
6197 | 0*SD_SHARE_PKG_RESOURCES
6198 | 0*SD_SERIALIZE
6199 | 0*SD_PREFER_SIBLING
6200 | 0*SD_NUMA
6201 | sd_flags
6202 ,
6203
6204 .last_balance = jiffies,
6205 .balance_interval = sd_weight,
6206 .smt_gain = 0,
6207 .max_newidle_lb_cost = 0,
6208 .next_decay_max_lb_cost = jiffies,
6209#ifdef CONFIG_SCHED_DEBUG
6210 .name = tl->name,
6211#endif
6212 };
6213
6214 /*
6215 * Convert topological properties into behaviour.
6216 */
6217
6218 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6219 sd->imbalance_pct = 110;
6220 sd->smt_gain = 1178; /* ~15% */
6221
6222 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6223 sd->imbalance_pct = 117;
6224 sd->cache_nice_tries = 1;
6225 sd->busy_idx = 2;
6226
6227#ifdef CONFIG_NUMA
6228 } else if (sd->flags & SD_NUMA) {
6229 sd->cache_nice_tries = 2;
6230 sd->busy_idx = 3;
6231 sd->idle_idx = 2;
6232
6233 sd->flags |= SD_SERIALIZE;
6234 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6235 sd->flags &= ~(SD_BALANCE_EXEC |
6236 SD_BALANCE_FORK |
6237 SD_WAKE_AFFINE);
6238 }
6239
6240#endif
6241 } else {
6242 sd->flags |= SD_PREFER_SIBLING;
6243 sd->cache_nice_tries = 1;
6244 sd->busy_idx = 2;
6245 sd->idle_idx = 1;
6246 }
6247
6248 sd->private = &tl->data;
6249
6250 return sd;
6251}
6252
6253/*
6254 * Topology list, bottom-up.
6255 */
6256static struct sched_domain_topology_level default_topology[] = {
6257#ifdef CONFIG_SCHED_SMT
6258 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6259#endif
6260#ifdef CONFIG_SCHED_MC
6261 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6262#endif
6263 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6264 { NULL, },
6265};
6266
6267struct sched_domain_topology_level *sched_domain_topology = default_topology;
6268
6269#define for_each_sd_topology(tl) \
6270 for (tl = sched_domain_topology; tl->mask; tl++)
6271
6272void set_sched_topology(struct sched_domain_topology_level *tl)
6273{
6274 sched_domain_topology = tl;
6275}
6276
6277#ifdef CONFIG_NUMA
6278
6279static const struct cpumask *sd_numa_mask(int cpu)
6280{
6281 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6282}
6283
6284static void sched_numa_warn(const char *str)
6285{
6286 static int done = false;
6287 int i,j;
6288
6289 if (done)
6290 return;
6291
6292 done = true;
6293
6294 printk(KERN_WARNING "ERROR: %s\n\n", str);
6295
6296 for (i = 0; i < nr_node_ids; i++) {
6297 printk(KERN_WARNING " ");
6298 for (j = 0; j < nr_node_ids; j++)
6299 printk(KERN_CONT "%02d ", node_distance(i,j));
6300 printk(KERN_CONT "\n");
6301 }
6302 printk(KERN_WARNING "\n");
6303}
6304
6305bool find_numa_distance(int distance)
6306{
6307 int i;
6308
6309 if (distance == node_distance(0, 0))
6310 return true;
6311
6312 for (i = 0; i < sched_domains_numa_levels; i++) {
6313 if (sched_domains_numa_distance[i] == distance)
6314 return true;
6315 }
6316
6317 return false;
6318}
6319
6320/*
6321 * A system can have three types of NUMA topology:
6322 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6323 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6324 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6325 *
6326 * The difference between a glueless mesh topology and a backplane
6327 * topology lies in whether communication between not directly
6328 * connected nodes goes through intermediary nodes (where programs
6329 * could run), or through backplane controllers. This affects
6330 * placement of programs.
6331 *
6332 * The type of topology can be discerned with the following tests:
6333 * - If the maximum distance between any nodes is 1 hop, the system
6334 * is directly connected.
6335 * - If for two nodes A and B, located N > 1 hops away from each other,
6336 * there is an intermediary node C, which is < N hops away from both
6337 * nodes A and B, the system is a glueless mesh.
6338 */
6339static void init_numa_topology_type(void)
6340{
6341 int a, b, c, n;
6342
6343 n = sched_max_numa_distance;
6344
6345 if (n <= 1)
6346 sched_numa_topology_type = NUMA_DIRECT;
6347
6348 for_each_online_node(a) {
6349 for_each_online_node(b) {
6350 /* Find two nodes furthest removed from each other. */
6351 if (node_distance(a, b) < n)
6352 continue;
6353
6354 /* Is there an intermediary node between a and b? */
6355 for_each_online_node(c) {
6356 if (node_distance(a, c) < n &&
6357 node_distance(b, c) < n) {
6358 sched_numa_topology_type =
6359 NUMA_GLUELESS_MESH;
6360 return;
6361 }
6362 }
6363
6364 sched_numa_topology_type = NUMA_BACKPLANE;
6365 return;
6366 }
6367 }
6368}
6369
6370static void sched_init_numa(void)
6371{
6372 int next_distance, curr_distance = node_distance(0, 0);
6373 struct sched_domain_topology_level *tl;
6374 int level = 0;
6375 int i, j, k;
6376
6377 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6378 if (!sched_domains_numa_distance)
6379 return;
6380
6381 /*
6382 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6383 * unique distances in the node_distance() table.
6384 *
6385 * Assumes node_distance(0,j) includes all distances in
6386 * node_distance(i,j) in order to avoid cubic time.
6387 */
6388 next_distance = curr_distance;
6389 for (i = 0; i < nr_node_ids; i++) {
6390 for (j = 0; j < nr_node_ids; j++) {
6391 for (k = 0; k < nr_node_ids; k++) {
6392 int distance = node_distance(i, k);
6393
6394 if (distance > curr_distance &&
6395 (distance < next_distance ||
6396 next_distance == curr_distance))
6397 next_distance = distance;
6398
6399 /*
6400 * While not a strong assumption it would be nice to know
6401 * about cases where if node A is connected to B, B is not
6402 * equally connected to A.
6403 */
6404 if (sched_debug() && node_distance(k, i) != distance)
6405 sched_numa_warn("Node-distance not symmetric");
6406
6407 if (sched_debug() && i && !find_numa_distance(distance))
6408 sched_numa_warn("Node-0 not representative");
6409 }
6410 if (next_distance != curr_distance) {
6411 sched_domains_numa_distance[level++] = next_distance;
6412 sched_domains_numa_levels = level;
6413 curr_distance = next_distance;
6414 } else break;
6415 }
6416
6417 /*
6418 * In case of sched_debug() we verify the above assumption.
6419 */
6420 if (!sched_debug())
6421 break;
6422 }
6423 /*
6424 * 'level' contains the number of unique distances, excluding the
6425 * identity distance node_distance(i,i).
6426 *
6427 * The sched_domains_numa_distance[] array includes the actual distance
6428 * numbers.
6429 */
6430
6431 /*
6432 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6433 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6434 * the array will contain less then 'level' members. This could be
6435 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6436 * in other functions.
6437 *
6438 * We reset it to 'level' at the end of this function.
6439 */
6440 sched_domains_numa_levels = 0;
6441
6442 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6443 if (!sched_domains_numa_masks)
6444 return;
6445
6446 /*
6447 * Now for each level, construct a mask per node which contains all
6448 * cpus of nodes that are that many hops away from us.
6449 */
6450 for (i = 0; i < level; i++) {
6451 sched_domains_numa_masks[i] =
6452 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6453 if (!sched_domains_numa_masks[i])
6454 return;
6455
6456 for (j = 0; j < nr_node_ids; j++) {
6457 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6458 if (!mask)
6459 return;
6460
6461 sched_domains_numa_masks[i][j] = mask;
6462
6463 for (k = 0; k < nr_node_ids; k++) {
6464 if (node_distance(j, k) > sched_domains_numa_distance[i])
6465 continue;
6466
6467 cpumask_or(mask, mask, cpumask_of_node(k));
6468 }
6469 }
6470 }
6471
6472 /* Compute default topology size */
6473 for (i = 0; sched_domain_topology[i].mask; i++);
6474
6475 tl = kzalloc((i + level + 1) *
6476 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6477 if (!tl)
6478 return;
6479
6480 /*
6481 * Copy the default topology bits..
6482 */
6483 for (i = 0; sched_domain_topology[i].mask; i++)
6484 tl[i] = sched_domain_topology[i];
6485
6486 /*
6487 * .. and append 'j' levels of NUMA goodness.
6488 */
6489 for (j = 0; j < level; i++, j++) {
6490 tl[i] = (struct sched_domain_topology_level){
6491 .mask = sd_numa_mask,
6492 .sd_flags = cpu_numa_flags,
6493 .flags = SDTL_OVERLAP,
6494 .numa_level = j,
6495 SD_INIT_NAME(NUMA)
6496 };
6497 }
6498
6499 sched_domain_topology = tl;
6500
6501 sched_domains_numa_levels = level;
6502 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6503
6504 init_numa_topology_type();
6505}
6506
6507static void sched_domains_numa_masks_set(int cpu)
6508{
6509 int i, j;
6510 int node = cpu_to_node(cpu);
6511
6512 for (i = 0; i < sched_domains_numa_levels; i++) {
6513 for (j = 0; j < nr_node_ids; j++) {
6514 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6515 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6516 }
6517 }
6518}
6519
6520static void sched_domains_numa_masks_clear(int cpu)
6521{
6522 int i, j;
6523 for (i = 0; i < sched_domains_numa_levels; i++) {
6524 for (j = 0; j < nr_node_ids; j++)
6525 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6526 }
6527}
6528
6529/*
6530 * Update sched_domains_numa_masks[level][node] array when new cpus
6531 * are onlined.
6532 */
6533static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6534 unsigned long action,
6535 void *hcpu)
6536{
6537 int cpu = (long)hcpu;
6538
6539 switch (action & ~CPU_TASKS_FROZEN) {
6540 case CPU_ONLINE:
6541 sched_domains_numa_masks_set(cpu);
6542 break;
6543
6544 case CPU_DEAD:
6545 sched_domains_numa_masks_clear(cpu);
6546 break;
6547
6548 default:
6549 return NOTIFY_DONE;
6550 }
6551
6552 return NOTIFY_OK;
6553}
6554#else
6555static inline void sched_init_numa(void)
6556{
6557}
6558
6559static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6560 unsigned long action,
6561 void *hcpu)
6562{
6563 return 0;
6564}
6565#endif /* CONFIG_NUMA */
6566
6567static int __sdt_alloc(const struct cpumask *cpu_map)
6568{
6569 struct sched_domain_topology_level *tl;
6570 int j;
6571
6572 for_each_sd_topology(tl) {
6573 struct sd_data *sdd = &tl->data;
6574
6575 sdd->sd = alloc_percpu(struct sched_domain *);
6576 if (!sdd->sd)
6577 return -ENOMEM;
6578
6579 sdd->sg = alloc_percpu(struct sched_group *);
6580 if (!sdd->sg)
6581 return -ENOMEM;
6582
6583 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6584 if (!sdd->sgc)
6585 return -ENOMEM;
6586
6587 for_each_cpu(j, cpu_map) {
6588 struct sched_domain *sd;
6589 struct sched_group *sg;
6590 struct sched_group_capacity *sgc;
6591
6592 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6593 GFP_KERNEL, cpu_to_node(j));
6594 if (!sd)
6595 return -ENOMEM;
6596
6597 *per_cpu_ptr(sdd->sd, j) = sd;
6598
6599 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6600 GFP_KERNEL, cpu_to_node(j));
6601 if (!sg)
6602 return -ENOMEM;
6603
6604 sg->next = sg;
6605
6606 *per_cpu_ptr(sdd->sg, j) = sg;
6607
6608 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6609 GFP_KERNEL, cpu_to_node(j));
6610 if (!sgc)
6611 return -ENOMEM;
6612
6613 *per_cpu_ptr(sdd->sgc, j) = sgc;
6614 }
6615 }
6616
6617 return 0;
6618}
6619
6620static void __sdt_free(const struct cpumask *cpu_map)
6621{
6622 struct sched_domain_topology_level *tl;
6623 int j;
6624
6625 for_each_sd_topology(tl) {
6626 struct sd_data *sdd = &tl->data;
6627
6628 for_each_cpu(j, cpu_map) {
6629 struct sched_domain *sd;
6630
6631 if (sdd->sd) {
6632 sd = *per_cpu_ptr(sdd->sd, j);
6633 if (sd && (sd->flags & SD_OVERLAP))
6634 free_sched_groups(sd->groups, 0);
6635 kfree(*per_cpu_ptr(sdd->sd, j));
6636 }
6637
6638 if (sdd->sg)
6639 kfree(*per_cpu_ptr(sdd->sg, j));
6640 if (sdd->sgc)
6641 kfree(*per_cpu_ptr(sdd->sgc, j));
6642 }
6643 free_percpu(sdd->sd);
6644 sdd->sd = NULL;
6645 free_percpu(sdd->sg);
6646 sdd->sg = NULL;
6647 free_percpu(sdd->sgc);
6648 sdd->sgc = NULL;
6649 }
6650}
6651
6652struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6653 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6654 struct sched_domain *child, int cpu)
6655{
6656 struct sched_domain *sd = sd_init(tl, cpu);
6657 if (!sd)
6658 return child;
6659
6660 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6661 if (child) {
6662 sd->level = child->level + 1;
6663 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6664 child->parent = sd;
6665 sd->child = child;
6666
6667 if (!cpumask_subset(sched_domain_span(child),
6668 sched_domain_span(sd))) {
6669 pr_err("BUG: arch topology borken\n");
6670#ifdef CONFIG_SCHED_DEBUG
6671 pr_err(" the %s domain not a subset of the %s domain\n",
6672 child->name, sd->name);
6673#endif
6674 /* Fixup, ensure @sd has at least @child cpus. */
6675 cpumask_or(sched_domain_span(sd),
6676 sched_domain_span(sd),
6677 sched_domain_span(child));
6678 }
6679
6680 }
6681 set_domain_attribute(sd, attr);
6682
6683 return sd;
6684}
6685
6686/*
6687 * Build sched domains for a given set of cpus and attach the sched domains
6688 * to the individual cpus
6689 */
6690static int build_sched_domains(const struct cpumask *cpu_map,
6691 struct sched_domain_attr *attr)
6692{
6693 enum s_alloc alloc_state;
6694 struct sched_domain *sd;
6695 struct s_data d;
6696 int i, ret = -ENOMEM;
6697
6698 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6699 if (alloc_state != sa_rootdomain)
6700 goto error;
6701
6702 /* Set up domains for cpus specified by the cpu_map. */
6703 for_each_cpu(i, cpu_map) {
6704 struct sched_domain_topology_level *tl;
6705
6706 sd = NULL;
6707 for_each_sd_topology(tl) {
6708 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6709 if (tl == sched_domain_topology)
6710 *per_cpu_ptr(d.sd, i) = sd;
6711 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6712 sd->flags |= SD_OVERLAP;
6713 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6714 break;
6715 }
6716 }
6717
6718 /* Build the groups for the domains */
6719 for_each_cpu(i, cpu_map) {
6720 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6721 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6722 if (sd->flags & SD_OVERLAP) {
6723 if (build_overlap_sched_groups(sd, i))
6724 goto error;
6725 } else {
6726 if (build_sched_groups(sd, i))
6727 goto error;
6728 }
6729 }
6730 }
6731
6732 /* Calculate CPU capacity for physical packages and nodes */
6733 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6734 if (!cpumask_test_cpu(i, cpu_map))
6735 continue;
6736
6737 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6738 claim_allocations(i, sd);
6739 init_sched_groups_capacity(i, sd);
6740 }
6741 }
6742
6743 /* Attach the domains */
6744 rcu_read_lock();
6745 for_each_cpu(i, cpu_map) {
6746 sd = *per_cpu_ptr(d.sd, i);
6747 cpu_attach_domain(sd, d.rd, i);
6748 }
6749 rcu_read_unlock();
6750
6751 ret = 0;
6752error:
6753 __free_domain_allocs(&d, alloc_state, cpu_map);
6754 return ret;
6755}
6756
6757static cpumask_var_t *doms_cur; /* current sched domains */
6758static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6759static struct sched_domain_attr *dattr_cur;
6760 /* attribues of custom domains in 'doms_cur' */
6761
6762/*
6763 * Special case: If a kmalloc of a doms_cur partition (array of
6764 * cpumask) fails, then fallback to a single sched domain,
6765 * as determined by the single cpumask fallback_doms.
6766 */
6767static cpumask_var_t fallback_doms;
6768
6769/*
6770 * arch_update_cpu_topology lets virtualized architectures update the
6771 * cpu core maps. It is supposed to return 1 if the topology changed
6772 * or 0 if it stayed the same.
6773 */
6774int __weak arch_update_cpu_topology(void)
6775{
6776 return 0;
6777}
6778
6779cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6780{
6781 int i;
6782 cpumask_var_t *doms;
6783
6784 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6785 if (!doms)
6786 return NULL;
6787 for (i = 0; i < ndoms; i++) {
6788 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6789 free_sched_domains(doms, i);
6790 return NULL;
6791 }
6792 }
6793 return doms;
6794}
6795
6796void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6797{
6798 unsigned int i;
6799 for (i = 0; i < ndoms; i++)
6800 free_cpumask_var(doms[i]);
6801 kfree(doms);
6802}
6803
6804/*
6805 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6806 * For now this just excludes isolated cpus, but could be used to
6807 * exclude other special cases in the future.
6808 */
6809static int init_sched_domains(const struct cpumask *cpu_map)
6810{
6811 int err;
6812
6813 arch_update_cpu_topology();
6814 ndoms_cur = 1;
6815 doms_cur = alloc_sched_domains(ndoms_cur);
6816 if (!doms_cur)
6817 doms_cur = &fallback_doms;
6818 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6819 err = build_sched_domains(doms_cur[0], NULL);
6820 register_sched_domain_sysctl();
6821
6822 return err;
6823}
6824
6825/*
6826 * Detach sched domains from a group of cpus specified in cpu_map
6827 * These cpus will now be attached to the NULL domain
6828 */
6829static void detach_destroy_domains(const struct cpumask *cpu_map)
6830{
6831 int i;
6832
6833 rcu_read_lock();
6834 for_each_cpu(i, cpu_map)
6835 cpu_attach_domain(NULL, &def_root_domain, i);
6836 rcu_read_unlock();
6837}
6838
6839/* handle null as "default" */
6840static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6841 struct sched_domain_attr *new, int idx_new)
6842{
6843 struct sched_domain_attr tmp;
6844
6845 /* fast path */
6846 if (!new && !cur)
6847 return 1;
6848
6849 tmp = SD_ATTR_INIT;
6850 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6851 new ? (new + idx_new) : &tmp,
6852 sizeof(struct sched_domain_attr));
6853}
6854
6855/*
6856 * Partition sched domains as specified by the 'ndoms_new'
6857 * cpumasks in the array doms_new[] of cpumasks. This compares
6858 * doms_new[] to the current sched domain partitioning, doms_cur[].
6859 * It destroys each deleted domain and builds each new domain.
6860 *
6861 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6862 * The masks don't intersect (don't overlap.) We should setup one
6863 * sched domain for each mask. CPUs not in any of the cpumasks will
6864 * not be load balanced. If the same cpumask appears both in the
6865 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6866 * it as it is.
6867 *
6868 * The passed in 'doms_new' should be allocated using
6869 * alloc_sched_domains. This routine takes ownership of it and will
6870 * free_sched_domains it when done with it. If the caller failed the
6871 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6872 * and partition_sched_domains() will fallback to the single partition
6873 * 'fallback_doms', it also forces the domains to be rebuilt.
6874 *
6875 * If doms_new == NULL it will be replaced with cpu_online_mask.
6876 * ndoms_new == 0 is a special case for destroying existing domains,
6877 * and it will not create the default domain.
6878 *
6879 * Call with hotplug lock held
6880 */
6881void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6882 struct sched_domain_attr *dattr_new)
6883{
6884 int i, j, n;
6885 int new_topology;
6886
6887 mutex_lock(&sched_domains_mutex);
6888
6889 /* always unregister in case we don't destroy any domains */
6890 unregister_sched_domain_sysctl();
6891
6892 /* Let architecture update cpu core mappings. */
6893 new_topology = arch_update_cpu_topology();
6894
6895 n = doms_new ? ndoms_new : 0;
6896
6897 /* Destroy deleted domains */
6898 for (i = 0; i < ndoms_cur; i++) {
6899 for (j = 0; j < n && !new_topology; j++) {
6900 if (cpumask_equal(doms_cur[i], doms_new[j])
6901 && dattrs_equal(dattr_cur, i, dattr_new, j))
6902 goto match1;
6903 }
6904 /* no match - a current sched domain not in new doms_new[] */
6905 detach_destroy_domains(doms_cur[i]);
6906match1:
6907 ;
6908 }
6909
6910 n = ndoms_cur;
6911 if (doms_new == NULL) {
6912 n = 0;
6913 doms_new = &fallback_doms;
6914 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6915 WARN_ON_ONCE(dattr_new);
6916 }
6917
6918 /* Build new domains */
6919 for (i = 0; i < ndoms_new; i++) {
6920 for (j = 0; j < n && !new_topology; j++) {
6921 if (cpumask_equal(doms_new[i], doms_cur[j])
6922 && dattrs_equal(dattr_new, i, dattr_cur, j))
6923 goto match2;
6924 }
6925 /* no match - add a new doms_new */
6926 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6927match2:
6928 ;
6929 }
6930
6931 /* Remember the new sched domains */
6932 if (doms_cur != &fallback_doms)
6933 free_sched_domains(doms_cur, ndoms_cur);
6934 kfree(dattr_cur); /* kfree(NULL) is safe */
6935 doms_cur = doms_new;
6936 dattr_cur = dattr_new;
6937 ndoms_cur = ndoms_new;
6938
6939 register_sched_domain_sysctl();
6940
6941 mutex_unlock(&sched_domains_mutex);
6942}
6943
6944static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6945
6946/*
6947 * Update cpusets according to cpu_active mask. If cpusets are
6948 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6949 * around partition_sched_domains().
6950 *
6951 * If we come here as part of a suspend/resume, don't touch cpusets because we
6952 * want to restore it back to its original state upon resume anyway.
6953 */
6954static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6955 void *hcpu)
6956{
6957 switch (action) {
6958 case CPU_ONLINE_FROZEN:
6959 case CPU_DOWN_FAILED_FROZEN:
6960
6961 /*
6962 * num_cpus_frozen tracks how many CPUs are involved in suspend
6963 * resume sequence. As long as this is not the last online
6964 * operation in the resume sequence, just build a single sched
6965 * domain, ignoring cpusets.
6966 */
6967 num_cpus_frozen--;
6968 if (likely(num_cpus_frozen)) {
6969 partition_sched_domains(1, NULL, NULL);
6970 break;
6971 }
6972
6973 /*
6974 * This is the last CPU online operation. So fall through and
6975 * restore the original sched domains by considering the
6976 * cpuset configurations.
6977 */
6978
6979 case CPU_ONLINE:
6980 case CPU_DOWN_FAILED:
6981 cpuset_update_active_cpus(true);
6982 break;
6983 default:
6984 return NOTIFY_DONE;
6985 }
6986 return NOTIFY_OK;
6987}
6988
6989static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6990 void *hcpu)
6991{
6992 switch (action) {
6993 case CPU_DOWN_PREPARE:
6994 cpuset_update_active_cpus(false);
6995 break;
6996 case CPU_DOWN_PREPARE_FROZEN:
6997 num_cpus_frozen++;
6998 partition_sched_domains(1, NULL, NULL);
6999 break;
7000 default:
7001 return NOTIFY_DONE;
7002 }
7003 return NOTIFY_OK;
7004}
7005
7006void __init sched_init_smp(void)
7007{
7008 cpumask_var_t non_isolated_cpus;
7009
7010 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7011 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7012
7013 sched_init_numa();
7014
7015 /*
7016 * There's no userspace yet to cause hotplug operations; hence all the
7017 * cpu masks are stable and all blatant races in the below code cannot
7018 * happen.
7019 */
7020 mutex_lock(&sched_domains_mutex);
7021 init_sched_domains(cpu_active_mask);
7022 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7023 if (cpumask_empty(non_isolated_cpus))
7024 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7025 mutex_unlock(&sched_domains_mutex);
7026
7027 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7028 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7029 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7030
7031 init_hrtick();
7032
7033 /* Move init over to a non-isolated CPU */
7034 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7035 BUG();
7036 sched_init_granularity();
7037 free_cpumask_var(non_isolated_cpus);
7038
7039 init_sched_rt_class();
7040 init_sched_dl_class();
7041}
7042#else
7043void __init sched_init_smp(void)
7044{
7045 sched_init_granularity();
7046}
7047#endif /* CONFIG_SMP */
7048
7049const_debug unsigned int sysctl_timer_migration = 1;
7050
7051int in_sched_functions(unsigned long addr)
7052{
7053 return in_lock_functions(addr) ||
7054 (addr >= (unsigned long)__sched_text_start
7055 && addr < (unsigned long)__sched_text_end);
7056}
7057
7058#ifdef CONFIG_CGROUP_SCHED
7059/*
7060 * Default task group.
7061 * Every task in system belongs to this group at bootup.
7062 */
7063struct task_group root_task_group;
7064LIST_HEAD(task_groups);
7065#endif
7066
7067DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7068
7069void __init sched_init(void)
7070{
7071 int i, j;
7072 unsigned long alloc_size = 0, ptr;
7073
7074#ifdef CONFIG_FAIR_GROUP_SCHED
7075 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7076#endif
7077#ifdef CONFIG_RT_GROUP_SCHED
7078 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7079#endif
7080#ifdef CONFIG_CPUMASK_OFFSTACK
7081 alloc_size += num_possible_cpus() * cpumask_size();
7082#endif
7083 if (alloc_size) {
7084 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7085
7086#ifdef CONFIG_FAIR_GROUP_SCHED
7087 root_task_group.se = (struct sched_entity **)ptr;
7088 ptr += nr_cpu_ids * sizeof(void **);
7089
7090 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7091 ptr += nr_cpu_ids * sizeof(void **);
7092
7093#endif /* CONFIG_FAIR_GROUP_SCHED */
7094#ifdef CONFIG_RT_GROUP_SCHED
7095 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7096 ptr += nr_cpu_ids * sizeof(void **);
7097
7098 root_task_group.rt_rq = (struct rt_rq **)ptr;
7099 ptr += nr_cpu_ids * sizeof(void **);
7100
7101#endif /* CONFIG_RT_GROUP_SCHED */
7102#ifdef CONFIG_CPUMASK_OFFSTACK
7103 for_each_possible_cpu(i) {
7104 per_cpu(load_balance_mask, i) = (void *)ptr;
7105 ptr += cpumask_size();
7106 }
7107#endif /* CONFIG_CPUMASK_OFFSTACK */
7108 }
7109
7110 init_rt_bandwidth(&def_rt_bandwidth,
7111 global_rt_period(), global_rt_runtime());
7112 init_dl_bandwidth(&def_dl_bandwidth,
7113 global_rt_period(), global_rt_runtime());
7114
7115#ifdef CONFIG_SMP
7116 init_defrootdomain();
7117#endif
7118
7119#ifdef CONFIG_RT_GROUP_SCHED
7120 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7121 global_rt_period(), global_rt_runtime());
7122#endif /* CONFIG_RT_GROUP_SCHED */
7123
7124#ifdef CONFIG_CGROUP_SCHED
7125 list_add(&root_task_group.list, &task_groups);
7126 INIT_LIST_HEAD(&root_task_group.children);
7127 INIT_LIST_HEAD(&root_task_group.siblings);
7128 autogroup_init(&init_task);
7129
7130#endif /* CONFIG_CGROUP_SCHED */
7131
7132 for_each_possible_cpu(i) {
7133 struct rq *rq;
7134
7135 rq = cpu_rq(i);
7136 raw_spin_lock_init(&rq->lock);
7137 rq->nr_running = 0;
7138 rq->calc_load_active = 0;
7139 rq->calc_load_update = jiffies + LOAD_FREQ;
7140 init_cfs_rq(&rq->cfs);
7141 init_rt_rq(&rq->rt, rq);
7142 init_dl_rq(&rq->dl, rq);
7143#ifdef CONFIG_FAIR_GROUP_SCHED
7144 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7145 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7146 /*
7147 * How much cpu bandwidth does root_task_group get?
7148 *
7149 * In case of task-groups formed thr' the cgroup filesystem, it
7150 * gets 100% of the cpu resources in the system. This overall
7151 * system cpu resource is divided among the tasks of
7152 * root_task_group and its child task-groups in a fair manner,
7153 * based on each entity's (task or task-group's) weight
7154 * (se->load.weight).
7155 *
7156 * In other words, if root_task_group has 10 tasks of weight
7157 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7158 * then A0's share of the cpu resource is:
7159 *
7160 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7161 *
7162 * We achieve this by letting root_task_group's tasks sit
7163 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7164 */
7165 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7166 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7167#endif /* CONFIG_FAIR_GROUP_SCHED */
7168
7169 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7170#ifdef CONFIG_RT_GROUP_SCHED
7171 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7172#endif
7173
7174 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7175 rq->cpu_load[j] = 0;
7176
7177 rq->last_load_update_tick = jiffies;
7178
7179#ifdef CONFIG_SMP
7180 rq->sd = NULL;
7181 rq->rd = NULL;
7182 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7183 rq->post_schedule = 0;
7184 rq->active_balance = 0;
7185 rq->next_balance = jiffies;
7186 rq->push_cpu = 0;
7187 rq->cpu = i;
7188 rq->online = 0;
7189 rq->idle_stamp = 0;
7190 rq->avg_idle = 2*sysctl_sched_migration_cost;
7191 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7192
7193 INIT_LIST_HEAD(&rq->cfs_tasks);
7194
7195 rq_attach_root(rq, &def_root_domain);
7196#ifdef CONFIG_NO_HZ_COMMON
7197 rq->nohz_flags = 0;
7198#endif
7199#ifdef CONFIG_NO_HZ_FULL
7200 rq->last_sched_tick = 0;
7201#endif
7202#endif
7203 init_rq_hrtick(rq);
7204 atomic_set(&rq->nr_iowait, 0);
7205 }
7206
7207 set_load_weight(&init_task);
7208
7209#ifdef CONFIG_PREEMPT_NOTIFIERS
7210 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7211#endif
7212
7213 /*
7214 * The boot idle thread does lazy MMU switching as well:
7215 */
7216 atomic_inc(&init_mm.mm_count);
7217 enter_lazy_tlb(&init_mm, current);
7218
7219 /*
7220 * Make us the idle thread. Technically, schedule() should not be
7221 * called from this thread, however somewhere below it might be,
7222 * but because we are the idle thread, we just pick up running again
7223 * when this runqueue becomes "idle".
7224 */
7225 init_idle(current, smp_processor_id());
7226
7227 calc_load_update = jiffies + LOAD_FREQ;
7228
7229 /*
7230 * During early bootup we pretend to be a normal task:
7231 */
7232 current->sched_class = &fair_sched_class;
7233
7234#ifdef CONFIG_SMP
7235 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7236 /* May be allocated at isolcpus cmdline parse time */
7237 if (cpu_isolated_map == NULL)
7238 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7239 idle_thread_set_boot_cpu();
7240 set_cpu_rq_start_time();
7241#endif
7242 init_sched_fair_class();
7243
7244 scheduler_running = 1;
7245}
7246
7247#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7248static inline int preempt_count_equals(int preempt_offset)
7249{
7250 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7251
7252 return (nested == preempt_offset);
7253}
7254
7255void __might_sleep(const char *file, int line, int preempt_offset)
7256{
7257 static unsigned long prev_jiffy; /* ratelimiting */
7258
7259 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7260 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7261 !is_idle_task(current)) ||
7262 system_state != SYSTEM_RUNNING || oops_in_progress)
7263 return;
7264 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7265 return;
7266 prev_jiffy = jiffies;
7267
7268 printk(KERN_ERR
7269 "BUG: sleeping function called from invalid context at %s:%d\n",
7270 file, line);
7271 printk(KERN_ERR
7272 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7273 in_atomic(), irqs_disabled(),
7274 current->pid, current->comm);
7275
7276 debug_show_held_locks(current);
7277 if (irqs_disabled())
7278 print_irqtrace_events(current);
7279#ifdef CONFIG_DEBUG_PREEMPT
7280 if (!preempt_count_equals(preempt_offset)) {
7281 pr_err("Preemption disabled at:");
7282 print_ip_sym(current->preempt_disable_ip);
7283 pr_cont("\n");
7284 }
7285#endif
7286 dump_stack();
7287}
7288EXPORT_SYMBOL(__might_sleep);
7289#endif
7290
7291#ifdef CONFIG_MAGIC_SYSRQ
7292static void normalize_task(struct rq *rq, struct task_struct *p)
7293{
7294 const struct sched_class *prev_class = p->sched_class;
7295 struct sched_attr attr = {
7296 .sched_policy = SCHED_NORMAL,
7297 };
7298 int old_prio = p->prio;
7299 int queued;
7300
7301 queued = task_on_rq_queued(p);
7302 if (queued)
7303 dequeue_task(rq, p, 0);
7304 __setscheduler(rq, p, &attr);
7305 if (queued) {
7306 enqueue_task(rq, p, 0);
7307 resched_curr(rq);
7308 }
7309
7310 check_class_changed(rq, p, prev_class, old_prio);
7311}
7312
7313void normalize_rt_tasks(void)
7314{
7315 struct task_struct *g, *p;
7316 unsigned long flags;
7317 struct rq *rq;
7318
7319 read_lock(&tasklist_lock);
7320 for_each_process_thread(g, p) {
7321 /*
7322 * Only normalize user tasks:
7323 */
7324 if (p->flags & PF_KTHREAD)
7325 continue;
7326
7327 p->se.exec_start = 0;
7328#ifdef CONFIG_SCHEDSTATS
7329 p->se.statistics.wait_start = 0;
7330 p->se.statistics.sleep_start = 0;
7331 p->se.statistics.block_start = 0;
7332#endif
7333
7334 if (!dl_task(p) && !rt_task(p)) {
7335 /*
7336 * Renice negative nice level userspace
7337 * tasks back to 0:
7338 */
7339 if (task_nice(p) < 0)
7340 set_user_nice(p, 0);
7341 continue;
7342 }
7343
7344 rq = task_rq_lock(p, &flags);
7345 normalize_task(rq, p);
7346 task_rq_unlock(rq, p, &flags);
7347 }
7348 read_unlock(&tasklist_lock);
7349}
7350
7351#endif /* CONFIG_MAGIC_SYSRQ */
7352
7353#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7354/*
7355 * These functions are only useful for the IA64 MCA handling, or kdb.
7356 *
7357 * They can only be called when the whole system has been
7358 * stopped - every CPU needs to be quiescent, and no scheduling
7359 * activity can take place. Using them for anything else would
7360 * be a serious bug, and as a result, they aren't even visible
7361 * under any other configuration.
7362 */
7363
7364/**
7365 * curr_task - return the current task for a given cpu.
7366 * @cpu: the processor in question.
7367 *
7368 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7369 *
7370 * Return: The current task for @cpu.
7371 */
7372struct task_struct *curr_task(int cpu)
7373{
7374 return cpu_curr(cpu);
7375}
7376
7377#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7378
7379#ifdef CONFIG_IA64
7380/**
7381 * set_curr_task - set the current task for a given cpu.
7382 * @cpu: the processor in question.
7383 * @p: the task pointer to set.
7384 *
7385 * Description: This function must only be used when non-maskable interrupts
7386 * are serviced on a separate stack. It allows the architecture to switch the
7387 * notion of the current task on a cpu in a non-blocking manner. This function
7388 * must be called with all CPU's synchronized, and interrupts disabled, the
7389 * and caller must save the original value of the current task (see
7390 * curr_task() above) and restore that value before reenabling interrupts and
7391 * re-starting the system.
7392 *
7393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7394 */
7395void set_curr_task(int cpu, struct task_struct *p)
7396{
7397 cpu_curr(cpu) = p;
7398}
7399
7400#endif
7401
7402#ifdef CONFIG_CGROUP_SCHED
7403/* task_group_lock serializes the addition/removal of task groups */
7404static DEFINE_SPINLOCK(task_group_lock);
7405
7406static void free_sched_group(struct task_group *tg)
7407{
7408 free_fair_sched_group(tg);
7409 free_rt_sched_group(tg);
7410 autogroup_free(tg);
7411 kfree(tg);
7412}
7413
7414/* allocate runqueue etc for a new task group */
7415struct task_group *sched_create_group(struct task_group *parent)
7416{
7417 struct task_group *tg;
7418
7419 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7420 if (!tg)
7421 return ERR_PTR(-ENOMEM);
7422
7423 if (!alloc_fair_sched_group(tg, parent))
7424 goto err;
7425
7426 if (!alloc_rt_sched_group(tg, parent))
7427 goto err;
7428
7429 return tg;
7430
7431err:
7432 free_sched_group(tg);
7433 return ERR_PTR(-ENOMEM);
7434}
7435
7436void sched_online_group(struct task_group *tg, struct task_group *parent)
7437{
7438 unsigned long flags;
7439
7440 spin_lock_irqsave(&task_group_lock, flags);
7441 list_add_rcu(&tg->list, &task_groups);
7442
7443 WARN_ON(!parent); /* root should already exist */
7444
7445 tg->parent = parent;
7446 INIT_LIST_HEAD(&tg->children);
7447 list_add_rcu(&tg->siblings, &parent->children);
7448 spin_unlock_irqrestore(&task_group_lock, flags);
7449}
7450
7451/* rcu callback to free various structures associated with a task group */
7452static void free_sched_group_rcu(struct rcu_head *rhp)
7453{
7454 /* now it should be safe to free those cfs_rqs */
7455 free_sched_group(container_of(rhp, struct task_group, rcu));
7456}
7457
7458/* Destroy runqueue etc associated with a task group */
7459void sched_destroy_group(struct task_group *tg)
7460{
7461 /* wait for possible concurrent references to cfs_rqs complete */
7462 call_rcu(&tg->rcu, free_sched_group_rcu);
7463}
7464
7465void sched_offline_group(struct task_group *tg)
7466{
7467 unsigned long flags;
7468 int i;
7469
7470 /* end participation in shares distribution */
7471 for_each_possible_cpu(i)
7472 unregister_fair_sched_group(tg, i);
7473
7474 spin_lock_irqsave(&task_group_lock, flags);
7475 list_del_rcu(&tg->list);
7476 list_del_rcu(&tg->siblings);
7477 spin_unlock_irqrestore(&task_group_lock, flags);
7478}
7479
7480/* change task's runqueue when it moves between groups.
7481 * The caller of this function should have put the task in its new group
7482 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7483 * reflect its new group.
7484 */
7485void sched_move_task(struct task_struct *tsk)
7486{
7487 struct task_group *tg;
7488 int queued, running;
7489 unsigned long flags;
7490 struct rq *rq;
7491
7492 rq = task_rq_lock(tsk, &flags);
7493
7494 running = task_current(rq, tsk);
7495 queued = task_on_rq_queued(tsk);
7496
7497 if (queued)
7498 dequeue_task(rq, tsk, 0);
7499 if (unlikely(running))
7500 put_prev_task(rq, tsk);
7501
7502 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7503 lockdep_is_held(&tsk->sighand->siglock)),
7504 struct task_group, css);
7505 tg = autogroup_task_group(tsk, tg);
7506 tsk->sched_task_group = tg;
7507
7508#ifdef CONFIG_FAIR_GROUP_SCHED
7509 if (tsk->sched_class->task_move_group)
7510 tsk->sched_class->task_move_group(tsk, queued);
7511 else
7512#endif
7513 set_task_rq(tsk, task_cpu(tsk));
7514
7515 if (unlikely(running))
7516 tsk->sched_class->set_curr_task(rq);
7517 if (queued)
7518 enqueue_task(rq, tsk, 0);
7519
7520 task_rq_unlock(rq, tsk, &flags);
7521}
7522#endif /* CONFIG_CGROUP_SCHED */
7523
7524#ifdef CONFIG_RT_GROUP_SCHED
7525/*
7526 * Ensure that the real time constraints are schedulable.
7527 */
7528static DEFINE_MUTEX(rt_constraints_mutex);
7529
7530/* Must be called with tasklist_lock held */
7531static inline int tg_has_rt_tasks(struct task_group *tg)
7532{
7533 struct task_struct *g, *p;
7534
7535 for_each_process_thread(g, p) {
7536 if (rt_task(p) && task_group(p) == tg)
7537 return 1;
7538 }
7539
7540 return 0;
7541}
7542
7543struct rt_schedulable_data {
7544 struct task_group *tg;
7545 u64 rt_period;
7546 u64 rt_runtime;
7547};
7548
7549static int tg_rt_schedulable(struct task_group *tg, void *data)
7550{
7551 struct rt_schedulable_data *d = data;
7552 struct task_group *child;
7553 unsigned long total, sum = 0;
7554 u64 period, runtime;
7555
7556 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7557 runtime = tg->rt_bandwidth.rt_runtime;
7558
7559 if (tg == d->tg) {
7560 period = d->rt_period;
7561 runtime = d->rt_runtime;
7562 }
7563
7564 /*
7565 * Cannot have more runtime than the period.
7566 */
7567 if (runtime > period && runtime != RUNTIME_INF)
7568 return -EINVAL;
7569
7570 /*
7571 * Ensure we don't starve existing RT tasks.
7572 */
7573 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7574 return -EBUSY;
7575
7576 total = to_ratio(period, runtime);
7577
7578 /*
7579 * Nobody can have more than the global setting allows.
7580 */
7581 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7582 return -EINVAL;
7583
7584 /*
7585 * The sum of our children's runtime should not exceed our own.
7586 */
7587 list_for_each_entry_rcu(child, &tg->children, siblings) {
7588 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7589 runtime = child->rt_bandwidth.rt_runtime;
7590
7591 if (child == d->tg) {
7592 period = d->rt_period;
7593 runtime = d->rt_runtime;
7594 }
7595
7596 sum += to_ratio(period, runtime);
7597 }
7598
7599 if (sum > total)
7600 return -EINVAL;
7601
7602 return 0;
7603}
7604
7605static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7606{
7607 int ret;
7608
7609 struct rt_schedulable_data data = {
7610 .tg = tg,
7611 .rt_period = period,
7612 .rt_runtime = runtime,
7613 };
7614
7615 rcu_read_lock();
7616 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7617 rcu_read_unlock();
7618
7619 return ret;
7620}
7621
7622static int tg_set_rt_bandwidth(struct task_group *tg,
7623 u64 rt_period, u64 rt_runtime)
7624{
7625 int i, err = 0;
7626
7627 mutex_lock(&rt_constraints_mutex);
7628 read_lock(&tasklist_lock);
7629 err = __rt_schedulable(tg, rt_period, rt_runtime);
7630 if (err)
7631 goto unlock;
7632
7633 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7634 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7635 tg->rt_bandwidth.rt_runtime = rt_runtime;
7636
7637 for_each_possible_cpu(i) {
7638 struct rt_rq *rt_rq = tg->rt_rq[i];
7639
7640 raw_spin_lock(&rt_rq->rt_runtime_lock);
7641 rt_rq->rt_runtime = rt_runtime;
7642 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7643 }
7644 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7645unlock:
7646 read_unlock(&tasklist_lock);
7647 mutex_unlock(&rt_constraints_mutex);
7648
7649 return err;
7650}
7651
7652static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7653{
7654 u64 rt_runtime, rt_period;
7655
7656 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7657 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7658 if (rt_runtime_us < 0)
7659 rt_runtime = RUNTIME_INF;
7660
7661 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7662}
7663
7664static long sched_group_rt_runtime(struct task_group *tg)
7665{
7666 u64 rt_runtime_us;
7667
7668 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7669 return -1;
7670
7671 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7672 do_div(rt_runtime_us, NSEC_PER_USEC);
7673 return rt_runtime_us;
7674}
7675
7676static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7677{
7678 u64 rt_runtime, rt_period;
7679
7680 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7681 rt_runtime = tg->rt_bandwidth.rt_runtime;
7682
7683 if (rt_period == 0)
7684 return -EINVAL;
7685
7686 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7687}
7688
7689static long sched_group_rt_period(struct task_group *tg)
7690{
7691 u64 rt_period_us;
7692
7693 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7694 do_div(rt_period_us, NSEC_PER_USEC);
7695 return rt_period_us;
7696}
7697#endif /* CONFIG_RT_GROUP_SCHED */
7698
7699#ifdef CONFIG_RT_GROUP_SCHED
7700static int sched_rt_global_constraints(void)
7701{
7702 int ret = 0;
7703
7704 mutex_lock(&rt_constraints_mutex);
7705 read_lock(&tasklist_lock);
7706 ret = __rt_schedulable(NULL, 0, 0);
7707 read_unlock(&tasklist_lock);
7708 mutex_unlock(&rt_constraints_mutex);
7709
7710 return ret;
7711}
7712
7713static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7714{
7715 /* Don't accept realtime tasks when there is no way for them to run */
7716 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7717 return 0;
7718
7719 return 1;
7720}
7721
7722#else /* !CONFIG_RT_GROUP_SCHED */
7723static int sched_rt_global_constraints(void)
7724{
7725 unsigned long flags;
7726 int i, ret = 0;
7727
7728 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7729 for_each_possible_cpu(i) {
7730 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7731
7732 raw_spin_lock(&rt_rq->rt_runtime_lock);
7733 rt_rq->rt_runtime = global_rt_runtime();
7734 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7735 }
7736 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7737
7738 return ret;
7739}
7740#endif /* CONFIG_RT_GROUP_SCHED */
7741
7742static int sched_dl_global_constraints(void)
7743{
7744 u64 runtime = global_rt_runtime();
7745 u64 period = global_rt_period();
7746 u64 new_bw = to_ratio(period, runtime);
7747 struct dl_bw *dl_b;
7748 int cpu, ret = 0;
7749 unsigned long flags;
7750
7751 /*
7752 * Here we want to check the bandwidth not being set to some
7753 * value smaller than the currently allocated bandwidth in
7754 * any of the root_domains.
7755 *
7756 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7757 * cycling on root_domains... Discussion on different/better
7758 * solutions is welcome!
7759 */
7760 for_each_possible_cpu(cpu) {
7761 rcu_read_lock_sched();
7762 dl_b = dl_bw_of(cpu);
7763
7764 raw_spin_lock_irqsave(&dl_b->lock, flags);
7765 if (new_bw < dl_b->total_bw)
7766 ret = -EBUSY;
7767 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7768
7769 rcu_read_unlock_sched();
7770
7771 if (ret)
7772 break;
7773 }
7774
7775 return ret;
7776}
7777
7778static void sched_dl_do_global(void)
7779{
7780 u64 new_bw = -1;
7781 struct dl_bw *dl_b;
7782 int cpu;
7783 unsigned long flags;
7784
7785 def_dl_bandwidth.dl_period = global_rt_period();
7786 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7787
7788 if (global_rt_runtime() != RUNTIME_INF)
7789 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7790
7791 /*
7792 * FIXME: As above...
7793 */
7794 for_each_possible_cpu(cpu) {
7795 rcu_read_lock_sched();
7796 dl_b = dl_bw_of(cpu);
7797
7798 raw_spin_lock_irqsave(&dl_b->lock, flags);
7799 dl_b->bw = new_bw;
7800 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7801
7802 rcu_read_unlock_sched();
7803 }
7804}
7805
7806static int sched_rt_global_validate(void)
7807{
7808 if (sysctl_sched_rt_period <= 0)
7809 return -EINVAL;
7810
7811 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7812 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7813 return -EINVAL;
7814
7815 return 0;
7816}
7817
7818static void sched_rt_do_global(void)
7819{
7820 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7821 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7822}
7823
7824int sched_rt_handler(struct ctl_table *table, int write,
7825 void __user *buffer, size_t *lenp,
7826 loff_t *ppos)
7827{
7828 int old_period, old_runtime;
7829 static DEFINE_MUTEX(mutex);
7830 int ret;
7831
7832 mutex_lock(&mutex);
7833 old_period = sysctl_sched_rt_period;
7834 old_runtime = sysctl_sched_rt_runtime;
7835
7836 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7837
7838 if (!ret && write) {
7839 ret = sched_rt_global_validate();
7840 if (ret)
7841 goto undo;
7842
7843 ret = sched_rt_global_constraints();
7844 if (ret)
7845 goto undo;
7846
7847 ret = sched_dl_global_constraints();
7848 if (ret)
7849 goto undo;
7850
7851 sched_rt_do_global();
7852 sched_dl_do_global();
7853 }
7854 if (0) {
7855undo:
7856 sysctl_sched_rt_period = old_period;
7857 sysctl_sched_rt_runtime = old_runtime;
7858 }
7859 mutex_unlock(&mutex);
7860
7861 return ret;
7862}
7863
7864int sched_rr_handler(struct ctl_table *table, int write,
7865 void __user *buffer, size_t *lenp,
7866 loff_t *ppos)
7867{
7868 int ret;
7869 static DEFINE_MUTEX(mutex);
7870
7871 mutex_lock(&mutex);
7872 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7873 /* make sure that internally we keep jiffies */
7874 /* also, writing zero resets timeslice to default */
7875 if (!ret && write) {
7876 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7877 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7878 }
7879 mutex_unlock(&mutex);
7880 return ret;
7881}
7882
7883#ifdef CONFIG_CGROUP_SCHED
7884
7885static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7886{
7887 return css ? container_of(css, struct task_group, css) : NULL;
7888}
7889
7890static struct cgroup_subsys_state *
7891cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7892{
7893 struct task_group *parent = css_tg(parent_css);
7894 struct task_group *tg;
7895
7896 if (!parent) {
7897 /* This is early initialization for the top cgroup */
7898 return &root_task_group.css;
7899 }
7900
7901 tg = sched_create_group(parent);
7902 if (IS_ERR(tg))
7903 return ERR_PTR(-ENOMEM);
7904
7905 return &tg->css;
7906}
7907
7908static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7909{
7910 struct task_group *tg = css_tg(css);
7911 struct task_group *parent = css_tg(css->parent);
7912
7913 if (parent)
7914 sched_online_group(tg, parent);
7915 return 0;
7916}
7917
7918static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7919{
7920 struct task_group *tg = css_tg(css);
7921
7922 sched_destroy_group(tg);
7923}
7924
7925static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7926{
7927 struct task_group *tg = css_tg(css);
7928
7929 sched_offline_group(tg);
7930}
7931
7932static void cpu_cgroup_fork(struct task_struct *task)
7933{
7934 sched_move_task(task);
7935}
7936
7937static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7938 struct cgroup_taskset *tset)
7939{
7940 struct task_struct *task;
7941
7942 cgroup_taskset_for_each(task, tset) {
7943#ifdef CONFIG_RT_GROUP_SCHED
7944 if (!sched_rt_can_attach(css_tg(css), task))
7945 return -EINVAL;
7946#else
7947 /* We don't support RT-tasks being in separate groups */
7948 if (task->sched_class != &fair_sched_class)
7949 return -EINVAL;
7950#endif
7951 }
7952 return 0;
7953}
7954
7955static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7956 struct cgroup_taskset *tset)
7957{
7958 struct task_struct *task;
7959
7960 cgroup_taskset_for_each(task, tset)
7961 sched_move_task(task);
7962}
7963
7964static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7965 struct cgroup_subsys_state *old_css,
7966 struct task_struct *task)
7967{
7968 /*
7969 * cgroup_exit() is called in the copy_process() failure path.
7970 * Ignore this case since the task hasn't ran yet, this avoids
7971 * trying to poke a half freed task state from generic code.
7972 */
7973 if (!(task->flags & PF_EXITING))
7974 return;
7975
7976 sched_move_task(task);
7977}
7978
7979#ifdef CONFIG_FAIR_GROUP_SCHED
7980static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7981 struct cftype *cftype, u64 shareval)
7982{
7983 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7984}
7985
7986static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7987 struct cftype *cft)
7988{
7989 struct task_group *tg = css_tg(css);
7990
7991 return (u64) scale_load_down(tg->shares);
7992}
7993
7994#ifdef CONFIG_CFS_BANDWIDTH
7995static DEFINE_MUTEX(cfs_constraints_mutex);
7996
7997const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7998const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7999
8000static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8001
8002static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8003{
8004 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8005 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8006
8007 if (tg == &root_task_group)
8008 return -EINVAL;
8009
8010 /*
8011 * Ensure we have at some amount of bandwidth every period. This is
8012 * to prevent reaching a state of large arrears when throttled via
8013 * entity_tick() resulting in prolonged exit starvation.
8014 */
8015 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8016 return -EINVAL;
8017
8018 /*
8019 * Likewise, bound things on the otherside by preventing insane quota
8020 * periods. This also allows us to normalize in computing quota
8021 * feasibility.
8022 */
8023 if (period > max_cfs_quota_period)
8024 return -EINVAL;
8025
8026 /*
8027 * Prevent race between setting of cfs_rq->runtime_enabled and
8028 * unthrottle_offline_cfs_rqs().
8029 */
8030 get_online_cpus();
8031 mutex_lock(&cfs_constraints_mutex);
8032 ret = __cfs_schedulable(tg, period, quota);
8033 if (ret)
8034 goto out_unlock;
8035
8036 runtime_enabled = quota != RUNTIME_INF;
8037 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8038 /*
8039 * If we need to toggle cfs_bandwidth_used, off->on must occur
8040 * before making related changes, and on->off must occur afterwards
8041 */
8042 if (runtime_enabled && !runtime_was_enabled)
8043 cfs_bandwidth_usage_inc();
8044 raw_spin_lock_irq(&cfs_b->lock);
8045 cfs_b->period = ns_to_ktime(period);
8046 cfs_b->quota = quota;
8047
8048 __refill_cfs_bandwidth_runtime(cfs_b);
8049 /* restart the period timer (if active) to handle new period expiry */
8050 if (runtime_enabled && cfs_b->timer_active) {
8051 /* force a reprogram */
8052 __start_cfs_bandwidth(cfs_b, true);
8053 }
8054 raw_spin_unlock_irq(&cfs_b->lock);
8055
8056 for_each_online_cpu(i) {
8057 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8058 struct rq *rq = cfs_rq->rq;
8059
8060 raw_spin_lock_irq(&rq->lock);
8061 cfs_rq->runtime_enabled = runtime_enabled;
8062 cfs_rq->runtime_remaining = 0;
8063
8064 if (cfs_rq->throttled)
8065 unthrottle_cfs_rq(cfs_rq);
8066 raw_spin_unlock_irq(&rq->lock);
8067 }
8068 if (runtime_was_enabled && !runtime_enabled)
8069 cfs_bandwidth_usage_dec();
8070out_unlock:
8071 mutex_unlock(&cfs_constraints_mutex);
8072 put_online_cpus();
8073
8074 return ret;
8075}
8076
8077int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8078{
8079 u64 quota, period;
8080
8081 period = ktime_to_ns(tg->cfs_bandwidth.period);
8082 if (cfs_quota_us < 0)
8083 quota = RUNTIME_INF;
8084 else
8085 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8086
8087 return tg_set_cfs_bandwidth(tg, period, quota);
8088}
8089
8090long tg_get_cfs_quota(struct task_group *tg)
8091{
8092 u64 quota_us;
8093
8094 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8095 return -1;
8096
8097 quota_us = tg->cfs_bandwidth.quota;
8098 do_div(quota_us, NSEC_PER_USEC);
8099
8100 return quota_us;
8101}
8102
8103int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8104{
8105 u64 quota, period;
8106
8107 period = (u64)cfs_period_us * NSEC_PER_USEC;
8108 quota = tg->cfs_bandwidth.quota;
8109
8110 return tg_set_cfs_bandwidth(tg, period, quota);
8111}
8112
8113long tg_get_cfs_period(struct task_group *tg)
8114{
8115 u64 cfs_period_us;
8116
8117 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8118 do_div(cfs_period_us, NSEC_PER_USEC);
8119
8120 return cfs_period_us;
8121}
8122
8123static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8124 struct cftype *cft)
8125{
8126 return tg_get_cfs_quota(css_tg(css));
8127}
8128
8129static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8130 struct cftype *cftype, s64 cfs_quota_us)
8131{
8132 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8133}
8134
8135static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8136 struct cftype *cft)
8137{
8138 return tg_get_cfs_period(css_tg(css));
8139}
8140
8141static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8142 struct cftype *cftype, u64 cfs_period_us)
8143{
8144 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8145}
8146
8147struct cfs_schedulable_data {
8148 struct task_group *tg;
8149 u64 period, quota;
8150};
8151
8152/*
8153 * normalize group quota/period to be quota/max_period
8154 * note: units are usecs
8155 */
8156static u64 normalize_cfs_quota(struct task_group *tg,
8157 struct cfs_schedulable_data *d)
8158{
8159 u64 quota, period;
8160
8161 if (tg == d->tg) {
8162 period = d->period;
8163 quota = d->quota;
8164 } else {
8165 period = tg_get_cfs_period(tg);
8166 quota = tg_get_cfs_quota(tg);
8167 }
8168
8169 /* note: these should typically be equivalent */
8170 if (quota == RUNTIME_INF || quota == -1)
8171 return RUNTIME_INF;
8172
8173 return to_ratio(period, quota);
8174}
8175
8176static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8177{
8178 struct cfs_schedulable_data *d = data;
8179 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8180 s64 quota = 0, parent_quota = -1;
8181
8182 if (!tg->parent) {
8183 quota = RUNTIME_INF;
8184 } else {
8185 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8186
8187 quota = normalize_cfs_quota(tg, d);
8188 parent_quota = parent_b->hierarchical_quota;
8189
8190 /*
8191 * ensure max(child_quota) <= parent_quota, inherit when no
8192 * limit is set
8193 */
8194 if (quota == RUNTIME_INF)
8195 quota = parent_quota;
8196 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8197 return -EINVAL;
8198 }
8199 cfs_b->hierarchical_quota = quota;
8200
8201 return 0;
8202}
8203
8204static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8205{
8206 int ret;
8207 struct cfs_schedulable_data data = {
8208 .tg = tg,
8209 .period = period,
8210 .quota = quota,
8211 };
8212
8213 if (quota != RUNTIME_INF) {
8214 do_div(data.period, NSEC_PER_USEC);
8215 do_div(data.quota, NSEC_PER_USEC);
8216 }
8217
8218 rcu_read_lock();
8219 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8220 rcu_read_unlock();
8221
8222 return ret;
8223}
8224
8225static int cpu_stats_show(struct seq_file *sf, void *v)
8226{
8227 struct task_group *tg = css_tg(seq_css(sf));
8228 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8229
8230 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8231 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8232 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8233
8234 return 0;
8235}
8236#endif /* CONFIG_CFS_BANDWIDTH */
8237#endif /* CONFIG_FAIR_GROUP_SCHED */
8238
8239#ifdef CONFIG_RT_GROUP_SCHED
8240static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8241 struct cftype *cft, s64 val)
8242{
8243 return sched_group_set_rt_runtime(css_tg(css), val);
8244}
8245
8246static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8247 struct cftype *cft)
8248{
8249 return sched_group_rt_runtime(css_tg(css));
8250}
8251
8252static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8253 struct cftype *cftype, u64 rt_period_us)
8254{
8255 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8256}
8257
8258static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8259 struct cftype *cft)
8260{
8261 return sched_group_rt_period(css_tg(css));
8262}
8263#endif /* CONFIG_RT_GROUP_SCHED */
8264
8265static struct cftype cpu_files[] = {
8266#ifdef CONFIG_FAIR_GROUP_SCHED
8267 {
8268 .name = "shares",
8269 .read_u64 = cpu_shares_read_u64,
8270 .write_u64 = cpu_shares_write_u64,
8271 },
8272#endif
8273#ifdef CONFIG_CFS_BANDWIDTH
8274 {
8275 .name = "cfs_quota_us",
8276 .read_s64 = cpu_cfs_quota_read_s64,
8277 .write_s64 = cpu_cfs_quota_write_s64,
8278 },
8279 {
8280 .name = "cfs_period_us",
8281 .read_u64 = cpu_cfs_period_read_u64,
8282 .write_u64 = cpu_cfs_period_write_u64,
8283 },
8284 {
8285 .name = "stat",
8286 .seq_show = cpu_stats_show,
8287 },
8288#endif
8289#ifdef CONFIG_RT_GROUP_SCHED
8290 {
8291 .name = "rt_runtime_us",
8292 .read_s64 = cpu_rt_runtime_read,
8293 .write_s64 = cpu_rt_runtime_write,
8294 },
8295 {
8296 .name = "rt_period_us",
8297 .read_u64 = cpu_rt_period_read_uint,
8298 .write_u64 = cpu_rt_period_write_uint,
8299 },
8300#endif
8301 { } /* terminate */
8302};
8303
8304struct cgroup_subsys cpu_cgrp_subsys = {
8305 .css_alloc = cpu_cgroup_css_alloc,
8306 .css_free = cpu_cgroup_css_free,
8307 .css_online = cpu_cgroup_css_online,
8308 .css_offline = cpu_cgroup_css_offline,
8309 .fork = cpu_cgroup_fork,
8310 .can_attach = cpu_cgroup_can_attach,
8311 .attach = cpu_cgroup_attach,
8312 .exit = cpu_cgroup_exit,
8313 .legacy_cftypes = cpu_files,
8314 .early_init = 1,
8315};
8316
8317#endif /* CONFIG_CGROUP_SCHED */
8318
8319void dump_cpu_task(int cpu)
8320{
8321 pr_info("Task dump for CPU %d:\n", cpu);
8322 sched_show_task(cpu_curr(cpu));
8323}