]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame_incremental - kernel/sched/fair.c
sched/numa: Fix unsafe get_task_struct() in task_numa_assign()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65/*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75static unsigned int sched_nr_latency = 8;
76
77/*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83/*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
182#define WMULT_CONST (~0U)
183#define WMULT_SHIFT 32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
201
202/*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251 return cfs_rq->rq;
252}
253
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
326static inline struct cfs_rq *
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
378
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
382}
383
384#define entity_is_task(se) 1
385
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390{
391 return &task_rq(p)->cfs;
392}
393
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
431static __always_inline
432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439{
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445}
446
447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
486}
487
488/*
489 * Enqueue an entity into the rb-tree:
490 */
491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525}
526
527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528{
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537}
538
539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540{
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547}
548
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561{
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568}
569
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577{
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592#undef WRT_SYSCTL
593
594 return 0;
595}
596#endif
597
598/*
599 * delta /= w
600 */
601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602{
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607}
608
609/*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628}
629
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637{
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656}
657
658/*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664{
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666}
667
668#ifdef CONFIG_SMP
669static int select_idle_sibling(struct task_struct *p, int cpu);
670static unsigned long task_h_load(struct task_struct *p);
671
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
691/*
692 * Update the current task's runtime statistics.
693 */
694static void update_curr(struct cfs_rq *cfs_rq)
695{
696 struct sched_entity *curr = cfs_rq->curr;
697 u64 now = rq_clock_task(rq_of(cfs_rq));
698 u64 delta_exec;
699
700 if (unlikely(!curr))
701 return;
702
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
705 return;
706
707 curr->exec_start = now;
708
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 cpuacct_charge(curtask, delta_exec);
723 account_group_exec_runtime(curtask, delta_exec);
724 }
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
727}
728
729static inline void
730update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
731{
732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
733}
734
735/*
736 * Task is being enqueued - update stats:
737 */
738static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739{
740 /*
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
743 */
744 if (se != cfs_rq->curr)
745 update_stats_wait_start(cfs_rq, se);
746}
747
748static void
749update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
750{
751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756#ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 }
761#endif
762 schedstat_set(se->statistics.wait_start, 0);
763}
764
765static inline void
766update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767{
768 /*
769 * Mark the end of the wait period if dequeueing a
770 * waiting task:
771 */
772 if (se != cfs_rq->curr)
773 update_stats_wait_end(cfs_rq, se);
774}
775
776/*
777 * We are picking a new current task - update its stats:
778 */
779static inline void
780update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 /*
783 * We are starting a new run period:
784 */
785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
786}
787
788/**************************************************
789 * Scheduling class queueing methods:
790 */
791
792#ifdef CONFIG_NUMA_BALANCING
793/*
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
797 */
798unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799unsigned int sysctl_numa_balancing_scan_period_max = 60000;
800
801/* Portion of address space to scan in MB */
802unsigned int sysctl_numa_balancing_scan_size = 256;
803
804/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805unsigned int sysctl_numa_balancing_scan_delay = 1000;
806
807static unsigned int task_nr_scan_windows(struct task_struct *p)
808{
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
811
812 /*
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
815 * on resident pages
816 */
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
819 if (!rss)
820 rss = nr_scan_pages;
821
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
824}
825
826/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827#define MAX_SCAN_WINDOW 2560
828
829static unsigned int task_scan_min(struct task_struct *p)
830{
831 unsigned int scan, floor;
832 unsigned int windows = 1;
833
834 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
835 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
836 floor = 1000 / windows;
837
838 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
839 return max_t(unsigned int, floor, scan);
840}
841
842static unsigned int task_scan_max(struct task_struct *p)
843{
844 unsigned int smin = task_scan_min(p);
845 unsigned int smax;
846
847 /* Watch for min being lower than max due to floor calculations */
848 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
849 return max(smin, smax);
850}
851
852static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
853{
854 rq->nr_numa_running += (p->numa_preferred_nid != -1);
855 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
856}
857
858static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
862}
863
864struct numa_group {
865 atomic_t refcount;
866
867 spinlock_t lock; /* nr_tasks, tasks */
868 int nr_tasks;
869 pid_t gid;
870 struct list_head task_list;
871
872 struct rcu_head rcu;
873 nodemask_t active_nodes;
874 unsigned long total_faults;
875 /*
876 * Faults_cpu is used to decide whether memory should move
877 * towards the CPU. As a consequence, these stats are weighted
878 * more by CPU use than by memory faults.
879 */
880 unsigned long *faults_cpu;
881 unsigned long faults[0];
882};
883
884/* Shared or private faults. */
885#define NR_NUMA_HINT_FAULT_TYPES 2
886
887/* Memory and CPU locality */
888#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
889
890/* Averaged statistics, and temporary buffers. */
891#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
892
893pid_t task_numa_group_id(struct task_struct *p)
894{
895 return p->numa_group ? p->numa_group->gid : 0;
896}
897
898static inline int task_faults_idx(int nid, int priv)
899{
900 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
901}
902
903static inline unsigned long task_faults(struct task_struct *p, int nid)
904{
905 if (!p->numa_faults_memory)
906 return 0;
907
908 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
909 p->numa_faults_memory[task_faults_idx(nid, 1)];
910}
911
912static inline unsigned long group_faults(struct task_struct *p, int nid)
913{
914 if (!p->numa_group)
915 return 0;
916
917 return p->numa_group->faults[task_faults_idx(nid, 0)] +
918 p->numa_group->faults[task_faults_idx(nid, 1)];
919}
920
921static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
922{
923 return group->faults_cpu[task_faults_idx(nid, 0)] +
924 group->faults_cpu[task_faults_idx(nid, 1)];
925}
926
927/*
928 * These return the fraction of accesses done by a particular task, or
929 * task group, on a particular numa node. The group weight is given a
930 * larger multiplier, in order to group tasks together that are almost
931 * evenly spread out between numa nodes.
932 */
933static inline unsigned long task_weight(struct task_struct *p, int nid)
934{
935 unsigned long total_faults;
936
937 if (!p->numa_faults_memory)
938 return 0;
939
940 total_faults = p->total_numa_faults;
941
942 if (!total_faults)
943 return 0;
944
945 return 1000 * task_faults(p, nid) / total_faults;
946}
947
948static inline unsigned long group_weight(struct task_struct *p, int nid)
949{
950 if (!p->numa_group || !p->numa_group->total_faults)
951 return 0;
952
953 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
954}
955
956bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
957 int src_nid, int dst_cpu)
958{
959 struct numa_group *ng = p->numa_group;
960 int dst_nid = cpu_to_node(dst_cpu);
961 int last_cpupid, this_cpupid;
962
963 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
964
965 /*
966 * Multi-stage node selection is used in conjunction with a periodic
967 * migration fault to build a temporal task<->page relation. By using
968 * a two-stage filter we remove short/unlikely relations.
969 *
970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
971 * a task's usage of a particular page (n_p) per total usage of this
972 * page (n_t) (in a given time-span) to a probability.
973 *
974 * Our periodic faults will sample this probability and getting the
975 * same result twice in a row, given these samples are fully
976 * independent, is then given by P(n)^2, provided our sample period
977 * is sufficiently short compared to the usage pattern.
978 *
979 * This quadric squishes small probabilities, making it less likely we
980 * act on an unlikely task<->page relation.
981 */
982 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
983 if (!cpupid_pid_unset(last_cpupid) &&
984 cpupid_to_nid(last_cpupid) != dst_nid)
985 return false;
986
987 /* Always allow migrate on private faults */
988 if (cpupid_match_pid(p, last_cpupid))
989 return true;
990
991 /* A shared fault, but p->numa_group has not been set up yet. */
992 if (!ng)
993 return true;
994
995 /*
996 * Do not migrate if the destination is not a node that
997 * is actively used by this numa group.
998 */
999 if (!node_isset(dst_nid, ng->active_nodes))
1000 return false;
1001
1002 /*
1003 * Source is a node that is not actively used by this
1004 * numa group, while the destination is. Migrate.
1005 */
1006 if (!node_isset(src_nid, ng->active_nodes))
1007 return true;
1008
1009 /*
1010 * Both source and destination are nodes in active
1011 * use by this numa group. Maximize memory bandwidth
1012 * by migrating from more heavily used groups, to less
1013 * heavily used ones, spreading the load around.
1014 * Use a 1/4 hysteresis to avoid spurious page movement.
1015 */
1016 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1017}
1018
1019static unsigned long weighted_cpuload(const int cpu);
1020static unsigned long source_load(int cpu, int type);
1021static unsigned long target_load(int cpu, int type);
1022static unsigned long capacity_of(int cpu);
1023static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1024
1025/* Cached statistics for all CPUs within a node */
1026struct numa_stats {
1027 unsigned long nr_running;
1028 unsigned long load;
1029
1030 /* Total compute capacity of CPUs on a node */
1031 unsigned long compute_capacity;
1032
1033 /* Approximate capacity in terms of runnable tasks on a node */
1034 unsigned long task_capacity;
1035 int has_free_capacity;
1036};
1037
1038/*
1039 * XXX borrowed from update_sg_lb_stats
1040 */
1041static void update_numa_stats(struct numa_stats *ns, int nid)
1042{
1043 int smt, cpu, cpus = 0;
1044 unsigned long capacity;
1045
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1049
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
1052 ns->compute_capacity += capacity_of(cpu);
1053
1054 cpus++;
1055 }
1056
1057 /*
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1061 *
1062 * We'll either bail at !has_free_capacity, or we'll detect a huge
1063 * imbalance and bail there.
1064 */
1065 if (!cpus)
1066 return;
1067
1068 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1069 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1070 capacity = cpus / smt; /* cores */
1071
1072 ns->task_capacity = min_t(unsigned, capacity,
1073 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1074 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1075}
1076
1077struct task_numa_env {
1078 struct task_struct *p;
1079
1080 int src_cpu, src_nid;
1081 int dst_cpu, dst_nid;
1082
1083 struct numa_stats src_stats, dst_stats;
1084
1085 int imbalance_pct;
1086
1087 struct task_struct *best_task;
1088 long best_imp;
1089 int best_cpu;
1090};
1091
1092static void task_numa_assign(struct task_numa_env *env,
1093 struct task_struct *p, long imp)
1094{
1095 if (env->best_task)
1096 put_task_struct(env->best_task);
1097 if (p)
1098 get_task_struct(p);
1099
1100 env->best_task = p;
1101 env->best_imp = imp;
1102 env->best_cpu = env->dst_cpu;
1103}
1104
1105static bool load_too_imbalanced(long src_load, long dst_load,
1106 struct task_numa_env *env)
1107{
1108 long imb, old_imb;
1109 long orig_src_load, orig_dst_load;
1110 long src_capacity, dst_capacity;
1111
1112 /*
1113 * The load is corrected for the CPU capacity available on each node.
1114 *
1115 * src_load dst_load
1116 * ------------ vs ---------
1117 * src_capacity dst_capacity
1118 */
1119 src_capacity = env->src_stats.compute_capacity;
1120 dst_capacity = env->dst_stats.compute_capacity;
1121
1122 /* We care about the slope of the imbalance, not the direction. */
1123 if (dst_load < src_load)
1124 swap(dst_load, src_load);
1125
1126 /* Is the difference below the threshold? */
1127 imb = dst_load * src_capacity * 100 -
1128 src_load * dst_capacity * env->imbalance_pct;
1129 if (imb <= 0)
1130 return false;
1131
1132 /*
1133 * The imbalance is above the allowed threshold.
1134 * Compare it with the old imbalance.
1135 */
1136 orig_src_load = env->src_stats.load;
1137 orig_dst_load = env->dst_stats.load;
1138
1139 if (orig_dst_load < orig_src_load)
1140 swap(orig_dst_load, orig_src_load);
1141
1142 old_imb = orig_dst_load * src_capacity * 100 -
1143 orig_src_load * dst_capacity * env->imbalance_pct;
1144
1145 /* Would this change make things worse? */
1146 return (imb > old_imb);
1147}
1148
1149/*
1150 * This checks if the overall compute and NUMA accesses of the system would
1151 * be improved if the source tasks was migrated to the target dst_cpu taking
1152 * into account that it might be best if task running on the dst_cpu should
1153 * be exchanged with the source task
1154 */
1155static void task_numa_compare(struct task_numa_env *env,
1156 long taskimp, long groupimp)
1157{
1158 struct rq *src_rq = cpu_rq(env->src_cpu);
1159 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1160 struct task_struct *cur;
1161 long src_load, dst_load;
1162 long load;
1163 long imp = env->p->numa_group ? groupimp : taskimp;
1164 long moveimp = imp;
1165
1166 rcu_read_lock();
1167
1168 raw_spin_lock_irq(&dst_rq->lock);
1169 cur = dst_rq->curr;
1170 /*
1171 * No need to move the exiting task, and this ensures that ->curr
1172 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1173 * is safe under RCU read lock.
1174 * Note that rcu_read_lock() itself can't protect from the final
1175 * put_task_struct() after the last schedule().
1176 */
1177 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1178 cur = NULL;
1179 raw_spin_unlock_irq(&dst_rq->lock);
1180
1181 /*
1182 * "imp" is the fault differential for the source task between the
1183 * source and destination node. Calculate the total differential for
1184 * the source task and potential destination task. The more negative
1185 * the value is, the more rmeote accesses that would be expected to
1186 * be incurred if the tasks were swapped.
1187 */
1188 if (cur) {
1189 /* Skip this swap candidate if cannot move to the source cpu */
1190 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1191 goto unlock;
1192
1193 /*
1194 * If dst and source tasks are in the same NUMA group, or not
1195 * in any group then look only at task weights.
1196 */
1197 if (cur->numa_group == env->p->numa_group) {
1198 imp = taskimp + task_weight(cur, env->src_nid) -
1199 task_weight(cur, env->dst_nid);
1200 /*
1201 * Add some hysteresis to prevent swapping the
1202 * tasks within a group over tiny differences.
1203 */
1204 if (cur->numa_group)
1205 imp -= imp/16;
1206 } else {
1207 /*
1208 * Compare the group weights. If a task is all by
1209 * itself (not part of a group), use the task weight
1210 * instead.
1211 */
1212 if (cur->numa_group)
1213 imp += group_weight(cur, env->src_nid) -
1214 group_weight(cur, env->dst_nid);
1215 else
1216 imp += task_weight(cur, env->src_nid) -
1217 task_weight(cur, env->dst_nid);
1218 }
1219 }
1220
1221 if (imp <= env->best_imp && moveimp <= env->best_imp)
1222 goto unlock;
1223
1224 if (!cur) {
1225 /* Is there capacity at our destination? */
1226 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1227 !env->dst_stats.has_free_capacity)
1228 goto unlock;
1229
1230 goto balance;
1231 }
1232
1233 /* Balance doesn't matter much if we're running a task per cpu */
1234 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1235 dst_rq->nr_running == 1)
1236 goto assign;
1237
1238 /*
1239 * In the overloaded case, try and keep the load balanced.
1240 */
1241balance:
1242 load = task_h_load(env->p);
1243 dst_load = env->dst_stats.load + load;
1244 src_load = env->src_stats.load - load;
1245
1246 if (moveimp > imp && moveimp > env->best_imp) {
1247 /*
1248 * If the improvement from just moving env->p direction is
1249 * better than swapping tasks around, check if a move is
1250 * possible. Store a slightly smaller score than moveimp,
1251 * so an actually idle CPU will win.
1252 */
1253 if (!load_too_imbalanced(src_load, dst_load, env)) {
1254 imp = moveimp - 1;
1255 cur = NULL;
1256 goto assign;
1257 }
1258 }
1259
1260 if (imp <= env->best_imp)
1261 goto unlock;
1262
1263 if (cur) {
1264 load = task_h_load(cur);
1265 dst_load -= load;
1266 src_load += load;
1267 }
1268
1269 if (load_too_imbalanced(src_load, dst_load, env))
1270 goto unlock;
1271
1272 /*
1273 * One idle CPU per node is evaluated for a task numa move.
1274 * Call select_idle_sibling to maybe find a better one.
1275 */
1276 if (!cur)
1277 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1278
1279assign:
1280 task_numa_assign(env, cur, imp);
1281unlock:
1282 rcu_read_unlock();
1283}
1284
1285static void task_numa_find_cpu(struct task_numa_env *env,
1286 long taskimp, long groupimp)
1287{
1288 int cpu;
1289
1290 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1291 /* Skip this CPU if the source task cannot migrate */
1292 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1293 continue;
1294
1295 env->dst_cpu = cpu;
1296 task_numa_compare(env, taskimp, groupimp);
1297 }
1298}
1299
1300static int task_numa_migrate(struct task_struct *p)
1301{
1302 struct task_numa_env env = {
1303 .p = p,
1304
1305 .src_cpu = task_cpu(p),
1306 .src_nid = task_node(p),
1307
1308 .imbalance_pct = 112,
1309
1310 .best_task = NULL,
1311 .best_imp = 0,
1312 .best_cpu = -1
1313 };
1314 struct sched_domain *sd;
1315 unsigned long taskweight, groupweight;
1316 int nid, ret;
1317 long taskimp, groupimp;
1318
1319 /*
1320 * Pick the lowest SD_NUMA domain, as that would have the smallest
1321 * imbalance and would be the first to start moving tasks about.
1322 *
1323 * And we want to avoid any moving of tasks about, as that would create
1324 * random movement of tasks -- counter the numa conditions we're trying
1325 * to satisfy here.
1326 */
1327 rcu_read_lock();
1328 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1329 if (sd)
1330 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1331 rcu_read_unlock();
1332
1333 /*
1334 * Cpusets can break the scheduler domain tree into smaller
1335 * balance domains, some of which do not cross NUMA boundaries.
1336 * Tasks that are "trapped" in such domains cannot be migrated
1337 * elsewhere, so there is no point in (re)trying.
1338 */
1339 if (unlikely(!sd)) {
1340 p->numa_preferred_nid = task_node(p);
1341 return -EINVAL;
1342 }
1343
1344 taskweight = task_weight(p, env.src_nid);
1345 groupweight = group_weight(p, env.src_nid);
1346 update_numa_stats(&env.src_stats, env.src_nid);
1347 env.dst_nid = p->numa_preferred_nid;
1348 taskimp = task_weight(p, env.dst_nid) - taskweight;
1349 groupimp = group_weight(p, env.dst_nid) - groupweight;
1350 update_numa_stats(&env.dst_stats, env.dst_nid);
1351
1352 /* Try to find a spot on the preferred nid. */
1353 task_numa_find_cpu(&env, taskimp, groupimp);
1354
1355 /* No space available on the preferred nid. Look elsewhere. */
1356 if (env.best_cpu == -1) {
1357 for_each_online_node(nid) {
1358 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1359 continue;
1360
1361 /* Only consider nodes where both task and groups benefit */
1362 taskimp = task_weight(p, nid) - taskweight;
1363 groupimp = group_weight(p, nid) - groupweight;
1364 if (taskimp < 0 && groupimp < 0)
1365 continue;
1366
1367 env.dst_nid = nid;
1368 update_numa_stats(&env.dst_stats, env.dst_nid);
1369 task_numa_find_cpu(&env, taskimp, groupimp);
1370 }
1371 }
1372
1373 /*
1374 * If the task is part of a workload that spans multiple NUMA nodes,
1375 * and is migrating into one of the workload's active nodes, remember
1376 * this node as the task's preferred numa node, so the workload can
1377 * settle down.
1378 * A task that migrated to a second choice node will be better off
1379 * trying for a better one later. Do not set the preferred node here.
1380 */
1381 if (p->numa_group) {
1382 if (env.best_cpu == -1)
1383 nid = env.src_nid;
1384 else
1385 nid = env.dst_nid;
1386
1387 if (node_isset(nid, p->numa_group->active_nodes))
1388 sched_setnuma(p, env.dst_nid);
1389 }
1390
1391 /* No better CPU than the current one was found. */
1392 if (env.best_cpu == -1)
1393 return -EAGAIN;
1394
1395 /*
1396 * Reset the scan period if the task is being rescheduled on an
1397 * alternative node to recheck if the tasks is now properly placed.
1398 */
1399 p->numa_scan_period = task_scan_min(p);
1400
1401 if (env.best_task == NULL) {
1402 ret = migrate_task_to(p, env.best_cpu);
1403 if (ret != 0)
1404 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1405 return ret;
1406 }
1407
1408 ret = migrate_swap(p, env.best_task);
1409 if (ret != 0)
1410 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1411 put_task_struct(env.best_task);
1412 return ret;
1413}
1414
1415/* Attempt to migrate a task to a CPU on the preferred node. */
1416static void numa_migrate_preferred(struct task_struct *p)
1417{
1418 unsigned long interval = HZ;
1419
1420 /* This task has no NUMA fault statistics yet */
1421 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1422 return;
1423
1424 /* Periodically retry migrating the task to the preferred node */
1425 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1426 p->numa_migrate_retry = jiffies + interval;
1427
1428 /* Success if task is already running on preferred CPU */
1429 if (task_node(p) == p->numa_preferred_nid)
1430 return;
1431
1432 /* Otherwise, try migrate to a CPU on the preferred node */
1433 task_numa_migrate(p);
1434}
1435
1436/*
1437 * Find the nodes on which the workload is actively running. We do this by
1438 * tracking the nodes from which NUMA hinting faults are triggered. This can
1439 * be different from the set of nodes where the workload's memory is currently
1440 * located.
1441 *
1442 * The bitmask is used to make smarter decisions on when to do NUMA page
1443 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1444 * are added when they cause over 6/16 of the maximum number of faults, but
1445 * only removed when they drop below 3/16.
1446 */
1447static void update_numa_active_node_mask(struct numa_group *numa_group)
1448{
1449 unsigned long faults, max_faults = 0;
1450 int nid;
1451
1452 for_each_online_node(nid) {
1453 faults = group_faults_cpu(numa_group, nid);
1454 if (faults > max_faults)
1455 max_faults = faults;
1456 }
1457
1458 for_each_online_node(nid) {
1459 faults = group_faults_cpu(numa_group, nid);
1460 if (!node_isset(nid, numa_group->active_nodes)) {
1461 if (faults > max_faults * 6 / 16)
1462 node_set(nid, numa_group->active_nodes);
1463 } else if (faults < max_faults * 3 / 16)
1464 node_clear(nid, numa_group->active_nodes);
1465 }
1466}
1467
1468/*
1469 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1470 * increments. The more local the fault statistics are, the higher the scan
1471 * period will be for the next scan window. If local/(local+remote) ratio is
1472 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1473 * the scan period will decrease. Aim for 70% local accesses.
1474 */
1475#define NUMA_PERIOD_SLOTS 10
1476#define NUMA_PERIOD_THRESHOLD 7
1477
1478/*
1479 * Increase the scan period (slow down scanning) if the majority of
1480 * our memory is already on our local node, or if the majority of
1481 * the page accesses are shared with other processes.
1482 * Otherwise, decrease the scan period.
1483 */
1484static void update_task_scan_period(struct task_struct *p,
1485 unsigned long shared, unsigned long private)
1486{
1487 unsigned int period_slot;
1488 int ratio;
1489 int diff;
1490
1491 unsigned long remote = p->numa_faults_locality[0];
1492 unsigned long local = p->numa_faults_locality[1];
1493
1494 /*
1495 * If there were no record hinting faults then either the task is
1496 * completely idle or all activity is areas that are not of interest
1497 * to automatic numa balancing. Scan slower
1498 */
1499 if (local + shared == 0) {
1500 p->numa_scan_period = min(p->numa_scan_period_max,
1501 p->numa_scan_period << 1);
1502
1503 p->mm->numa_next_scan = jiffies +
1504 msecs_to_jiffies(p->numa_scan_period);
1505
1506 return;
1507 }
1508
1509 /*
1510 * Prepare to scale scan period relative to the current period.
1511 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1512 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1513 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1514 */
1515 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1516 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1517 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1518 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1519 if (!slot)
1520 slot = 1;
1521 diff = slot * period_slot;
1522 } else {
1523 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1524
1525 /*
1526 * Scale scan rate increases based on sharing. There is an
1527 * inverse relationship between the degree of sharing and
1528 * the adjustment made to the scanning period. Broadly
1529 * speaking the intent is that there is little point
1530 * scanning faster if shared accesses dominate as it may
1531 * simply bounce migrations uselessly
1532 */
1533 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1534 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1535 }
1536
1537 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1538 task_scan_min(p), task_scan_max(p));
1539 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1540}
1541
1542/*
1543 * Get the fraction of time the task has been running since the last
1544 * NUMA placement cycle. The scheduler keeps similar statistics, but
1545 * decays those on a 32ms period, which is orders of magnitude off
1546 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1547 * stats only if the task is so new there are no NUMA statistics yet.
1548 */
1549static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1550{
1551 u64 runtime, delta, now;
1552 /* Use the start of this time slice to avoid calculations. */
1553 now = p->se.exec_start;
1554 runtime = p->se.sum_exec_runtime;
1555
1556 if (p->last_task_numa_placement) {
1557 delta = runtime - p->last_sum_exec_runtime;
1558 *period = now - p->last_task_numa_placement;
1559 } else {
1560 delta = p->se.avg.runnable_avg_sum;
1561 *period = p->se.avg.runnable_avg_period;
1562 }
1563
1564 p->last_sum_exec_runtime = runtime;
1565 p->last_task_numa_placement = now;
1566
1567 return delta;
1568}
1569
1570static void task_numa_placement(struct task_struct *p)
1571{
1572 int seq, nid, max_nid = -1, max_group_nid = -1;
1573 unsigned long max_faults = 0, max_group_faults = 0;
1574 unsigned long fault_types[2] = { 0, 0 };
1575 unsigned long total_faults;
1576 u64 runtime, period;
1577 spinlock_t *group_lock = NULL;
1578
1579 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1580 if (p->numa_scan_seq == seq)
1581 return;
1582 p->numa_scan_seq = seq;
1583 p->numa_scan_period_max = task_scan_max(p);
1584
1585 total_faults = p->numa_faults_locality[0] +
1586 p->numa_faults_locality[1];
1587 runtime = numa_get_avg_runtime(p, &period);
1588
1589 /* If the task is part of a group prevent parallel updates to group stats */
1590 if (p->numa_group) {
1591 group_lock = &p->numa_group->lock;
1592 spin_lock_irq(group_lock);
1593 }
1594
1595 /* Find the node with the highest number of faults */
1596 for_each_online_node(nid) {
1597 unsigned long faults = 0, group_faults = 0;
1598 int priv, i;
1599
1600 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1601 long diff, f_diff, f_weight;
1602
1603 i = task_faults_idx(nid, priv);
1604
1605 /* Decay existing window, copy faults since last scan */
1606 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1607 fault_types[priv] += p->numa_faults_buffer_memory[i];
1608 p->numa_faults_buffer_memory[i] = 0;
1609
1610 /*
1611 * Normalize the faults_from, so all tasks in a group
1612 * count according to CPU use, instead of by the raw
1613 * number of faults. Tasks with little runtime have
1614 * little over-all impact on throughput, and thus their
1615 * faults are less important.
1616 */
1617 f_weight = div64_u64(runtime << 16, period + 1);
1618 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1619 (total_faults + 1);
1620 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1621 p->numa_faults_buffer_cpu[i] = 0;
1622
1623 p->numa_faults_memory[i] += diff;
1624 p->numa_faults_cpu[i] += f_diff;
1625 faults += p->numa_faults_memory[i];
1626 p->total_numa_faults += diff;
1627 if (p->numa_group) {
1628 /* safe because we can only change our own group */
1629 p->numa_group->faults[i] += diff;
1630 p->numa_group->faults_cpu[i] += f_diff;
1631 p->numa_group->total_faults += diff;
1632 group_faults += p->numa_group->faults[i];
1633 }
1634 }
1635
1636 if (faults > max_faults) {
1637 max_faults = faults;
1638 max_nid = nid;
1639 }
1640
1641 if (group_faults > max_group_faults) {
1642 max_group_faults = group_faults;
1643 max_group_nid = nid;
1644 }
1645 }
1646
1647 update_task_scan_period(p, fault_types[0], fault_types[1]);
1648
1649 if (p->numa_group) {
1650 update_numa_active_node_mask(p->numa_group);
1651 spin_unlock_irq(group_lock);
1652 max_nid = max_group_nid;
1653 }
1654
1655 if (max_faults) {
1656 /* Set the new preferred node */
1657 if (max_nid != p->numa_preferred_nid)
1658 sched_setnuma(p, max_nid);
1659
1660 if (task_node(p) != p->numa_preferred_nid)
1661 numa_migrate_preferred(p);
1662 }
1663}
1664
1665static inline int get_numa_group(struct numa_group *grp)
1666{
1667 return atomic_inc_not_zero(&grp->refcount);
1668}
1669
1670static inline void put_numa_group(struct numa_group *grp)
1671{
1672 if (atomic_dec_and_test(&grp->refcount))
1673 kfree_rcu(grp, rcu);
1674}
1675
1676static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1677 int *priv)
1678{
1679 struct numa_group *grp, *my_grp;
1680 struct task_struct *tsk;
1681 bool join = false;
1682 int cpu = cpupid_to_cpu(cpupid);
1683 int i;
1684
1685 if (unlikely(!p->numa_group)) {
1686 unsigned int size = sizeof(struct numa_group) +
1687 4*nr_node_ids*sizeof(unsigned long);
1688
1689 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1690 if (!grp)
1691 return;
1692
1693 atomic_set(&grp->refcount, 1);
1694 spin_lock_init(&grp->lock);
1695 INIT_LIST_HEAD(&grp->task_list);
1696 grp->gid = p->pid;
1697 /* Second half of the array tracks nids where faults happen */
1698 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1699 nr_node_ids;
1700
1701 node_set(task_node(current), grp->active_nodes);
1702
1703 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1704 grp->faults[i] = p->numa_faults_memory[i];
1705
1706 grp->total_faults = p->total_numa_faults;
1707
1708 list_add(&p->numa_entry, &grp->task_list);
1709 grp->nr_tasks++;
1710 rcu_assign_pointer(p->numa_group, grp);
1711 }
1712
1713 rcu_read_lock();
1714 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1715
1716 if (!cpupid_match_pid(tsk, cpupid))
1717 goto no_join;
1718
1719 grp = rcu_dereference(tsk->numa_group);
1720 if (!grp)
1721 goto no_join;
1722
1723 my_grp = p->numa_group;
1724 if (grp == my_grp)
1725 goto no_join;
1726
1727 /*
1728 * Only join the other group if its bigger; if we're the bigger group,
1729 * the other task will join us.
1730 */
1731 if (my_grp->nr_tasks > grp->nr_tasks)
1732 goto no_join;
1733
1734 /*
1735 * Tie-break on the grp address.
1736 */
1737 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1738 goto no_join;
1739
1740 /* Always join threads in the same process. */
1741 if (tsk->mm == current->mm)
1742 join = true;
1743
1744 /* Simple filter to avoid false positives due to PID collisions */
1745 if (flags & TNF_SHARED)
1746 join = true;
1747
1748 /* Update priv based on whether false sharing was detected */
1749 *priv = !join;
1750
1751 if (join && !get_numa_group(grp))
1752 goto no_join;
1753
1754 rcu_read_unlock();
1755
1756 if (!join)
1757 return;
1758
1759 BUG_ON(irqs_disabled());
1760 double_lock_irq(&my_grp->lock, &grp->lock);
1761
1762 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1763 my_grp->faults[i] -= p->numa_faults_memory[i];
1764 grp->faults[i] += p->numa_faults_memory[i];
1765 }
1766 my_grp->total_faults -= p->total_numa_faults;
1767 grp->total_faults += p->total_numa_faults;
1768
1769 list_move(&p->numa_entry, &grp->task_list);
1770 my_grp->nr_tasks--;
1771 grp->nr_tasks++;
1772
1773 spin_unlock(&my_grp->lock);
1774 spin_unlock_irq(&grp->lock);
1775
1776 rcu_assign_pointer(p->numa_group, grp);
1777
1778 put_numa_group(my_grp);
1779 return;
1780
1781no_join:
1782 rcu_read_unlock();
1783 return;
1784}
1785
1786void task_numa_free(struct task_struct *p)
1787{
1788 struct numa_group *grp = p->numa_group;
1789 void *numa_faults = p->numa_faults_memory;
1790 unsigned long flags;
1791 int i;
1792
1793 if (grp) {
1794 spin_lock_irqsave(&grp->lock, flags);
1795 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1796 grp->faults[i] -= p->numa_faults_memory[i];
1797 grp->total_faults -= p->total_numa_faults;
1798
1799 list_del(&p->numa_entry);
1800 grp->nr_tasks--;
1801 spin_unlock_irqrestore(&grp->lock, flags);
1802 RCU_INIT_POINTER(p->numa_group, NULL);
1803 put_numa_group(grp);
1804 }
1805
1806 p->numa_faults_memory = NULL;
1807 p->numa_faults_buffer_memory = NULL;
1808 p->numa_faults_cpu= NULL;
1809 p->numa_faults_buffer_cpu = NULL;
1810 kfree(numa_faults);
1811}
1812
1813/*
1814 * Got a PROT_NONE fault for a page on @node.
1815 */
1816void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1817{
1818 struct task_struct *p = current;
1819 bool migrated = flags & TNF_MIGRATED;
1820 int cpu_node = task_node(current);
1821 int local = !!(flags & TNF_FAULT_LOCAL);
1822 int priv;
1823
1824 if (!numabalancing_enabled)
1825 return;
1826
1827 /* for example, ksmd faulting in a user's mm */
1828 if (!p->mm)
1829 return;
1830
1831 /* Allocate buffer to track faults on a per-node basis */
1832 if (unlikely(!p->numa_faults_memory)) {
1833 int size = sizeof(*p->numa_faults_memory) *
1834 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1835
1836 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1837 if (!p->numa_faults_memory)
1838 return;
1839
1840 BUG_ON(p->numa_faults_buffer_memory);
1841 /*
1842 * The averaged statistics, shared & private, memory & cpu,
1843 * occupy the first half of the array. The second half of the
1844 * array is for current counters, which are averaged into the
1845 * first set by task_numa_placement.
1846 */
1847 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1848 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1849 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1850 p->total_numa_faults = 0;
1851 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1852 }
1853
1854 /*
1855 * First accesses are treated as private, otherwise consider accesses
1856 * to be private if the accessing pid has not changed
1857 */
1858 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1859 priv = 1;
1860 } else {
1861 priv = cpupid_match_pid(p, last_cpupid);
1862 if (!priv && !(flags & TNF_NO_GROUP))
1863 task_numa_group(p, last_cpupid, flags, &priv);
1864 }
1865
1866 /*
1867 * If a workload spans multiple NUMA nodes, a shared fault that
1868 * occurs wholly within the set of nodes that the workload is
1869 * actively using should be counted as local. This allows the
1870 * scan rate to slow down when a workload has settled down.
1871 */
1872 if (!priv && !local && p->numa_group &&
1873 node_isset(cpu_node, p->numa_group->active_nodes) &&
1874 node_isset(mem_node, p->numa_group->active_nodes))
1875 local = 1;
1876
1877 task_numa_placement(p);
1878
1879 /*
1880 * Retry task to preferred node migration periodically, in case it
1881 * case it previously failed, or the scheduler moved us.
1882 */
1883 if (time_after(jiffies, p->numa_migrate_retry))
1884 numa_migrate_preferred(p);
1885
1886 if (migrated)
1887 p->numa_pages_migrated += pages;
1888
1889 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1890 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1891 p->numa_faults_locality[local] += pages;
1892}
1893
1894static void reset_ptenuma_scan(struct task_struct *p)
1895{
1896 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1897 p->mm->numa_scan_offset = 0;
1898}
1899
1900/*
1901 * The expensive part of numa migration is done from task_work context.
1902 * Triggered from task_tick_numa().
1903 */
1904void task_numa_work(struct callback_head *work)
1905{
1906 unsigned long migrate, next_scan, now = jiffies;
1907 struct task_struct *p = current;
1908 struct mm_struct *mm = p->mm;
1909 struct vm_area_struct *vma;
1910 unsigned long start, end;
1911 unsigned long nr_pte_updates = 0;
1912 long pages;
1913
1914 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1915
1916 work->next = work; /* protect against double add */
1917 /*
1918 * Who cares about NUMA placement when they're dying.
1919 *
1920 * NOTE: make sure not to dereference p->mm before this check,
1921 * exit_task_work() happens _after_ exit_mm() so we could be called
1922 * without p->mm even though we still had it when we enqueued this
1923 * work.
1924 */
1925 if (p->flags & PF_EXITING)
1926 return;
1927
1928 if (!mm->numa_next_scan) {
1929 mm->numa_next_scan = now +
1930 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1931 }
1932
1933 /*
1934 * Enforce maximal scan/migration frequency..
1935 */
1936 migrate = mm->numa_next_scan;
1937 if (time_before(now, migrate))
1938 return;
1939
1940 if (p->numa_scan_period == 0) {
1941 p->numa_scan_period_max = task_scan_max(p);
1942 p->numa_scan_period = task_scan_min(p);
1943 }
1944
1945 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1946 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1947 return;
1948
1949 /*
1950 * Delay this task enough that another task of this mm will likely win
1951 * the next time around.
1952 */
1953 p->node_stamp += 2 * TICK_NSEC;
1954
1955 start = mm->numa_scan_offset;
1956 pages = sysctl_numa_balancing_scan_size;
1957 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1958 if (!pages)
1959 return;
1960
1961 down_read(&mm->mmap_sem);
1962 vma = find_vma(mm, start);
1963 if (!vma) {
1964 reset_ptenuma_scan(p);
1965 start = 0;
1966 vma = mm->mmap;
1967 }
1968 for (; vma; vma = vma->vm_next) {
1969 if (!vma_migratable(vma) || !vma_policy_mof(vma))
1970 continue;
1971
1972 /*
1973 * Shared library pages mapped by multiple processes are not
1974 * migrated as it is expected they are cache replicated. Avoid
1975 * hinting faults in read-only file-backed mappings or the vdso
1976 * as migrating the pages will be of marginal benefit.
1977 */
1978 if (!vma->vm_mm ||
1979 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1980 continue;
1981
1982 /*
1983 * Skip inaccessible VMAs to avoid any confusion between
1984 * PROT_NONE and NUMA hinting ptes
1985 */
1986 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1987 continue;
1988
1989 do {
1990 start = max(start, vma->vm_start);
1991 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1992 end = min(end, vma->vm_end);
1993 nr_pte_updates += change_prot_numa(vma, start, end);
1994
1995 /*
1996 * Scan sysctl_numa_balancing_scan_size but ensure that
1997 * at least one PTE is updated so that unused virtual
1998 * address space is quickly skipped.
1999 */
2000 if (nr_pte_updates)
2001 pages -= (end - start) >> PAGE_SHIFT;
2002
2003 start = end;
2004 if (pages <= 0)
2005 goto out;
2006
2007 cond_resched();
2008 } while (end != vma->vm_end);
2009 }
2010
2011out:
2012 /*
2013 * It is possible to reach the end of the VMA list but the last few
2014 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2015 * would find the !migratable VMA on the next scan but not reset the
2016 * scanner to the start so check it now.
2017 */
2018 if (vma)
2019 mm->numa_scan_offset = start;
2020 else
2021 reset_ptenuma_scan(p);
2022 up_read(&mm->mmap_sem);
2023}
2024
2025/*
2026 * Drive the periodic memory faults..
2027 */
2028void task_tick_numa(struct rq *rq, struct task_struct *curr)
2029{
2030 struct callback_head *work = &curr->numa_work;
2031 u64 period, now;
2032
2033 /*
2034 * We don't care about NUMA placement if we don't have memory.
2035 */
2036 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2037 return;
2038
2039 /*
2040 * Using runtime rather than walltime has the dual advantage that
2041 * we (mostly) drive the selection from busy threads and that the
2042 * task needs to have done some actual work before we bother with
2043 * NUMA placement.
2044 */
2045 now = curr->se.sum_exec_runtime;
2046 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2047
2048 if (now - curr->node_stamp > period) {
2049 if (!curr->node_stamp)
2050 curr->numa_scan_period = task_scan_min(curr);
2051 curr->node_stamp += period;
2052
2053 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2054 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2055 task_work_add(curr, work, true);
2056 }
2057 }
2058}
2059#else
2060static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2061{
2062}
2063
2064static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2065{
2066}
2067
2068static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2069{
2070}
2071#endif /* CONFIG_NUMA_BALANCING */
2072
2073static void
2074account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2075{
2076 update_load_add(&cfs_rq->load, se->load.weight);
2077 if (!parent_entity(se))
2078 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2079#ifdef CONFIG_SMP
2080 if (entity_is_task(se)) {
2081 struct rq *rq = rq_of(cfs_rq);
2082
2083 account_numa_enqueue(rq, task_of(se));
2084 list_add(&se->group_node, &rq->cfs_tasks);
2085 }
2086#endif
2087 cfs_rq->nr_running++;
2088}
2089
2090static void
2091account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2092{
2093 update_load_sub(&cfs_rq->load, se->load.weight);
2094 if (!parent_entity(se))
2095 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2096 if (entity_is_task(se)) {
2097 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2098 list_del_init(&se->group_node);
2099 }
2100 cfs_rq->nr_running--;
2101}
2102
2103#ifdef CONFIG_FAIR_GROUP_SCHED
2104# ifdef CONFIG_SMP
2105static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2106{
2107 long tg_weight;
2108
2109 /*
2110 * Use this CPU's actual weight instead of the last load_contribution
2111 * to gain a more accurate current total weight. See
2112 * update_cfs_rq_load_contribution().
2113 */
2114 tg_weight = atomic_long_read(&tg->load_avg);
2115 tg_weight -= cfs_rq->tg_load_contrib;
2116 tg_weight += cfs_rq->load.weight;
2117
2118 return tg_weight;
2119}
2120
2121static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2122{
2123 long tg_weight, load, shares;
2124
2125 tg_weight = calc_tg_weight(tg, cfs_rq);
2126 load = cfs_rq->load.weight;
2127
2128 shares = (tg->shares * load);
2129 if (tg_weight)
2130 shares /= tg_weight;
2131
2132 if (shares < MIN_SHARES)
2133 shares = MIN_SHARES;
2134 if (shares > tg->shares)
2135 shares = tg->shares;
2136
2137 return shares;
2138}
2139# else /* CONFIG_SMP */
2140static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2141{
2142 return tg->shares;
2143}
2144# endif /* CONFIG_SMP */
2145static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2146 unsigned long weight)
2147{
2148 if (se->on_rq) {
2149 /* commit outstanding execution time */
2150 if (cfs_rq->curr == se)
2151 update_curr(cfs_rq);
2152 account_entity_dequeue(cfs_rq, se);
2153 }
2154
2155 update_load_set(&se->load, weight);
2156
2157 if (se->on_rq)
2158 account_entity_enqueue(cfs_rq, se);
2159}
2160
2161static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2162
2163static void update_cfs_shares(struct cfs_rq *cfs_rq)
2164{
2165 struct task_group *tg;
2166 struct sched_entity *se;
2167 long shares;
2168
2169 tg = cfs_rq->tg;
2170 se = tg->se[cpu_of(rq_of(cfs_rq))];
2171 if (!se || throttled_hierarchy(cfs_rq))
2172 return;
2173#ifndef CONFIG_SMP
2174 if (likely(se->load.weight == tg->shares))
2175 return;
2176#endif
2177 shares = calc_cfs_shares(cfs_rq, tg);
2178
2179 reweight_entity(cfs_rq_of(se), se, shares);
2180}
2181#else /* CONFIG_FAIR_GROUP_SCHED */
2182static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2183{
2184}
2185#endif /* CONFIG_FAIR_GROUP_SCHED */
2186
2187#ifdef CONFIG_SMP
2188/*
2189 * We choose a half-life close to 1 scheduling period.
2190 * Note: The tables below are dependent on this value.
2191 */
2192#define LOAD_AVG_PERIOD 32
2193#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2194#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2195
2196/* Precomputed fixed inverse multiplies for multiplication by y^n */
2197static const u32 runnable_avg_yN_inv[] = {
2198 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2199 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2200 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2201 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2202 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2203 0x85aac367, 0x82cd8698,
2204};
2205
2206/*
2207 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2208 * over-estimates when re-combining.
2209 */
2210static const u32 runnable_avg_yN_sum[] = {
2211 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2212 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2213 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2214};
2215
2216/*
2217 * Approximate:
2218 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2219 */
2220static __always_inline u64 decay_load(u64 val, u64 n)
2221{
2222 unsigned int local_n;
2223
2224 if (!n)
2225 return val;
2226 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2227 return 0;
2228
2229 /* after bounds checking we can collapse to 32-bit */
2230 local_n = n;
2231
2232 /*
2233 * As y^PERIOD = 1/2, we can combine
2234 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2235 * With a look-up table which covers y^n (n<PERIOD)
2236 *
2237 * To achieve constant time decay_load.
2238 */
2239 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2240 val >>= local_n / LOAD_AVG_PERIOD;
2241 local_n %= LOAD_AVG_PERIOD;
2242 }
2243
2244 val *= runnable_avg_yN_inv[local_n];
2245 /* We don't use SRR here since we always want to round down. */
2246 return val >> 32;
2247}
2248
2249/*
2250 * For updates fully spanning n periods, the contribution to runnable
2251 * average will be: \Sum 1024*y^n
2252 *
2253 * We can compute this reasonably efficiently by combining:
2254 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2255 */
2256static u32 __compute_runnable_contrib(u64 n)
2257{
2258 u32 contrib = 0;
2259
2260 if (likely(n <= LOAD_AVG_PERIOD))
2261 return runnable_avg_yN_sum[n];
2262 else if (unlikely(n >= LOAD_AVG_MAX_N))
2263 return LOAD_AVG_MAX;
2264
2265 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2266 do {
2267 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2268 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2269
2270 n -= LOAD_AVG_PERIOD;
2271 } while (n > LOAD_AVG_PERIOD);
2272
2273 contrib = decay_load(contrib, n);
2274 return contrib + runnable_avg_yN_sum[n];
2275}
2276
2277/*
2278 * We can represent the historical contribution to runnable average as the
2279 * coefficients of a geometric series. To do this we sub-divide our runnable
2280 * history into segments of approximately 1ms (1024us); label the segment that
2281 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2282 *
2283 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2284 * p0 p1 p2
2285 * (now) (~1ms ago) (~2ms ago)
2286 *
2287 * Let u_i denote the fraction of p_i that the entity was runnable.
2288 *
2289 * We then designate the fractions u_i as our co-efficients, yielding the
2290 * following representation of historical load:
2291 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2292 *
2293 * We choose y based on the with of a reasonably scheduling period, fixing:
2294 * y^32 = 0.5
2295 *
2296 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2297 * approximately half as much as the contribution to load within the last ms
2298 * (u_0).
2299 *
2300 * When a period "rolls over" and we have new u_0`, multiplying the previous
2301 * sum again by y is sufficient to update:
2302 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2303 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2304 */
2305static __always_inline int __update_entity_runnable_avg(u64 now,
2306 struct sched_avg *sa,
2307 int runnable)
2308{
2309 u64 delta, periods;
2310 u32 runnable_contrib;
2311 int delta_w, decayed = 0;
2312
2313 delta = now - sa->last_runnable_update;
2314 /*
2315 * This should only happen when time goes backwards, which it
2316 * unfortunately does during sched clock init when we swap over to TSC.
2317 */
2318 if ((s64)delta < 0) {
2319 sa->last_runnable_update = now;
2320 return 0;
2321 }
2322
2323 /*
2324 * Use 1024ns as the unit of measurement since it's a reasonable
2325 * approximation of 1us and fast to compute.
2326 */
2327 delta >>= 10;
2328 if (!delta)
2329 return 0;
2330 sa->last_runnable_update = now;
2331
2332 /* delta_w is the amount already accumulated against our next period */
2333 delta_w = sa->runnable_avg_period % 1024;
2334 if (delta + delta_w >= 1024) {
2335 /* period roll-over */
2336 decayed = 1;
2337
2338 /*
2339 * Now that we know we're crossing a period boundary, figure
2340 * out how much from delta we need to complete the current
2341 * period and accrue it.
2342 */
2343 delta_w = 1024 - delta_w;
2344 if (runnable)
2345 sa->runnable_avg_sum += delta_w;
2346 sa->runnable_avg_period += delta_w;
2347
2348 delta -= delta_w;
2349
2350 /* Figure out how many additional periods this update spans */
2351 periods = delta / 1024;
2352 delta %= 1024;
2353
2354 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2355 periods + 1);
2356 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2357 periods + 1);
2358
2359 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2360 runnable_contrib = __compute_runnable_contrib(periods);
2361 if (runnable)
2362 sa->runnable_avg_sum += runnable_contrib;
2363 sa->runnable_avg_period += runnable_contrib;
2364 }
2365
2366 /* Remainder of delta accrued against u_0` */
2367 if (runnable)
2368 sa->runnable_avg_sum += delta;
2369 sa->runnable_avg_period += delta;
2370
2371 return decayed;
2372}
2373
2374/* Synchronize an entity's decay with its parenting cfs_rq.*/
2375static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2376{
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2379
2380 decays -= se->avg.decay_count;
2381 if (!decays)
2382 return 0;
2383
2384 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2385 se->avg.decay_count = 0;
2386
2387 return decays;
2388}
2389
2390#ifdef CONFIG_FAIR_GROUP_SCHED
2391static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2392 int force_update)
2393{
2394 struct task_group *tg = cfs_rq->tg;
2395 long tg_contrib;
2396
2397 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2398 tg_contrib -= cfs_rq->tg_load_contrib;
2399
2400 if (!tg_contrib)
2401 return;
2402
2403 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2404 atomic_long_add(tg_contrib, &tg->load_avg);
2405 cfs_rq->tg_load_contrib += tg_contrib;
2406 }
2407}
2408
2409/*
2410 * Aggregate cfs_rq runnable averages into an equivalent task_group
2411 * representation for computing load contributions.
2412 */
2413static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2414 struct cfs_rq *cfs_rq)
2415{
2416 struct task_group *tg = cfs_rq->tg;
2417 long contrib;
2418
2419 /* The fraction of a cpu used by this cfs_rq */
2420 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2421 sa->runnable_avg_period + 1);
2422 contrib -= cfs_rq->tg_runnable_contrib;
2423
2424 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2425 atomic_add(contrib, &tg->runnable_avg);
2426 cfs_rq->tg_runnable_contrib += contrib;
2427 }
2428}
2429
2430static inline void __update_group_entity_contrib(struct sched_entity *se)
2431{
2432 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2433 struct task_group *tg = cfs_rq->tg;
2434 int runnable_avg;
2435
2436 u64 contrib;
2437
2438 contrib = cfs_rq->tg_load_contrib * tg->shares;
2439 se->avg.load_avg_contrib = div_u64(contrib,
2440 atomic_long_read(&tg->load_avg) + 1);
2441
2442 /*
2443 * For group entities we need to compute a correction term in the case
2444 * that they are consuming <1 cpu so that we would contribute the same
2445 * load as a task of equal weight.
2446 *
2447 * Explicitly co-ordinating this measurement would be expensive, but
2448 * fortunately the sum of each cpus contribution forms a usable
2449 * lower-bound on the true value.
2450 *
2451 * Consider the aggregate of 2 contributions. Either they are disjoint
2452 * (and the sum represents true value) or they are disjoint and we are
2453 * understating by the aggregate of their overlap.
2454 *
2455 * Extending this to N cpus, for a given overlap, the maximum amount we
2456 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2457 * cpus that overlap for this interval and w_i is the interval width.
2458 *
2459 * On a small machine; the first term is well-bounded which bounds the
2460 * total error since w_i is a subset of the period. Whereas on a
2461 * larger machine, while this first term can be larger, if w_i is the
2462 * of consequential size guaranteed to see n_i*w_i quickly converge to
2463 * our upper bound of 1-cpu.
2464 */
2465 runnable_avg = atomic_read(&tg->runnable_avg);
2466 if (runnable_avg < NICE_0_LOAD) {
2467 se->avg.load_avg_contrib *= runnable_avg;
2468 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2469 }
2470}
2471
2472static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2473{
2474 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2475 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2476}
2477#else /* CONFIG_FAIR_GROUP_SCHED */
2478static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2479 int force_update) {}
2480static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2481 struct cfs_rq *cfs_rq) {}
2482static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2483static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2484#endif /* CONFIG_FAIR_GROUP_SCHED */
2485
2486static inline void __update_task_entity_contrib(struct sched_entity *se)
2487{
2488 u32 contrib;
2489
2490 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2491 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2492 contrib /= (se->avg.runnable_avg_period + 1);
2493 se->avg.load_avg_contrib = scale_load(contrib);
2494}
2495
2496/* Compute the current contribution to load_avg by se, return any delta */
2497static long __update_entity_load_avg_contrib(struct sched_entity *se)
2498{
2499 long old_contrib = se->avg.load_avg_contrib;
2500
2501 if (entity_is_task(se)) {
2502 __update_task_entity_contrib(se);
2503 } else {
2504 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2505 __update_group_entity_contrib(se);
2506 }
2507
2508 return se->avg.load_avg_contrib - old_contrib;
2509}
2510
2511static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2512 long load_contrib)
2513{
2514 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2515 cfs_rq->blocked_load_avg -= load_contrib;
2516 else
2517 cfs_rq->blocked_load_avg = 0;
2518}
2519
2520static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2521
2522/* Update a sched_entity's runnable average */
2523static inline void update_entity_load_avg(struct sched_entity *se,
2524 int update_cfs_rq)
2525{
2526 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2527 long contrib_delta;
2528 u64 now;
2529
2530 /*
2531 * For a group entity we need to use their owned cfs_rq_clock_task() in
2532 * case they are the parent of a throttled hierarchy.
2533 */
2534 if (entity_is_task(se))
2535 now = cfs_rq_clock_task(cfs_rq);
2536 else
2537 now = cfs_rq_clock_task(group_cfs_rq(se));
2538
2539 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2540 return;
2541
2542 contrib_delta = __update_entity_load_avg_contrib(se);
2543
2544 if (!update_cfs_rq)
2545 return;
2546
2547 if (se->on_rq)
2548 cfs_rq->runnable_load_avg += contrib_delta;
2549 else
2550 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2551}
2552
2553/*
2554 * Decay the load contributed by all blocked children and account this so that
2555 * their contribution may appropriately discounted when they wake up.
2556 */
2557static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2558{
2559 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2560 u64 decays;
2561
2562 decays = now - cfs_rq->last_decay;
2563 if (!decays && !force_update)
2564 return;
2565
2566 if (atomic_long_read(&cfs_rq->removed_load)) {
2567 unsigned long removed_load;
2568 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2569 subtract_blocked_load_contrib(cfs_rq, removed_load);
2570 }
2571
2572 if (decays) {
2573 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2574 decays);
2575 atomic64_add(decays, &cfs_rq->decay_counter);
2576 cfs_rq->last_decay = now;
2577 }
2578
2579 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2580}
2581
2582/* Add the load generated by se into cfs_rq's child load-average */
2583static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2584 struct sched_entity *se,
2585 int wakeup)
2586{
2587 /*
2588 * We track migrations using entity decay_count <= 0, on a wake-up
2589 * migration we use a negative decay count to track the remote decays
2590 * accumulated while sleeping.
2591 *
2592 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2593 * are seen by enqueue_entity_load_avg() as a migration with an already
2594 * constructed load_avg_contrib.
2595 */
2596 if (unlikely(se->avg.decay_count <= 0)) {
2597 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2598 if (se->avg.decay_count) {
2599 /*
2600 * In a wake-up migration we have to approximate the
2601 * time sleeping. This is because we can't synchronize
2602 * clock_task between the two cpus, and it is not
2603 * guaranteed to be read-safe. Instead, we can
2604 * approximate this using our carried decays, which are
2605 * explicitly atomically readable.
2606 */
2607 se->avg.last_runnable_update -= (-se->avg.decay_count)
2608 << 20;
2609 update_entity_load_avg(se, 0);
2610 /* Indicate that we're now synchronized and on-rq */
2611 se->avg.decay_count = 0;
2612 }
2613 wakeup = 0;
2614 } else {
2615 __synchronize_entity_decay(se);
2616 }
2617
2618 /* migrated tasks did not contribute to our blocked load */
2619 if (wakeup) {
2620 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2621 update_entity_load_avg(se, 0);
2622 }
2623
2624 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2625 /* we force update consideration on load-balancer moves */
2626 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2627}
2628
2629/*
2630 * Remove se's load from this cfs_rq child load-average, if the entity is
2631 * transitioning to a blocked state we track its projected decay using
2632 * blocked_load_avg.
2633 */
2634static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2635 struct sched_entity *se,
2636 int sleep)
2637{
2638 update_entity_load_avg(se, 1);
2639 /* we force update consideration on load-balancer moves */
2640 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2641
2642 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2643 if (sleep) {
2644 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2645 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2646 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2647}
2648
2649/*
2650 * Update the rq's load with the elapsed running time before entering
2651 * idle. if the last scheduled task is not a CFS task, idle_enter will
2652 * be the only way to update the runnable statistic.
2653 */
2654void idle_enter_fair(struct rq *this_rq)
2655{
2656 update_rq_runnable_avg(this_rq, 1);
2657}
2658
2659/*
2660 * Update the rq's load with the elapsed idle time before a task is
2661 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2662 * be the only way to update the runnable statistic.
2663 */
2664void idle_exit_fair(struct rq *this_rq)
2665{
2666 update_rq_runnable_avg(this_rq, 0);
2667}
2668
2669static int idle_balance(struct rq *this_rq);
2670
2671#else /* CONFIG_SMP */
2672
2673static inline void update_entity_load_avg(struct sched_entity *se,
2674 int update_cfs_rq) {}
2675static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2676static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2677 struct sched_entity *se,
2678 int wakeup) {}
2679static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2680 struct sched_entity *se,
2681 int sleep) {}
2682static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2683 int force_update) {}
2684
2685static inline int idle_balance(struct rq *rq)
2686{
2687 return 0;
2688}
2689
2690#endif /* CONFIG_SMP */
2691
2692static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2693{
2694#ifdef CONFIG_SCHEDSTATS
2695 struct task_struct *tsk = NULL;
2696
2697 if (entity_is_task(se))
2698 tsk = task_of(se);
2699
2700 if (se->statistics.sleep_start) {
2701 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2702
2703 if ((s64)delta < 0)
2704 delta = 0;
2705
2706 if (unlikely(delta > se->statistics.sleep_max))
2707 se->statistics.sleep_max = delta;
2708
2709 se->statistics.sleep_start = 0;
2710 se->statistics.sum_sleep_runtime += delta;
2711
2712 if (tsk) {
2713 account_scheduler_latency(tsk, delta >> 10, 1);
2714 trace_sched_stat_sleep(tsk, delta);
2715 }
2716 }
2717 if (se->statistics.block_start) {
2718 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2719
2720 if ((s64)delta < 0)
2721 delta = 0;
2722
2723 if (unlikely(delta > se->statistics.block_max))
2724 se->statistics.block_max = delta;
2725
2726 se->statistics.block_start = 0;
2727 se->statistics.sum_sleep_runtime += delta;
2728
2729 if (tsk) {
2730 if (tsk->in_iowait) {
2731 se->statistics.iowait_sum += delta;
2732 se->statistics.iowait_count++;
2733 trace_sched_stat_iowait(tsk, delta);
2734 }
2735
2736 trace_sched_stat_blocked(tsk, delta);
2737
2738 /*
2739 * Blocking time is in units of nanosecs, so shift by
2740 * 20 to get a milliseconds-range estimation of the
2741 * amount of time that the task spent sleeping:
2742 */
2743 if (unlikely(prof_on == SLEEP_PROFILING)) {
2744 profile_hits(SLEEP_PROFILING,
2745 (void *)get_wchan(tsk),
2746 delta >> 20);
2747 }
2748 account_scheduler_latency(tsk, delta >> 10, 0);
2749 }
2750 }
2751#endif
2752}
2753
2754static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2755{
2756#ifdef CONFIG_SCHED_DEBUG
2757 s64 d = se->vruntime - cfs_rq->min_vruntime;
2758
2759 if (d < 0)
2760 d = -d;
2761
2762 if (d > 3*sysctl_sched_latency)
2763 schedstat_inc(cfs_rq, nr_spread_over);
2764#endif
2765}
2766
2767static void
2768place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2769{
2770 u64 vruntime = cfs_rq->min_vruntime;
2771
2772 /*
2773 * The 'current' period is already promised to the current tasks,
2774 * however the extra weight of the new task will slow them down a
2775 * little, place the new task so that it fits in the slot that
2776 * stays open at the end.
2777 */
2778 if (initial && sched_feat(START_DEBIT))
2779 vruntime += sched_vslice(cfs_rq, se);
2780
2781 /* sleeps up to a single latency don't count. */
2782 if (!initial) {
2783 unsigned long thresh = sysctl_sched_latency;
2784
2785 /*
2786 * Halve their sleep time's effect, to allow
2787 * for a gentler effect of sleepers:
2788 */
2789 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2790 thresh >>= 1;
2791
2792 vruntime -= thresh;
2793 }
2794
2795 /* ensure we never gain time by being placed backwards. */
2796 se->vruntime = max_vruntime(se->vruntime, vruntime);
2797}
2798
2799static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2800
2801static void
2802enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2803{
2804 /*
2805 * Update the normalized vruntime before updating min_vruntime
2806 * through calling update_curr().
2807 */
2808 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2809 se->vruntime += cfs_rq->min_vruntime;
2810
2811 /*
2812 * Update run-time statistics of the 'current'.
2813 */
2814 update_curr(cfs_rq);
2815 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2816 account_entity_enqueue(cfs_rq, se);
2817 update_cfs_shares(cfs_rq);
2818
2819 if (flags & ENQUEUE_WAKEUP) {
2820 place_entity(cfs_rq, se, 0);
2821 enqueue_sleeper(cfs_rq, se);
2822 }
2823
2824 update_stats_enqueue(cfs_rq, se);
2825 check_spread(cfs_rq, se);
2826 if (se != cfs_rq->curr)
2827 __enqueue_entity(cfs_rq, se);
2828 se->on_rq = 1;
2829
2830 if (cfs_rq->nr_running == 1) {
2831 list_add_leaf_cfs_rq(cfs_rq);
2832 check_enqueue_throttle(cfs_rq);
2833 }
2834}
2835
2836static void __clear_buddies_last(struct sched_entity *se)
2837{
2838 for_each_sched_entity(se) {
2839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2840 if (cfs_rq->last != se)
2841 break;
2842
2843 cfs_rq->last = NULL;
2844 }
2845}
2846
2847static void __clear_buddies_next(struct sched_entity *se)
2848{
2849 for_each_sched_entity(se) {
2850 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2851 if (cfs_rq->next != se)
2852 break;
2853
2854 cfs_rq->next = NULL;
2855 }
2856}
2857
2858static void __clear_buddies_skip(struct sched_entity *se)
2859{
2860 for_each_sched_entity(se) {
2861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2862 if (cfs_rq->skip != se)
2863 break;
2864
2865 cfs_rq->skip = NULL;
2866 }
2867}
2868
2869static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2870{
2871 if (cfs_rq->last == se)
2872 __clear_buddies_last(se);
2873
2874 if (cfs_rq->next == se)
2875 __clear_buddies_next(se);
2876
2877 if (cfs_rq->skip == se)
2878 __clear_buddies_skip(se);
2879}
2880
2881static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2882
2883static void
2884dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2885{
2886 /*
2887 * Update run-time statistics of the 'current'.
2888 */
2889 update_curr(cfs_rq);
2890 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2891
2892 update_stats_dequeue(cfs_rq, se);
2893 if (flags & DEQUEUE_SLEEP) {
2894#ifdef CONFIG_SCHEDSTATS
2895 if (entity_is_task(se)) {
2896 struct task_struct *tsk = task_of(se);
2897
2898 if (tsk->state & TASK_INTERRUPTIBLE)
2899 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2900 if (tsk->state & TASK_UNINTERRUPTIBLE)
2901 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2902 }
2903#endif
2904 }
2905
2906 clear_buddies(cfs_rq, se);
2907
2908 if (se != cfs_rq->curr)
2909 __dequeue_entity(cfs_rq, se);
2910 se->on_rq = 0;
2911 account_entity_dequeue(cfs_rq, se);
2912
2913 /*
2914 * Normalize the entity after updating the min_vruntime because the
2915 * update can refer to the ->curr item and we need to reflect this
2916 * movement in our normalized position.
2917 */
2918 if (!(flags & DEQUEUE_SLEEP))
2919 se->vruntime -= cfs_rq->min_vruntime;
2920
2921 /* return excess runtime on last dequeue */
2922 return_cfs_rq_runtime(cfs_rq);
2923
2924 update_min_vruntime(cfs_rq);
2925 update_cfs_shares(cfs_rq);
2926}
2927
2928/*
2929 * Preempt the current task with a newly woken task if needed:
2930 */
2931static void
2932check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2933{
2934 unsigned long ideal_runtime, delta_exec;
2935 struct sched_entity *se;
2936 s64 delta;
2937
2938 ideal_runtime = sched_slice(cfs_rq, curr);
2939 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2940 if (delta_exec > ideal_runtime) {
2941 resched_curr(rq_of(cfs_rq));
2942 /*
2943 * The current task ran long enough, ensure it doesn't get
2944 * re-elected due to buddy favours.
2945 */
2946 clear_buddies(cfs_rq, curr);
2947 return;
2948 }
2949
2950 /*
2951 * Ensure that a task that missed wakeup preemption by a
2952 * narrow margin doesn't have to wait for a full slice.
2953 * This also mitigates buddy induced latencies under load.
2954 */
2955 if (delta_exec < sysctl_sched_min_granularity)
2956 return;
2957
2958 se = __pick_first_entity(cfs_rq);
2959 delta = curr->vruntime - se->vruntime;
2960
2961 if (delta < 0)
2962 return;
2963
2964 if (delta > ideal_runtime)
2965 resched_curr(rq_of(cfs_rq));
2966}
2967
2968static void
2969set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2970{
2971 /* 'current' is not kept within the tree. */
2972 if (se->on_rq) {
2973 /*
2974 * Any task has to be enqueued before it get to execute on
2975 * a CPU. So account for the time it spent waiting on the
2976 * runqueue.
2977 */
2978 update_stats_wait_end(cfs_rq, se);
2979 __dequeue_entity(cfs_rq, se);
2980 }
2981
2982 update_stats_curr_start(cfs_rq, se);
2983 cfs_rq->curr = se;
2984#ifdef CONFIG_SCHEDSTATS
2985 /*
2986 * Track our maximum slice length, if the CPU's load is at
2987 * least twice that of our own weight (i.e. dont track it
2988 * when there are only lesser-weight tasks around):
2989 */
2990 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2991 se->statistics.slice_max = max(se->statistics.slice_max,
2992 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2993 }
2994#endif
2995 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2996}
2997
2998static int
2999wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3000
3001/*
3002 * Pick the next process, keeping these things in mind, in this order:
3003 * 1) keep things fair between processes/task groups
3004 * 2) pick the "next" process, since someone really wants that to run
3005 * 3) pick the "last" process, for cache locality
3006 * 4) do not run the "skip" process, if something else is available
3007 */
3008static struct sched_entity *
3009pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3010{
3011 struct sched_entity *left = __pick_first_entity(cfs_rq);
3012 struct sched_entity *se;
3013
3014 /*
3015 * If curr is set we have to see if its left of the leftmost entity
3016 * still in the tree, provided there was anything in the tree at all.
3017 */
3018 if (!left || (curr && entity_before(curr, left)))
3019 left = curr;
3020
3021 se = left; /* ideally we run the leftmost entity */
3022
3023 /*
3024 * Avoid running the skip buddy, if running something else can
3025 * be done without getting too unfair.
3026 */
3027 if (cfs_rq->skip == se) {
3028 struct sched_entity *second;
3029
3030 if (se == curr) {
3031 second = __pick_first_entity(cfs_rq);
3032 } else {
3033 second = __pick_next_entity(se);
3034 if (!second || (curr && entity_before(curr, second)))
3035 second = curr;
3036 }
3037
3038 if (second && wakeup_preempt_entity(second, left) < 1)
3039 se = second;
3040 }
3041
3042 /*
3043 * Prefer last buddy, try to return the CPU to a preempted task.
3044 */
3045 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3046 se = cfs_rq->last;
3047
3048 /*
3049 * Someone really wants this to run. If it's not unfair, run it.
3050 */
3051 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3052 se = cfs_rq->next;
3053
3054 clear_buddies(cfs_rq, se);
3055
3056 return se;
3057}
3058
3059static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3060
3061static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3062{
3063 /*
3064 * If still on the runqueue then deactivate_task()
3065 * was not called and update_curr() has to be done:
3066 */
3067 if (prev->on_rq)
3068 update_curr(cfs_rq);
3069
3070 /* throttle cfs_rqs exceeding runtime */
3071 check_cfs_rq_runtime(cfs_rq);
3072
3073 check_spread(cfs_rq, prev);
3074 if (prev->on_rq) {
3075 update_stats_wait_start(cfs_rq, prev);
3076 /* Put 'current' back into the tree. */
3077 __enqueue_entity(cfs_rq, prev);
3078 /* in !on_rq case, update occurred at dequeue */
3079 update_entity_load_avg(prev, 1);
3080 }
3081 cfs_rq->curr = NULL;
3082}
3083
3084static void
3085entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3086{
3087 /*
3088 * Update run-time statistics of the 'current'.
3089 */
3090 update_curr(cfs_rq);
3091
3092 /*
3093 * Ensure that runnable average is periodically updated.
3094 */
3095 update_entity_load_avg(curr, 1);
3096 update_cfs_rq_blocked_load(cfs_rq, 1);
3097 update_cfs_shares(cfs_rq);
3098
3099#ifdef CONFIG_SCHED_HRTICK
3100 /*
3101 * queued ticks are scheduled to match the slice, so don't bother
3102 * validating it and just reschedule.
3103 */
3104 if (queued) {
3105 resched_curr(rq_of(cfs_rq));
3106 return;
3107 }
3108 /*
3109 * don't let the period tick interfere with the hrtick preemption
3110 */
3111 if (!sched_feat(DOUBLE_TICK) &&
3112 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3113 return;
3114#endif
3115
3116 if (cfs_rq->nr_running > 1)
3117 check_preempt_tick(cfs_rq, curr);
3118}
3119
3120
3121/**************************************************
3122 * CFS bandwidth control machinery
3123 */
3124
3125#ifdef CONFIG_CFS_BANDWIDTH
3126
3127#ifdef HAVE_JUMP_LABEL
3128static struct static_key __cfs_bandwidth_used;
3129
3130static inline bool cfs_bandwidth_used(void)
3131{
3132 return static_key_false(&__cfs_bandwidth_used);
3133}
3134
3135void cfs_bandwidth_usage_inc(void)
3136{
3137 static_key_slow_inc(&__cfs_bandwidth_used);
3138}
3139
3140void cfs_bandwidth_usage_dec(void)
3141{
3142 static_key_slow_dec(&__cfs_bandwidth_used);
3143}
3144#else /* HAVE_JUMP_LABEL */
3145static bool cfs_bandwidth_used(void)
3146{
3147 return true;
3148}
3149
3150void cfs_bandwidth_usage_inc(void) {}
3151void cfs_bandwidth_usage_dec(void) {}
3152#endif /* HAVE_JUMP_LABEL */
3153
3154/*
3155 * default period for cfs group bandwidth.
3156 * default: 0.1s, units: nanoseconds
3157 */
3158static inline u64 default_cfs_period(void)
3159{
3160 return 100000000ULL;
3161}
3162
3163static inline u64 sched_cfs_bandwidth_slice(void)
3164{
3165 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3166}
3167
3168/*
3169 * Replenish runtime according to assigned quota and update expiration time.
3170 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3171 * additional synchronization around rq->lock.
3172 *
3173 * requires cfs_b->lock
3174 */
3175void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3176{
3177 u64 now;
3178
3179 if (cfs_b->quota == RUNTIME_INF)
3180 return;
3181
3182 now = sched_clock_cpu(smp_processor_id());
3183 cfs_b->runtime = cfs_b->quota;
3184 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3185}
3186
3187static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3188{
3189 return &tg->cfs_bandwidth;
3190}
3191
3192/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3193static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3194{
3195 if (unlikely(cfs_rq->throttle_count))
3196 return cfs_rq->throttled_clock_task;
3197
3198 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3199}
3200
3201/* returns 0 on failure to allocate runtime */
3202static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3203{
3204 struct task_group *tg = cfs_rq->tg;
3205 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3206 u64 amount = 0, min_amount, expires;
3207
3208 /* note: this is a positive sum as runtime_remaining <= 0 */
3209 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3210
3211 raw_spin_lock(&cfs_b->lock);
3212 if (cfs_b->quota == RUNTIME_INF)
3213 amount = min_amount;
3214 else {
3215 /*
3216 * If the bandwidth pool has become inactive, then at least one
3217 * period must have elapsed since the last consumption.
3218 * Refresh the global state and ensure bandwidth timer becomes
3219 * active.
3220 */
3221 if (!cfs_b->timer_active) {
3222 __refill_cfs_bandwidth_runtime(cfs_b);
3223 __start_cfs_bandwidth(cfs_b, false);
3224 }
3225
3226 if (cfs_b->runtime > 0) {
3227 amount = min(cfs_b->runtime, min_amount);
3228 cfs_b->runtime -= amount;
3229 cfs_b->idle = 0;
3230 }
3231 }
3232 expires = cfs_b->runtime_expires;
3233 raw_spin_unlock(&cfs_b->lock);
3234
3235 cfs_rq->runtime_remaining += amount;
3236 /*
3237 * we may have advanced our local expiration to account for allowed
3238 * spread between our sched_clock and the one on which runtime was
3239 * issued.
3240 */
3241 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3242 cfs_rq->runtime_expires = expires;
3243
3244 return cfs_rq->runtime_remaining > 0;
3245}
3246
3247/*
3248 * Note: This depends on the synchronization provided by sched_clock and the
3249 * fact that rq->clock snapshots this value.
3250 */
3251static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3252{
3253 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3254
3255 /* if the deadline is ahead of our clock, nothing to do */
3256 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3257 return;
3258
3259 if (cfs_rq->runtime_remaining < 0)
3260 return;
3261
3262 /*
3263 * If the local deadline has passed we have to consider the
3264 * possibility that our sched_clock is 'fast' and the global deadline
3265 * has not truly expired.
3266 *
3267 * Fortunately we can check determine whether this the case by checking
3268 * whether the global deadline has advanced. It is valid to compare
3269 * cfs_b->runtime_expires without any locks since we only care about
3270 * exact equality, so a partial write will still work.
3271 */
3272
3273 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3274 /* extend local deadline, drift is bounded above by 2 ticks */
3275 cfs_rq->runtime_expires += TICK_NSEC;
3276 } else {
3277 /* global deadline is ahead, expiration has passed */
3278 cfs_rq->runtime_remaining = 0;
3279 }
3280}
3281
3282static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3283{
3284 /* dock delta_exec before expiring quota (as it could span periods) */
3285 cfs_rq->runtime_remaining -= delta_exec;
3286 expire_cfs_rq_runtime(cfs_rq);
3287
3288 if (likely(cfs_rq->runtime_remaining > 0))
3289 return;
3290
3291 /*
3292 * if we're unable to extend our runtime we resched so that the active
3293 * hierarchy can be throttled
3294 */
3295 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3296 resched_curr(rq_of(cfs_rq));
3297}
3298
3299static __always_inline
3300void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3301{
3302 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3303 return;
3304
3305 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3306}
3307
3308static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3309{
3310 return cfs_bandwidth_used() && cfs_rq->throttled;
3311}
3312
3313/* check whether cfs_rq, or any parent, is throttled */
3314static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3315{
3316 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3317}
3318
3319/*
3320 * Ensure that neither of the group entities corresponding to src_cpu or
3321 * dest_cpu are members of a throttled hierarchy when performing group
3322 * load-balance operations.
3323 */
3324static inline int throttled_lb_pair(struct task_group *tg,
3325 int src_cpu, int dest_cpu)
3326{
3327 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3328
3329 src_cfs_rq = tg->cfs_rq[src_cpu];
3330 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3331
3332 return throttled_hierarchy(src_cfs_rq) ||
3333 throttled_hierarchy(dest_cfs_rq);
3334}
3335
3336/* updated child weight may affect parent so we have to do this bottom up */
3337static int tg_unthrottle_up(struct task_group *tg, void *data)
3338{
3339 struct rq *rq = data;
3340 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3341
3342 cfs_rq->throttle_count--;
3343#ifdef CONFIG_SMP
3344 if (!cfs_rq->throttle_count) {
3345 /* adjust cfs_rq_clock_task() */
3346 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3347 cfs_rq->throttled_clock_task;
3348 }
3349#endif
3350
3351 return 0;
3352}
3353
3354static int tg_throttle_down(struct task_group *tg, void *data)
3355{
3356 struct rq *rq = data;
3357 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3358
3359 /* group is entering throttled state, stop time */
3360 if (!cfs_rq->throttle_count)
3361 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3362 cfs_rq->throttle_count++;
3363
3364 return 0;
3365}
3366
3367static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3368{
3369 struct rq *rq = rq_of(cfs_rq);
3370 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3371 struct sched_entity *se;
3372 long task_delta, dequeue = 1;
3373
3374 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3375
3376 /* freeze hierarchy runnable averages while throttled */
3377 rcu_read_lock();
3378 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3379 rcu_read_unlock();
3380
3381 task_delta = cfs_rq->h_nr_running;
3382 for_each_sched_entity(se) {
3383 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3384 /* throttled entity or throttle-on-deactivate */
3385 if (!se->on_rq)
3386 break;
3387
3388 if (dequeue)
3389 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3390 qcfs_rq->h_nr_running -= task_delta;
3391
3392 if (qcfs_rq->load.weight)
3393 dequeue = 0;
3394 }
3395
3396 if (!se)
3397 sub_nr_running(rq, task_delta);
3398
3399 cfs_rq->throttled = 1;
3400 cfs_rq->throttled_clock = rq_clock(rq);
3401 raw_spin_lock(&cfs_b->lock);
3402 /*
3403 * Add to the _head_ of the list, so that an already-started
3404 * distribute_cfs_runtime will not see us
3405 */
3406 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3407 if (!cfs_b->timer_active)
3408 __start_cfs_bandwidth(cfs_b, false);
3409 raw_spin_unlock(&cfs_b->lock);
3410}
3411
3412void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3413{
3414 struct rq *rq = rq_of(cfs_rq);
3415 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3416 struct sched_entity *se;
3417 int enqueue = 1;
3418 long task_delta;
3419
3420 se = cfs_rq->tg->se[cpu_of(rq)];
3421
3422 cfs_rq->throttled = 0;
3423
3424 update_rq_clock(rq);
3425
3426 raw_spin_lock(&cfs_b->lock);
3427 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3428 list_del_rcu(&cfs_rq->throttled_list);
3429 raw_spin_unlock(&cfs_b->lock);
3430
3431 /* update hierarchical throttle state */
3432 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3433
3434 if (!cfs_rq->load.weight)
3435 return;
3436
3437 task_delta = cfs_rq->h_nr_running;
3438 for_each_sched_entity(se) {
3439 if (se->on_rq)
3440 enqueue = 0;
3441
3442 cfs_rq = cfs_rq_of(se);
3443 if (enqueue)
3444 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3445 cfs_rq->h_nr_running += task_delta;
3446
3447 if (cfs_rq_throttled(cfs_rq))
3448 break;
3449 }
3450
3451 if (!se)
3452 add_nr_running(rq, task_delta);
3453
3454 /* determine whether we need to wake up potentially idle cpu */
3455 if (rq->curr == rq->idle && rq->cfs.nr_running)
3456 resched_curr(rq);
3457}
3458
3459static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3460 u64 remaining, u64 expires)
3461{
3462 struct cfs_rq *cfs_rq;
3463 u64 runtime;
3464 u64 starting_runtime = remaining;
3465
3466 rcu_read_lock();
3467 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3468 throttled_list) {
3469 struct rq *rq = rq_of(cfs_rq);
3470
3471 raw_spin_lock(&rq->lock);
3472 if (!cfs_rq_throttled(cfs_rq))
3473 goto next;
3474
3475 runtime = -cfs_rq->runtime_remaining + 1;
3476 if (runtime > remaining)
3477 runtime = remaining;
3478 remaining -= runtime;
3479
3480 cfs_rq->runtime_remaining += runtime;
3481 cfs_rq->runtime_expires = expires;
3482
3483 /* we check whether we're throttled above */
3484 if (cfs_rq->runtime_remaining > 0)
3485 unthrottle_cfs_rq(cfs_rq);
3486
3487next:
3488 raw_spin_unlock(&rq->lock);
3489
3490 if (!remaining)
3491 break;
3492 }
3493 rcu_read_unlock();
3494
3495 return starting_runtime - remaining;
3496}
3497
3498/*
3499 * Responsible for refilling a task_group's bandwidth and unthrottling its
3500 * cfs_rqs as appropriate. If there has been no activity within the last
3501 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3502 * used to track this state.
3503 */
3504static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3505{
3506 u64 runtime, runtime_expires;
3507 int throttled;
3508
3509 /* no need to continue the timer with no bandwidth constraint */
3510 if (cfs_b->quota == RUNTIME_INF)
3511 goto out_deactivate;
3512
3513 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3514 cfs_b->nr_periods += overrun;
3515
3516 /*
3517 * idle depends on !throttled (for the case of a large deficit), and if
3518 * we're going inactive then everything else can be deferred
3519 */
3520 if (cfs_b->idle && !throttled)
3521 goto out_deactivate;
3522
3523 /*
3524 * if we have relooped after returning idle once, we need to update our
3525 * status as actually running, so that other cpus doing
3526 * __start_cfs_bandwidth will stop trying to cancel us.
3527 */
3528 cfs_b->timer_active = 1;
3529
3530 __refill_cfs_bandwidth_runtime(cfs_b);
3531
3532 if (!throttled) {
3533 /* mark as potentially idle for the upcoming period */
3534 cfs_b->idle = 1;
3535 return 0;
3536 }
3537
3538 /* account preceding periods in which throttling occurred */
3539 cfs_b->nr_throttled += overrun;
3540
3541 runtime_expires = cfs_b->runtime_expires;
3542
3543 /*
3544 * This check is repeated as we are holding onto the new bandwidth while
3545 * we unthrottle. This can potentially race with an unthrottled group
3546 * trying to acquire new bandwidth from the global pool. This can result
3547 * in us over-using our runtime if it is all used during this loop, but
3548 * only by limited amounts in that extreme case.
3549 */
3550 while (throttled && cfs_b->runtime > 0) {
3551 runtime = cfs_b->runtime;
3552 raw_spin_unlock(&cfs_b->lock);
3553 /* we can't nest cfs_b->lock while distributing bandwidth */
3554 runtime = distribute_cfs_runtime(cfs_b, runtime,
3555 runtime_expires);
3556 raw_spin_lock(&cfs_b->lock);
3557
3558 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3559
3560 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3561 }
3562
3563 /*
3564 * While we are ensured activity in the period following an
3565 * unthrottle, this also covers the case in which the new bandwidth is
3566 * insufficient to cover the existing bandwidth deficit. (Forcing the
3567 * timer to remain active while there are any throttled entities.)
3568 */
3569 cfs_b->idle = 0;
3570
3571 return 0;
3572
3573out_deactivate:
3574 cfs_b->timer_active = 0;
3575 return 1;
3576}
3577
3578/* a cfs_rq won't donate quota below this amount */
3579static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3580/* minimum remaining period time to redistribute slack quota */
3581static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3582/* how long we wait to gather additional slack before distributing */
3583static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3584
3585/*
3586 * Are we near the end of the current quota period?
3587 *
3588 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3589 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3590 * migrate_hrtimers, base is never cleared, so we are fine.
3591 */
3592static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3593{
3594 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3595 u64 remaining;
3596
3597 /* if the call-back is running a quota refresh is already occurring */
3598 if (hrtimer_callback_running(refresh_timer))
3599 return 1;
3600
3601 /* is a quota refresh about to occur? */
3602 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3603 if (remaining < min_expire)
3604 return 1;
3605
3606 return 0;
3607}
3608
3609static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3610{
3611 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3612
3613 /* if there's a quota refresh soon don't bother with slack */
3614 if (runtime_refresh_within(cfs_b, min_left))
3615 return;
3616
3617 start_bandwidth_timer(&cfs_b->slack_timer,
3618 ns_to_ktime(cfs_bandwidth_slack_period));
3619}
3620
3621/* we know any runtime found here is valid as update_curr() precedes return */
3622static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3623{
3624 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3625 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3626
3627 if (slack_runtime <= 0)
3628 return;
3629
3630 raw_spin_lock(&cfs_b->lock);
3631 if (cfs_b->quota != RUNTIME_INF &&
3632 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3633 cfs_b->runtime += slack_runtime;
3634
3635 /* we are under rq->lock, defer unthrottling using a timer */
3636 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3637 !list_empty(&cfs_b->throttled_cfs_rq))
3638 start_cfs_slack_bandwidth(cfs_b);
3639 }
3640 raw_spin_unlock(&cfs_b->lock);
3641
3642 /* even if it's not valid for return we don't want to try again */
3643 cfs_rq->runtime_remaining -= slack_runtime;
3644}
3645
3646static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3647{
3648 if (!cfs_bandwidth_used())
3649 return;
3650
3651 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3652 return;
3653
3654 __return_cfs_rq_runtime(cfs_rq);
3655}
3656
3657/*
3658 * This is done with a timer (instead of inline with bandwidth return) since
3659 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3660 */
3661static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3662{
3663 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3664 u64 expires;
3665
3666 /* confirm we're still not at a refresh boundary */
3667 raw_spin_lock(&cfs_b->lock);
3668 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3669 raw_spin_unlock(&cfs_b->lock);
3670 return;
3671 }
3672
3673 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3674 runtime = cfs_b->runtime;
3675
3676 expires = cfs_b->runtime_expires;
3677 raw_spin_unlock(&cfs_b->lock);
3678
3679 if (!runtime)
3680 return;
3681
3682 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3683
3684 raw_spin_lock(&cfs_b->lock);
3685 if (expires == cfs_b->runtime_expires)
3686 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3687 raw_spin_unlock(&cfs_b->lock);
3688}
3689
3690/*
3691 * When a group wakes up we want to make sure that its quota is not already
3692 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3693 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3694 */
3695static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3696{
3697 if (!cfs_bandwidth_used())
3698 return;
3699
3700 /* an active group must be handled by the update_curr()->put() path */
3701 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3702 return;
3703
3704 /* ensure the group is not already throttled */
3705 if (cfs_rq_throttled(cfs_rq))
3706 return;
3707
3708 /* update runtime allocation */
3709 account_cfs_rq_runtime(cfs_rq, 0);
3710 if (cfs_rq->runtime_remaining <= 0)
3711 throttle_cfs_rq(cfs_rq);
3712}
3713
3714/* conditionally throttle active cfs_rq's from put_prev_entity() */
3715static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3716{
3717 if (!cfs_bandwidth_used())
3718 return false;
3719
3720 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3721 return false;
3722
3723 /*
3724 * it's possible for a throttled entity to be forced into a running
3725 * state (e.g. set_curr_task), in this case we're finished.
3726 */
3727 if (cfs_rq_throttled(cfs_rq))
3728 return true;
3729
3730 throttle_cfs_rq(cfs_rq);
3731 return true;
3732}
3733
3734static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3735{
3736 struct cfs_bandwidth *cfs_b =
3737 container_of(timer, struct cfs_bandwidth, slack_timer);
3738 do_sched_cfs_slack_timer(cfs_b);
3739
3740 return HRTIMER_NORESTART;
3741}
3742
3743static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3744{
3745 struct cfs_bandwidth *cfs_b =
3746 container_of(timer, struct cfs_bandwidth, period_timer);
3747 ktime_t now;
3748 int overrun;
3749 int idle = 0;
3750
3751 raw_spin_lock(&cfs_b->lock);
3752 for (;;) {
3753 now = hrtimer_cb_get_time(timer);
3754 overrun = hrtimer_forward(timer, now, cfs_b->period);
3755
3756 if (!overrun)
3757 break;
3758
3759 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3760 }
3761 raw_spin_unlock(&cfs_b->lock);
3762
3763 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3764}
3765
3766void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767{
3768 raw_spin_lock_init(&cfs_b->lock);
3769 cfs_b->runtime = 0;
3770 cfs_b->quota = RUNTIME_INF;
3771 cfs_b->period = ns_to_ktime(default_cfs_period());
3772
3773 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3774 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3775 cfs_b->period_timer.function = sched_cfs_period_timer;
3776 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3777 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3778}
3779
3780static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3781{
3782 cfs_rq->runtime_enabled = 0;
3783 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3784}
3785
3786/* requires cfs_b->lock, may release to reprogram timer */
3787void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3788{
3789 /*
3790 * The timer may be active because we're trying to set a new bandwidth
3791 * period or because we're racing with the tear-down path
3792 * (timer_active==0 becomes visible before the hrtimer call-back
3793 * terminates). In either case we ensure that it's re-programmed
3794 */
3795 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3796 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3797 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3798 raw_spin_unlock(&cfs_b->lock);
3799 cpu_relax();
3800 raw_spin_lock(&cfs_b->lock);
3801 /* if someone else restarted the timer then we're done */
3802 if (!force && cfs_b->timer_active)
3803 return;
3804 }
3805
3806 cfs_b->timer_active = 1;
3807 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3808}
3809
3810static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3811{
3812 hrtimer_cancel(&cfs_b->period_timer);
3813 hrtimer_cancel(&cfs_b->slack_timer);
3814}
3815
3816static void __maybe_unused update_runtime_enabled(struct rq *rq)
3817{
3818 struct cfs_rq *cfs_rq;
3819
3820 for_each_leaf_cfs_rq(rq, cfs_rq) {
3821 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3822
3823 raw_spin_lock(&cfs_b->lock);
3824 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3825 raw_spin_unlock(&cfs_b->lock);
3826 }
3827}
3828
3829static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3830{
3831 struct cfs_rq *cfs_rq;
3832
3833 for_each_leaf_cfs_rq(rq, cfs_rq) {
3834 if (!cfs_rq->runtime_enabled)
3835 continue;
3836
3837 /*
3838 * clock_task is not advancing so we just need to make sure
3839 * there's some valid quota amount
3840 */
3841 cfs_rq->runtime_remaining = 1;
3842 /*
3843 * Offline rq is schedulable till cpu is completely disabled
3844 * in take_cpu_down(), so we prevent new cfs throttling here.
3845 */
3846 cfs_rq->runtime_enabled = 0;
3847
3848 if (cfs_rq_throttled(cfs_rq))
3849 unthrottle_cfs_rq(cfs_rq);
3850 }
3851}
3852
3853#else /* CONFIG_CFS_BANDWIDTH */
3854static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3855{
3856 return rq_clock_task(rq_of(cfs_rq));
3857}
3858
3859static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3860static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3861static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3862static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3863
3864static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3865{
3866 return 0;
3867}
3868
3869static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3870{
3871 return 0;
3872}
3873
3874static inline int throttled_lb_pair(struct task_group *tg,
3875 int src_cpu, int dest_cpu)
3876{
3877 return 0;
3878}
3879
3880void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3881
3882#ifdef CONFIG_FAIR_GROUP_SCHED
3883static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3884#endif
3885
3886static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3887{
3888 return NULL;
3889}
3890static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3891static inline void update_runtime_enabled(struct rq *rq) {}
3892static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3893
3894#endif /* CONFIG_CFS_BANDWIDTH */
3895
3896/**************************************************
3897 * CFS operations on tasks:
3898 */
3899
3900#ifdef CONFIG_SCHED_HRTICK
3901static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3902{
3903 struct sched_entity *se = &p->se;
3904 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3905
3906 WARN_ON(task_rq(p) != rq);
3907
3908 if (cfs_rq->nr_running > 1) {
3909 u64 slice = sched_slice(cfs_rq, se);
3910 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3911 s64 delta = slice - ran;
3912
3913 if (delta < 0) {
3914 if (rq->curr == p)
3915 resched_curr(rq);
3916 return;
3917 }
3918 hrtick_start(rq, delta);
3919 }
3920}
3921
3922/*
3923 * called from enqueue/dequeue and updates the hrtick when the
3924 * current task is from our class and nr_running is low enough
3925 * to matter.
3926 */
3927static void hrtick_update(struct rq *rq)
3928{
3929 struct task_struct *curr = rq->curr;
3930
3931 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3932 return;
3933
3934 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3935 hrtick_start_fair(rq, curr);
3936}
3937#else /* !CONFIG_SCHED_HRTICK */
3938static inline void
3939hrtick_start_fair(struct rq *rq, struct task_struct *p)
3940{
3941}
3942
3943static inline void hrtick_update(struct rq *rq)
3944{
3945}
3946#endif
3947
3948/*
3949 * The enqueue_task method is called before nr_running is
3950 * increased. Here we update the fair scheduling stats and
3951 * then put the task into the rbtree:
3952 */
3953static void
3954enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3955{
3956 struct cfs_rq *cfs_rq;
3957 struct sched_entity *se = &p->se;
3958
3959 for_each_sched_entity(se) {
3960 if (se->on_rq)
3961 break;
3962 cfs_rq = cfs_rq_of(se);
3963 enqueue_entity(cfs_rq, se, flags);
3964
3965 /*
3966 * end evaluation on encountering a throttled cfs_rq
3967 *
3968 * note: in the case of encountering a throttled cfs_rq we will
3969 * post the final h_nr_running increment below.
3970 */
3971 if (cfs_rq_throttled(cfs_rq))
3972 break;
3973 cfs_rq->h_nr_running++;
3974
3975 flags = ENQUEUE_WAKEUP;
3976 }
3977
3978 for_each_sched_entity(se) {
3979 cfs_rq = cfs_rq_of(se);
3980 cfs_rq->h_nr_running++;
3981
3982 if (cfs_rq_throttled(cfs_rq))
3983 break;
3984
3985 update_cfs_shares(cfs_rq);
3986 update_entity_load_avg(se, 1);
3987 }
3988
3989 if (!se) {
3990 update_rq_runnable_avg(rq, rq->nr_running);
3991 add_nr_running(rq, 1);
3992 }
3993 hrtick_update(rq);
3994}
3995
3996static void set_next_buddy(struct sched_entity *se);
3997
3998/*
3999 * The dequeue_task method is called before nr_running is
4000 * decreased. We remove the task from the rbtree and
4001 * update the fair scheduling stats:
4002 */
4003static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4004{
4005 struct cfs_rq *cfs_rq;
4006 struct sched_entity *se = &p->se;
4007 int task_sleep = flags & DEQUEUE_SLEEP;
4008
4009 for_each_sched_entity(se) {
4010 cfs_rq = cfs_rq_of(se);
4011 dequeue_entity(cfs_rq, se, flags);
4012
4013 /*
4014 * end evaluation on encountering a throttled cfs_rq
4015 *
4016 * note: in the case of encountering a throttled cfs_rq we will
4017 * post the final h_nr_running decrement below.
4018 */
4019 if (cfs_rq_throttled(cfs_rq))
4020 break;
4021 cfs_rq->h_nr_running--;
4022
4023 /* Don't dequeue parent if it has other entities besides us */
4024 if (cfs_rq->load.weight) {
4025 /*
4026 * Bias pick_next to pick a task from this cfs_rq, as
4027 * p is sleeping when it is within its sched_slice.
4028 */
4029 if (task_sleep && parent_entity(se))
4030 set_next_buddy(parent_entity(se));
4031
4032 /* avoid re-evaluating load for this entity */
4033 se = parent_entity(se);
4034 break;
4035 }
4036 flags |= DEQUEUE_SLEEP;
4037 }
4038
4039 for_each_sched_entity(se) {
4040 cfs_rq = cfs_rq_of(se);
4041 cfs_rq->h_nr_running--;
4042
4043 if (cfs_rq_throttled(cfs_rq))
4044 break;
4045
4046 update_cfs_shares(cfs_rq);
4047 update_entity_load_avg(se, 1);
4048 }
4049
4050 if (!se) {
4051 sub_nr_running(rq, 1);
4052 update_rq_runnable_avg(rq, 1);
4053 }
4054 hrtick_update(rq);
4055}
4056
4057#ifdef CONFIG_SMP
4058/* Used instead of source_load when we know the type == 0 */
4059static unsigned long weighted_cpuload(const int cpu)
4060{
4061 return cpu_rq(cpu)->cfs.runnable_load_avg;
4062}
4063
4064/*
4065 * Return a low guess at the load of a migration-source cpu weighted
4066 * according to the scheduling class and "nice" value.
4067 *
4068 * We want to under-estimate the load of migration sources, to
4069 * balance conservatively.
4070 */
4071static unsigned long source_load(int cpu, int type)
4072{
4073 struct rq *rq = cpu_rq(cpu);
4074 unsigned long total = weighted_cpuload(cpu);
4075
4076 if (type == 0 || !sched_feat(LB_BIAS))
4077 return total;
4078
4079 return min(rq->cpu_load[type-1], total);
4080}
4081
4082/*
4083 * Return a high guess at the load of a migration-target cpu weighted
4084 * according to the scheduling class and "nice" value.
4085 */
4086static unsigned long target_load(int cpu, int type)
4087{
4088 struct rq *rq = cpu_rq(cpu);
4089 unsigned long total = weighted_cpuload(cpu);
4090
4091 if (type == 0 || !sched_feat(LB_BIAS))
4092 return total;
4093
4094 return max(rq->cpu_load[type-1], total);
4095}
4096
4097static unsigned long capacity_of(int cpu)
4098{
4099 return cpu_rq(cpu)->cpu_capacity;
4100}
4101
4102static unsigned long cpu_avg_load_per_task(int cpu)
4103{
4104 struct rq *rq = cpu_rq(cpu);
4105 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4106 unsigned long load_avg = rq->cfs.runnable_load_avg;
4107
4108 if (nr_running)
4109 return load_avg / nr_running;
4110
4111 return 0;
4112}
4113
4114static void record_wakee(struct task_struct *p)
4115{
4116 /*
4117 * Rough decay (wiping) for cost saving, don't worry
4118 * about the boundary, really active task won't care
4119 * about the loss.
4120 */
4121 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4122 current->wakee_flips >>= 1;
4123 current->wakee_flip_decay_ts = jiffies;
4124 }
4125
4126 if (current->last_wakee != p) {
4127 current->last_wakee = p;
4128 current->wakee_flips++;
4129 }
4130}
4131
4132static void task_waking_fair(struct task_struct *p)
4133{
4134 struct sched_entity *se = &p->se;
4135 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4136 u64 min_vruntime;
4137
4138#ifndef CONFIG_64BIT
4139 u64 min_vruntime_copy;
4140
4141 do {
4142 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4143 smp_rmb();
4144 min_vruntime = cfs_rq->min_vruntime;
4145 } while (min_vruntime != min_vruntime_copy);
4146#else
4147 min_vruntime = cfs_rq->min_vruntime;
4148#endif
4149
4150 se->vruntime -= min_vruntime;
4151 record_wakee(p);
4152}
4153
4154#ifdef CONFIG_FAIR_GROUP_SCHED
4155/*
4156 * effective_load() calculates the load change as seen from the root_task_group
4157 *
4158 * Adding load to a group doesn't make a group heavier, but can cause movement
4159 * of group shares between cpus. Assuming the shares were perfectly aligned one
4160 * can calculate the shift in shares.
4161 *
4162 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4163 * on this @cpu and results in a total addition (subtraction) of @wg to the
4164 * total group weight.
4165 *
4166 * Given a runqueue weight distribution (rw_i) we can compute a shares
4167 * distribution (s_i) using:
4168 *
4169 * s_i = rw_i / \Sum rw_j (1)
4170 *
4171 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4172 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4173 * shares distribution (s_i):
4174 *
4175 * rw_i = { 2, 4, 1, 0 }
4176 * s_i = { 2/7, 4/7, 1/7, 0 }
4177 *
4178 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4179 * task used to run on and the CPU the waker is running on), we need to
4180 * compute the effect of waking a task on either CPU and, in case of a sync
4181 * wakeup, compute the effect of the current task going to sleep.
4182 *
4183 * So for a change of @wl to the local @cpu with an overall group weight change
4184 * of @wl we can compute the new shares distribution (s'_i) using:
4185 *
4186 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4187 *
4188 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4189 * differences in waking a task to CPU 0. The additional task changes the
4190 * weight and shares distributions like:
4191 *
4192 * rw'_i = { 3, 4, 1, 0 }
4193 * s'_i = { 3/8, 4/8, 1/8, 0 }
4194 *
4195 * We can then compute the difference in effective weight by using:
4196 *
4197 * dw_i = S * (s'_i - s_i) (3)
4198 *
4199 * Where 'S' is the group weight as seen by its parent.
4200 *
4201 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4202 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4203 * 4/7) times the weight of the group.
4204 */
4205static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4206{
4207 struct sched_entity *se = tg->se[cpu];
4208
4209 if (!tg->parent) /* the trivial, non-cgroup case */
4210 return wl;
4211
4212 for_each_sched_entity(se) {
4213 long w, W;
4214
4215 tg = se->my_q->tg;
4216
4217 /*
4218 * W = @wg + \Sum rw_j
4219 */
4220 W = wg + calc_tg_weight(tg, se->my_q);
4221
4222 /*
4223 * w = rw_i + @wl
4224 */
4225 w = se->my_q->load.weight + wl;
4226
4227 /*
4228 * wl = S * s'_i; see (2)
4229 */
4230 if (W > 0 && w < W)
4231 wl = (w * tg->shares) / W;
4232 else
4233 wl = tg->shares;
4234
4235 /*
4236 * Per the above, wl is the new se->load.weight value; since
4237 * those are clipped to [MIN_SHARES, ...) do so now. See
4238 * calc_cfs_shares().
4239 */
4240 if (wl < MIN_SHARES)
4241 wl = MIN_SHARES;
4242
4243 /*
4244 * wl = dw_i = S * (s'_i - s_i); see (3)
4245 */
4246 wl -= se->load.weight;
4247
4248 /*
4249 * Recursively apply this logic to all parent groups to compute
4250 * the final effective load change on the root group. Since
4251 * only the @tg group gets extra weight, all parent groups can
4252 * only redistribute existing shares. @wl is the shift in shares
4253 * resulting from this level per the above.
4254 */
4255 wg = 0;
4256 }
4257
4258 return wl;
4259}
4260#else
4261
4262static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4263{
4264 return wl;
4265}
4266
4267#endif
4268
4269static int wake_wide(struct task_struct *p)
4270{
4271 int factor = this_cpu_read(sd_llc_size);
4272
4273 /*
4274 * Yeah, it's the switching-frequency, could means many wakee or
4275 * rapidly switch, use factor here will just help to automatically
4276 * adjust the loose-degree, so bigger node will lead to more pull.
4277 */
4278 if (p->wakee_flips > factor) {
4279 /*
4280 * wakee is somewhat hot, it needs certain amount of cpu
4281 * resource, so if waker is far more hot, prefer to leave
4282 * it alone.
4283 */
4284 if (current->wakee_flips > (factor * p->wakee_flips))
4285 return 1;
4286 }
4287
4288 return 0;
4289}
4290
4291static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4292{
4293 s64 this_load, load;
4294 s64 this_eff_load, prev_eff_load;
4295 int idx, this_cpu, prev_cpu;
4296 struct task_group *tg;
4297 unsigned long weight;
4298 int balanced;
4299
4300 /*
4301 * If we wake multiple tasks be careful to not bounce
4302 * ourselves around too much.
4303 */
4304 if (wake_wide(p))
4305 return 0;
4306
4307 idx = sd->wake_idx;
4308 this_cpu = smp_processor_id();
4309 prev_cpu = task_cpu(p);
4310 load = source_load(prev_cpu, idx);
4311 this_load = target_load(this_cpu, idx);
4312
4313 /*
4314 * If sync wakeup then subtract the (maximum possible)
4315 * effect of the currently running task from the load
4316 * of the current CPU:
4317 */
4318 if (sync) {
4319 tg = task_group(current);
4320 weight = current->se.load.weight;
4321
4322 this_load += effective_load(tg, this_cpu, -weight, -weight);
4323 load += effective_load(tg, prev_cpu, 0, -weight);
4324 }
4325
4326 tg = task_group(p);
4327 weight = p->se.load.weight;
4328
4329 /*
4330 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4331 * due to the sync cause above having dropped this_load to 0, we'll
4332 * always have an imbalance, but there's really nothing you can do
4333 * about that, so that's good too.
4334 *
4335 * Otherwise check if either cpus are near enough in load to allow this
4336 * task to be woken on this_cpu.
4337 */
4338 this_eff_load = 100;
4339 this_eff_load *= capacity_of(prev_cpu);
4340
4341 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4342 prev_eff_load *= capacity_of(this_cpu);
4343
4344 if (this_load > 0) {
4345 this_eff_load *= this_load +
4346 effective_load(tg, this_cpu, weight, weight);
4347
4348 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4349 }
4350
4351 balanced = this_eff_load <= prev_eff_load;
4352
4353 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4354
4355 if (!balanced)
4356 return 0;
4357
4358 schedstat_inc(sd, ttwu_move_affine);
4359 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4360
4361 return 1;
4362}
4363
4364/*
4365 * find_idlest_group finds and returns the least busy CPU group within the
4366 * domain.
4367 */
4368static struct sched_group *
4369find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4370 int this_cpu, int sd_flag)
4371{
4372 struct sched_group *idlest = NULL, *group = sd->groups;
4373 unsigned long min_load = ULONG_MAX, this_load = 0;
4374 int load_idx = sd->forkexec_idx;
4375 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4376
4377 if (sd_flag & SD_BALANCE_WAKE)
4378 load_idx = sd->wake_idx;
4379
4380 do {
4381 unsigned long load, avg_load;
4382 int local_group;
4383 int i;
4384
4385 /* Skip over this group if it has no CPUs allowed */
4386 if (!cpumask_intersects(sched_group_cpus(group),
4387 tsk_cpus_allowed(p)))
4388 continue;
4389
4390 local_group = cpumask_test_cpu(this_cpu,
4391 sched_group_cpus(group));
4392
4393 /* Tally up the load of all CPUs in the group */
4394 avg_load = 0;
4395
4396 for_each_cpu(i, sched_group_cpus(group)) {
4397 /* Bias balancing toward cpus of our domain */
4398 if (local_group)
4399 load = source_load(i, load_idx);
4400 else
4401 load = target_load(i, load_idx);
4402
4403 avg_load += load;
4404 }
4405
4406 /* Adjust by relative CPU capacity of the group */
4407 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4408
4409 if (local_group) {
4410 this_load = avg_load;
4411 } else if (avg_load < min_load) {
4412 min_load = avg_load;
4413 idlest = group;
4414 }
4415 } while (group = group->next, group != sd->groups);
4416
4417 if (!idlest || 100*this_load < imbalance*min_load)
4418 return NULL;
4419 return idlest;
4420}
4421
4422/*
4423 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4424 */
4425static int
4426find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4427{
4428 unsigned long load, min_load = ULONG_MAX;
4429 unsigned int min_exit_latency = UINT_MAX;
4430 u64 latest_idle_timestamp = 0;
4431 int least_loaded_cpu = this_cpu;
4432 int shallowest_idle_cpu = -1;
4433 int i;
4434
4435 /* Traverse only the allowed CPUs */
4436 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4437 if (idle_cpu(i)) {
4438 struct rq *rq = cpu_rq(i);
4439 struct cpuidle_state *idle = idle_get_state(rq);
4440 if (idle && idle->exit_latency < min_exit_latency) {
4441 /*
4442 * We give priority to a CPU whose idle state
4443 * has the smallest exit latency irrespective
4444 * of any idle timestamp.
4445 */
4446 min_exit_latency = idle->exit_latency;
4447 latest_idle_timestamp = rq->idle_stamp;
4448 shallowest_idle_cpu = i;
4449 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4450 rq->idle_stamp > latest_idle_timestamp) {
4451 /*
4452 * If equal or no active idle state, then
4453 * the most recently idled CPU might have
4454 * a warmer cache.
4455 */
4456 latest_idle_timestamp = rq->idle_stamp;
4457 shallowest_idle_cpu = i;
4458 }
4459 } else {
4460 load = weighted_cpuload(i);
4461 if (load < min_load || (load == min_load && i == this_cpu)) {
4462 min_load = load;
4463 least_loaded_cpu = i;
4464 }
4465 }
4466 }
4467
4468 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4469}
4470
4471/*
4472 * Try and locate an idle CPU in the sched_domain.
4473 */
4474static int select_idle_sibling(struct task_struct *p, int target)
4475{
4476 struct sched_domain *sd;
4477 struct sched_group *sg;
4478 int i = task_cpu(p);
4479
4480 if (idle_cpu(target))
4481 return target;
4482
4483 /*
4484 * If the prevous cpu is cache affine and idle, don't be stupid.
4485 */
4486 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4487 return i;
4488
4489 /*
4490 * Otherwise, iterate the domains and find an elegible idle cpu.
4491 */
4492 sd = rcu_dereference(per_cpu(sd_llc, target));
4493 for_each_lower_domain(sd) {
4494 sg = sd->groups;
4495 do {
4496 if (!cpumask_intersects(sched_group_cpus(sg),
4497 tsk_cpus_allowed(p)))
4498 goto next;
4499
4500 for_each_cpu(i, sched_group_cpus(sg)) {
4501 if (i == target || !idle_cpu(i))
4502 goto next;
4503 }
4504
4505 target = cpumask_first_and(sched_group_cpus(sg),
4506 tsk_cpus_allowed(p));
4507 goto done;
4508next:
4509 sg = sg->next;
4510 } while (sg != sd->groups);
4511 }
4512done:
4513 return target;
4514}
4515
4516/*
4517 * select_task_rq_fair: Select target runqueue for the waking task in domains
4518 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4519 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4520 *
4521 * Balances load by selecting the idlest cpu in the idlest group, or under
4522 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4523 *
4524 * Returns the target cpu number.
4525 *
4526 * preempt must be disabled.
4527 */
4528static int
4529select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4530{
4531 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4532 int cpu = smp_processor_id();
4533 int new_cpu = cpu;
4534 int want_affine = 0;
4535 int sync = wake_flags & WF_SYNC;
4536
4537 if (p->nr_cpus_allowed == 1)
4538 return prev_cpu;
4539
4540 if (sd_flag & SD_BALANCE_WAKE)
4541 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4542
4543 rcu_read_lock();
4544 for_each_domain(cpu, tmp) {
4545 if (!(tmp->flags & SD_LOAD_BALANCE))
4546 continue;
4547
4548 /*
4549 * If both cpu and prev_cpu are part of this domain,
4550 * cpu is a valid SD_WAKE_AFFINE target.
4551 */
4552 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4553 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4554 affine_sd = tmp;
4555 break;
4556 }
4557
4558 if (tmp->flags & sd_flag)
4559 sd = tmp;
4560 }
4561
4562 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4563 prev_cpu = cpu;
4564
4565 if (sd_flag & SD_BALANCE_WAKE) {
4566 new_cpu = select_idle_sibling(p, prev_cpu);
4567 goto unlock;
4568 }
4569
4570 while (sd) {
4571 struct sched_group *group;
4572 int weight;
4573
4574 if (!(sd->flags & sd_flag)) {
4575 sd = sd->child;
4576 continue;
4577 }
4578
4579 group = find_idlest_group(sd, p, cpu, sd_flag);
4580 if (!group) {
4581 sd = sd->child;
4582 continue;
4583 }
4584
4585 new_cpu = find_idlest_cpu(group, p, cpu);
4586 if (new_cpu == -1 || new_cpu == cpu) {
4587 /* Now try balancing at a lower domain level of cpu */
4588 sd = sd->child;
4589 continue;
4590 }
4591
4592 /* Now try balancing at a lower domain level of new_cpu */
4593 cpu = new_cpu;
4594 weight = sd->span_weight;
4595 sd = NULL;
4596 for_each_domain(cpu, tmp) {
4597 if (weight <= tmp->span_weight)
4598 break;
4599 if (tmp->flags & sd_flag)
4600 sd = tmp;
4601 }
4602 /* while loop will break here if sd == NULL */
4603 }
4604unlock:
4605 rcu_read_unlock();
4606
4607 return new_cpu;
4608}
4609
4610/*
4611 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4612 * cfs_rq_of(p) references at time of call are still valid and identify the
4613 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4614 * other assumptions, including the state of rq->lock, should be made.
4615 */
4616static void
4617migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4618{
4619 struct sched_entity *se = &p->se;
4620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4621
4622 /*
4623 * Load tracking: accumulate removed load so that it can be processed
4624 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4625 * to blocked load iff they have a positive decay-count. It can never
4626 * be negative here since on-rq tasks have decay-count == 0.
4627 */
4628 if (se->avg.decay_count) {
4629 se->avg.decay_count = -__synchronize_entity_decay(se);
4630 atomic_long_add(se->avg.load_avg_contrib,
4631 &cfs_rq->removed_load);
4632 }
4633
4634 /* We have migrated, no longer consider this task hot */
4635 se->exec_start = 0;
4636}
4637#endif /* CONFIG_SMP */
4638
4639static unsigned long
4640wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4641{
4642 unsigned long gran = sysctl_sched_wakeup_granularity;
4643
4644 /*
4645 * Since its curr running now, convert the gran from real-time
4646 * to virtual-time in his units.
4647 *
4648 * By using 'se' instead of 'curr' we penalize light tasks, so
4649 * they get preempted easier. That is, if 'se' < 'curr' then
4650 * the resulting gran will be larger, therefore penalizing the
4651 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4652 * be smaller, again penalizing the lighter task.
4653 *
4654 * This is especially important for buddies when the leftmost
4655 * task is higher priority than the buddy.
4656 */
4657 return calc_delta_fair(gran, se);
4658}
4659
4660/*
4661 * Should 'se' preempt 'curr'.
4662 *
4663 * |s1
4664 * |s2
4665 * |s3
4666 * g
4667 * |<--->|c
4668 *
4669 * w(c, s1) = -1
4670 * w(c, s2) = 0
4671 * w(c, s3) = 1
4672 *
4673 */
4674static int
4675wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4676{
4677 s64 gran, vdiff = curr->vruntime - se->vruntime;
4678
4679 if (vdiff <= 0)
4680 return -1;
4681
4682 gran = wakeup_gran(curr, se);
4683 if (vdiff > gran)
4684 return 1;
4685
4686 return 0;
4687}
4688
4689static void set_last_buddy(struct sched_entity *se)
4690{
4691 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4692 return;
4693
4694 for_each_sched_entity(se)
4695 cfs_rq_of(se)->last = se;
4696}
4697
4698static void set_next_buddy(struct sched_entity *se)
4699{
4700 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4701 return;
4702
4703 for_each_sched_entity(se)
4704 cfs_rq_of(se)->next = se;
4705}
4706
4707static void set_skip_buddy(struct sched_entity *se)
4708{
4709 for_each_sched_entity(se)
4710 cfs_rq_of(se)->skip = se;
4711}
4712
4713/*
4714 * Preempt the current task with a newly woken task if needed:
4715 */
4716static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4717{
4718 struct task_struct *curr = rq->curr;
4719 struct sched_entity *se = &curr->se, *pse = &p->se;
4720 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4721 int scale = cfs_rq->nr_running >= sched_nr_latency;
4722 int next_buddy_marked = 0;
4723
4724 if (unlikely(se == pse))
4725 return;
4726
4727 /*
4728 * This is possible from callers such as attach_tasks(), in which we
4729 * unconditionally check_prempt_curr() after an enqueue (which may have
4730 * lead to a throttle). This both saves work and prevents false
4731 * next-buddy nomination below.
4732 */
4733 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4734 return;
4735
4736 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4737 set_next_buddy(pse);
4738 next_buddy_marked = 1;
4739 }
4740
4741 /*
4742 * We can come here with TIF_NEED_RESCHED already set from new task
4743 * wake up path.
4744 *
4745 * Note: this also catches the edge-case of curr being in a throttled
4746 * group (e.g. via set_curr_task), since update_curr() (in the
4747 * enqueue of curr) will have resulted in resched being set. This
4748 * prevents us from potentially nominating it as a false LAST_BUDDY
4749 * below.
4750 */
4751 if (test_tsk_need_resched(curr))
4752 return;
4753
4754 /* Idle tasks are by definition preempted by non-idle tasks. */
4755 if (unlikely(curr->policy == SCHED_IDLE) &&
4756 likely(p->policy != SCHED_IDLE))
4757 goto preempt;
4758
4759 /*
4760 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4761 * is driven by the tick):
4762 */
4763 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4764 return;
4765
4766 find_matching_se(&se, &pse);
4767 update_curr(cfs_rq_of(se));
4768 BUG_ON(!pse);
4769 if (wakeup_preempt_entity(se, pse) == 1) {
4770 /*
4771 * Bias pick_next to pick the sched entity that is
4772 * triggering this preemption.
4773 */
4774 if (!next_buddy_marked)
4775 set_next_buddy(pse);
4776 goto preempt;
4777 }
4778
4779 return;
4780
4781preempt:
4782 resched_curr(rq);
4783 /*
4784 * Only set the backward buddy when the current task is still
4785 * on the rq. This can happen when a wakeup gets interleaved
4786 * with schedule on the ->pre_schedule() or idle_balance()
4787 * point, either of which can * drop the rq lock.
4788 *
4789 * Also, during early boot the idle thread is in the fair class,
4790 * for obvious reasons its a bad idea to schedule back to it.
4791 */
4792 if (unlikely(!se->on_rq || curr == rq->idle))
4793 return;
4794
4795 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4796 set_last_buddy(se);
4797}
4798
4799static struct task_struct *
4800pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4801{
4802 struct cfs_rq *cfs_rq = &rq->cfs;
4803 struct sched_entity *se;
4804 struct task_struct *p;
4805 int new_tasks;
4806
4807again:
4808#ifdef CONFIG_FAIR_GROUP_SCHED
4809 if (!cfs_rq->nr_running)
4810 goto idle;
4811
4812 if (prev->sched_class != &fair_sched_class)
4813 goto simple;
4814
4815 /*
4816 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4817 * likely that a next task is from the same cgroup as the current.
4818 *
4819 * Therefore attempt to avoid putting and setting the entire cgroup
4820 * hierarchy, only change the part that actually changes.
4821 */
4822
4823 do {
4824 struct sched_entity *curr = cfs_rq->curr;
4825
4826 /*
4827 * Since we got here without doing put_prev_entity() we also
4828 * have to consider cfs_rq->curr. If it is still a runnable
4829 * entity, update_curr() will update its vruntime, otherwise
4830 * forget we've ever seen it.
4831 */
4832 if (curr && curr->on_rq)
4833 update_curr(cfs_rq);
4834 else
4835 curr = NULL;
4836
4837 /*
4838 * This call to check_cfs_rq_runtime() will do the throttle and
4839 * dequeue its entity in the parent(s). Therefore the 'simple'
4840 * nr_running test will indeed be correct.
4841 */
4842 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4843 goto simple;
4844
4845 se = pick_next_entity(cfs_rq, curr);
4846 cfs_rq = group_cfs_rq(se);
4847 } while (cfs_rq);
4848
4849 p = task_of(se);
4850
4851 /*
4852 * Since we haven't yet done put_prev_entity and if the selected task
4853 * is a different task than we started out with, try and touch the
4854 * least amount of cfs_rqs.
4855 */
4856 if (prev != p) {
4857 struct sched_entity *pse = &prev->se;
4858
4859 while (!(cfs_rq = is_same_group(se, pse))) {
4860 int se_depth = se->depth;
4861 int pse_depth = pse->depth;
4862
4863 if (se_depth <= pse_depth) {
4864 put_prev_entity(cfs_rq_of(pse), pse);
4865 pse = parent_entity(pse);
4866 }
4867 if (se_depth >= pse_depth) {
4868 set_next_entity(cfs_rq_of(se), se);
4869 se = parent_entity(se);
4870 }
4871 }
4872
4873 put_prev_entity(cfs_rq, pse);
4874 set_next_entity(cfs_rq, se);
4875 }
4876
4877 if (hrtick_enabled(rq))
4878 hrtick_start_fair(rq, p);
4879
4880 return p;
4881simple:
4882 cfs_rq = &rq->cfs;
4883#endif
4884
4885 if (!cfs_rq->nr_running)
4886 goto idle;
4887
4888 put_prev_task(rq, prev);
4889
4890 do {
4891 se = pick_next_entity(cfs_rq, NULL);
4892 set_next_entity(cfs_rq, se);
4893 cfs_rq = group_cfs_rq(se);
4894 } while (cfs_rq);
4895
4896 p = task_of(se);
4897
4898 if (hrtick_enabled(rq))
4899 hrtick_start_fair(rq, p);
4900
4901 return p;
4902
4903idle:
4904 new_tasks = idle_balance(rq);
4905 /*
4906 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4907 * possible for any higher priority task to appear. In that case we
4908 * must re-start the pick_next_entity() loop.
4909 */
4910 if (new_tasks < 0)
4911 return RETRY_TASK;
4912
4913 if (new_tasks > 0)
4914 goto again;
4915
4916 return NULL;
4917}
4918
4919/*
4920 * Account for a descheduled task:
4921 */
4922static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4923{
4924 struct sched_entity *se = &prev->se;
4925 struct cfs_rq *cfs_rq;
4926
4927 for_each_sched_entity(se) {
4928 cfs_rq = cfs_rq_of(se);
4929 put_prev_entity(cfs_rq, se);
4930 }
4931}
4932
4933/*
4934 * sched_yield() is very simple
4935 *
4936 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4937 */
4938static void yield_task_fair(struct rq *rq)
4939{
4940 struct task_struct *curr = rq->curr;
4941 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4942 struct sched_entity *se = &curr->se;
4943
4944 /*
4945 * Are we the only task in the tree?
4946 */
4947 if (unlikely(rq->nr_running == 1))
4948 return;
4949
4950 clear_buddies(cfs_rq, se);
4951
4952 if (curr->policy != SCHED_BATCH) {
4953 update_rq_clock(rq);
4954 /*
4955 * Update run-time statistics of the 'current'.
4956 */
4957 update_curr(cfs_rq);
4958 /*
4959 * Tell update_rq_clock() that we've just updated,
4960 * so we don't do microscopic update in schedule()
4961 * and double the fastpath cost.
4962 */
4963 rq->skip_clock_update = 1;
4964 }
4965
4966 set_skip_buddy(se);
4967}
4968
4969static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4970{
4971 struct sched_entity *se = &p->se;
4972
4973 /* throttled hierarchies are not runnable */
4974 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4975 return false;
4976
4977 /* Tell the scheduler that we'd really like pse to run next. */
4978 set_next_buddy(se);
4979
4980 yield_task_fair(rq);
4981
4982 return true;
4983}
4984
4985#ifdef CONFIG_SMP
4986/**************************************************
4987 * Fair scheduling class load-balancing methods.
4988 *
4989 * BASICS
4990 *
4991 * The purpose of load-balancing is to achieve the same basic fairness the
4992 * per-cpu scheduler provides, namely provide a proportional amount of compute
4993 * time to each task. This is expressed in the following equation:
4994 *
4995 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4996 *
4997 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4998 * W_i,0 is defined as:
4999 *
5000 * W_i,0 = \Sum_j w_i,j (2)
5001 *
5002 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5003 * is derived from the nice value as per prio_to_weight[].
5004 *
5005 * The weight average is an exponential decay average of the instantaneous
5006 * weight:
5007 *
5008 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5009 *
5010 * C_i is the compute capacity of cpu i, typically it is the
5011 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5012 * can also include other factors [XXX].
5013 *
5014 * To achieve this balance we define a measure of imbalance which follows
5015 * directly from (1):
5016 *
5017 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5018 *
5019 * We them move tasks around to minimize the imbalance. In the continuous
5020 * function space it is obvious this converges, in the discrete case we get
5021 * a few fun cases generally called infeasible weight scenarios.
5022 *
5023 * [XXX expand on:
5024 * - infeasible weights;
5025 * - local vs global optima in the discrete case. ]
5026 *
5027 *
5028 * SCHED DOMAINS
5029 *
5030 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5031 * for all i,j solution, we create a tree of cpus that follows the hardware
5032 * topology where each level pairs two lower groups (or better). This results
5033 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5034 * tree to only the first of the previous level and we decrease the frequency
5035 * of load-balance at each level inv. proportional to the number of cpus in
5036 * the groups.
5037 *
5038 * This yields:
5039 *
5040 * log_2 n 1 n
5041 * \Sum { --- * --- * 2^i } = O(n) (5)
5042 * i = 0 2^i 2^i
5043 * `- size of each group
5044 * | | `- number of cpus doing load-balance
5045 * | `- freq
5046 * `- sum over all levels
5047 *
5048 * Coupled with a limit on how many tasks we can migrate every balance pass,
5049 * this makes (5) the runtime complexity of the balancer.
5050 *
5051 * An important property here is that each CPU is still (indirectly) connected
5052 * to every other cpu in at most O(log n) steps:
5053 *
5054 * The adjacency matrix of the resulting graph is given by:
5055 *
5056 * log_2 n
5057 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5058 * k = 0
5059 *
5060 * And you'll find that:
5061 *
5062 * A^(log_2 n)_i,j != 0 for all i,j (7)
5063 *
5064 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5065 * The task movement gives a factor of O(m), giving a convergence complexity
5066 * of:
5067 *
5068 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5069 *
5070 *
5071 * WORK CONSERVING
5072 *
5073 * In order to avoid CPUs going idle while there's still work to do, new idle
5074 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5075 * tree itself instead of relying on other CPUs to bring it work.
5076 *
5077 * This adds some complexity to both (5) and (8) but it reduces the total idle
5078 * time.
5079 *
5080 * [XXX more?]
5081 *
5082 *
5083 * CGROUPS
5084 *
5085 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5086 *
5087 * s_k,i
5088 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5089 * S_k
5090 *
5091 * Where
5092 *
5093 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5094 *
5095 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5096 *
5097 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5098 * property.
5099 *
5100 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5101 * rewrite all of this once again.]
5102 */
5103
5104static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5105
5106enum fbq_type { regular, remote, all };
5107
5108#define LBF_ALL_PINNED 0x01
5109#define LBF_NEED_BREAK 0x02
5110#define LBF_DST_PINNED 0x04
5111#define LBF_SOME_PINNED 0x08
5112
5113struct lb_env {
5114 struct sched_domain *sd;
5115
5116 struct rq *src_rq;
5117 int src_cpu;
5118
5119 int dst_cpu;
5120 struct rq *dst_rq;
5121
5122 struct cpumask *dst_grpmask;
5123 int new_dst_cpu;
5124 enum cpu_idle_type idle;
5125 long imbalance;
5126 /* The set of CPUs under consideration for load-balancing */
5127 struct cpumask *cpus;
5128
5129 unsigned int flags;
5130
5131 unsigned int loop;
5132 unsigned int loop_break;
5133 unsigned int loop_max;
5134
5135 enum fbq_type fbq_type;
5136 struct list_head tasks;
5137};
5138
5139/*
5140 * Is this task likely cache-hot:
5141 */
5142static int task_hot(struct task_struct *p, struct lb_env *env)
5143{
5144 s64 delta;
5145
5146 lockdep_assert_held(&env->src_rq->lock);
5147
5148 if (p->sched_class != &fair_sched_class)
5149 return 0;
5150
5151 if (unlikely(p->policy == SCHED_IDLE))
5152 return 0;
5153
5154 /*
5155 * Buddy candidates are cache hot:
5156 */
5157 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5158 (&p->se == cfs_rq_of(&p->se)->next ||
5159 &p->se == cfs_rq_of(&p->se)->last))
5160 return 1;
5161
5162 if (sysctl_sched_migration_cost == -1)
5163 return 1;
5164 if (sysctl_sched_migration_cost == 0)
5165 return 0;
5166
5167 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5168
5169 return delta < (s64)sysctl_sched_migration_cost;
5170}
5171
5172#ifdef CONFIG_NUMA_BALANCING
5173/* Returns true if the destination node has incurred more faults */
5174static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5175{
5176 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5177 int src_nid, dst_nid;
5178
5179 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5180 !(env->sd->flags & SD_NUMA)) {
5181 return false;
5182 }
5183
5184 src_nid = cpu_to_node(env->src_cpu);
5185 dst_nid = cpu_to_node(env->dst_cpu);
5186
5187 if (src_nid == dst_nid)
5188 return false;
5189
5190 if (numa_group) {
5191 /* Task is already in the group's interleave set. */
5192 if (node_isset(src_nid, numa_group->active_nodes))
5193 return false;
5194
5195 /* Task is moving into the group's interleave set. */
5196 if (node_isset(dst_nid, numa_group->active_nodes))
5197 return true;
5198
5199 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5200 }
5201
5202 /* Encourage migration to the preferred node. */
5203 if (dst_nid == p->numa_preferred_nid)
5204 return true;
5205
5206 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5207}
5208
5209
5210static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5211{
5212 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5213 int src_nid, dst_nid;
5214
5215 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5216 return false;
5217
5218 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5219 return false;
5220
5221 src_nid = cpu_to_node(env->src_cpu);
5222 dst_nid = cpu_to_node(env->dst_cpu);
5223
5224 if (src_nid == dst_nid)
5225 return false;
5226
5227 if (numa_group) {
5228 /* Task is moving within/into the group's interleave set. */
5229 if (node_isset(dst_nid, numa_group->active_nodes))
5230 return false;
5231
5232 /* Task is moving out of the group's interleave set. */
5233 if (node_isset(src_nid, numa_group->active_nodes))
5234 return true;
5235
5236 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5237 }
5238
5239 /* Migrating away from the preferred node is always bad. */
5240 if (src_nid == p->numa_preferred_nid)
5241 return true;
5242
5243 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5244}
5245
5246#else
5247static inline bool migrate_improves_locality(struct task_struct *p,
5248 struct lb_env *env)
5249{
5250 return false;
5251}
5252
5253static inline bool migrate_degrades_locality(struct task_struct *p,
5254 struct lb_env *env)
5255{
5256 return false;
5257}
5258#endif
5259
5260/*
5261 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5262 */
5263static
5264int can_migrate_task(struct task_struct *p, struct lb_env *env)
5265{
5266 int tsk_cache_hot = 0;
5267
5268 lockdep_assert_held(&env->src_rq->lock);
5269
5270 /*
5271 * We do not migrate tasks that are:
5272 * 1) throttled_lb_pair, or
5273 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5274 * 3) running (obviously), or
5275 * 4) are cache-hot on their current CPU.
5276 */
5277 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5278 return 0;
5279
5280 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5281 int cpu;
5282
5283 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5284
5285 env->flags |= LBF_SOME_PINNED;
5286
5287 /*
5288 * Remember if this task can be migrated to any other cpu in
5289 * our sched_group. We may want to revisit it if we couldn't
5290 * meet load balance goals by pulling other tasks on src_cpu.
5291 *
5292 * Also avoid computing new_dst_cpu if we have already computed
5293 * one in current iteration.
5294 */
5295 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5296 return 0;
5297
5298 /* Prevent to re-select dst_cpu via env's cpus */
5299 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5300 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5301 env->flags |= LBF_DST_PINNED;
5302 env->new_dst_cpu = cpu;
5303 break;
5304 }
5305 }
5306
5307 return 0;
5308 }
5309
5310 /* Record that we found atleast one task that could run on dst_cpu */
5311 env->flags &= ~LBF_ALL_PINNED;
5312
5313 if (task_running(env->src_rq, p)) {
5314 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5315 return 0;
5316 }
5317
5318 /*
5319 * Aggressive migration if:
5320 * 1) destination numa is preferred
5321 * 2) task is cache cold, or
5322 * 3) too many balance attempts have failed.
5323 */
5324 tsk_cache_hot = task_hot(p, env);
5325 if (!tsk_cache_hot)
5326 tsk_cache_hot = migrate_degrades_locality(p, env);
5327
5328 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5329 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5330 if (tsk_cache_hot) {
5331 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5332 schedstat_inc(p, se.statistics.nr_forced_migrations);
5333 }
5334 return 1;
5335 }
5336
5337 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5338 return 0;
5339}
5340
5341/*
5342 * detach_task() -- detach the task for the migration specified in env
5343 */
5344static void detach_task(struct task_struct *p, struct lb_env *env)
5345{
5346 lockdep_assert_held(&env->src_rq->lock);
5347
5348 deactivate_task(env->src_rq, p, 0);
5349 p->on_rq = TASK_ON_RQ_MIGRATING;
5350 set_task_cpu(p, env->dst_cpu);
5351}
5352
5353/*
5354 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5355 * part of active balancing operations within "domain".
5356 *
5357 * Returns a task if successful and NULL otherwise.
5358 */
5359static struct task_struct *detach_one_task(struct lb_env *env)
5360{
5361 struct task_struct *p, *n;
5362
5363 lockdep_assert_held(&env->src_rq->lock);
5364
5365 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5366 if (!can_migrate_task(p, env))
5367 continue;
5368
5369 detach_task(p, env);
5370
5371 /*
5372 * Right now, this is only the second place where
5373 * lb_gained[env->idle] is updated (other is detach_tasks)
5374 * so we can safely collect stats here rather than
5375 * inside detach_tasks().
5376 */
5377 schedstat_inc(env->sd, lb_gained[env->idle]);
5378 return p;
5379 }
5380 return NULL;
5381}
5382
5383static const unsigned int sched_nr_migrate_break = 32;
5384
5385/*
5386 * detach_tasks() -- tries to detach up to imbalance weighted load from
5387 * busiest_rq, as part of a balancing operation within domain "sd".
5388 *
5389 * Returns number of detached tasks if successful and 0 otherwise.
5390 */
5391static int detach_tasks(struct lb_env *env)
5392{
5393 struct list_head *tasks = &env->src_rq->cfs_tasks;
5394 struct task_struct *p;
5395 unsigned long load;
5396 int detached = 0;
5397
5398 lockdep_assert_held(&env->src_rq->lock);
5399
5400 if (env->imbalance <= 0)
5401 return 0;
5402
5403 while (!list_empty(tasks)) {
5404 p = list_first_entry(tasks, struct task_struct, se.group_node);
5405
5406 env->loop++;
5407 /* We've more or less seen every task there is, call it quits */
5408 if (env->loop > env->loop_max)
5409 break;
5410
5411 /* take a breather every nr_migrate tasks */
5412 if (env->loop > env->loop_break) {
5413 env->loop_break += sched_nr_migrate_break;
5414 env->flags |= LBF_NEED_BREAK;
5415 break;
5416 }
5417
5418 if (!can_migrate_task(p, env))
5419 goto next;
5420
5421 load = task_h_load(p);
5422
5423 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5424 goto next;
5425
5426 if ((load / 2) > env->imbalance)
5427 goto next;
5428
5429 detach_task(p, env);
5430 list_add(&p->se.group_node, &env->tasks);
5431
5432 detached++;
5433 env->imbalance -= load;
5434
5435#ifdef CONFIG_PREEMPT
5436 /*
5437 * NEWIDLE balancing is a source of latency, so preemptible
5438 * kernels will stop after the first task is detached to minimize
5439 * the critical section.
5440 */
5441 if (env->idle == CPU_NEWLY_IDLE)
5442 break;
5443#endif
5444
5445 /*
5446 * We only want to steal up to the prescribed amount of
5447 * weighted load.
5448 */
5449 if (env->imbalance <= 0)
5450 break;
5451
5452 continue;
5453next:
5454 list_move_tail(&p->se.group_node, tasks);
5455 }
5456
5457 /*
5458 * Right now, this is one of only two places we collect this stat
5459 * so we can safely collect detach_one_task() stats here rather
5460 * than inside detach_one_task().
5461 */
5462 schedstat_add(env->sd, lb_gained[env->idle], detached);
5463
5464 return detached;
5465}
5466
5467/*
5468 * attach_task() -- attach the task detached by detach_task() to its new rq.
5469 */
5470static void attach_task(struct rq *rq, struct task_struct *p)
5471{
5472 lockdep_assert_held(&rq->lock);
5473
5474 BUG_ON(task_rq(p) != rq);
5475 p->on_rq = TASK_ON_RQ_QUEUED;
5476 activate_task(rq, p, 0);
5477 check_preempt_curr(rq, p, 0);
5478}
5479
5480/*
5481 * attach_one_task() -- attaches the task returned from detach_one_task() to
5482 * its new rq.
5483 */
5484static void attach_one_task(struct rq *rq, struct task_struct *p)
5485{
5486 raw_spin_lock(&rq->lock);
5487 attach_task(rq, p);
5488 raw_spin_unlock(&rq->lock);
5489}
5490
5491/*
5492 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5493 * new rq.
5494 */
5495static void attach_tasks(struct lb_env *env)
5496{
5497 struct list_head *tasks = &env->tasks;
5498 struct task_struct *p;
5499
5500 raw_spin_lock(&env->dst_rq->lock);
5501
5502 while (!list_empty(tasks)) {
5503 p = list_first_entry(tasks, struct task_struct, se.group_node);
5504 list_del_init(&p->se.group_node);
5505
5506 attach_task(env->dst_rq, p);
5507 }
5508
5509 raw_spin_unlock(&env->dst_rq->lock);
5510}
5511
5512#ifdef CONFIG_FAIR_GROUP_SCHED
5513/*
5514 * update tg->load_weight by folding this cpu's load_avg
5515 */
5516static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5517{
5518 struct sched_entity *se = tg->se[cpu];
5519 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5520
5521 /* throttled entities do not contribute to load */
5522 if (throttled_hierarchy(cfs_rq))
5523 return;
5524
5525 update_cfs_rq_blocked_load(cfs_rq, 1);
5526
5527 if (se) {
5528 update_entity_load_avg(se, 1);
5529 /*
5530 * We pivot on our runnable average having decayed to zero for
5531 * list removal. This generally implies that all our children
5532 * have also been removed (modulo rounding error or bandwidth
5533 * control); however, such cases are rare and we can fix these
5534 * at enqueue.
5535 *
5536 * TODO: fix up out-of-order children on enqueue.
5537 */
5538 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5539 list_del_leaf_cfs_rq(cfs_rq);
5540 } else {
5541 struct rq *rq = rq_of(cfs_rq);
5542 update_rq_runnable_avg(rq, rq->nr_running);
5543 }
5544}
5545
5546static void update_blocked_averages(int cpu)
5547{
5548 struct rq *rq = cpu_rq(cpu);
5549 struct cfs_rq *cfs_rq;
5550 unsigned long flags;
5551
5552 raw_spin_lock_irqsave(&rq->lock, flags);
5553 update_rq_clock(rq);
5554 /*
5555 * Iterates the task_group tree in a bottom up fashion, see
5556 * list_add_leaf_cfs_rq() for details.
5557 */
5558 for_each_leaf_cfs_rq(rq, cfs_rq) {
5559 /*
5560 * Note: We may want to consider periodically releasing
5561 * rq->lock about these updates so that creating many task
5562 * groups does not result in continually extending hold time.
5563 */
5564 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5565 }
5566
5567 raw_spin_unlock_irqrestore(&rq->lock, flags);
5568}
5569
5570/*
5571 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5572 * This needs to be done in a top-down fashion because the load of a child
5573 * group is a fraction of its parents load.
5574 */
5575static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5576{
5577 struct rq *rq = rq_of(cfs_rq);
5578 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5579 unsigned long now = jiffies;
5580 unsigned long load;
5581
5582 if (cfs_rq->last_h_load_update == now)
5583 return;
5584
5585 cfs_rq->h_load_next = NULL;
5586 for_each_sched_entity(se) {
5587 cfs_rq = cfs_rq_of(se);
5588 cfs_rq->h_load_next = se;
5589 if (cfs_rq->last_h_load_update == now)
5590 break;
5591 }
5592
5593 if (!se) {
5594 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5595 cfs_rq->last_h_load_update = now;
5596 }
5597
5598 while ((se = cfs_rq->h_load_next) != NULL) {
5599 load = cfs_rq->h_load;
5600 load = div64_ul(load * se->avg.load_avg_contrib,
5601 cfs_rq->runnable_load_avg + 1);
5602 cfs_rq = group_cfs_rq(se);
5603 cfs_rq->h_load = load;
5604 cfs_rq->last_h_load_update = now;
5605 }
5606}
5607
5608static unsigned long task_h_load(struct task_struct *p)
5609{
5610 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5611
5612 update_cfs_rq_h_load(cfs_rq);
5613 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5614 cfs_rq->runnable_load_avg + 1);
5615}
5616#else
5617static inline void update_blocked_averages(int cpu)
5618{
5619}
5620
5621static unsigned long task_h_load(struct task_struct *p)
5622{
5623 return p->se.avg.load_avg_contrib;
5624}
5625#endif
5626
5627/********** Helpers for find_busiest_group ************************/
5628
5629enum group_type {
5630 group_other = 0,
5631 group_imbalanced,
5632 group_overloaded,
5633};
5634
5635/*
5636 * sg_lb_stats - stats of a sched_group required for load_balancing
5637 */
5638struct sg_lb_stats {
5639 unsigned long avg_load; /*Avg load across the CPUs of the group */
5640 unsigned long group_load; /* Total load over the CPUs of the group */
5641 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5642 unsigned long load_per_task;
5643 unsigned long group_capacity;
5644 unsigned int sum_nr_running; /* Nr tasks running in the group */
5645 unsigned int group_capacity_factor;
5646 unsigned int idle_cpus;
5647 unsigned int group_weight;
5648 enum group_type group_type;
5649 int group_has_free_capacity;
5650#ifdef CONFIG_NUMA_BALANCING
5651 unsigned int nr_numa_running;
5652 unsigned int nr_preferred_running;
5653#endif
5654};
5655
5656/*
5657 * sd_lb_stats - Structure to store the statistics of a sched_domain
5658 * during load balancing.
5659 */
5660struct sd_lb_stats {
5661 struct sched_group *busiest; /* Busiest group in this sd */
5662 struct sched_group *local; /* Local group in this sd */
5663 unsigned long total_load; /* Total load of all groups in sd */
5664 unsigned long total_capacity; /* Total capacity of all groups in sd */
5665 unsigned long avg_load; /* Average load across all groups in sd */
5666
5667 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5668 struct sg_lb_stats local_stat; /* Statistics of the local group */
5669};
5670
5671static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5672{
5673 /*
5674 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5675 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5676 * We must however clear busiest_stat::avg_load because
5677 * update_sd_pick_busiest() reads this before assignment.
5678 */
5679 *sds = (struct sd_lb_stats){
5680 .busiest = NULL,
5681 .local = NULL,
5682 .total_load = 0UL,
5683 .total_capacity = 0UL,
5684 .busiest_stat = {
5685 .avg_load = 0UL,
5686 .sum_nr_running = 0,
5687 .group_type = group_other,
5688 },
5689 };
5690}
5691
5692/**
5693 * get_sd_load_idx - Obtain the load index for a given sched domain.
5694 * @sd: The sched_domain whose load_idx is to be obtained.
5695 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5696 *
5697 * Return: The load index.
5698 */
5699static inline int get_sd_load_idx(struct sched_domain *sd,
5700 enum cpu_idle_type idle)
5701{
5702 int load_idx;
5703
5704 switch (idle) {
5705 case CPU_NOT_IDLE:
5706 load_idx = sd->busy_idx;
5707 break;
5708
5709 case CPU_NEWLY_IDLE:
5710 load_idx = sd->newidle_idx;
5711 break;
5712 default:
5713 load_idx = sd->idle_idx;
5714 break;
5715 }
5716
5717 return load_idx;
5718}
5719
5720static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5721{
5722 return SCHED_CAPACITY_SCALE;
5723}
5724
5725unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5726{
5727 return default_scale_capacity(sd, cpu);
5728}
5729
5730static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5731{
5732 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5733 return sd->smt_gain / sd->span_weight;
5734
5735 return SCHED_CAPACITY_SCALE;
5736}
5737
5738unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5739{
5740 return default_scale_cpu_capacity(sd, cpu);
5741}
5742
5743static unsigned long scale_rt_capacity(int cpu)
5744{
5745 struct rq *rq = cpu_rq(cpu);
5746 u64 total, available, age_stamp, avg;
5747 s64 delta;
5748
5749 /*
5750 * Since we're reading these variables without serialization make sure
5751 * we read them once before doing sanity checks on them.
5752 */
5753 age_stamp = ACCESS_ONCE(rq->age_stamp);
5754 avg = ACCESS_ONCE(rq->rt_avg);
5755
5756 delta = rq_clock(rq) - age_stamp;
5757 if (unlikely(delta < 0))
5758 delta = 0;
5759
5760 total = sched_avg_period() + delta;
5761
5762 if (unlikely(total < avg)) {
5763 /* Ensures that capacity won't end up being negative */
5764 available = 0;
5765 } else {
5766 available = total - avg;
5767 }
5768
5769 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5770 total = SCHED_CAPACITY_SCALE;
5771
5772 total >>= SCHED_CAPACITY_SHIFT;
5773
5774 return div_u64(available, total);
5775}
5776
5777static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5778{
5779 unsigned long capacity = SCHED_CAPACITY_SCALE;
5780 struct sched_group *sdg = sd->groups;
5781
5782 if (sched_feat(ARCH_CAPACITY))
5783 capacity *= arch_scale_cpu_capacity(sd, cpu);
5784 else
5785 capacity *= default_scale_cpu_capacity(sd, cpu);
5786
5787 capacity >>= SCHED_CAPACITY_SHIFT;
5788
5789 sdg->sgc->capacity_orig = capacity;
5790
5791 if (sched_feat(ARCH_CAPACITY))
5792 capacity *= arch_scale_freq_capacity(sd, cpu);
5793 else
5794 capacity *= default_scale_capacity(sd, cpu);
5795
5796 capacity >>= SCHED_CAPACITY_SHIFT;
5797
5798 capacity *= scale_rt_capacity(cpu);
5799 capacity >>= SCHED_CAPACITY_SHIFT;
5800
5801 if (!capacity)
5802 capacity = 1;
5803
5804 cpu_rq(cpu)->cpu_capacity = capacity;
5805 sdg->sgc->capacity = capacity;
5806}
5807
5808void update_group_capacity(struct sched_domain *sd, int cpu)
5809{
5810 struct sched_domain *child = sd->child;
5811 struct sched_group *group, *sdg = sd->groups;
5812 unsigned long capacity, capacity_orig;
5813 unsigned long interval;
5814
5815 interval = msecs_to_jiffies(sd->balance_interval);
5816 interval = clamp(interval, 1UL, max_load_balance_interval);
5817 sdg->sgc->next_update = jiffies + interval;
5818
5819 if (!child) {
5820 update_cpu_capacity(sd, cpu);
5821 return;
5822 }
5823
5824 capacity_orig = capacity = 0;
5825
5826 if (child->flags & SD_OVERLAP) {
5827 /*
5828 * SD_OVERLAP domains cannot assume that child groups
5829 * span the current group.
5830 */
5831
5832 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5833 struct sched_group_capacity *sgc;
5834 struct rq *rq = cpu_rq(cpu);
5835
5836 /*
5837 * build_sched_domains() -> init_sched_groups_capacity()
5838 * gets here before we've attached the domains to the
5839 * runqueues.
5840 *
5841 * Use capacity_of(), which is set irrespective of domains
5842 * in update_cpu_capacity().
5843 *
5844 * This avoids capacity/capacity_orig from being 0 and
5845 * causing divide-by-zero issues on boot.
5846 *
5847 * Runtime updates will correct capacity_orig.
5848 */
5849 if (unlikely(!rq->sd)) {
5850 capacity_orig += capacity_of(cpu);
5851 capacity += capacity_of(cpu);
5852 continue;
5853 }
5854
5855 sgc = rq->sd->groups->sgc;
5856 capacity_orig += sgc->capacity_orig;
5857 capacity += sgc->capacity;
5858 }
5859 } else {
5860 /*
5861 * !SD_OVERLAP domains can assume that child groups
5862 * span the current group.
5863 */
5864
5865 group = child->groups;
5866 do {
5867 capacity_orig += group->sgc->capacity_orig;
5868 capacity += group->sgc->capacity;
5869 group = group->next;
5870 } while (group != child->groups);
5871 }
5872
5873 sdg->sgc->capacity_orig = capacity_orig;
5874 sdg->sgc->capacity = capacity;
5875}
5876
5877/*
5878 * Try and fix up capacity for tiny siblings, this is needed when
5879 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5880 * which on its own isn't powerful enough.
5881 *
5882 * See update_sd_pick_busiest() and check_asym_packing().
5883 */
5884static inline int
5885fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5886{
5887 /*
5888 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5889 */
5890 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5891 return 0;
5892
5893 /*
5894 * If ~90% of the cpu_capacity is still there, we're good.
5895 */
5896 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5897 return 1;
5898
5899 return 0;
5900}
5901
5902/*
5903 * Group imbalance indicates (and tries to solve) the problem where balancing
5904 * groups is inadequate due to tsk_cpus_allowed() constraints.
5905 *
5906 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5907 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5908 * Something like:
5909 *
5910 * { 0 1 2 3 } { 4 5 6 7 }
5911 * * * * *
5912 *
5913 * If we were to balance group-wise we'd place two tasks in the first group and
5914 * two tasks in the second group. Clearly this is undesired as it will overload
5915 * cpu 3 and leave one of the cpus in the second group unused.
5916 *
5917 * The current solution to this issue is detecting the skew in the first group
5918 * by noticing the lower domain failed to reach balance and had difficulty
5919 * moving tasks due to affinity constraints.
5920 *
5921 * When this is so detected; this group becomes a candidate for busiest; see
5922 * update_sd_pick_busiest(). And calculate_imbalance() and
5923 * find_busiest_group() avoid some of the usual balance conditions to allow it
5924 * to create an effective group imbalance.
5925 *
5926 * This is a somewhat tricky proposition since the next run might not find the
5927 * group imbalance and decide the groups need to be balanced again. A most
5928 * subtle and fragile situation.
5929 */
5930
5931static inline int sg_imbalanced(struct sched_group *group)
5932{
5933 return group->sgc->imbalance;
5934}
5935
5936/*
5937 * Compute the group capacity factor.
5938 *
5939 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5940 * first dividing out the smt factor and computing the actual number of cores
5941 * and limit unit capacity with that.
5942 */
5943static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5944{
5945 unsigned int capacity_factor, smt, cpus;
5946 unsigned int capacity, capacity_orig;
5947
5948 capacity = group->sgc->capacity;
5949 capacity_orig = group->sgc->capacity_orig;
5950 cpus = group->group_weight;
5951
5952 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5953 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5954 capacity_factor = cpus / smt; /* cores */
5955
5956 capacity_factor = min_t(unsigned,
5957 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5958 if (!capacity_factor)
5959 capacity_factor = fix_small_capacity(env->sd, group);
5960
5961 return capacity_factor;
5962}
5963
5964static enum group_type
5965group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5966{
5967 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5968 return group_overloaded;
5969
5970 if (sg_imbalanced(group))
5971 return group_imbalanced;
5972
5973 return group_other;
5974}
5975
5976/**
5977 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5978 * @env: The load balancing environment.
5979 * @group: sched_group whose statistics are to be updated.
5980 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5981 * @local_group: Does group contain this_cpu.
5982 * @sgs: variable to hold the statistics for this group.
5983 * @overload: Indicate more than one runnable task for any CPU.
5984 */
5985static inline void update_sg_lb_stats(struct lb_env *env,
5986 struct sched_group *group, int load_idx,
5987 int local_group, struct sg_lb_stats *sgs,
5988 bool *overload)
5989{
5990 unsigned long load;
5991 int i;
5992
5993 memset(sgs, 0, sizeof(*sgs));
5994
5995 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5996 struct rq *rq = cpu_rq(i);
5997
5998 /* Bias balancing toward cpus of our domain */
5999 if (local_group)
6000 load = target_load(i, load_idx);
6001 else
6002 load = source_load(i, load_idx);
6003
6004 sgs->group_load += load;
6005 sgs->sum_nr_running += rq->cfs.h_nr_running;
6006
6007 if (rq->nr_running > 1)
6008 *overload = true;
6009
6010#ifdef CONFIG_NUMA_BALANCING
6011 sgs->nr_numa_running += rq->nr_numa_running;
6012 sgs->nr_preferred_running += rq->nr_preferred_running;
6013#endif
6014 sgs->sum_weighted_load += weighted_cpuload(i);
6015 if (idle_cpu(i))
6016 sgs->idle_cpus++;
6017 }
6018
6019 /* Adjust by relative CPU capacity of the group */
6020 sgs->group_capacity = group->sgc->capacity;
6021 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6022
6023 if (sgs->sum_nr_running)
6024 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6025
6026 sgs->group_weight = group->group_weight;
6027 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6028 sgs->group_type = group_classify(group, sgs);
6029
6030 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6031 sgs->group_has_free_capacity = 1;
6032}
6033
6034/**
6035 * update_sd_pick_busiest - return 1 on busiest group
6036 * @env: The load balancing environment.
6037 * @sds: sched_domain statistics
6038 * @sg: sched_group candidate to be checked for being the busiest
6039 * @sgs: sched_group statistics
6040 *
6041 * Determine if @sg is a busier group than the previously selected
6042 * busiest group.
6043 *
6044 * Return: %true if @sg is a busier group than the previously selected
6045 * busiest group. %false otherwise.
6046 */
6047static bool update_sd_pick_busiest(struct lb_env *env,
6048 struct sd_lb_stats *sds,
6049 struct sched_group *sg,
6050 struct sg_lb_stats *sgs)
6051{
6052 struct sg_lb_stats *busiest = &sds->busiest_stat;
6053
6054 if (sgs->group_type > busiest->group_type)
6055 return true;
6056
6057 if (sgs->group_type < busiest->group_type)
6058 return false;
6059
6060 if (sgs->avg_load <= busiest->avg_load)
6061 return false;
6062
6063 /* This is the busiest node in its class. */
6064 if (!(env->sd->flags & SD_ASYM_PACKING))
6065 return true;
6066
6067 /*
6068 * ASYM_PACKING needs to move all the work to the lowest
6069 * numbered CPUs in the group, therefore mark all groups
6070 * higher than ourself as busy.
6071 */
6072 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6073 if (!sds->busiest)
6074 return true;
6075
6076 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6077 return true;
6078 }
6079
6080 return false;
6081}
6082
6083#ifdef CONFIG_NUMA_BALANCING
6084static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6085{
6086 if (sgs->sum_nr_running > sgs->nr_numa_running)
6087 return regular;
6088 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6089 return remote;
6090 return all;
6091}
6092
6093static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6094{
6095 if (rq->nr_running > rq->nr_numa_running)
6096 return regular;
6097 if (rq->nr_running > rq->nr_preferred_running)
6098 return remote;
6099 return all;
6100}
6101#else
6102static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6103{
6104 return all;
6105}
6106
6107static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6108{
6109 return regular;
6110}
6111#endif /* CONFIG_NUMA_BALANCING */
6112
6113/**
6114 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6115 * @env: The load balancing environment.
6116 * @sds: variable to hold the statistics for this sched_domain.
6117 */
6118static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6119{
6120 struct sched_domain *child = env->sd->child;
6121 struct sched_group *sg = env->sd->groups;
6122 struct sg_lb_stats tmp_sgs;
6123 int load_idx, prefer_sibling = 0;
6124 bool overload = false;
6125
6126 if (child && child->flags & SD_PREFER_SIBLING)
6127 prefer_sibling = 1;
6128
6129 load_idx = get_sd_load_idx(env->sd, env->idle);
6130
6131 do {
6132 struct sg_lb_stats *sgs = &tmp_sgs;
6133 int local_group;
6134
6135 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6136 if (local_group) {
6137 sds->local = sg;
6138 sgs = &sds->local_stat;
6139
6140 if (env->idle != CPU_NEWLY_IDLE ||
6141 time_after_eq(jiffies, sg->sgc->next_update))
6142 update_group_capacity(env->sd, env->dst_cpu);
6143 }
6144
6145 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6146 &overload);
6147
6148 if (local_group)
6149 goto next_group;
6150
6151 /*
6152 * In case the child domain prefers tasks go to siblings
6153 * first, lower the sg capacity factor to one so that we'll try
6154 * and move all the excess tasks away. We lower the capacity
6155 * of a group only if the local group has the capacity to fit
6156 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6157 * extra check prevents the case where you always pull from the
6158 * heaviest group when it is already under-utilized (possible
6159 * with a large weight task outweighs the tasks on the system).
6160 */
6161 if (prefer_sibling && sds->local &&
6162 sds->local_stat.group_has_free_capacity)
6163 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6164
6165 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6166 sds->busiest = sg;
6167 sds->busiest_stat = *sgs;
6168 }
6169
6170next_group:
6171 /* Now, start updating sd_lb_stats */
6172 sds->total_load += sgs->group_load;
6173 sds->total_capacity += sgs->group_capacity;
6174
6175 sg = sg->next;
6176 } while (sg != env->sd->groups);
6177
6178 if (env->sd->flags & SD_NUMA)
6179 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6180
6181 if (!env->sd->parent) {
6182 /* update overload indicator if we are at root domain */
6183 if (env->dst_rq->rd->overload != overload)
6184 env->dst_rq->rd->overload = overload;
6185 }
6186
6187}
6188
6189/**
6190 * check_asym_packing - Check to see if the group is packed into the
6191 * sched doman.
6192 *
6193 * This is primarily intended to used at the sibling level. Some
6194 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6195 * case of POWER7, it can move to lower SMT modes only when higher
6196 * threads are idle. When in lower SMT modes, the threads will
6197 * perform better since they share less core resources. Hence when we
6198 * have idle threads, we want them to be the higher ones.
6199 *
6200 * This packing function is run on idle threads. It checks to see if
6201 * the busiest CPU in this domain (core in the P7 case) has a higher
6202 * CPU number than the packing function is being run on. Here we are
6203 * assuming lower CPU number will be equivalent to lower a SMT thread
6204 * number.
6205 *
6206 * Return: 1 when packing is required and a task should be moved to
6207 * this CPU. The amount of the imbalance is returned in *imbalance.
6208 *
6209 * @env: The load balancing environment.
6210 * @sds: Statistics of the sched_domain which is to be packed
6211 */
6212static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6213{
6214 int busiest_cpu;
6215
6216 if (!(env->sd->flags & SD_ASYM_PACKING))
6217 return 0;
6218
6219 if (!sds->busiest)
6220 return 0;
6221
6222 busiest_cpu = group_first_cpu(sds->busiest);
6223 if (env->dst_cpu > busiest_cpu)
6224 return 0;
6225
6226 env->imbalance = DIV_ROUND_CLOSEST(
6227 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6228 SCHED_CAPACITY_SCALE);
6229
6230 return 1;
6231}
6232
6233/**
6234 * fix_small_imbalance - Calculate the minor imbalance that exists
6235 * amongst the groups of a sched_domain, during
6236 * load balancing.
6237 * @env: The load balancing environment.
6238 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6239 */
6240static inline
6241void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6242{
6243 unsigned long tmp, capa_now = 0, capa_move = 0;
6244 unsigned int imbn = 2;
6245 unsigned long scaled_busy_load_per_task;
6246 struct sg_lb_stats *local, *busiest;
6247
6248 local = &sds->local_stat;
6249 busiest = &sds->busiest_stat;
6250
6251 if (!local->sum_nr_running)
6252 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6253 else if (busiest->load_per_task > local->load_per_task)
6254 imbn = 1;
6255
6256 scaled_busy_load_per_task =
6257 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6258 busiest->group_capacity;
6259
6260 if (busiest->avg_load + scaled_busy_load_per_task >=
6261 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6262 env->imbalance = busiest->load_per_task;
6263 return;
6264 }
6265
6266 /*
6267 * OK, we don't have enough imbalance to justify moving tasks,
6268 * however we may be able to increase total CPU capacity used by
6269 * moving them.
6270 */
6271
6272 capa_now += busiest->group_capacity *
6273 min(busiest->load_per_task, busiest->avg_load);
6274 capa_now += local->group_capacity *
6275 min(local->load_per_task, local->avg_load);
6276 capa_now /= SCHED_CAPACITY_SCALE;
6277
6278 /* Amount of load we'd subtract */
6279 if (busiest->avg_load > scaled_busy_load_per_task) {
6280 capa_move += busiest->group_capacity *
6281 min(busiest->load_per_task,
6282 busiest->avg_load - scaled_busy_load_per_task);
6283 }
6284
6285 /* Amount of load we'd add */
6286 if (busiest->avg_load * busiest->group_capacity <
6287 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6288 tmp = (busiest->avg_load * busiest->group_capacity) /
6289 local->group_capacity;
6290 } else {
6291 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6292 local->group_capacity;
6293 }
6294 capa_move += local->group_capacity *
6295 min(local->load_per_task, local->avg_load + tmp);
6296 capa_move /= SCHED_CAPACITY_SCALE;
6297
6298 /* Move if we gain throughput */
6299 if (capa_move > capa_now)
6300 env->imbalance = busiest->load_per_task;
6301}
6302
6303/**
6304 * calculate_imbalance - Calculate the amount of imbalance present within the
6305 * groups of a given sched_domain during load balance.
6306 * @env: load balance environment
6307 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6308 */
6309static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6310{
6311 unsigned long max_pull, load_above_capacity = ~0UL;
6312 struct sg_lb_stats *local, *busiest;
6313
6314 local = &sds->local_stat;
6315 busiest = &sds->busiest_stat;
6316
6317 if (busiest->group_type == group_imbalanced) {
6318 /*
6319 * In the group_imb case we cannot rely on group-wide averages
6320 * to ensure cpu-load equilibrium, look at wider averages. XXX
6321 */
6322 busiest->load_per_task =
6323 min(busiest->load_per_task, sds->avg_load);
6324 }
6325
6326 /*
6327 * In the presence of smp nice balancing, certain scenarios can have
6328 * max load less than avg load(as we skip the groups at or below
6329 * its cpu_capacity, while calculating max_load..)
6330 */
6331 if (busiest->avg_load <= sds->avg_load ||
6332 local->avg_load >= sds->avg_load) {
6333 env->imbalance = 0;
6334 return fix_small_imbalance(env, sds);
6335 }
6336
6337 /*
6338 * If there aren't any idle cpus, avoid creating some.
6339 */
6340 if (busiest->group_type == group_overloaded &&
6341 local->group_type == group_overloaded) {
6342 load_above_capacity =
6343 (busiest->sum_nr_running - busiest->group_capacity_factor);
6344
6345 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6346 load_above_capacity /= busiest->group_capacity;
6347 }
6348
6349 /*
6350 * We're trying to get all the cpus to the average_load, so we don't
6351 * want to push ourselves above the average load, nor do we wish to
6352 * reduce the max loaded cpu below the average load. At the same time,
6353 * we also don't want to reduce the group load below the group capacity
6354 * (so that we can implement power-savings policies etc). Thus we look
6355 * for the minimum possible imbalance.
6356 */
6357 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6358
6359 /* How much load to actually move to equalise the imbalance */
6360 env->imbalance = min(
6361 max_pull * busiest->group_capacity,
6362 (sds->avg_load - local->avg_load) * local->group_capacity
6363 ) / SCHED_CAPACITY_SCALE;
6364
6365 /*
6366 * if *imbalance is less than the average load per runnable task
6367 * there is no guarantee that any tasks will be moved so we'll have
6368 * a think about bumping its value to force at least one task to be
6369 * moved
6370 */
6371 if (env->imbalance < busiest->load_per_task)
6372 return fix_small_imbalance(env, sds);
6373}
6374
6375/******* find_busiest_group() helpers end here *********************/
6376
6377/**
6378 * find_busiest_group - Returns the busiest group within the sched_domain
6379 * if there is an imbalance. If there isn't an imbalance, and
6380 * the user has opted for power-savings, it returns a group whose
6381 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6382 * such a group exists.
6383 *
6384 * Also calculates the amount of weighted load which should be moved
6385 * to restore balance.
6386 *
6387 * @env: The load balancing environment.
6388 *
6389 * Return: - The busiest group if imbalance exists.
6390 * - If no imbalance and user has opted for power-savings balance,
6391 * return the least loaded group whose CPUs can be
6392 * put to idle by rebalancing its tasks onto our group.
6393 */
6394static struct sched_group *find_busiest_group(struct lb_env *env)
6395{
6396 struct sg_lb_stats *local, *busiest;
6397 struct sd_lb_stats sds;
6398
6399 init_sd_lb_stats(&sds);
6400
6401 /*
6402 * Compute the various statistics relavent for load balancing at
6403 * this level.
6404 */
6405 update_sd_lb_stats(env, &sds);
6406 local = &sds.local_stat;
6407 busiest = &sds.busiest_stat;
6408
6409 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6410 check_asym_packing(env, &sds))
6411 return sds.busiest;
6412
6413 /* There is no busy sibling group to pull tasks from */
6414 if (!sds.busiest || busiest->sum_nr_running == 0)
6415 goto out_balanced;
6416
6417 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6418 / sds.total_capacity;
6419
6420 /*
6421 * If the busiest group is imbalanced the below checks don't
6422 * work because they assume all things are equal, which typically
6423 * isn't true due to cpus_allowed constraints and the like.
6424 */
6425 if (busiest->group_type == group_imbalanced)
6426 goto force_balance;
6427
6428 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6429 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6430 !busiest->group_has_free_capacity)
6431 goto force_balance;
6432
6433 /*
6434 * If the local group is busier than the selected busiest group
6435 * don't try and pull any tasks.
6436 */
6437 if (local->avg_load >= busiest->avg_load)
6438 goto out_balanced;
6439
6440 /*
6441 * Don't pull any tasks if this group is already above the domain
6442 * average load.
6443 */
6444 if (local->avg_load >= sds.avg_load)
6445 goto out_balanced;
6446
6447 if (env->idle == CPU_IDLE) {
6448 /*
6449 * This cpu is idle. If the busiest group is not overloaded
6450 * and there is no imbalance between this and busiest group
6451 * wrt idle cpus, it is balanced. The imbalance becomes
6452 * significant if the diff is greater than 1 otherwise we
6453 * might end up to just move the imbalance on another group
6454 */
6455 if ((busiest->group_type != group_overloaded) &&
6456 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6457 goto out_balanced;
6458 } else {
6459 /*
6460 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6461 * imbalance_pct to be conservative.
6462 */
6463 if (100 * busiest->avg_load <=
6464 env->sd->imbalance_pct * local->avg_load)
6465 goto out_balanced;
6466 }
6467
6468force_balance:
6469 /* Looks like there is an imbalance. Compute it */
6470 calculate_imbalance(env, &sds);
6471 return sds.busiest;
6472
6473out_balanced:
6474 env->imbalance = 0;
6475 return NULL;
6476}
6477
6478/*
6479 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6480 */
6481static struct rq *find_busiest_queue(struct lb_env *env,
6482 struct sched_group *group)
6483{
6484 struct rq *busiest = NULL, *rq;
6485 unsigned long busiest_load = 0, busiest_capacity = 1;
6486 int i;
6487
6488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6489 unsigned long capacity, capacity_factor, wl;
6490 enum fbq_type rt;
6491
6492 rq = cpu_rq(i);
6493 rt = fbq_classify_rq(rq);
6494
6495 /*
6496 * We classify groups/runqueues into three groups:
6497 * - regular: there are !numa tasks
6498 * - remote: there are numa tasks that run on the 'wrong' node
6499 * - all: there is no distinction
6500 *
6501 * In order to avoid migrating ideally placed numa tasks,
6502 * ignore those when there's better options.
6503 *
6504 * If we ignore the actual busiest queue to migrate another
6505 * task, the next balance pass can still reduce the busiest
6506 * queue by moving tasks around inside the node.
6507 *
6508 * If we cannot move enough load due to this classification
6509 * the next pass will adjust the group classification and
6510 * allow migration of more tasks.
6511 *
6512 * Both cases only affect the total convergence complexity.
6513 */
6514 if (rt > env->fbq_type)
6515 continue;
6516
6517 capacity = capacity_of(i);
6518 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6519 if (!capacity_factor)
6520 capacity_factor = fix_small_capacity(env->sd, group);
6521
6522 wl = weighted_cpuload(i);
6523
6524 /*
6525 * When comparing with imbalance, use weighted_cpuload()
6526 * which is not scaled with the cpu capacity.
6527 */
6528 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6529 continue;
6530
6531 /*
6532 * For the load comparisons with the other cpu's, consider
6533 * the weighted_cpuload() scaled with the cpu capacity, so
6534 * that the load can be moved away from the cpu that is
6535 * potentially running at a lower capacity.
6536 *
6537 * Thus we're looking for max(wl_i / capacity_i), crosswise
6538 * multiplication to rid ourselves of the division works out
6539 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6540 * our previous maximum.
6541 */
6542 if (wl * busiest_capacity > busiest_load * capacity) {
6543 busiest_load = wl;
6544 busiest_capacity = capacity;
6545 busiest = rq;
6546 }
6547 }
6548
6549 return busiest;
6550}
6551
6552/*
6553 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6554 * so long as it is large enough.
6555 */
6556#define MAX_PINNED_INTERVAL 512
6557
6558/* Working cpumask for load_balance and load_balance_newidle. */
6559DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6560
6561static int need_active_balance(struct lb_env *env)
6562{
6563 struct sched_domain *sd = env->sd;
6564
6565 if (env->idle == CPU_NEWLY_IDLE) {
6566
6567 /*
6568 * ASYM_PACKING needs to force migrate tasks from busy but
6569 * higher numbered CPUs in order to pack all tasks in the
6570 * lowest numbered CPUs.
6571 */
6572 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6573 return 1;
6574 }
6575
6576 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6577}
6578
6579static int active_load_balance_cpu_stop(void *data);
6580
6581static int should_we_balance(struct lb_env *env)
6582{
6583 struct sched_group *sg = env->sd->groups;
6584 struct cpumask *sg_cpus, *sg_mask;
6585 int cpu, balance_cpu = -1;
6586
6587 /*
6588 * In the newly idle case, we will allow all the cpu's
6589 * to do the newly idle load balance.
6590 */
6591 if (env->idle == CPU_NEWLY_IDLE)
6592 return 1;
6593
6594 sg_cpus = sched_group_cpus(sg);
6595 sg_mask = sched_group_mask(sg);
6596 /* Try to find first idle cpu */
6597 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6598 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6599 continue;
6600
6601 balance_cpu = cpu;
6602 break;
6603 }
6604
6605 if (balance_cpu == -1)
6606 balance_cpu = group_balance_cpu(sg);
6607
6608 /*
6609 * First idle cpu or the first cpu(busiest) in this sched group
6610 * is eligible for doing load balancing at this and above domains.
6611 */
6612 return balance_cpu == env->dst_cpu;
6613}
6614
6615/*
6616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6617 * tasks if there is an imbalance.
6618 */
6619static int load_balance(int this_cpu, struct rq *this_rq,
6620 struct sched_domain *sd, enum cpu_idle_type idle,
6621 int *continue_balancing)
6622{
6623 int ld_moved, cur_ld_moved, active_balance = 0;
6624 struct sched_domain *sd_parent = sd->parent;
6625 struct sched_group *group;
6626 struct rq *busiest;
6627 unsigned long flags;
6628 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6629
6630 struct lb_env env = {
6631 .sd = sd,
6632 .dst_cpu = this_cpu,
6633 .dst_rq = this_rq,
6634 .dst_grpmask = sched_group_cpus(sd->groups),
6635 .idle = idle,
6636 .loop_break = sched_nr_migrate_break,
6637 .cpus = cpus,
6638 .fbq_type = all,
6639 .tasks = LIST_HEAD_INIT(env.tasks),
6640 };
6641
6642 /*
6643 * For NEWLY_IDLE load_balancing, we don't need to consider
6644 * other cpus in our group
6645 */
6646 if (idle == CPU_NEWLY_IDLE)
6647 env.dst_grpmask = NULL;
6648
6649 cpumask_copy(cpus, cpu_active_mask);
6650
6651 schedstat_inc(sd, lb_count[idle]);
6652
6653redo:
6654 if (!should_we_balance(&env)) {
6655 *continue_balancing = 0;
6656 goto out_balanced;
6657 }
6658
6659 group = find_busiest_group(&env);
6660 if (!group) {
6661 schedstat_inc(sd, lb_nobusyg[idle]);
6662 goto out_balanced;
6663 }
6664
6665 busiest = find_busiest_queue(&env, group);
6666 if (!busiest) {
6667 schedstat_inc(sd, lb_nobusyq[idle]);
6668 goto out_balanced;
6669 }
6670
6671 BUG_ON(busiest == env.dst_rq);
6672
6673 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6674
6675 ld_moved = 0;
6676 if (busiest->nr_running > 1) {
6677 /*
6678 * Attempt to move tasks. If find_busiest_group has found
6679 * an imbalance but busiest->nr_running <= 1, the group is
6680 * still unbalanced. ld_moved simply stays zero, so it is
6681 * correctly treated as an imbalance.
6682 */
6683 env.flags |= LBF_ALL_PINNED;
6684 env.src_cpu = busiest->cpu;
6685 env.src_rq = busiest;
6686 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6687
6688more_balance:
6689 raw_spin_lock_irqsave(&busiest->lock, flags);
6690
6691 /*
6692 * cur_ld_moved - load moved in current iteration
6693 * ld_moved - cumulative load moved across iterations
6694 */
6695 cur_ld_moved = detach_tasks(&env);
6696
6697 /*
6698 * We've detached some tasks from busiest_rq. Every
6699 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6700 * unlock busiest->lock, and we are able to be sure
6701 * that nobody can manipulate the tasks in parallel.
6702 * See task_rq_lock() family for the details.
6703 */
6704
6705 raw_spin_unlock(&busiest->lock);
6706
6707 if (cur_ld_moved) {
6708 attach_tasks(&env);
6709 ld_moved += cur_ld_moved;
6710 }
6711
6712 local_irq_restore(flags);
6713
6714 if (env.flags & LBF_NEED_BREAK) {
6715 env.flags &= ~LBF_NEED_BREAK;
6716 goto more_balance;
6717 }
6718
6719 /*
6720 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6721 * us and move them to an alternate dst_cpu in our sched_group
6722 * where they can run. The upper limit on how many times we
6723 * iterate on same src_cpu is dependent on number of cpus in our
6724 * sched_group.
6725 *
6726 * This changes load balance semantics a bit on who can move
6727 * load to a given_cpu. In addition to the given_cpu itself
6728 * (or a ilb_cpu acting on its behalf where given_cpu is
6729 * nohz-idle), we now have balance_cpu in a position to move
6730 * load to given_cpu. In rare situations, this may cause
6731 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6732 * _independently_ and at _same_ time to move some load to
6733 * given_cpu) causing exceess load to be moved to given_cpu.
6734 * This however should not happen so much in practice and
6735 * moreover subsequent load balance cycles should correct the
6736 * excess load moved.
6737 */
6738 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6739
6740 /* Prevent to re-select dst_cpu via env's cpus */
6741 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6742
6743 env.dst_rq = cpu_rq(env.new_dst_cpu);
6744 env.dst_cpu = env.new_dst_cpu;
6745 env.flags &= ~LBF_DST_PINNED;
6746 env.loop = 0;
6747 env.loop_break = sched_nr_migrate_break;
6748
6749 /*
6750 * Go back to "more_balance" rather than "redo" since we
6751 * need to continue with same src_cpu.
6752 */
6753 goto more_balance;
6754 }
6755
6756 /*
6757 * We failed to reach balance because of affinity.
6758 */
6759 if (sd_parent) {
6760 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6761
6762 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6763 *group_imbalance = 1;
6764 }
6765
6766 /* All tasks on this runqueue were pinned by CPU affinity */
6767 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6768 cpumask_clear_cpu(cpu_of(busiest), cpus);
6769 if (!cpumask_empty(cpus)) {
6770 env.loop = 0;
6771 env.loop_break = sched_nr_migrate_break;
6772 goto redo;
6773 }
6774 goto out_all_pinned;
6775 }
6776 }
6777
6778 if (!ld_moved) {
6779 schedstat_inc(sd, lb_failed[idle]);
6780 /*
6781 * Increment the failure counter only on periodic balance.
6782 * We do not want newidle balance, which can be very
6783 * frequent, pollute the failure counter causing
6784 * excessive cache_hot migrations and active balances.
6785 */
6786 if (idle != CPU_NEWLY_IDLE)
6787 sd->nr_balance_failed++;
6788
6789 if (need_active_balance(&env)) {
6790 raw_spin_lock_irqsave(&busiest->lock, flags);
6791
6792 /* don't kick the active_load_balance_cpu_stop,
6793 * if the curr task on busiest cpu can't be
6794 * moved to this_cpu
6795 */
6796 if (!cpumask_test_cpu(this_cpu,
6797 tsk_cpus_allowed(busiest->curr))) {
6798 raw_spin_unlock_irqrestore(&busiest->lock,
6799 flags);
6800 env.flags |= LBF_ALL_PINNED;
6801 goto out_one_pinned;
6802 }
6803
6804 /*
6805 * ->active_balance synchronizes accesses to
6806 * ->active_balance_work. Once set, it's cleared
6807 * only after active load balance is finished.
6808 */
6809 if (!busiest->active_balance) {
6810 busiest->active_balance = 1;
6811 busiest->push_cpu = this_cpu;
6812 active_balance = 1;
6813 }
6814 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6815
6816 if (active_balance) {
6817 stop_one_cpu_nowait(cpu_of(busiest),
6818 active_load_balance_cpu_stop, busiest,
6819 &busiest->active_balance_work);
6820 }
6821
6822 /*
6823 * We've kicked active balancing, reset the failure
6824 * counter.
6825 */
6826 sd->nr_balance_failed = sd->cache_nice_tries+1;
6827 }
6828 } else
6829 sd->nr_balance_failed = 0;
6830
6831 if (likely(!active_balance)) {
6832 /* We were unbalanced, so reset the balancing interval */
6833 sd->balance_interval = sd->min_interval;
6834 } else {
6835 /*
6836 * If we've begun active balancing, start to back off. This
6837 * case may not be covered by the all_pinned logic if there
6838 * is only 1 task on the busy runqueue (because we don't call
6839 * detach_tasks).
6840 */
6841 if (sd->balance_interval < sd->max_interval)
6842 sd->balance_interval *= 2;
6843 }
6844
6845 goto out;
6846
6847out_balanced:
6848 /*
6849 * We reach balance although we may have faced some affinity
6850 * constraints. Clear the imbalance flag if it was set.
6851 */
6852 if (sd_parent) {
6853 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6854
6855 if (*group_imbalance)
6856 *group_imbalance = 0;
6857 }
6858
6859out_all_pinned:
6860 /*
6861 * We reach balance because all tasks are pinned at this level so
6862 * we can't migrate them. Let the imbalance flag set so parent level
6863 * can try to migrate them.
6864 */
6865 schedstat_inc(sd, lb_balanced[idle]);
6866
6867 sd->nr_balance_failed = 0;
6868
6869out_one_pinned:
6870 /* tune up the balancing interval */
6871 if (((env.flags & LBF_ALL_PINNED) &&
6872 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6873 (sd->balance_interval < sd->max_interval))
6874 sd->balance_interval *= 2;
6875
6876 ld_moved = 0;
6877out:
6878 return ld_moved;
6879}
6880
6881static inline unsigned long
6882get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6883{
6884 unsigned long interval = sd->balance_interval;
6885
6886 if (cpu_busy)
6887 interval *= sd->busy_factor;
6888
6889 /* scale ms to jiffies */
6890 interval = msecs_to_jiffies(interval);
6891 interval = clamp(interval, 1UL, max_load_balance_interval);
6892
6893 return interval;
6894}
6895
6896static inline void
6897update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6898{
6899 unsigned long interval, next;
6900
6901 interval = get_sd_balance_interval(sd, cpu_busy);
6902 next = sd->last_balance + interval;
6903
6904 if (time_after(*next_balance, next))
6905 *next_balance = next;
6906}
6907
6908/*
6909 * idle_balance is called by schedule() if this_cpu is about to become
6910 * idle. Attempts to pull tasks from other CPUs.
6911 */
6912static int idle_balance(struct rq *this_rq)
6913{
6914 unsigned long next_balance = jiffies + HZ;
6915 int this_cpu = this_rq->cpu;
6916 struct sched_domain *sd;
6917 int pulled_task = 0;
6918 u64 curr_cost = 0;
6919
6920 idle_enter_fair(this_rq);
6921
6922 /*
6923 * We must set idle_stamp _before_ calling idle_balance(), such that we
6924 * measure the duration of idle_balance() as idle time.
6925 */
6926 this_rq->idle_stamp = rq_clock(this_rq);
6927
6928 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6929 !this_rq->rd->overload) {
6930 rcu_read_lock();
6931 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6932 if (sd)
6933 update_next_balance(sd, 0, &next_balance);
6934 rcu_read_unlock();
6935
6936 goto out;
6937 }
6938
6939 /*
6940 * Drop the rq->lock, but keep IRQ/preempt disabled.
6941 */
6942 raw_spin_unlock(&this_rq->lock);
6943
6944 update_blocked_averages(this_cpu);
6945 rcu_read_lock();
6946 for_each_domain(this_cpu, sd) {
6947 int continue_balancing = 1;
6948 u64 t0, domain_cost;
6949
6950 if (!(sd->flags & SD_LOAD_BALANCE))
6951 continue;
6952
6953 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6954 update_next_balance(sd, 0, &next_balance);
6955 break;
6956 }
6957
6958 if (sd->flags & SD_BALANCE_NEWIDLE) {
6959 t0 = sched_clock_cpu(this_cpu);
6960
6961 pulled_task = load_balance(this_cpu, this_rq,
6962 sd, CPU_NEWLY_IDLE,
6963 &continue_balancing);
6964
6965 domain_cost = sched_clock_cpu(this_cpu) - t0;
6966 if (domain_cost > sd->max_newidle_lb_cost)
6967 sd->max_newidle_lb_cost = domain_cost;
6968
6969 curr_cost += domain_cost;
6970 }
6971
6972 update_next_balance(sd, 0, &next_balance);
6973
6974 /*
6975 * Stop searching for tasks to pull if there are
6976 * now runnable tasks on this rq.
6977 */
6978 if (pulled_task || this_rq->nr_running > 0)
6979 break;
6980 }
6981 rcu_read_unlock();
6982
6983 raw_spin_lock(&this_rq->lock);
6984
6985 if (curr_cost > this_rq->max_idle_balance_cost)
6986 this_rq->max_idle_balance_cost = curr_cost;
6987
6988 /*
6989 * While browsing the domains, we released the rq lock, a task could
6990 * have been enqueued in the meantime. Since we're not going idle,
6991 * pretend we pulled a task.
6992 */
6993 if (this_rq->cfs.h_nr_running && !pulled_task)
6994 pulled_task = 1;
6995
6996out:
6997 /* Move the next balance forward */
6998 if (time_after(this_rq->next_balance, next_balance))
6999 this_rq->next_balance = next_balance;
7000
7001 /* Is there a task of a high priority class? */
7002 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7003 pulled_task = -1;
7004
7005 if (pulled_task) {
7006 idle_exit_fair(this_rq);
7007 this_rq->idle_stamp = 0;
7008 }
7009
7010 return pulled_task;
7011}
7012
7013/*
7014 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7015 * running tasks off the busiest CPU onto idle CPUs. It requires at
7016 * least 1 task to be running on each physical CPU where possible, and
7017 * avoids physical / logical imbalances.
7018 */
7019static int active_load_balance_cpu_stop(void *data)
7020{
7021 struct rq *busiest_rq = data;
7022 int busiest_cpu = cpu_of(busiest_rq);
7023 int target_cpu = busiest_rq->push_cpu;
7024 struct rq *target_rq = cpu_rq(target_cpu);
7025 struct sched_domain *sd;
7026 struct task_struct *p = NULL;
7027
7028 raw_spin_lock_irq(&busiest_rq->lock);
7029
7030 /* make sure the requested cpu hasn't gone down in the meantime */
7031 if (unlikely(busiest_cpu != smp_processor_id() ||
7032 !busiest_rq->active_balance))
7033 goto out_unlock;
7034
7035 /* Is there any task to move? */
7036 if (busiest_rq->nr_running <= 1)
7037 goto out_unlock;
7038
7039 /*
7040 * This condition is "impossible", if it occurs
7041 * we need to fix it. Originally reported by
7042 * Bjorn Helgaas on a 128-cpu setup.
7043 */
7044 BUG_ON(busiest_rq == target_rq);
7045
7046 /* Search for an sd spanning us and the target CPU. */
7047 rcu_read_lock();
7048 for_each_domain(target_cpu, sd) {
7049 if ((sd->flags & SD_LOAD_BALANCE) &&
7050 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7051 break;
7052 }
7053
7054 if (likely(sd)) {
7055 struct lb_env env = {
7056 .sd = sd,
7057 .dst_cpu = target_cpu,
7058 .dst_rq = target_rq,
7059 .src_cpu = busiest_rq->cpu,
7060 .src_rq = busiest_rq,
7061 .idle = CPU_IDLE,
7062 };
7063
7064 schedstat_inc(sd, alb_count);
7065
7066 p = detach_one_task(&env);
7067 if (p)
7068 schedstat_inc(sd, alb_pushed);
7069 else
7070 schedstat_inc(sd, alb_failed);
7071 }
7072 rcu_read_unlock();
7073out_unlock:
7074 busiest_rq->active_balance = 0;
7075 raw_spin_unlock(&busiest_rq->lock);
7076
7077 if (p)
7078 attach_one_task(target_rq, p);
7079
7080 local_irq_enable();
7081
7082 return 0;
7083}
7084
7085static inline int on_null_domain(struct rq *rq)
7086{
7087 return unlikely(!rcu_dereference_sched(rq->sd));
7088}
7089
7090#ifdef CONFIG_NO_HZ_COMMON
7091/*
7092 * idle load balancing details
7093 * - When one of the busy CPUs notice that there may be an idle rebalancing
7094 * needed, they will kick the idle load balancer, which then does idle
7095 * load balancing for all the idle CPUs.
7096 */
7097static struct {
7098 cpumask_var_t idle_cpus_mask;
7099 atomic_t nr_cpus;
7100 unsigned long next_balance; /* in jiffy units */
7101} nohz ____cacheline_aligned;
7102
7103static inline int find_new_ilb(void)
7104{
7105 int ilb = cpumask_first(nohz.idle_cpus_mask);
7106
7107 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7108 return ilb;
7109
7110 return nr_cpu_ids;
7111}
7112
7113/*
7114 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7115 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7116 * CPU (if there is one).
7117 */
7118static void nohz_balancer_kick(void)
7119{
7120 int ilb_cpu;
7121
7122 nohz.next_balance++;
7123
7124 ilb_cpu = find_new_ilb();
7125
7126 if (ilb_cpu >= nr_cpu_ids)
7127 return;
7128
7129 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7130 return;
7131 /*
7132 * Use smp_send_reschedule() instead of resched_cpu().
7133 * This way we generate a sched IPI on the target cpu which
7134 * is idle. And the softirq performing nohz idle load balance
7135 * will be run before returning from the IPI.
7136 */
7137 smp_send_reschedule(ilb_cpu);
7138 return;
7139}
7140
7141static inline void nohz_balance_exit_idle(int cpu)
7142{
7143 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7144 /*
7145 * Completely isolated CPUs don't ever set, so we must test.
7146 */
7147 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7148 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7149 atomic_dec(&nohz.nr_cpus);
7150 }
7151 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7152 }
7153}
7154
7155static inline void set_cpu_sd_state_busy(void)
7156{
7157 struct sched_domain *sd;
7158 int cpu = smp_processor_id();
7159
7160 rcu_read_lock();
7161 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7162
7163 if (!sd || !sd->nohz_idle)
7164 goto unlock;
7165 sd->nohz_idle = 0;
7166
7167 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7168unlock:
7169 rcu_read_unlock();
7170}
7171
7172void set_cpu_sd_state_idle(void)
7173{
7174 struct sched_domain *sd;
7175 int cpu = smp_processor_id();
7176
7177 rcu_read_lock();
7178 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7179
7180 if (!sd || sd->nohz_idle)
7181 goto unlock;
7182 sd->nohz_idle = 1;
7183
7184 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7185unlock:
7186 rcu_read_unlock();
7187}
7188
7189/*
7190 * This routine will record that the cpu is going idle with tick stopped.
7191 * This info will be used in performing idle load balancing in the future.
7192 */
7193void nohz_balance_enter_idle(int cpu)
7194{
7195 /*
7196 * If this cpu is going down, then nothing needs to be done.
7197 */
7198 if (!cpu_active(cpu))
7199 return;
7200
7201 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7202 return;
7203
7204 /*
7205 * If we're a completely isolated CPU, we don't play.
7206 */
7207 if (on_null_domain(cpu_rq(cpu)))
7208 return;
7209
7210 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7211 atomic_inc(&nohz.nr_cpus);
7212 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7213}
7214
7215static int sched_ilb_notifier(struct notifier_block *nfb,
7216 unsigned long action, void *hcpu)
7217{
7218 switch (action & ~CPU_TASKS_FROZEN) {
7219 case CPU_DYING:
7220 nohz_balance_exit_idle(smp_processor_id());
7221 return NOTIFY_OK;
7222 default:
7223 return NOTIFY_DONE;
7224 }
7225}
7226#endif
7227
7228static DEFINE_SPINLOCK(balancing);
7229
7230/*
7231 * Scale the max load_balance interval with the number of CPUs in the system.
7232 * This trades load-balance latency on larger machines for less cross talk.
7233 */
7234void update_max_interval(void)
7235{
7236 max_load_balance_interval = HZ*num_online_cpus()/10;
7237}
7238
7239/*
7240 * It checks each scheduling domain to see if it is due to be balanced,
7241 * and initiates a balancing operation if so.
7242 *
7243 * Balancing parameters are set up in init_sched_domains.
7244 */
7245static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7246{
7247 int continue_balancing = 1;
7248 int cpu = rq->cpu;
7249 unsigned long interval;
7250 struct sched_domain *sd;
7251 /* Earliest time when we have to do rebalance again */
7252 unsigned long next_balance = jiffies + 60*HZ;
7253 int update_next_balance = 0;
7254 int need_serialize, need_decay = 0;
7255 u64 max_cost = 0;
7256
7257 update_blocked_averages(cpu);
7258
7259 rcu_read_lock();
7260 for_each_domain(cpu, sd) {
7261 /*
7262 * Decay the newidle max times here because this is a regular
7263 * visit to all the domains. Decay ~1% per second.
7264 */
7265 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7266 sd->max_newidle_lb_cost =
7267 (sd->max_newidle_lb_cost * 253) / 256;
7268 sd->next_decay_max_lb_cost = jiffies + HZ;
7269 need_decay = 1;
7270 }
7271 max_cost += sd->max_newidle_lb_cost;
7272
7273 if (!(sd->flags & SD_LOAD_BALANCE))
7274 continue;
7275
7276 /*
7277 * Stop the load balance at this level. There is another
7278 * CPU in our sched group which is doing load balancing more
7279 * actively.
7280 */
7281 if (!continue_balancing) {
7282 if (need_decay)
7283 continue;
7284 break;
7285 }
7286
7287 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7288
7289 need_serialize = sd->flags & SD_SERIALIZE;
7290 if (need_serialize) {
7291 if (!spin_trylock(&balancing))
7292 goto out;
7293 }
7294
7295 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7296 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7297 /*
7298 * The LBF_DST_PINNED logic could have changed
7299 * env->dst_cpu, so we can't know our idle
7300 * state even if we migrated tasks. Update it.
7301 */
7302 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7303 }
7304 sd->last_balance = jiffies;
7305 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7306 }
7307 if (need_serialize)
7308 spin_unlock(&balancing);
7309out:
7310 if (time_after(next_balance, sd->last_balance + interval)) {
7311 next_balance = sd->last_balance + interval;
7312 update_next_balance = 1;
7313 }
7314 }
7315 if (need_decay) {
7316 /*
7317 * Ensure the rq-wide value also decays but keep it at a
7318 * reasonable floor to avoid funnies with rq->avg_idle.
7319 */
7320 rq->max_idle_balance_cost =
7321 max((u64)sysctl_sched_migration_cost, max_cost);
7322 }
7323 rcu_read_unlock();
7324
7325 /*
7326 * next_balance will be updated only when there is a need.
7327 * When the cpu is attached to null domain for ex, it will not be
7328 * updated.
7329 */
7330 if (likely(update_next_balance))
7331 rq->next_balance = next_balance;
7332}
7333
7334#ifdef CONFIG_NO_HZ_COMMON
7335/*
7336 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7337 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7338 */
7339static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7340{
7341 int this_cpu = this_rq->cpu;
7342 struct rq *rq;
7343 int balance_cpu;
7344
7345 if (idle != CPU_IDLE ||
7346 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7347 goto end;
7348
7349 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7350 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7351 continue;
7352
7353 /*
7354 * If this cpu gets work to do, stop the load balancing
7355 * work being done for other cpus. Next load
7356 * balancing owner will pick it up.
7357 */
7358 if (need_resched())
7359 break;
7360
7361 rq = cpu_rq(balance_cpu);
7362
7363 /*
7364 * If time for next balance is due,
7365 * do the balance.
7366 */
7367 if (time_after_eq(jiffies, rq->next_balance)) {
7368 raw_spin_lock_irq(&rq->lock);
7369 update_rq_clock(rq);
7370 update_idle_cpu_load(rq);
7371 raw_spin_unlock_irq(&rq->lock);
7372 rebalance_domains(rq, CPU_IDLE);
7373 }
7374
7375 if (time_after(this_rq->next_balance, rq->next_balance))
7376 this_rq->next_balance = rq->next_balance;
7377 }
7378 nohz.next_balance = this_rq->next_balance;
7379end:
7380 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7381}
7382
7383/*
7384 * Current heuristic for kicking the idle load balancer in the presence
7385 * of an idle cpu is the system.
7386 * - This rq has more than one task.
7387 * - At any scheduler domain level, this cpu's scheduler group has multiple
7388 * busy cpu's exceeding the group's capacity.
7389 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7390 * domain span are idle.
7391 */
7392static inline int nohz_kick_needed(struct rq *rq)
7393{
7394 unsigned long now = jiffies;
7395 struct sched_domain *sd;
7396 struct sched_group_capacity *sgc;
7397 int nr_busy, cpu = rq->cpu;
7398
7399 if (unlikely(rq->idle_balance))
7400 return 0;
7401
7402 /*
7403 * We may be recently in ticked or tickless idle mode. At the first
7404 * busy tick after returning from idle, we will update the busy stats.
7405 */
7406 set_cpu_sd_state_busy();
7407 nohz_balance_exit_idle(cpu);
7408
7409 /*
7410 * None are in tickless mode and hence no need for NOHZ idle load
7411 * balancing.
7412 */
7413 if (likely(!atomic_read(&nohz.nr_cpus)))
7414 return 0;
7415
7416 if (time_before(now, nohz.next_balance))
7417 return 0;
7418
7419 if (rq->nr_running >= 2)
7420 goto need_kick;
7421
7422 rcu_read_lock();
7423 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7424
7425 if (sd) {
7426 sgc = sd->groups->sgc;
7427 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7428
7429 if (nr_busy > 1)
7430 goto need_kick_unlock;
7431 }
7432
7433 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7434
7435 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7436 sched_domain_span(sd)) < cpu))
7437 goto need_kick_unlock;
7438
7439 rcu_read_unlock();
7440 return 0;
7441
7442need_kick_unlock:
7443 rcu_read_unlock();
7444need_kick:
7445 return 1;
7446}
7447#else
7448static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7449#endif
7450
7451/*
7452 * run_rebalance_domains is triggered when needed from the scheduler tick.
7453 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7454 */
7455static void run_rebalance_domains(struct softirq_action *h)
7456{
7457 struct rq *this_rq = this_rq();
7458 enum cpu_idle_type idle = this_rq->idle_balance ?
7459 CPU_IDLE : CPU_NOT_IDLE;
7460
7461 rebalance_domains(this_rq, idle);
7462
7463 /*
7464 * If this cpu has a pending nohz_balance_kick, then do the
7465 * balancing on behalf of the other idle cpus whose ticks are
7466 * stopped.
7467 */
7468 nohz_idle_balance(this_rq, idle);
7469}
7470
7471/*
7472 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7473 */
7474void trigger_load_balance(struct rq *rq)
7475{
7476 /* Don't need to rebalance while attached to NULL domain */
7477 if (unlikely(on_null_domain(rq)))
7478 return;
7479
7480 if (time_after_eq(jiffies, rq->next_balance))
7481 raise_softirq(SCHED_SOFTIRQ);
7482#ifdef CONFIG_NO_HZ_COMMON
7483 if (nohz_kick_needed(rq))
7484 nohz_balancer_kick();
7485#endif
7486}
7487
7488static void rq_online_fair(struct rq *rq)
7489{
7490 update_sysctl();
7491
7492 update_runtime_enabled(rq);
7493}
7494
7495static void rq_offline_fair(struct rq *rq)
7496{
7497 update_sysctl();
7498
7499 /* Ensure any throttled groups are reachable by pick_next_task */
7500 unthrottle_offline_cfs_rqs(rq);
7501}
7502
7503#endif /* CONFIG_SMP */
7504
7505/*
7506 * scheduler tick hitting a task of our scheduling class:
7507 */
7508static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7509{
7510 struct cfs_rq *cfs_rq;
7511 struct sched_entity *se = &curr->se;
7512
7513 for_each_sched_entity(se) {
7514 cfs_rq = cfs_rq_of(se);
7515 entity_tick(cfs_rq, se, queued);
7516 }
7517
7518 if (numabalancing_enabled)
7519 task_tick_numa(rq, curr);
7520
7521 update_rq_runnable_avg(rq, 1);
7522}
7523
7524/*
7525 * called on fork with the child task as argument from the parent's context
7526 * - child not yet on the tasklist
7527 * - preemption disabled
7528 */
7529static void task_fork_fair(struct task_struct *p)
7530{
7531 struct cfs_rq *cfs_rq;
7532 struct sched_entity *se = &p->se, *curr;
7533 int this_cpu = smp_processor_id();
7534 struct rq *rq = this_rq();
7535 unsigned long flags;
7536
7537 raw_spin_lock_irqsave(&rq->lock, flags);
7538
7539 update_rq_clock(rq);
7540
7541 cfs_rq = task_cfs_rq(current);
7542 curr = cfs_rq->curr;
7543
7544 /*
7545 * Not only the cpu but also the task_group of the parent might have
7546 * been changed after parent->se.parent,cfs_rq were copied to
7547 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7548 * of child point to valid ones.
7549 */
7550 rcu_read_lock();
7551 __set_task_cpu(p, this_cpu);
7552 rcu_read_unlock();
7553
7554 update_curr(cfs_rq);
7555
7556 if (curr)
7557 se->vruntime = curr->vruntime;
7558 place_entity(cfs_rq, se, 1);
7559
7560 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7561 /*
7562 * Upon rescheduling, sched_class::put_prev_task() will place
7563 * 'current' within the tree based on its new key value.
7564 */
7565 swap(curr->vruntime, se->vruntime);
7566 resched_curr(rq);
7567 }
7568
7569 se->vruntime -= cfs_rq->min_vruntime;
7570
7571 raw_spin_unlock_irqrestore(&rq->lock, flags);
7572}
7573
7574/*
7575 * Priority of the task has changed. Check to see if we preempt
7576 * the current task.
7577 */
7578static void
7579prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7580{
7581 if (!task_on_rq_queued(p))
7582 return;
7583
7584 /*
7585 * Reschedule if we are currently running on this runqueue and
7586 * our priority decreased, or if we are not currently running on
7587 * this runqueue and our priority is higher than the current's
7588 */
7589 if (rq->curr == p) {
7590 if (p->prio > oldprio)
7591 resched_curr(rq);
7592 } else
7593 check_preempt_curr(rq, p, 0);
7594}
7595
7596static void switched_from_fair(struct rq *rq, struct task_struct *p)
7597{
7598 struct sched_entity *se = &p->se;
7599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7600
7601 /*
7602 * Ensure the task's vruntime is normalized, so that when it's
7603 * switched back to the fair class the enqueue_entity(.flags=0) will
7604 * do the right thing.
7605 *
7606 * If it's queued, then the dequeue_entity(.flags=0) will already
7607 * have normalized the vruntime, if it's !queued, then only when
7608 * the task is sleeping will it still have non-normalized vruntime.
7609 */
7610 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7611 /*
7612 * Fix up our vruntime so that the current sleep doesn't
7613 * cause 'unlimited' sleep bonus.
7614 */
7615 place_entity(cfs_rq, se, 0);
7616 se->vruntime -= cfs_rq->min_vruntime;
7617 }
7618
7619#ifdef CONFIG_SMP
7620 /*
7621 * Remove our load from contribution when we leave sched_fair
7622 * and ensure we don't carry in an old decay_count if we
7623 * switch back.
7624 */
7625 if (se->avg.decay_count) {
7626 __synchronize_entity_decay(se);
7627 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7628 }
7629#endif
7630}
7631
7632/*
7633 * We switched to the sched_fair class.
7634 */
7635static void switched_to_fair(struct rq *rq, struct task_struct *p)
7636{
7637#ifdef CONFIG_FAIR_GROUP_SCHED
7638 struct sched_entity *se = &p->se;
7639 /*
7640 * Since the real-depth could have been changed (only FAIR
7641 * class maintain depth value), reset depth properly.
7642 */
7643 se->depth = se->parent ? se->parent->depth + 1 : 0;
7644#endif
7645 if (!task_on_rq_queued(p))
7646 return;
7647
7648 /*
7649 * We were most likely switched from sched_rt, so
7650 * kick off the schedule if running, otherwise just see
7651 * if we can still preempt the current task.
7652 */
7653 if (rq->curr == p)
7654 resched_curr(rq);
7655 else
7656 check_preempt_curr(rq, p, 0);
7657}
7658
7659/* Account for a task changing its policy or group.
7660 *
7661 * This routine is mostly called to set cfs_rq->curr field when a task
7662 * migrates between groups/classes.
7663 */
7664static void set_curr_task_fair(struct rq *rq)
7665{
7666 struct sched_entity *se = &rq->curr->se;
7667
7668 for_each_sched_entity(se) {
7669 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7670
7671 set_next_entity(cfs_rq, se);
7672 /* ensure bandwidth has been allocated on our new cfs_rq */
7673 account_cfs_rq_runtime(cfs_rq, 0);
7674 }
7675}
7676
7677void init_cfs_rq(struct cfs_rq *cfs_rq)
7678{
7679 cfs_rq->tasks_timeline = RB_ROOT;
7680 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7681#ifndef CONFIG_64BIT
7682 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7683#endif
7684#ifdef CONFIG_SMP
7685 atomic64_set(&cfs_rq->decay_counter, 1);
7686 atomic_long_set(&cfs_rq->removed_load, 0);
7687#endif
7688}
7689
7690#ifdef CONFIG_FAIR_GROUP_SCHED
7691static void task_move_group_fair(struct task_struct *p, int queued)
7692{
7693 struct sched_entity *se = &p->se;
7694 struct cfs_rq *cfs_rq;
7695
7696 /*
7697 * If the task was not on the rq at the time of this cgroup movement
7698 * it must have been asleep, sleeping tasks keep their ->vruntime
7699 * absolute on their old rq until wakeup (needed for the fair sleeper
7700 * bonus in place_entity()).
7701 *
7702 * If it was on the rq, we've just 'preempted' it, which does convert
7703 * ->vruntime to a relative base.
7704 *
7705 * Make sure both cases convert their relative position when migrating
7706 * to another cgroup's rq. This does somewhat interfere with the
7707 * fair sleeper stuff for the first placement, but who cares.
7708 */
7709 /*
7710 * When !queued, vruntime of the task has usually NOT been normalized.
7711 * But there are some cases where it has already been normalized:
7712 *
7713 * - Moving a forked child which is waiting for being woken up by
7714 * wake_up_new_task().
7715 * - Moving a task which has been woken up by try_to_wake_up() and
7716 * waiting for actually being woken up by sched_ttwu_pending().
7717 *
7718 * To prevent boost or penalty in the new cfs_rq caused by delta
7719 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7720 */
7721 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7722 queued = 1;
7723
7724 if (!queued)
7725 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7726 set_task_rq(p, task_cpu(p));
7727 se->depth = se->parent ? se->parent->depth + 1 : 0;
7728 if (!queued) {
7729 cfs_rq = cfs_rq_of(se);
7730 se->vruntime += cfs_rq->min_vruntime;
7731#ifdef CONFIG_SMP
7732 /*
7733 * migrate_task_rq_fair() will have removed our previous
7734 * contribution, but we must synchronize for ongoing future
7735 * decay.
7736 */
7737 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7738 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7739#endif
7740 }
7741}
7742
7743void free_fair_sched_group(struct task_group *tg)
7744{
7745 int i;
7746
7747 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7748
7749 for_each_possible_cpu(i) {
7750 if (tg->cfs_rq)
7751 kfree(tg->cfs_rq[i]);
7752 if (tg->se)
7753 kfree(tg->se[i]);
7754 }
7755
7756 kfree(tg->cfs_rq);
7757 kfree(tg->se);
7758}
7759
7760int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7761{
7762 struct cfs_rq *cfs_rq;
7763 struct sched_entity *se;
7764 int i;
7765
7766 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7767 if (!tg->cfs_rq)
7768 goto err;
7769 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7770 if (!tg->se)
7771 goto err;
7772
7773 tg->shares = NICE_0_LOAD;
7774
7775 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7776
7777 for_each_possible_cpu(i) {
7778 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7779 GFP_KERNEL, cpu_to_node(i));
7780 if (!cfs_rq)
7781 goto err;
7782
7783 se = kzalloc_node(sizeof(struct sched_entity),
7784 GFP_KERNEL, cpu_to_node(i));
7785 if (!se)
7786 goto err_free_rq;
7787
7788 init_cfs_rq(cfs_rq);
7789 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7790 }
7791
7792 return 1;
7793
7794err_free_rq:
7795 kfree(cfs_rq);
7796err:
7797 return 0;
7798}
7799
7800void unregister_fair_sched_group(struct task_group *tg, int cpu)
7801{
7802 struct rq *rq = cpu_rq(cpu);
7803 unsigned long flags;
7804
7805 /*
7806 * Only empty task groups can be destroyed; so we can speculatively
7807 * check on_list without danger of it being re-added.
7808 */
7809 if (!tg->cfs_rq[cpu]->on_list)
7810 return;
7811
7812 raw_spin_lock_irqsave(&rq->lock, flags);
7813 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7814 raw_spin_unlock_irqrestore(&rq->lock, flags);
7815}
7816
7817void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7818 struct sched_entity *se, int cpu,
7819 struct sched_entity *parent)
7820{
7821 struct rq *rq = cpu_rq(cpu);
7822
7823 cfs_rq->tg = tg;
7824 cfs_rq->rq = rq;
7825 init_cfs_rq_runtime(cfs_rq);
7826
7827 tg->cfs_rq[cpu] = cfs_rq;
7828 tg->se[cpu] = se;
7829
7830 /* se could be NULL for root_task_group */
7831 if (!se)
7832 return;
7833
7834 if (!parent) {
7835 se->cfs_rq = &rq->cfs;
7836 se->depth = 0;
7837 } else {
7838 se->cfs_rq = parent->my_q;
7839 se->depth = parent->depth + 1;
7840 }
7841
7842 se->my_q = cfs_rq;
7843 /* guarantee group entities always have weight */
7844 update_load_set(&se->load, NICE_0_LOAD);
7845 se->parent = parent;
7846}
7847
7848static DEFINE_MUTEX(shares_mutex);
7849
7850int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7851{
7852 int i;
7853 unsigned long flags;
7854
7855 /*
7856 * We can't change the weight of the root cgroup.
7857 */
7858 if (!tg->se[0])
7859 return -EINVAL;
7860
7861 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7862
7863 mutex_lock(&shares_mutex);
7864 if (tg->shares == shares)
7865 goto done;
7866
7867 tg->shares = shares;
7868 for_each_possible_cpu(i) {
7869 struct rq *rq = cpu_rq(i);
7870 struct sched_entity *se;
7871
7872 se = tg->se[i];
7873 /* Propagate contribution to hierarchy */
7874 raw_spin_lock_irqsave(&rq->lock, flags);
7875
7876 /* Possible calls to update_curr() need rq clock */
7877 update_rq_clock(rq);
7878 for_each_sched_entity(se)
7879 update_cfs_shares(group_cfs_rq(se));
7880 raw_spin_unlock_irqrestore(&rq->lock, flags);
7881 }
7882
7883done:
7884 mutex_unlock(&shares_mutex);
7885 return 0;
7886}
7887#else /* CONFIG_FAIR_GROUP_SCHED */
7888
7889void free_fair_sched_group(struct task_group *tg) { }
7890
7891int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7892{
7893 return 1;
7894}
7895
7896void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7897
7898#endif /* CONFIG_FAIR_GROUP_SCHED */
7899
7900
7901static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7902{
7903 struct sched_entity *se = &task->se;
7904 unsigned int rr_interval = 0;
7905
7906 /*
7907 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7908 * idle runqueue:
7909 */
7910 if (rq->cfs.load.weight)
7911 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7912
7913 return rr_interval;
7914}
7915
7916/*
7917 * All the scheduling class methods:
7918 */
7919const struct sched_class fair_sched_class = {
7920 .next = &idle_sched_class,
7921 .enqueue_task = enqueue_task_fair,
7922 .dequeue_task = dequeue_task_fair,
7923 .yield_task = yield_task_fair,
7924 .yield_to_task = yield_to_task_fair,
7925
7926 .check_preempt_curr = check_preempt_wakeup,
7927
7928 .pick_next_task = pick_next_task_fair,
7929 .put_prev_task = put_prev_task_fair,
7930
7931#ifdef CONFIG_SMP
7932 .select_task_rq = select_task_rq_fair,
7933 .migrate_task_rq = migrate_task_rq_fair,
7934
7935 .rq_online = rq_online_fair,
7936 .rq_offline = rq_offline_fair,
7937
7938 .task_waking = task_waking_fair,
7939#endif
7940
7941 .set_curr_task = set_curr_task_fair,
7942 .task_tick = task_tick_fair,
7943 .task_fork = task_fork_fair,
7944
7945 .prio_changed = prio_changed_fair,
7946 .switched_from = switched_from_fair,
7947 .switched_to = switched_to_fair,
7948
7949 .get_rr_interval = get_rr_interval_fair,
7950
7951#ifdef CONFIG_FAIR_GROUP_SCHED
7952 .task_move_group = task_move_group_fair,
7953#endif
7954};
7955
7956#ifdef CONFIG_SCHED_DEBUG
7957void print_cfs_stats(struct seq_file *m, int cpu)
7958{
7959 struct cfs_rq *cfs_rq;
7960
7961 rcu_read_lock();
7962 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7963 print_cfs_rq(m, cpu, cfs_rq);
7964 rcu_read_unlock();
7965}
7966#endif
7967
7968__init void init_sched_fair_class(void)
7969{
7970#ifdef CONFIG_SMP
7971 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7972
7973#ifdef CONFIG_NO_HZ_COMMON
7974 nohz.next_balance = jiffies;
7975 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7976 cpu_notifier(sched_ilb_notifier, 0);
7977#endif
7978#endif /* SMP */
7979
7980}