]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame_incremental - kernel/sched_fair.c
sched: Remove short cut from select_task_rq_fair()
[mirror_ubuntu-kernels.git] / kernel / sched_fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24
25/*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45/*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48static unsigned int sched_nr_latency = 5;
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
64/*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76static const struct sched_class fair_sched_class;
77
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82#ifdef CONFIG_FAIR_GROUP_SCHED
83
84/* cpu runqueue to which this cfs_rq is attached */
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
87 return cfs_rq->rq;
88}
89
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
92
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
198
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
202}
203
204#define entity_is_task(se) 1
205
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210{
211 return &task_rq(p)->cfs;
212}
213
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260{
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284{
285 return se->vruntime - cfs_rq->min_vruntime;
286}
287
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
309/*
310 * Enqueue an entity into the rb-tree:
311 */
312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347}
348
349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350{
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359}
360
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369}
370
371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372{
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379}
380
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
401
402/*
403 * delta /= w
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412}
413
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433}
434
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442{
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461}
462
463/*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469{
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471}
472
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480{
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490}
491
492static void update_curr(struct cfs_rq *cfs_rq)
493{
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec);
518 }
519}
520
521static inline void
522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523{
524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525}
526
527/*
528 * Task is being enqueued - update stats:
529 */
530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531{
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
536 if (se != cfs_rq->curr)
537 update_stats_wait_start(cfs_rq, se);
538}
539
540static void
541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542{
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
548 schedstat_set(se->wait_start, 0);
549
550#ifdef CONFIG_SCHEDSTATS
551 if (entity_is_task(se)) {
552 trace_sched_stat_wait(task_of(se),
553 rq_of(cfs_rq)->clock - se->wait_start);
554 }
555#endif
556}
557
558static inline void
559update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560{
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
567}
568
569/*
570 * We are picking a new current task - update its stats:
571 */
572static inline void
573update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574{
575 /*
576 * We are starting a new run period:
577 */
578 se->exec_start = rq_of(cfs_rq)->clock;
579}
580
581/**************************************************
582 * Scheduling class queueing methods:
583 */
584
585#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586static void
587add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588{
589 cfs_rq->task_weight += weight;
590}
591#else
592static inline void
593add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594{
595}
596#endif
597
598static void
599account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600{
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610}
611
612static void
613account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614{
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
621 }
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624}
625
626static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628#ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
649 }
650 }
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
662
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
668 }
669
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
681 }
682 }
683#endif
684}
685
686static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687{
688#ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696#endif
697}
698
699static void
700place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701{
702 u64 vruntime = cfs_rq->min_vruntime;
703
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
712
713 if (!initial) {
714 /* sleeps upto a single latency don't count. */
715 if (sched_feat(NEW_FAIR_SLEEPERS)) {
716 unsigned long thresh = sysctl_sched_latency;
717
718 /*
719 * Convert the sleeper threshold into virtual time.
720 * SCHED_IDLE is a special sub-class. We care about
721 * fairness only relative to other SCHED_IDLE tasks,
722 * all of which have the same weight.
723 */
724 if (sched_feat(NORMALIZED_SLEEPER) &&
725 (!entity_is_task(se) ||
726 task_of(se)->policy != SCHED_IDLE))
727 thresh = calc_delta_fair(thresh, se);
728
729 vruntime -= thresh;
730 }
731
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
734 }
735
736 se->vruntime = vruntime;
737}
738
739static void
740enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
741{
742 /*
743 * Update run-time statistics of the 'current'.
744 */
745 update_curr(cfs_rq);
746 account_entity_enqueue(cfs_rq, se);
747
748 if (wakeup) {
749 place_entity(cfs_rq, se, 0);
750 enqueue_sleeper(cfs_rq, se);
751 }
752
753 update_stats_enqueue(cfs_rq, se);
754 check_spread(cfs_rq, se);
755 if (se != cfs_rq->curr)
756 __enqueue_entity(cfs_rq, se);
757}
758
759static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
760{
761 if (cfs_rq->last == se)
762 cfs_rq->last = NULL;
763
764 if (cfs_rq->next == se)
765 cfs_rq->next = NULL;
766}
767
768static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
769{
770 for_each_sched_entity(se)
771 __clear_buddies(cfs_rq_of(se), se);
772}
773
774static void
775dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
776{
777 /*
778 * Update run-time statistics of the 'current'.
779 */
780 update_curr(cfs_rq);
781
782 update_stats_dequeue(cfs_rq, se);
783 if (sleep) {
784#ifdef CONFIG_SCHEDSTATS
785 if (entity_is_task(se)) {
786 struct task_struct *tsk = task_of(se);
787
788 if (tsk->state & TASK_INTERRUPTIBLE)
789 se->sleep_start = rq_of(cfs_rq)->clock;
790 if (tsk->state & TASK_UNINTERRUPTIBLE)
791 se->block_start = rq_of(cfs_rq)->clock;
792 }
793#endif
794 }
795
796 clear_buddies(cfs_rq, se);
797
798 if (se != cfs_rq->curr)
799 __dequeue_entity(cfs_rq, se);
800 account_entity_dequeue(cfs_rq, se);
801 update_min_vruntime(cfs_rq);
802}
803
804/*
805 * Preempt the current task with a newly woken task if needed:
806 */
807static void
808check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
809{
810 unsigned long ideal_runtime, delta_exec;
811
812 ideal_runtime = sched_slice(cfs_rq, curr);
813 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
814 if (delta_exec > ideal_runtime) {
815 resched_task(rq_of(cfs_rq)->curr);
816 /*
817 * The current task ran long enough, ensure it doesn't get
818 * re-elected due to buddy favours.
819 */
820 clear_buddies(cfs_rq, curr);
821 }
822}
823
824static void
825set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827 /* 'current' is not kept within the tree. */
828 if (se->on_rq) {
829 /*
830 * Any task has to be enqueued before it get to execute on
831 * a CPU. So account for the time it spent waiting on the
832 * runqueue.
833 */
834 update_stats_wait_end(cfs_rq, se);
835 __dequeue_entity(cfs_rq, se);
836 }
837
838 update_stats_curr_start(cfs_rq, se);
839 cfs_rq->curr = se;
840#ifdef CONFIG_SCHEDSTATS
841 /*
842 * Track our maximum slice length, if the CPU's load is at
843 * least twice that of our own weight (i.e. dont track it
844 * when there are only lesser-weight tasks around):
845 */
846 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
847 se->slice_max = max(se->slice_max,
848 se->sum_exec_runtime - se->prev_sum_exec_runtime);
849 }
850#endif
851 se->prev_sum_exec_runtime = se->sum_exec_runtime;
852}
853
854static int
855wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
856
857static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
858{
859 struct sched_entity *se = __pick_next_entity(cfs_rq);
860
861 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
862 return cfs_rq->next;
863
864 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
865 return cfs_rq->last;
866
867 return se;
868}
869
870static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
871{
872 /*
873 * If still on the runqueue then deactivate_task()
874 * was not called and update_curr() has to be done:
875 */
876 if (prev->on_rq)
877 update_curr(cfs_rq);
878
879 check_spread(cfs_rq, prev);
880 if (prev->on_rq) {
881 update_stats_wait_start(cfs_rq, prev);
882 /* Put 'current' back into the tree. */
883 __enqueue_entity(cfs_rq, prev);
884 }
885 cfs_rq->curr = NULL;
886}
887
888static void
889entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
890{
891 /*
892 * Update run-time statistics of the 'current'.
893 */
894 update_curr(cfs_rq);
895
896#ifdef CONFIG_SCHED_HRTICK
897 /*
898 * queued ticks are scheduled to match the slice, so don't bother
899 * validating it and just reschedule.
900 */
901 if (queued) {
902 resched_task(rq_of(cfs_rq)->curr);
903 return;
904 }
905 /*
906 * don't let the period tick interfere with the hrtick preemption
907 */
908 if (!sched_feat(DOUBLE_TICK) &&
909 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
910 return;
911#endif
912
913 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
914 check_preempt_tick(cfs_rq, curr);
915}
916
917/**************************************************
918 * CFS operations on tasks:
919 */
920
921#ifdef CONFIG_SCHED_HRTICK
922static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
923{
924 struct sched_entity *se = &p->se;
925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
926
927 WARN_ON(task_rq(p) != rq);
928
929 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
930 u64 slice = sched_slice(cfs_rq, se);
931 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
932 s64 delta = slice - ran;
933
934 if (delta < 0) {
935 if (rq->curr == p)
936 resched_task(p);
937 return;
938 }
939
940 /*
941 * Don't schedule slices shorter than 10000ns, that just
942 * doesn't make sense. Rely on vruntime for fairness.
943 */
944 if (rq->curr != p)
945 delta = max_t(s64, 10000LL, delta);
946
947 hrtick_start(rq, delta);
948 }
949}
950
951/*
952 * called from enqueue/dequeue and updates the hrtick when the
953 * current task is from our class and nr_running is low enough
954 * to matter.
955 */
956static void hrtick_update(struct rq *rq)
957{
958 struct task_struct *curr = rq->curr;
959
960 if (curr->sched_class != &fair_sched_class)
961 return;
962
963 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
964 hrtick_start_fair(rq, curr);
965}
966#else /* !CONFIG_SCHED_HRTICK */
967static inline void
968hrtick_start_fair(struct rq *rq, struct task_struct *p)
969{
970}
971
972static inline void hrtick_update(struct rq *rq)
973{
974}
975#endif
976
977/*
978 * The enqueue_task method is called before nr_running is
979 * increased. Here we update the fair scheduling stats and
980 * then put the task into the rbtree:
981 */
982static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
983{
984 struct cfs_rq *cfs_rq;
985 struct sched_entity *se = &p->se;
986
987 for_each_sched_entity(se) {
988 if (se->on_rq)
989 break;
990 cfs_rq = cfs_rq_of(se);
991 enqueue_entity(cfs_rq, se, wakeup);
992 wakeup = 1;
993 }
994
995 hrtick_update(rq);
996}
997
998/*
999 * The dequeue_task method is called before nr_running is
1000 * decreased. We remove the task from the rbtree and
1001 * update the fair scheduling stats:
1002 */
1003static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1004{
1005 struct cfs_rq *cfs_rq;
1006 struct sched_entity *se = &p->se;
1007
1008 for_each_sched_entity(se) {
1009 cfs_rq = cfs_rq_of(se);
1010 dequeue_entity(cfs_rq, se, sleep);
1011 /* Don't dequeue parent if it has other entities besides us */
1012 if (cfs_rq->load.weight)
1013 break;
1014 sleep = 1;
1015 }
1016
1017 hrtick_update(rq);
1018}
1019
1020/*
1021 * sched_yield() support is very simple - we dequeue and enqueue.
1022 *
1023 * If compat_yield is turned on then we requeue to the end of the tree.
1024 */
1025static void yield_task_fair(struct rq *rq)
1026{
1027 struct task_struct *curr = rq->curr;
1028 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1029 struct sched_entity *rightmost, *se = &curr->se;
1030
1031 /*
1032 * Are we the only task in the tree?
1033 */
1034 if (unlikely(cfs_rq->nr_running == 1))
1035 return;
1036
1037 clear_buddies(cfs_rq, se);
1038
1039 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1040 update_rq_clock(rq);
1041 /*
1042 * Update run-time statistics of the 'current'.
1043 */
1044 update_curr(cfs_rq);
1045
1046 return;
1047 }
1048 /*
1049 * Find the rightmost entry in the rbtree:
1050 */
1051 rightmost = __pick_last_entity(cfs_rq);
1052 /*
1053 * Already in the rightmost position?
1054 */
1055 if (unlikely(!rightmost || entity_before(rightmost, se)))
1056 return;
1057
1058 /*
1059 * Minimally necessary key value to be last in the tree:
1060 * Upon rescheduling, sched_class::put_prev_task() will place
1061 * 'current' within the tree based on its new key value.
1062 */
1063 se->vruntime = rightmost->vruntime + 1;
1064}
1065
1066/*
1067 * wake_idle() will wake a task on an idle cpu if task->cpu is
1068 * not idle and an idle cpu is available. The span of cpus to
1069 * search starts with cpus closest then further out as needed,
1070 * so we always favor a closer, idle cpu.
1071 * Domains may include CPUs that are not usable for migration,
1072 * hence we need to mask them out (rq->rd->online)
1073 *
1074 * Returns the CPU we should wake onto.
1075 */
1076#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1077
1078#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1079
1080static int wake_idle(int cpu, struct task_struct *p)
1081{
1082 struct sched_domain *sd;
1083 int i;
1084 unsigned int chosen_wakeup_cpu;
1085 int this_cpu;
1086 struct rq *task_rq = task_rq(p);
1087
1088 /*
1089 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1090 * are idle and this is not a kernel thread and this task's affinity
1091 * allows it to be moved to preferred cpu, then just move!
1092 */
1093
1094 this_cpu = smp_processor_id();
1095 chosen_wakeup_cpu =
1096 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1097
1098 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1099 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1100 p->mm && !(p->flags & PF_KTHREAD) &&
1101 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1102 return chosen_wakeup_cpu;
1103
1104 /*
1105 * If it is idle, then it is the best cpu to run this task.
1106 *
1107 * This cpu is also the best, if it has more than one task already.
1108 * Siblings must be also busy(in most cases) as they didn't already
1109 * pickup the extra load from this cpu and hence we need not check
1110 * sibling runqueue info. This will avoid the checks and cache miss
1111 * penalities associated with that.
1112 */
1113 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1114 return cpu;
1115
1116 for_each_domain(cpu, sd) {
1117 if ((sd->flags & SD_WAKE_IDLE)
1118 || ((sd->flags & SD_WAKE_IDLE_FAR)
1119 && !task_hot(p, task_rq->clock, sd))) {
1120 for_each_cpu_and(i, sched_domain_span(sd),
1121 &p->cpus_allowed) {
1122 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1123 if (i != task_cpu(p)) {
1124 schedstat_inc(p,
1125 se.nr_wakeups_idle);
1126 }
1127 return i;
1128 }
1129 }
1130 } else {
1131 break;
1132 }
1133 }
1134 return cpu;
1135}
1136#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1137static inline int wake_idle(int cpu, struct task_struct *p)
1138{
1139 return cpu;
1140}
1141#endif
1142
1143#ifdef CONFIG_SMP
1144
1145#ifdef CONFIG_FAIR_GROUP_SCHED
1146/*
1147 * effective_load() calculates the load change as seen from the root_task_group
1148 *
1149 * Adding load to a group doesn't make a group heavier, but can cause movement
1150 * of group shares between cpus. Assuming the shares were perfectly aligned one
1151 * can calculate the shift in shares.
1152 *
1153 * The problem is that perfectly aligning the shares is rather expensive, hence
1154 * we try to avoid doing that too often - see update_shares(), which ratelimits
1155 * this change.
1156 *
1157 * We compensate this by not only taking the current delta into account, but
1158 * also considering the delta between when the shares were last adjusted and
1159 * now.
1160 *
1161 * We still saw a performance dip, some tracing learned us that between
1162 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1163 * significantly. Therefore try to bias the error in direction of failing
1164 * the affine wakeup.
1165 *
1166 */
1167static long effective_load(struct task_group *tg, int cpu,
1168 long wl, long wg)
1169{
1170 struct sched_entity *se = tg->se[cpu];
1171
1172 if (!tg->parent)
1173 return wl;
1174
1175 /*
1176 * By not taking the decrease of shares on the other cpu into
1177 * account our error leans towards reducing the affine wakeups.
1178 */
1179 if (!wl && sched_feat(ASYM_EFF_LOAD))
1180 return wl;
1181
1182 for_each_sched_entity(se) {
1183 long S, rw, s, a, b;
1184 long more_w;
1185
1186 /*
1187 * Instead of using this increment, also add the difference
1188 * between when the shares were last updated and now.
1189 */
1190 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1191 wl += more_w;
1192 wg += more_w;
1193
1194 S = se->my_q->tg->shares;
1195 s = se->my_q->shares;
1196 rw = se->my_q->rq_weight;
1197
1198 a = S*(rw + wl);
1199 b = S*rw + s*wg;
1200
1201 wl = s*(a-b);
1202
1203 if (likely(b))
1204 wl /= b;
1205
1206 /*
1207 * Assume the group is already running and will
1208 * thus already be accounted for in the weight.
1209 *
1210 * That is, moving shares between CPUs, does not
1211 * alter the group weight.
1212 */
1213 wg = 0;
1214 }
1215
1216 return wl;
1217}
1218
1219#else
1220
1221static inline unsigned long effective_load(struct task_group *tg, int cpu,
1222 unsigned long wl, unsigned long wg)
1223{
1224 return wl;
1225}
1226
1227#endif
1228
1229static int
1230wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1231 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1232 int idx, unsigned long load, unsigned long this_load,
1233 unsigned int imbalance)
1234{
1235 struct task_struct *curr = this_rq->curr;
1236 struct task_group *tg;
1237 unsigned long tl = this_load;
1238 unsigned long tl_per_task;
1239 unsigned long weight;
1240 int balanced;
1241
1242 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1243 return 0;
1244
1245 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1246 p->se.avg_overlap > sysctl_sched_migration_cost))
1247 sync = 0;
1248
1249 /*
1250 * If sync wakeup then subtract the (maximum possible)
1251 * effect of the currently running task from the load
1252 * of the current CPU:
1253 */
1254 if (sync) {
1255 tg = task_group(current);
1256 weight = current->se.load.weight;
1257
1258 tl += effective_load(tg, this_cpu, -weight, -weight);
1259 load += effective_load(tg, prev_cpu, 0, -weight);
1260 }
1261
1262 tg = task_group(p);
1263 weight = p->se.load.weight;
1264
1265 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1266 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1267
1268 /*
1269 * If the currently running task will sleep within
1270 * a reasonable amount of time then attract this newly
1271 * woken task:
1272 */
1273 if (sync && balanced)
1274 return 1;
1275
1276 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1277 tl_per_task = cpu_avg_load_per_task(this_cpu);
1278
1279 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1280 tl_per_task)) {
1281 /*
1282 * This domain has SD_WAKE_AFFINE and
1283 * p is cache cold in this domain, and
1284 * there is no bad imbalance.
1285 */
1286 schedstat_inc(this_sd, ttwu_move_affine);
1287 schedstat_inc(p, se.nr_wakeups_affine);
1288
1289 return 1;
1290 }
1291 return 0;
1292}
1293
1294static int select_task_rq_fair(struct task_struct *p, int sync)
1295{
1296 struct sched_domain *sd, *this_sd = NULL;
1297 int prev_cpu, this_cpu, new_cpu;
1298 unsigned long load, this_load;
1299 struct rq *this_rq;
1300 unsigned int imbalance;
1301 int idx;
1302
1303 prev_cpu = task_cpu(p);
1304 this_cpu = smp_processor_id();
1305 this_rq = cpu_rq(this_cpu);
1306 new_cpu = prev_cpu;
1307
1308 /*
1309 * 'this_sd' is the first domain that both
1310 * this_cpu and prev_cpu are present in:
1311 */
1312 for_each_domain(this_cpu, sd) {
1313 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1314 this_sd = sd;
1315 break;
1316 }
1317 }
1318
1319 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1320 goto out;
1321
1322 /*
1323 * Check for affine wakeup and passive balancing possibilities.
1324 */
1325 if (!this_sd)
1326 goto out;
1327
1328 idx = this_sd->wake_idx;
1329
1330 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1331
1332 load = source_load(prev_cpu, idx);
1333 this_load = target_load(this_cpu, idx);
1334
1335 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1336 load, this_load, imbalance))
1337 return this_cpu;
1338
1339 /*
1340 * Start passive balancing when half the imbalance_pct
1341 * limit is reached.
1342 */
1343 if (this_sd->flags & SD_WAKE_BALANCE) {
1344 if (imbalance*this_load <= 100*load) {
1345 schedstat_inc(this_sd, ttwu_move_balance);
1346 schedstat_inc(p, se.nr_wakeups_passive);
1347 return this_cpu;
1348 }
1349 }
1350
1351out:
1352 return wake_idle(new_cpu, p);
1353}
1354#endif /* CONFIG_SMP */
1355
1356/*
1357 * Adaptive granularity
1358 *
1359 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1360 * with the limit of wakeup_gran -- when it never does a wakeup.
1361 *
1362 * So the smaller avg_wakeup is the faster we want this task to preempt,
1363 * but we don't want to treat the preemptee unfairly and therefore allow it
1364 * to run for at least the amount of time we'd like to run.
1365 *
1366 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1367 *
1368 * NOTE: we use *nr_running to scale with load, this nicely matches the
1369 * degrading latency on load.
1370 */
1371static unsigned long
1372adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1373{
1374 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1375 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1376 u64 gran = 0;
1377
1378 if (this_run < expected_wakeup)
1379 gran = expected_wakeup - this_run;
1380
1381 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1382}
1383
1384static unsigned long
1385wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1386{
1387 unsigned long gran = sysctl_sched_wakeup_granularity;
1388
1389 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1390 gran = adaptive_gran(curr, se);
1391
1392 /*
1393 * Since its curr running now, convert the gran from real-time
1394 * to virtual-time in his units.
1395 */
1396 if (sched_feat(ASYM_GRAN)) {
1397 /*
1398 * By using 'se' instead of 'curr' we penalize light tasks, so
1399 * they get preempted easier. That is, if 'se' < 'curr' then
1400 * the resulting gran will be larger, therefore penalizing the
1401 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1402 * be smaller, again penalizing the lighter task.
1403 *
1404 * This is especially important for buddies when the leftmost
1405 * task is higher priority than the buddy.
1406 */
1407 if (unlikely(se->load.weight != NICE_0_LOAD))
1408 gran = calc_delta_fair(gran, se);
1409 } else {
1410 if (unlikely(curr->load.weight != NICE_0_LOAD))
1411 gran = calc_delta_fair(gran, curr);
1412 }
1413
1414 return gran;
1415}
1416
1417/*
1418 * Should 'se' preempt 'curr'.
1419 *
1420 * |s1
1421 * |s2
1422 * |s3
1423 * g
1424 * |<--->|c
1425 *
1426 * w(c, s1) = -1
1427 * w(c, s2) = 0
1428 * w(c, s3) = 1
1429 *
1430 */
1431static int
1432wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1433{
1434 s64 gran, vdiff = curr->vruntime - se->vruntime;
1435
1436 if (vdiff <= 0)
1437 return -1;
1438
1439 gran = wakeup_gran(curr, se);
1440 if (vdiff > gran)
1441 return 1;
1442
1443 return 0;
1444}
1445
1446static void set_last_buddy(struct sched_entity *se)
1447{
1448 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1449 for_each_sched_entity(se)
1450 cfs_rq_of(se)->last = se;
1451 }
1452}
1453
1454static void set_next_buddy(struct sched_entity *se)
1455{
1456 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1457 for_each_sched_entity(se)
1458 cfs_rq_of(se)->next = se;
1459 }
1460}
1461
1462/*
1463 * Preempt the current task with a newly woken task if needed:
1464 */
1465static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1466{
1467 struct task_struct *curr = rq->curr;
1468 struct sched_entity *se = &curr->se, *pse = &p->se;
1469 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1470
1471 update_curr(cfs_rq);
1472
1473 if (unlikely(rt_prio(p->prio))) {
1474 resched_task(curr);
1475 return;
1476 }
1477
1478 if (unlikely(p->sched_class != &fair_sched_class))
1479 return;
1480
1481 if (unlikely(se == pse))
1482 return;
1483
1484 /*
1485 * Only set the backward buddy when the current task is still on the
1486 * rq. This can happen when a wakeup gets interleaved with schedule on
1487 * the ->pre_schedule() or idle_balance() point, either of which can
1488 * drop the rq lock.
1489 *
1490 * Also, during early boot the idle thread is in the fair class, for
1491 * obvious reasons its a bad idea to schedule back to the idle thread.
1492 */
1493 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1494 set_last_buddy(se);
1495 set_next_buddy(pse);
1496
1497 /*
1498 * We can come here with TIF_NEED_RESCHED already set from new task
1499 * wake up path.
1500 */
1501 if (test_tsk_need_resched(curr))
1502 return;
1503
1504 /*
1505 * Batch and idle tasks do not preempt (their preemption is driven by
1506 * the tick):
1507 */
1508 if (unlikely(p->policy != SCHED_NORMAL))
1509 return;
1510
1511 /* Idle tasks are by definition preempted by everybody. */
1512 if (unlikely(curr->policy == SCHED_IDLE)) {
1513 resched_task(curr);
1514 return;
1515 }
1516
1517 if (!sched_feat(WAKEUP_PREEMPT))
1518 return;
1519
1520 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1521 (se->avg_overlap < sysctl_sched_migration_cost &&
1522 pse->avg_overlap < sysctl_sched_migration_cost))) {
1523 resched_task(curr);
1524 return;
1525 }
1526
1527 find_matching_se(&se, &pse);
1528
1529 BUG_ON(!pse);
1530
1531 if (wakeup_preempt_entity(se, pse) == 1)
1532 resched_task(curr);
1533}
1534
1535static struct task_struct *pick_next_task_fair(struct rq *rq)
1536{
1537 struct task_struct *p;
1538 struct cfs_rq *cfs_rq = &rq->cfs;
1539 struct sched_entity *se;
1540
1541 if (unlikely(!cfs_rq->nr_running))
1542 return NULL;
1543
1544 do {
1545 se = pick_next_entity(cfs_rq);
1546 /*
1547 * If se was a buddy, clear it so that it will have to earn
1548 * the favour again.
1549 */
1550 __clear_buddies(cfs_rq, se);
1551 set_next_entity(cfs_rq, se);
1552 cfs_rq = group_cfs_rq(se);
1553 } while (cfs_rq);
1554
1555 p = task_of(se);
1556 hrtick_start_fair(rq, p);
1557
1558 return p;
1559}
1560
1561/*
1562 * Account for a descheduled task:
1563 */
1564static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1565{
1566 struct sched_entity *se = &prev->se;
1567 struct cfs_rq *cfs_rq;
1568
1569 for_each_sched_entity(se) {
1570 cfs_rq = cfs_rq_of(se);
1571 put_prev_entity(cfs_rq, se);
1572 }
1573}
1574
1575#ifdef CONFIG_SMP
1576/**************************************************
1577 * Fair scheduling class load-balancing methods:
1578 */
1579
1580/*
1581 * Load-balancing iterator. Note: while the runqueue stays locked
1582 * during the whole iteration, the current task might be
1583 * dequeued so the iterator has to be dequeue-safe. Here we
1584 * achieve that by always pre-iterating before returning
1585 * the current task:
1586 */
1587static struct task_struct *
1588__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1589{
1590 struct task_struct *p = NULL;
1591 struct sched_entity *se;
1592
1593 if (next == &cfs_rq->tasks)
1594 return NULL;
1595
1596 se = list_entry(next, struct sched_entity, group_node);
1597 p = task_of(se);
1598 cfs_rq->balance_iterator = next->next;
1599
1600 return p;
1601}
1602
1603static struct task_struct *load_balance_start_fair(void *arg)
1604{
1605 struct cfs_rq *cfs_rq = arg;
1606
1607 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1608}
1609
1610static struct task_struct *load_balance_next_fair(void *arg)
1611{
1612 struct cfs_rq *cfs_rq = arg;
1613
1614 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1615}
1616
1617static unsigned long
1618__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1619 unsigned long max_load_move, struct sched_domain *sd,
1620 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1621 struct cfs_rq *cfs_rq)
1622{
1623 struct rq_iterator cfs_rq_iterator;
1624
1625 cfs_rq_iterator.start = load_balance_start_fair;
1626 cfs_rq_iterator.next = load_balance_next_fair;
1627 cfs_rq_iterator.arg = cfs_rq;
1628
1629 return balance_tasks(this_rq, this_cpu, busiest,
1630 max_load_move, sd, idle, all_pinned,
1631 this_best_prio, &cfs_rq_iterator);
1632}
1633
1634#ifdef CONFIG_FAIR_GROUP_SCHED
1635static unsigned long
1636load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1637 unsigned long max_load_move,
1638 struct sched_domain *sd, enum cpu_idle_type idle,
1639 int *all_pinned, int *this_best_prio)
1640{
1641 long rem_load_move = max_load_move;
1642 int busiest_cpu = cpu_of(busiest);
1643 struct task_group *tg;
1644
1645 rcu_read_lock();
1646 update_h_load(busiest_cpu);
1647
1648 list_for_each_entry_rcu(tg, &task_groups, list) {
1649 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1650 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1651 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1652 u64 rem_load, moved_load;
1653
1654 /*
1655 * empty group
1656 */
1657 if (!busiest_cfs_rq->task_weight)
1658 continue;
1659
1660 rem_load = (u64)rem_load_move * busiest_weight;
1661 rem_load = div_u64(rem_load, busiest_h_load + 1);
1662
1663 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1664 rem_load, sd, idle, all_pinned, this_best_prio,
1665 tg->cfs_rq[busiest_cpu]);
1666
1667 if (!moved_load)
1668 continue;
1669
1670 moved_load *= busiest_h_load;
1671 moved_load = div_u64(moved_load, busiest_weight + 1);
1672
1673 rem_load_move -= moved_load;
1674 if (rem_load_move < 0)
1675 break;
1676 }
1677 rcu_read_unlock();
1678
1679 return max_load_move - rem_load_move;
1680}
1681#else
1682static unsigned long
1683load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1684 unsigned long max_load_move,
1685 struct sched_domain *sd, enum cpu_idle_type idle,
1686 int *all_pinned, int *this_best_prio)
1687{
1688 return __load_balance_fair(this_rq, this_cpu, busiest,
1689 max_load_move, sd, idle, all_pinned,
1690 this_best_prio, &busiest->cfs);
1691}
1692#endif
1693
1694static int
1695move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1696 struct sched_domain *sd, enum cpu_idle_type idle)
1697{
1698 struct cfs_rq *busy_cfs_rq;
1699 struct rq_iterator cfs_rq_iterator;
1700
1701 cfs_rq_iterator.start = load_balance_start_fair;
1702 cfs_rq_iterator.next = load_balance_next_fair;
1703
1704 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1705 /*
1706 * pass busy_cfs_rq argument into
1707 * load_balance_[start|next]_fair iterators
1708 */
1709 cfs_rq_iterator.arg = busy_cfs_rq;
1710 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1711 &cfs_rq_iterator))
1712 return 1;
1713 }
1714
1715 return 0;
1716}
1717#endif /* CONFIG_SMP */
1718
1719/*
1720 * scheduler tick hitting a task of our scheduling class:
1721 */
1722static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1723{
1724 struct cfs_rq *cfs_rq;
1725 struct sched_entity *se = &curr->se;
1726
1727 for_each_sched_entity(se) {
1728 cfs_rq = cfs_rq_of(se);
1729 entity_tick(cfs_rq, se, queued);
1730 }
1731}
1732
1733/*
1734 * Share the fairness runtime between parent and child, thus the
1735 * total amount of pressure for CPU stays equal - new tasks
1736 * get a chance to run but frequent forkers are not allowed to
1737 * monopolize the CPU. Note: the parent runqueue is locked,
1738 * the child is not running yet.
1739 */
1740static void task_new_fair(struct rq *rq, struct task_struct *p)
1741{
1742 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1743 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1744 int this_cpu = smp_processor_id();
1745
1746 sched_info_queued(p);
1747
1748 update_curr(cfs_rq);
1749 place_entity(cfs_rq, se, 1);
1750
1751 /* 'curr' will be NULL if the child belongs to a different group */
1752 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1753 curr && entity_before(curr, se)) {
1754 /*
1755 * Upon rescheduling, sched_class::put_prev_task() will place
1756 * 'current' within the tree based on its new key value.
1757 */
1758 swap(curr->vruntime, se->vruntime);
1759 resched_task(rq->curr);
1760 }
1761
1762 enqueue_task_fair(rq, p, 0);
1763}
1764
1765/*
1766 * Priority of the task has changed. Check to see if we preempt
1767 * the current task.
1768 */
1769static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1770 int oldprio, int running)
1771{
1772 /*
1773 * Reschedule if we are currently running on this runqueue and
1774 * our priority decreased, or if we are not currently running on
1775 * this runqueue and our priority is higher than the current's
1776 */
1777 if (running) {
1778 if (p->prio > oldprio)
1779 resched_task(rq->curr);
1780 } else
1781 check_preempt_curr(rq, p, 0);
1782}
1783
1784/*
1785 * We switched to the sched_fair class.
1786 */
1787static void switched_to_fair(struct rq *rq, struct task_struct *p,
1788 int running)
1789{
1790 /*
1791 * We were most likely switched from sched_rt, so
1792 * kick off the schedule if running, otherwise just see
1793 * if we can still preempt the current task.
1794 */
1795 if (running)
1796 resched_task(rq->curr);
1797 else
1798 check_preempt_curr(rq, p, 0);
1799}
1800
1801/* Account for a task changing its policy or group.
1802 *
1803 * This routine is mostly called to set cfs_rq->curr field when a task
1804 * migrates between groups/classes.
1805 */
1806static void set_curr_task_fair(struct rq *rq)
1807{
1808 struct sched_entity *se = &rq->curr->se;
1809
1810 for_each_sched_entity(se)
1811 set_next_entity(cfs_rq_of(se), se);
1812}
1813
1814#ifdef CONFIG_FAIR_GROUP_SCHED
1815static void moved_group_fair(struct task_struct *p)
1816{
1817 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1818
1819 update_curr(cfs_rq);
1820 place_entity(cfs_rq, &p->se, 1);
1821}
1822#endif
1823
1824/*
1825 * All the scheduling class methods:
1826 */
1827static const struct sched_class fair_sched_class = {
1828 .next = &idle_sched_class,
1829 .enqueue_task = enqueue_task_fair,
1830 .dequeue_task = dequeue_task_fair,
1831 .yield_task = yield_task_fair,
1832
1833 .check_preempt_curr = check_preempt_wakeup,
1834
1835 .pick_next_task = pick_next_task_fair,
1836 .put_prev_task = put_prev_task_fair,
1837
1838#ifdef CONFIG_SMP
1839 .select_task_rq = select_task_rq_fair,
1840
1841 .load_balance = load_balance_fair,
1842 .move_one_task = move_one_task_fair,
1843#endif
1844
1845 .set_curr_task = set_curr_task_fair,
1846 .task_tick = task_tick_fair,
1847 .task_new = task_new_fair,
1848
1849 .prio_changed = prio_changed_fair,
1850 .switched_to = switched_to_fair,
1851
1852#ifdef CONFIG_FAIR_GROUP_SCHED
1853 .moved_group = moved_group_fair,
1854#endif
1855};
1856
1857#ifdef CONFIG_SCHED_DEBUG
1858static void print_cfs_stats(struct seq_file *m, int cpu)
1859{
1860 struct cfs_rq *cfs_rq;
1861
1862 rcu_read_lock();
1863 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1864 print_cfs_rq(m, cpu, cfs_rq);
1865 rcu_read_unlock();
1866}
1867#endif