]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
3 | * policies) | |
4 | */ | |
5 | ||
6 | #ifdef CONFIG_RT_GROUP_SCHED | |
7 | ||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | |
9 | ||
10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | |
11 | { | |
12 | #ifdef CONFIG_SCHED_DEBUG | |
13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | |
14 | #endif | |
15 | return container_of(rt_se, struct task_struct, rt); | |
16 | } | |
17 | ||
18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | |
19 | { | |
20 | return rt_rq->rq; | |
21 | } | |
22 | ||
23 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
24 | { | |
25 | return rt_se->rt_rq; | |
26 | } | |
27 | ||
28 | #else /* CONFIG_RT_GROUP_SCHED */ | |
29 | ||
30 | #define rt_entity_is_task(rt_se) (1) | |
31 | ||
32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | |
33 | { | |
34 | return container_of(rt_se, struct task_struct, rt); | |
35 | } | |
36 | ||
37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | |
38 | { | |
39 | return container_of(rt_rq, struct rq, rt); | |
40 | } | |
41 | ||
42 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
43 | { | |
44 | struct task_struct *p = rt_task_of(rt_se); | |
45 | struct rq *rq = task_rq(p); | |
46 | ||
47 | return &rq->rt; | |
48 | } | |
49 | ||
50 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
51 | ||
52 | #ifdef CONFIG_SMP | |
53 | ||
54 | static inline int rt_overloaded(struct rq *rq) | |
55 | { | |
56 | return atomic_read(&rq->rd->rto_count); | |
57 | } | |
58 | ||
59 | static inline void rt_set_overload(struct rq *rq) | |
60 | { | |
61 | if (!rq->online) | |
62 | return; | |
63 | ||
64 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | |
65 | /* | |
66 | * Make sure the mask is visible before we set | |
67 | * the overload count. That is checked to determine | |
68 | * if we should look at the mask. It would be a shame | |
69 | * if we looked at the mask, but the mask was not | |
70 | * updated yet. | |
71 | */ | |
72 | wmb(); | |
73 | atomic_inc(&rq->rd->rto_count); | |
74 | } | |
75 | ||
76 | static inline void rt_clear_overload(struct rq *rq) | |
77 | { | |
78 | if (!rq->online) | |
79 | return; | |
80 | ||
81 | /* the order here really doesn't matter */ | |
82 | atomic_dec(&rq->rd->rto_count); | |
83 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | |
84 | } | |
85 | ||
86 | static void update_rt_migration(struct rt_rq *rt_rq) | |
87 | { | |
88 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | |
89 | if (!rt_rq->overloaded) { | |
90 | rt_set_overload(rq_of_rt_rq(rt_rq)); | |
91 | rt_rq->overloaded = 1; | |
92 | } | |
93 | } else if (rt_rq->overloaded) { | |
94 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | |
95 | rt_rq->overloaded = 0; | |
96 | } | |
97 | } | |
98 | ||
99 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
100 | { | |
101 | if (!rt_entity_is_task(rt_se)) | |
102 | return; | |
103 | ||
104 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
105 | ||
106 | rt_rq->rt_nr_total++; | |
107 | if (rt_se->nr_cpus_allowed > 1) | |
108 | rt_rq->rt_nr_migratory++; | |
109 | ||
110 | update_rt_migration(rt_rq); | |
111 | } | |
112 | ||
113 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
114 | { | |
115 | if (!rt_entity_is_task(rt_se)) | |
116 | return; | |
117 | ||
118 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
119 | ||
120 | rt_rq->rt_nr_total--; | |
121 | if (rt_se->nr_cpus_allowed > 1) | |
122 | rt_rq->rt_nr_migratory--; | |
123 | ||
124 | update_rt_migration(rt_rq); | |
125 | } | |
126 | ||
127 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | |
128 | { | |
129 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
130 | plist_node_init(&p->pushable_tasks, p->prio); | |
131 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
132 | } | |
133 | ||
134 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
135 | { | |
136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
137 | } | |
138 | ||
139 | static inline int has_pushable_tasks(struct rq *rq) | |
140 | { | |
141 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
142 | } | |
143 | ||
144 | #else | |
145 | ||
146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | |
147 | { | |
148 | } | |
149 | ||
150 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
151 | { | |
152 | } | |
153 | ||
154 | static inline | |
155 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
156 | { | |
157 | } | |
158 | ||
159 | static inline | |
160 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
161 | { | |
162 | } | |
163 | ||
164 | #endif /* CONFIG_SMP */ | |
165 | ||
166 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | |
167 | { | |
168 | return !list_empty(&rt_se->run_list); | |
169 | } | |
170 | ||
171 | #ifdef CONFIG_RT_GROUP_SCHED | |
172 | ||
173 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
174 | { | |
175 | if (!rt_rq->tg) | |
176 | return RUNTIME_INF; | |
177 | ||
178 | return rt_rq->rt_runtime; | |
179 | } | |
180 | ||
181 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
182 | { | |
183 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
184 | } | |
185 | ||
186 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | |
187 | { | |
188 | list_add_rcu(&rt_rq->leaf_rt_rq_list, | |
189 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | |
190 | } | |
191 | ||
192 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | |
193 | { | |
194 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | |
195 | } | |
196 | ||
197 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
198 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | |
199 | ||
200 | #define for_each_sched_rt_entity(rt_se) \ | |
201 | for (; rt_se; rt_se = rt_se->parent) | |
202 | ||
203 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
204 | { | |
205 | return rt_se->my_q; | |
206 | } | |
207 | ||
208 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | |
209 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | |
210 | ||
211 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |
212 | { | |
213 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | |
214 | struct sched_rt_entity *rt_se; | |
215 | ||
216 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | |
217 | ||
218 | rt_se = rt_rq->tg->rt_se[cpu]; | |
219 | ||
220 | if (rt_rq->rt_nr_running) { | |
221 | if (rt_se && !on_rt_rq(rt_se)) | |
222 | enqueue_rt_entity(rt_se, false); | |
223 | if (rt_rq->highest_prio.curr < curr->prio) | |
224 | resched_task(curr); | |
225 | } | |
226 | } | |
227 | ||
228 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | |
229 | { | |
230 | struct sched_rt_entity *rt_se; | |
231 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | |
232 | ||
233 | rt_se = rt_rq->tg->rt_se[cpu]; | |
234 | ||
235 | if (rt_se && on_rt_rq(rt_se)) | |
236 | dequeue_rt_entity(rt_se); | |
237 | } | |
238 | ||
239 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | |
240 | { | |
241 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
242 | } | |
243 | ||
244 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | |
245 | { | |
246 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
247 | struct task_struct *p; | |
248 | ||
249 | if (rt_rq) | |
250 | return !!rt_rq->rt_nr_boosted; | |
251 | ||
252 | p = rt_task_of(rt_se); | |
253 | return p->prio != p->normal_prio; | |
254 | } | |
255 | ||
256 | #ifdef CONFIG_SMP | |
257 | static inline const struct cpumask *sched_rt_period_mask(void) | |
258 | { | |
259 | return cpu_rq(smp_processor_id())->rd->span; | |
260 | } | |
261 | #else | |
262 | static inline const struct cpumask *sched_rt_period_mask(void) | |
263 | { | |
264 | return cpu_online_mask; | |
265 | } | |
266 | #endif | |
267 | ||
268 | static inline | |
269 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
270 | { | |
271 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | |
272 | } | |
273 | ||
274 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | |
275 | { | |
276 | return &rt_rq->tg->rt_bandwidth; | |
277 | } | |
278 | ||
279 | #else /* !CONFIG_RT_GROUP_SCHED */ | |
280 | ||
281 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
282 | { | |
283 | return rt_rq->rt_runtime; | |
284 | } | |
285 | ||
286 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
287 | { | |
288 | return ktime_to_ns(def_rt_bandwidth.rt_period); | |
289 | } | |
290 | ||
291 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | |
292 | { | |
293 | } | |
294 | ||
295 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | |
296 | { | |
297 | } | |
298 | ||
299 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
300 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
301 | ||
302 | #define for_each_sched_rt_entity(rt_se) \ | |
303 | for (; rt_se; rt_se = NULL) | |
304 | ||
305 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
306 | { | |
307 | return NULL; | |
308 | } | |
309 | ||
310 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |
311 | { | |
312 | if (rt_rq->rt_nr_running) | |
313 | resched_task(rq_of_rt_rq(rt_rq)->curr); | |
314 | } | |
315 | ||
316 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | |
317 | { | |
318 | } | |
319 | ||
320 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | |
321 | { | |
322 | return rt_rq->rt_throttled; | |
323 | } | |
324 | ||
325 | static inline const struct cpumask *sched_rt_period_mask(void) | |
326 | { | |
327 | return cpu_online_mask; | |
328 | } | |
329 | ||
330 | static inline | |
331 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
332 | { | |
333 | return &cpu_rq(cpu)->rt; | |
334 | } | |
335 | ||
336 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | |
337 | { | |
338 | return &def_rt_bandwidth; | |
339 | } | |
340 | ||
341 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
342 | ||
343 | #ifdef CONFIG_SMP | |
344 | /* | |
345 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
346 | */ | |
347 | static int do_balance_runtime(struct rt_rq *rt_rq) | |
348 | { | |
349 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
350 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | |
351 | int i, weight, more = 0; | |
352 | u64 rt_period; | |
353 | ||
354 | weight = cpumask_weight(rd->span); | |
355 | ||
356 | raw_spin_lock(&rt_b->rt_runtime_lock); | |
357 | rt_period = ktime_to_ns(rt_b->rt_period); | |
358 | for_each_cpu(i, rd->span) { | |
359 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | |
360 | s64 diff; | |
361 | ||
362 | if (iter == rt_rq) | |
363 | continue; | |
364 | ||
365 | raw_spin_lock(&iter->rt_runtime_lock); | |
366 | /* | |
367 | * Either all rqs have inf runtime and there's nothing to steal | |
368 | * or __disable_runtime() below sets a specific rq to inf to | |
369 | * indicate its been disabled and disalow stealing. | |
370 | */ | |
371 | if (iter->rt_runtime == RUNTIME_INF) | |
372 | goto next; | |
373 | ||
374 | /* | |
375 | * From runqueues with spare time, take 1/n part of their | |
376 | * spare time, but no more than our period. | |
377 | */ | |
378 | diff = iter->rt_runtime - iter->rt_time; | |
379 | if (diff > 0) { | |
380 | diff = div_u64((u64)diff, weight); | |
381 | if (rt_rq->rt_runtime + diff > rt_period) | |
382 | diff = rt_period - rt_rq->rt_runtime; | |
383 | iter->rt_runtime -= diff; | |
384 | rt_rq->rt_runtime += diff; | |
385 | more = 1; | |
386 | if (rt_rq->rt_runtime == rt_period) { | |
387 | raw_spin_unlock(&iter->rt_runtime_lock); | |
388 | break; | |
389 | } | |
390 | } | |
391 | next: | |
392 | raw_spin_unlock(&iter->rt_runtime_lock); | |
393 | } | |
394 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
395 | ||
396 | return more; | |
397 | } | |
398 | ||
399 | /* | |
400 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
401 | */ | |
402 | static void __disable_runtime(struct rq *rq) | |
403 | { | |
404 | struct root_domain *rd = rq->rd; | |
405 | struct rt_rq *rt_rq; | |
406 | ||
407 | if (unlikely(!scheduler_running)) | |
408 | return; | |
409 | ||
410 | for_each_leaf_rt_rq(rt_rq, rq) { | |
411 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
412 | s64 want; | |
413 | int i; | |
414 | ||
415 | raw_spin_lock(&rt_b->rt_runtime_lock); | |
416 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
417 | /* | |
418 | * Either we're all inf and nobody needs to borrow, or we're | |
419 | * already disabled and thus have nothing to do, or we have | |
420 | * exactly the right amount of runtime to take out. | |
421 | */ | |
422 | if (rt_rq->rt_runtime == RUNTIME_INF || | |
423 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
424 | goto balanced; | |
425 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
426 | ||
427 | /* | |
428 | * Calculate the difference between what we started out with | |
429 | * and what we current have, that's the amount of runtime | |
430 | * we lend and now have to reclaim. | |
431 | */ | |
432 | want = rt_b->rt_runtime - rt_rq->rt_runtime; | |
433 | ||
434 | /* | |
435 | * Greedy reclaim, take back as much as we can. | |
436 | */ | |
437 | for_each_cpu(i, rd->span) { | |
438 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | |
439 | s64 diff; | |
440 | ||
441 | /* | |
442 | * Can't reclaim from ourselves or disabled runqueues. | |
443 | */ | |
444 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | |
445 | continue; | |
446 | ||
447 | raw_spin_lock(&iter->rt_runtime_lock); | |
448 | if (want > 0) { | |
449 | diff = min_t(s64, iter->rt_runtime, want); | |
450 | iter->rt_runtime -= diff; | |
451 | want -= diff; | |
452 | } else { | |
453 | iter->rt_runtime -= want; | |
454 | want -= want; | |
455 | } | |
456 | raw_spin_unlock(&iter->rt_runtime_lock); | |
457 | ||
458 | if (!want) | |
459 | break; | |
460 | } | |
461 | ||
462 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
463 | /* | |
464 | * We cannot be left wanting - that would mean some runtime | |
465 | * leaked out of the system. | |
466 | */ | |
467 | BUG_ON(want); | |
468 | balanced: | |
469 | /* | |
470 | * Disable all the borrow logic by pretending we have inf | |
471 | * runtime - in which case borrowing doesn't make sense. | |
472 | */ | |
473 | rt_rq->rt_runtime = RUNTIME_INF; | |
474 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
475 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
476 | } | |
477 | } | |
478 | ||
479 | static void disable_runtime(struct rq *rq) | |
480 | { | |
481 | unsigned long flags; | |
482 | ||
483 | raw_spin_lock_irqsave(&rq->lock, flags); | |
484 | __disable_runtime(rq); | |
485 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
486 | } | |
487 | ||
488 | static void __enable_runtime(struct rq *rq) | |
489 | { | |
490 | struct rt_rq *rt_rq; | |
491 | ||
492 | if (unlikely(!scheduler_running)) | |
493 | return; | |
494 | ||
495 | /* | |
496 | * Reset each runqueue's bandwidth settings | |
497 | */ | |
498 | for_each_leaf_rt_rq(rt_rq, rq) { | |
499 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
500 | ||
501 | raw_spin_lock(&rt_b->rt_runtime_lock); | |
502 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
503 | rt_rq->rt_runtime = rt_b->rt_runtime; | |
504 | rt_rq->rt_time = 0; | |
505 | rt_rq->rt_throttled = 0; | |
506 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
507 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
508 | } | |
509 | } | |
510 | ||
511 | static void enable_runtime(struct rq *rq) | |
512 | { | |
513 | unsigned long flags; | |
514 | ||
515 | raw_spin_lock_irqsave(&rq->lock, flags); | |
516 | __enable_runtime(rq); | |
517 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
518 | } | |
519 | ||
520 | static int balance_runtime(struct rt_rq *rt_rq) | |
521 | { | |
522 | int more = 0; | |
523 | ||
524 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | |
525 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
526 | more = do_balance_runtime(rt_rq); | |
527 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
528 | } | |
529 | ||
530 | return more; | |
531 | } | |
532 | #else /* !CONFIG_SMP */ | |
533 | static inline int balance_runtime(struct rt_rq *rt_rq) | |
534 | { | |
535 | return 0; | |
536 | } | |
537 | #endif /* CONFIG_SMP */ | |
538 | ||
539 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | |
540 | { | |
541 | int i, idle = 1; | |
542 | const struct cpumask *span; | |
543 | ||
544 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | |
545 | return 1; | |
546 | ||
547 | span = sched_rt_period_mask(); | |
548 | for_each_cpu(i, span) { | |
549 | int enqueue = 0; | |
550 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
551 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
552 | ||
553 | raw_spin_lock(&rq->lock); | |
554 | if (rt_rq->rt_time) { | |
555 | u64 runtime; | |
556 | ||
557 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
558 | if (rt_rq->rt_throttled) | |
559 | balance_runtime(rt_rq); | |
560 | runtime = rt_rq->rt_runtime; | |
561 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
562 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
563 | rt_rq->rt_throttled = 0; | |
564 | enqueue = 1; | |
565 | } | |
566 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
567 | idle = 0; | |
568 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
569 | } else if (rt_rq->rt_nr_running) { | |
570 | idle = 0; | |
571 | if (!rt_rq_throttled(rt_rq)) | |
572 | enqueue = 1; | |
573 | } | |
574 | ||
575 | if (enqueue) | |
576 | sched_rt_rq_enqueue(rt_rq); | |
577 | raw_spin_unlock(&rq->lock); | |
578 | } | |
579 | ||
580 | return idle; | |
581 | } | |
582 | ||
583 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |
584 | { | |
585 | #ifdef CONFIG_RT_GROUP_SCHED | |
586 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
587 | ||
588 | if (rt_rq) | |
589 | return rt_rq->highest_prio.curr; | |
590 | #endif | |
591 | ||
592 | return rt_task_of(rt_se)->prio; | |
593 | } | |
594 | ||
595 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | |
596 | { | |
597 | u64 runtime = sched_rt_runtime(rt_rq); | |
598 | ||
599 | if (rt_rq->rt_throttled) | |
600 | return rt_rq_throttled(rt_rq); | |
601 | ||
602 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | |
603 | return 0; | |
604 | ||
605 | balance_runtime(rt_rq); | |
606 | runtime = sched_rt_runtime(rt_rq); | |
607 | if (runtime == RUNTIME_INF) | |
608 | return 0; | |
609 | ||
610 | if (rt_rq->rt_time > runtime) { | |
611 | rt_rq->rt_throttled = 1; | |
612 | if (rt_rq_throttled(rt_rq)) { | |
613 | sched_rt_rq_dequeue(rt_rq); | |
614 | return 1; | |
615 | } | |
616 | } | |
617 | ||
618 | return 0; | |
619 | } | |
620 | ||
621 | /* | |
622 | * Update the current task's runtime statistics. Skip current tasks that | |
623 | * are not in our scheduling class. | |
624 | */ | |
625 | static void update_curr_rt(struct rq *rq) | |
626 | { | |
627 | struct task_struct *curr = rq->curr; | |
628 | struct sched_rt_entity *rt_se = &curr->rt; | |
629 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
630 | u64 delta_exec; | |
631 | ||
632 | if (curr->sched_class != &rt_sched_class) | |
633 | return; | |
634 | ||
635 | delta_exec = rq->clock_task - curr->se.exec_start; | |
636 | if (unlikely((s64)delta_exec < 0)) | |
637 | delta_exec = 0; | |
638 | ||
639 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); | |
640 | ||
641 | curr->se.sum_exec_runtime += delta_exec; | |
642 | account_group_exec_runtime(curr, delta_exec); | |
643 | ||
644 | curr->se.exec_start = rq->clock_task; | |
645 | cpuacct_charge(curr, delta_exec); | |
646 | ||
647 | sched_rt_avg_update(rq, delta_exec); | |
648 | ||
649 | if (!rt_bandwidth_enabled()) | |
650 | return; | |
651 | ||
652 | for_each_sched_rt_entity(rt_se) { | |
653 | rt_rq = rt_rq_of_se(rt_se); | |
654 | ||
655 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | |
656 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
657 | rt_rq->rt_time += delta_exec; | |
658 | if (sched_rt_runtime_exceeded(rt_rq)) | |
659 | resched_task(curr); | |
660 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
661 | } | |
662 | } | |
663 | } | |
664 | ||
665 | #if defined CONFIG_SMP | |
666 | ||
667 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | |
668 | ||
669 | static inline int next_prio(struct rq *rq) | |
670 | { | |
671 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); | |
672 | ||
673 | if (next && rt_prio(next->prio)) | |
674 | return next->prio; | |
675 | else | |
676 | return MAX_RT_PRIO; | |
677 | } | |
678 | ||
679 | static void | |
680 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
681 | { | |
682 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
683 | ||
684 | if (prio < prev_prio) { | |
685 | ||
686 | /* | |
687 | * If the new task is higher in priority than anything on the | |
688 | * run-queue, we know that the previous high becomes our | |
689 | * next-highest. | |
690 | */ | |
691 | rt_rq->highest_prio.next = prev_prio; | |
692 | ||
693 | if (rq->online) | |
694 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | |
695 | ||
696 | } else if (prio == rt_rq->highest_prio.curr) | |
697 | /* | |
698 | * If the next task is equal in priority to the highest on | |
699 | * the run-queue, then we implicitly know that the next highest | |
700 | * task cannot be any lower than current | |
701 | */ | |
702 | rt_rq->highest_prio.next = prio; | |
703 | else if (prio < rt_rq->highest_prio.next) | |
704 | /* | |
705 | * Otherwise, we need to recompute next-highest | |
706 | */ | |
707 | rt_rq->highest_prio.next = next_prio(rq); | |
708 | } | |
709 | ||
710 | static void | |
711 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
712 | { | |
713 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
714 | ||
715 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) | |
716 | rt_rq->highest_prio.next = next_prio(rq); | |
717 | ||
718 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | |
719 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
720 | } | |
721 | ||
722 | #else /* CONFIG_SMP */ | |
723 | ||
724 | static inline | |
725 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
726 | static inline | |
727 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
728 | ||
729 | #endif /* CONFIG_SMP */ | |
730 | ||
731 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | |
732 | static void | |
733 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
734 | { | |
735 | int prev_prio = rt_rq->highest_prio.curr; | |
736 | ||
737 | if (prio < prev_prio) | |
738 | rt_rq->highest_prio.curr = prio; | |
739 | ||
740 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
741 | } | |
742 | ||
743 | static void | |
744 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
745 | { | |
746 | int prev_prio = rt_rq->highest_prio.curr; | |
747 | ||
748 | if (rt_rq->rt_nr_running) { | |
749 | ||
750 | WARN_ON(prio < prev_prio); | |
751 | ||
752 | /* | |
753 | * This may have been our highest task, and therefore | |
754 | * we may have some recomputation to do | |
755 | */ | |
756 | if (prio == prev_prio) { | |
757 | struct rt_prio_array *array = &rt_rq->active; | |
758 | ||
759 | rt_rq->highest_prio.curr = | |
760 | sched_find_first_bit(array->bitmap); | |
761 | } | |
762 | ||
763 | } else | |
764 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | |
765 | ||
766 | dec_rt_prio_smp(rt_rq, prio, prev_prio); | |
767 | } | |
768 | ||
769 | #else | |
770 | ||
771 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
772 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
773 | ||
774 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | |
775 | ||
776 | #ifdef CONFIG_RT_GROUP_SCHED | |
777 | ||
778 | static void | |
779 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
780 | { | |
781 | if (rt_se_boosted(rt_se)) | |
782 | rt_rq->rt_nr_boosted++; | |
783 | ||
784 | if (rt_rq->tg) | |
785 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | |
786 | } | |
787 | ||
788 | static void | |
789 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
790 | { | |
791 | if (rt_se_boosted(rt_se)) | |
792 | rt_rq->rt_nr_boosted--; | |
793 | ||
794 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
795 | } | |
796 | ||
797 | #else /* CONFIG_RT_GROUP_SCHED */ | |
798 | ||
799 | static void | |
800 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
801 | { | |
802 | start_rt_bandwidth(&def_rt_bandwidth); | |
803 | } | |
804 | ||
805 | static inline | |
806 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
807 | ||
808 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
809 | ||
810 | static inline | |
811 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
812 | { | |
813 | int prio = rt_se_prio(rt_se); | |
814 | ||
815 | WARN_ON(!rt_prio(prio)); | |
816 | rt_rq->rt_nr_running++; | |
817 | ||
818 | inc_rt_prio(rt_rq, prio); | |
819 | inc_rt_migration(rt_se, rt_rq); | |
820 | inc_rt_group(rt_se, rt_rq); | |
821 | } | |
822 | ||
823 | static inline | |
824 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
825 | { | |
826 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
827 | WARN_ON(!rt_rq->rt_nr_running); | |
828 | rt_rq->rt_nr_running--; | |
829 | ||
830 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
831 | dec_rt_migration(rt_se, rt_rq); | |
832 | dec_rt_group(rt_se, rt_rq); | |
833 | } | |
834 | ||
835 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | |
836 | { | |
837 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
838 | struct rt_prio_array *array = &rt_rq->active; | |
839 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
840 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
841 | ||
842 | /* | |
843 | * Don't enqueue the group if its throttled, or when empty. | |
844 | * The latter is a consequence of the former when a child group | |
845 | * get throttled and the current group doesn't have any other | |
846 | * active members. | |
847 | */ | |
848 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | |
849 | return; | |
850 | ||
851 | if (!rt_rq->rt_nr_running) | |
852 | list_add_leaf_rt_rq(rt_rq); | |
853 | ||
854 | if (head) | |
855 | list_add(&rt_se->run_list, queue); | |
856 | else | |
857 | list_add_tail(&rt_se->run_list, queue); | |
858 | __set_bit(rt_se_prio(rt_se), array->bitmap); | |
859 | ||
860 | inc_rt_tasks(rt_se, rt_rq); | |
861 | } | |
862 | ||
863 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | |
864 | { | |
865 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
866 | struct rt_prio_array *array = &rt_rq->active; | |
867 | ||
868 | list_del_init(&rt_se->run_list); | |
869 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
870 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
871 | ||
872 | dec_rt_tasks(rt_se, rt_rq); | |
873 | if (!rt_rq->rt_nr_running) | |
874 | list_del_leaf_rt_rq(rt_rq); | |
875 | } | |
876 | ||
877 | /* | |
878 | * Because the prio of an upper entry depends on the lower | |
879 | * entries, we must remove entries top - down. | |
880 | */ | |
881 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | |
882 | { | |
883 | struct sched_rt_entity *back = NULL; | |
884 | ||
885 | for_each_sched_rt_entity(rt_se) { | |
886 | rt_se->back = back; | |
887 | back = rt_se; | |
888 | } | |
889 | ||
890 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | |
891 | if (on_rt_rq(rt_se)) | |
892 | __dequeue_rt_entity(rt_se); | |
893 | } | |
894 | } | |
895 | ||
896 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | |
897 | { | |
898 | dequeue_rt_stack(rt_se); | |
899 | for_each_sched_rt_entity(rt_se) | |
900 | __enqueue_rt_entity(rt_se, head); | |
901 | } | |
902 | ||
903 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |
904 | { | |
905 | dequeue_rt_stack(rt_se); | |
906 | ||
907 | for_each_sched_rt_entity(rt_se) { | |
908 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
909 | ||
910 | if (rt_rq && rt_rq->rt_nr_running) | |
911 | __enqueue_rt_entity(rt_se, false); | |
912 | } | |
913 | } | |
914 | ||
915 | /* | |
916 | * Adding/removing a task to/from a priority array: | |
917 | */ | |
918 | static void | |
919 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | |
920 | { | |
921 | struct sched_rt_entity *rt_se = &p->rt; | |
922 | ||
923 | if (flags & ENQUEUE_WAKEUP) | |
924 | rt_se->timeout = 0; | |
925 | ||
926 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | |
927 | ||
928 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | |
929 | enqueue_pushable_task(rq, p); | |
930 | } | |
931 | ||
932 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | |
933 | { | |
934 | struct sched_rt_entity *rt_se = &p->rt; | |
935 | ||
936 | update_curr_rt(rq); | |
937 | dequeue_rt_entity(rt_se); | |
938 | ||
939 | dequeue_pushable_task(rq, p); | |
940 | } | |
941 | ||
942 | /* | |
943 | * Put task to the end of the run list without the overhead of dequeue | |
944 | * followed by enqueue. | |
945 | */ | |
946 | static void | |
947 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
948 | { | |
949 | if (on_rt_rq(rt_se)) { | |
950 | struct rt_prio_array *array = &rt_rq->active; | |
951 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
952 | ||
953 | if (head) | |
954 | list_move(&rt_se->run_list, queue); | |
955 | else | |
956 | list_move_tail(&rt_se->run_list, queue); | |
957 | } | |
958 | } | |
959 | ||
960 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | |
961 | { | |
962 | struct sched_rt_entity *rt_se = &p->rt; | |
963 | struct rt_rq *rt_rq; | |
964 | ||
965 | for_each_sched_rt_entity(rt_se) { | |
966 | rt_rq = rt_rq_of_se(rt_se); | |
967 | requeue_rt_entity(rt_rq, rt_se, head); | |
968 | } | |
969 | } | |
970 | ||
971 | static void yield_task_rt(struct rq *rq) | |
972 | { | |
973 | requeue_task_rt(rq, rq->curr, 0); | |
974 | } | |
975 | ||
976 | #ifdef CONFIG_SMP | |
977 | static int find_lowest_rq(struct task_struct *task); | |
978 | ||
979 | static int | |
980 | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | |
981 | { | |
982 | if (sd_flag != SD_BALANCE_WAKE) | |
983 | return smp_processor_id(); | |
984 | ||
985 | /* | |
986 | * If the current task is an RT task, then | |
987 | * try to see if we can wake this RT task up on another | |
988 | * runqueue. Otherwise simply start this RT task | |
989 | * on its current runqueue. | |
990 | * | |
991 | * We want to avoid overloading runqueues. If the woken | |
992 | * task is a higher priority, then it will stay on this CPU | |
993 | * and the lower prio task should be moved to another CPU. | |
994 | * Even though this will probably make the lower prio task | |
995 | * lose its cache, we do not want to bounce a higher task | |
996 | * around just because it gave up its CPU, perhaps for a | |
997 | * lock? | |
998 | * | |
999 | * For equal prio tasks, we just let the scheduler sort it out. | |
1000 | */ | |
1001 | if (unlikely(rt_task(rq->curr)) && | |
1002 | (rq->curr->rt.nr_cpus_allowed < 2 || | |
1003 | rq->curr->prio < p->prio) && | |
1004 | (p->rt.nr_cpus_allowed > 1)) { | |
1005 | int cpu = find_lowest_rq(p); | |
1006 | ||
1007 | return (cpu == -1) ? task_cpu(p) : cpu; | |
1008 | } | |
1009 | ||
1010 | /* | |
1011 | * Otherwise, just let it ride on the affined RQ and the | |
1012 | * post-schedule router will push the preempted task away | |
1013 | */ | |
1014 | return task_cpu(p); | |
1015 | } | |
1016 | ||
1017 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
1018 | { | |
1019 | if (rq->curr->rt.nr_cpus_allowed == 1) | |
1020 | return; | |
1021 | ||
1022 | if (p->rt.nr_cpus_allowed != 1 | |
1023 | && cpupri_find(&rq->rd->cpupri, p, NULL)) | |
1024 | return; | |
1025 | ||
1026 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | |
1027 | return; | |
1028 | ||
1029 | /* | |
1030 | * There appears to be other cpus that can accept | |
1031 | * current and none to run 'p', so lets reschedule | |
1032 | * to try and push current away: | |
1033 | */ | |
1034 | requeue_task_rt(rq, p, 1); | |
1035 | resched_task(rq->curr); | |
1036 | } | |
1037 | ||
1038 | #endif /* CONFIG_SMP */ | |
1039 | ||
1040 | /* | |
1041 | * Preempt the current task with a newly woken task if needed: | |
1042 | */ | |
1043 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | |
1044 | { | |
1045 | if (p->prio < rq->curr->prio) { | |
1046 | resched_task(rq->curr); | |
1047 | return; | |
1048 | } | |
1049 | ||
1050 | #ifdef CONFIG_SMP | |
1051 | /* | |
1052 | * If: | |
1053 | * | |
1054 | * - the newly woken task is of equal priority to the current task | |
1055 | * - the newly woken task is non-migratable while current is migratable | |
1056 | * - current will be preempted on the next reschedule | |
1057 | * | |
1058 | * we should check to see if current can readily move to a different | |
1059 | * cpu. If so, we will reschedule to allow the push logic to try | |
1060 | * to move current somewhere else, making room for our non-migratable | |
1061 | * task. | |
1062 | */ | |
1063 | if (p->prio == rq->curr->prio && !need_resched()) | |
1064 | check_preempt_equal_prio(rq, p); | |
1065 | #endif | |
1066 | } | |
1067 | ||
1068 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |
1069 | struct rt_rq *rt_rq) | |
1070 | { | |
1071 | struct rt_prio_array *array = &rt_rq->active; | |
1072 | struct sched_rt_entity *next = NULL; | |
1073 | struct list_head *queue; | |
1074 | int idx; | |
1075 | ||
1076 | idx = sched_find_first_bit(array->bitmap); | |
1077 | BUG_ON(idx >= MAX_RT_PRIO); | |
1078 | ||
1079 | queue = array->queue + idx; | |
1080 | next = list_entry(queue->next, struct sched_rt_entity, run_list); | |
1081 | ||
1082 | return next; | |
1083 | } | |
1084 | ||
1085 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | |
1086 | { | |
1087 | struct sched_rt_entity *rt_se; | |
1088 | struct task_struct *p; | |
1089 | struct rt_rq *rt_rq; | |
1090 | ||
1091 | rt_rq = &rq->rt; | |
1092 | ||
1093 | if (unlikely(!rt_rq->rt_nr_running)) | |
1094 | return NULL; | |
1095 | ||
1096 | if (rt_rq_throttled(rt_rq)) | |
1097 | return NULL; | |
1098 | ||
1099 | do { | |
1100 | rt_se = pick_next_rt_entity(rq, rt_rq); | |
1101 | BUG_ON(!rt_se); | |
1102 | rt_rq = group_rt_rq(rt_se); | |
1103 | } while (rt_rq); | |
1104 | ||
1105 | p = rt_task_of(rt_se); | |
1106 | p->se.exec_start = rq->clock_task; | |
1107 | ||
1108 | return p; | |
1109 | } | |
1110 | ||
1111 | static struct task_struct *pick_next_task_rt(struct rq *rq) | |
1112 | { | |
1113 | struct task_struct *p = _pick_next_task_rt(rq); | |
1114 | ||
1115 | /* The running task is never eligible for pushing */ | |
1116 | if (p) | |
1117 | dequeue_pushable_task(rq, p); | |
1118 | ||
1119 | #ifdef CONFIG_SMP | |
1120 | /* | |
1121 | * We detect this state here so that we can avoid taking the RQ | |
1122 | * lock again later if there is no need to push | |
1123 | */ | |
1124 | rq->post_schedule = has_pushable_tasks(rq); | |
1125 | #endif | |
1126 | ||
1127 | return p; | |
1128 | } | |
1129 | ||
1130 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |
1131 | { | |
1132 | update_curr_rt(rq); | |
1133 | p->se.exec_start = 0; | |
1134 | ||
1135 | /* | |
1136 | * The previous task needs to be made eligible for pushing | |
1137 | * if it is still active | |
1138 | */ | |
1139 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | |
1140 | enqueue_pushable_task(rq, p); | |
1141 | } | |
1142 | ||
1143 | #ifdef CONFIG_SMP | |
1144 | ||
1145 | /* Only try algorithms three times */ | |
1146 | #define RT_MAX_TRIES 3 | |
1147 | ||
1148 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); | |
1149 | ||
1150 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | |
1151 | { | |
1152 | if (!task_running(rq, p) && | |
1153 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && | |
1154 | (p->rt.nr_cpus_allowed > 1)) | |
1155 | return 1; | |
1156 | return 0; | |
1157 | } | |
1158 | ||
1159 | /* Return the second highest RT task, NULL otherwise */ | |
1160 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |
1161 | { | |
1162 | struct task_struct *next = NULL; | |
1163 | struct sched_rt_entity *rt_se; | |
1164 | struct rt_prio_array *array; | |
1165 | struct rt_rq *rt_rq; | |
1166 | int idx; | |
1167 | ||
1168 | for_each_leaf_rt_rq(rt_rq, rq) { | |
1169 | array = &rt_rq->active; | |
1170 | idx = sched_find_first_bit(array->bitmap); | |
1171 | next_idx: | |
1172 | if (idx >= MAX_RT_PRIO) | |
1173 | continue; | |
1174 | if (next && next->prio < idx) | |
1175 | continue; | |
1176 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
1177 | struct task_struct *p; | |
1178 | ||
1179 | if (!rt_entity_is_task(rt_se)) | |
1180 | continue; | |
1181 | ||
1182 | p = rt_task_of(rt_se); | |
1183 | if (pick_rt_task(rq, p, cpu)) { | |
1184 | next = p; | |
1185 | break; | |
1186 | } | |
1187 | } | |
1188 | if (!next) { | |
1189 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | |
1190 | goto next_idx; | |
1191 | } | |
1192 | } | |
1193 | ||
1194 | return next; | |
1195 | } | |
1196 | ||
1197 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | |
1198 | ||
1199 | static int find_lowest_rq(struct task_struct *task) | |
1200 | { | |
1201 | struct sched_domain *sd; | |
1202 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | |
1203 | int this_cpu = smp_processor_id(); | |
1204 | int cpu = task_cpu(task); | |
1205 | ||
1206 | if (task->rt.nr_cpus_allowed == 1) | |
1207 | return -1; /* No other targets possible */ | |
1208 | ||
1209 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | |
1210 | return -1; /* No targets found */ | |
1211 | ||
1212 | /* | |
1213 | * At this point we have built a mask of cpus representing the | |
1214 | * lowest priority tasks in the system. Now we want to elect | |
1215 | * the best one based on our affinity and topology. | |
1216 | * | |
1217 | * We prioritize the last cpu that the task executed on since | |
1218 | * it is most likely cache-hot in that location. | |
1219 | */ | |
1220 | if (cpumask_test_cpu(cpu, lowest_mask)) | |
1221 | return cpu; | |
1222 | ||
1223 | /* | |
1224 | * Otherwise, we consult the sched_domains span maps to figure | |
1225 | * out which cpu is logically closest to our hot cache data. | |
1226 | */ | |
1227 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | |
1228 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | |
1229 | ||
1230 | for_each_domain(cpu, sd) { | |
1231 | if (sd->flags & SD_WAKE_AFFINE) { | |
1232 | int best_cpu; | |
1233 | ||
1234 | /* | |
1235 | * "this_cpu" is cheaper to preempt than a | |
1236 | * remote processor. | |
1237 | */ | |
1238 | if (this_cpu != -1 && | |
1239 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) | |
1240 | return this_cpu; | |
1241 | ||
1242 | best_cpu = cpumask_first_and(lowest_mask, | |
1243 | sched_domain_span(sd)); | |
1244 | if (best_cpu < nr_cpu_ids) | |
1245 | return best_cpu; | |
1246 | } | |
1247 | } | |
1248 | ||
1249 | /* | |
1250 | * And finally, if there were no matches within the domains | |
1251 | * just give the caller *something* to work with from the compatible | |
1252 | * locations. | |
1253 | */ | |
1254 | if (this_cpu != -1) | |
1255 | return this_cpu; | |
1256 | ||
1257 | cpu = cpumask_any(lowest_mask); | |
1258 | if (cpu < nr_cpu_ids) | |
1259 | return cpu; | |
1260 | return -1; | |
1261 | } | |
1262 | ||
1263 | /* Will lock the rq it finds */ | |
1264 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |
1265 | { | |
1266 | struct rq *lowest_rq = NULL; | |
1267 | int tries; | |
1268 | int cpu; | |
1269 | ||
1270 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | |
1271 | cpu = find_lowest_rq(task); | |
1272 | ||
1273 | if ((cpu == -1) || (cpu == rq->cpu)) | |
1274 | break; | |
1275 | ||
1276 | lowest_rq = cpu_rq(cpu); | |
1277 | ||
1278 | /* if the prio of this runqueue changed, try again */ | |
1279 | if (double_lock_balance(rq, lowest_rq)) { | |
1280 | /* | |
1281 | * We had to unlock the run queue. In | |
1282 | * the mean time, task could have | |
1283 | * migrated already or had its affinity changed. | |
1284 | * Also make sure that it wasn't scheduled on its rq. | |
1285 | */ | |
1286 | if (unlikely(task_rq(task) != rq || | |
1287 | !cpumask_test_cpu(lowest_rq->cpu, | |
1288 | &task->cpus_allowed) || | |
1289 | task_running(rq, task) || | |
1290 | !task->se.on_rq)) { | |
1291 | ||
1292 | raw_spin_unlock(&lowest_rq->lock); | |
1293 | lowest_rq = NULL; | |
1294 | break; | |
1295 | } | |
1296 | } | |
1297 | ||
1298 | /* If this rq is still suitable use it. */ | |
1299 | if (lowest_rq->rt.highest_prio.curr > task->prio) | |
1300 | break; | |
1301 | ||
1302 | /* try again */ | |
1303 | double_unlock_balance(rq, lowest_rq); | |
1304 | lowest_rq = NULL; | |
1305 | } | |
1306 | ||
1307 | return lowest_rq; | |
1308 | } | |
1309 | ||
1310 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | |
1311 | { | |
1312 | struct task_struct *p; | |
1313 | ||
1314 | if (!has_pushable_tasks(rq)) | |
1315 | return NULL; | |
1316 | ||
1317 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1318 | struct task_struct, pushable_tasks); | |
1319 | ||
1320 | BUG_ON(rq->cpu != task_cpu(p)); | |
1321 | BUG_ON(task_current(rq, p)); | |
1322 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | |
1323 | ||
1324 | BUG_ON(!p->se.on_rq); | |
1325 | BUG_ON(!rt_task(p)); | |
1326 | ||
1327 | return p; | |
1328 | } | |
1329 | ||
1330 | /* | |
1331 | * If the current CPU has more than one RT task, see if the non | |
1332 | * running task can migrate over to a CPU that is running a task | |
1333 | * of lesser priority. | |
1334 | */ | |
1335 | static int push_rt_task(struct rq *rq) | |
1336 | { | |
1337 | struct task_struct *next_task; | |
1338 | struct rq *lowest_rq; | |
1339 | ||
1340 | if (!rq->rt.overloaded) | |
1341 | return 0; | |
1342 | ||
1343 | next_task = pick_next_pushable_task(rq); | |
1344 | if (!next_task) | |
1345 | return 0; | |
1346 | ||
1347 | retry: | |
1348 | if (unlikely(next_task == rq->curr)) { | |
1349 | WARN_ON(1); | |
1350 | return 0; | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * It's possible that the next_task slipped in of | |
1355 | * higher priority than current. If that's the case | |
1356 | * just reschedule current. | |
1357 | */ | |
1358 | if (unlikely(next_task->prio < rq->curr->prio)) { | |
1359 | resched_task(rq->curr); | |
1360 | return 0; | |
1361 | } | |
1362 | ||
1363 | /* We might release rq lock */ | |
1364 | get_task_struct(next_task); | |
1365 | ||
1366 | /* find_lock_lowest_rq locks the rq if found */ | |
1367 | lowest_rq = find_lock_lowest_rq(next_task, rq); | |
1368 | if (!lowest_rq) { | |
1369 | struct task_struct *task; | |
1370 | /* | |
1371 | * find lock_lowest_rq releases rq->lock | |
1372 | * so it is possible that next_task has migrated. | |
1373 | * | |
1374 | * We need to make sure that the task is still on the same | |
1375 | * run-queue and is also still the next task eligible for | |
1376 | * pushing. | |
1377 | */ | |
1378 | task = pick_next_pushable_task(rq); | |
1379 | if (task_cpu(next_task) == rq->cpu && task == next_task) { | |
1380 | /* | |
1381 | * If we get here, the task hasnt moved at all, but | |
1382 | * it has failed to push. We will not try again, | |
1383 | * since the other cpus will pull from us when they | |
1384 | * are ready. | |
1385 | */ | |
1386 | dequeue_pushable_task(rq, next_task); | |
1387 | goto out; | |
1388 | } | |
1389 | ||
1390 | if (!task) | |
1391 | /* No more tasks, just exit */ | |
1392 | goto out; | |
1393 | ||
1394 | /* | |
1395 | * Something has shifted, try again. | |
1396 | */ | |
1397 | put_task_struct(next_task); | |
1398 | next_task = task; | |
1399 | goto retry; | |
1400 | } | |
1401 | ||
1402 | deactivate_task(rq, next_task, 0); | |
1403 | set_task_cpu(next_task, lowest_rq->cpu); | |
1404 | activate_task(lowest_rq, next_task, 0); | |
1405 | ||
1406 | resched_task(lowest_rq->curr); | |
1407 | ||
1408 | double_unlock_balance(rq, lowest_rq); | |
1409 | ||
1410 | out: | |
1411 | put_task_struct(next_task); | |
1412 | ||
1413 | return 1; | |
1414 | } | |
1415 | ||
1416 | static void push_rt_tasks(struct rq *rq) | |
1417 | { | |
1418 | /* push_rt_task will return true if it moved an RT */ | |
1419 | while (push_rt_task(rq)) | |
1420 | ; | |
1421 | } | |
1422 | ||
1423 | static int pull_rt_task(struct rq *this_rq) | |
1424 | { | |
1425 | int this_cpu = this_rq->cpu, ret = 0, cpu; | |
1426 | struct task_struct *p; | |
1427 | struct rq *src_rq; | |
1428 | ||
1429 | if (likely(!rt_overloaded(this_rq))) | |
1430 | return 0; | |
1431 | ||
1432 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | |
1433 | if (this_cpu == cpu) | |
1434 | continue; | |
1435 | ||
1436 | src_rq = cpu_rq(cpu); | |
1437 | ||
1438 | /* | |
1439 | * Don't bother taking the src_rq->lock if the next highest | |
1440 | * task is known to be lower-priority than our current task. | |
1441 | * This may look racy, but if this value is about to go | |
1442 | * logically higher, the src_rq will push this task away. | |
1443 | * And if its going logically lower, we do not care | |
1444 | */ | |
1445 | if (src_rq->rt.highest_prio.next >= | |
1446 | this_rq->rt.highest_prio.curr) | |
1447 | continue; | |
1448 | ||
1449 | /* | |
1450 | * We can potentially drop this_rq's lock in | |
1451 | * double_lock_balance, and another CPU could | |
1452 | * alter this_rq | |
1453 | */ | |
1454 | double_lock_balance(this_rq, src_rq); | |
1455 | ||
1456 | /* | |
1457 | * Are there still pullable RT tasks? | |
1458 | */ | |
1459 | if (src_rq->rt.rt_nr_running <= 1) | |
1460 | goto skip; | |
1461 | ||
1462 | p = pick_next_highest_task_rt(src_rq, this_cpu); | |
1463 | ||
1464 | /* | |
1465 | * Do we have an RT task that preempts | |
1466 | * the to-be-scheduled task? | |
1467 | */ | |
1468 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | |
1469 | WARN_ON(p == src_rq->curr); | |
1470 | WARN_ON(!p->se.on_rq); | |
1471 | ||
1472 | /* | |
1473 | * There's a chance that p is higher in priority | |
1474 | * than what's currently running on its cpu. | |
1475 | * This is just that p is wakeing up and hasn't | |
1476 | * had a chance to schedule. We only pull | |
1477 | * p if it is lower in priority than the | |
1478 | * current task on the run queue | |
1479 | */ | |
1480 | if (p->prio < src_rq->curr->prio) | |
1481 | goto skip; | |
1482 | ||
1483 | ret = 1; | |
1484 | ||
1485 | deactivate_task(src_rq, p, 0); | |
1486 | set_task_cpu(p, this_cpu); | |
1487 | activate_task(this_rq, p, 0); | |
1488 | /* | |
1489 | * We continue with the search, just in | |
1490 | * case there's an even higher prio task | |
1491 | * in another runqueue. (low likelyhood | |
1492 | * but possible) | |
1493 | */ | |
1494 | } | |
1495 | skip: | |
1496 | double_unlock_balance(this_rq, src_rq); | |
1497 | } | |
1498 | ||
1499 | return ret; | |
1500 | } | |
1501 | ||
1502 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | |
1503 | { | |
1504 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
1505 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) | |
1506 | pull_rt_task(rq); | |
1507 | } | |
1508 | ||
1509 | static void post_schedule_rt(struct rq *rq) | |
1510 | { | |
1511 | push_rt_tasks(rq); | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | * If we are not running and we are not going to reschedule soon, we should | |
1516 | * try to push tasks away now | |
1517 | */ | |
1518 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | |
1519 | { | |
1520 | if (!task_running(rq, p) && | |
1521 | !test_tsk_need_resched(rq->curr) && | |
1522 | has_pushable_tasks(rq) && | |
1523 | p->rt.nr_cpus_allowed > 1 && | |
1524 | rt_task(rq->curr) && | |
1525 | (rq->curr->rt.nr_cpus_allowed < 2 || | |
1526 | rq->curr->prio < p->prio)) | |
1527 | push_rt_tasks(rq); | |
1528 | } | |
1529 | ||
1530 | static void set_cpus_allowed_rt(struct task_struct *p, | |
1531 | const struct cpumask *new_mask) | |
1532 | { | |
1533 | int weight = cpumask_weight(new_mask); | |
1534 | ||
1535 | BUG_ON(!rt_task(p)); | |
1536 | ||
1537 | /* | |
1538 | * Update the migration status of the RQ if we have an RT task | |
1539 | * which is running AND changing its weight value. | |
1540 | */ | |
1541 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | |
1542 | struct rq *rq = task_rq(p); | |
1543 | ||
1544 | if (!task_current(rq, p)) { | |
1545 | /* | |
1546 | * Make sure we dequeue this task from the pushable list | |
1547 | * before going further. It will either remain off of | |
1548 | * the list because we are no longer pushable, or it | |
1549 | * will be requeued. | |
1550 | */ | |
1551 | if (p->rt.nr_cpus_allowed > 1) | |
1552 | dequeue_pushable_task(rq, p); | |
1553 | ||
1554 | /* | |
1555 | * Requeue if our weight is changing and still > 1 | |
1556 | */ | |
1557 | if (weight > 1) | |
1558 | enqueue_pushable_task(rq, p); | |
1559 | ||
1560 | } | |
1561 | ||
1562 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | |
1563 | rq->rt.rt_nr_migratory++; | |
1564 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | |
1565 | BUG_ON(!rq->rt.rt_nr_migratory); | |
1566 | rq->rt.rt_nr_migratory--; | |
1567 | } | |
1568 | ||
1569 | update_rt_migration(&rq->rt); | |
1570 | } | |
1571 | ||
1572 | cpumask_copy(&p->cpus_allowed, new_mask); | |
1573 | p->rt.nr_cpus_allowed = weight; | |
1574 | } | |
1575 | ||
1576 | /* Assumes rq->lock is held */ | |
1577 | static void rq_online_rt(struct rq *rq) | |
1578 | { | |
1579 | if (rq->rt.overloaded) | |
1580 | rt_set_overload(rq); | |
1581 | ||
1582 | __enable_runtime(rq); | |
1583 | ||
1584 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | |
1585 | } | |
1586 | ||
1587 | /* Assumes rq->lock is held */ | |
1588 | static void rq_offline_rt(struct rq *rq) | |
1589 | { | |
1590 | if (rq->rt.overloaded) | |
1591 | rt_clear_overload(rq); | |
1592 | ||
1593 | __disable_runtime(rq); | |
1594 | ||
1595 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | |
1596 | } | |
1597 | ||
1598 | /* | |
1599 | * When switch from the rt queue, we bring ourselves to a position | |
1600 | * that we might want to pull RT tasks from other runqueues. | |
1601 | */ | |
1602 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | |
1603 | { | |
1604 | /* | |
1605 | * If there are other RT tasks then we will reschedule | |
1606 | * and the scheduling of the other RT tasks will handle | |
1607 | * the balancing. But if we are the last RT task | |
1608 | * we may need to handle the pulling of RT tasks | |
1609 | * now. | |
1610 | */ | |
1611 | if (p->se.on_rq && !rq->rt.rt_nr_running) | |
1612 | pull_rt_task(rq); | |
1613 | } | |
1614 | ||
1615 | static inline void init_sched_rt_class(void) | |
1616 | { | |
1617 | unsigned int i; | |
1618 | ||
1619 | for_each_possible_cpu(i) | |
1620 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | |
1621 | GFP_KERNEL, cpu_to_node(i)); | |
1622 | } | |
1623 | #endif /* CONFIG_SMP */ | |
1624 | ||
1625 | /* | |
1626 | * When switching a task to RT, we may overload the runqueue | |
1627 | * with RT tasks. In this case we try to push them off to | |
1628 | * other runqueues. | |
1629 | */ | |
1630 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | |
1631 | { | |
1632 | int check_resched = 1; | |
1633 | ||
1634 | /* | |
1635 | * If we are already running, then there's nothing | |
1636 | * that needs to be done. But if we are not running | |
1637 | * we may need to preempt the current running task. | |
1638 | * If that current running task is also an RT task | |
1639 | * then see if we can move to another run queue. | |
1640 | */ | |
1641 | if (p->se.on_rq && rq->curr != p) { | |
1642 | #ifdef CONFIG_SMP | |
1643 | if (rq->rt.overloaded && push_rt_task(rq) && | |
1644 | /* Don't resched if we changed runqueues */ | |
1645 | rq != task_rq(p)) | |
1646 | check_resched = 0; | |
1647 | #endif /* CONFIG_SMP */ | |
1648 | if (check_resched && p->prio < rq->curr->prio) | |
1649 | resched_task(rq->curr); | |
1650 | } | |
1651 | } | |
1652 | ||
1653 | /* | |
1654 | * Priority of the task has changed. This may cause | |
1655 | * us to initiate a push or pull. | |
1656 | */ | |
1657 | static void | |
1658 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | |
1659 | { | |
1660 | if (!p->se.on_rq) | |
1661 | return; | |
1662 | ||
1663 | if (rq->curr == p) { | |
1664 | #ifdef CONFIG_SMP | |
1665 | /* | |
1666 | * If our priority decreases while running, we | |
1667 | * may need to pull tasks to this runqueue. | |
1668 | */ | |
1669 | if (oldprio < p->prio) | |
1670 | pull_rt_task(rq); | |
1671 | /* | |
1672 | * If there's a higher priority task waiting to run | |
1673 | * then reschedule. Note, the above pull_rt_task | |
1674 | * can release the rq lock and p could migrate. | |
1675 | * Only reschedule if p is still on the same runqueue. | |
1676 | */ | |
1677 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) | |
1678 | resched_task(p); | |
1679 | #else | |
1680 | /* For UP simply resched on drop of prio */ | |
1681 | if (oldprio < p->prio) | |
1682 | resched_task(p); | |
1683 | #endif /* CONFIG_SMP */ | |
1684 | } else { | |
1685 | /* | |
1686 | * This task is not running, but if it is | |
1687 | * greater than the current running task | |
1688 | * then reschedule. | |
1689 | */ | |
1690 | if (p->prio < rq->curr->prio) | |
1691 | resched_task(rq->curr); | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | static void watchdog(struct rq *rq, struct task_struct *p) | |
1696 | { | |
1697 | unsigned long soft, hard; | |
1698 | ||
1699 | /* max may change after cur was read, this will be fixed next tick */ | |
1700 | soft = task_rlimit(p, RLIMIT_RTTIME); | |
1701 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | |
1702 | ||
1703 | if (soft != RLIM_INFINITY) { | |
1704 | unsigned long next; | |
1705 | ||
1706 | p->rt.timeout++; | |
1707 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | |
1708 | if (p->rt.timeout > next) | |
1709 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | |
1710 | } | |
1711 | } | |
1712 | ||
1713 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | |
1714 | { | |
1715 | update_curr_rt(rq); | |
1716 | ||
1717 | watchdog(rq, p); | |
1718 | ||
1719 | /* | |
1720 | * RR tasks need a special form of timeslice management. | |
1721 | * FIFO tasks have no timeslices. | |
1722 | */ | |
1723 | if (p->policy != SCHED_RR) | |
1724 | return; | |
1725 | ||
1726 | if (--p->rt.time_slice) | |
1727 | return; | |
1728 | ||
1729 | p->rt.time_slice = DEF_TIMESLICE; | |
1730 | ||
1731 | /* | |
1732 | * Requeue to the end of queue if we are not the only element | |
1733 | * on the queue: | |
1734 | */ | |
1735 | if (p->rt.run_list.prev != p->rt.run_list.next) { | |
1736 | requeue_task_rt(rq, p, 0); | |
1737 | set_tsk_need_resched(p); | |
1738 | } | |
1739 | } | |
1740 | ||
1741 | static void set_curr_task_rt(struct rq *rq) | |
1742 | { | |
1743 | struct task_struct *p = rq->curr; | |
1744 | ||
1745 | p->se.exec_start = rq->clock_task; | |
1746 | ||
1747 | /* The running task is never eligible for pushing */ | |
1748 | dequeue_pushable_task(rq, p); | |
1749 | } | |
1750 | ||
1751 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | |
1752 | { | |
1753 | /* | |
1754 | * Time slice is 0 for SCHED_FIFO tasks | |
1755 | */ | |
1756 | if (task->policy == SCHED_RR) | |
1757 | return DEF_TIMESLICE; | |
1758 | else | |
1759 | return 0; | |
1760 | } | |
1761 | ||
1762 | static const struct sched_class rt_sched_class = { | |
1763 | .next = &fair_sched_class, | |
1764 | .enqueue_task = enqueue_task_rt, | |
1765 | .dequeue_task = dequeue_task_rt, | |
1766 | .yield_task = yield_task_rt, | |
1767 | ||
1768 | .check_preempt_curr = check_preempt_curr_rt, | |
1769 | ||
1770 | .pick_next_task = pick_next_task_rt, | |
1771 | .put_prev_task = put_prev_task_rt, | |
1772 | ||
1773 | #ifdef CONFIG_SMP | |
1774 | .select_task_rq = select_task_rq_rt, | |
1775 | ||
1776 | .set_cpus_allowed = set_cpus_allowed_rt, | |
1777 | .rq_online = rq_online_rt, | |
1778 | .rq_offline = rq_offline_rt, | |
1779 | .pre_schedule = pre_schedule_rt, | |
1780 | .post_schedule = post_schedule_rt, | |
1781 | .task_woken = task_woken_rt, | |
1782 | .switched_from = switched_from_rt, | |
1783 | #endif | |
1784 | ||
1785 | .set_curr_task = set_curr_task_rt, | |
1786 | .task_tick = task_tick_rt, | |
1787 | ||
1788 | .get_rr_interval = get_rr_interval_rt, | |
1789 | ||
1790 | .prio_changed = prio_changed_rt, | |
1791 | .switched_to = switched_to_rt, | |
1792 | }; | |
1793 | ||
1794 | #ifdef CONFIG_SCHED_DEBUG | |
1795 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | |
1796 | ||
1797 | static void print_rt_stats(struct seq_file *m, int cpu) | |
1798 | { | |
1799 | struct rt_rq *rt_rq; | |
1800 | ||
1801 | rcu_read_lock(); | |
1802 | for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) | |
1803 | print_rt_rq(m, cpu, rt_rq); | |
1804 | rcu_read_unlock(); | |
1805 | } | |
1806 | #endif /* CONFIG_SCHED_DEBUG */ | |
1807 |