]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - kernel/time/hrtimer.c
hrtimer: Make the hrtimer_cpu_base::hres_active field unconditional, to simplify...
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
... / ...
CommitLineData
1/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched/signal.h>
47#include <linux/sched/sysctl.h>
48#include <linux/sched/rt.h>
49#include <linux/sched/deadline.h>
50#include <linux/sched/nohz.h>
51#include <linux/sched/debug.h>
52#include <linux/timer.h>
53#include <linux/freezer.h>
54#include <linux/compat.h>
55
56#include <linux/uaccess.h>
57
58#include <trace/events/timer.h>
59
60#include "tick-internal.h"
61
62/*
63 * The timer bases:
64 *
65 * There are more clockids than hrtimer bases. Thus, we index
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
69 */
70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71{
72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 .clock_base =
74 {
75 {
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
78 .get_time = &ktime_get,
79 },
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 },
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
94 },
95 }
96};
97
98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
106};
107
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
120 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
121};
122
123#define migration_base migration_cpu_base.clock_base[0]
124
125/*
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
129 *
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
132 *
133 * When the timer's base is locked, and the timer removed from list, it is
134 * possible to set timer->base = &migration_base and drop the lock: the timer
135 * remains locked.
136 */
137static
138struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 unsigned long *flags)
140{
141 struct hrtimer_clock_base *base;
142
143 for (;;) {
144 base = timer->base;
145 if (likely(base != &migration_base)) {
146 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 if (likely(base == timer->base))
148 return base;
149 /* The timer has migrated to another CPU: */
150 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 }
152 cpu_relax();
153 }
154}
155
156/*
157 * With HIGHRES=y we do not migrate the timer when it is expiring
158 * before the next event on the target cpu because we cannot reprogram
159 * the target cpu hardware and we would cause it to fire late.
160 *
161 * Called with cpu_base->lock of target cpu held.
162 */
163static int
164hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
165{
166#ifdef CONFIG_HIGH_RES_TIMERS
167 ktime_t expires;
168
169 if (!new_base->cpu_base->hres_active)
170 return 0;
171
172 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
173 return expires <= new_base->cpu_base->expires_next;
174#else
175 return 0;
176#endif
177}
178
179static inline
180struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
181 int pinned)
182{
183#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
184 if (static_branch_likely(&timers_migration_enabled) && !pinned)
185 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
186#endif
187 return base;
188}
189
190/*
191 * We switch the timer base to a power-optimized selected CPU target,
192 * if:
193 * - NO_HZ_COMMON is enabled
194 * - timer migration is enabled
195 * - the timer callback is not running
196 * - the timer is not the first expiring timer on the new target
197 *
198 * If one of the above requirements is not fulfilled we move the timer
199 * to the current CPU or leave it on the previously assigned CPU if
200 * the timer callback is currently running.
201 */
202static inline struct hrtimer_clock_base *
203switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
204 int pinned)
205{
206 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
207 struct hrtimer_clock_base *new_base;
208 int basenum = base->index;
209
210 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
211 new_cpu_base = get_target_base(this_cpu_base, pinned);
212again:
213 new_base = &new_cpu_base->clock_base[basenum];
214
215 if (base != new_base) {
216 /*
217 * We are trying to move timer to new_base.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
225 if (unlikely(hrtimer_callback_running(timer)))
226 return base;
227
228 /* See the comment in lock_hrtimer_base() */
229 timer->base = &migration_base;
230 raw_spin_unlock(&base->cpu_base->lock);
231 raw_spin_lock(&new_base->cpu_base->lock);
232
233 if (new_cpu_base != this_cpu_base &&
234 hrtimer_check_target(timer, new_base)) {
235 raw_spin_unlock(&new_base->cpu_base->lock);
236 raw_spin_lock(&base->cpu_base->lock);
237 new_cpu_base = this_cpu_base;
238 timer->base = base;
239 goto again;
240 }
241 timer->base = new_base;
242 } else {
243 if (new_cpu_base != this_cpu_base &&
244 hrtimer_check_target(timer, new_base)) {
245 new_cpu_base = this_cpu_base;
246 goto again;
247 }
248 }
249 return new_base;
250}
251
252#else /* CONFIG_SMP */
253
254static inline struct hrtimer_clock_base *
255lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
256{
257 struct hrtimer_clock_base *base = timer->base;
258
259 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
260
261 return base;
262}
263
264# define switch_hrtimer_base(t, b, p) (b)
265
266#endif /* !CONFIG_SMP */
267
268/*
269 * Functions for the union type storage format of ktime_t which are
270 * too large for inlining:
271 */
272#if BITS_PER_LONG < 64
273/*
274 * Divide a ktime value by a nanosecond value
275 */
276s64 __ktime_divns(const ktime_t kt, s64 div)
277{
278 int sft = 0;
279 s64 dclc;
280 u64 tmp;
281
282 dclc = ktime_to_ns(kt);
283 tmp = dclc < 0 ? -dclc : dclc;
284
285 /* Make sure the divisor is less than 2^32: */
286 while (div >> 32) {
287 sft++;
288 div >>= 1;
289 }
290 tmp >>= sft;
291 do_div(tmp, (unsigned long) div);
292 return dclc < 0 ? -tmp : tmp;
293}
294EXPORT_SYMBOL_GPL(__ktime_divns);
295#endif /* BITS_PER_LONG >= 64 */
296
297/*
298 * Add two ktime values and do a safety check for overflow:
299 */
300ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
301{
302 ktime_t res = ktime_add_unsafe(lhs, rhs);
303
304 /*
305 * We use KTIME_SEC_MAX here, the maximum timeout which we can
306 * return to user space in a timespec:
307 */
308 if (res < 0 || res < lhs || res < rhs)
309 res = ktime_set(KTIME_SEC_MAX, 0);
310
311 return res;
312}
313
314EXPORT_SYMBOL_GPL(ktime_add_safe);
315
316#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
317
318static struct debug_obj_descr hrtimer_debug_descr;
319
320static void *hrtimer_debug_hint(void *addr)
321{
322 return ((struct hrtimer *) addr)->function;
323}
324
325/*
326 * fixup_init is called when:
327 * - an active object is initialized
328 */
329static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
330{
331 struct hrtimer *timer = addr;
332
333 switch (state) {
334 case ODEBUG_STATE_ACTIVE:
335 hrtimer_cancel(timer);
336 debug_object_init(timer, &hrtimer_debug_descr);
337 return true;
338 default:
339 return false;
340 }
341}
342
343/*
344 * fixup_activate is called when:
345 * - an active object is activated
346 * - an unknown non-static object is activated
347 */
348static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
349{
350 switch (state) {
351 case ODEBUG_STATE_ACTIVE:
352 WARN_ON(1);
353
354 default:
355 return false;
356 }
357}
358
359/*
360 * fixup_free is called when:
361 * - an active object is freed
362 */
363static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
364{
365 struct hrtimer *timer = addr;
366
367 switch (state) {
368 case ODEBUG_STATE_ACTIVE:
369 hrtimer_cancel(timer);
370 debug_object_free(timer, &hrtimer_debug_descr);
371 return true;
372 default:
373 return false;
374 }
375}
376
377static struct debug_obj_descr hrtimer_debug_descr = {
378 .name = "hrtimer",
379 .debug_hint = hrtimer_debug_hint,
380 .fixup_init = hrtimer_fixup_init,
381 .fixup_activate = hrtimer_fixup_activate,
382 .fixup_free = hrtimer_fixup_free,
383};
384
385static inline void debug_hrtimer_init(struct hrtimer *timer)
386{
387 debug_object_init(timer, &hrtimer_debug_descr);
388}
389
390static inline void debug_hrtimer_activate(struct hrtimer *timer)
391{
392 debug_object_activate(timer, &hrtimer_debug_descr);
393}
394
395static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
396{
397 debug_object_deactivate(timer, &hrtimer_debug_descr);
398}
399
400static inline void debug_hrtimer_free(struct hrtimer *timer)
401{
402 debug_object_free(timer, &hrtimer_debug_descr);
403}
404
405static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
406 enum hrtimer_mode mode);
407
408void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
409 enum hrtimer_mode mode)
410{
411 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
412 __hrtimer_init(timer, clock_id, mode);
413}
414EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
415
416void destroy_hrtimer_on_stack(struct hrtimer *timer)
417{
418 debug_object_free(timer, &hrtimer_debug_descr);
419}
420EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
421
422#else
423static inline void debug_hrtimer_init(struct hrtimer *timer) { }
424static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
425static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
426#endif
427
428static inline void
429debug_init(struct hrtimer *timer, clockid_t clockid,
430 enum hrtimer_mode mode)
431{
432 debug_hrtimer_init(timer);
433 trace_hrtimer_init(timer, clockid, mode);
434}
435
436static inline void debug_activate(struct hrtimer *timer,
437 enum hrtimer_mode mode)
438{
439 debug_hrtimer_activate(timer);
440 trace_hrtimer_start(timer, mode);
441}
442
443static inline void debug_deactivate(struct hrtimer *timer)
444{
445 debug_hrtimer_deactivate(timer);
446 trace_hrtimer_cancel(timer);
447}
448
449static struct hrtimer_clock_base *
450__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
451{
452 unsigned int idx;
453
454 if (!*active)
455 return NULL;
456
457 idx = __ffs(*active);
458 *active &= ~(1U << idx);
459
460 return &cpu_base->clock_base[idx];
461}
462
463#define for_each_active_base(base, cpu_base, active) \
464 while ((base = __next_base((cpu_base), &(active))))
465
466#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
467static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
468 struct hrtimer *timer)
469{
470#ifdef CONFIG_HIGH_RES_TIMERS
471 cpu_base->next_timer = timer;
472#endif
473}
474
475static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
476{
477 struct hrtimer_clock_base *base;
478 unsigned int active = cpu_base->active_bases;
479 ktime_t expires, expires_next = KTIME_MAX;
480
481 hrtimer_update_next_timer(cpu_base, NULL);
482 for_each_active_base(base, cpu_base, active) {
483 struct timerqueue_node *next;
484 struct hrtimer *timer;
485
486 next = timerqueue_getnext(&base->active);
487 timer = container_of(next, struct hrtimer, node);
488 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
489 if (expires < expires_next) {
490 expires_next = expires;
491 hrtimer_update_next_timer(cpu_base, timer);
492 }
493 }
494 /*
495 * clock_was_set() might have changed base->offset of any of
496 * the clock bases so the result might be negative. Fix it up
497 * to prevent a false positive in clockevents_program_event().
498 */
499 if (expires_next < 0)
500 expires_next = 0;
501 return expires_next;
502}
503#endif
504
505static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
506{
507 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
508 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
509 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
510
511 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
512 offs_real, offs_boot, offs_tai);
513}
514
515/*
516 * Is the high resolution mode active ?
517 */
518static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
519{
520 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
521 cpu_base->hres_active : 0;
522}
523
524static inline int hrtimer_hres_active(void)
525{
526 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
527}
528
529/* High resolution timer related functions */
530#ifdef CONFIG_HIGH_RES_TIMERS
531
532/*
533 * High resolution timer enabled ?
534 */
535static bool hrtimer_hres_enabled __read_mostly = true;
536unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
537EXPORT_SYMBOL_GPL(hrtimer_resolution);
538
539/*
540 * Enable / Disable high resolution mode
541 */
542static int __init setup_hrtimer_hres(char *str)
543{
544 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
545}
546
547__setup("highres=", setup_hrtimer_hres);
548
549/*
550 * hrtimer_high_res_enabled - query, if the highres mode is enabled
551 */
552static inline int hrtimer_is_hres_enabled(void)
553{
554 return hrtimer_hres_enabled;
555}
556
557/*
558 * Reprogram the event source with checking both queues for the
559 * next event
560 * Called with interrupts disabled and base->lock held
561 */
562static void
563hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
564{
565 ktime_t expires_next;
566
567 if (!cpu_base->hres_active)
568 return;
569
570 expires_next = __hrtimer_get_next_event(cpu_base);
571
572 if (skip_equal && expires_next == cpu_base->expires_next)
573 return;
574
575 cpu_base->expires_next = expires_next;
576
577 /*
578 * If a hang was detected in the last timer interrupt then we
579 * leave the hang delay active in the hardware. We want the
580 * system to make progress. That also prevents the following
581 * scenario:
582 * T1 expires 50ms from now
583 * T2 expires 5s from now
584 *
585 * T1 is removed, so this code is called and would reprogram
586 * the hardware to 5s from now. Any hrtimer_start after that
587 * will not reprogram the hardware due to hang_detected being
588 * set. So we'd effectivly block all timers until the T2 event
589 * fires.
590 */
591 if (cpu_base->hang_detected)
592 return;
593
594 tick_program_event(cpu_base->expires_next, 1);
595}
596
597/*
598 * When a timer is enqueued and expires earlier than the already enqueued
599 * timers, we have to check, whether it expires earlier than the timer for
600 * which the clock event device was armed.
601 *
602 * Called with interrupts disabled and base->cpu_base.lock held
603 */
604static void hrtimer_reprogram(struct hrtimer *timer,
605 struct hrtimer_clock_base *base)
606{
607 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
608 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
609
610 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
611
612 /*
613 * If the timer is not on the current cpu, we cannot reprogram
614 * the other cpus clock event device.
615 */
616 if (base->cpu_base != cpu_base)
617 return;
618
619 /*
620 * If the hrtimer interrupt is running, then it will
621 * reevaluate the clock bases and reprogram the clock event
622 * device. The callbacks are always executed in hard interrupt
623 * context so we don't need an extra check for a running
624 * callback.
625 */
626 if (cpu_base->in_hrtirq)
627 return;
628
629 /*
630 * CLOCK_REALTIME timer might be requested with an absolute
631 * expiry time which is less than base->offset. Set it to 0.
632 */
633 if (expires < 0)
634 expires = 0;
635
636 if (expires >= cpu_base->expires_next)
637 return;
638
639 /* Update the pointer to the next expiring timer */
640 cpu_base->next_timer = timer;
641
642 /*
643 * If a hang was detected in the last timer interrupt then we
644 * do not schedule a timer which is earlier than the expiry
645 * which we enforced in the hang detection. We want the system
646 * to make progress.
647 */
648 if (cpu_base->hang_detected)
649 return;
650
651 /*
652 * Program the timer hardware. We enforce the expiry for
653 * events which are already in the past.
654 */
655 cpu_base->expires_next = expires;
656 tick_program_event(expires, 1);
657}
658
659/*
660 * Initialize the high resolution related parts of cpu_base
661 */
662static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
663{
664 base->expires_next = KTIME_MAX;
665}
666
667/*
668 * Retrigger next event is called after clock was set
669 *
670 * Called with interrupts disabled via on_each_cpu()
671 */
672static void retrigger_next_event(void *arg)
673{
674 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
675
676 if (!base->hres_active)
677 return;
678
679 raw_spin_lock(&base->lock);
680 hrtimer_update_base(base);
681 hrtimer_force_reprogram(base, 0);
682 raw_spin_unlock(&base->lock);
683}
684
685/*
686 * Switch to high resolution mode
687 */
688static void hrtimer_switch_to_hres(void)
689{
690 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
691
692 if (tick_init_highres()) {
693 printk(KERN_WARNING "Could not switch to high resolution "
694 "mode on CPU %d\n", base->cpu);
695 return;
696 }
697 base->hres_active = 1;
698 hrtimer_resolution = HIGH_RES_NSEC;
699
700 tick_setup_sched_timer();
701 /* "Retrigger" the interrupt to get things going */
702 retrigger_next_event(NULL);
703}
704
705static void clock_was_set_work(struct work_struct *work)
706{
707 clock_was_set();
708}
709
710static DECLARE_WORK(hrtimer_work, clock_was_set_work);
711
712/*
713 * Called from timekeeping and resume code to reprogram the hrtimer
714 * interrupt device on all cpus.
715 */
716void clock_was_set_delayed(void)
717{
718 schedule_work(&hrtimer_work);
719}
720
721#else
722
723static inline int hrtimer_is_hres_enabled(void) { return 0; }
724static inline void hrtimer_switch_to_hres(void) { }
725static inline void
726hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727static inline int hrtimer_reprogram(struct hrtimer *timer,
728 struct hrtimer_clock_base *base)
729{
730 return 0;
731}
732static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
733static inline void retrigger_next_event(void *arg) { }
734
735#endif /* CONFIG_HIGH_RES_TIMERS */
736
737/*
738 * Clock realtime was set
739 *
740 * Change the offset of the realtime clock vs. the monotonic
741 * clock.
742 *
743 * We might have to reprogram the high resolution timer interrupt. On
744 * SMP we call the architecture specific code to retrigger _all_ high
745 * resolution timer interrupts. On UP we just disable interrupts and
746 * call the high resolution interrupt code.
747 */
748void clock_was_set(void)
749{
750#ifdef CONFIG_HIGH_RES_TIMERS
751 /* Retrigger the CPU local events everywhere */
752 on_each_cpu(retrigger_next_event, NULL, 1);
753#endif
754 timerfd_clock_was_set();
755}
756
757/*
758 * During resume we might have to reprogram the high resolution timer
759 * interrupt on all online CPUs. However, all other CPUs will be
760 * stopped with IRQs interrupts disabled so the clock_was_set() call
761 * must be deferred.
762 */
763void hrtimers_resume(void)
764{
765 lockdep_assert_irqs_disabled();
766 /* Retrigger on the local CPU */
767 retrigger_next_event(NULL);
768 /* And schedule a retrigger for all others */
769 clock_was_set_delayed();
770}
771
772/*
773 * Counterpart to lock_hrtimer_base above:
774 */
775static inline
776void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
777{
778 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779}
780
781/**
782 * hrtimer_forward - forward the timer expiry
783 * @timer: hrtimer to forward
784 * @now: forward past this time
785 * @interval: the interval to forward
786 *
787 * Forward the timer expiry so it will expire in the future.
788 * Returns the number of overruns.
789 *
790 * Can be safely called from the callback function of @timer. If
791 * called from other contexts @timer must neither be enqueued nor
792 * running the callback and the caller needs to take care of
793 * serialization.
794 *
795 * Note: This only updates the timer expiry value and does not requeue
796 * the timer.
797 */
798u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
799{
800 u64 orun = 1;
801 ktime_t delta;
802
803 delta = ktime_sub(now, hrtimer_get_expires(timer));
804
805 if (delta < 0)
806 return 0;
807
808 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
809 return 0;
810
811 if (interval < hrtimer_resolution)
812 interval = hrtimer_resolution;
813
814 if (unlikely(delta >= interval)) {
815 s64 incr = ktime_to_ns(interval);
816
817 orun = ktime_divns(delta, incr);
818 hrtimer_add_expires_ns(timer, incr * orun);
819 if (hrtimer_get_expires_tv64(timer) > now)
820 return orun;
821 /*
822 * This (and the ktime_add() below) is the
823 * correction for exact:
824 */
825 orun++;
826 }
827 hrtimer_add_expires(timer, interval);
828
829 return orun;
830}
831EXPORT_SYMBOL_GPL(hrtimer_forward);
832
833/*
834 * enqueue_hrtimer - internal function to (re)start a timer
835 *
836 * The timer is inserted in expiry order. Insertion into the
837 * red black tree is O(log(n)). Must hold the base lock.
838 *
839 * Returns 1 when the new timer is the leftmost timer in the tree.
840 */
841static int enqueue_hrtimer(struct hrtimer *timer,
842 struct hrtimer_clock_base *base,
843 enum hrtimer_mode mode)
844{
845 debug_activate(timer, mode);
846
847 base->cpu_base->active_bases |= 1 << base->index;
848
849 timer->state = HRTIMER_STATE_ENQUEUED;
850
851 return timerqueue_add(&base->active, &timer->node);
852}
853
854/*
855 * __remove_hrtimer - internal function to remove a timer
856 *
857 * Caller must hold the base lock.
858 *
859 * High resolution timer mode reprograms the clock event device when the
860 * timer is the one which expires next. The caller can disable this by setting
861 * reprogram to zero. This is useful, when the context does a reprogramming
862 * anyway (e.g. timer interrupt)
863 */
864static void __remove_hrtimer(struct hrtimer *timer,
865 struct hrtimer_clock_base *base,
866 u8 newstate, int reprogram)
867{
868 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
869 u8 state = timer->state;
870
871 timer->state = newstate;
872 if (!(state & HRTIMER_STATE_ENQUEUED))
873 return;
874
875 if (!timerqueue_del(&base->active, &timer->node))
876 cpu_base->active_bases &= ~(1 << base->index);
877
878#ifdef CONFIG_HIGH_RES_TIMERS
879 /*
880 * Note: If reprogram is false we do not update
881 * cpu_base->next_timer. This happens when we remove the first
882 * timer on a remote cpu. No harm as we never dereference
883 * cpu_base->next_timer. So the worst thing what can happen is
884 * an superflous call to hrtimer_force_reprogram() on the
885 * remote cpu later on if the same timer gets enqueued again.
886 */
887 if (reprogram && timer == cpu_base->next_timer)
888 hrtimer_force_reprogram(cpu_base, 1);
889#endif
890}
891
892/*
893 * remove hrtimer, called with base lock held
894 */
895static inline int
896remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
897{
898 if (hrtimer_is_queued(timer)) {
899 u8 state = timer->state;
900 int reprogram;
901
902 /*
903 * Remove the timer and force reprogramming when high
904 * resolution mode is active and the timer is on the current
905 * CPU. If we remove a timer on another CPU, reprogramming is
906 * skipped. The interrupt event on this CPU is fired and
907 * reprogramming happens in the interrupt handler. This is a
908 * rare case and less expensive than a smp call.
909 */
910 debug_deactivate(timer);
911 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
912
913 if (!restart)
914 state = HRTIMER_STATE_INACTIVE;
915
916 __remove_hrtimer(timer, base, state, reprogram);
917 return 1;
918 }
919 return 0;
920}
921
922static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
923 const enum hrtimer_mode mode)
924{
925#ifdef CONFIG_TIME_LOW_RES
926 /*
927 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
928 * granular time values. For relative timers we add hrtimer_resolution
929 * (i.e. one jiffie) to prevent short timeouts.
930 */
931 timer->is_rel = mode & HRTIMER_MODE_REL;
932 if (timer->is_rel)
933 tim = ktime_add_safe(tim, hrtimer_resolution);
934#endif
935 return tim;
936}
937
938/**
939 * hrtimer_start_range_ns - (re)start an hrtimer
940 * @timer: the timer to be added
941 * @tim: expiry time
942 * @delta_ns: "slack" range for the timer
943 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
944 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
945 */
946void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
947 u64 delta_ns, const enum hrtimer_mode mode)
948{
949 struct hrtimer_clock_base *base, *new_base;
950 unsigned long flags;
951 int leftmost;
952
953 base = lock_hrtimer_base(timer, &flags);
954
955 /* Remove an active timer from the queue: */
956 remove_hrtimer(timer, base, true);
957
958 if (mode & HRTIMER_MODE_REL)
959 tim = ktime_add_safe(tim, base->get_time());
960
961 tim = hrtimer_update_lowres(timer, tim, mode);
962
963 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
964
965 /* Switch the timer base, if necessary: */
966 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
967
968 leftmost = enqueue_hrtimer(timer, new_base, mode);
969 if (!leftmost)
970 goto unlock;
971
972 if (!hrtimer_is_hres_active(timer)) {
973 /*
974 * Kick to reschedule the next tick to handle the new timer
975 * on dynticks target.
976 */
977 if (is_timers_nohz_active())
978 wake_up_nohz_cpu(new_base->cpu_base->cpu);
979 } else {
980 hrtimer_reprogram(timer, new_base);
981 }
982unlock:
983 unlock_hrtimer_base(timer, &flags);
984}
985EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
986
987/**
988 * hrtimer_try_to_cancel - try to deactivate a timer
989 * @timer: hrtimer to stop
990 *
991 * Returns:
992 * 0 when the timer was not active
993 * 1 when the timer was active
994 * -1 when the timer is currently executing the callback function and
995 * cannot be stopped
996 */
997int hrtimer_try_to_cancel(struct hrtimer *timer)
998{
999 struct hrtimer_clock_base *base;
1000 unsigned long flags;
1001 int ret = -1;
1002
1003 /*
1004 * Check lockless first. If the timer is not active (neither
1005 * enqueued nor running the callback, nothing to do here. The
1006 * base lock does not serialize against a concurrent enqueue,
1007 * so we can avoid taking it.
1008 */
1009 if (!hrtimer_active(timer))
1010 return 0;
1011
1012 base = lock_hrtimer_base(timer, &flags);
1013
1014 if (!hrtimer_callback_running(timer))
1015 ret = remove_hrtimer(timer, base, false);
1016
1017 unlock_hrtimer_base(timer, &flags);
1018
1019 return ret;
1020
1021}
1022EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1023
1024/**
1025 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1026 * @timer: the timer to be cancelled
1027 *
1028 * Returns:
1029 * 0 when the timer was not active
1030 * 1 when the timer was active
1031 */
1032int hrtimer_cancel(struct hrtimer *timer)
1033{
1034 for (;;) {
1035 int ret = hrtimer_try_to_cancel(timer);
1036
1037 if (ret >= 0)
1038 return ret;
1039 cpu_relax();
1040 }
1041}
1042EXPORT_SYMBOL_GPL(hrtimer_cancel);
1043
1044/**
1045 * hrtimer_get_remaining - get remaining time for the timer
1046 * @timer: the timer to read
1047 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1048 */
1049ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1050{
1051 unsigned long flags;
1052 ktime_t rem;
1053
1054 lock_hrtimer_base(timer, &flags);
1055 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1056 rem = hrtimer_expires_remaining_adjusted(timer);
1057 else
1058 rem = hrtimer_expires_remaining(timer);
1059 unlock_hrtimer_base(timer, &flags);
1060
1061 return rem;
1062}
1063EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1064
1065#ifdef CONFIG_NO_HZ_COMMON
1066/**
1067 * hrtimer_get_next_event - get the time until next expiry event
1068 *
1069 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1070 */
1071u64 hrtimer_get_next_event(void)
1072{
1073 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1074 u64 expires = KTIME_MAX;
1075 unsigned long flags;
1076
1077 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1078
1079 if (!__hrtimer_hres_active(cpu_base))
1080 expires = __hrtimer_get_next_event(cpu_base);
1081
1082 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1083
1084 return expires;
1085}
1086#endif
1087
1088static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1089{
1090 if (likely(clock_id < MAX_CLOCKS)) {
1091 int base = hrtimer_clock_to_base_table[clock_id];
1092
1093 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1094 return base;
1095 }
1096 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1097 return HRTIMER_BASE_MONOTONIC;
1098}
1099
1100static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1101 enum hrtimer_mode mode)
1102{
1103 struct hrtimer_cpu_base *cpu_base;
1104 int base;
1105
1106 memset(timer, 0, sizeof(struct hrtimer));
1107
1108 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1109
1110 /*
1111 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1112 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1113 * ensure POSIX compliance.
1114 */
1115 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1116 clock_id = CLOCK_MONOTONIC;
1117
1118 base = hrtimer_clockid_to_base(clock_id);
1119 timer->base = &cpu_base->clock_base[base];
1120 timerqueue_init(&timer->node);
1121}
1122
1123/**
1124 * hrtimer_init - initialize a timer to the given clock
1125 * @timer: the timer to be initialized
1126 * @clock_id: the clock to be used
1127 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1128 * relative (HRTIMER_MODE_REL); pinned is not considered here!
1129 */
1130void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1131 enum hrtimer_mode mode)
1132{
1133 debug_init(timer, clock_id, mode);
1134 __hrtimer_init(timer, clock_id, mode);
1135}
1136EXPORT_SYMBOL_GPL(hrtimer_init);
1137
1138/*
1139 * A timer is active, when it is enqueued into the rbtree or the
1140 * callback function is running or it's in the state of being migrated
1141 * to another cpu.
1142 *
1143 * It is important for this function to not return a false negative.
1144 */
1145bool hrtimer_active(const struct hrtimer *timer)
1146{
1147 struct hrtimer_clock_base *base;
1148 unsigned int seq;
1149
1150 do {
1151 base = READ_ONCE(timer->base);
1152 seq = raw_read_seqcount_begin(&base->seq);
1153
1154 if (timer->state != HRTIMER_STATE_INACTIVE ||
1155 base->running == timer)
1156 return true;
1157
1158 } while (read_seqcount_retry(&base->seq, seq) ||
1159 base != READ_ONCE(timer->base));
1160
1161 return false;
1162}
1163EXPORT_SYMBOL_GPL(hrtimer_active);
1164
1165/*
1166 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1167 * distinct sections:
1168 *
1169 * - queued: the timer is queued
1170 * - callback: the timer is being ran
1171 * - post: the timer is inactive or (re)queued
1172 *
1173 * On the read side we ensure we observe timer->state and cpu_base->running
1174 * from the same section, if anything changed while we looked at it, we retry.
1175 * This includes timer->base changing because sequence numbers alone are
1176 * insufficient for that.
1177 *
1178 * The sequence numbers are required because otherwise we could still observe
1179 * a false negative if the read side got smeared over multiple consequtive
1180 * __run_hrtimer() invocations.
1181 */
1182
1183static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1184 struct hrtimer_clock_base *base,
1185 struct hrtimer *timer, ktime_t *now)
1186{
1187 enum hrtimer_restart (*fn)(struct hrtimer *);
1188 int restart;
1189
1190 lockdep_assert_held(&cpu_base->lock);
1191
1192 debug_deactivate(timer);
1193 base->running = timer;
1194
1195 /*
1196 * Separate the ->running assignment from the ->state assignment.
1197 *
1198 * As with a regular write barrier, this ensures the read side in
1199 * hrtimer_active() cannot observe base->running == NULL &&
1200 * timer->state == INACTIVE.
1201 */
1202 raw_write_seqcount_barrier(&base->seq);
1203
1204 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1205 fn = timer->function;
1206
1207 /*
1208 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1209 * timer is restarted with a period then it becomes an absolute
1210 * timer. If its not restarted it does not matter.
1211 */
1212 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1213 timer->is_rel = false;
1214
1215 /*
1216 * The timer is marked as running in the CPU base, so it is
1217 * protected against migration to a different CPU even if the lock
1218 * is dropped.
1219 */
1220 raw_spin_unlock(&cpu_base->lock);
1221 trace_hrtimer_expire_entry(timer, now);
1222 restart = fn(timer);
1223 trace_hrtimer_expire_exit(timer);
1224 raw_spin_lock(&cpu_base->lock);
1225
1226 /*
1227 * Note: We clear the running state after enqueue_hrtimer and
1228 * we do not reprogram the event hardware. Happens either in
1229 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1230 *
1231 * Note: Because we dropped the cpu_base->lock above,
1232 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1233 * for us already.
1234 */
1235 if (restart != HRTIMER_NORESTART &&
1236 !(timer->state & HRTIMER_STATE_ENQUEUED))
1237 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1238
1239 /*
1240 * Separate the ->running assignment from the ->state assignment.
1241 *
1242 * As with a regular write barrier, this ensures the read side in
1243 * hrtimer_active() cannot observe base->running.timer == NULL &&
1244 * timer->state == INACTIVE.
1245 */
1246 raw_write_seqcount_barrier(&base->seq);
1247
1248 WARN_ON_ONCE(base->running != timer);
1249 base->running = NULL;
1250}
1251
1252static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1253{
1254 struct hrtimer_clock_base *base;
1255 unsigned int active = cpu_base->active_bases;
1256
1257 for_each_active_base(base, cpu_base, active) {
1258 struct timerqueue_node *node;
1259 ktime_t basenow;
1260
1261 basenow = ktime_add(now, base->offset);
1262
1263 while ((node = timerqueue_getnext(&base->active))) {
1264 struct hrtimer *timer;
1265
1266 timer = container_of(node, struct hrtimer, node);
1267
1268 /*
1269 * The immediate goal for using the softexpires is
1270 * minimizing wakeups, not running timers at the
1271 * earliest interrupt after their soft expiration.
1272 * This allows us to avoid using a Priority Search
1273 * Tree, which can answer a stabbing querry for
1274 * overlapping intervals and instead use the simple
1275 * BST we already have.
1276 * We don't add extra wakeups by delaying timers that
1277 * are right-of a not yet expired timer, because that
1278 * timer will have to trigger a wakeup anyway.
1279 */
1280 if (basenow < hrtimer_get_softexpires_tv64(timer))
1281 break;
1282
1283 __run_hrtimer(cpu_base, base, timer, &basenow);
1284 }
1285 }
1286}
1287
1288#ifdef CONFIG_HIGH_RES_TIMERS
1289
1290/*
1291 * High resolution timer interrupt
1292 * Called with interrupts disabled
1293 */
1294void hrtimer_interrupt(struct clock_event_device *dev)
1295{
1296 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1297 ktime_t expires_next, now, entry_time, delta;
1298 int retries = 0;
1299
1300 BUG_ON(!cpu_base->hres_active);
1301 cpu_base->nr_events++;
1302 dev->next_event = KTIME_MAX;
1303
1304 raw_spin_lock(&cpu_base->lock);
1305 entry_time = now = hrtimer_update_base(cpu_base);
1306retry:
1307 cpu_base->in_hrtirq = 1;
1308 /*
1309 * We set expires_next to KTIME_MAX here with cpu_base->lock
1310 * held to prevent that a timer is enqueued in our queue via
1311 * the migration code. This does not affect enqueueing of
1312 * timers which run their callback and need to be requeued on
1313 * this CPU.
1314 */
1315 cpu_base->expires_next = KTIME_MAX;
1316
1317 __hrtimer_run_queues(cpu_base, now);
1318
1319 /* Reevaluate the clock bases for the next expiry */
1320 expires_next = __hrtimer_get_next_event(cpu_base);
1321 /*
1322 * Store the new expiry value so the migration code can verify
1323 * against it.
1324 */
1325 cpu_base->expires_next = expires_next;
1326 cpu_base->in_hrtirq = 0;
1327 raw_spin_unlock(&cpu_base->lock);
1328
1329 /* Reprogramming necessary ? */
1330 if (!tick_program_event(expires_next, 0)) {
1331 cpu_base->hang_detected = 0;
1332 return;
1333 }
1334
1335 /*
1336 * The next timer was already expired due to:
1337 * - tracing
1338 * - long lasting callbacks
1339 * - being scheduled away when running in a VM
1340 *
1341 * We need to prevent that we loop forever in the hrtimer
1342 * interrupt routine. We give it 3 attempts to avoid
1343 * overreacting on some spurious event.
1344 *
1345 * Acquire base lock for updating the offsets and retrieving
1346 * the current time.
1347 */
1348 raw_spin_lock(&cpu_base->lock);
1349 now = hrtimer_update_base(cpu_base);
1350 cpu_base->nr_retries++;
1351 if (++retries < 3)
1352 goto retry;
1353 /*
1354 * Give the system a chance to do something else than looping
1355 * here. We stored the entry time, so we know exactly how long
1356 * we spent here. We schedule the next event this amount of
1357 * time away.
1358 */
1359 cpu_base->nr_hangs++;
1360 cpu_base->hang_detected = 1;
1361 raw_spin_unlock(&cpu_base->lock);
1362 delta = ktime_sub(now, entry_time);
1363 if ((unsigned int)delta > cpu_base->max_hang_time)
1364 cpu_base->max_hang_time = (unsigned int) delta;
1365 /*
1366 * Limit it to a sensible value as we enforce a longer
1367 * delay. Give the CPU at least 100ms to catch up.
1368 */
1369 if (delta > 100 * NSEC_PER_MSEC)
1370 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1371 else
1372 expires_next = ktime_add(now, delta);
1373 tick_program_event(expires_next, 1);
1374 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1375 ktime_to_ns(delta));
1376}
1377
1378/* called with interrupts disabled */
1379static inline void __hrtimer_peek_ahead_timers(void)
1380{
1381 struct tick_device *td;
1382
1383 if (!hrtimer_hres_active())
1384 return;
1385
1386 td = this_cpu_ptr(&tick_cpu_device);
1387 if (td && td->evtdev)
1388 hrtimer_interrupt(td->evtdev);
1389}
1390
1391#else /* CONFIG_HIGH_RES_TIMERS */
1392
1393static inline void __hrtimer_peek_ahead_timers(void) { }
1394
1395#endif /* !CONFIG_HIGH_RES_TIMERS */
1396
1397/*
1398 * Called from run_local_timers in hardirq context every jiffy
1399 */
1400void hrtimer_run_queues(void)
1401{
1402 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1403 ktime_t now;
1404
1405 if (__hrtimer_hres_active(cpu_base))
1406 return;
1407
1408 /*
1409 * This _is_ ugly: We have to check periodically, whether we
1410 * can switch to highres and / or nohz mode. The clocksource
1411 * switch happens with xtime_lock held. Notification from
1412 * there only sets the check bit in the tick_oneshot code,
1413 * otherwise we might deadlock vs. xtime_lock.
1414 */
1415 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1416 hrtimer_switch_to_hres();
1417 return;
1418 }
1419
1420 raw_spin_lock(&cpu_base->lock);
1421 now = hrtimer_update_base(cpu_base);
1422 __hrtimer_run_queues(cpu_base, now);
1423 raw_spin_unlock(&cpu_base->lock);
1424}
1425
1426/*
1427 * Sleep related functions:
1428 */
1429static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1430{
1431 struct hrtimer_sleeper *t =
1432 container_of(timer, struct hrtimer_sleeper, timer);
1433 struct task_struct *task = t->task;
1434
1435 t->task = NULL;
1436 if (task)
1437 wake_up_process(task);
1438
1439 return HRTIMER_NORESTART;
1440}
1441
1442void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1443{
1444 sl->timer.function = hrtimer_wakeup;
1445 sl->task = task;
1446}
1447EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1448
1449int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1450{
1451 switch(restart->nanosleep.type) {
1452#ifdef CONFIG_COMPAT
1453 case TT_COMPAT:
1454 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1455 return -EFAULT;
1456 break;
1457#endif
1458 case TT_NATIVE:
1459 if (put_timespec64(ts, restart->nanosleep.rmtp))
1460 return -EFAULT;
1461 break;
1462 default:
1463 BUG();
1464 }
1465 return -ERESTART_RESTARTBLOCK;
1466}
1467
1468static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1469{
1470 struct restart_block *restart;
1471
1472 hrtimer_init_sleeper(t, current);
1473
1474 do {
1475 set_current_state(TASK_INTERRUPTIBLE);
1476 hrtimer_start_expires(&t->timer, mode);
1477
1478 if (likely(t->task))
1479 freezable_schedule();
1480
1481 hrtimer_cancel(&t->timer);
1482 mode = HRTIMER_MODE_ABS;
1483
1484 } while (t->task && !signal_pending(current));
1485
1486 __set_current_state(TASK_RUNNING);
1487
1488 if (!t->task)
1489 return 0;
1490
1491 restart = &current->restart_block;
1492 if (restart->nanosleep.type != TT_NONE) {
1493 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1494 struct timespec64 rmt;
1495
1496 if (rem <= 0)
1497 return 0;
1498 rmt = ktime_to_timespec64(rem);
1499
1500 return nanosleep_copyout(restart, &rmt);
1501 }
1502 return -ERESTART_RESTARTBLOCK;
1503}
1504
1505static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1506{
1507 struct hrtimer_sleeper t;
1508 int ret;
1509
1510 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1511 HRTIMER_MODE_ABS);
1512 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1513
1514 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1515 destroy_hrtimer_on_stack(&t.timer);
1516 return ret;
1517}
1518
1519long hrtimer_nanosleep(const struct timespec64 *rqtp,
1520 const enum hrtimer_mode mode, const clockid_t clockid)
1521{
1522 struct restart_block *restart;
1523 struct hrtimer_sleeper t;
1524 int ret = 0;
1525 u64 slack;
1526
1527 slack = current->timer_slack_ns;
1528 if (dl_task(current) || rt_task(current))
1529 slack = 0;
1530
1531 hrtimer_init_on_stack(&t.timer, clockid, mode);
1532 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1533 ret = do_nanosleep(&t, mode);
1534 if (ret != -ERESTART_RESTARTBLOCK)
1535 goto out;
1536
1537 /* Absolute timers do not update the rmtp value and restart: */
1538 if (mode == HRTIMER_MODE_ABS) {
1539 ret = -ERESTARTNOHAND;
1540 goto out;
1541 }
1542
1543 restart = &current->restart_block;
1544 restart->fn = hrtimer_nanosleep_restart;
1545 restart->nanosleep.clockid = t.timer.base->clockid;
1546 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1547out:
1548 destroy_hrtimer_on_stack(&t.timer);
1549 return ret;
1550}
1551
1552SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1553 struct timespec __user *, rmtp)
1554{
1555 struct timespec64 tu;
1556
1557 if (get_timespec64(&tu, rqtp))
1558 return -EFAULT;
1559
1560 if (!timespec64_valid(&tu))
1561 return -EINVAL;
1562
1563 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1564 current->restart_block.nanosleep.rmtp = rmtp;
1565 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1566}
1567
1568#ifdef CONFIG_COMPAT
1569
1570COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1571 struct compat_timespec __user *, rmtp)
1572{
1573 struct timespec64 tu;
1574
1575 if (compat_get_timespec64(&tu, rqtp))
1576 return -EFAULT;
1577
1578 if (!timespec64_valid(&tu))
1579 return -EINVAL;
1580
1581 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1582 current->restart_block.nanosleep.compat_rmtp = rmtp;
1583 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1584}
1585#endif
1586
1587/*
1588 * Functions related to boot-time initialization:
1589 */
1590int hrtimers_prepare_cpu(unsigned int cpu)
1591{
1592 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1593 int i;
1594
1595 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1596 cpu_base->clock_base[i].cpu_base = cpu_base;
1597 timerqueue_init_head(&cpu_base->clock_base[i].active);
1598 }
1599
1600 cpu_base->cpu = cpu;
1601 cpu_base->hres_active = 0;
1602 hrtimer_init_hres(cpu_base);
1603 return 0;
1604}
1605
1606#ifdef CONFIG_HOTPLUG_CPU
1607
1608static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1609 struct hrtimer_clock_base *new_base)
1610{
1611 struct hrtimer *timer;
1612 struct timerqueue_node *node;
1613
1614 while ((node = timerqueue_getnext(&old_base->active))) {
1615 timer = container_of(node, struct hrtimer, node);
1616 BUG_ON(hrtimer_callback_running(timer));
1617 debug_deactivate(timer);
1618
1619 /*
1620 * Mark it as ENQUEUED not INACTIVE otherwise the
1621 * timer could be seen as !active and just vanish away
1622 * under us on another CPU
1623 */
1624 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1625 timer->base = new_base;
1626 /*
1627 * Enqueue the timers on the new cpu. This does not
1628 * reprogram the event device in case the timer
1629 * expires before the earliest on this CPU, but we run
1630 * hrtimer_interrupt after we migrated everything to
1631 * sort out already expired timers and reprogram the
1632 * event device.
1633 */
1634 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1635 }
1636}
1637
1638int hrtimers_dead_cpu(unsigned int scpu)
1639{
1640 struct hrtimer_cpu_base *old_base, *new_base;
1641 int i;
1642
1643 BUG_ON(cpu_online(scpu));
1644 tick_cancel_sched_timer(scpu);
1645
1646 local_irq_disable();
1647 old_base = &per_cpu(hrtimer_bases, scpu);
1648 new_base = this_cpu_ptr(&hrtimer_bases);
1649 /*
1650 * The caller is globally serialized and nobody else
1651 * takes two locks at once, deadlock is not possible.
1652 */
1653 raw_spin_lock(&new_base->lock);
1654 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1655
1656 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1657 migrate_hrtimer_list(&old_base->clock_base[i],
1658 &new_base->clock_base[i]);
1659 }
1660
1661 raw_spin_unlock(&old_base->lock);
1662 raw_spin_unlock(&new_base->lock);
1663
1664 /* Check, if we got expired work to do */
1665 __hrtimer_peek_ahead_timers();
1666 local_irq_enable();
1667 return 0;
1668}
1669
1670#endif /* CONFIG_HOTPLUG_CPU */
1671
1672void __init hrtimers_init(void)
1673{
1674 hrtimers_prepare_cpu(smp_processor_id());
1675}
1676
1677/**
1678 * schedule_hrtimeout_range_clock - sleep until timeout
1679 * @expires: timeout value (ktime_t)
1680 * @delta: slack in expires timeout (ktime_t)
1681 * @mode: timer mode
1682 * @clock_id: timer clock to be used
1683 */
1684int __sched
1685schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1686 const enum hrtimer_mode mode, clockid_t clock_id)
1687{
1688 struct hrtimer_sleeper t;
1689
1690 /*
1691 * Optimize when a zero timeout value is given. It does not
1692 * matter whether this is an absolute or a relative time.
1693 */
1694 if (expires && *expires == 0) {
1695 __set_current_state(TASK_RUNNING);
1696 return 0;
1697 }
1698
1699 /*
1700 * A NULL parameter means "infinite"
1701 */
1702 if (!expires) {
1703 schedule();
1704 return -EINTR;
1705 }
1706
1707 hrtimer_init_on_stack(&t.timer, clock_id, mode);
1708 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1709
1710 hrtimer_init_sleeper(&t, current);
1711
1712 hrtimer_start_expires(&t.timer, mode);
1713
1714 if (likely(t.task))
1715 schedule();
1716
1717 hrtimer_cancel(&t.timer);
1718 destroy_hrtimer_on_stack(&t.timer);
1719
1720 __set_current_state(TASK_RUNNING);
1721
1722 return !t.task ? 0 : -EINTR;
1723}
1724
1725/**
1726 * schedule_hrtimeout_range - sleep until timeout
1727 * @expires: timeout value (ktime_t)
1728 * @delta: slack in expires timeout (ktime_t)
1729 * @mode: timer mode
1730 *
1731 * Make the current task sleep until the given expiry time has
1732 * elapsed. The routine will return immediately unless
1733 * the current task state has been set (see set_current_state()).
1734 *
1735 * The @delta argument gives the kernel the freedom to schedule the
1736 * actual wakeup to a time that is both power and performance friendly.
1737 * The kernel give the normal best effort behavior for "@expires+@delta",
1738 * but may decide to fire the timer earlier, but no earlier than @expires.
1739 *
1740 * You can set the task state as follows -
1741 *
1742 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1743 * pass before the routine returns unless the current task is explicitly
1744 * woken up, (e.g. by wake_up_process()).
1745 *
1746 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1747 * delivered to the current task or the current task is explicitly woken
1748 * up.
1749 *
1750 * The current task state is guaranteed to be TASK_RUNNING when this
1751 * routine returns.
1752 *
1753 * Returns 0 when the timer has expired. If the task was woken before the
1754 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1755 * by an explicit wakeup, it returns -EINTR.
1756 */
1757int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1758 const enum hrtimer_mode mode)
1759{
1760 return schedule_hrtimeout_range_clock(expires, delta, mode,
1761 CLOCK_MONOTONIC);
1762}
1763EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1764
1765/**
1766 * schedule_hrtimeout - sleep until timeout
1767 * @expires: timeout value (ktime_t)
1768 * @mode: timer mode
1769 *
1770 * Make the current task sleep until the given expiry time has
1771 * elapsed. The routine will return immediately unless
1772 * the current task state has been set (see set_current_state()).
1773 *
1774 * You can set the task state as follows -
1775 *
1776 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1777 * pass before the routine returns unless the current task is explicitly
1778 * woken up, (e.g. by wake_up_process()).
1779 *
1780 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1781 * delivered to the current task or the current task is explicitly woken
1782 * up.
1783 *
1784 * The current task state is guaranteed to be TASK_RUNNING when this
1785 * routine returns.
1786 *
1787 * Returns 0 when the timer has expired. If the task was woken before the
1788 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1789 * by an explicit wakeup, it returns -EINTR.
1790 */
1791int __sched schedule_hrtimeout(ktime_t *expires,
1792 const enum hrtimer_mode mode)
1793{
1794 return schedule_hrtimeout_range(expires, 0, mode);
1795}
1796EXPORT_SYMBOL_GPL(schedule_hrtimeout);