]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - kernel/time.c
[PATCH] uninline capable()
[mirror_ubuntu-jammy-kernel.git] / kernel / time.c
... / ...
CommitLineData
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
32#include <linux/errno.h>
33#include <linux/smp_lock.h>
34#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
60 time_t i;
61 struct timeval tv;
62
63 do_gettimeofday(&tv);
64 i = tv.tv_sec;
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 i = -EFAULT;
69 }
70 return i;
71}
72
73/*
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
78 */
79
80asmlinkage long sys_stime(time_t __user *tptr)
81{
82 struct timespec tv;
83 int err;
84
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
87
88 tv.tv_nsec = 0;
89
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
93
94 do_settimeofday(&tv);
95 return 0;
96}
97
98#endif /* __ARCH_WANT_SYS_TIME */
99
100asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
101{
102 if (likely(tv != NULL)) {
103 struct timeval ktv;
104 do_gettimeofday(&ktv);
105 if (copy_to_user(tv, &ktv, sizeof(ktv)))
106 return -EFAULT;
107 }
108 if (unlikely(tz != NULL)) {
109 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
110 return -EFAULT;
111 }
112 return 0;
113}
114
115/*
116 * Adjust the time obtained from the CMOS to be UTC time instead of
117 * local time.
118 *
119 * This is ugly, but preferable to the alternatives. Otherwise we
120 * would either need to write a program to do it in /etc/rc (and risk
121 * confusion if the program gets run more than once; it would also be
122 * hard to make the program warp the clock precisely n hours) or
123 * compile in the timezone information into the kernel. Bad, bad....
124 *
125 * - TYT, 1992-01-01
126 *
127 * The best thing to do is to keep the CMOS clock in universal time (UTC)
128 * as real UNIX machines always do it. This avoids all headaches about
129 * daylight saving times and warping kernel clocks.
130 */
131static inline void warp_clock(void)
132{
133 write_seqlock_irq(&xtime_lock);
134 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
135 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
136 time_interpolator_reset();
137 write_sequnlock_irq(&xtime_lock);
138 clock_was_set();
139}
140
141/*
142 * In case for some reason the CMOS clock has not already been running
143 * in UTC, but in some local time: The first time we set the timezone,
144 * we will warp the clock so that it is ticking UTC time instead of
145 * local time. Presumably, if someone is setting the timezone then we
146 * are running in an environment where the programs understand about
147 * timezones. This should be done at boot time in the /etc/rc script,
148 * as soon as possible, so that the clock can be set right. Otherwise,
149 * various programs will get confused when the clock gets warped.
150 */
151
152int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
153{
154 static int firsttime = 1;
155 int error = 0;
156
157 if (!timespec_valid(tv))
158 return -EINVAL;
159
160 error = security_settime(tv, tz);
161 if (error)
162 return error;
163
164 if (tz) {
165 /* SMP safe, global irq locking makes it work. */
166 sys_tz = *tz;
167 if (firsttime) {
168 firsttime = 0;
169 if (!tv)
170 warp_clock();
171 }
172 }
173 if (tv)
174 {
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
177 */
178 return do_settimeofday(tv);
179 }
180 return 0;
181}
182
183asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
185{
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
189
190 if (tv) {
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
192 return -EFAULT;
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202}
203
204long pps_offset; /* pps time offset (us) */
205long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
206
207long pps_freq; /* frequency offset (scaled ppm) */
208long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
209
210long pps_valid = PPS_VALID; /* pps signal watchdog counter */
211
212int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
213
214long pps_jitcnt; /* jitter limit exceeded */
215long pps_calcnt; /* calibration intervals */
216long pps_errcnt; /* calibration errors */
217long pps_stbcnt; /* stability limit exceeded */
218
219/* hook for a loadable hardpps kernel module */
220void (*hardpps_ptr)(struct timeval *);
221
222/* we call this to notify the arch when the clock is being
223 * controlled. If no such arch routine, do nothing.
224 */
225void __attribute__ ((weak)) notify_arch_cmos_timer(void)
226{
227 return;
228}
229
230/* adjtimex mainly allows reading (and writing, if superuser) of
231 * kernel time-keeping variables. used by xntpd.
232 */
233int do_adjtimex(struct timex *txc)
234{
235 long ltemp, mtemp, save_adjust;
236 int result;
237
238 /* In order to modify anything, you gotta be super-user! */
239 if (txc->modes && !capable(CAP_SYS_TIME))
240 return -EPERM;
241
242 /* Now we validate the data before disabling interrupts */
243
244 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
245 /* singleshot must not be used with any other mode bits */
246 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
247 return -EINVAL;
248
249 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
250 /* adjustment Offset limited to +- .512 seconds */
251 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
252 return -EINVAL;
253
254 /* if the quartz is off by more than 10% something is VERY wrong ! */
255 if (txc->modes & ADJ_TICK)
256 if (txc->tick < 900000/USER_HZ ||
257 txc->tick > 1100000/USER_HZ)
258 return -EINVAL;
259
260 write_seqlock_irq(&xtime_lock);
261 result = time_state; /* mostly `TIME_OK' */
262
263 /* Save for later - semantics of adjtime is to return old value */
264 save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
265
266#if 0 /* STA_CLOCKERR is never set yet */
267 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
268#endif
269 /* If there are input parameters, then process them */
270 if (txc->modes)
271 {
272 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
273 time_status = (txc->status & ~STA_RONLY) |
274 (time_status & STA_RONLY);
275
276 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
277 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
278 result = -EINVAL;
279 goto leave;
280 }
281 time_freq = txc->freq - pps_freq;
282 }
283
284 if (txc->modes & ADJ_MAXERROR) {
285 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
286 result = -EINVAL;
287 goto leave;
288 }
289 time_maxerror = txc->maxerror;
290 }
291
292 if (txc->modes & ADJ_ESTERROR) {
293 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
294 result = -EINVAL;
295 goto leave;
296 }
297 time_esterror = txc->esterror;
298 }
299
300 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
301 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
302 result = -EINVAL;
303 goto leave;
304 }
305 time_constant = txc->constant;
306 }
307
308 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
309 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
310 /* adjtime() is independent from ntp_adjtime() */
311 if ((time_next_adjust = txc->offset) == 0)
312 time_adjust = 0;
313 }
314 else if ( time_status & (STA_PLL | STA_PPSTIME) ) {
315 ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) ==
316 (STA_PPSTIME | STA_PPSSIGNAL) ?
317 pps_offset : txc->offset;
318
319 /*
320 * Scale the phase adjustment and
321 * clamp to the operating range.
322 */
323 if (ltemp > MAXPHASE)
324 time_offset = MAXPHASE << SHIFT_UPDATE;
325 else if (ltemp < -MAXPHASE)
326 time_offset = -(MAXPHASE << SHIFT_UPDATE);
327 else
328 time_offset = ltemp << SHIFT_UPDATE;
329
330 /*
331 * Select whether the frequency is to be controlled
332 * and in which mode (PLL or FLL). Clamp to the operating
333 * range. Ugly multiply/divide should be replaced someday.
334 */
335
336 if (time_status & STA_FREQHOLD || time_reftime == 0)
337 time_reftime = xtime.tv_sec;
338 mtemp = xtime.tv_sec - time_reftime;
339 time_reftime = xtime.tv_sec;
340 if (time_status & STA_FLL) {
341 if (mtemp >= MINSEC) {
342 ltemp = (time_offset / mtemp) << (SHIFT_USEC -
343 SHIFT_UPDATE);
344 time_freq += shift_right(ltemp, SHIFT_KH);
345 } else /* calibration interval too short (p. 12) */
346 result = TIME_ERROR;
347 } else { /* PLL mode */
348 if (mtemp < MAXSEC) {
349 ltemp *= mtemp;
350 time_freq += shift_right(ltemp,(time_constant +
351 time_constant +
352 SHIFT_KF - SHIFT_USEC));
353 } else /* calibration interval too long (p. 12) */
354 result = TIME_ERROR;
355 }
356 time_freq = min(time_freq, time_tolerance);
357 time_freq = max(time_freq, -time_tolerance);
358 } /* STA_PLL || STA_PPSTIME */
359 } /* txc->modes & ADJ_OFFSET */
360 if (txc->modes & ADJ_TICK) {
361 tick_usec = txc->tick;
362 tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
363 }
364 } /* txc->modes */
365leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0
366 || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0
367 && (time_status & STA_PPSSIGNAL) == 0)
368 /* p. 24, (b) */
369 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
370 == (STA_PPSTIME|STA_PPSJITTER))
371 /* p. 24, (c) */
372 || ((time_status & STA_PPSFREQ) != 0
373 && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0))
374 /* p. 24, (d) */
375 result = TIME_ERROR;
376
377 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
378 txc->offset = save_adjust;
379 else {
380 txc->offset = shift_right(time_offset, SHIFT_UPDATE);
381 }
382 txc->freq = time_freq + pps_freq;
383 txc->maxerror = time_maxerror;
384 txc->esterror = time_esterror;
385 txc->status = time_status;
386 txc->constant = time_constant;
387 txc->precision = time_precision;
388 txc->tolerance = time_tolerance;
389 txc->tick = tick_usec;
390 txc->ppsfreq = pps_freq;
391 txc->jitter = pps_jitter >> PPS_AVG;
392 txc->shift = pps_shift;
393 txc->stabil = pps_stabil;
394 txc->jitcnt = pps_jitcnt;
395 txc->calcnt = pps_calcnt;
396 txc->errcnt = pps_errcnt;
397 txc->stbcnt = pps_stbcnt;
398 write_sequnlock_irq(&xtime_lock);
399 do_gettimeofday(&txc->time);
400 notify_arch_cmos_timer();
401 return(result);
402}
403
404asmlinkage long sys_adjtimex(struct timex __user *txc_p)
405{
406 struct timex txc; /* Local copy of parameter */
407 int ret;
408
409 /* Copy the user data space into the kernel copy
410 * structure. But bear in mind that the structures
411 * may change
412 */
413 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
414 return -EFAULT;
415 ret = do_adjtimex(&txc);
416 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
417}
418
419inline struct timespec current_kernel_time(void)
420{
421 struct timespec now;
422 unsigned long seq;
423
424 do {
425 seq = read_seqbegin(&xtime_lock);
426
427 now = xtime;
428 } while (read_seqretry(&xtime_lock, seq));
429
430 return now;
431}
432
433EXPORT_SYMBOL(current_kernel_time);
434
435/**
436 * current_fs_time - Return FS time
437 * @sb: Superblock.
438 *
439 * Return the current time truncated to the time granuality supported by
440 * the fs.
441 */
442struct timespec current_fs_time(struct super_block *sb)
443{
444 struct timespec now = current_kernel_time();
445 return timespec_trunc(now, sb->s_time_gran);
446}
447EXPORT_SYMBOL(current_fs_time);
448
449/**
450 * timespec_trunc - Truncate timespec to a granuality
451 * @t: Timespec
452 * @gran: Granuality in ns.
453 *
454 * Truncate a timespec to a granuality. gran must be smaller than a second.
455 * Always rounds down.
456 *
457 * This function should be only used for timestamps returned by
458 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
459 * it doesn't handle the better resolution of the later.
460 */
461struct timespec timespec_trunc(struct timespec t, unsigned gran)
462{
463 /*
464 * Division is pretty slow so avoid it for common cases.
465 * Currently current_kernel_time() never returns better than
466 * jiffies resolution. Exploit that.
467 */
468 if (gran <= jiffies_to_usecs(1) * 1000) {
469 /* nothing */
470 } else if (gran == 1000000000) {
471 t.tv_nsec = 0;
472 } else {
473 t.tv_nsec -= t.tv_nsec % gran;
474 }
475 return t;
476}
477EXPORT_SYMBOL(timespec_trunc);
478
479#ifdef CONFIG_TIME_INTERPOLATION
480void getnstimeofday (struct timespec *tv)
481{
482 unsigned long seq,sec,nsec;
483
484 do {
485 seq = read_seqbegin(&xtime_lock);
486 sec = xtime.tv_sec;
487 nsec = xtime.tv_nsec+time_interpolator_get_offset();
488 } while (unlikely(read_seqretry(&xtime_lock, seq)));
489
490 while (unlikely(nsec >= NSEC_PER_SEC)) {
491 nsec -= NSEC_PER_SEC;
492 ++sec;
493 }
494 tv->tv_sec = sec;
495 tv->tv_nsec = nsec;
496}
497EXPORT_SYMBOL_GPL(getnstimeofday);
498
499int do_settimeofday (struct timespec *tv)
500{
501 time_t wtm_sec, sec = tv->tv_sec;
502 long wtm_nsec, nsec = tv->tv_nsec;
503
504 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
505 return -EINVAL;
506
507 write_seqlock_irq(&xtime_lock);
508 {
509 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
510 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
511
512 set_normalized_timespec(&xtime, sec, nsec);
513 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
514
515 time_adjust = 0; /* stop active adjtime() */
516 time_status |= STA_UNSYNC;
517 time_maxerror = NTP_PHASE_LIMIT;
518 time_esterror = NTP_PHASE_LIMIT;
519 time_interpolator_reset();
520 }
521 write_sequnlock_irq(&xtime_lock);
522 clock_was_set();
523 return 0;
524}
525EXPORT_SYMBOL(do_settimeofday);
526
527void do_gettimeofday (struct timeval *tv)
528{
529 unsigned long seq, nsec, usec, sec, offset;
530 do {
531 seq = read_seqbegin(&xtime_lock);
532 offset = time_interpolator_get_offset();
533 sec = xtime.tv_sec;
534 nsec = xtime.tv_nsec;
535 } while (unlikely(read_seqretry(&xtime_lock, seq)));
536
537 usec = (nsec + offset) / 1000;
538
539 while (unlikely(usec >= USEC_PER_SEC)) {
540 usec -= USEC_PER_SEC;
541 ++sec;
542 }
543
544 tv->tv_sec = sec;
545 tv->tv_usec = usec;
546}
547
548EXPORT_SYMBOL(do_gettimeofday);
549
550
551#else
552/*
553 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
554 * and therefore only yields usec accuracy
555 */
556void getnstimeofday(struct timespec *tv)
557{
558 struct timeval x;
559
560 do_gettimeofday(&x);
561 tv->tv_sec = x.tv_sec;
562 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
563}
564EXPORT_SYMBOL_GPL(getnstimeofday);
565#endif
566
567/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
568 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
569 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
570 *
571 * [For the Julian calendar (which was used in Russia before 1917,
572 * Britain & colonies before 1752, anywhere else before 1582,
573 * and is still in use by some communities) leave out the
574 * -year/100+year/400 terms, and add 10.]
575 *
576 * This algorithm was first published by Gauss (I think).
577 *
578 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
579 * machines were long is 32-bit! (However, as time_t is signed, we
580 * will already get problems at other places on 2038-01-19 03:14:08)
581 */
582unsigned long
583mktime(const unsigned int year0, const unsigned int mon0,
584 const unsigned int day, const unsigned int hour,
585 const unsigned int min, const unsigned int sec)
586{
587 unsigned int mon = mon0, year = year0;
588
589 /* 1..12 -> 11,12,1..10 */
590 if (0 >= (int) (mon -= 2)) {
591 mon += 12; /* Puts Feb last since it has leap day */
592 year -= 1;
593 }
594
595 return ((((unsigned long)
596 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
597 year*365 - 719499
598 )*24 + hour /* now have hours */
599 )*60 + min /* now have minutes */
600 )*60 + sec; /* finally seconds */
601}
602
603EXPORT_SYMBOL(mktime);
604
605/**
606 * set_normalized_timespec - set timespec sec and nsec parts and normalize
607 *
608 * @ts: pointer to timespec variable to be set
609 * @sec: seconds to set
610 * @nsec: nanoseconds to set
611 *
612 * Set seconds and nanoseconds field of a timespec variable and
613 * normalize to the timespec storage format
614 *
615 * Note: The tv_nsec part is always in the range of
616 * 0 <= tv_nsec < NSEC_PER_SEC
617 * For negative values only the tv_sec field is negative !
618 */
619void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
620{
621 while (nsec >= NSEC_PER_SEC) {
622 nsec -= NSEC_PER_SEC;
623 ++sec;
624 }
625 while (nsec < 0) {
626 nsec += NSEC_PER_SEC;
627 --sec;
628 }
629 ts->tv_sec = sec;
630 ts->tv_nsec = nsec;
631}
632
633/**
634 * ns_to_timespec - Convert nanoseconds to timespec
635 * @nsec: the nanoseconds value to be converted
636 *
637 * Returns the timespec representation of the nsec parameter.
638 */
639inline struct timespec ns_to_timespec(const nsec_t nsec)
640{
641 struct timespec ts;
642
643 if (nsec)
644 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC,
645 &ts.tv_nsec);
646 else
647 ts.tv_sec = ts.tv_nsec = 0;
648
649 return ts;
650}
651
652/**
653 * ns_to_timeval - Convert nanoseconds to timeval
654 * @nsec: the nanoseconds value to be converted
655 *
656 * Returns the timeval representation of the nsec parameter.
657 */
658struct timeval ns_to_timeval(const nsec_t nsec)
659{
660 struct timespec ts = ns_to_timespec(nsec);
661 struct timeval tv;
662
663 tv.tv_sec = ts.tv_sec;
664 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
665
666 return tv;
667}
668
669#if (BITS_PER_LONG < 64)
670u64 get_jiffies_64(void)
671{
672 unsigned long seq;
673 u64 ret;
674
675 do {
676 seq = read_seqbegin(&xtime_lock);
677 ret = jiffies_64;
678 } while (read_seqretry(&xtime_lock, seq));
679 return ret;
680}
681
682EXPORT_SYMBOL(get_jiffies_64);
683#endif
684
685EXPORT_SYMBOL(jiffies);