]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - kernel/workqueue.c
x86/entry/64: Fix unwind hints in kernel exit path
[mirror_ubuntu-focal-kernel.git] / kernel / workqueue.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/nmi.h>
53
54#include "workqueue_internal.h"
55
56enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109};
110
111/*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145/* struct worker is defined in workqueue_internal.h */
146
147struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191} ____cacheline_aligned_in_smp;
192
193/*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230};
231
232struct wq_device;
233
234/*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* I: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
262#ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266#endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280};
281
282static struct kmem_cache *pwq_cache;
283
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290/* see the comment above the definition of WQ_POWER_EFFICIENT */
291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294static bool wq_online; /* can kworkers be created yet? */
295
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327/* the per-cpu worker pools */
328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332/* PL: hash of all unbound pools keyed by pool->attrs */
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335/* I: attributes used when instantiating standard unbound pools on demand */
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341struct workqueue_struct *system_wq __read_mostly;
342EXPORT_SYMBOL(system_wq);
343struct workqueue_struct *system_highpri_wq __read_mostly;
344EXPORT_SYMBOL_GPL(system_highpri_wq);
345struct workqueue_struct *system_long_wq __read_mostly;
346EXPORT_SYMBOL_GPL(system_long_wq);
347struct workqueue_struct *system_unbound_wq __read_mostly;
348EXPORT_SYMBOL_GPL(system_unbound_wq);
349struct workqueue_struct *system_freezable_wq __read_mostly;
350EXPORT_SYMBOL_GPL(system_freezable_wq);
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356static int worker_thread(void *__worker);
357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358
359#define CREATE_TRACE_POINTS
360#include <trace/events/workqueue.h>
361
362#define assert_rcu_or_pool_mutex() \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "RCU or wq_pool_mutex should be held")
366
367#define assert_rcu_or_wq_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "RCU or wq->mutex should be held")
371
372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "RCU, wq->mutex or wq_pool_mutex should be held")
377
378#define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 (pool)++)
382
383/**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
386 * @pi: integer used for iteration
387 *
388 * This must be called either with wq_pool_mutex held or RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
394 */
395#define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
398 else
399
400/**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
403 * @pool: worker_pool to iterate workers of
404 *
405 * This must be called with wq_pool_attach_mutex.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410#define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
413 else
414
415/**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
419 *
420 * This must be called either with wq->mutex held or RCU read locked.
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
426 */
427#define for_each_pwq(pwq, wq) \
428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
429 lockdep_is_held(&wq->mutex)) \
430 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
431 else
432
433#ifdef CONFIG_DEBUG_OBJECTS_WORK
434
435static struct debug_obj_descr work_debug_descr;
436
437static void *work_debug_hint(void *addr)
438{
439 return ((struct work_struct *) addr)->func;
440}
441
442static bool work_is_static_object(void *addr)
443{
444 struct work_struct *work = addr;
445
446 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
447}
448
449/*
450 * fixup_init is called when:
451 * - an active object is initialized
452 */
453static bool work_fixup_init(void *addr, enum debug_obj_state state)
454{
455 struct work_struct *work = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 cancel_work_sync(work);
460 debug_object_init(work, &work_debug_descr);
461 return true;
462 default:
463 return false;
464 }
465}
466
467/*
468 * fixup_free is called when:
469 * - an active object is freed
470 */
471static bool work_fixup_free(void *addr, enum debug_obj_state state)
472{
473 struct work_struct *work = addr;
474
475 switch (state) {
476 case ODEBUG_STATE_ACTIVE:
477 cancel_work_sync(work);
478 debug_object_free(work, &work_debug_descr);
479 return true;
480 default:
481 return false;
482 }
483}
484
485static struct debug_obj_descr work_debug_descr = {
486 .name = "work_struct",
487 .debug_hint = work_debug_hint,
488 .is_static_object = work_is_static_object,
489 .fixup_init = work_fixup_init,
490 .fixup_free = work_fixup_free,
491};
492
493static inline void debug_work_activate(struct work_struct *work)
494{
495 debug_object_activate(work, &work_debug_descr);
496}
497
498static inline void debug_work_deactivate(struct work_struct *work)
499{
500 debug_object_deactivate(work, &work_debug_descr);
501}
502
503void __init_work(struct work_struct *work, int onstack)
504{
505 if (onstack)
506 debug_object_init_on_stack(work, &work_debug_descr);
507 else
508 debug_object_init(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(__init_work);
511
512void destroy_work_on_stack(struct work_struct *work)
513{
514 debug_object_free(work, &work_debug_descr);
515}
516EXPORT_SYMBOL_GPL(destroy_work_on_stack);
517
518void destroy_delayed_work_on_stack(struct delayed_work *work)
519{
520 destroy_timer_on_stack(&work->timer);
521 debug_object_free(&work->work, &work_debug_descr);
522}
523EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
524
525#else
526static inline void debug_work_activate(struct work_struct *work) { }
527static inline void debug_work_deactivate(struct work_struct *work) { }
528#endif
529
530/**
531 * worker_pool_assign_id - allocate ID and assing it to @pool
532 * @pool: the pool pointer of interest
533 *
534 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
535 * successfully, -errno on failure.
536 */
537static int worker_pool_assign_id(struct worker_pool *pool)
538{
539 int ret;
540
541 lockdep_assert_held(&wq_pool_mutex);
542
543 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
544 GFP_KERNEL);
545 if (ret >= 0) {
546 pool->id = ret;
547 return 0;
548 }
549 return ret;
550}
551
552/**
553 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
554 * @wq: the target workqueue
555 * @node: the node ID
556 *
557 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
558 * read locked.
559 * If the pwq needs to be used beyond the locking in effect, the caller is
560 * responsible for guaranteeing that the pwq stays online.
561 *
562 * Return: The unbound pool_workqueue for @node.
563 */
564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 int node)
566{
567 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
568
569 /*
570 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
571 * delayed item is pending. The plan is to keep CPU -> NODE
572 * mapping valid and stable across CPU on/offlines. Once that
573 * happens, this workaround can be removed.
574 */
575 if (unlikely(node == NUMA_NO_NODE))
576 return wq->dfl_pwq;
577
578 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
579}
580
581static unsigned int work_color_to_flags(int color)
582{
583 return color << WORK_STRUCT_COLOR_SHIFT;
584}
585
586static int get_work_color(struct work_struct *work)
587{
588 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
589 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
590}
591
592static int work_next_color(int color)
593{
594 return (color + 1) % WORK_NR_COLORS;
595}
596
597/*
598 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
599 * contain the pointer to the queued pwq. Once execution starts, the flag
600 * is cleared and the high bits contain OFFQ flags and pool ID.
601 *
602 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
603 * and clear_work_data() can be used to set the pwq, pool or clear
604 * work->data. These functions should only be called while the work is
605 * owned - ie. while the PENDING bit is set.
606 *
607 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
608 * corresponding to a work. Pool is available once the work has been
609 * queued anywhere after initialization until it is sync canceled. pwq is
610 * available only while the work item is queued.
611 *
612 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
613 * canceled. While being canceled, a work item may have its PENDING set
614 * but stay off timer and worklist for arbitrarily long and nobody should
615 * try to steal the PENDING bit.
616 */
617static inline void set_work_data(struct work_struct *work, unsigned long data,
618 unsigned long flags)
619{
620 WARN_ON_ONCE(!work_pending(work));
621 atomic_long_set(&work->data, data | flags | work_static(work));
622}
623
624static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
625 unsigned long extra_flags)
626{
627 set_work_data(work, (unsigned long)pwq,
628 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
629}
630
631static void set_work_pool_and_keep_pending(struct work_struct *work,
632 int pool_id)
633{
634 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
635 WORK_STRUCT_PENDING);
636}
637
638static void set_work_pool_and_clear_pending(struct work_struct *work,
639 int pool_id)
640{
641 /*
642 * The following wmb is paired with the implied mb in
643 * test_and_set_bit(PENDING) and ensures all updates to @work made
644 * here are visible to and precede any updates by the next PENDING
645 * owner.
646 */
647 smp_wmb();
648 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
649 /*
650 * The following mb guarantees that previous clear of a PENDING bit
651 * will not be reordered with any speculative LOADS or STORES from
652 * work->current_func, which is executed afterwards. This possible
653 * reordering can lead to a missed execution on attempt to queue
654 * the same @work. E.g. consider this case:
655 *
656 * CPU#0 CPU#1
657 * ---------------------------- --------------------------------
658 *
659 * 1 STORE event_indicated
660 * 2 queue_work_on() {
661 * 3 test_and_set_bit(PENDING)
662 * 4 } set_..._and_clear_pending() {
663 * 5 set_work_data() # clear bit
664 * 6 smp_mb()
665 * 7 work->current_func() {
666 * 8 LOAD event_indicated
667 * }
668 *
669 * Without an explicit full barrier speculative LOAD on line 8 can
670 * be executed before CPU#0 does STORE on line 1. If that happens,
671 * CPU#0 observes the PENDING bit is still set and new execution of
672 * a @work is not queued in a hope, that CPU#1 will eventually
673 * finish the queued @work. Meanwhile CPU#1 does not see
674 * event_indicated is set, because speculative LOAD was executed
675 * before actual STORE.
676 */
677 smp_mb();
678}
679
680static void clear_work_data(struct work_struct *work)
681{
682 smp_wmb(); /* see set_work_pool_and_clear_pending() */
683 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
684}
685
686static struct pool_workqueue *get_work_pwq(struct work_struct *work)
687{
688 unsigned long data = atomic_long_read(&work->data);
689
690 if (data & WORK_STRUCT_PWQ)
691 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
692 else
693 return NULL;
694}
695
696/**
697 * get_work_pool - return the worker_pool a given work was associated with
698 * @work: the work item of interest
699 *
700 * Pools are created and destroyed under wq_pool_mutex, and allows read
701 * access under RCU read lock. As such, this function should be
702 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
703 *
704 * All fields of the returned pool are accessible as long as the above
705 * mentioned locking is in effect. If the returned pool needs to be used
706 * beyond the critical section, the caller is responsible for ensuring the
707 * returned pool is and stays online.
708 *
709 * Return: The worker_pool @work was last associated with. %NULL if none.
710 */
711static struct worker_pool *get_work_pool(struct work_struct *work)
712{
713 unsigned long data = atomic_long_read(&work->data);
714 int pool_id;
715
716 assert_rcu_or_pool_mutex();
717
718 if (data & WORK_STRUCT_PWQ)
719 return ((struct pool_workqueue *)
720 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
721
722 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
723 if (pool_id == WORK_OFFQ_POOL_NONE)
724 return NULL;
725
726 return idr_find(&worker_pool_idr, pool_id);
727}
728
729/**
730 * get_work_pool_id - return the worker pool ID a given work is associated with
731 * @work: the work item of interest
732 *
733 * Return: The worker_pool ID @work was last associated with.
734 * %WORK_OFFQ_POOL_NONE if none.
735 */
736static int get_work_pool_id(struct work_struct *work)
737{
738 unsigned long data = atomic_long_read(&work->data);
739
740 if (data & WORK_STRUCT_PWQ)
741 return ((struct pool_workqueue *)
742 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
743
744 return data >> WORK_OFFQ_POOL_SHIFT;
745}
746
747static void mark_work_canceling(struct work_struct *work)
748{
749 unsigned long pool_id = get_work_pool_id(work);
750
751 pool_id <<= WORK_OFFQ_POOL_SHIFT;
752 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
753}
754
755static bool work_is_canceling(struct work_struct *work)
756{
757 unsigned long data = atomic_long_read(&work->data);
758
759 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
760}
761
762/*
763 * Policy functions. These define the policies on how the global worker
764 * pools are managed. Unless noted otherwise, these functions assume that
765 * they're being called with pool->lock held.
766 */
767
768static bool __need_more_worker(struct worker_pool *pool)
769{
770 return !atomic_read(&pool->nr_running);
771}
772
773/*
774 * Need to wake up a worker? Called from anything but currently
775 * running workers.
776 *
777 * Note that, because unbound workers never contribute to nr_running, this
778 * function will always return %true for unbound pools as long as the
779 * worklist isn't empty.
780 */
781static bool need_more_worker(struct worker_pool *pool)
782{
783 return !list_empty(&pool->worklist) && __need_more_worker(pool);
784}
785
786/* Can I start working? Called from busy but !running workers. */
787static bool may_start_working(struct worker_pool *pool)
788{
789 return pool->nr_idle;
790}
791
792/* Do I need to keep working? Called from currently running workers. */
793static bool keep_working(struct worker_pool *pool)
794{
795 return !list_empty(&pool->worklist) &&
796 atomic_read(&pool->nr_running) <= 1;
797}
798
799/* Do we need a new worker? Called from manager. */
800static bool need_to_create_worker(struct worker_pool *pool)
801{
802 return need_more_worker(pool) && !may_start_working(pool);
803}
804
805/* Do we have too many workers and should some go away? */
806static bool too_many_workers(struct worker_pool *pool)
807{
808 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
809 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
810 int nr_busy = pool->nr_workers - nr_idle;
811
812 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
813}
814
815/*
816 * Wake up functions.
817 */
818
819/* Return the first idle worker. Safe with preemption disabled */
820static struct worker *first_idle_worker(struct worker_pool *pool)
821{
822 if (unlikely(list_empty(&pool->idle_list)))
823 return NULL;
824
825 return list_first_entry(&pool->idle_list, struct worker, entry);
826}
827
828/**
829 * wake_up_worker - wake up an idle worker
830 * @pool: worker pool to wake worker from
831 *
832 * Wake up the first idle worker of @pool.
833 *
834 * CONTEXT:
835 * spin_lock_irq(pool->lock).
836 */
837static void wake_up_worker(struct worker_pool *pool)
838{
839 struct worker *worker = first_idle_worker(pool);
840
841 if (likely(worker))
842 wake_up_process(worker->task);
843}
844
845/**
846 * wq_worker_running - a worker is running again
847 * @task: task waking up
848 *
849 * This function is called when a worker returns from schedule()
850 */
851void wq_worker_running(struct task_struct *task)
852{
853 struct worker *worker = kthread_data(task);
854
855 if (!worker->sleeping)
856 return;
857 if (!(worker->flags & WORKER_NOT_RUNNING))
858 atomic_inc(&worker->pool->nr_running);
859 worker->sleeping = 0;
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
865 *
866 * This function is called from schedule() when a busy worker is
867 * going to sleep.
868 */
869void wq_worker_sleeping(struct task_struct *task)
870{
871 struct worker *next, *worker = kthread_data(task);
872 struct worker_pool *pool;
873
874 /*
875 * Rescuers, which may not have all the fields set up like normal
876 * workers, also reach here, let's not access anything before
877 * checking NOT_RUNNING.
878 */
879 if (worker->flags & WORKER_NOT_RUNNING)
880 return;
881
882 pool = worker->pool;
883
884 if (WARN_ON_ONCE(worker->sleeping))
885 return;
886
887 worker->sleeping = 1;
888 spin_lock_irq(&pool->lock);
889
890 /*
891 * The counterpart of the following dec_and_test, implied mb,
892 * worklist not empty test sequence is in insert_work().
893 * Please read comment there.
894 *
895 * NOT_RUNNING is clear. This means that we're bound to and
896 * running on the local cpu w/ rq lock held and preemption
897 * disabled, which in turn means that none else could be
898 * manipulating idle_list, so dereferencing idle_list without pool
899 * lock is safe.
900 */
901 if (atomic_dec_and_test(&pool->nr_running) &&
902 !list_empty(&pool->worklist)) {
903 next = first_idle_worker(pool);
904 if (next)
905 wake_up_process(next->task);
906 }
907 spin_unlock_irq(&pool->lock);
908}
909
910/**
911 * wq_worker_last_func - retrieve worker's last work function
912 * @task: Task to retrieve last work function of.
913 *
914 * Determine the last function a worker executed. This is called from
915 * the scheduler to get a worker's last known identity.
916 *
917 * CONTEXT:
918 * spin_lock_irq(rq->lock)
919 *
920 * This function is called during schedule() when a kworker is going
921 * to sleep. It's used by psi to identify aggregation workers during
922 * dequeuing, to allow periodic aggregation to shut-off when that
923 * worker is the last task in the system or cgroup to go to sleep.
924 *
925 * As this function doesn't involve any workqueue-related locking, it
926 * only returns stable values when called from inside the scheduler's
927 * queuing and dequeuing paths, when @task, which must be a kworker,
928 * is guaranteed to not be processing any works.
929 *
930 * Return:
931 * The last work function %current executed as a worker, NULL if it
932 * hasn't executed any work yet.
933 */
934work_func_t wq_worker_last_func(struct task_struct *task)
935{
936 struct worker *worker = kthread_data(task);
937
938 return worker->last_func;
939}
940
941/**
942 * worker_set_flags - set worker flags and adjust nr_running accordingly
943 * @worker: self
944 * @flags: flags to set
945 *
946 * Set @flags in @worker->flags and adjust nr_running accordingly.
947 *
948 * CONTEXT:
949 * spin_lock_irq(pool->lock)
950 */
951static inline void worker_set_flags(struct worker *worker, unsigned int flags)
952{
953 struct worker_pool *pool = worker->pool;
954
955 WARN_ON_ONCE(worker->task != current);
956
957 /* If transitioning into NOT_RUNNING, adjust nr_running. */
958 if ((flags & WORKER_NOT_RUNNING) &&
959 !(worker->flags & WORKER_NOT_RUNNING)) {
960 atomic_dec(&pool->nr_running);
961 }
962
963 worker->flags |= flags;
964}
965
966/**
967 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
968 * @worker: self
969 * @flags: flags to clear
970 *
971 * Clear @flags in @worker->flags and adjust nr_running accordingly.
972 *
973 * CONTEXT:
974 * spin_lock_irq(pool->lock)
975 */
976static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
977{
978 struct worker_pool *pool = worker->pool;
979 unsigned int oflags = worker->flags;
980
981 WARN_ON_ONCE(worker->task != current);
982
983 worker->flags &= ~flags;
984
985 /*
986 * If transitioning out of NOT_RUNNING, increment nr_running. Note
987 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
988 * of multiple flags, not a single flag.
989 */
990 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
991 if (!(worker->flags & WORKER_NOT_RUNNING))
992 atomic_inc(&pool->nr_running);
993}
994
995/**
996 * find_worker_executing_work - find worker which is executing a work
997 * @pool: pool of interest
998 * @work: work to find worker for
999 *
1000 * Find a worker which is executing @work on @pool by searching
1001 * @pool->busy_hash which is keyed by the address of @work. For a worker
1002 * to match, its current execution should match the address of @work and
1003 * its work function. This is to avoid unwanted dependency between
1004 * unrelated work executions through a work item being recycled while still
1005 * being executed.
1006 *
1007 * This is a bit tricky. A work item may be freed once its execution
1008 * starts and nothing prevents the freed area from being recycled for
1009 * another work item. If the same work item address ends up being reused
1010 * before the original execution finishes, workqueue will identify the
1011 * recycled work item as currently executing and make it wait until the
1012 * current execution finishes, introducing an unwanted dependency.
1013 *
1014 * This function checks the work item address and work function to avoid
1015 * false positives. Note that this isn't complete as one may construct a
1016 * work function which can introduce dependency onto itself through a
1017 * recycled work item. Well, if somebody wants to shoot oneself in the
1018 * foot that badly, there's only so much we can do, and if such deadlock
1019 * actually occurs, it should be easy to locate the culprit work function.
1020 *
1021 * CONTEXT:
1022 * spin_lock_irq(pool->lock).
1023 *
1024 * Return:
1025 * Pointer to worker which is executing @work if found, %NULL
1026 * otherwise.
1027 */
1028static struct worker *find_worker_executing_work(struct worker_pool *pool,
1029 struct work_struct *work)
1030{
1031 struct worker *worker;
1032
1033 hash_for_each_possible(pool->busy_hash, worker, hentry,
1034 (unsigned long)work)
1035 if (worker->current_work == work &&
1036 worker->current_func == work->func)
1037 return worker;
1038
1039 return NULL;
1040}
1041
1042/**
1043 * move_linked_works - move linked works to a list
1044 * @work: start of series of works to be scheduled
1045 * @head: target list to append @work to
1046 * @nextp: out parameter for nested worklist walking
1047 *
1048 * Schedule linked works starting from @work to @head. Work series to
1049 * be scheduled starts at @work and includes any consecutive work with
1050 * WORK_STRUCT_LINKED set in its predecessor.
1051 *
1052 * If @nextp is not NULL, it's updated to point to the next work of
1053 * the last scheduled work. This allows move_linked_works() to be
1054 * nested inside outer list_for_each_entry_safe().
1055 *
1056 * CONTEXT:
1057 * spin_lock_irq(pool->lock).
1058 */
1059static void move_linked_works(struct work_struct *work, struct list_head *head,
1060 struct work_struct **nextp)
1061{
1062 struct work_struct *n;
1063
1064 /*
1065 * Linked worklist will always end before the end of the list,
1066 * use NULL for list head.
1067 */
1068 list_for_each_entry_safe_from(work, n, NULL, entry) {
1069 list_move_tail(&work->entry, head);
1070 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1071 break;
1072 }
1073
1074 /*
1075 * If we're already inside safe list traversal and have moved
1076 * multiple works to the scheduled queue, the next position
1077 * needs to be updated.
1078 */
1079 if (nextp)
1080 *nextp = n;
1081}
1082
1083/**
1084 * get_pwq - get an extra reference on the specified pool_workqueue
1085 * @pwq: pool_workqueue to get
1086 *
1087 * Obtain an extra reference on @pwq. The caller should guarantee that
1088 * @pwq has positive refcnt and be holding the matching pool->lock.
1089 */
1090static void get_pwq(struct pool_workqueue *pwq)
1091{
1092 lockdep_assert_held(&pwq->pool->lock);
1093 WARN_ON_ONCE(pwq->refcnt <= 0);
1094 pwq->refcnt++;
1095}
1096
1097/**
1098 * put_pwq - put a pool_workqueue reference
1099 * @pwq: pool_workqueue to put
1100 *
1101 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1102 * destruction. The caller should be holding the matching pool->lock.
1103 */
1104static void put_pwq(struct pool_workqueue *pwq)
1105{
1106 lockdep_assert_held(&pwq->pool->lock);
1107 if (likely(--pwq->refcnt))
1108 return;
1109 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1110 return;
1111 /*
1112 * @pwq can't be released under pool->lock, bounce to
1113 * pwq_unbound_release_workfn(). This never recurses on the same
1114 * pool->lock as this path is taken only for unbound workqueues and
1115 * the release work item is scheduled on a per-cpu workqueue. To
1116 * avoid lockdep warning, unbound pool->locks are given lockdep
1117 * subclass of 1 in get_unbound_pool().
1118 */
1119 schedule_work(&pwq->unbound_release_work);
1120}
1121
1122/**
1123 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1124 * @pwq: pool_workqueue to put (can be %NULL)
1125 *
1126 * put_pwq() with locking. This function also allows %NULL @pwq.
1127 */
1128static void put_pwq_unlocked(struct pool_workqueue *pwq)
1129{
1130 if (pwq) {
1131 /*
1132 * As both pwqs and pools are RCU protected, the
1133 * following lock operations are safe.
1134 */
1135 spin_lock_irq(&pwq->pool->lock);
1136 put_pwq(pwq);
1137 spin_unlock_irq(&pwq->pool->lock);
1138 }
1139}
1140
1141static void pwq_activate_delayed_work(struct work_struct *work)
1142{
1143 struct pool_workqueue *pwq = get_work_pwq(work);
1144
1145 trace_workqueue_activate_work(work);
1146 if (list_empty(&pwq->pool->worklist))
1147 pwq->pool->watchdog_ts = jiffies;
1148 move_linked_works(work, &pwq->pool->worklist, NULL);
1149 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1150 pwq->nr_active++;
1151}
1152
1153static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1154{
1155 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1156 struct work_struct, entry);
1157
1158 pwq_activate_delayed_work(work);
1159}
1160
1161/**
1162 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1163 * @pwq: pwq of interest
1164 * @color: color of work which left the queue
1165 *
1166 * A work either has completed or is removed from pending queue,
1167 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1168 *
1169 * CONTEXT:
1170 * spin_lock_irq(pool->lock).
1171 */
1172static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1173{
1174 /* uncolored work items don't participate in flushing or nr_active */
1175 if (color == WORK_NO_COLOR)
1176 goto out_put;
1177
1178 pwq->nr_in_flight[color]--;
1179
1180 pwq->nr_active--;
1181 if (!list_empty(&pwq->delayed_works)) {
1182 /* one down, submit a delayed one */
1183 if (pwq->nr_active < pwq->max_active)
1184 pwq_activate_first_delayed(pwq);
1185 }
1186
1187 /* is flush in progress and are we at the flushing tip? */
1188 if (likely(pwq->flush_color != color))
1189 goto out_put;
1190
1191 /* are there still in-flight works? */
1192 if (pwq->nr_in_flight[color])
1193 goto out_put;
1194
1195 /* this pwq is done, clear flush_color */
1196 pwq->flush_color = -1;
1197
1198 /*
1199 * If this was the last pwq, wake up the first flusher. It
1200 * will handle the rest.
1201 */
1202 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1203 complete(&pwq->wq->first_flusher->done);
1204out_put:
1205 put_pwq(pwq);
1206}
1207
1208/**
1209 * try_to_grab_pending - steal work item from worklist and disable irq
1210 * @work: work item to steal
1211 * @is_dwork: @work is a delayed_work
1212 * @flags: place to store irq state
1213 *
1214 * Try to grab PENDING bit of @work. This function can handle @work in any
1215 * stable state - idle, on timer or on worklist.
1216 *
1217 * Return:
1218 * 1 if @work was pending and we successfully stole PENDING
1219 * 0 if @work was idle and we claimed PENDING
1220 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221 * -ENOENT if someone else is canceling @work, this state may persist
1222 * for arbitrarily long
1223 *
1224 * Note:
1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1226 * interrupted while holding PENDING and @work off queue, irq must be
1227 * disabled on entry. This, combined with delayed_work->timer being
1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1229 *
1230 * On successful return, >= 0, irq is disabled and the caller is
1231 * responsible for releasing it using local_irq_restore(*@flags).
1232 *
1233 * This function is safe to call from any context including IRQ handler.
1234 */
1235static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 unsigned long *flags)
1237{
1238 struct worker_pool *pool;
1239 struct pool_workqueue *pwq;
1240
1241 local_irq_save(*flags);
1242
1243 /* try to steal the timer if it exists */
1244 if (is_dwork) {
1245 struct delayed_work *dwork = to_delayed_work(work);
1246
1247 /*
1248 * dwork->timer is irqsafe. If del_timer() fails, it's
1249 * guaranteed that the timer is not queued anywhere and not
1250 * running on the local CPU.
1251 */
1252 if (likely(del_timer(&dwork->timer)))
1253 return 1;
1254 }
1255
1256 /* try to claim PENDING the normal way */
1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 return 0;
1259
1260 rcu_read_lock();
1261 /*
1262 * The queueing is in progress, or it is already queued. Try to
1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 */
1265 pool = get_work_pool(work);
1266 if (!pool)
1267 goto fail;
1268
1269 spin_lock(&pool->lock);
1270 /*
1271 * work->data is guaranteed to point to pwq only while the work
1272 * item is queued on pwq->wq, and both updating work->data to point
1273 * to pwq on queueing and to pool on dequeueing are done under
1274 * pwq->pool->lock. This in turn guarantees that, if work->data
1275 * points to pwq which is associated with a locked pool, the work
1276 * item is currently queued on that pool.
1277 */
1278 pwq = get_work_pwq(work);
1279 if (pwq && pwq->pool == pool) {
1280 debug_work_deactivate(work);
1281
1282 /*
1283 * A delayed work item cannot be grabbed directly because
1284 * it might have linked NO_COLOR work items which, if left
1285 * on the delayed_list, will confuse pwq->nr_active
1286 * management later on and cause stall. Make sure the work
1287 * item is activated before grabbing.
1288 */
1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1290 pwq_activate_delayed_work(work);
1291
1292 list_del_init(&work->entry);
1293 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1294
1295 /* work->data points to pwq iff queued, point to pool */
1296 set_work_pool_and_keep_pending(work, pool->id);
1297
1298 spin_unlock(&pool->lock);
1299 rcu_read_unlock();
1300 return 1;
1301 }
1302 spin_unlock(&pool->lock);
1303fail:
1304 rcu_read_unlock();
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
1309 return -EAGAIN;
1310}
1311
1312/**
1313 * insert_work - insert a work into a pool
1314 * @pwq: pwq @work belongs to
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1320 * work_struct flags.
1321 *
1322 * CONTEXT:
1323 * spin_lock_irq(pool->lock).
1324 */
1325static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
1327{
1328 struct worker_pool *pool = pwq->pool;
1329
1330 /* we own @work, set data and link */
1331 set_work_pwq(work, pwq, extra_flags);
1332 list_add_tail(&work->entry, head);
1333 get_pwq(pwq);
1334
1335 /*
1336 * Ensure either wq_worker_sleeping() sees the above
1337 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 * around lazily while there are works to be processed.
1339 */
1340 smp_mb();
1341
1342 if (__need_more_worker(pool))
1343 wake_up_worker(pool);
1344}
1345
1346/*
1347 * Test whether @work is being queued from another work executing on the
1348 * same workqueue.
1349 */
1350static bool is_chained_work(struct workqueue_struct *wq)
1351{
1352 struct worker *worker;
1353
1354 worker = current_wq_worker();
1355 /*
1356 * Return %true iff I'm a worker executing a work item on @wq. If
1357 * I'm @worker, it's safe to dereference it without locking.
1358 */
1359 return worker && worker->current_pwq->wq == wq;
1360}
1361
1362/*
1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1365 * avoid perturbing sensitive tasks.
1366 */
1367static int wq_select_unbound_cpu(int cpu)
1368{
1369 static bool printed_dbg_warning;
1370 int new_cpu;
1371
1372 if (likely(!wq_debug_force_rr_cpu)) {
1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 return cpu;
1375 } else if (!printed_dbg_warning) {
1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 printed_dbg_warning = true;
1378 }
1379
1380 if (cpumask_empty(wq_unbound_cpumask))
1381 return cpu;
1382
1383 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 if (unlikely(new_cpu >= nr_cpu_ids))
1388 return cpu;
1389 }
1390 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1391
1392 return new_cpu;
1393}
1394
1395static void __queue_work(int cpu, struct workqueue_struct *wq,
1396 struct work_struct *work)
1397{
1398 struct pool_workqueue *pwq;
1399 struct worker_pool *last_pool;
1400 struct list_head *worklist;
1401 unsigned int work_flags;
1402 unsigned int req_cpu = cpu;
1403
1404 /*
1405 * While a work item is PENDING && off queue, a task trying to
1406 * steal the PENDING will busy-loop waiting for it to either get
1407 * queued or lose PENDING. Grabbing PENDING and queueing should
1408 * happen with IRQ disabled.
1409 */
1410 lockdep_assert_irqs_disabled();
1411
1412 debug_work_activate(work);
1413
1414 /* if draining, only works from the same workqueue are allowed */
1415 if (unlikely(wq->flags & __WQ_DRAINING) &&
1416 WARN_ON_ONCE(!is_chained_work(wq)))
1417 return;
1418 rcu_read_lock();
1419retry:
1420 /* pwq which will be used unless @work is executing elsewhere */
1421 if (wq->flags & WQ_UNBOUND) {
1422 if (req_cpu == WORK_CPU_UNBOUND)
1423 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1425 } else {
1426 if (req_cpu == WORK_CPU_UNBOUND)
1427 cpu = raw_smp_processor_id();
1428 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1429 }
1430
1431 /*
1432 * If @work was previously on a different pool, it might still be
1433 * running there, in which case the work needs to be queued on that
1434 * pool to guarantee non-reentrancy.
1435 */
1436 last_pool = get_work_pool(work);
1437 if (last_pool && last_pool != pwq->pool) {
1438 struct worker *worker;
1439
1440 spin_lock(&last_pool->lock);
1441
1442 worker = find_worker_executing_work(last_pool, work);
1443
1444 if (worker && worker->current_pwq->wq == wq) {
1445 pwq = worker->current_pwq;
1446 } else {
1447 /* meh... not running there, queue here */
1448 spin_unlock(&last_pool->lock);
1449 spin_lock(&pwq->pool->lock);
1450 }
1451 } else {
1452 spin_lock(&pwq->pool->lock);
1453 }
1454
1455 /*
1456 * pwq is determined and locked. For unbound pools, we could have
1457 * raced with pwq release and it could already be dead. If its
1458 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1459 * without another pwq replacing it in the numa_pwq_tbl or while
1460 * work items are executing on it, so the retrying is guaranteed to
1461 * make forward-progress.
1462 */
1463 if (unlikely(!pwq->refcnt)) {
1464 if (wq->flags & WQ_UNBOUND) {
1465 spin_unlock(&pwq->pool->lock);
1466 cpu_relax();
1467 goto retry;
1468 }
1469 /* oops */
1470 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1471 wq->name, cpu);
1472 }
1473
1474 /* pwq determined, queue */
1475 trace_workqueue_queue_work(req_cpu, pwq, work);
1476
1477 if (WARN_ON(!list_empty(&work->entry)))
1478 goto out;
1479
1480 pwq->nr_in_flight[pwq->work_color]++;
1481 work_flags = work_color_to_flags(pwq->work_color);
1482
1483 if (likely(pwq->nr_active < pwq->max_active)) {
1484 trace_workqueue_activate_work(work);
1485 pwq->nr_active++;
1486 worklist = &pwq->pool->worklist;
1487 if (list_empty(worklist))
1488 pwq->pool->watchdog_ts = jiffies;
1489 } else {
1490 work_flags |= WORK_STRUCT_DELAYED;
1491 worklist = &pwq->delayed_works;
1492 }
1493
1494 insert_work(pwq, work, worklist, work_flags);
1495
1496out:
1497 spin_unlock(&pwq->pool->lock);
1498 rcu_read_unlock();
1499}
1500
1501/**
1502 * queue_work_on - queue work on specific cpu
1503 * @cpu: CPU number to execute work on
1504 * @wq: workqueue to use
1505 * @work: work to queue
1506 *
1507 * We queue the work to a specific CPU, the caller must ensure it
1508 * can't go away.
1509 *
1510 * Return: %false if @work was already on a queue, %true otherwise.
1511 */
1512bool queue_work_on(int cpu, struct workqueue_struct *wq,
1513 struct work_struct *work)
1514{
1515 bool ret = false;
1516 unsigned long flags;
1517
1518 local_irq_save(flags);
1519
1520 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1521 __queue_work(cpu, wq, work);
1522 ret = true;
1523 }
1524
1525 local_irq_restore(flags);
1526 return ret;
1527}
1528EXPORT_SYMBOL(queue_work_on);
1529
1530/**
1531 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1532 * @node: NUMA node ID that we want to select a CPU from
1533 *
1534 * This function will attempt to find a "random" cpu available on a given
1535 * node. If there are no CPUs available on the given node it will return
1536 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1537 * available CPU if we need to schedule this work.
1538 */
1539static int workqueue_select_cpu_near(int node)
1540{
1541 int cpu;
1542
1543 /* No point in doing this if NUMA isn't enabled for workqueues */
1544 if (!wq_numa_enabled)
1545 return WORK_CPU_UNBOUND;
1546
1547 /* Delay binding to CPU if node is not valid or online */
1548 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1549 return WORK_CPU_UNBOUND;
1550
1551 /* Use local node/cpu if we are already there */
1552 cpu = raw_smp_processor_id();
1553 if (node == cpu_to_node(cpu))
1554 return cpu;
1555
1556 /* Use "random" otherwise know as "first" online CPU of node */
1557 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1558
1559 /* If CPU is valid return that, otherwise just defer */
1560 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1561}
1562
1563/**
1564 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1565 * @node: NUMA node that we are targeting the work for
1566 * @wq: workqueue to use
1567 * @work: work to queue
1568 *
1569 * We queue the work to a "random" CPU within a given NUMA node. The basic
1570 * idea here is to provide a way to somehow associate work with a given
1571 * NUMA node.
1572 *
1573 * This function will only make a best effort attempt at getting this onto
1574 * the right NUMA node. If no node is requested or the requested node is
1575 * offline then we just fall back to standard queue_work behavior.
1576 *
1577 * Currently the "random" CPU ends up being the first available CPU in the
1578 * intersection of cpu_online_mask and the cpumask of the node, unless we
1579 * are running on the node. In that case we just use the current CPU.
1580 *
1581 * Return: %false if @work was already on a queue, %true otherwise.
1582 */
1583bool queue_work_node(int node, struct workqueue_struct *wq,
1584 struct work_struct *work)
1585{
1586 unsigned long flags;
1587 bool ret = false;
1588
1589 /*
1590 * This current implementation is specific to unbound workqueues.
1591 * Specifically we only return the first available CPU for a given
1592 * node instead of cycling through individual CPUs within the node.
1593 *
1594 * If this is used with a per-cpu workqueue then the logic in
1595 * workqueue_select_cpu_near would need to be updated to allow for
1596 * some round robin type logic.
1597 */
1598 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1599
1600 local_irq_save(flags);
1601
1602 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1603 int cpu = workqueue_select_cpu_near(node);
1604
1605 __queue_work(cpu, wq, work);
1606 ret = true;
1607 }
1608
1609 local_irq_restore(flags);
1610 return ret;
1611}
1612EXPORT_SYMBOL_GPL(queue_work_node);
1613
1614void delayed_work_timer_fn(struct timer_list *t)
1615{
1616 struct delayed_work *dwork = from_timer(dwork, t, timer);
1617
1618 /* should have been called from irqsafe timer with irq already off */
1619 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1620}
1621EXPORT_SYMBOL(delayed_work_timer_fn);
1622
1623static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1624 struct delayed_work *dwork, unsigned long delay)
1625{
1626 struct timer_list *timer = &dwork->timer;
1627 struct work_struct *work = &dwork->work;
1628
1629 WARN_ON_ONCE(!wq);
1630 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1631 WARN_ON_ONCE(timer_pending(timer));
1632 WARN_ON_ONCE(!list_empty(&work->entry));
1633
1634 /*
1635 * If @delay is 0, queue @dwork->work immediately. This is for
1636 * both optimization and correctness. The earliest @timer can
1637 * expire is on the closest next tick and delayed_work users depend
1638 * on that there's no such delay when @delay is 0.
1639 */
1640 if (!delay) {
1641 __queue_work(cpu, wq, &dwork->work);
1642 return;
1643 }
1644
1645 dwork->wq = wq;
1646 dwork->cpu = cpu;
1647 timer->expires = jiffies + delay;
1648
1649 if (unlikely(cpu != WORK_CPU_UNBOUND))
1650 add_timer_on(timer, cpu);
1651 else
1652 add_timer(timer);
1653}
1654
1655/**
1656 * queue_delayed_work_on - queue work on specific CPU after delay
1657 * @cpu: CPU number to execute work on
1658 * @wq: workqueue to use
1659 * @dwork: work to queue
1660 * @delay: number of jiffies to wait before queueing
1661 *
1662 * Return: %false if @work was already on a queue, %true otherwise. If
1663 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1664 * execution.
1665 */
1666bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1667 struct delayed_work *dwork, unsigned long delay)
1668{
1669 struct work_struct *work = &dwork->work;
1670 bool ret = false;
1671 unsigned long flags;
1672
1673 /* read the comment in __queue_work() */
1674 local_irq_save(flags);
1675
1676 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1677 __queue_delayed_work(cpu, wq, dwork, delay);
1678 ret = true;
1679 }
1680
1681 local_irq_restore(flags);
1682 return ret;
1683}
1684EXPORT_SYMBOL(queue_delayed_work_on);
1685
1686/**
1687 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1688 * @cpu: CPU number to execute work on
1689 * @wq: workqueue to use
1690 * @dwork: work to queue
1691 * @delay: number of jiffies to wait before queueing
1692 *
1693 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1694 * modify @dwork's timer so that it expires after @delay. If @delay is
1695 * zero, @work is guaranteed to be scheduled immediately regardless of its
1696 * current state.
1697 *
1698 * Return: %false if @dwork was idle and queued, %true if @dwork was
1699 * pending and its timer was modified.
1700 *
1701 * This function is safe to call from any context including IRQ handler.
1702 * See try_to_grab_pending() for details.
1703 */
1704bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1705 struct delayed_work *dwork, unsigned long delay)
1706{
1707 unsigned long flags;
1708 int ret;
1709
1710 do {
1711 ret = try_to_grab_pending(&dwork->work, true, &flags);
1712 } while (unlikely(ret == -EAGAIN));
1713
1714 if (likely(ret >= 0)) {
1715 __queue_delayed_work(cpu, wq, dwork, delay);
1716 local_irq_restore(flags);
1717 }
1718
1719 /* -ENOENT from try_to_grab_pending() becomes %true */
1720 return ret;
1721}
1722EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1723
1724static void rcu_work_rcufn(struct rcu_head *rcu)
1725{
1726 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1727
1728 /* read the comment in __queue_work() */
1729 local_irq_disable();
1730 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1731 local_irq_enable();
1732}
1733
1734/**
1735 * queue_rcu_work - queue work after a RCU grace period
1736 * @wq: workqueue to use
1737 * @rwork: work to queue
1738 *
1739 * Return: %false if @rwork was already pending, %true otherwise. Note
1740 * that a full RCU grace period is guaranteed only after a %true return.
1741 * While @rwork is guaranteed to be executed after a %false return, the
1742 * execution may happen before a full RCU grace period has passed.
1743 */
1744bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1745{
1746 struct work_struct *work = &rwork->work;
1747
1748 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1749 rwork->wq = wq;
1750 call_rcu(&rwork->rcu, rcu_work_rcufn);
1751 return true;
1752 }
1753
1754 return false;
1755}
1756EXPORT_SYMBOL(queue_rcu_work);
1757
1758/**
1759 * worker_enter_idle - enter idle state
1760 * @worker: worker which is entering idle state
1761 *
1762 * @worker is entering idle state. Update stats and idle timer if
1763 * necessary.
1764 *
1765 * LOCKING:
1766 * spin_lock_irq(pool->lock).
1767 */
1768static void worker_enter_idle(struct worker *worker)
1769{
1770 struct worker_pool *pool = worker->pool;
1771
1772 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1773 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1774 (worker->hentry.next || worker->hentry.pprev)))
1775 return;
1776
1777 /* can't use worker_set_flags(), also called from create_worker() */
1778 worker->flags |= WORKER_IDLE;
1779 pool->nr_idle++;
1780 worker->last_active = jiffies;
1781
1782 /* idle_list is LIFO */
1783 list_add(&worker->entry, &pool->idle_list);
1784
1785 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1786 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1787
1788 /*
1789 * Sanity check nr_running. Because unbind_workers() releases
1790 * pool->lock between setting %WORKER_UNBOUND and zapping
1791 * nr_running, the warning may trigger spuriously. Check iff
1792 * unbind is not in progress.
1793 */
1794 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1795 pool->nr_workers == pool->nr_idle &&
1796 atomic_read(&pool->nr_running));
1797}
1798
1799/**
1800 * worker_leave_idle - leave idle state
1801 * @worker: worker which is leaving idle state
1802 *
1803 * @worker is leaving idle state. Update stats.
1804 *
1805 * LOCKING:
1806 * spin_lock_irq(pool->lock).
1807 */
1808static void worker_leave_idle(struct worker *worker)
1809{
1810 struct worker_pool *pool = worker->pool;
1811
1812 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1813 return;
1814 worker_clr_flags(worker, WORKER_IDLE);
1815 pool->nr_idle--;
1816 list_del_init(&worker->entry);
1817}
1818
1819static struct worker *alloc_worker(int node)
1820{
1821 struct worker *worker;
1822
1823 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1824 if (worker) {
1825 INIT_LIST_HEAD(&worker->entry);
1826 INIT_LIST_HEAD(&worker->scheduled);
1827 INIT_LIST_HEAD(&worker->node);
1828 /* on creation a worker is in !idle && prep state */
1829 worker->flags = WORKER_PREP;
1830 }
1831 return worker;
1832}
1833
1834/**
1835 * worker_attach_to_pool() - attach a worker to a pool
1836 * @worker: worker to be attached
1837 * @pool: the target pool
1838 *
1839 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1840 * cpu-binding of @worker are kept coordinated with the pool across
1841 * cpu-[un]hotplugs.
1842 */
1843static void worker_attach_to_pool(struct worker *worker,
1844 struct worker_pool *pool)
1845{
1846 mutex_lock(&wq_pool_attach_mutex);
1847
1848 /*
1849 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1850 * online CPUs. It'll be re-applied when any of the CPUs come up.
1851 */
1852 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1853
1854 /*
1855 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1856 * stable across this function. See the comments above the flag
1857 * definition for details.
1858 */
1859 if (pool->flags & POOL_DISASSOCIATED)
1860 worker->flags |= WORKER_UNBOUND;
1861
1862 list_add_tail(&worker->node, &pool->workers);
1863 worker->pool = pool;
1864
1865 mutex_unlock(&wq_pool_attach_mutex);
1866}
1867
1868/**
1869 * worker_detach_from_pool() - detach a worker from its pool
1870 * @worker: worker which is attached to its pool
1871 *
1872 * Undo the attaching which had been done in worker_attach_to_pool(). The
1873 * caller worker shouldn't access to the pool after detached except it has
1874 * other reference to the pool.
1875 */
1876static void worker_detach_from_pool(struct worker *worker)
1877{
1878 struct worker_pool *pool = worker->pool;
1879 struct completion *detach_completion = NULL;
1880
1881 mutex_lock(&wq_pool_attach_mutex);
1882
1883 list_del(&worker->node);
1884 worker->pool = NULL;
1885
1886 if (list_empty(&pool->workers))
1887 detach_completion = pool->detach_completion;
1888 mutex_unlock(&wq_pool_attach_mutex);
1889
1890 /* clear leftover flags without pool->lock after it is detached */
1891 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1892
1893 if (detach_completion)
1894 complete(detach_completion);
1895}
1896
1897/**
1898 * create_worker - create a new workqueue worker
1899 * @pool: pool the new worker will belong to
1900 *
1901 * Create and start a new worker which is attached to @pool.
1902 *
1903 * CONTEXT:
1904 * Might sleep. Does GFP_KERNEL allocations.
1905 *
1906 * Return:
1907 * Pointer to the newly created worker.
1908 */
1909static struct worker *create_worker(struct worker_pool *pool)
1910{
1911 struct worker *worker = NULL;
1912 int id = -1;
1913 char id_buf[16];
1914
1915 /* ID is needed to determine kthread name */
1916 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1917 if (id < 0)
1918 goto fail;
1919
1920 worker = alloc_worker(pool->node);
1921 if (!worker)
1922 goto fail;
1923
1924 worker->id = id;
1925
1926 if (pool->cpu >= 0)
1927 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1928 pool->attrs->nice < 0 ? "H" : "");
1929 else
1930 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1931
1932 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1933 "kworker/%s", id_buf);
1934 if (IS_ERR(worker->task))
1935 goto fail;
1936
1937 set_user_nice(worker->task, pool->attrs->nice);
1938 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1939
1940 /* successful, attach the worker to the pool */
1941 worker_attach_to_pool(worker, pool);
1942
1943 /* start the newly created worker */
1944 spin_lock_irq(&pool->lock);
1945 worker->pool->nr_workers++;
1946 worker_enter_idle(worker);
1947 wake_up_process(worker->task);
1948 spin_unlock_irq(&pool->lock);
1949
1950 return worker;
1951
1952fail:
1953 if (id >= 0)
1954 ida_simple_remove(&pool->worker_ida, id);
1955 kfree(worker);
1956 return NULL;
1957}
1958
1959/**
1960 * destroy_worker - destroy a workqueue worker
1961 * @worker: worker to be destroyed
1962 *
1963 * Destroy @worker and adjust @pool stats accordingly. The worker should
1964 * be idle.
1965 *
1966 * CONTEXT:
1967 * spin_lock_irq(pool->lock).
1968 */
1969static void destroy_worker(struct worker *worker)
1970{
1971 struct worker_pool *pool = worker->pool;
1972
1973 lockdep_assert_held(&pool->lock);
1974
1975 /* sanity check frenzy */
1976 if (WARN_ON(worker->current_work) ||
1977 WARN_ON(!list_empty(&worker->scheduled)) ||
1978 WARN_ON(!(worker->flags & WORKER_IDLE)))
1979 return;
1980
1981 pool->nr_workers--;
1982 pool->nr_idle--;
1983
1984 list_del_init(&worker->entry);
1985 worker->flags |= WORKER_DIE;
1986 wake_up_process(worker->task);
1987}
1988
1989static void idle_worker_timeout(struct timer_list *t)
1990{
1991 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1992
1993 spin_lock_irq(&pool->lock);
1994
1995 while (too_many_workers(pool)) {
1996 struct worker *worker;
1997 unsigned long expires;
1998
1999 /* idle_list is kept in LIFO order, check the last one */
2000 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2001 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2002
2003 if (time_before(jiffies, expires)) {
2004 mod_timer(&pool->idle_timer, expires);
2005 break;
2006 }
2007
2008 destroy_worker(worker);
2009 }
2010
2011 spin_unlock_irq(&pool->lock);
2012}
2013
2014static void send_mayday(struct work_struct *work)
2015{
2016 struct pool_workqueue *pwq = get_work_pwq(work);
2017 struct workqueue_struct *wq = pwq->wq;
2018
2019 lockdep_assert_held(&wq_mayday_lock);
2020
2021 if (!wq->rescuer)
2022 return;
2023
2024 /* mayday mayday mayday */
2025 if (list_empty(&pwq->mayday_node)) {
2026 /*
2027 * If @pwq is for an unbound wq, its base ref may be put at
2028 * any time due to an attribute change. Pin @pwq until the
2029 * rescuer is done with it.
2030 */
2031 get_pwq(pwq);
2032 list_add_tail(&pwq->mayday_node, &wq->maydays);
2033 wake_up_process(wq->rescuer->task);
2034 }
2035}
2036
2037static void pool_mayday_timeout(struct timer_list *t)
2038{
2039 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2040 struct work_struct *work;
2041
2042 spin_lock_irq(&pool->lock);
2043 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2044
2045 if (need_to_create_worker(pool)) {
2046 /*
2047 * We've been trying to create a new worker but
2048 * haven't been successful. We might be hitting an
2049 * allocation deadlock. Send distress signals to
2050 * rescuers.
2051 */
2052 list_for_each_entry(work, &pool->worklist, entry)
2053 send_mayday(work);
2054 }
2055
2056 spin_unlock(&wq_mayday_lock);
2057 spin_unlock_irq(&pool->lock);
2058
2059 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2060}
2061
2062/**
2063 * maybe_create_worker - create a new worker if necessary
2064 * @pool: pool to create a new worker for
2065 *
2066 * Create a new worker for @pool if necessary. @pool is guaranteed to
2067 * have at least one idle worker on return from this function. If
2068 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2069 * sent to all rescuers with works scheduled on @pool to resolve
2070 * possible allocation deadlock.
2071 *
2072 * On return, need_to_create_worker() is guaranteed to be %false and
2073 * may_start_working() %true.
2074 *
2075 * LOCKING:
2076 * spin_lock_irq(pool->lock) which may be released and regrabbed
2077 * multiple times. Does GFP_KERNEL allocations. Called only from
2078 * manager.
2079 */
2080static void maybe_create_worker(struct worker_pool *pool)
2081__releases(&pool->lock)
2082__acquires(&pool->lock)
2083{
2084restart:
2085 spin_unlock_irq(&pool->lock);
2086
2087 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2088 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2089
2090 while (true) {
2091 if (create_worker(pool) || !need_to_create_worker(pool))
2092 break;
2093
2094 schedule_timeout_interruptible(CREATE_COOLDOWN);
2095
2096 if (!need_to_create_worker(pool))
2097 break;
2098 }
2099
2100 del_timer_sync(&pool->mayday_timer);
2101 spin_lock_irq(&pool->lock);
2102 /*
2103 * This is necessary even after a new worker was just successfully
2104 * created as @pool->lock was dropped and the new worker might have
2105 * already become busy.
2106 */
2107 if (need_to_create_worker(pool))
2108 goto restart;
2109}
2110
2111/**
2112 * manage_workers - manage worker pool
2113 * @worker: self
2114 *
2115 * Assume the manager role and manage the worker pool @worker belongs
2116 * to. At any given time, there can be only zero or one manager per
2117 * pool. The exclusion is handled automatically by this function.
2118 *
2119 * The caller can safely start processing works on false return. On
2120 * true return, it's guaranteed that need_to_create_worker() is false
2121 * and may_start_working() is true.
2122 *
2123 * CONTEXT:
2124 * spin_lock_irq(pool->lock) which may be released and regrabbed
2125 * multiple times. Does GFP_KERNEL allocations.
2126 *
2127 * Return:
2128 * %false if the pool doesn't need management and the caller can safely
2129 * start processing works, %true if management function was performed and
2130 * the conditions that the caller verified before calling the function may
2131 * no longer be true.
2132 */
2133static bool manage_workers(struct worker *worker)
2134{
2135 struct worker_pool *pool = worker->pool;
2136
2137 if (pool->flags & POOL_MANAGER_ACTIVE)
2138 return false;
2139
2140 pool->flags |= POOL_MANAGER_ACTIVE;
2141 pool->manager = worker;
2142
2143 maybe_create_worker(pool);
2144
2145 pool->manager = NULL;
2146 pool->flags &= ~POOL_MANAGER_ACTIVE;
2147 wake_up(&wq_manager_wait);
2148 return true;
2149}
2150
2151/**
2152 * process_one_work - process single work
2153 * @worker: self
2154 * @work: work to process
2155 *
2156 * Process @work. This function contains all the logics necessary to
2157 * process a single work including synchronization against and
2158 * interaction with other workers on the same cpu, queueing and
2159 * flushing. As long as context requirement is met, any worker can
2160 * call this function to process a work.
2161 *
2162 * CONTEXT:
2163 * spin_lock_irq(pool->lock) which is released and regrabbed.
2164 */
2165static void process_one_work(struct worker *worker, struct work_struct *work)
2166__releases(&pool->lock)
2167__acquires(&pool->lock)
2168{
2169 struct pool_workqueue *pwq = get_work_pwq(work);
2170 struct worker_pool *pool = worker->pool;
2171 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2172 int work_color;
2173 struct worker *collision;
2174#ifdef CONFIG_LOCKDEP
2175 /*
2176 * It is permissible to free the struct work_struct from
2177 * inside the function that is called from it, this we need to
2178 * take into account for lockdep too. To avoid bogus "held
2179 * lock freed" warnings as well as problems when looking into
2180 * work->lockdep_map, make a copy and use that here.
2181 */
2182 struct lockdep_map lockdep_map;
2183
2184 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185#endif
2186 /* ensure we're on the correct CPU */
2187 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2188 raw_smp_processor_id() != pool->cpu);
2189
2190 /*
2191 * A single work shouldn't be executed concurrently by
2192 * multiple workers on a single cpu. Check whether anyone is
2193 * already processing the work. If so, defer the work to the
2194 * currently executing one.
2195 */
2196 collision = find_worker_executing_work(pool, work);
2197 if (unlikely(collision)) {
2198 move_linked_works(work, &collision->scheduled, NULL);
2199 return;
2200 }
2201
2202 /* claim and dequeue */
2203 debug_work_deactivate(work);
2204 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2205 worker->current_work = work;
2206 worker->current_func = work->func;
2207 worker->current_pwq = pwq;
2208 work_color = get_work_color(work);
2209
2210 /*
2211 * Record wq name for cmdline and debug reporting, may get
2212 * overridden through set_worker_desc().
2213 */
2214 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2215
2216 list_del_init(&work->entry);
2217
2218 /*
2219 * CPU intensive works don't participate in concurrency management.
2220 * They're the scheduler's responsibility. This takes @worker out
2221 * of concurrency management and the next code block will chain
2222 * execution of the pending work items.
2223 */
2224 if (unlikely(cpu_intensive))
2225 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2226
2227 /*
2228 * Wake up another worker if necessary. The condition is always
2229 * false for normal per-cpu workers since nr_running would always
2230 * be >= 1 at this point. This is used to chain execution of the
2231 * pending work items for WORKER_NOT_RUNNING workers such as the
2232 * UNBOUND and CPU_INTENSIVE ones.
2233 */
2234 if (need_more_worker(pool))
2235 wake_up_worker(pool);
2236
2237 /*
2238 * Record the last pool and clear PENDING which should be the last
2239 * update to @work. Also, do this inside @pool->lock so that
2240 * PENDING and queued state changes happen together while IRQ is
2241 * disabled.
2242 */
2243 set_work_pool_and_clear_pending(work, pool->id);
2244
2245 spin_unlock_irq(&pool->lock);
2246
2247 lock_map_acquire(&pwq->wq->lockdep_map);
2248 lock_map_acquire(&lockdep_map);
2249 /*
2250 * Strictly speaking we should mark the invariant state without holding
2251 * any locks, that is, before these two lock_map_acquire()'s.
2252 *
2253 * However, that would result in:
2254 *
2255 * A(W1)
2256 * WFC(C)
2257 * A(W1)
2258 * C(C)
2259 *
2260 * Which would create W1->C->W1 dependencies, even though there is no
2261 * actual deadlock possible. There are two solutions, using a
2262 * read-recursive acquire on the work(queue) 'locks', but this will then
2263 * hit the lockdep limitation on recursive locks, or simply discard
2264 * these locks.
2265 *
2266 * AFAICT there is no possible deadlock scenario between the
2267 * flush_work() and complete() primitives (except for single-threaded
2268 * workqueues), so hiding them isn't a problem.
2269 */
2270 lockdep_invariant_state(true);
2271 trace_workqueue_execute_start(work);
2272 worker->current_func(work);
2273 /*
2274 * While we must be careful to not use "work" after this, the trace
2275 * point will only record its address.
2276 */
2277 trace_workqueue_execute_end(work);
2278 lock_map_release(&lockdep_map);
2279 lock_map_release(&pwq->wq->lockdep_map);
2280
2281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2282 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2283 " last function: %ps\n",
2284 current->comm, preempt_count(), task_pid_nr(current),
2285 worker->current_func);
2286 debug_show_held_locks(current);
2287 dump_stack();
2288 }
2289
2290 /*
2291 * The following prevents a kworker from hogging CPU on !PREEMPT
2292 * kernels, where a requeueing work item waiting for something to
2293 * happen could deadlock with stop_machine as such work item could
2294 * indefinitely requeue itself while all other CPUs are trapped in
2295 * stop_machine. At the same time, report a quiescent RCU state so
2296 * the same condition doesn't freeze RCU.
2297 */
2298 cond_resched();
2299
2300 spin_lock_irq(&pool->lock);
2301
2302 /* clear cpu intensive status */
2303 if (unlikely(cpu_intensive))
2304 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2305
2306 /* tag the worker for identification in schedule() */
2307 worker->last_func = worker->current_func;
2308
2309 /* we're done with it, release */
2310 hash_del(&worker->hentry);
2311 worker->current_work = NULL;
2312 worker->current_func = NULL;
2313 worker->current_pwq = NULL;
2314 pwq_dec_nr_in_flight(pwq, work_color);
2315}
2316
2317/**
2318 * process_scheduled_works - process scheduled works
2319 * @worker: self
2320 *
2321 * Process all scheduled works. Please note that the scheduled list
2322 * may change while processing a work, so this function repeatedly
2323 * fetches a work from the top and executes it.
2324 *
2325 * CONTEXT:
2326 * spin_lock_irq(pool->lock) which may be released and regrabbed
2327 * multiple times.
2328 */
2329static void process_scheduled_works(struct worker *worker)
2330{
2331 while (!list_empty(&worker->scheduled)) {
2332 struct work_struct *work = list_first_entry(&worker->scheduled,
2333 struct work_struct, entry);
2334 process_one_work(worker, work);
2335 }
2336}
2337
2338static void set_pf_worker(bool val)
2339{
2340 mutex_lock(&wq_pool_attach_mutex);
2341 if (val)
2342 current->flags |= PF_WQ_WORKER;
2343 else
2344 current->flags &= ~PF_WQ_WORKER;
2345 mutex_unlock(&wq_pool_attach_mutex);
2346}
2347
2348/**
2349 * worker_thread - the worker thread function
2350 * @__worker: self
2351 *
2352 * The worker thread function. All workers belong to a worker_pool -
2353 * either a per-cpu one or dynamic unbound one. These workers process all
2354 * work items regardless of their specific target workqueue. The only
2355 * exception is work items which belong to workqueues with a rescuer which
2356 * will be explained in rescuer_thread().
2357 *
2358 * Return: 0
2359 */
2360static int worker_thread(void *__worker)
2361{
2362 struct worker *worker = __worker;
2363 struct worker_pool *pool = worker->pool;
2364
2365 /* tell the scheduler that this is a workqueue worker */
2366 set_pf_worker(true);
2367woke_up:
2368 spin_lock_irq(&pool->lock);
2369
2370 /* am I supposed to die? */
2371 if (unlikely(worker->flags & WORKER_DIE)) {
2372 spin_unlock_irq(&pool->lock);
2373 WARN_ON_ONCE(!list_empty(&worker->entry));
2374 set_pf_worker(false);
2375
2376 set_task_comm(worker->task, "kworker/dying");
2377 ida_simple_remove(&pool->worker_ida, worker->id);
2378 worker_detach_from_pool(worker);
2379 kfree(worker);
2380 return 0;
2381 }
2382
2383 worker_leave_idle(worker);
2384recheck:
2385 /* no more worker necessary? */
2386 if (!need_more_worker(pool))
2387 goto sleep;
2388
2389 /* do we need to manage? */
2390 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2391 goto recheck;
2392
2393 /*
2394 * ->scheduled list can only be filled while a worker is
2395 * preparing to process a work or actually processing it.
2396 * Make sure nobody diddled with it while I was sleeping.
2397 */
2398 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2399
2400 /*
2401 * Finish PREP stage. We're guaranteed to have at least one idle
2402 * worker or that someone else has already assumed the manager
2403 * role. This is where @worker starts participating in concurrency
2404 * management if applicable and concurrency management is restored
2405 * after being rebound. See rebind_workers() for details.
2406 */
2407 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2408
2409 do {
2410 struct work_struct *work =
2411 list_first_entry(&pool->worklist,
2412 struct work_struct, entry);
2413
2414 pool->watchdog_ts = jiffies;
2415
2416 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2417 /* optimization path, not strictly necessary */
2418 process_one_work(worker, work);
2419 if (unlikely(!list_empty(&worker->scheduled)))
2420 process_scheduled_works(worker);
2421 } else {
2422 move_linked_works(work, &worker->scheduled, NULL);
2423 process_scheduled_works(worker);
2424 }
2425 } while (keep_working(pool));
2426
2427 worker_set_flags(worker, WORKER_PREP);
2428sleep:
2429 /*
2430 * pool->lock is held and there's no work to process and no need to
2431 * manage, sleep. Workers are woken up only while holding
2432 * pool->lock or from local cpu, so setting the current state
2433 * before releasing pool->lock is enough to prevent losing any
2434 * event.
2435 */
2436 worker_enter_idle(worker);
2437 __set_current_state(TASK_IDLE);
2438 spin_unlock_irq(&pool->lock);
2439 schedule();
2440 goto woke_up;
2441}
2442
2443/**
2444 * rescuer_thread - the rescuer thread function
2445 * @__rescuer: self
2446 *
2447 * Workqueue rescuer thread function. There's one rescuer for each
2448 * workqueue which has WQ_MEM_RECLAIM set.
2449 *
2450 * Regular work processing on a pool may block trying to create a new
2451 * worker which uses GFP_KERNEL allocation which has slight chance of
2452 * developing into deadlock if some works currently on the same queue
2453 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2454 * the problem rescuer solves.
2455 *
2456 * When such condition is possible, the pool summons rescuers of all
2457 * workqueues which have works queued on the pool and let them process
2458 * those works so that forward progress can be guaranteed.
2459 *
2460 * This should happen rarely.
2461 *
2462 * Return: 0
2463 */
2464static int rescuer_thread(void *__rescuer)
2465{
2466 struct worker *rescuer = __rescuer;
2467 struct workqueue_struct *wq = rescuer->rescue_wq;
2468 struct list_head *scheduled = &rescuer->scheduled;
2469 bool should_stop;
2470
2471 set_user_nice(current, RESCUER_NICE_LEVEL);
2472
2473 /*
2474 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2475 * doesn't participate in concurrency management.
2476 */
2477 set_pf_worker(true);
2478repeat:
2479 set_current_state(TASK_IDLE);
2480
2481 /*
2482 * By the time the rescuer is requested to stop, the workqueue
2483 * shouldn't have any work pending, but @wq->maydays may still have
2484 * pwq(s) queued. This can happen by non-rescuer workers consuming
2485 * all the work items before the rescuer got to them. Go through
2486 * @wq->maydays processing before acting on should_stop so that the
2487 * list is always empty on exit.
2488 */
2489 should_stop = kthread_should_stop();
2490
2491 /* see whether any pwq is asking for help */
2492 spin_lock_irq(&wq_mayday_lock);
2493
2494 while (!list_empty(&wq->maydays)) {
2495 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2496 struct pool_workqueue, mayday_node);
2497 struct worker_pool *pool = pwq->pool;
2498 struct work_struct *work, *n;
2499 bool first = true;
2500
2501 __set_current_state(TASK_RUNNING);
2502 list_del_init(&pwq->mayday_node);
2503
2504 spin_unlock_irq(&wq_mayday_lock);
2505
2506 worker_attach_to_pool(rescuer, pool);
2507
2508 spin_lock_irq(&pool->lock);
2509
2510 /*
2511 * Slurp in all works issued via this workqueue and
2512 * process'em.
2513 */
2514 WARN_ON_ONCE(!list_empty(scheduled));
2515 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2516 if (get_work_pwq(work) == pwq) {
2517 if (first)
2518 pool->watchdog_ts = jiffies;
2519 move_linked_works(work, scheduled, &n);
2520 }
2521 first = false;
2522 }
2523
2524 if (!list_empty(scheduled)) {
2525 process_scheduled_works(rescuer);
2526
2527 /*
2528 * The above execution of rescued work items could
2529 * have created more to rescue through
2530 * pwq_activate_first_delayed() or chained
2531 * queueing. Let's put @pwq back on mayday list so
2532 * that such back-to-back work items, which may be
2533 * being used to relieve memory pressure, don't
2534 * incur MAYDAY_INTERVAL delay inbetween.
2535 */
2536 if (need_to_create_worker(pool)) {
2537 spin_lock(&wq_mayday_lock);
2538 /*
2539 * Queue iff we aren't racing destruction
2540 * and somebody else hasn't queued it already.
2541 */
2542 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2543 get_pwq(pwq);
2544 list_add_tail(&pwq->mayday_node, &wq->maydays);
2545 }
2546 spin_unlock(&wq_mayday_lock);
2547 }
2548 }
2549
2550 /*
2551 * Put the reference grabbed by send_mayday(). @pool won't
2552 * go away while we're still attached to it.
2553 */
2554 put_pwq(pwq);
2555
2556 /*
2557 * Leave this pool. If need_more_worker() is %true, notify a
2558 * regular worker; otherwise, we end up with 0 concurrency
2559 * and stalling the execution.
2560 */
2561 if (need_more_worker(pool))
2562 wake_up_worker(pool);
2563
2564 spin_unlock_irq(&pool->lock);
2565
2566 worker_detach_from_pool(rescuer);
2567
2568 spin_lock_irq(&wq_mayday_lock);
2569 }
2570
2571 spin_unlock_irq(&wq_mayday_lock);
2572
2573 if (should_stop) {
2574 __set_current_state(TASK_RUNNING);
2575 set_pf_worker(false);
2576 return 0;
2577 }
2578
2579 /* rescuers should never participate in concurrency management */
2580 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2581 schedule();
2582 goto repeat;
2583}
2584
2585/**
2586 * check_flush_dependency - check for flush dependency sanity
2587 * @target_wq: workqueue being flushed
2588 * @target_work: work item being flushed (NULL for workqueue flushes)
2589 *
2590 * %current is trying to flush the whole @target_wq or @target_work on it.
2591 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2592 * reclaiming memory or running on a workqueue which doesn't have
2593 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2594 * a deadlock.
2595 */
2596static void check_flush_dependency(struct workqueue_struct *target_wq,
2597 struct work_struct *target_work)
2598{
2599 work_func_t target_func = target_work ? target_work->func : NULL;
2600 struct worker *worker;
2601
2602 if (target_wq->flags & WQ_MEM_RECLAIM)
2603 return;
2604
2605 worker = current_wq_worker();
2606
2607 WARN_ONCE(current->flags & PF_MEMALLOC,
2608 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2609 current->pid, current->comm, target_wq->name, target_func);
2610 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2611 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2612 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2613 worker->current_pwq->wq->name, worker->current_func,
2614 target_wq->name, target_func);
2615}
2616
2617struct wq_barrier {
2618 struct work_struct work;
2619 struct completion done;
2620 struct task_struct *task; /* purely informational */
2621};
2622
2623static void wq_barrier_func(struct work_struct *work)
2624{
2625 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2626 complete(&barr->done);
2627}
2628
2629/**
2630 * insert_wq_barrier - insert a barrier work
2631 * @pwq: pwq to insert barrier into
2632 * @barr: wq_barrier to insert
2633 * @target: target work to attach @barr to
2634 * @worker: worker currently executing @target, NULL if @target is not executing
2635 *
2636 * @barr is linked to @target such that @barr is completed only after
2637 * @target finishes execution. Please note that the ordering
2638 * guarantee is observed only with respect to @target and on the local
2639 * cpu.
2640 *
2641 * Currently, a queued barrier can't be canceled. This is because
2642 * try_to_grab_pending() can't determine whether the work to be
2643 * grabbed is at the head of the queue and thus can't clear LINKED
2644 * flag of the previous work while there must be a valid next work
2645 * after a work with LINKED flag set.
2646 *
2647 * Note that when @worker is non-NULL, @target may be modified
2648 * underneath us, so we can't reliably determine pwq from @target.
2649 *
2650 * CONTEXT:
2651 * spin_lock_irq(pool->lock).
2652 */
2653static void insert_wq_barrier(struct pool_workqueue *pwq,
2654 struct wq_barrier *barr,
2655 struct work_struct *target, struct worker *worker)
2656{
2657 struct list_head *head;
2658 unsigned int linked = 0;
2659
2660 /*
2661 * debugobject calls are safe here even with pool->lock locked
2662 * as we know for sure that this will not trigger any of the
2663 * checks and call back into the fixup functions where we
2664 * might deadlock.
2665 */
2666 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2667 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2668
2669 init_completion_map(&barr->done, &target->lockdep_map);
2670
2671 barr->task = current;
2672
2673 /*
2674 * If @target is currently being executed, schedule the
2675 * barrier to the worker; otherwise, put it after @target.
2676 */
2677 if (worker)
2678 head = worker->scheduled.next;
2679 else {
2680 unsigned long *bits = work_data_bits(target);
2681
2682 head = target->entry.next;
2683 /* there can already be other linked works, inherit and set */
2684 linked = *bits & WORK_STRUCT_LINKED;
2685 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2686 }
2687
2688 debug_work_activate(&barr->work);
2689 insert_work(pwq, &barr->work, head,
2690 work_color_to_flags(WORK_NO_COLOR) | linked);
2691}
2692
2693/**
2694 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2695 * @wq: workqueue being flushed
2696 * @flush_color: new flush color, < 0 for no-op
2697 * @work_color: new work color, < 0 for no-op
2698 *
2699 * Prepare pwqs for workqueue flushing.
2700 *
2701 * If @flush_color is non-negative, flush_color on all pwqs should be
2702 * -1. If no pwq has in-flight commands at the specified color, all
2703 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2704 * has in flight commands, its pwq->flush_color is set to
2705 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2706 * wakeup logic is armed and %true is returned.
2707 *
2708 * The caller should have initialized @wq->first_flusher prior to
2709 * calling this function with non-negative @flush_color. If
2710 * @flush_color is negative, no flush color update is done and %false
2711 * is returned.
2712 *
2713 * If @work_color is non-negative, all pwqs should have the same
2714 * work_color which is previous to @work_color and all will be
2715 * advanced to @work_color.
2716 *
2717 * CONTEXT:
2718 * mutex_lock(wq->mutex).
2719 *
2720 * Return:
2721 * %true if @flush_color >= 0 and there's something to flush. %false
2722 * otherwise.
2723 */
2724static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2725 int flush_color, int work_color)
2726{
2727 bool wait = false;
2728 struct pool_workqueue *pwq;
2729
2730 if (flush_color >= 0) {
2731 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2732 atomic_set(&wq->nr_pwqs_to_flush, 1);
2733 }
2734
2735 for_each_pwq(pwq, wq) {
2736 struct worker_pool *pool = pwq->pool;
2737
2738 spin_lock_irq(&pool->lock);
2739
2740 if (flush_color >= 0) {
2741 WARN_ON_ONCE(pwq->flush_color != -1);
2742
2743 if (pwq->nr_in_flight[flush_color]) {
2744 pwq->flush_color = flush_color;
2745 atomic_inc(&wq->nr_pwqs_to_flush);
2746 wait = true;
2747 }
2748 }
2749
2750 if (work_color >= 0) {
2751 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2752 pwq->work_color = work_color;
2753 }
2754
2755 spin_unlock_irq(&pool->lock);
2756 }
2757
2758 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2759 complete(&wq->first_flusher->done);
2760
2761 return wait;
2762}
2763
2764/**
2765 * flush_workqueue - ensure that any scheduled work has run to completion.
2766 * @wq: workqueue to flush
2767 *
2768 * This function sleeps until all work items which were queued on entry
2769 * have finished execution, but it is not livelocked by new incoming ones.
2770 */
2771void flush_workqueue(struct workqueue_struct *wq)
2772{
2773 struct wq_flusher this_flusher = {
2774 .list = LIST_HEAD_INIT(this_flusher.list),
2775 .flush_color = -1,
2776 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2777 };
2778 int next_color;
2779
2780 if (WARN_ON(!wq_online))
2781 return;
2782
2783 lock_map_acquire(&wq->lockdep_map);
2784 lock_map_release(&wq->lockdep_map);
2785
2786 mutex_lock(&wq->mutex);
2787
2788 /*
2789 * Start-to-wait phase
2790 */
2791 next_color = work_next_color(wq->work_color);
2792
2793 if (next_color != wq->flush_color) {
2794 /*
2795 * Color space is not full. The current work_color
2796 * becomes our flush_color and work_color is advanced
2797 * by one.
2798 */
2799 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2800 this_flusher.flush_color = wq->work_color;
2801 wq->work_color = next_color;
2802
2803 if (!wq->first_flusher) {
2804 /* no flush in progress, become the first flusher */
2805 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2806
2807 wq->first_flusher = &this_flusher;
2808
2809 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2810 wq->work_color)) {
2811 /* nothing to flush, done */
2812 wq->flush_color = next_color;
2813 wq->first_flusher = NULL;
2814 goto out_unlock;
2815 }
2816 } else {
2817 /* wait in queue */
2818 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2819 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2820 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2821 }
2822 } else {
2823 /*
2824 * Oops, color space is full, wait on overflow queue.
2825 * The next flush completion will assign us
2826 * flush_color and transfer to flusher_queue.
2827 */
2828 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2829 }
2830
2831 check_flush_dependency(wq, NULL);
2832
2833 mutex_unlock(&wq->mutex);
2834
2835 wait_for_completion(&this_flusher.done);
2836
2837 /*
2838 * Wake-up-and-cascade phase
2839 *
2840 * First flushers are responsible for cascading flushes and
2841 * handling overflow. Non-first flushers can simply return.
2842 */
2843 if (wq->first_flusher != &this_flusher)
2844 return;
2845
2846 mutex_lock(&wq->mutex);
2847
2848 /* we might have raced, check again with mutex held */
2849 if (wq->first_flusher != &this_flusher)
2850 goto out_unlock;
2851
2852 wq->first_flusher = NULL;
2853
2854 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2855 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2856
2857 while (true) {
2858 struct wq_flusher *next, *tmp;
2859
2860 /* complete all the flushers sharing the current flush color */
2861 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2862 if (next->flush_color != wq->flush_color)
2863 break;
2864 list_del_init(&next->list);
2865 complete(&next->done);
2866 }
2867
2868 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2869 wq->flush_color != work_next_color(wq->work_color));
2870
2871 /* this flush_color is finished, advance by one */
2872 wq->flush_color = work_next_color(wq->flush_color);
2873
2874 /* one color has been freed, handle overflow queue */
2875 if (!list_empty(&wq->flusher_overflow)) {
2876 /*
2877 * Assign the same color to all overflowed
2878 * flushers, advance work_color and append to
2879 * flusher_queue. This is the start-to-wait
2880 * phase for these overflowed flushers.
2881 */
2882 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2883 tmp->flush_color = wq->work_color;
2884
2885 wq->work_color = work_next_color(wq->work_color);
2886
2887 list_splice_tail_init(&wq->flusher_overflow,
2888 &wq->flusher_queue);
2889 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2890 }
2891
2892 if (list_empty(&wq->flusher_queue)) {
2893 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2894 break;
2895 }
2896
2897 /*
2898 * Need to flush more colors. Make the next flusher
2899 * the new first flusher and arm pwqs.
2900 */
2901 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2902 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2903
2904 list_del_init(&next->list);
2905 wq->first_flusher = next;
2906
2907 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2908 break;
2909
2910 /*
2911 * Meh... this color is already done, clear first
2912 * flusher and repeat cascading.
2913 */
2914 wq->first_flusher = NULL;
2915 }
2916
2917out_unlock:
2918 mutex_unlock(&wq->mutex);
2919}
2920EXPORT_SYMBOL(flush_workqueue);
2921
2922/**
2923 * drain_workqueue - drain a workqueue
2924 * @wq: workqueue to drain
2925 *
2926 * Wait until the workqueue becomes empty. While draining is in progress,
2927 * only chain queueing is allowed. IOW, only currently pending or running
2928 * work items on @wq can queue further work items on it. @wq is flushed
2929 * repeatedly until it becomes empty. The number of flushing is determined
2930 * by the depth of chaining and should be relatively short. Whine if it
2931 * takes too long.
2932 */
2933void drain_workqueue(struct workqueue_struct *wq)
2934{
2935 unsigned int flush_cnt = 0;
2936 struct pool_workqueue *pwq;
2937
2938 /*
2939 * __queue_work() needs to test whether there are drainers, is much
2940 * hotter than drain_workqueue() and already looks at @wq->flags.
2941 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2942 */
2943 mutex_lock(&wq->mutex);
2944 if (!wq->nr_drainers++)
2945 wq->flags |= __WQ_DRAINING;
2946 mutex_unlock(&wq->mutex);
2947reflush:
2948 flush_workqueue(wq);
2949
2950 mutex_lock(&wq->mutex);
2951
2952 for_each_pwq(pwq, wq) {
2953 bool drained;
2954
2955 spin_lock_irq(&pwq->pool->lock);
2956 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2957 spin_unlock_irq(&pwq->pool->lock);
2958
2959 if (drained)
2960 continue;
2961
2962 if (++flush_cnt == 10 ||
2963 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2964 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2965 wq->name, flush_cnt);
2966
2967 mutex_unlock(&wq->mutex);
2968 goto reflush;
2969 }
2970
2971 if (!--wq->nr_drainers)
2972 wq->flags &= ~__WQ_DRAINING;
2973 mutex_unlock(&wq->mutex);
2974}
2975EXPORT_SYMBOL_GPL(drain_workqueue);
2976
2977static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2978 bool from_cancel)
2979{
2980 struct worker *worker = NULL;
2981 struct worker_pool *pool;
2982 struct pool_workqueue *pwq;
2983
2984 might_sleep();
2985
2986 rcu_read_lock();
2987 pool = get_work_pool(work);
2988 if (!pool) {
2989 rcu_read_unlock();
2990 return false;
2991 }
2992
2993 spin_lock_irq(&pool->lock);
2994 /* see the comment in try_to_grab_pending() with the same code */
2995 pwq = get_work_pwq(work);
2996 if (pwq) {
2997 if (unlikely(pwq->pool != pool))
2998 goto already_gone;
2999 } else {
3000 worker = find_worker_executing_work(pool, work);
3001 if (!worker)
3002 goto already_gone;
3003 pwq = worker->current_pwq;
3004 }
3005
3006 check_flush_dependency(pwq->wq, work);
3007
3008 insert_wq_barrier(pwq, barr, work, worker);
3009 spin_unlock_irq(&pool->lock);
3010
3011 /*
3012 * Force a lock recursion deadlock when using flush_work() inside a
3013 * single-threaded or rescuer equipped workqueue.
3014 *
3015 * For single threaded workqueues the deadlock happens when the work
3016 * is after the work issuing the flush_work(). For rescuer equipped
3017 * workqueues the deadlock happens when the rescuer stalls, blocking
3018 * forward progress.
3019 */
3020 if (!from_cancel &&
3021 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3022 lock_map_acquire(&pwq->wq->lockdep_map);
3023 lock_map_release(&pwq->wq->lockdep_map);
3024 }
3025 rcu_read_unlock();
3026 return true;
3027already_gone:
3028 spin_unlock_irq(&pool->lock);
3029 rcu_read_unlock();
3030 return false;
3031}
3032
3033static bool __flush_work(struct work_struct *work, bool from_cancel)
3034{
3035 struct wq_barrier barr;
3036
3037 if (WARN_ON(!wq_online))
3038 return false;
3039
3040 if (WARN_ON(!work->func))
3041 return false;
3042
3043 if (!from_cancel) {
3044 lock_map_acquire(&work->lockdep_map);
3045 lock_map_release(&work->lockdep_map);
3046 }
3047
3048 if (start_flush_work(work, &barr, from_cancel)) {
3049 wait_for_completion(&barr.done);
3050 destroy_work_on_stack(&barr.work);
3051 return true;
3052 } else {
3053 return false;
3054 }
3055}
3056
3057/**
3058 * flush_work - wait for a work to finish executing the last queueing instance
3059 * @work: the work to flush
3060 *
3061 * Wait until @work has finished execution. @work is guaranteed to be idle
3062 * on return if it hasn't been requeued since flush started.
3063 *
3064 * Return:
3065 * %true if flush_work() waited for the work to finish execution,
3066 * %false if it was already idle.
3067 */
3068bool flush_work(struct work_struct *work)
3069{
3070 return __flush_work(work, false);
3071}
3072EXPORT_SYMBOL_GPL(flush_work);
3073
3074struct cwt_wait {
3075 wait_queue_entry_t wait;
3076 struct work_struct *work;
3077};
3078
3079static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3080{
3081 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3082
3083 if (cwait->work != key)
3084 return 0;
3085 return autoremove_wake_function(wait, mode, sync, key);
3086}
3087
3088static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3089{
3090 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3091 unsigned long flags;
3092 int ret;
3093
3094 do {
3095 ret = try_to_grab_pending(work, is_dwork, &flags);
3096 /*
3097 * If someone else is already canceling, wait for it to
3098 * finish. flush_work() doesn't work for PREEMPT_NONE
3099 * because we may get scheduled between @work's completion
3100 * and the other canceling task resuming and clearing
3101 * CANCELING - flush_work() will return false immediately
3102 * as @work is no longer busy, try_to_grab_pending() will
3103 * return -ENOENT as @work is still being canceled and the
3104 * other canceling task won't be able to clear CANCELING as
3105 * we're hogging the CPU.
3106 *
3107 * Let's wait for completion using a waitqueue. As this
3108 * may lead to the thundering herd problem, use a custom
3109 * wake function which matches @work along with exclusive
3110 * wait and wakeup.
3111 */
3112 if (unlikely(ret == -ENOENT)) {
3113 struct cwt_wait cwait;
3114
3115 init_wait(&cwait.wait);
3116 cwait.wait.func = cwt_wakefn;
3117 cwait.work = work;
3118
3119 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3120 TASK_UNINTERRUPTIBLE);
3121 if (work_is_canceling(work))
3122 schedule();
3123 finish_wait(&cancel_waitq, &cwait.wait);
3124 }
3125 } while (unlikely(ret < 0));
3126
3127 /* tell other tasks trying to grab @work to back off */
3128 mark_work_canceling(work);
3129 local_irq_restore(flags);
3130
3131 /*
3132 * This allows canceling during early boot. We know that @work
3133 * isn't executing.
3134 */
3135 if (wq_online)
3136 __flush_work(work, true);
3137
3138 clear_work_data(work);
3139
3140 /*
3141 * Paired with prepare_to_wait() above so that either
3142 * waitqueue_active() is visible here or !work_is_canceling() is
3143 * visible there.
3144 */
3145 smp_mb();
3146 if (waitqueue_active(&cancel_waitq))
3147 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3148
3149 return ret;
3150}
3151
3152/**
3153 * cancel_work_sync - cancel a work and wait for it to finish
3154 * @work: the work to cancel
3155 *
3156 * Cancel @work and wait for its execution to finish. This function
3157 * can be used even if the work re-queues itself or migrates to
3158 * another workqueue. On return from this function, @work is
3159 * guaranteed to be not pending or executing on any CPU.
3160 *
3161 * cancel_work_sync(&delayed_work->work) must not be used for
3162 * delayed_work's. Use cancel_delayed_work_sync() instead.
3163 *
3164 * The caller must ensure that the workqueue on which @work was last
3165 * queued can't be destroyed before this function returns.
3166 *
3167 * Return:
3168 * %true if @work was pending, %false otherwise.
3169 */
3170bool cancel_work_sync(struct work_struct *work)
3171{
3172 return __cancel_work_timer(work, false);
3173}
3174EXPORT_SYMBOL_GPL(cancel_work_sync);
3175
3176/**
3177 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3178 * @dwork: the delayed work to flush
3179 *
3180 * Delayed timer is cancelled and the pending work is queued for
3181 * immediate execution. Like flush_work(), this function only
3182 * considers the last queueing instance of @dwork.
3183 *
3184 * Return:
3185 * %true if flush_work() waited for the work to finish execution,
3186 * %false if it was already idle.
3187 */
3188bool flush_delayed_work(struct delayed_work *dwork)
3189{
3190 local_irq_disable();
3191 if (del_timer_sync(&dwork->timer))
3192 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3193 local_irq_enable();
3194 return flush_work(&dwork->work);
3195}
3196EXPORT_SYMBOL(flush_delayed_work);
3197
3198/**
3199 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3200 * @rwork: the rcu work to flush
3201 *
3202 * Return:
3203 * %true if flush_rcu_work() waited for the work to finish execution,
3204 * %false if it was already idle.
3205 */
3206bool flush_rcu_work(struct rcu_work *rwork)
3207{
3208 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3209 rcu_barrier();
3210 flush_work(&rwork->work);
3211 return true;
3212 } else {
3213 return flush_work(&rwork->work);
3214 }
3215}
3216EXPORT_SYMBOL(flush_rcu_work);
3217
3218static bool __cancel_work(struct work_struct *work, bool is_dwork)
3219{
3220 unsigned long flags;
3221 int ret;
3222
3223 do {
3224 ret = try_to_grab_pending(work, is_dwork, &flags);
3225 } while (unlikely(ret == -EAGAIN));
3226
3227 if (unlikely(ret < 0))
3228 return false;
3229
3230 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3231 local_irq_restore(flags);
3232 return ret;
3233}
3234
3235/**
3236 * cancel_delayed_work - cancel a delayed work
3237 * @dwork: delayed_work to cancel
3238 *
3239 * Kill off a pending delayed_work.
3240 *
3241 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3242 * pending.
3243 *
3244 * Note:
3245 * The work callback function may still be running on return, unless
3246 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3247 * use cancel_delayed_work_sync() to wait on it.
3248 *
3249 * This function is safe to call from any context including IRQ handler.
3250 */
3251bool cancel_delayed_work(struct delayed_work *dwork)
3252{
3253 return __cancel_work(&dwork->work, true);
3254}
3255EXPORT_SYMBOL(cancel_delayed_work);
3256
3257/**
3258 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3259 * @dwork: the delayed work cancel
3260 *
3261 * This is cancel_work_sync() for delayed works.
3262 *
3263 * Return:
3264 * %true if @dwork was pending, %false otherwise.
3265 */
3266bool cancel_delayed_work_sync(struct delayed_work *dwork)
3267{
3268 return __cancel_work_timer(&dwork->work, true);
3269}
3270EXPORT_SYMBOL(cancel_delayed_work_sync);
3271
3272/**
3273 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3274 * @func: the function to call
3275 *
3276 * schedule_on_each_cpu() executes @func on each online CPU using the
3277 * system workqueue and blocks until all CPUs have completed.
3278 * schedule_on_each_cpu() is very slow.
3279 *
3280 * Return:
3281 * 0 on success, -errno on failure.
3282 */
3283int schedule_on_each_cpu(work_func_t func)
3284{
3285 int cpu;
3286 struct work_struct __percpu *works;
3287
3288 works = alloc_percpu(struct work_struct);
3289 if (!works)
3290 return -ENOMEM;
3291
3292 get_online_cpus();
3293
3294 for_each_online_cpu(cpu) {
3295 struct work_struct *work = per_cpu_ptr(works, cpu);
3296
3297 INIT_WORK(work, func);
3298 schedule_work_on(cpu, work);
3299 }
3300
3301 for_each_online_cpu(cpu)
3302 flush_work(per_cpu_ptr(works, cpu));
3303
3304 put_online_cpus();
3305 free_percpu(works);
3306 return 0;
3307}
3308
3309/**
3310 * execute_in_process_context - reliably execute the routine with user context
3311 * @fn: the function to execute
3312 * @ew: guaranteed storage for the execute work structure (must
3313 * be available when the work executes)
3314 *
3315 * Executes the function immediately if process context is available,
3316 * otherwise schedules the function for delayed execution.
3317 *
3318 * Return: 0 - function was executed
3319 * 1 - function was scheduled for execution
3320 */
3321int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3322{
3323 if (!in_interrupt()) {
3324 fn(&ew->work);
3325 return 0;
3326 }
3327
3328 INIT_WORK(&ew->work, fn);
3329 schedule_work(&ew->work);
3330
3331 return 1;
3332}
3333EXPORT_SYMBOL_GPL(execute_in_process_context);
3334
3335/**
3336 * free_workqueue_attrs - free a workqueue_attrs
3337 * @attrs: workqueue_attrs to free
3338 *
3339 * Undo alloc_workqueue_attrs().
3340 */
3341void free_workqueue_attrs(struct workqueue_attrs *attrs)
3342{
3343 if (attrs) {
3344 free_cpumask_var(attrs->cpumask);
3345 kfree(attrs);
3346 }
3347}
3348
3349/**
3350 * alloc_workqueue_attrs - allocate a workqueue_attrs
3351 *
3352 * Allocate a new workqueue_attrs, initialize with default settings and
3353 * return it.
3354 *
3355 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3356 */
3357struct workqueue_attrs *alloc_workqueue_attrs(void)
3358{
3359 struct workqueue_attrs *attrs;
3360
3361 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3362 if (!attrs)
3363 goto fail;
3364 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3365 goto fail;
3366
3367 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3368 return attrs;
3369fail:
3370 free_workqueue_attrs(attrs);
3371 return NULL;
3372}
3373
3374static void copy_workqueue_attrs(struct workqueue_attrs *to,
3375 const struct workqueue_attrs *from)
3376{
3377 to->nice = from->nice;
3378 cpumask_copy(to->cpumask, from->cpumask);
3379 /*
3380 * Unlike hash and equality test, this function doesn't ignore
3381 * ->no_numa as it is used for both pool and wq attrs. Instead,
3382 * get_unbound_pool() explicitly clears ->no_numa after copying.
3383 */
3384 to->no_numa = from->no_numa;
3385}
3386
3387/* hash value of the content of @attr */
3388static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3389{
3390 u32 hash = 0;
3391
3392 hash = jhash_1word(attrs->nice, hash);
3393 hash = jhash(cpumask_bits(attrs->cpumask),
3394 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3395 return hash;
3396}
3397
3398/* content equality test */
3399static bool wqattrs_equal(const struct workqueue_attrs *a,
3400 const struct workqueue_attrs *b)
3401{
3402 if (a->nice != b->nice)
3403 return false;
3404 if (!cpumask_equal(a->cpumask, b->cpumask))
3405 return false;
3406 return true;
3407}
3408
3409/**
3410 * init_worker_pool - initialize a newly zalloc'd worker_pool
3411 * @pool: worker_pool to initialize
3412 *
3413 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3414 *
3415 * Return: 0 on success, -errno on failure. Even on failure, all fields
3416 * inside @pool proper are initialized and put_unbound_pool() can be called
3417 * on @pool safely to release it.
3418 */
3419static int init_worker_pool(struct worker_pool *pool)
3420{
3421 spin_lock_init(&pool->lock);
3422 pool->id = -1;
3423 pool->cpu = -1;
3424 pool->node = NUMA_NO_NODE;
3425 pool->flags |= POOL_DISASSOCIATED;
3426 pool->watchdog_ts = jiffies;
3427 INIT_LIST_HEAD(&pool->worklist);
3428 INIT_LIST_HEAD(&pool->idle_list);
3429 hash_init(pool->busy_hash);
3430
3431 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3432
3433 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3434
3435 INIT_LIST_HEAD(&pool->workers);
3436
3437 ida_init(&pool->worker_ida);
3438 INIT_HLIST_NODE(&pool->hash_node);
3439 pool->refcnt = 1;
3440
3441 /* shouldn't fail above this point */
3442 pool->attrs = alloc_workqueue_attrs();
3443 if (!pool->attrs)
3444 return -ENOMEM;
3445 return 0;
3446}
3447
3448#ifdef CONFIG_LOCKDEP
3449static void wq_init_lockdep(struct workqueue_struct *wq)
3450{
3451 char *lock_name;
3452
3453 lockdep_register_key(&wq->key);
3454 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3455 if (!lock_name)
3456 lock_name = wq->name;
3457
3458 wq->lock_name = lock_name;
3459 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3460}
3461
3462static void wq_unregister_lockdep(struct workqueue_struct *wq)
3463{
3464 lockdep_unregister_key(&wq->key);
3465}
3466
3467static void wq_free_lockdep(struct workqueue_struct *wq)
3468{
3469 if (wq->lock_name != wq->name)
3470 kfree(wq->lock_name);
3471}
3472#else
3473static void wq_init_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476
3477static void wq_unregister_lockdep(struct workqueue_struct *wq)
3478{
3479}
3480
3481static void wq_free_lockdep(struct workqueue_struct *wq)
3482{
3483}
3484#endif
3485
3486static void rcu_free_wq(struct rcu_head *rcu)
3487{
3488 struct workqueue_struct *wq =
3489 container_of(rcu, struct workqueue_struct, rcu);
3490
3491 wq_free_lockdep(wq);
3492
3493 if (!(wq->flags & WQ_UNBOUND))
3494 free_percpu(wq->cpu_pwqs);
3495 else
3496 free_workqueue_attrs(wq->unbound_attrs);
3497
3498 kfree(wq->rescuer);
3499 kfree(wq);
3500}
3501
3502static void rcu_free_pool(struct rcu_head *rcu)
3503{
3504 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3505
3506 ida_destroy(&pool->worker_ida);
3507 free_workqueue_attrs(pool->attrs);
3508 kfree(pool);
3509}
3510
3511/**
3512 * put_unbound_pool - put a worker_pool
3513 * @pool: worker_pool to put
3514 *
3515 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3516 * safe manner. get_unbound_pool() calls this function on its failure path
3517 * and this function should be able to release pools which went through,
3518 * successfully or not, init_worker_pool().
3519 *
3520 * Should be called with wq_pool_mutex held.
3521 */
3522static void put_unbound_pool(struct worker_pool *pool)
3523{
3524 DECLARE_COMPLETION_ONSTACK(detach_completion);
3525 struct worker *worker;
3526
3527 lockdep_assert_held(&wq_pool_mutex);
3528
3529 if (--pool->refcnt)
3530 return;
3531
3532 /* sanity checks */
3533 if (WARN_ON(!(pool->cpu < 0)) ||
3534 WARN_ON(!list_empty(&pool->worklist)))
3535 return;
3536
3537 /* release id and unhash */
3538 if (pool->id >= 0)
3539 idr_remove(&worker_pool_idr, pool->id);
3540 hash_del(&pool->hash_node);
3541
3542 /*
3543 * Become the manager and destroy all workers. This prevents
3544 * @pool's workers from blocking on attach_mutex. We're the last
3545 * manager and @pool gets freed with the flag set.
3546 */
3547 spin_lock_irq(&pool->lock);
3548 wait_event_lock_irq(wq_manager_wait,
3549 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3550 pool->flags |= POOL_MANAGER_ACTIVE;
3551
3552 while ((worker = first_idle_worker(pool)))
3553 destroy_worker(worker);
3554 WARN_ON(pool->nr_workers || pool->nr_idle);
3555 spin_unlock_irq(&pool->lock);
3556
3557 mutex_lock(&wq_pool_attach_mutex);
3558 if (!list_empty(&pool->workers))
3559 pool->detach_completion = &detach_completion;
3560 mutex_unlock(&wq_pool_attach_mutex);
3561
3562 if (pool->detach_completion)
3563 wait_for_completion(pool->detach_completion);
3564
3565 /* shut down the timers */
3566 del_timer_sync(&pool->idle_timer);
3567 del_timer_sync(&pool->mayday_timer);
3568
3569 /* RCU protected to allow dereferences from get_work_pool() */
3570 call_rcu(&pool->rcu, rcu_free_pool);
3571}
3572
3573/**
3574 * get_unbound_pool - get a worker_pool with the specified attributes
3575 * @attrs: the attributes of the worker_pool to get
3576 *
3577 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3578 * reference count and return it. If there already is a matching
3579 * worker_pool, it will be used; otherwise, this function attempts to
3580 * create a new one.
3581 *
3582 * Should be called with wq_pool_mutex held.
3583 *
3584 * Return: On success, a worker_pool with the same attributes as @attrs.
3585 * On failure, %NULL.
3586 */
3587static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3588{
3589 u32 hash = wqattrs_hash(attrs);
3590 struct worker_pool *pool;
3591 int node;
3592 int target_node = NUMA_NO_NODE;
3593
3594 lockdep_assert_held(&wq_pool_mutex);
3595
3596 /* do we already have a matching pool? */
3597 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3598 if (wqattrs_equal(pool->attrs, attrs)) {
3599 pool->refcnt++;
3600 return pool;
3601 }
3602 }
3603
3604 /* if cpumask is contained inside a NUMA node, we belong to that node */
3605 if (wq_numa_enabled) {
3606 for_each_node(node) {
3607 if (cpumask_subset(attrs->cpumask,
3608 wq_numa_possible_cpumask[node])) {
3609 target_node = node;
3610 break;
3611 }
3612 }
3613 }
3614
3615 /* nope, create a new one */
3616 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3617 if (!pool || init_worker_pool(pool) < 0)
3618 goto fail;
3619
3620 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3621 copy_workqueue_attrs(pool->attrs, attrs);
3622 pool->node = target_node;
3623
3624 /*
3625 * no_numa isn't a worker_pool attribute, always clear it. See
3626 * 'struct workqueue_attrs' comments for detail.
3627 */
3628 pool->attrs->no_numa = false;
3629
3630 if (worker_pool_assign_id(pool) < 0)
3631 goto fail;
3632
3633 /* create and start the initial worker */
3634 if (wq_online && !create_worker(pool))
3635 goto fail;
3636
3637 /* install */
3638 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3639
3640 return pool;
3641fail:
3642 if (pool)
3643 put_unbound_pool(pool);
3644 return NULL;
3645}
3646
3647static void rcu_free_pwq(struct rcu_head *rcu)
3648{
3649 kmem_cache_free(pwq_cache,
3650 container_of(rcu, struct pool_workqueue, rcu));
3651}
3652
3653/*
3654 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3655 * and needs to be destroyed.
3656 */
3657static void pwq_unbound_release_workfn(struct work_struct *work)
3658{
3659 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3660 unbound_release_work);
3661 struct workqueue_struct *wq = pwq->wq;
3662 struct worker_pool *pool = pwq->pool;
3663 bool is_last;
3664
3665 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3666 return;
3667
3668 mutex_lock(&wq->mutex);
3669 list_del_rcu(&pwq->pwqs_node);
3670 is_last = list_empty(&wq->pwqs);
3671 mutex_unlock(&wq->mutex);
3672
3673 mutex_lock(&wq_pool_mutex);
3674 put_unbound_pool(pool);
3675 mutex_unlock(&wq_pool_mutex);
3676
3677 call_rcu(&pwq->rcu, rcu_free_pwq);
3678
3679 /*
3680 * If we're the last pwq going away, @wq is already dead and no one
3681 * is gonna access it anymore. Schedule RCU free.
3682 */
3683 if (is_last) {
3684 wq_unregister_lockdep(wq);
3685 call_rcu(&wq->rcu, rcu_free_wq);
3686 }
3687}
3688
3689/**
3690 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3691 * @pwq: target pool_workqueue
3692 *
3693 * If @pwq isn't freezing, set @pwq->max_active to the associated
3694 * workqueue's saved_max_active and activate delayed work items
3695 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3696 */
3697static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3698{
3699 struct workqueue_struct *wq = pwq->wq;
3700 bool freezable = wq->flags & WQ_FREEZABLE;
3701 unsigned long flags;
3702
3703 /* for @wq->saved_max_active */
3704 lockdep_assert_held(&wq->mutex);
3705
3706 /* fast exit for non-freezable wqs */
3707 if (!freezable && pwq->max_active == wq->saved_max_active)
3708 return;
3709
3710 /* this function can be called during early boot w/ irq disabled */
3711 spin_lock_irqsave(&pwq->pool->lock, flags);
3712
3713 /*
3714 * During [un]freezing, the caller is responsible for ensuring that
3715 * this function is called at least once after @workqueue_freezing
3716 * is updated and visible.
3717 */
3718 if (!freezable || !workqueue_freezing) {
3719 pwq->max_active = wq->saved_max_active;
3720
3721 while (!list_empty(&pwq->delayed_works) &&
3722 pwq->nr_active < pwq->max_active)
3723 pwq_activate_first_delayed(pwq);
3724
3725 /*
3726 * Need to kick a worker after thawed or an unbound wq's
3727 * max_active is bumped. It's a slow path. Do it always.
3728 */
3729 wake_up_worker(pwq->pool);
3730 } else {
3731 pwq->max_active = 0;
3732 }
3733
3734 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3735}
3736
3737/* initialize newly alloced @pwq which is associated with @wq and @pool */
3738static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3739 struct worker_pool *pool)
3740{
3741 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3742
3743 memset(pwq, 0, sizeof(*pwq));
3744
3745 pwq->pool = pool;
3746 pwq->wq = wq;
3747 pwq->flush_color = -1;
3748 pwq->refcnt = 1;
3749 INIT_LIST_HEAD(&pwq->delayed_works);
3750 INIT_LIST_HEAD(&pwq->pwqs_node);
3751 INIT_LIST_HEAD(&pwq->mayday_node);
3752 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3753}
3754
3755/* sync @pwq with the current state of its associated wq and link it */
3756static void link_pwq(struct pool_workqueue *pwq)
3757{
3758 struct workqueue_struct *wq = pwq->wq;
3759
3760 lockdep_assert_held(&wq->mutex);
3761
3762 /* may be called multiple times, ignore if already linked */
3763 if (!list_empty(&pwq->pwqs_node))
3764 return;
3765
3766 /* set the matching work_color */
3767 pwq->work_color = wq->work_color;
3768
3769 /* sync max_active to the current setting */
3770 pwq_adjust_max_active(pwq);
3771
3772 /* link in @pwq */
3773 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3774}
3775
3776/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3777static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3778 const struct workqueue_attrs *attrs)
3779{
3780 struct worker_pool *pool;
3781 struct pool_workqueue *pwq;
3782
3783 lockdep_assert_held(&wq_pool_mutex);
3784
3785 pool = get_unbound_pool(attrs);
3786 if (!pool)
3787 return NULL;
3788
3789 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3790 if (!pwq) {
3791 put_unbound_pool(pool);
3792 return NULL;
3793 }
3794
3795 init_pwq(pwq, wq, pool);
3796 return pwq;
3797}
3798
3799/**
3800 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3801 * @attrs: the wq_attrs of the default pwq of the target workqueue
3802 * @node: the target NUMA node
3803 * @cpu_going_down: if >= 0, the CPU to consider as offline
3804 * @cpumask: outarg, the resulting cpumask
3805 *
3806 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3807 * @cpu_going_down is >= 0, that cpu is considered offline during
3808 * calculation. The result is stored in @cpumask.
3809 *
3810 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3811 * enabled and @node has online CPUs requested by @attrs, the returned
3812 * cpumask is the intersection of the possible CPUs of @node and
3813 * @attrs->cpumask.
3814 *
3815 * The caller is responsible for ensuring that the cpumask of @node stays
3816 * stable.
3817 *
3818 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3819 * %false if equal.
3820 */
3821static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3822 int cpu_going_down, cpumask_t *cpumask)
3823{
3824 if (!wq_numa_enabled || attrs->no_numa)
3825 goto use_dfl;
3826
3827 /* does @node have any online CPUs @attrs wants? */
3828 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3829 if (cpu_going_down >= 0)
3830 cpumask_clear_cpu(cpu_going_down, cpumask);
3831
3832 if (cpumask_empty(cpumask))
3833 goto use_dfl;
3834
3835 /* yeap, return possible CPUs in @node that @attrs wants */
3836 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3837
3838 if (cpumask_empty(cpumask)) {
3839 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3840 "possible intersect\n");
3841 return false;
3842 }
3843
3844 return !cpumask_equal(cpumask, attrs->cpumask);
3845
3846use_dfl:
3847 cpumask_copy(cpumask, attrs->cpumask);
3848 return false;
3849}
3850
3851/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3852static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3853 int node,
3854 struct pool_workqueue *pwq)
3855{
3856 struct pool_workqueue *old_pwq;
3857
3858 lockdep_assert_held(&wq_pool_mutex);
3859 lockdep_assert_held(&wq->mutex);
3860
3861 /* link_pwq() can handle duplicate calls */
3862 link_pwq(pwq);
3863
3864 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3865 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3866 return old_pwq;
3867}
3868
3869/* context to store the prepared attrs & pwqs before applying */
3870struct apply_wqattrs_ctx {
3871 struct workqueue_struct *wq; /* target workqueue */
3872 struct workqueue_attrs *attrs; /* attrs to apply */
3873 struct list_head list; /* queued for batching commit */
3874 struct pool_workqueue *dfl_pwq;
3875 struct pool_workqueue *pwq_tbl[];
3876};
3877
3878/* free the resources after success or abort */
3879static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3880{
3881 if (ctx) {
3882 int node;
3883
3884 for_each_node(node)
3885 put_pwq_unlocked(ctx->pwq_tbl[node]);
3886 put_pwq_unlocked(ctx->dfl_pwq);
3887
3888 free_workqueue_attrs(ctx->attrs);
3889
3890 kfree(ctx);
3891 }
3892}
3893
3894/* allocate the attrs and pwqs for later installation */
3895static struct apply_wqattrs_ctx *
3896apply_wqattrs_prepare(struct workqueue_struct *wq,
3897 const struct workqueue_attrs *attrs)
3898{
3899 struct apply_wqattrs_ctx *ctx;
3900 struct workqueue_attrs *new_attrs, *tmp_attrs;
3901 int node;
3902
3903 lockdep_assert_held(&wq_pool_mutex);
3904
3905 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3906
3907 new_attrs = alloc_workqueue_attrs();
3908 tmp_attrs = alloc_workqueue_attrs();
3909 if (!ctx || !new_attrs || !tmp_attrs)
3910 goto out_free;
3911
3912 /*
3913 * Calculate the attrs of the default pwq.
3914 * If the user configured cpumask doesn't overlap with the
3915 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3916 */
3917 copy_workqueue_attrs(new_attrs, attrs);
3918 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3919 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3920 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3921
3922 /*
3923 * We may create multiple pwqs with differing cpumasks. Make a
3924 * copy of @new_attrs which will be modified and used to obtain
3925 * pools.
3926 */
3927 copy_workqueue_attrs(tmp_attrs, new_attrs);
3928
3929 /*
3930 * If something goes wrong during CPU up/down, we'll fall back to
3931 * the default pwq covering whole @attrs->cpumask. Always create
3932 * it even if we don't use it immediately.
3933 */
3934 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3935 if (!ctx->dfl_pwq)
3936 goto out_free;
3937
3938 for_each_node(node) {
3939 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3940 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3941 if (!ctx->pwq_tbl[node])
3942 goto out_free;
3943 } else {
3944 ctx->dfl_pwq->refcnt++;
3945 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3946 }
3947 }
3948
3949 /* save the user configured attrs and sanitize it. */
3950 copy_workqueue_attrs(new_attrs, attrs);
3951 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3952 ctx->attrs = new_attrs;
3953
3954 ctx->wq = wq;
3955 free_workqueue_attrs(tmp_attrs);
3956 return ctx;
3957
3958out_free:
3959 free_workqueue_attrs(tmp_attrs);
3960 free_workqueue_attrs(new_attrs);
3961 apply_wqattrs_cleanup(ctx);
3962 return NULL;
3963}
3964
3965/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3966static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3967{
3968 int node;
3969
3970 /* all pwqs have been created successfully, let's install'em */
3971 mutex_lock(&ctx->wq->mutex);
3972
3973 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3974
3975 /* save the previous pwq and install the new one */
3976 for_each_node(node)
3977 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3978 ctx->pwq_tbl[node]);
3979
3980 /* @dfl_pwq might not have been used, ensure it's linked */
3981 link_pwq(ctx->dfl_pwq);
3982 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3983
3984 mutex_unlock(&ctx->wq->mutex);
3985}
3986
3987static void apply_wqattrs_lock(void)
3988{
3989 /* CPUs should stay stable across pwq creations and installations */
3990 get_online_cpus();
3991 mutex_lock(&wq_pool_mutex);
3992}
3993
3994static void apply_wqattrs_unlock(void)
3995{
3996 mutex_unlock(&wq_pool_mutex);
3997 put_online_cpus();
3998}
3999
4000static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4001 const struct workqueue_attrs *attrs)
4002{
4003 struct apply_wqattrs_ctx *ctx;
4004
4005 /* only unbound workqueues can change attributes */
4006 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4007 return -EINVAL;
4008
4009 /* creating multiple pwqs breaks ordering guarantee */
4010 if (!list_empty(&wq->pwqs)) {
4011 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4012 return -EINVAL;
4013
4014 wq->flags &= ~__WQ_ORDERED;
4015 }
4016
4017 ctx = apply_wqattrs_prepare(wq, attrs);
4018 if (!ctx)
4019 return -ENOMEM;
4020
4021 /* the ctx has been prepared successfully, let's commit it */
4022 apply_wqattrs_commit(ctx);
4023 apply_wqattrs_cleanup(ctx);
4024
4025 return 0;
4026}
4027
4028/**
4029 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4030 * @wq: the target workqueue
4031 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4032 *
4033 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4034 * machines, this function maps a separate pwq to each NUMA node with
4035 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4036 * NUMA node it was issued on. Older pwqs are released as in-flight work
4037 * items finish. Note that a work item which repeatedly requeues itself
4038 * back-to-back will stay on its current pwq.
4039 *
4040 * Performs GFP_KERNEL allocations.
4041 *
4042 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4043 *
4044 * Return: 0 on success and -errno on failure.
4045 */
4046int apply_workqueue_attrs(struct workqueue_struct *wq,
4047 const struct workqueue_attrs *attrs)
4048{
4049 int ret;
4050
4051 lockdep_assert_cpus_held();
4052
4053 mutex_lock(&wq_pool_mutex);
4054 ret = apply_workqueue_attrs_locked(wq, attrs);
4055 mutex_unlock(&wq_pool_mutex);
4056
4057 return ret;
4058}
4059
4060/**
4061 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4062 * @wq: the target workqueue
4063 * @cpu: the CPU coming up or going down
4064 * @online: whether @cpu is coming up or going down
4065 *
4066 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4067 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4068 * @wq accordingly.
4069 *
4070 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4071 * falls back to @wq->dfl_pwq which may not be optimal but is always
4072 * correct.
4073 *
4074 * Note that when the last allowed CPU of a NUMA node goes offline for a
4075 * workqueue with a cpumask spanning multiple nodes, the workers which were
4076 * already executing the work items for the workqueue will lose their CPU
4077 * affinity and may execute on any CPU. This is similar to how per-cpu
4078 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4079 * affinity, it's the user's responsibility to flush the work item from
4080 * CPU_DOWN_PREPARE.
4081 */
4082static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4083 bool online)
4084{
4085 int node = cpu_to_node(cpu);
4086 int cpu_off = online ? -1 : cpu;
4087 struct pool_workqueue *old_pwq = NULL, *pwq;
4088 struct workqueue_attrs *target_attrs;
4089 cpumask_t *cpumask;
4090
4091 lockdep_assert_held(&wq_pool_mutex);
4092
4093 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4094 wq->unbound_attrs->no_numa)
4095 return;
4096
4097 /*
4098 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4099 * Let's use a preallocated one. The following buf is protected by
4100 * CPU hotplug exclusion.
4101 */
4102 target_attrs = wq_update_unbound_numa_attrs_buf;
4103 cpumask = target_attrs->cpumask;
4104
4105 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4106 pwq = unbound_pwq_by_node(wq, node);
4107
4108 /*
4109 * Let's determine what needs to be done. If the target cpumask is
4110 * different from the default pwq's, we need to compare it to @pwq's
4111 * and create a new one if they don't match. If the target cpumask
4112 * equals the default pwq's, the default pwq should be used.
4113 */
4114 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4115 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4116 return;
4117 } else {
4118 goto use_dfl_pwq;
4119 }
4120
4121 /* create a new pwq */
4122 pwq = alloc_unbound_pwq(wq, target_attrs);
4123 if (!pwq) {
4124 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4125 wq->name);
4126 goto use_dfl_pwq;
4127 }
4128
4129 /* Install the new pwq. */
4130 mutex_lock(&wq->mutex);
4131 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4132 goto out_unlock;
4133
4134use_dfl_pwq:
4135 mutex_lock(&wq->mutex);
4136 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4137 get_pwq(wq->dfl_pwq);
4138 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4139 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4140out_unlock:
4141 mutex_unlock(&wq->mutex);
4142 put_pwq_unlocked(old_pwq);
4143}
4144
4145static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4146{
4147 bool highpri = wq->flags & WQ_HIGHPRI;
4148 int cpu, ret;
4149
4150 if (!(wq->flags & WQ_UNBOUND)) {
4151 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4152 if (!wq->cpu_pwqs)
4153 return -ENOMEM;
4154
4155 for_each_possible_cpu(cpu) {
4156 struct pool_workqueue *pwq =
4157 per_cpu_ptr(wq->cpu_pwqs, cpu);
4158 struct worker_pool *cpu_pools =
4159 per_cpu(cpu_worker_pools, cpu);
4160
4161 init_pwq(pwq, wq, &cpu_pools[highpri]);
4162
4163 mutex_lock(&wq->mutex);
4164 link_pwq(pwq);
4165 mutex_unlock(&wq->mutex);
4166 }
4167 return 0;
4168 }
4169
4170 get_online_cpus();
4171 if (wq->flags & __WQ_ORDERED) {
4172 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4173 /* there should only be single pwq for ordering guarantee */
4174 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4175 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4176 "ordering guarantee broken for workqueue %s\n", wq->name);
4177 } else {
4178 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4179 }
4180 put_online_cpus();
4181
4182 return ret;
4183}
4184
4185static int wq_clamp_max_active(int max_active, unsigned int flags,
4186 const char *name)
4187{
4188 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4189
4190 if (max_active < 1 || max_active > lim)
4191 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4192 max_active, name, 1, lim);
4193
4194 return clamp_val(max_active, 1, lim);
4195}
4196
4197/*
4198 * Workqueues which may be used during memory reclaim should have a rescuer
4199 * to guarantee forward progress.
4200 */
4201static int init_rescuer(struct workqueue_struct *wq)
4202{
4203 struct worker *rescuer;
4204 int ret;
4205
4206 if (!(wq->flags & WQ_MEM_RECLAIM))
4207 return 0;
4208
4209 rescuer = alloc_worker(NUMA_NO_NODE);
4210 if (!rescuer)
4211 return -ENOMEM;
4212
4213 rescuer->rescue_wq = wq;
4214 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4215 ret = PTR_ERR_OR_ZERO(rescuer->task);
4216 if (ret) {
4217 kfree(rescuer);
4218 return ret;
4219 }
4220
4221 wq->rescuer = rescuer;
4222 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4223 wake_up_process(rescuer->task);
4224
4225 return 0;
4226}
4227
4228__printf(1, 4)
4229struct workqueue_struct *alloc_workqueue(const char *fmt,
4230 unsigned int flags,
4231 int max_active, ...)
4232{
4233 size_t tbl_size = 0;
4234 va_list args;
4235 struct workqueue_struct *wq;
4236 struct pool_workqueue *pwq;
4237
4238 /*
4239 * Unbound && max_active == 1 used to imply ordered, which is no
4240 * longer the case on NUMA machines due to per-node pools. While
4241 * alloc_ordered_workqueue() is the right way to create an ordered
4242 * workqueue, keep the previous behavior to avoid subtle breakages
4243 * on NUMA.
4244 */
4245 if ((flags & WQ_UNBOUND) && max_active == 1)
4246 flags |= __WQ_ORDERED;
4247
4248 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4249 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4250 flags |= WQ_UNBOUND;
4251
4252 /* allocate wq and format name */
4253 if (flags & WQ_UNBOUND)
4254 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4255
4256 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4257 if (!wq)
4258 return NULL;
4259
4260 if (flags & WQ_UNBOUND) {
4261 wq->unbound_attrs = alloc_workqueue_attrs();
4262 if (!wq->unbound_attrs)
4263 goto err_free_wq;
4264 }
4265
4266 va_start(args, max_active);
4267 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4268 va_end(args);
4269
4270 max_active = max_active ?: WQ_DFL_ACTIVE;
4271 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4272
4273 /* init wq */
4274 wq->flags = flags;
4275 wq->saved_max_active = max_active;
4276 mutex_init(&wq->mutex);
4277 atomic_set(&wq->nr_pwqs_to_flush, 0);
4278 INIT_LIST_HEAD(&wq->pwqs);
4279 INIT_LIST_HEAD(&wq->flusher_queue);
4280 INIT_LIST_HEAD(&wq->flusher_overflow);
4281 INIT_LIST_HEAD(&wq->maydays);
4282
4283 wq_init_lockdep(wq);
4284 INIT_LIST_HEAD(&wq->list);
4285
4286 if (alloc_and_link_pwqs(wq) < 0)
4287 goto err_unreg_lockdep;
4288
4289 if (wq_online && init_rescuer(wq) < 0)
4290 goto err_destroy;
4291
4292 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4293 goto err_destroy;
4294
4295 /*
4296 * wq_pool_mutex protects global freeze state and workqueues list.
4297 * Grab it, adjust max_active and add the new @wq to workqueues
4298 * list.
4299 */
4300 mutex_lock(&wq_pool_mutex);
4301
4302 mutex_lock(&wq->mutex);
4303 for_each_pwq(pwq, wq)
4304 pwq_adjust_max_active(pwq);
4305 mutex_unlock(&wq->mutex);
4306
4307 list_add_tail_rcu(&wq->list, &workqueues);
4308
4309 mutex_unlock(&wq_pool_mutex);
4310
4311 return wq;
4312
4313err_unreg_lockdep:
4314 wq_unregister_lockdep(wq);
4315 wq_free_lockdep(wq);
4316err_free_wq:
4317 free_workqueue_attrs(wq->unbound_attrs);
4318 kfree(wq);
4319 return NULL;
4320err_destroy:
4321 destroy_workqueue(wq);
4322 return NULL;
4323}
4324EXPORT_SYMBOL_GPL(alloc_workqueue);
4325
4326/**
4327 * destroy_workqueue - safely terminate a workqueue
4328 * @wq: target workqueue
4329 *
4330 * Safely destroy a workqueue. All work currently pending will be done first.
4331 */
4332void destroy_workqueue(struct workqueue_struct *wq)
4333{
4334 struct pool_workqueue *pwq;
4335 int node;
4336
4337 /*
4338 * Remove it from sysfs first so that sanity check failure doesn't
4339 * lead to sysfs name conflicts.
4340 */
4341 workqueue_sysfs_unregister(wq);
4342
4343 /* drain it before proceeding with destruction */
4344 drain_workqueue(wq);
4345
4346 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4347 if (wq->rescuer) {
4348 struct worker *rescuer = wq->rescuer;
4349
4350 /* this prevents new queueing */
4351 spin_lock_irq(&wq_mayday_lock);
4352 wq->rescuer = NULL;
4353 spin_unlock_irq(&wq_mayday_lock);
4354
4355 /* rescuer will empty maydays list before exiting */
4356 kthread_stop(rescuer->task);
4357 kfree(rescuer);
4358 }
4359
4360 /* sanity checks */
4361 mutex_lock(&wq->mutex);
4362 for_each_pwq(pwq, wq) {
4363 int i;
4364
4365 for (i = 0; i < WORK_NR_COLORS; i++) {
4366 if (WARN_ON(pwq->nr_in_flight[i])) {
4367 mutex_unlock(&wq->mutex);
4368 show_workqueue_state();
4369 return;
4370 }
4371 }
4372
4373 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4374 WARN_ON(pwq->nr_active) ||
4375 WARN_ON(!list_empty(&pwq->delayed_works))) {
4376 mutex_unlock(&wq->mutex);
4377 show_workqueue_state();
4378 return;
4379 }
4380 }
4381 mutex_unlock(&wq->mutex);
4382
4383 /*
4384 * wq list is used to freeze wq, remove from list after
4385 * flushing is complete in case freeze races us.
4386 */
4387 mutex_lock(&wq_pool_mutex);
4388 list_del_rcu(&wq->list);
4389 mutex_unlock(&wq_pool_mutex);
4390
4391 if (!(wq->flags & WQ_UNBOUND)) {
4392 wq_unregister_lockdep(wq);
4393 /*
4394 * The base ref is never dropped on per-cpu pwqs. Directly
4395 * schedule RCU free.
4396 */
4397 call_rcu(&wq->rcu, rcu_free_wq);
4398 } else {
4399 /*
4400 * We're the sole accessor of @wq at this point. Directly
4401 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4402 * @wq will be freed when the last pwq is released.
4403 */
4404 for_each_node(node) {
4405 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4406 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4407 put_pwq_unlocked(pwq);
4408 }
4409
4410 /*
4411 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4412 * put. Don't access it afterwards.
4413 */
4414 pwq = wq->dfl_pwq;
4415 wq->dfl_pwq = NULL;
4416 put_pwq_unlocked(pwq);
4417 }
4418}
4419EXPORT_SYMBOL_GPL(destroy_workqueue);
4420
4421/**
4422 * workqueue_set_max_active - adjust max_active of a workqueue
4423 * @wq: target workqueue
4424 * @max_active: new max_active value.
4425 *
4426 * Set max_active of @wq to @max_active.
4427 *
4428 * CONTEXT:
4429 * Don't call from IRQ context.
4430 */
4431void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4432{
4433 struct pool_workqueue *pwq;
4434
4435 /* disallow meddling with max_active for ordered workqueues */
4436 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4437 return;
4438
4439 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4440
4441 mutex_lock(&wq->mutex);
4442
4443 wq->flags &= ~__WQ_ORDERED;
4444 wq->saved_max_active = max_active;
4445
4446 for_each_pwq(pwq, wq)
4447 pwq_adjust_max_active(pwq);
4448
4449 mutex_unlock(&wq->mutex);
4450}
4451EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4452
4453/**
4454 * current_work - retrieve %current task's work struct
4455 *
4456 * Determine if %current task is a workqueue worker and what it's working on.
4457 * Useful to find out the context that the %current task is running in.
4458 *
4459 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4460 */
4461struct work_struct *current_work(void)
4462{
4463 struct worker *worker = current_wq_worker();
4464
4465 return worker ? worker->current_work : NULL;
4466}
4467EXPORT_SYMBOL(current_work);
4468
4469/**
4470 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4471 *
4472 * Determine whether %current is a workqueue rescuer. Can be used from
4473 * work functions to determine whether it's being run off the rescuer task.
4474 *
4475 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4476 */
4477bool current_is_workqueue_rescuer(void)
4478{
4479 struct worker *worker = current_wq_worker();
4480
4481 return worker && worker->rescue_wq;
4482}
4483
4484/**
4485 * workqueue_congested - test whether a workqueue is congested
4486 * @cpu: CPU in question
4487 * @wq: target workqueue
4488 *
4489 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4490 * no synchronization around this function and the test result is
4491 * unreliable and only useful as advisory hints or for debugging.
4492 *
4493 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4494 * Note that both per-cpu and unbound workqueues may be associated with
4495 * multiple pool_workqueues which have separate congested states. A
4496 * workqueue being congested on one CPU doesn't mean the workqueue is also
4497 * contested on other CPUs / NUMA nodes.
4498 *
4499 * Return:
4500 * %true if congested, %false otherwise.
4501 */
4502bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4503{
4504 struct pool_workqueue *pwq;
4505 bool ret;
4506
4507 rcu_read_lock();
4508 preempt_disable();
4509
4510 if (cpu == WORK_CPU_UNBOUND)
4511 cpu = smp_processor_id();
4512
4513 if (!(wq->flags & WQ_UNBOUND))
4514 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4515 else
4516 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4517
4518 ret = !list_empty(&pwq->delayed_works);
4519 preempt_enable();
4520 rcu_read_unlock();
4521
4522 return ret;
4523}
4524EXPORT_SYMBOL_GPL(workqueue_congested);
4525
4526/**
4527 * work_busy - test whether a work is currently pending or running
4528 * @work: the work to be tested
4529 *
4530 * Test whether @work is currently pending or running. There is no
4531 * synchronization around this function and the test result is
4532 * unreliable and only useful as advisory hints or for debugging.
4533 *
4534 * Return:
4535 * OR'd bitmask of WORK_BUSY_* bits.
4536 */
4537unsigned int work_busy(struct work_struct *work)
4538{
4539 struct worker_pool *pool;
4540 unsigned long flags;
4541 unsigned int ret = 0;
4542
4543 if (work_pending(work))
4544 ret |= WORK_BUSY_PENDING;
4545
4546 rcu_read_lock();
4547 pool = get_work_pool(work);
4548 if (pool) {
4549 spin_lock_irqsave(&pool->lock, flags);
4550 if (find_worker_executing_work(pool, work))
4551 ret |= WORK_BUSY_RUNNING;
4552 spin_unlock_irqrestore(&pool->lock, flags);
4553 }
4554 rcu_read_unlock();
4555
4556 return ret;
4557}
4558EXPORT_SYMBOL_GPL(work_busy);
4559
4560/**
4561 * set_worker_desc - set description for the current work item
4562 * @fmt: printf-style format string
4563 * @...: arguments for the format string
4564 *
4565 * This function can be called by a running work function to describe what
4566 * the work item is about. If the worker task gets dumped, this
4567 * information will be printed out together to help debugging. The
4568 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4569 */
4570void set_worker_desc(const char *fmt, ...)
4571{
4572 struct worker *worker = current_wq_worker();
4573 va_list args;
4574
4575 if (worker) {
4576 va_start(args, fmt);
4577 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4578 va_end(args);
4579 }
4580}
4581EXPORT_SYMBOL_GPL(set_worker_desc);
4582
4583/**
4584 * print_worker_info - print out worker information and description
4585 * @log_lvl: the log level to use when printing
4586 * @task: target task
4587 *
4588 * If @task is a worker and currently executing a work item, print out the
4589 * name of the workqueue being serviced and worker description set with
4590 * set_worker_desc() by the currently executing work item.
4591 *
4592 * This function can be safely called on any task as long as the
4593 * task_struct itself is accessible. While safe, this function isn't
4594 * synchronized and may print out mixups or garbages of limited length.
4595 */
4596void print_worker_info(const char *log_lvl, struct task_struct *task)
4597{
4598 work_func_t *fn = NULL;
4599 char name[WQ_NAME_LEN] = { };
4600 char desc[WORKER_DESC_LEN] = { };
4601 struct pool_workqueue *pwq = NULL;
4602 struct workqueue_struct *wq = NULL;
4603 struct worker *worker;
4604
4605 if (!(task->flags & PF_WQ_WORKER))
4606 return;
4607
4608 /*
4609 * This function is called without any synchronization and @task
4610 * could be in any state. Be careful with dereferences.
4611 */
4612 worker = kthread_probe_data(task);
4613
4614 /*
4615 * Carefully copy the associated workqueue's workfn, name and desc.
4616 * Keep the original last '\0' in case the original is garbage.
4617 */
4618 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4619 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4620 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4621 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4622 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4623
4624 if (fn || name[0] || desc[0]) {
4625 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4626 if (strcmp(name, desc))
4627 pr_cont(" (%s)", desc);
4628 pr_cont("\n");
4629 }
4630}
4631
4632static void pr_cont_pool_info(struct worker_pool *pool)
4633{
4634 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4635 if (pool->node != NUMA_NO_NODE)
4636 pr_cont(" node=%d", pool->node);
4637 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4638}
4639
4640static void pr_cont_work(bool comma, struct work_struct *work)
4641{
4642 if (work->func == wq_barrier_func) {
4643 struct wq_barrier *barr;
4644
4645 barr = container_of(work, struct wq_barrier, work);
4646
4647 pr_cont("%s BAR(%d)", comma ? "," : "",
4648 task_pid_nr(barr->task));
4649 } else {
4650 pr_cont("%s %ps", comma ? "," : "", work->func);
4651 }
4652}
4653
4654static void show_pwq(struct pool_workqueue *pwq)
4655{
4656 struct worker_pool *pool = pwq->pool;
4657 struct work_struct *work;
4658 struct worker *worker;
4659 bool has_in_flight = false, has_pending = false;
4660 int bkt;
4661
4662 pr_info(" pwq %d:", pool->id);
4663 pr_cont_pool_info(pool);
4664
4665 pr_cont(" active=%d/%d refcnt=%d%s\n",
4666 pwq->nr_active, pwq->max_active, pwq->refcnt,
4667 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4668
4669 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4670 if (worker->current_pwq == pwq) {
4671 has_in_flight = true;
4672 break;
4673 }
4674 }
4675 if (has_in_flight) {
4676 bool comma = false;
4677
4678 pr_info(" in-flight:");
4679 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4680 if (worker->current_pwq != pwq)
4681 continue;
4682
4683 pr_cont("%s %d%s:%ps", comma ? "," : "",
4684 task_pid_nr(worker->task),
4685 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4686 worker->current_func);
4687 list_for_each_entry(work, &worker->scheduled, entry)
4688 pr_cont_work(false, work);
4689 comma = true;
4690 }
4691 pr_cont("\n");
4692 }
4693
4694 list_for_each_entry(work, &pool->worklist, entry) {
4695 if (get_work_pwq(work) == pwq) {
4696 has_pending = true;
4697 break;
4698 }
4699 }
4700 if (has_pending) {
4701 bool comma = false;
4702
4703 pr_info(" pending:");
4704 list_for_each_entry(work, &pool->worklist, entry) {
4705 if (get_work_pwq(work) != pwq)
4706 continue;
4707
4708 pr_cont_work(comma, work);
4709 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4710 }
4711 pr_cont("\n");
4712 }
4713
4714 if (!list_empty(&pwq->delayed_works)) {
4715 bool comma = false;
4716
4717 pr_info(" delayed:");
4718 list_for_each_entry(work, &pwq->delayed_works, entry) {
4719 pr_cont_work(comma, work);
4720 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4721 }
4722 pr_cont("\n");
4723 }
4724}
4725
4726/**
4727 * show_workqueue_state - dump workqueue state
4728 *
4729 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4730 * all busy workqueues and pools.
4731 */
4732void show_workqueue_state(void)
4733{
4734 struct workqueue_struct *wq;
4735 struct worker_pool *pool;
4736 unsigned long flags;
4737 int pi;
4738
4739 rcu_read_lock();
4740
4741 pr_info("Showing busy workqueues and worker pools:\n");
4742
4743 list_for_each_entry_rcu(wq, &workqueues, list) {
4744 struct pool_workqueue *pwq;
4745 bool idle = true;
4746
4747 for_each_pwq(pwq, wq) {
4748 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4749 idle = false;
4750 break;
4751 }
4752 }
4753 if (idle)
4754 continue;
4755
4756 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4757
4758 for_each_pwq(pwq, wq) {
4759 spin_lock_irqsave(&pwq->pool->lock, flags);
4760 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4761 show_pwq(pwq);
4762 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4763 /*
4764 * We could be printing a lot from atomic context, e.g.
4765 * sysrq-t -> show_workqueue_state(). Avoid triggering
4766 * hard lockup.
4767 */
4768 touch_nmi_watchdog();
4769 }
4770 }
4771
4772 for_each_pool(pool, pi) {
4773 struct worker *worker;
4774 bool first = true;
4775
4776 spin_lock_irqsave(&pool->lock, flags);
4777 if (pool->nr_workers == pool->nr_idle)
4778 goto next_pool;
4779
4780 pr_info("pool %d:", pool->id);
4781 pr_cont_pool_info(pool);
4782 pr_cont(" hung=%us workers=%d",
4783 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4784 pool->nr_workers);
4785 if (pool->manager)
4786 pr_cont(" manager: %d",
4787 task_pid_nr(pool->manager->task));
4788 list_for_each_entry(worker, &pool->idle_list, entry) {
4789 pr_cont(" %s%d", first ? "idle: " : "",
4790 task_pid_nr(worker->task));
4791 first = false;
4792 }
4793 pr_cont("\n");
4794 next_pool:
4795 spin_unlock_irqrestore(&pool->lock, flags);
4796 /*
4797 * We could be printing a lot from atomic context, e.g.
4798 * sysrq-t -> show_workqueue_state(). Avoid triggering
4799 * hard lockup.
4800 */
4801 touch_nmi_watchdog();
4802 }
4803
4804 rcu_read_unlock();
4805}
4806
4807/* used to show worker information through /proc/PID/{comm,stat,status} */
4808void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4809{
4810 int off;
4811
4812 /* always show the actual comm */
4813 off = strscpy(buf, task->comm, size);
4814 if (off < 0)
4815 return;
4816
4817 /* stabilize PF_WQ_WORKER and worker pool association */
4818 mutex_lock(&wq_pool_attach_mutex);
4819
4820 if (task->flags & PF_WQ_WORKER) {
4821 struct worker *worker = kthread_data(task);
4822 struct worker_pool *pool = worker->pool;
4823
4824 if (pool) {
4825 spin_lock_irq(&pool->lock);
4826 /*
4827 * ->desc tracks information (wq name or
4828 * set_worker_desc()) for the latest execution. If
4829 * current, prepend '+', otherwise '-'.
4830 */
4831 if (worker->desc[0] != '\0') {
4832 if (worker->current_work)
4833 scnprintf(buf + off, size - off, "+%s",
4834 worker->desc);
4835 else
4836 scnprintf(buf + off, size - off, "-%s",
4837 worker->desc);
4838 }
4839 spin_unlock_irq(&pool->lock);
4840 }
4841 }
4842
4843 mutex_unlock(&wq_pool_attach_mutex);
4844}
4845
4846#ifdef CONFIG_SMP
4847
4848/*
4849 * CPU hotplug.
4850 *
4851 * There are two challenges in supporting CPU hotplug. Firstly, there
4852 * are a lot of assumptions on strong associations among work, pwq and
4853 * pool which make migrating pending and scheduled works very
4854 * difficult to implement without impacting hot paths. Secondly,
4855 * worker pools serve mix of short, long and very long running works making
4856 * blocked draining impractical.
4857 *
4858 * This is solved by allowing the pools to be disassociated from the CPU
4859 * running as an unbound one and allowing it to be reattached later if the
4860 * cpu comes back online.
4861 */
4862
4863static void unbind_workers(int cpu)
4864{
4865 struct worker_pool *pool;
4866 struct worker *worker;
4867
4868 for_each_cpu_worker_pool(pool, cpu) {
4869 mutex_lock(&wq_pool_attach_mutex);
4870 spin_lock_irq(&pool->lock);
4871
4872 /*
4873 * We've blocked all attach/detach operations. Make all workers
4874 * unbound and set DISASSOCIATED. Before this, all workers
4875 * except for the ones which are still executing works from
4876 * before the last CPU down must be on the cpu. After
4877 * this, they may become diasporas.
4878 */
4879 for_each_pool_worker(worker, pool)
4880 worker->flags |= WORKER_UNBOUND;
4881
4882 pool->flags |= POOL_DISASSOCIATED;
4883
4884 spin_unlock_irq(&pool->lock);
4885 mutex_unlock(&wq_pool_attach_mutex);
4886
4887 /*
4888 * Call schedule() so that we cross rq->lock and thus can
4889 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4890 * This is necessary as scheduler callbacks may be invoked
4891 * from other cpus.
4892 */
4893 schedule();
4894
4895 /*
4896 * Sched callbacks are disabled now. Zap nr_running.
4897 * After this, nr_running stays zero and need_more_worker()
4898 * and keep_working() are always true as long as the
4899 * worklist is not empty. This pool now behaves as an
4900 * unbound (in terms of concurrency management) pool which
4901 * are served by workers tied to the pool.
4902 */
4903 atomic_set(&pool->nr_running, 0);
4904
4905 /*
4906 * With concurrency management just turned off, a busy
4907 * worker blocking could lead to lengthy stalls. Kick off
4908 * unbound chain execution of currently pending work items.
4909 */
4910 spin_lock_irq(&pool->lock);
4911 wake_up_worker(pool);
4912 spin_unlock_irq(&pool->lock);
4913 }
4914}
4915
4916/**
4917 * rebind_workers - rebind all workers of a pool to the associated CPU
4918 * @pool: pool of interest
4919 *
4920 * @pool->cpu is coming online. Rebind all workers to the CPU.
4921 */
4922static void rebind_workers(struct worker_pool *pool)
4923{
4924 struct worker *worker;
4925
4926 lockdep_assert_held(&wq_pool_attach_mutex);
4927
4928 /*
4929 * Restore CPU affinity of all workers. As all idle workers should
4930 * be on the run-queue of the associated CPU before any local
4931 * wake-ups for concurrency management happen, restore CPU affinity
4932 * of all workers first and then clear UNBOUND. As we're called
4933 * from CPU_ONLINE, the following shouldn't fail.
4934 */
4935 for_each_pool_worker(worker, pool)
4936 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4937 pool->attrs->cpumask) < 0);
4938
4939 spin_lock_irq(&pool->lock);
4940
4941 pool->flags &= ~POOL_DISASSOCIATED;
4942
4943 for_each_pool_worker(worker, pool) {
4944 unsigned int worker_flags = worker->flags;
4945
4946 /*
4947 * A bound idle worker should actually be on the runqueue
4948 * of the associated CPU for local wake-ups targeting it to
4949 * work. Kick all idle workers so that they migrate to the
4950 * associated CPU. Doing this in the same loop as
4951 * replacing UNBOUND with REBOUND is safe as no worker will
4952 * be bound before @pool->lock is released.
4953 */
4954 if (worker_flags & WORKER_IDLE)
4955 wake_up_process(worker->task);
4956
4957 /*
4958 * We want to clear UNBOUND but can't directly call
4959 * worker_clr_flags() or adjust nr_running. Atomically
4960 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4961 * @worker will clear REBOUND using worker_clr_flags() when
4962 * it initiates the next execution cycle thus restoring
4963 * concurrency management. Note that when or whether
4964 * @worker clears REBOUND doesn't affect correctness.
4965 *
4966 * WRITE_ONCE() is necessary because @worker->flags may be
4967 * tested without holding any lock in
4968 * wq_worker_running(). Without it, NOT_RUNNING test may
4969 * fail incorrectly leading to premature concurrency
4970 * management operations.
4971 */
4972 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4973 worker_flags |= WORKER_REBOUND;
4974 worker_flags &= ~WORKER_UNBOUND;
4975 WRITE_ONCE(worker->flags, worker_flags);
4976 }
4977
4978 spin_unlock_irq(&pool->lock);
4979}
4980
4981/**
4982 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4983 * @pool: unbound pool of interest
4984 * @cpu: the CPU which is coming up
4985 *
4986 * An unbound pool may end up with a cpumask which doesn't have any online
4987 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4988 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4989 * online CPU before, cpus_allowed of all its workers should be restored.
4990 */
4991static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4992{
4993 static cpumask_t cpumask;
4994 struct worker *worker;
4995
4996 lockdep_assert_held(&wq_pool_attach_mutex);
4997
4998 /* is @cpu allowed for @pool? */
4999 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5000 return;
5001
5002 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5003
5004 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5005 for_each_pool_worker(worker, pool)
5006 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5007}
5008
5009int workqueue_prepare_cpu(unsigned int cpu)
5010{
5011 struct worker_pool *pool;
5012
5013 for_each_cpu_worker_pool(pool, cpu) {
5014 if (pool->nr_workers)
5015 continue;
5016 if (!create_worker(pool))
5017 return -ENOMEM;
5018 }
5019 return 0;
5020}
5021
5022int workqueue_online_cpu(unsigned int cpu)
5023{
5024 struct worker_pool *pool;
5025 struct workqueue_struct *wq;
5026 int pi;
5027
5028 mutex_lock(&wq_pool_mutex);
5029
5030 for_each_pool(pool, pi) {
5031 mutex_lock(&wq_pool_attach_mutex);
5032
5033 if (pool->cpu == cpu)
5034 rebind_workers(pool);
5035 else if (pool->cpu < 0)
5036 restore_unbound_workers_cpumask(pool, cpu);
5037
5038 mutex_unlock(&wq_pool_attach_mutex);
5039 }
5040
5041 /* update NUMA affinity of unbound workqueues */
5042 list_for_each_entry(wq, &workqueues, list)
5043 wq_update_unbound_numa(wq, cpu, true);
5044
5045 mutex_unlock(&wq_pool_mutex);
5046 return 0;
5047}
5048
5049int workqueue_offline_cpu(unsigned int cpu)
5050{
5051 struct workqueue_struct *wq;
5052
5053 /* unbinding per-cpu workers should happen on the local CPU */
5054 if (WARN_ON(cpu != smp_processor_id()))
5055 return -1;
5056
5057 unbind_workers(cpu);
5058
5059 /* update NUMA affinity of unbound workqueues */
5060 mutex_lock(&wq_pool_mutex);
5061 list_for_each_entry(wq, &workqueues, list)
5062 wq_update_unbound_numa(wq, cpu, false);
5063 mutex_unlock(&wq_pool_mutex);
5064
5065 return 0;
5066}
5067
5068struct work_for_cpu {
5069 struct work_struct work;
5070 long (*fn)(void *);
5071 void *arg;
5072 long ret;
5073};
5074
5075static void work_for_cpu_fn(struct work_struct *work)
5076{
5077 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5078
5079 wfc->ret = wfc->fn(wfc->arg);
5080}
5081
5082/**
5083 * work_on_cpu - run a function in thread context on a particular cpu
5084 * @cpu: the cpu to run on
5085 * @fn: the function to run
5086 * @arg: the function arg
5087 *
5088 * It is up to the caller to ensure that the cpu doesn't go offline.
5089 * The caller must not hold any locks which would prevent @fn from completing.
5090 *
5091 * Return: The value @fn returns.
5092 */
5093long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5094{
5095 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5096
5097 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5098 schedule_work_on(cpu, &wfc.work);
5099 flush_work(&wfc.work);
5100 destroy_work_on_stack(&wfc.work);
5101 return wfc.ret;
5102}
5103EXPORT_SYMBOL_GPL(work_on_cpu);
5104
5105/**
5106 * work_on_cpu_safe - run a function in thread context on a particular cpu
5107 * @cpu: the cpu to run on
5108 * @fn: the function to run
5109 * @arg: the function argument
5110 *
5111 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5112 * any locks which would prevent @fn from completing.
5113 *
5114 * Return: The value @fn returns.
5115 */
5116long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5117{
5118 long ret = -ENODEV;
5119
5120 get_online_cpus();
5121 if (cpu_online(cpu))
5122 ret = work_on_cpu(cpu, fn, arg);
5123 put_online_cpus();
5124 return ret;
5125}
5126EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5127#endif /* CONFIG_SMP */
5128
5129#ifdef CONFIG_FREEZER
5130
5131/**
5132 * freeze_workqueues_begin - begin freezing workqueues
5133 *
5134 * Start freezing workqueues. After this function returns, all freezable
5135 * workqueues will queue new works to their delayed_works list instead of
5136 * pool->worklist.
5137 *
5138 * CONTEXT:
5139 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5140 */
5141void freeze_workqueues_begin(void)
5142{
5143 struct workqueue_struct *wq;
5144 struct pool_workqueue *pwq;
5145
5146 mutex_lock(&wq_pool_mutex);
5147
5148 WARN_ON_ONCE(workqueue_freezing);
5149 workqueue_freezing = true;
5150
5151 list_for_each_entry(wq, &workqueues, list) {
5152 mutex_lock(&wq->mutex);
5153 for_each_pwq(pwq, wq)
5154 pwq_adjust_max_active(pwq);
5155 mutex_unlock(&wq->mutex);
5156 }
5157
5158 mutex_unlock(&wq_pool_mutex);
5159}
5160
5161/**
5162 * freeze_workqueues_busy - are freezable workqueues still busy?
5163 *
5164 * Check whether freezing is complete. This function must be called
5165 * between freeze_workqueues_begin() and thaw_workqueues().
5166 *
5167 * CONTEXT:
5168 * Grabs and releases wq_pool_mutex.
5169 *
5170 * Return:
5171 * %true if some freezable workqueues are still busy. %false if freezing
5172 * is complete.
5173 */
5174bool freeze_workqueues_busy(void)
5175{
5176 bool busy = false;
5177 struct workqueue_struct *wq;
5178 struct pool_workqueue *pwq;
5179
5180 mutex_lock(&wq_pool_mutex);
5181
5182 WARN_ON_ONCE(!workqueue_freezing);
5183
5184 list_for_each_entry(wq, &workqueues, list) {
5185 if (!(wq->flags & WQ_FREEZABLE))
5186 continue;
5187 /*
5188 * nr_active is monotonically decreasing. It's safe
5189 * to peek without lock.
5190 */
5191 rcu_read_lock();
5192 for_each_pwq(pwq, wq) {
5193 WARN_ON_ONCE(pwq->nr_active < 0);
5194 if (pwq->nr_active) {
5195 busy = true;
5196 rcu_read_unlock();
5197 goto out_unlock;
5198 }
5199 }
5200 rcu_read_unlock();
5201 }
5202out_unlock:
5203 mutex_unlock(&wq_pool_mutex);
5204 return busy;
5205}
5206
5207/**
5208 * thaw_workqueues - thaw workqueues
5209 *
5210 * Thaw workqueues. Normal queueing is restored and all collected
5211 * frozen works are transferred to their respective pool worklists.
5212 *
5213 * CONTEXT:
5214 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5215 */
5216void thaw_workqueues(void)
5217{
5218 struct workqueue_struct *wq;
5219 struct pool_workqueue *pwq;
5220
5221 mutex_lock(&wq_pool_mutex);
5222
5223 if (!workqueue_freezing)
5224 goto out_unlock;
5225
5226 workqueue_freezing = false;
5227
5228 /* restore max_active and repopulate worklist */
5229 list_for_each_entry(wq, &workqueues, list) {
5230 mutex_lock(&wq->mutex);
5231 for_each_pwq(pwq, wq)
5232 pwq_adjust_max_active(pwq);
5233 mutex_unlock(&wq->mutex);
5234 }
5235
5236out_unlock:
5237 mutex_unlock(&wq_pool_mutex);
5238}
5239#endif /* CONFIG_FREEZER */
5240
5241static int workqueue_apply_unbound_cpumask(void)
5242{
5243 LIST_HEAD(ctxs);
5244 int ret = 0;
5245 struct workqueue_struct *wq;
5246 struct apply_wqattrs_ctx *ctx, *n;
5247
5248 lockdep_assert_held(&wq_pool_mutex);
5249
5250 list_for_each_entry(wq, &workqueues, list) {
5251 if (!(wq->flags & WQ_UNBOUND))
5252 continue;
5253 /* creating multiple pwqs breaks ordering guarantee */
5254 if (wq->flags & __WQ_ORDERED)
5255 continue;
5256
5257 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5258 if (!ctx) {
5259 ret = -ENOMEM;
5260 break;
5261 }
5262
5263 list_add_tail(&ctx->list, &ctxs);
5264 }
5265
5266 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5267 if (!ret)
5268 apply_wqattrs_commit(ctx);
5269 apply_wqattrs_cleanup(ctx);
5270 }
5271
5272 return ret;
5273}
5274
5275/**
5276 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5277 * @cpumask: the cpumask to set
5278 *
5279 * The low-level workqueues cpumask is a global cpumask that limits
5280 * the affinity of all unbound workqueues. This function check the @cpumask
5281 * and apply it to all unbound workqueues and updates all pwqs of them.
5282 *
5283 * Retun: 0 - Success
5284 * -EINVAL - Invalid @cpumask
5285 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5286 */
5287int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5288{
5289 int ret = -EINVAL;
5290 cpumask_var_t saved_cpumask;
5291
5292 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5293 return -ENOMEM;
5294
5295 /*
5296 * Not excluding isolated cpus on purpose.
5297 * If the user wishes to include them, we allow that.
5298 */
5299 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5300 if (!cpumask_empty(cpumask)) {
5301 apply_wqattrs_lock();
5302
5303 /* save the old wq_unbound_cpumask. */
5304 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5305
5306 /* update wq_unbound_cpumask at first and apply it to wqs. */
5307 cpumask_copy(wq_unbound_cpumask, cpumask);
5308 ret = workqueue_apply_unbound_cpumask();
5309
5310 /* restore the wq_unbound_cpumask when failed. */
5311 if (ret < 0)
5312 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5313
5314 apply_wqattrs_unlock();
5315 }
5316
5317 free_cpumask_var(saved_cpumask);
5318 return ret;
5319}
5320
5321#ifdef CONFIG_SYSFS
5322/*
5323 * Workqueues with WQ_SYSFS flag set is visible to userland via
5324 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5325 * following attributes.
5326 *
5327 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5328 * max_active RW int : maximum number of in-flight work items
5329 *
5330 * Unbound workqueues have the following extra attributes.
5331 *
5332 * pool_ids RO int : the associated pool IDs for each node
5333 * nice RW int : nice value of the workers
5334 * cpumask RW mask : bitmask of allowed CPUs for the workers
5335 * numa RW bool : whether enable NUMA affinity
5336 */
5337struct wq_device {
5338 struct workqueue_struct *wq;
5339 struct device dev;
5340};
5341
5342static struct workqueue_struct *dev_to_wq(struct device *dev)
5343{
5344 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5345
5346 return wq_dev->wq;
5347}
5348
5349static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5350 char *buf)
5351{
5352 struct workqueue_struct *wq = dev_to_wq(dev);
5353
5354 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5355}
5356static DEVICE_ATTR_RO(per_cpu);
5357
5358static ssize_t max_active_show(struct device *dev,
5359 struct device_attribute *attr, char *buf)
5360{
5361 struct workqueue_struct *wq = dev_to_wq(dev);
5362
5363 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5364}
5365
5366static ssize_t max_active_store(struct device *dev,
5367 struct device_attribute *attr, const char *buf,
5368 size_t count)
5369{
5370 struct workqueue_struct *wq = dev_to_wq(dev);
5371 int val;
5372
5373 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5374 return -EINVAL;
5375
5376 workqueue_set_max_active(wq, val);
5377 return count;
5378}
5379static DEVICE_ATTR_RW(max_active);
5380
5381static struct attribute *wq_sysfs_attrs[] = {
5382 &dev_attr_per_cpu.attr,
5383 &dev_attr_max_active.attr,
5384 NULL,
5385};
5386ATTRIBUTE_GROUPS(wq_sysfs);
5387
5388static ssize_t wq_pool_ids_show(struct device *dev,
5389 struct device_attribute *attr, char *buf)
5390{
5391 struct workqueue_struct *wq = dev_to_wq(dev);
5392 const char *delim = "";
5393 int node, written = 0;
5394
5395 get_online_cpus();
5396 rcu_read_lock();
5397 for_each_node(node) {
5398 written += scnprintf(buf + written, PAGE_SIZE - written,
5399 "%s%d:%d", delim, node,
5400 unbound_pwq_by_node(wq, node)->pool->id);
5401 delim = " ";
5402 }
5403 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5404 rcu_read_unlock();
5405 put_online_cpus();
5406
5407 return written;
5408}
5409
5410static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5411 char *buf)
5412{
5413 struct workqueue_struct *wq = dev_to_wq(dev);
5414 int written;
5415
5416 mutex_lock(&wq->mutex);
5417 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5418 mutex_unlock(&wq->mutex);
5419
5420 return written;
5421}
5422
5423/* prepare workqueue_attrs for sysfs store operations */
5424static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5425{
5426 struct workqueue_attrs *attrs;
5427
5428 lockdep_assert_held(&wq_pool_mutex);
5429
5430 attrs = alloc_workqueue_attrs();
5431 if (!attrs)
5432 return NULL;
5433
5434 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5435 return attrs;
5436}
5437
5438static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5439 const char *buf, size_t count)
5440{
5441 struct workqueue_struct *wq = dev_to_wq(dev);
5442 struct workqueue_attrs *attrs;
5443 int ret = -ENOMEM;
5444
5445 apply_wqattrs_lock();
5446
5447 attrs = wq_sysfs_prep_attrs(wq);
5448 if (!attrs)
5449 goto out_unlock;
5450
5451 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5452 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5453 ret = apply_workqueue_attrs_locked(wq, attrs);
5454 else
5455 ret = -EINVAL;
5456
5457out_unlock:
5458 apply_wqattrs_unlock();
5459 free_workqueue_attrs(attrs);
5460 return ret ?: count;
5461}
5462
5463static ssize_t wq_cpumask_show(struct device *dev,
5464 struct device_attribute *attr, char *buf)
5465{
5466 struct workqueue_struct *wq = dev_to_wq(dev);
5467 int written;
5468
5469 mutex_lock(&wq->mutex);
5470 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5471 cpumask_pr_args(wq->unbound_attrs->cpumask));
5472 mutex_unlock(&wq->mutex);
5473 return written;
5474}
5475
5476static ssize_t wq_cpumask_store(struct device *dev,
5477 struct device_attribute *attr,
5478 const char *buf, size_t count)
5479{
5480 struct workqueue_struct *wq = dev_to_wq(dev);
5481 struct workqueue_attrs *attrs;
5482 int ret = -ENOMEM;
5483
5484 apply_wqattrs_lock();
5485
5486 attrs = wq_sysfs_prep_attrs(wq);
5487 if (!attrs)
5488 goto out_unlock;
5489
5490 ret = cpumask_parse(buf, attrs->cpumask);
5491 if (!ret)
5492 ret = apply_workqueue_attrs_locked(wq, attrs);
5493
5494out_unlock:
5495 apply_wqattrs_unlock();
5496 free_workqueue_attrs(attrs);
5497 return ret ?: count;
5498}
5499
5500static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5501 char *buf)
5502{
5503 struct workqueue_struct *wq = dev_to_wq(dev);
5504 int written;
5505
5506 mutex_lock(&wq->mutex);
5507 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5508 !wq->unbound_attrs->no_numa);
5509 mutex_unlock(&wq->mutex);
5510
5511 return written;
5512}
5513
5514static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5515 const char *buf, size_t count)
5516{
5517 struct workqueue_struct *wq = dev_to_wq(dev);
5518 struct workqueue_attrs *attrs;
5519 int v, ret = -ENOMEM;
5520
5521 apply_wqattrs_lock();
5522
5523 attrs = wq_sysfs_prep_attrs(wq);
5524 if (!attrs)
5525 goto out_unlock;
5526
5527 ret = -EINVAL;
5528 if (sscanf(buf, "%d", &v) == 1) {
5529 attrs->no_numa = !v;
5530 ret = apply_workqueue_attrs_locked(wq, attrs);
5531 }
5532
5533out_unlock:
5534 apply_wqattrs_unlock();
5535 free_workqueue_attrs(attrs);
5536 return ret ?: count;
5537}
5538
5539static struct device_attribute wq_sysfs_unbound_attrs[] = {
5540 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5541 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5542 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5543 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5544 __ATTR_NULL,
5545};
5546
5547static struct bus_type wq_subsys = {
5548 .name = "workqueue",
5549 .dev_groups = wq_sysfs_groups,
5550};
5551
5552static ssize_t wq_unbound_cpumask_show(struct device *dev,
5553 struct device_attribute *attr, char *buf)
5554{
5555 int written;
5556
5557 mutex_lock(&wq_pool_mutex);
5558 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5559 cpumask_pr_args(wq_unbound_cpumask));
5560 mutex_unlock(&wq_pool_mutex);
5561
5562 return written;
5563}
5564
5565static ssize_t wq_unbound_cpumask_store(struct device *dev,
5566 struct device_attribute *attr, const char *buf, size_t count)
5567{
5568 cpumask_var_t cpumask;
5569 int ret;
5570
5571 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5572 return -ENOMEM;
5573
5574 ret = cpumask_parse(buf, cpumask);
5575 if (!ret)
5576 ret = workqueue_set_unbound_cpumask(cpumask);
5577
5578 free_cpumask_var(cpumask);
5579 return ret ? ret : count;
5580}
5581
5582static struct device_attribute wq_sysfs_cpumask_attr =
5583 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5584 wq_unbound_cpumask_store);
5585
5586static int __init wq_sysfs_init(void)
5587{
5588 int err;
5589
5590 err = subsys_virtual_register(&wq_subsys, NULL);
5591 if (err)
5592 return err;
5593
5594 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5595}
5596core_initcall(wq_sysfs_init);
5597
5598static void wq_device_release(struct device *dev)
5599{
5600 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5601
5602 kfree(wq_dev);
5603}
5604
5605/**
5606 * workqueue_sysfs_register - make a workqueue visible in sysfs
5607 * @wq: the workqueue to register
5608 *
5609 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5610 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5611 * which is the preferred method.
5612 *
5613 * Workqueue user should use this function directly iff it wants to apply
5614 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5615 * apply_workqueue_attrs() may race against userland updating the
5616 * attributes.
5617 *
5618 * Return: 0 on success, -errno on failure.
5619 */
5620int workqueue_sysfs_register(struct workqueue_struct *wq)
5621{
5622 struct wq_device *wq_dev;
5623 int ret;
5624
5625 /*
5626 * Adjusting max_active or creating new pwqs by applying
5627 * attributes breaks ordering guarantee. Disallow exposing ordered
5628 * workqueues.
5629 */
5630 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5631 return -EINVAL;
5632
5633 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5634 if (!wq_dev)
5635 return -ENOMEM;
5636
5637 wq_dev->wq = wq;
5638 wq_dev->dev.bus = &wq_subsys;
5639 wq_dev->dev.release = wq_device_release;
5640 dev_set_name(&wq_dev->dev, "%s", wq->name);
5641
5642 /*
5643 * unbound_attrs are created separately. Suppress uevent until
5644 * everything is ready.
5645 */
5646 dev_set_uevent_suppress(&wq_dev->dev, true);
5647
5648 ret = device_register(&wq_dev->dev);
5649 if (ret) {
5650 put_device(&wq_dev->dev);
5651 wq->wq_dev = NULL;
5652 return ret;
5653 }
5654
5655 if (wq->flags & WQ_UNBOUND) {
5656 struct device_attribute *attr;
5657
5658 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5659 ret = device_create_file(&wq_dev->dev, attr);
5660 if (ret) {
5661 device_unregister(&wq_dev->dev);
5662 wq->wq_dev = NULL;
5663 return ret;
5664 }
5665 }
5666 }
5667
5668 dev_set_uevent_suppress(&wq_dev->dev, false);
5669 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5670 return 0;
5671}
5672
5673/**
5674 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5675 * @wq: the workqueue to unregister
5676 *
5677 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5678 */
5679static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5680{
5681 struct wq_device *wq_dev = wq->wq_dev;
5682
5683 if (!wq->wq_dev)
5684 return;
5685
5686 wq->wq_dev = NULL;
5687 device_unregister(&wq_dev->dev);
5688}
5689#else /* CONFIG_SYSFS */
5690static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5691#endif /* CONFIG_SYSFS */
5692
5693/*
5694 * Workqueue watchdog.
5695 *
5696 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5697 * flush dependency, a concurrency managed work item which stays RUNNING
5698 * indefinitely. Workqueue stalls can be very difficult to debug as the
5699 * usual warning mechanisms don't trigger and internal workqueue state is
5700 * largely opaque.
5701 *
5702 * Workqueue watchdog monitors all worker pools periodically and dumps
5703 * state if some pools failed to make forward progress for a while where
5704 * forward progress is defined as the first item on ->worklist changing.
5705 *
5706 * This mechanism is controlled through the kernel parameter
5707 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5708 * corresponding sysfs parameter file.
5709 */
5710#ifdef CONFIG_WQ_WATCHDOG
5711
5712static unsigned long wq_watchdog_thresh = 30;
5713static struct timer_list wq_watchdog_timer;
5714
5715static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5716static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5717
5718static void wq_watchdog_reset_touched(void)
5719{
5720 int cpu;
5721
5722 wq_watchdog_touched = jiffies;
5723 for_each_possible_cpu(cpu)
5724 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5725}
5726
5727static void wq_watchdog_timer_fn(struct timer_list *unused)
5728{
5729 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5730 bool lockup_detected = false;
5731 struct worker_pool *pool;
5732 int pi;
5733
5734 if (!thresh)
5735 return;
5736
5737 rcu_read_lock();
5738
5739 for_each_pool(pool, pi) {
5740 unsigned long pool_ts, touched, ts;
5741
5742 if (list_empty(&pool->worklist))
5743 continue;
5744
5745 /* get the latest of pool and touched timestamps */
5746 pool_ts = READ_ONCE(pool->watchdog_ts);
5747 touched = READ_ONCE(wq_watchdog_touched);
5748
5749 if (time_after(pool_ts, touched))
5750 ts = pool_ts;
5751 else
5752 ts = touched;
5753
5754 if (pool->cpu >= 0) {
5755 unsigned long cpu_touched =
5756 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5757 pool->cpu));
5758 if (time_after(cpu_touched, ts))
5759 ts = cpu_touched;
5760 }
5761
5762 /* did we stall? */
5763 if (time_after(jiffies, ts + thresh)) {
5764 lockup_detected = true;
5765 pr_emerg("BUG: workqueue lockup - pool");
5766 pr_cont_pool_info(pool);
5767 pr_cont(" stuck for %us!\n",
5768 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5769 }
5770 }
5771
5772 rcu_read_unlock();
5773
5774 if (lockup_detected)
5775 show_workqueue_state();
5776
5777 wq_watchdog_reset_touched();
5778 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5779}
5780
5781notrace void wq_watchdog_touch(int cpu)
5782{
5783 if (cpu >= 0)
5784 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5785 else
5786 wq_watchdog_touched = jiffies;
5787}
5788
5789static void wq_watchdog_set_thresh(unsigned long thresh)
5790{
5791 wq_watchdog_thresh = 0;
5792 del_timer_sync(&wq_watchdog_timer);
5793
5794 if (thresh) {
5795 wq_watchdog_thresh = thresh;
5796 wq_watchdog_reset_touched();
5797 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5798 }
5799}
5800
5801static int wq_watchdog_param_set_thresh(const char *val,
5802 const struct kernel_param *kp)
5803{
5804 unsigned long thresh;
5805 int ret;
5806
5807 ret = kstrtoul(val, 0, &thresh);
5808 if (ret)
5809 return ret;
5810
5811 if (system_wq)
5812 wq_watchdog_set_thresh(thresh);
5813 else
5814 wq_watchdog_thresh = thresh;
5815
5816 return 0;
5817}
5818
5819static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5820 .set = wq_watchdog_param_set_thresh,
5821 .get = param_get_ulong,
5822};
5823
5824module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5825 0644);
5826
5827static void wq_watchdog_init(void)
5828{
5829 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5830 wq_watchdog_set_thresh(wq_watchdog_thresh);
5831}
5832
5833#else /* CONFIG_WQ_WATCHDOG */
5834
5835static inline void wq_watchdog_init(void) { }
5836
5837#endif /* CONFIG_WQ_WATCHDOG */
5838
5839static void __init wq_numa_init(void)
5840{
5841 cpumask_var_t *tbl;
5842 int node, cpu;
5843
5844 if (num_possible_nodes() <= 1)
5845 return;
5846
5847 if (wq_disable_numa) {
5848 pr_info("workqueue: NUMA affinity support disabled\n");
5849 return;
5850 }
5851
5852 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5853 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5854
5855 /*
5856 * We want masks of possible CPUs of each node which isn't readily
5857 * available. Build one from cpu_to_node() which should have been
5858 * fully initialized by now.
5859 */
5860 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5861 BUG_ON(!tbl);
5862
5863 for_each_node(node)
5864 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5865 node_online(node) ? node : NUMA_NO_NODE));
5866
5867 for_each_possible_cpu(cpu) {
5868 node = cpu_to_node(cpu);
5869 if (WARN_ON(node == NUMA_NO_NODE)) {
5870 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5871 /* happens iff arch is bonkers, let's just proceed */
5872 return;
5873 }
5874 cpumask_set_cpu(cpu, tbl[node]);
5875 }
5876
5877 wq_numa_possible_cpumask = tbl;
5878 wq_numa_enabled = true;
5879}
5880
5881/**
5882 * workqueue_init_early - early init for workqueue subsystem
5883 *
5884 * This is the first half of two-staged workqueue subsystem initialization
5885 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5886 * idr are up. It sets up all the data structures and system workqueues
5887 * and allows early boot code to create workqueues and queue/cancel work
5888 * items. Actual work item execution starts only after kthreads can be
5889 * created and scheduled right before early initcalls.
5890 */
5891int __init workqueue_init_early(void)
5892{
5893 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5894 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5895 int i, cpu;
5896
5897 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5898
5899 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5900 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5901
5902 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5903
5904 /* initialize CPU pools */
5905 for_each_possible_cpu(cpu) {
5906 struct worker_pool *pool;
5907
5908 i = 0;
5909 for_each_cpu_worker_pool(pool, cpu) {
5910 BUG_ON(init_worker_pool(pool));
5911 pool->cpu = cpu;
5912 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5913 pool->attrs->nice = std_nice[i++];
5914 pool->node = cpu_to_node(cpu);
5915
5916 /* alloc pool ID */
5917 mutex_lock(&wq_pool_mutex);
5918 BUG_ON(worker_pool_assign_id(pool));
5919 mutex_unlock(&wq_pool_mutex);
5920 }
5921 }
5922
5923 /* create default unbound and ordered wq attrs */
5924 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5925 struct workqueue_attrs *attrs;
5926
5927 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5928 attrs->nice = std_nice[i];
5929 unbound_std_wq_attrs[i] = attrs;
5930
5931 /*
5932 * An ordered wq should have only one pwq as ordering is
5933 * guaranteed by max_active which is enforced by pwqs.
5934 * Turn off NUMA so that dfl_pwq is used for all nodes.
5935 */
5936 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5937 attrs->nice = std_nice[i];
5938 attrs->no_numa = true;
5939 ordered_wq_attrs[i] = attrs;
5940 }
5941
5942 system_wq = alloc_workqueue("events", 0, 0);
5943 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5944 system_long_wq = alloc_workqueue("events_long", 0, 0);
5945 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5946 WQ_UNBOUND_MAX_ACTIVE);
5947 system_freezable_wq = alloc_workqueue("events_freezable",
5948 WQ_FREEZABLE, 0);
5949 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5950 WQ_POWER_EFFICIENT, 0);
5951 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5952 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5953 0);
5954 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5955 !system_unbound_wq || !system_freezable_wq ||
5956 !system_power_efficient_wq ||
5957 !system_freezable_power_efficient_wq);
5958
5959 return 0;
5960}
5961
5962/**
5963 * workqueue_init - bring workqueue subsystem fully online
5964 *
5965 * This is the latter half of two-staged workqueue subsystem initialization
5966 * and invoked as soon as kthreads can be created and scheduled.
5967 * Workqueues have been created and work items queued on them, but there
5968 * are no kworkers executing the work items yet. Populate the worker pools
5969 * with the initial workers and enable future kworker creations.
5970 */
5971int __init workqueue_init(void)
5972{
5973 struct workqueue_struct *wq;
5974 struct worker_pool *pool;
5975 int cpu, bkt;
5976
5977 /*
5978 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5979 * CPU to node mapping may not be available that early on some
5980 * archs such as power and arm64. As per-cpu pools created
5981 * previously could be missing node hint and unbound pools NUMA
5982 * affinity, fix them up.
5983 *
5984 * Also, while iterating workqueues, create rescuers if requested.
5985 */
5986 wq_numa_init();
5987
5988 mutex_lock(&wq_pool_mutex);
5989
5990 for_each_possible_cpu(cpu) {
5991 for_each_cpu_worker_pool(pool, cpu) {
5992 pool->node = cpu_to_node(cpu);
5993 }
5994 }
5995
5996 list_for_each_entry(wq, &workqueues, list) {
5997 wq_update_unbound_numa(wq, smp_processor_id(), true);
5998 WARN(init_rescuer(wq),
5999 "workqueue: failed to create early rescuer for %s",
6000 wq->name);
6001 }
6002
6003 mutex_unlock(&wq_pool_mutex);
6004
6005 /* create the initial workers */
6006 for_each_online_cpu(cpu) {
6007 for_each_cpu_worker_pool(pool, cpu) {
6008 pool->flags &= ~POOL_DISASSOCIATED;
6009 BUG_ON(!create_worker(pool));
6010 }
6011 }
6012
6013 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6014 BUG_ON(!create_worker(pool));
6015
6016 wq_online = true;
6017 wq_watchdog_init();
6018
6019 return 0;
6020}