]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - kernel/workqueue.c
workqueue: Replace pool->attach_mutex with global wq_pool_attach_mutex
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
... / ...
CommitLineData
1/*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27#include <linux/export.h>
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
38#include <linux/hardirq.h>
39#include <linux/mempolicy.h>
40#include <linux/freezer.h>
41#include <linux/debug_locks.h>
42#include <linux/lockdep.h>
43#include <linux/idr.h>
44#include <linux/jhash.h>
45#include <linux/hashtable.h>
46#include <linux/rculist.h>
47#include <linux/nodemask.h>
48#include <linux/moduleparam.h>
49#include <linux/uaccess.h>
50#include <linux/sched/isolation.h>
51#include <linux/nmi.h>
52
53#include "workqueue_internal.h"
54
55enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * wq_pool_attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108};
109
110/*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: wq_pool_attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144/* struct worker is defined in workqueue_internal.h */
145
146struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
164 /* a workers is either on busy_hash or idle_list, or the manager */
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
168 struct worker *manager; /* L: purely informational */
169 struct list_head workers; /* A: attached workers */
170 struct completion *detach_completion; /* all workers detached */
171
172 struct ida worker_ida; /* worker IDs for task name */
173
174 struct workqueue_attrs *attrs; /* I: worker attributes */
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
177
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
190} ____cacheline_aligned_in_smp;
191
192/*
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
197 */
198struct pool_workqueue {
199 struct worker_pool *pool; /* I: the associated pool */
200 struct workqueue_struct *wq; /* I: the owning workqueue */
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
203 int refcnt; /* L: reference count */
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
206 int nr_active; /* L: nr of active works */
207 int max_active; /* L: max active works */
208 struct list_head delayed_works; /* L: delayed works */
209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
210 struct list_head mayday_node; /* MD: node on wq->maydays */
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
216 * determined without grabbing wq->mutex.
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
221
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
228 struct completion done; /* flush completion */
229};
230
231struct wq_device;
232
233/*
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
236 */
237struct workqueue_struct {
238 struct list_head pwqs; /* WR: all pwqs of this wq */
239 struct list_head list; /* PR: list of all workqueues */
240
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
244 atomic_t nr_pwqs_to_flush; /* flush in progress */
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
248
249 struct list_head maydays; /* MD: pwqs requesting rescue */
250 struct worker *rescuer; /* I: rescue worker */
251
252 int nr_drainers; /* WQ: drain in progress */
253 int saved_max_active; /* WQ: saved pwq max_active */
254
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
257
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
261#ifdef CONFIG_LOCKDEP
262 struct lockdep_map lockdep_map;
263#endif
264 char name[WQ_NAME_LEN]; /* I: workqueue name */
265
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277};
278
279static struct kmem_cache *pwq_cache;
280
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
287/* see the comment above the definition of WQ_POWER_EFFICIENT */
288static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
291static bool wq_online; /* can kworkers be created yet? */
292
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
300static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
302
303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
304static bool workqueue_freezing; /* PL: have wqs started freezing? */
305
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
324/* the per-cpu worker pools */
325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326
327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
328
329/* PL: hash of all unbound pools keyed by pool->attrs */
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
332/* I: attributes used when instantiating standard unbound pools on demand */
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
338struct workqueue_struct *system_wq __read_mostly;
339EXPORT_SYMBOL(system_wq);
340struct workqueue_struct *system_highpri_wq __read_mostly;
341EXPORT_SYMBOL_GPL(system_highpri_wq);
342struct workqueue_struct *system_long_wq __read_mostly;
343EXPORT_SYMBOL_GPL(system_long_wq);
344struct workqueue_struct *system_unbound_wq __read_mostly;
345EXPORT_SYMBOL_GPL(system_unbound_wq);
346struct workqueue_struct *system_freezable_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_freezable_wq);
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352
353static int worker_thread(void *__worker);
354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
359#define assert_rcu_or_pool_mutex() \
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
363
364#define assert_rcu_or_wq_mutex(wq) \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
368
369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
379
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
384 *
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
391 */
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
396
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
401 *
402 * This must be called with wq_pool_attach_mutex.
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 else
411
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
416 *
417 * This must be called either with wq->mutex held or sched RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
423 */
424#define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
427 else
428
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
449static bool work_fixup_init(void *addr, enum debug_obj_state state)
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461}
462
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
467static bool work_fixup_free(void *addr, enum debug_obj_state state)
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546}
547
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
592
593/*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615{
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
619
620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622{
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625}
626
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636{
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674}
675
676static void clear_work_data(struct work_struct *work)
677{
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680}
681
682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683{
684 unsigned long data = atomic_long_read(&work->data);
685
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
690}
691
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
708{
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
711
712 assert_rcu_or_pool_mutex();
713
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
721
722 return idr_find(&worker_pool_idr, pool_id);
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
734 unsigned long data = atomic_long_read(&work->data);
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739
740 return data >> WORK_OFFQ_POOL_SHIFT;
741}
742
743static void mark_work_canceling(struct work_struct *work)
744{
745 unsigned long pool_id = get_work_pool_id(work);
746
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756}
757
758/*
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
762 */
763
764static bool __need_more_worker(struct worker_pool *pool)
765{
766 return !atomic_read(&pool->nr_running);
767}
768
769/*
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
776 */
777static bool need_more_worker(struct worker_pool *pool)
778{
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
780}
781
782/* Can I start working? Called from busy but !running workers. */
783static bool may_start_working(struct worker_pool *pool)
784{
785 return pool->nr_idle;
786}
787
788/* Do I need to keep working? Called from currently running workers. */
789static bool keep_working(struct worker_pool *pool)
790{
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
793}
794
795/* Do we need a new worker? Called from manager. */
796static bool need_to_create_worker(struct worker_pool *pool)
797{
798 return need_more_worker(pool) && !may_start_working(pool);
799}
800
801/* Do we have too many workers and should some go away? */
802static bool too_many_workers(struct worker_pool *pool)
803{
804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809}
810
811/*
812 * Wake up functions.
813 */
814
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
817{
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
820
821 return list_first_entry(&pool->idle_list, struct worker, entry);
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
827 *
828 * Wake up the first idle worker of @pool.
829 *
830 * CONTEXT:
831 * spin_lock_irq(pool->lock).
832 */
833static void wake_up_worker(struct worker_pool *pool)
834{
835 struct worker *worker = first_idle_worker(pool);
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
841/**
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
852void wq_worker_waking_up(struct task_struct *task, int cpu)
853{
854 struct worker *worker = kthread_data(task);
855
856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 WARN_ON_ONCE(worker->pool->cpu != cpu);
858 atomic_inc(&worker->pool->nr_running);
859 }
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
873 * Return:
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
876struct task_struct *wq_worker_sleeping(struct task_struct *task)
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 struct worker_pool *pool;
880
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
886 if (worker->flags & WORKER_NOT_RUNNING)
887 return NULL;
888
889 pool = worker->pool;
890
891 /* this can only happen on the local cpu */
892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 return NULL;
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
903 * manipulating idle_list, so dereferencing idle_list without pool
904 * lock is safe.
905 */
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
908 to_wakeup = first_idle_worker(pool);
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
912/**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
914 * @worker: self
915 * @flags: flags to set
916 *
917 * Set @flags in @worker->flags and adjust nr_running accordingly.
918 *
919 * CONTEXT:
920 * spin_lock_irq(pool->lock)
921 */
922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923{
924 struct worker_pool *pool = worker->pool;
925
926 WARN_ON_ONCE(worker->task != current);
927
928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
931 atomic_dec(&pool->nr_running);
932 }
933
934 worker->flags |= flags;
935}
936
937/**
938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to clear
941 *
942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
943 *
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
946 */
947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948{
949 struct worker_pool *pool = worker->pool;
950 unsigned int oflags = worker->flags;
951
952 WARN_ON_ONCE(worker->task != current);
953
954 worker->flags &= ~flags;
955
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
963 atomic_inc(&pool->nr_running);
964}
965
966/**
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
970 *
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
991 *
992 * CONTEXT:
993 * spin_lock_irq(pool->lock).
994 *
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
997 * otherwise.
998 */
999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 struct work_struct *work)
1001{
1002 struct worker *worker;
1003
1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
1008 return worker;
1009
1010 return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114 struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116 trace_workqueue_activate_work(work);
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
1119 move_linked_works(work, &pwq->pool->worklist, NULL);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 struct work_struct, entry);
1128
1129 pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color == WORK_NO_COLOR)
1147 goto out_put;
1148
1149 pwq->nr_in_flight[color]--;
1150
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
1153 /* one down, submit a delayed one */
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq->flush_color != color))
1160 goto out_put;
1161
1162 /* are there still in-flight works? */
1163 if (pwq->nr_in_flight[color])
1164 goto out_put;
1165
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
1168
1169 /*
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1172 */
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
1175out_put:
1176 put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
1208{
1209 struct worker_pool *pool;
1210 struct pool_workqueue *pwq;
1211
1212 local_irq_save(*flags);
1213
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
1235 pool = get_work_pool(work);
1236 if (!pool)
1237 goto fail;
1238
1239 spin_lock(&pool->lock);
1240 /*
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
1246 * item is currently queued on that pool.
1247 */
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
1255 * on the delayed_list, will confuse pwq->nr_active
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 pwq_activate_delayed_work(work);
1261
1262 list_del_init(&work->entry);
1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265 /* work->data points to pwq iff queued, point to pool */
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
1270 }
1271 spin_unlock(&pool->lock);
1272fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
1277 return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
1295{
1296 struct worker_pool *pool = pwq->pool;
1297
1298 /* we own @work, set data and link */
1299 set_work_pwq(work, pwq, extra_flags);
1300 list_add_tail(&work->entry, head);
1301 get_pwq(pwq);
1302
1303 /*
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
1307 */
1308 smp_mb();
1309
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
1327 return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337 static bool printed_dbg_warning;
1338 int new_cpu;
1339
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 struct work_struct *work)
1365{
1366 struct pool_workqueue *pwq;
1367 struct worker_pool *last_pool;
1368 struct list_head *worklist;
1369 unsigned int work_flags;
1370 unsigned int req_cpu = cpu;
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
1378 lockdep_assert_irqs_disabled();
1379
1380 debug_work_activate(work);
1381
1382 /* if draining, only works from the same workqueue are allowed */
1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 WARN_ON_ONCE(!is_chained_work(wq)))
1385 return;
1386retry:
1387 if (req_cpu == WORK_CPU_UNBOUND)
1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390 /* pwq which will be used unless @work is executing elsewhere */
1391 if (!(wq->flags & WQ_UNBOUND))
1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
1404
1405 spin_lock(&last_pool->lock);
1406
1407 worker = find_worker_executing_work(last_pool, work);
1408
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
1411 } else {
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
1414 spin_lock(&pwq->pool->lock);
1415 }
1416 } else {
1417 spin_lock(&pwq->pool->lock);
1418 }
1419
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442 if (WARN_ON(!list_empty(&work->entry))) {
1443 spin_unlock(&pwq->pool->lock);
1444 return;
1445 }
1446
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1449
1450 if (likely(pwq->nr_active < pwq->max_active)) {
1451 trace_workqueue_activate_work(work);
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
1458 worklist = &pwq->delayed_works;
1459 }
1460
1461 insert_work(pwq, work, worklist, work_flags);
1462
1463 spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1479{
1480 bool ret = false;
1481 unsigned long flags;
1482
1483 local_irq_save(flags);
1484
1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 __queue_work(cpu, wq, work);
1487 ret = true;
1488 }
1489
1490 local_irq_restore(flags);
1491 return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(struct timer_list *t)
1496{
1497 struct delayed_work *dwork = from_timer(dwork, t, timer);
1498
1499 /* should have been called from irqsafe timer with irq already off */
1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1506{
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
1509
1510 WARN_ON_ONCE(!wq);
1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512 WARN_ON_ONCE(timer_pending(timer));
1513 WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515 /*
1516 * If @delay is 0, queue @dwork->work immediately. This is for
1517 * both optimization and correctness. The earliest @timer can
1518 * expire is on the closest next tick and delayed_work users depend
1519 * on that there's no such delay when @delay is 0.
1520 */
1521 if (!delay) {
1522 __queue_work(cpu, wq, &dwork->work);
1523 return;
1524 }
1525
1526 dwork->wq = wq;
1527 dwork->cpu = cpu;
1528 timer->expires = jiffies + delay;
1529
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1534}
1535
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise. If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
1549{
1550 struct work_struct *work = &dwork->work;
1551 bool ret = false;
1552 unsigned long flags;
1553
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
1556
1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558 __queue_delayed_work(cpu, wq, dwork, delay);
1559 ret = true;
1560 }
1561
1562 local_irq_restore(flags);
1563 return ret;
1564}
1565EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587{
1588 unsigned long flags;
1589 int ret;
1590
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
1594
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
1598 }
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
1601 return ret;
1602}
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609 /* read the comment in __queue_work() */
1610 local_irq_disable();
1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612 local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise. Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627 struct work_struct *work = &rwork->work;
1628
1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630 rwork->wq = wq;
1631 call_rcu(&rwork->rcu, rcu_work_rcufn);
1632 return true;
1633 }
1634
1635 return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state. Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
1647 * spin_lock_irq(pool->lock).
1648 */
1649static void worker_enter_idle(struct worker *worker)
1650{
1651 struct worker_pool *pool = worker->pool;
1652
1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655 (worker->hentry.next || worker->hentry.pprev)))
1656 return;
1657
1658 /* can't use worker_set_flags(), also called from create_worker() */
1659 worker->flags |= WORKER_IDLE;
1660 pool->nr_idle++;
1661 worker->last_active = jiffies;
1662
1663 /* idle_list is LIFO */
1664 list_add(&worker->entry, &pool->idle_list);
1665
1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668
1669 /*
1670 * Sanity check nr_running. Because unbind_workers() releases
1671 * pool->lock between setting %WORKER_UNBOUND and zapping
1672 * nr_running, the warning may trigger spuriously. Check iff
1673 * unbind is not in progress.
1674 */
1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676 pool->nr_workers == pool->nr_idle &&
1677 atomic_read(&pool->nr_running));
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state. Update stats.
1685 *
1686 * LOCKING:
1687 * spin_lock_irq(pool->lock).
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
1691 struct worker_pool *pool = worker->pool;
1692
1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694 return;
1695 worker_clr_flags(worker, WORKER_IDLE);
1696 pool->nr_idle--;
1697 list_del_init(&worker->entry);
1698}
1699
1700static struct worker *alloc_worker(int node)
1701{
1702 struct worker *worker;
1703
1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705 if (worker) {
1706 INIT_LIST_HEAD(&worker->entry);
1707 INIT_LIST_HEAD(&worker->scheduled);
1708 INIT_LIST_HEAD(&worker->node);
1709 /* on creation a worker is in !idle && prep state */
1710 worker->flags = WORKER_PREP;
1711 }
1712 return worker;
1713}
1714
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726{
1727 mutex_lock(&wq_pool_attach_mutex);
1728
1729 /*
1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731 * online CPUs. It'll be re-applied when any of the CPUs come up.
1732 */
1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735 /*
1736 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1737 * stable across this function. See the comments above the flag
1738 * definition for details.
1739 */
1740 if (pool->flags & POOL_DISASSOCIATED)
1741 worker->flags |= WORKER_UNBOUND;
1742
1743 list_add_tail(&worker->node, &pool->workers);
1744
1745 mutex_unlock(&wq_pool_attach_mutex);
1746}
1747
1748/**
1749 * worker_detach_from_pool() - detach a worker from its pool
1750 * @worker: worker which is attached to its pool
1751 * @pool: the pool @worker is attached to
1752 *
1753 * Undo the attaching which had been done in worker_attach_to_pool(). The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
1756 */
1757static void worker_detach_from_pool(struct worker *worker,
1758 struct worker_pool *pool)
1759{
1760 struct completion *detach_completion = NULL;
1761
1762 mutex_lock(&wq_pool_attach_mutex);
1763 list_del(&worker->node);
1764 if (list_empty(&pool->workers))
1765 detach_completion = pool->detach_completion;
1766 mutex_unlock(&wq_pool_attach_mutex);
1767
1768 /* clear leftover flags without pool->lock after it is detached */
1769 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1770
1771 if (detach_completion)
1772 complete(detach_completion);
1773}
1774
1775/**
1776 * create_worker - create a new workqueue worker
1777 * @pool: pool the new worker will belong to
1778 *
1779 * Create and start a new worker which is attached to @pool.
1780 *
1781 * CONTEXT:
1782 * Might sleep. Does GFP_KERNEL allocations.
1783 *
1784 * Return:
1785 * Pointer to the newly created worker.
1786 */
1787static struct worker *create_worker(struct worker_pool *pool)
1788{
1789 struct worker *worker = NULL;
1790 int id = -1;
1791 char id_buf[16];
1792
1793 /* ID is needed to determine kthread name */
1794 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1795 if (id < 0)
1796 goto fail;
1797
1798 worker = alloc_worker(pool->node);
1799 if (!worker)
1800 goto fail;
1801
1802 worker->pool = pool;
1803 worker->id = id;
1804
1805 if (pool->cpu >= 0)
1806 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1807 pool->attrs->nice < 0 ? "H" : "");
1808 else
1809 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1810
1811 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1812 "kworker/%s", id_buf);
1813 if (IS_ERR(worker->task))
1814 goto fail;
1815
1816 set_user_nice(worker->task, pool->attrs->nice);
1817 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1818
1819 /* successful, attach the worker to the pool */
1820 worker_attach_to_pool(worker, pool);
1821
1822 /* start the newly created worker */
1823 spin_lock_irq(&pool->lock);
1824 worker->pool->nr_workers++;
1825 worker_enter_idle(worker);
1826 wake_up_process(worker->task);
1827 spin_unlock_irq(&pool->lock);
1828
1829 return worker;
1830
1831fail:
1832 if (id >= 0)
1833 ida_simple_remove(&pool->worker_ida, id);
1834 kfree(worker);
1835 return NULL;
1836}
1837
1838/**
1839 * destroy_worker - destroy a workqueue worker
1840 * @worker: worker to be destroyed
1841 *
1842 * Destroy @worker and adjust @pool stats accordingly. The worker should
1843 * be idle.
1844 *
1845 * CONTEXT:
1846 * spin_lock_irq(pool->lock).
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
1850 struct worker_pool *pool = worker->pool;
1851
1852 lockdep_assert_held(&pool->lock);
1853
1854 /* sanity check frenzy */
1855 if (WARN_ON(worker->current_work) ||
1856 WARN_ON(!list_empty(&worker->scheduled)) ||
1857 WARN_ON(!(worker->flags & WORKER_IDLE)))
1858 return;
1859
1860 pool->nr_workers--;
1861 pool->nr_idle--;
1862
1863 list_del_init(&worker->entry);
1864 worker->flags |= WORKER_DIE;
1865 wake_up_process(worker->task);
1866}
1867
1868static void idle_worker_timeout(struct timer_list *t)
1869{
1870 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1871
1872 spin_lock_irq(&pool->lock);
1873
1874 while (too_many_workers(pool)) {
1875 struct worker *worker;
1876 unsigned long expires;
1877
1878 /* idle_list is kept in LIFO order, check the last one */
1879 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1880 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1881
1882 if (time_before(jiffies, expires)) {
1883 mod_timer(&pool->idle_timer, expires);
1884 break;
1885 }
1886
1887 destroy_worker(worker);
1888 }
1889
1890 spin_unlock_irq(&pool->lock);
1891}
1892
1893static void send_mayday(struct work_struct *work)
1894{
1895 struct pool_workqueue *pwq = get_work_pwq(work);
1896 struct workqueue_struct *wq = pwq->wq;
1897
1898 lockdep_assert_held(&wq_mayday_lock);
1899
1900 if (!wq->rescuer)
1901 return;
1902
1903 /* mayday mayday mayday */
1904 if (list_empty(&pwq->mayday_node)) {
1905 /*
1906 * If @pwq is for an unbound wq, its base ref may be put at
1907 * any time due to an attribute change. Pin @pwq until the
1908 * rescuer is done with it.
1909 */
1910 get_pwq(pwq);
1911 list_add_tail(&pwq->mayday_node, &wq->maydays);
1912 wake_up_process(wq->rescuer->task);
1913 }
1914}
1915
1916static void pool_mayday_timeout(struct timer_list *t)
1917{
1918 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1919 struct work_struct *work;
1920
1921 spin_lock_irq(&pool->lock);
1922 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1923
1924 if (need_to_create_worker(pool)) {
1925 /*
1926 * We've been trying to create a new worker but
1927 * haven't been successful. We might be hitting an
1928 * allocation deadlock. Send distress signals to
1929 * rescuers.
1930 */
1931 list_for_each_entry(work, &pool->worklist, entry)
1932 send_mayday(work);
1933 }
1934
1935 spin_unlock(&wq_mayday_lock);
1936 spin_unlock_irq(&pool->lock);
1937
1938 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1939}
1940
1941/**
1942 * maybe_create_worker - create a new worker if necessary
1943 * @pool: pool to create a new worker for
1944 *
1945 * Create a new worker for @pool if necessary. @pool is guaranteed to
1946 * have at least one idle worker on return from this function. If
1947 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1948 * sent to all rescuers with works scheduled on @pool to resolve
1949 * possible allocation deadlock.
1950 *
1951 * On return, need_to_create_worker() is guaranteed to be %false and
1952 * may_start_working() %true.
1953 *
1954 * LOCKING:
1955 * spin_lock_irq(pool->lock) which may be released and regrabbed
1956 * multiple times. Does GFP_KERNEL allocations. Called only from
1957 * manager.
1958 */
1959static void maybe_create_worker(struct worker_pool *pool)
1960__releases(&pool->lock)
1961__acquires(&pool->lock)
1962{
1963restart:
1964 spin_unlock_irq(&pool->lock);
1965
1966 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968
1969 while (true) {
1970 if (create_worker(pool) || !need_to_create_worker(pool))
1971 break;
1972
1973 schedule_timeout_interruptible(CREATE_COOLDOWN);
1974
1975 if (!need_to_create_worker(pool))
1976 break;
1977 }
1978
1979 del_timer_sync(&pool->mayday_timer);
1980 spin_lock_irq(&pool->lock);
1981 /*
1982 * This is necessary even after a new worker was just successfully
1983 * created as @pool->lock was dropped and the new worker might have
1984 * already become busy.
1985 */
1986 if (need_to_create_worker(pool))
1987 goto restart;
1988}
1989
1990/**
1991 * manage_workers - manage worker pool
1992 * @worker: self
1993 *
1994 * Assume the manager role and manage the worker pool @worker belongs
1995 * to. At any given time, there can be only zero or one manager per
1996 * pool. The exclusion is handled automatically by this function.
1997 *
1998 * The caller can safely start processing works on false return. On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
2001 *
2002 * CONTEXT:
2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 * multiple times. Does GFP_KERNEL allocations.
2005 *
2006 * Return:
2007 * %false if the pool doesn't need management and the caller can safely
2008 * start processing works, %true if management function was performed and
2009 * the conditions that the caller verified before calling the function may
2010 * no longer be true.
2011 */
2012static bool manage_workers(struct worker *worker)
2013{
2014 struct worker_pool *pool = worker->pool;
2015
2016 if (pool->flags & POOL_MANAGER_ACTIVE)
2017 return false;
2018
2019 pool->flags |= POOL_MANAGER_ACTIVE;
2020 pool->manager = worker;
2021
2022 maybe_create_worker(pool);
2023
2024 pool->manager = NULL;
2025 pool->flags &= ~POOL_MANAGER_ACTIVE;
2026 wake_up(&wq_manager_wait);
2027 return true;
2028}
2029
2030/**
2031 * process_one_work - process single work
2032 * @worker: self
2033 * @work: work to process
2034 *
2035 * Process @work. This function contains all the logics necessary to
2036 * process a single work including synchronization against and
2037 * interaction with other workers on the same cpu, queueing and
2038 * flushing. As long as context requirement is met, any worker can
2039 * call this function to process a work.
2040 *
2041 * CONTEXT:
2042 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 */
2044static void process_one_work(struct worker *worker, struct work_struct *work)
2045__releases(&pool->lock)
2046__acquires(&pool->lock)
2047{
2048 struct pool_workqueue *pwq = get_work_pwq(work);
2049 struct worker_pool *pool = worker->pool;
2050 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051 int work_color;
2052 struct worker *collision;
2053#ifdef CONFIG_LOCKDEP
2054 /*
2055 * It is permissible to free the struct work_struct from
2056 * inside the function that is called from it, this we need to
2057 * take into account for lockdep too. To avoid bogus "held
2058 * lock freed" warnings as well as problems when looking into
2059 * work->lockdep_map, make a copy and use that here.
2060 */
2061 struct lockdep_map lockdep_map;
2062
2063 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064#endif
2065 /* ensure we're on the correct CPU */
2066 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2067 raw_smp_processor_id() != pool->cpu);
2068
2069 /*
2070 * A single work shouldn't be executed concurrently by
2071 * multiple workers on a single cpu. Check whether anyone is
2072 * already processing the work. If so, defer the work to the
2073 * currently executing one.
2074 */
2075 collision = find_worker_executing_work(pool, work);
2076 if (unlikely(collision)) {
2077 move_linked_works(work, &collision->scheduled, NULL);
2078 return;
2079 }
2080
2081 /* claim and dequeue */
2082 debug_work_deactivate(work);
2083 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084 worker->current_work = work;
2085 worker->current_func = work->func;
2086 worker->current_pwq = pwq;
2087 work_color = get_work_color(work);
2088
2089 list_del_init(&work->entry);
2090
2091 /*
2092 * CPU intensive works don't participate in concurrency management.
2093 * They're the scheduler's responsibility. This takes @worker out
2094 * of concurrency management and the next code block will chain
2095 * execution of the pending work items.
2096 */
2097 if (unlikely(cpu_intensive))
2098 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099
2100 /*
2101 * Wake up another worker if necessary. The condition is always
2102 * false for normal per-cpu workers since nr_running would always
2103 * be >= 1 at this point. This is used to chain execution of the
2104 * pending work items for WORKER_NOT_RUNNING workers such as the
2105 * UNBOUND and CPU_INTENSIVE ones.
2106 */
2107 if (need_more_worker(pool))
2108 wake_up_worker(pool);
2109
2110 /*
2111 * Record the last pool and clear PENDING which should be the last
2112 * update to @work. Also, do this inside @pool->lock so that
2113 * PENDING and queued state changes happen together while IRQ is
2114 * disabled.
2115 */
2116 set_work_pool_and_clear_pending(work, pool->id);
2117
2118 spin_unlock_irq(&pool->lock);
2119
2120 lock_map_acquire(&pwq->wq->lockdep_map);
2121 lock_map_acquire(&lockdep_map);
2122 /*
2123 * Strictly speaking we should mark the invariant state without holding
2124 * any locks, that is, before these two lock_map_acquire()'s.
2125 *
2126 * However, that would result in:
2127 *
2128 * A(W1)
2129 * WFC(C)
2130 * A(W1)
2131 * C(C)
2132 *
2133 * Which would create W1->C->W1 dependencies, even though there is no
2134 * actual deadlock possible. There are two solutions, using a
2135 * read-recursive acquire on the work(queue) 'locks', but this will then
2136 * hit the lockdep limitation on recursive locks, or simply discard
2137 * these locks.
2138 *
2139 * AFAICT there is no possible deadlock scenario between the
2140 * flush_work() and complete() primitives (except for single-threaded
2141 * workqueues), so hiding them isn't a problem.
2142 */
2143 lockdep_invariant_state(true);
2144 trace_workqueue_execute_start(work);
2145 worker->current_func(work);
2146 /*
2147 * While we must be careful to not use "work" after this, the trace
2148 * point will only record its address.
2149 */
2150 trace_workqueue_execute_end(work);
2151 lock_map_release(&lockdep_map);
2152 lock_map_release(&pwq->wq->lockdep_map);
2153
2154 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2155 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2156 " last function: %pf\n",
2157 current->comm, preempt_count(), task_pid_nr(current),
2158 worker->current_func);
2159 debug_show_held_locks(current);
2160 dump_stack();
2161 }
2162
2163 /*
2164 * The following prevents a kworker from hogging CPU on !PREEMPT
2165 * kernels, where a requeueing work item waiting for something to
2166 * happen could deadlock with stop_machine as such work item could
2167 * indefinitely requeue itself while all other CPUs are trapped in
2168 * stop_machine. At the same time, report a quiescent RCU state so
2169 * the same condition doesn't freeze RCU.
2170 */
2171 cond_resched();
2172
2173 spin_lock_irq(&pool->lock);
2174
2175 /* clear cpu intensive status */
2176 if (unlikely(cpu_intensive))
2177 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2178
2179 /* we're done with it, release */
2180 hash_del(&worker->hentry);
2181 worker->current_work = NULL;
2182 worker->current_func = NULL;
2183 worker->current_pwq = NULL;
2184 worker->desc_valid = false;
2185 pwq_dec_nr_in_flight(pwq, work_color);
2186}
2187
2188/**
2189 * process_scheduled_works - process scheduled works
2190 * @worker: self
2191 *
2192 * Process all scheduled works. Please note that the scheduled list
2193 * may change while processing a work, so this function repeatedly
2194 * fetches a work from the top and executes it.
2195 *
2196 * CONTEXT:
2197 * spin_lock_irq(pool->lock) which may be released and regrabbed
2198 * multiple times.
2199 */
2200static void process_scheduled_works(struct worker *worker)
2201{
2202 while (!list_empty(&worker->scheduled)) {
2203 struct work_struct *work = list_first_entry(&worker->scheduled,
2204 struct work_struct, entry);
2205 process_one_work(worker, work);
2206 }
2207}
2208
2209/**
2210 * worker_thread - the worker thread function
2211 * @__worker: self
2212 *
2213 * The worker thread function. All workers belong to a worker_pool -
2214 * either a per-cpu one or dynamic unbound one. These workers process all
2215 * work items regardless of their specific target workqueue. The only
2216 * exception is work items which belong to workqueues with a rescuer which
2217 * will be explained in rescuer_thread().
2218 *
2219 * Return: 0
2220 */
2221static int worker_thread(void *__worker)
2222{
2223 struct worker *worker = __worker;
2224 struct worker_pool *pool = worker->pool;
2225
2226 /* tell the scheduler that this is a workqueue worker */
2227 worker->task->flags |= PF_WQ_WORKER;
2228woke_up:
2229 spin_lock_irq(&pool->lock);
2230
2231 /* am I supposed to die? */
2232 if (unlikely(worker->flags & WORKER_DIE)) {
2233 spin_unlock_irq(&pool->lock);
2234 WARN_ON_ONCE(!list_empty(&worker->entry));
2235 worker->task->flags &= ~PF_WQ_WORKER;
2236
2237 set_task_comm(worker->task, "kworker/dying");
2238 ida_simple_remove(&pool->worker_ida, worker->id);
2239 worker_detach_from_pool(worker, pool);
2240 kfree(worker);
2241 return 0;
2242 }
2243
2244 worker_leave_idle(worker);
2245recheck:
2246 /* no more worker necessary? */
2247 if (!need_more_worker(pool))
2248 goto sleep;
2249
2250 /* do we need to manage? */
2251 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252 goto recheck;
2253
2254 /*
2255 * ->scheduled list can only be filled while a worker is
2256 * preparing to process a work or actually processing it.
2257 * Make sure nobody diddled with it while I was sleeping.
2258 */
2259 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2260
2261 /*
2262 * Finish PREP stage. We're guaranteed to have at least one idle
2263 * worker or that someone else has already assumed the manager
2264 * role. This is where @worker starts participating in concurrency
2265 * management if applicable and concurrency management is restored
2266 * after being rebound. See rebind_workers() for details.
2267 */
2268 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269
2270 do {
2271 struct work_struct *work =
2272 list_first_entry(&pool->worklist,
2273 struct work_struct, entry);
2274
2275 pool->watchdog_ts = jiffies;
2276
2277 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278 /* optimization path, not strictly necessary */
2279 process_one_work(worker, work);
2280 if (unlikely(!list_empty(&worker->scheduled)))
2281 process_scheduled_works(worker);
2282 } else {
2283 move_linked_works(work, &worker->scheduled, NULL);
2284 process_scheduled_works(worker);
2285 }
2286 } while (keep_working(pool));
2287
2288 worker_set_flags(worker, WORKER_PREP);
2289sleep:
2290 /*
2291 * pool->lock is held and there's no work to process and no need to
2292 * manage, sleep. Workers are woken up only while holding
2293 * pool->lock or from local cpu, so setting the current state
2294 * before releasing pool->lock is enough to prevent losing any
2295 * event.
2296 */
2297 worker_enter_idle(worker);
2298 __set_current_state(TASK_IDLE);
2299 spin_unlock_irq(&pool->lock);
2300 schedule();
2301 goto woke_up;
2302}
2303
2304/**
2305 * rescuer_thread - the rescuer thread function
2306 * @__rescuer: self
2307 *
2308 * Workqueue rescuer thread function. There's one rescuer for each
2309 * workqueue which has WQ_MEM_RECLAIM set.
2310 *
2311 * Regular work processing on a pool may block trying to create a new
2312 * worker which uses GFP_KERNEL allocation which has slight chance of
2313 * developing into deadlock if some works currently on the same queue
2314 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2315 * the problem rescuer solves.
2316 *
2317 * When such condition is possible, the pool summons rescuers of all
2318 * workqueues which have works queued on the pool and let them process
2319 * those works so that forward progress can be guaranteed.
2320 *
2321 * This should happen rarely.
2322 *
2323 * Return: 0
2324 */
2325static int rescuer_thread(void *__rescuer)
2326{
2327 struct worker *rescuer = __rescuer;
2328 struct workqueue_struct *wq = rescuer->rescue_wq;
2329 struct list_head *scheduled = &rescuer->scheduled;
2330 bool should_stop;
2331
2332 set_user_nice(current, RESCUER_NICE_LEVEL);
2333
2334 /*
2335 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2336 * doesn't participate in concurrency management.
2337 */
2338 rescuer->task->flags |= PF_WQ_WORKER;
2339repeat:
2340 set_current_state(TASK_IDLE);
2341
2342 /*
2343 * By the time the rescuer is requested to stop, the workqueue
2344 * shouldn't have any work pending, but @wq->maydays may still have
2345 * pwq(s) queued. This can happen by non-rescuer workers consuming
2346 * all the work items before the rescuer got to them. Go through
2347 * @wq->maydays processing before acting on should_stop so that the
2348 * list is always empty on exit.
2349 */
2350 should_stop = kthread_should_stop();
2351
2352 /* see whether any pwq is asking for help */
2353 spin_lock_irq(&wq_mayday_lock);
2354
2355 while (!list_empty(&wq->maydays)) {
2356 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2357 struct pool_workqueue, mayday_node);
2358 struct worker_pool *pool = pwq->pool;
2359 struct work_struct *work, *n;
2360 bool first = true;
2361
2362 __set_current_state(TASK_RUNNING);
2363 list_del_init(&pwq->mayday_node);
2364
2365 spin_unlock_irq(&wq_mayday_lock);
2366
2367 worker_attach_to_pool(rescuer, pool);
2368
2369 spin_lock_irq(&pool->lock);
2370 rescuer->pool = pool;
2371
2372 /*
2373 * Slurp in all works issued via this workqueue and
2374 * process'em.
2375 */
2376 WARN_ON_ONCE(!list_empty(scheduled));
2377 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2378 if (get_work_pwq(work) == pwq) {
2379 if (first)
2380 pool->watchdog_ts = jiffies;
2381 move_linked_works(work, scheduled, &n);
2382 }
2383 first = false;
2384 }
2385
2386 if (!list_empty(scheduled)) {
2387 process_scheduled_works(rescuer);
2388
2389 /*
2390 * The above execution of rescued work items could
2391 * have created more to rescue through
2392 * pwq_activate_first_delayed() or chained
2393 * queueing. Let's put @pwq back on mayday list so
2394 * that such back-to-back work items, which may be
2395 * being used to relieve memory pressure, don't
2396 * incur MAYDAY_INTERVAL delay inbetween.
2397 */
2398 if (need_to_create_worker(pool)) {
2399 spin_lock(&wq_mayday_lock);
2400 get_pwq(pwq);
2401 list_move_tail(&pwq->mayday_node, &wq->maydays);
2402 spin_unlock(&wq_mayday_lock);
2403 }
2404 }
2405
2406 /*
2407 * Put the reference grabbed by send_mayday(). @pool won't
2408 * go away while we're still attached to it.
2409 */
2410 put_pwq(pwq);
2411
2412 /*
2413 * Leave this pool. If need_more_worker() is %true, notify a
2414 * regular worker; otherwise, we end up with 0 concurrency
2415 * and stalling the execution.
2416 */
2417 if (need_more_worker(pool))
2418 wake_up_worker(pool);
2419
2420 rescuer->pool = NULL;
2421 spin_unlock_irq(&pool->lock);
2422
2423 worker_detach_from_pool(rescuer, pool);
2424
2425 spin_lock_irq(&wq_mayday_lock);
2426 }
2427
2428 spin_unlock_irq(&wq_mayday_lock);
2429
2430 if (should_stop) {
2431 __set_current_state(TASK_RUNNING);
2432 rescuer->task->flags &= ~PF_WQ_WORKER;
2433 return 0;
2434 }
2435
2436 /* rescuers should never participate in concurrency management */
2437 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438 schedule();
2439 goto repeat;
2440}
2441
2442/**
2443 * check_flush_dependency - check for flush dependency sanity
2444 * @target_wq: workqueue being flushed
2445 * @target_work: work item being flushed (NULL for workqueue flushes)
2446 *
2447 * %current is trying to flush the whole @target_wq or @target_work on it.
2448 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449 * reclaiming memory or running on a workqueue which doesn't have
2450 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451 * a deadlock.
2452 */
2453static void check_flush_dependency(struct workqueue_struct *target_wq,
2454 struct work_struct *target_work)
2455{
2456 work_func_t target_func = target_work ? target_work->func : NULL;
2457 struct worker *worker;
2458
2459 if (target_wq->flags & WQ_MEM_RECLAIM)
2460 return;
2461
2462 worker = current_wq_worker();
2463
2464 WARN_ONCE(current->flags & PF_MEMALLOC,
2465 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466 current->pid, current->comm, target_wq->name, target_func);
2467 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470 worker->current_pwq->wq->name, worker->current_func,
2471 target_wq->name, target_func);
2472}
2473
2474struct wq_barrier {
2475 struct work_struct work;
2476 struct completion done;
2477 struct task_struct *task; /* purely informational */
2478};
2479
2480static void wq_barrier_func(struct work_struct *work)
2481{
2482 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483 complete(&barr->done);
2484}
2485
2486/**
2487 * insert_wq_barrier - insert a barrier work
2488 * @pwq: pwq to insert barrier into
2489 * @barr: wq_barrier to insert
2490 * @target: target work to attach @barr to
2491 * @worker: worker currently executing @target, NULL if @target is not executing
2492 *
2493 * @barr is linked to @target such that @barr is completed only after
2494 * @target finishes execution. Please note that the ordering
2495 * guarantee is observed only with respect to @target and on the local
2496 * cpu.
2497 *
2498 * Currently, a queued barrier can't be canceled. This is because
2499 * try_to_grab_pending() can't determine whether the work to be
2500 * grabbed is at the head of the queue and thus can't clear LINKED
2501 * flag of the previous work while there must be a valid next work
2502 * after a work with LINKED flag set.
2503 *
2504 * Note that when @worker is non-NULL, @target may be modified
2505 * underneath us, so we can't reliably determine pwq from @target.
2506 *
2507 * CONTEXT:
2508 * spin_lock_irq(pool->lock).
2509 */
2510static void insert_wq_barrier(struct pool_workqueue *pwq,
2511 struct wq_barrier *barr,
2512 struct work_struct *target, struct worker *worker)
2513{
2514 struct list_head *head;
2515 unsigned int linked = 0;
2516
2517 /*
2518 * debugobject calls are safe here even with pool->lock locked
2519 * as we know for sure that this will not trigger any of the
2520 * checks and call back into the fixup functions where we
2521 * might deadlock.
2522 */
2523 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525
2526 init_completion_map(&barr->done, &target->lockdep_map);
2527
2528 barr->task = current;
2529
2530 /*
2531 * If @target is currently being executed, schedule the
2532 * barrier to the worker; otherwise, put it after @target.
2533 */
2534 if (worker)
2535 head = worker->scheduled.next;
2536 else {
2537 unsigned long *bits = work_data_bits(target);
2538
2539 head = target->entry.next;
2540 /* there can already be other linked works, inherit and set */
2541 linked = *bits & WORK_STRUCT_LINKED;
2542 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2543 }
2544
2545 debug_work_activate(&barr->work);
2546 insert_work(pwq, &barr->work, head,
2547 work_color_to_flags(WORK_NO_COLOR) | linked);
2548}
2549
2550/**
2551 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2552 * @wq: workqueue being flushed
2553 * @flush_color: new flush color, < 0 for no-op
2554 * @work_color: new work color, < 0 for no-op
2555 *
2556 * Prepare pwqs for workqueue flushing.
2557 *
2558 * If @flush_color is non-negative, flush_color on all pwqs should be
2559 * -1. If no pwq has in-flight commands at the specified color, all
2560 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2561 * has in flight commands, its pwq->flush_color is set to
2562 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2563 * wakeup logic is armed and %true is returned.
2564 *
2565 * The caller should have initialized @wq->first_flusher prior to
2566 * calling this function with non-negative @flush_color. If
2567 * @flush_color is negative, no flush color update is done and %false
2568 * is returned.
2569 *
2570 * If @work_color is non-negative, all pwqs should have the same
2571 * work_color which is previous to @work_color and all will be
2572 * advanced to @work_color.
2573 *
2574 * CONTEXT:
2575 * mutex_lock(wq->mutex).
2576 *
2577 * Return:
2578 * %true if @flush_color >= 0 and there's something to flush. %false
2579 * otherwise.
2580 */
2581static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2582 int flush_color, int work_color)
2583{
2584 bool wait = false;
2585 struct pool_workqueue *pwq;
2586
2587 if (flush_color >= 0) {
2588 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2589 atomic_set(&wq->nr_pwqs_to_flush, 1);
2590 }
2591
2592 for_each_pwq(pwq, wq) {
2593 struct worker_pool *pool = pwq->pool;
2594
2595 spin_lock_irq(&pool->lock);
2596
2597 if (flush_color >= 0) {
2598 WARN_ON_ONCE(pwq->flush_color != -1);
2599
2600 if (pwq->nr_in_flight[flush_color]) {
2601 pwq->flush_color = flush_color;
2602 atomic_inc(&wq->nr_pwqs_to_flush);
2603 wait = true;
2604 }
2605 }
2606
2607 if (work_color >= 0) {
2608 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2609 pwq->work_color = work_color;
2610 }
2611
2612 spin_unlock_irq(&pool->lock);
2613 }
2614
2615 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2616 complete(&wq->first_flusher->done);
2617
2618 return wait;
2619}
2620
2621/**
2622 * flush_workqueue - ensure that any scheduled work has run to completion.
2623 * @wq: workqueue to flush
2624 *
2625 * This function sleeps until all work items which were queued on entry
2626 * have finished execution, but it is not livelocked by new incoming ones.
2627 */
2628void flush_workqueue(struct workqueue_struct *wq)
2629{
2630 struct wq_flusher this_flusher = {
2631 .list = LIST_HEAD_INIT(this_flusher.list),
2632 .flush_color = -1,
2633 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2634 };
2635 int next_color;
2636
2637 if (WARN_ON(!wq_online))
2638 return;
2639
2640 mutex_lock(&wq->mutex);
2641
2642 /*
2643 * Start-to-wait phase
2644 */
2645 next_color = work_next_color(wq->work_color);
2646
2647 if (next_color != wq->flush_color) {
2648 /*
2649 * Color space is not full. The current work_color
2650 * becomes our flush_color and work_color is advanced
2651 * by one.
2652 */
2653 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2654 this_flusher.flush_color = wq->work_color;
2655 wq->work_color = next_color;
2656
2657 if (!wq->first_flusher) {
2658 /* no flush in progress, become the first flusher */
2659 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2660
2661 wq->first_flusher = &this_flusher;
2662
2663 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2664 wq->work_color)) {
2665 /* nothing to flush, done */
2666 wq->flush_color = next_color;
2667 wq->first_flusher = NULL;
2668 goto out_unlock;
2669 }
2670 } else {
2671 /* wait in queue */
2672 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2673 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2674 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2675 }
2676 } else {
2677 /*
2678 * Oops, color space is full, wait on overflow queue.
2679 * The next flush completion will assign us
2680 * flush_color and transfer to flusher_queue.
2681 */
2682 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2683 }
2684
2685 check_flush_dependency(wq, NULL);
2686
2687 mutex_unlock(&wq->mutex);
2688
2689 wait_for_completion(&this_flusher.done);
2690
2691 /*
2692 * Wake-up-and-cascade phase
2693 *
2694 * First flushers are responsible for cascading flushes and
2695 * handling overflow. Non-first flushers can simply return.
2696 */
2697 if (wq->first_flusher != &this_flusher)
2698 return;
2699
2700 mutex_lock(&wq->mutex);
2701
2702 /* we might have raced, check again with mutex held */
2703 if (wq->first_flusher != &this_flusher)
2704 goto out_unlock;
2705
2706 wq->first_flusher = NULL;
2707
2708 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2709 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2710
2711 while (true) {
2712 struct wq_flusher *next, *tmp;
2713
2714 /* complete all the flushers sharing the current flush color */
2715 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2716 if (next->flush_color != wq->flush_color)
2717 break;
2718 list_del_init(&next->list);
2719 complete(&next->done);
2720 }
2721
2722 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2723 wq->flush_color != work_next_color(wq->work_color));
2724
2725 /* this flush_color is finished, advance by one */
2726 wq->flush_color = work_next_color(wq->flush_color);
2727
2728 /* one color has been freed, handle overflow queue */
2729 if (!list_empty(&wq->flusher_overflow)) {
2730 /*
2731 * Assign the same color to all overflowed
2732 * flushers, advance work_color and append to
2733 * flusher_queue. This is the start-to-wait
2734 * phase for these overflowed flushers.
2735 */
2736 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2737 tmp->flush_color = wq->work_color;
2738
2739 wq->work_color = work_next_color(wq->work_color);
2740
2741 list_splice_tail_init(&wq->flusher_overflow,
2742 &wq->flusher_queue);
2743 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2744 }
2745
2746 if (list_empty(&wq->flusher_queue)) {
2747 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2748 break;
2749 }
2750
2751 /*
2752 * Need to flush more colors. Make the next flusher
2753 * the new first flusher and arm pwqs.
2754 */
2755 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2756 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2757
2758 list_del_init(&next->list);
2759 wq->first_flusher = next;
2760
2761 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2762 break;
2763
2764 /*
2765 * Meh... this color is already done, clear first
2766 * flusher and repeat cascading.
2767 */
2768 wq->first_flusher = NULL;
2769 }
2770
2771out_unlock:
2772 mutex_unlock(&wq->mutex);
2773}
2774EXPORT_SYMBOL(flush_workqueue);
2775
2776/**
2777 * drain_workqueue - drain a workqueue
2778 * @wq: workqueue to drain
2779 *
2780 * Wait until the workqueue becomes empty. While draining is in progress,
2781 * only chain queueing is allowed. IOW, only currently pending or running
2782 * work items on @wq can queue further work items on it. @wq is flushed
2783 * repeatedly until it becomes empty. The number of flushing is determined
2784 * by the depth of chaining and should be relatively short. Whine if it
2785 * takes too long.
2786 */
2787void drain_workqueue(struct workqueue_struct *wq)
2788{
2789 unsigned int flush_cnt = 0;
2790 struct pool_workqueue *pwq;
2791
2792 /*
2793 * __queue_work() needs to test whether there are drainers, is much
2794 * hotter than drain_workqueue() and already looks at @wq->flags.
2795 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2796 */
2797 mutex_lock(&wq->mutex);
2798 if (!wq->nr_drainers++)
2799 wq->flags |= __WQ_DRAINING;
2800 mutex_unlock(&wq->mutex);
2801reflush:
2802 flush_workqueue(wq);
2803
2804 mutex_lock(&wq->mutex);
2805
2806 for_each_pwq(pwq, wq) {
2807 bool drained;
2808
2809 spin_lock_irq(&pwq->pool->lock);
2810 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2811 spin_unlock_irq(&pwq->pool->lock);
2812
2813 if (drained)
2814 continue;
2815
2816 if (++flush_cnt == 10 ||
2817 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2818 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2819 wq->name, flush_cnt);
2820
2821 mutex_unlock(&wq->mutex);
2822 goto reflush;
2823 }
2824
2825 if (!--wq->nr_drainers)
2826 wq->flags &= ~__WQ_DRAINING;
2827 mutex_unlock(&wq->mutex);
2828}
2829EXPORT_SYMBOL_GPL(drain_workqueue);
2830
2831static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2832{
2833 struct worker *worker = NULL;
2834 struct worker_pool *pool;
2835 struct pool_workqueue *pwq;
2836
2837 might_sleep();
2838
2839 local_irq_disable();
2840 pool = get_work_pool(work);
2841 if (!pool) {
2842 local_irq_enable();
2843 return false;
2844 }
2845
2846 spin_lock(&pool->lock);
2847 /* see the comment in try_to_grab_pending() with the same code */
2848 pwq = get_work_pwq(work);
2849 if (pwq) {
2850 if (unlikely(pwq->pool != pool))
2851 goto already_gone;
2852 } else {
2853 worker = find_worker_executing_work(pool, work);
2854 if (!worker)
2855 goto already_gone;
2856 pwq = worker->current_pwq;
2857 }
2858
2859 check_flush_dependency(pwq->wq, work);
2860
2861 insert_wq_barrier(pwq, barr, work, worker);
2862 spin_unlock_irq(&pool->lock);
2863
2864 /*
2865 * Force a lock recursion deadlock when using flush_work() inside a
2866 * single-threaded or rescuer equipped workqueue.
2867 *
2868 * For single threaded workqueues the deadlock happens when the work
2869 * is after the work issuing the flush_work(). For rescuer equipped
2870 * workqueues the deadlock happens when the rescuer stalls, blocking
2871 * forward progress.
2872 */
2873 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2874 lock_map_acquire(&pwq->wq->lockdep_map);
2875 lock_map_release(&pwq->wq->lockdep_map);
2876 }
2877
2878 return true;
2879already_gone:
2880 spin_unlock_irq(&pool->lock);
2881 return false;
2882}
2883
2884/**
2885 * flush_work - wait for a work to finish executing the last queueing instance
2886 * @work: the work to flush
2887 *
2888 * Wait until @work has finished execution. @work is guaranteed to be idle
2889 * on return if it hasn't been requeued since flush started.
2890 *
2891 * Return:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895bool flush_work(struct work_struct *work)
2896{
2897 struct wq_barrier barr;
2898
2899 if (WARN_ON(!wq_online))
2900 return false;
2901
2902 if (start_flush_work(work, &barr)) {
2903 wait_for_completion(&barr.done);
2904 destroy_work_on_stack(&barr.work);
2905 return true;
2906 } else {
2907 return false;
2908 }
2909}
2910EXPORT_SYMBOL_GPL(flush_work);
2911
2912struct cwt_wait {
2913 wait_queue_entry_t wait;
2914 struct work_struct *work;
2915};
2916
2917static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2918{
2919 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2920
2921 if (cwait->work != key)
2922 return 0;
2923 return autoremove_wake_function(wait, mode, sync, key);
2924}
2925
2926static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927{
2928 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2929 unsigned long flags;
2930 int ret;
2931
2932 do {
2933 ret = try_to_grab_pending(work, is_dwork, &flags);
2934 /*
2935 * If someone else is already canceling, wait for it to
2936 * finish. flush_work() doesn't work for PREEMPT_NONE
2937 * because we may get scheduled between @work's completion
2938 * and the other canceling task resuming and clearing
2939 * CANCELING - flush_work() will return false immediately
2940 * as @work is no longer busy, try_to_grab_pending() will
2941 * return -ENOENT as @work is still being canceled and the
2942 * other canceling task won't be able to clear CANCELING as
2943 * we're hogging the CPU.
2944 *
2945 * Let's wait for completion using a waitqueue. As this
2946 * may lead to the thundering herd problem, use a custom
2947 * wake function which matches @work along with exclusive
2948 * wait and wakeup.
2949 */
2950 if (unlikely(ret == -ENOENT)) {
2951 struct cwt_wait cwait;
2952
2953 init_wait(&cwait.wait);
2954 cwait.wait.func = cwt_wakefn;
2955 cwait.work = work;
2956
2957 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2958 TASK_UNINTERRUPTIBLE);
2959 if (work_is_canceling(work))
2960 schedule();
2961 finish_wait(&cancel_waitq, &cwait.wait);
2962 }
2963 } while (unlikely(ret < 0));
2964
2965 /* tell other tasks trying to grab @work to back off */
2966 mark_work_canceling(work);
2967 local_irq_restore(flags);
2968
2969 /*
2970 * This allows canceling during early boot. We know that @work
2971 * isn't executing.
2972 */
2973 if (wq_online)
2974 flush_work(work);
2975
2976 clear_work_data(work);
2977
2978 /*
2979 * Paired with prepare_to_wait() above so that either
2980 * waitqueue_active() is visible here or !work_is_canceling() is
2981 * visible there.
2982 */
2983 smp_mb();
2984 if (waitqueue_active(&cancel_waitq))
2985 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2986
2987 return ret;
2988}
2989
2990/**
2991 * cancel_work_sync - cancel a work and wait for it to finish
2992 * @work: the work to cancel
2993 *
2994 * Cancel @work and wait for its execution to finish. This function
2995 * can be used even if the work re-queues itself or migrates to
2996 * another workqueue. On return from this function, @work is
2997 * guaranteed to be not pending or executing on any CPU.
2998 *
2999 * cancel_work_sync(&delayed_work->work) must not be used for
3000 * delayed_work's. Use cancel_delayed_work_sync() instead.
3001 *
3002 * The caller must ensure that the workqueue on which @work was last
3003 * queued can't be destroyed before this function returns.
3004 *
3005 * Return:
3006 * %true if @work was pending, %false otherwise.
3007 */
3008bool cancel_work_sync(struct work_struct *work)
3009{
3010 return __cancel_work_timer(work, false);
3011}
3012EXPORT_SYMBOL_GPL(cancel_work_sync);
3013
3014/**
3015 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3016 * @dwork: the delayed work to flush
3017 *
3018 * Delayed timer is cancelled and the pending work is queued for
3019 * immediate execution. Like flush_work(), this function only
3020 * considers the last queueing instance of @dwork.
3021 *
3022 * Return:
3023 * %true if flush_work() waited for the work to finish execution,
3024 * %false if it was already idle.
3025 */
3026bool flush_delayed_work(struct delayed_work *dwork)
3027{
3028 local_irq_disable();
3029 if (del_timer_sync(&dwork->timer))
3030 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3031 local_irq_enable();
3032 return flush_work(&dwork->work);
3033}
3034EXPORT_SYMBOL(flush_delayed_work);
3035
3036/**
3037 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3038 * @rwork: the rcu work to flush
3039 *
3040 * Return:
3041 * %true if flush_rcu_work() waited for the work to finish execution,
3042 * %false if it was already idle.
3043 */
3044bool flush_rcu_work(struct rcu_work *rwork)
3045{
3046 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3047 rcu_barrier();
3048 flush_work(&rwork->work);
3049 return true;
3050 } else {
3051 return flush_work(&rwork->work);
3052 }
3053}
3054EXPORT_SYMBOL(flush_rcu_work);
3055
3056static bool __cancel_work(struct work_struct *work, bool is_dwork)
3057{
3058 unsigned long flags;
3059 int ret;
3060
3061 do {
3062 ret = try_to_grab_pending(work, is_dwork, &flags);
3063 } while (unlikely(ret == -EAGAIN));
3064
3065 if (unlikely(ret < 0))
3066 return false;
3067
3068 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3069 local_irq_restore(flags);
3070 return ret;
3071}
3072
3073/**
3074 * cancel_delayed_work - cancel a delayed work
3075 * @dwork: delayed_work to cancel
3076 *
3077 * Kill off a pending delayed_work.
3078 *
3079 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3080 * pending.
3081 *
3082 * Note:
3083 * The work callback function may still be running on return, unless
3084 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3085 * use cancel_delayed_work_sync() to wait on it.
3086 *
3087 * This function is safe to call from any context including IRQ handler.
3088 */
3089bool cancel_delayed_work(struct delayed_work *dwork)
3090{
3091 return __cancel_work(&dwork->work, true);
3092}
3093EXPORT_SYMBOL(cancel_delayed_work);
3094
3095/**
3096 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3097 * @dwork: the delayed work cancel
3098 *
3099 * This is cancel_work_sync() for delayed works.
3100 *
3101 * Return:
3102 * %true if @dwork was pending, %false otherwise.
3103 */
3104bool cancel_delayed_work_sync(struct delayed_work *dwork)
3105{
3106 return __cancel_work_timer(&dwork->work, true);
3107}
3108EXPORT_SYMBOL(cancel_delayed_work_sync);
3109
3110/**
3111 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3112 * @func: the function to call
3113 *
3114 * schedule_on_each_cpu() executes @func on each online CPU using the
3115 * system workqueue and blocks until all CPUs have completed.
3116 * schedule_on_each_cpu() is very slow.
3117 *
3118 * Return:
3119 * 0 on success, -errno on failure.
3120 */
3121int schedule_on_each_cpu(work_func_t func)
3122{
3123 int cpu;
3124 struct work_struct __percpu *works;
3125
3126 works = alloc_percpu(struct work_struct);
3127 if (!works)
3128 return -ENOMEM;
3129
3130 get_online_cpus();
3131
3132 for_each_online_cpu(cpu) {
3133 struct work_struct *work = per_cpu_ptr(works, cpu);
3134
3135 INIT_WORK(work, func);
3136 schedule_work_on(cpu, work);
3137 }
3138
3139 for_each_online_cpu(cpu)
3140 flush_work(per_cpu_ptr(works, cpu));
3141
3142 put_online_cpus();
3143 free_percpu(works);
3144 return 0;
3145}
3146
3147/**
3148 * execute_in_process_context - reliably execute the routine with user context
3149 * @fn: the function to execute
3150 * @ew: guaranteed storage for the execute work structure (must
3151 * be available when the work executes)
3152 *
3153 * Executes the function immediately if process context is available,
3154 * otherwise schedules the function for delayed execution.
3155 *
3156 * Return: 0 - function was executed
3157 * 1 - function was scheduled for execution
3158 */
3159int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3160{
3161 if (!in_interrupt()) {
3162 fn(&ew->work);
3163 return 0;
3164 }
3165
3166 INIT_WORK(&ew->work, fn);
3167 schedule_work(&ew->work);
3168
3169 return 1;
3170}
3171EXPORT_SYMBOL_GPL(execute_in_process_context);
3172
3173/**
3174 * free_workqueue_attrs - free a workqueue_attrs
3175 * @attrs: workqueue_attrs to free
3176 *
3177 * Undo alloc_workqueue_attrs().
3178 */
3179void free_workqueue_attrs(struct workqueue_attrs *attrs)
3180{
3181 if (attrs) {
3182 free_cpumask_var(attrs->cpumask);
3183 kfree(attrs);
3184 }
3185}
3186
3187/**
3188 * alloc_workqueue_attrs - allocate a workqueue_attrs
3189 * @gfp_mask: allocation mask to use
3190 *
3191 * Allocate a new workqueue_attrs, initialize with default settings and
3192 * return it.
3193 *
3194 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3195 */
3196struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3197{
3198 struct workqueue_attrs *attrs;
3199
3200 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3201 if (!attrs)
3202 goto fail;
3203 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3204 goto fail;
3205
3206 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3207 return attrs;
3208fail:
3209 free_workqueue_attrs(attrs);
3210 return NULL;
3211}
3212
3213static void copy_workqueue_attrs(struct workqueue_attrs *to,
3214 const struct workqueue_attrs *from)
3215{
3216 to->nice = from->nice;
3217 cpumask_copy(to->cpumask, from->cpumask);
3218 /*
3219 * Unlike hash and equality test, this function doesn't ignore
3220 * ->no_numa as it is used for both pool and wq attrs. Instead,
3221 * get_unbound_pool() explicitly clears ->no_numa after copying.
3222 */
3223 to->no_numa = from->no_numa;
3224}
3225
3226/* hash value of the content of @attr */
3227static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3228{
3229 u32 hash = 0;
3230
3231 hash = jhash_1word(attrs->nice, hash);
3232 hash = jhash(cpumask_bits(attrs->cpumask),
3233 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3234 return hash;
3235}
3236
3237/* content equality test */
3238static bool wqattrs_equal(const struct workqueue_attrs *a,
3239 const struct workqueue_attrs *b)
3240{
3241 if (a->nice != b->nice)
3242 return false;
3243 if (!cpumask_equal(a->cpumask, b->cpumask))
3244 return false;
3245 return true;
3246}
3247
3248/**
3249 * init_worker_pool - initialize a newly zalloc'd worker_pool
3250 * @pool: worker_pool to initialize
3251 *
3252 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3253 *
3254 * Return: 0 on success, -errno on failure. Even on failure, all fields
3255 * inside @pool proper are initialized and put_unbound_pool() can be called
3256 * on @pool safely to release it.
3257 */
3258static int init_worker_pool(struct worker_pool *pool)
3259{
3260 spin_lock_init(&pool->lock);
3261 pool->id = -1;
3262 pool->cpu = -1;
3263 pool->node = NUMA_NO_NODE;
3264 pool->flags |= POOL_DISASSOCIATED;
3265 pool->watchdog_ts = jiffies;
3266 INIT_LIST_HEAD(&pool->worklist);
3267 INIT_LIST_HEAD(&pool->idle_list);
3268 hash_init(pool->busy_hash);
3269
3270 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3271
3272 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3273
3274 INIT_LIST_HEAD(&pool->workers);
3275
3276 ida_init(&pool->worker_ida);
3277 INIT_HLIST_NODE(&pool->hash_node);
3278 pool->refcnt = 1;
3279
3280 /* shouldn't fail above this point */
3281 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3282 if (!pool->attrs)
3283 return -ENOMEM;
3284 return 0;
3285}
3286
3287static void rcu_free_wq(struct rcu_head *rcu)
3288{
3289 struct workqueue_struct *wq =
3290 container_of(rcu, struct workqueue_struct, rcu);
3291
3292 if (!(wq->flags & WQ_UNBOUND))
3293 free_percpu(wq->cpu_pwqs);
3294 else
3295 free_workqueue_attrs(wq->unbound_attrs);
3296
3297 kfree(wq->rescuer);
3298 kfree(wq);
3299}
3300
3301static void rcu_free_pool(struct rcu_head *rcu)
3302{
3303 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3304
3305 ida_destroy(&pool->worker_ida);
3306 free_workqueue_attrs(pool->attrs);
3307 kfree(pool);
3308}
3309
3310/**
3311 * put_unbound_pool - put a worker_pool
3312 * @pool: worker_pool to put
3313 *
3314 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3315 * safe manner. get_unbound_pool() calls this function on its failure path
3316 * and this function should be able to release pools which went through,
3317 * successfully or not, init_worker_pool().
3318 *
3319 * Should be called with wq_pool_mutex held.
3320 */
3321static void put_unbound_pool(struct worker_pool *pool)
3322{
3323 DECLARE_COMPLETION_ONSTACK(detach_completion);
3324 struct worker *worker;
3325
3326 lockdep_assert_held(&wq_pool_mutex);
3327
3328 if (--pool->refcnt)
3329 return;
3330
3331 /* sanity checks */
3332 if (WARN_ON(!(pool->cpu < 0)) ||
3333 WARN_ON(!list_empty(&pool->worklist)))
3334 return;
3335
3336 /* release id and unhash */
3337 if (pool->id >= 0)
3338 idr_remove(&worker_pool_idr, pool->id);
3339 hash_del(&pool->hash_node);
3340
3341 /*
3342 * Become the manager and destroy all workers. This prevents
3343 * @pool's workers from blocking on attach_mutex. We're the last
3344 * manager and @pool gets freed with the flag set.
3345 */
3346 spin_lock_irq(&pool->lock);
3347 wait_event_lock_irq(wq_manager_wait,
3348 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3349 pool->flags |= POOL_MANAGER_ACTIVE;
3350
3351 while ((worker = first_idle_worker(pool)))
3352 destroy_worker(worker);
3353 WARN_ON(pool->nr_workers || pool->nr_idle);
3354 spin_unlock_irq(&pool->lock);
3355
3356 mutex_lock(&wq_pool_attach_mutex);
3357 if (!list_empty(&pool->workers))
3358 pool->detach_completion = &detach_completion;
3359 mutex_unlock(&wq_pool_attach_mutex);
3360
3361 if (pool->detach_completion)
3362 wait_for_completion(pool->detach_completion);
3363
3364 /* shut down the timers */
3365 del_timer_sync(&pool->idle_timer);
3366 del_timer_sync(&pool->mayday_timer);
3367
3368 /* sched-RCU protected to allow dereferences from get_work_pool() */
3369 call_rcu_sched(&pool->rcu, rcu_free_pool);
3370}
3371
3372/**
3373 * get_unbound_pool - get a worker_pool with the specified attributes
3374 * @attrs: the attributes of the worker_pool to get
3375 *
3376 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3377 * reference count and return it. If there already is a matching
3378 * worker_pool, it will be used; otherwise, this function attempts to
3379 * create a new one.
3380 *
3381 * Should be called with wq_pool_mutex held.
3382 *
3383 * Return: On success, a worker_pool with the same attributes as @attrs.
3384 * On failure, %NULL.
3385 */
3386static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3387{
3388 u32 hash = wqattrs_hash(attrs);
3389 struct worker_pool *pool;
3390 int node;
3391 int target_node = NUMA_NO_NODE;
3392
3393 lockdep_assert_held(&wq_pool_mutex);
3394
3395 /* do we already have a matching pool? */
3396 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3397 if (wqattrs_equal(pool->attrs, attrs)) {
3398 pool->refcnt++;
3399 return pool;
3400 }
3401 }
3402
3403 /* if cpumask is contained inside a NUMA node, we belong to that node */
3404 if (wq_numa_enabled) {
3405 for_each_node(node) {
3406 if (cpumask_subset(attrs->cpumask,
3407 wq_numa_possible_cpumask[node])) {
3408 target_node = node;
3409 break;
3410 }
3411 }
3412 }
3413
3414 /* nope, create a new one */
3415 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3416 if (!pool || init_worker_pool(pool) < 0)
3417 goto fail;
3418
3419 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3420 copy_workqueue_attrs(pool->attrs, attrs);
3421 pool->node = target_node;
3422
3423 /*
3424 * no_numa isn't a worker_pool attribute, always clear it. See
3425 * 'struct workqueue_attrs' comments for detail.
3426 */
3427 pool->attrs->no_numa = false;
3428
3429 if (worker_pool_assign_id(pool) < 0)
3430 goto fail;
3431
3432 /* create and start the initial worker */
3433 if (wq_online && !create_worker(pool))
3434 goto fail;
3435
3436 /* install */
3437 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3438
3439 return pool;
3440fail:
3441 if (pool)
3442 put_unbound_pool(pool);
3443 return NULL;
3444}
3445
3446static void rcu_free_pwq(struct rcu_head *rcu)
3447{
3448 kmem_cache_free(pwq_cache,
3449 container_of(rcu, struct pool_workqueue, rcu));
3450}
3451
3452/*
3453 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3454 * and needs to be destroyed.
3455 */
3456static void pwq_unbound_release_workfn(struct work_struct *work)
3457{
3458 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3459 unbound_release_work);
3460 struct workqueue_struct *wq = pwq->wq;
3461 struct worker_pool *pool = pwq->pool;
3462 bool is_last;
3463
3464 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3465 return;
3466
3467 mutex_lock(&wq->mutex);
3468 list_del_rcu(&pwq->pwqs_node);
3469 is_last = list_empty(&wq->pwqs);
3470 mutex_unlock(&wq->mutex);
3471
3472 mutex_lock(&wq_pool_mutex);
3473 put_unbound_pool(pool);
3474 mutex_unlock(&wq_pool_mutex);
3475
3476 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3477
3478 /*
3479 * If we're the last pwq going away, @wq is already dead and no one
3480 * is gonna access it anymore. Schedule RCU free.
3481 */
3482 if (is_last)
3483 call_rcu_sched(&wq->rcu, rcu_free_wq);
3484}
3485
3486/**
3487 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3488 * @pwq: target pool_workqueue
3489 *
3490 * If @pwq isn't freezing, set @pwq->max_active to the associated
3491 * workqueue's saved_max_active and activate delayed work items
3492 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3493 */
3494static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3495{
3496 struct workqueue_struct *wq = pwq->wq;
3497 bool freezable = wq->flags & WQ_FREEZABLE;
3498 unsigned long flags;
3499
3500 /* for @wq->saved_max_active */
3501 lockdep_assert_held(&wq->mutex);
3502
3503 /* fast exit for non-freezable wqs */
3504 if (!freezable && pwq->max_active == wq->saved_max_active)
3505 return;
3506
3507 /* this function can be called during early boot w/ irq disabled */
3508 spin_lock_irqsave(&pwq->pool->lock, flags);
3509
3510 /*
3511 * During [un]freezing, the caller is responsible for ensuring that
3512 * this function is called at least once after @workqueue_freezing
3513 * is updated and visible.
3514 */
3515 if (!freezable || !workqueue_freezing) {
3516 pwq->max_active = wq->saved_max_active;
3517
3518 while (!list_empty(&pwq->delayed_works) &&
3519 pwq->nr_active < pwq->max_active)
3520 pwq_activate_first_delayed(pwq);
3521
3522 /*
3523 * Need to kick a worker after thawed or an unbound wq's
3524 * max_active is bumped. It's a slow path. Do it always.
3525 */
3526 wake_up_worker(pwq->pool);
3527 } else {
3528 pwq->max_active = 0;
3529 }
3530
3531 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3532}
3533
3534/* initialize newly alloced @pwq which is associated with @wq and @pool */
3535static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3536 struct worker_pool *pool)
3537{
3538 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3539
3540 memset(pwq, 0, sizeof(*pwq));
3541
3542 pwq->pool = pool;
3543 pwq->wq = wq;
3544 pwq->flush_color = -1;
3545 pwq->refcnt = 1;
3546 INIT_LIST_HEAD(&pwq->delayed_works);
3547 INIT_LIST_HEAD(&pwq->pwqs_node);
3548 INIT_LIST_HEAD(&pwq->mayday_node);
3549 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3550}
3551
3552/* sync @pwq with the current state of its associated wq and link it */
3553static void link_pwq(struct pool_workqueue *pwq)
3554{
3555 struct workqueue_struct *wq = pwq->wq;
3556
3557 lockdep_assert_held(&wq->mutex);
3558
3559 /* may be called multiple times, ignore if already linked */
3560 if (!list_empty(&pwq->pwqs_node))
3561 return;
3562
3563 /* set the matching work_color */
3564 pwq->work_color = wq->work_color;
3565
3566 /* sync max_active to the current setting */
3567 pwq_adjust_max_active(pwq);
3568
3569 /* link in @pwq */
3570 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3571}
3572
3573/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3574static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3575 const struct workqueue_attrs *attrs)
3576{
3577 struct worker_pool *pool;
3578 struct pool_workqueue *pwq;
3579
3580 lockdep_assert_held(&wq_pool_mutex);
3581
3582 pool = get_unbound_pool(attrs);
3583 if (!pool)
3584 return NULL;
3585
3586 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3587 if (!pwq) {
3588 put_unbound_pool(pool);
3589 return NULL;
3590 }
3591
3592 init_pwq(pwq, wq, pool);
3593 return pwq;
3594}
3595
3596/**
3597 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3598 * @attrs: the wq_attrs of the default pwq of the target workqueue
3599 * @node: the target NUMA node
3600 * @cpu_going_down: if >= 0, the CPU to consider as offline
3601 * @cpumask: outarg, the resulting cpumask
3602 *
3603 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3604 * @cpu_going_down is >= 0, that cpu is considered offline during
3605 * calculation. The result is stored in @cpumask.
3606 *
3607 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3608 * enabled and @node has online CPUs requested by @attrs, the returned
3609 * cpumask is the intersection of the possible CPUs of @node and
3610 * @attrs->cpumask.
3611 *
3612 * The caller is responsible for ensuring that the cpumask of @node stays
3613 * stable.
3614 *
3615 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3616 * %false if equal.
3617 */
3618static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3619 int cpu_going_down, cpumask_t *cpumask)
3620{
3621 if (!wq_numa_enabled || attrs->no_numa)
3622 goto use_dfl;
3623
3624 /* does @node have any online CPUs @attrs wants? */
3625 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3626 if (cpu_going_down >= 0)
3627 cpumask_clear_cpu(cpu_going_down, cpumask);
3628
3629 if (cpumask_empty(cpumask))
3630 goto use_dfl;
3631
3632 /* yeap, return possible CPUs in @node that @attrs wants */
3633 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3634
3635 if (cpumask_empty(cpumask)) {
3636 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3637 "possible intersect\n");
3638 return false;
3639 }
3640
3641 return !cpumask_equal(cpumask, attrs->cpumask);
3642
3643use_dfl:
3644 cpumask_copy(cpumask, attrs->cpumask);
3645 return false;
3646}
3647
3648/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3649static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3650 int node,
3651 struct pool_workqueue *pwq)
3652{
3653 struct pool_workqueue *old_pwq;
3654
3655 lockdep_assert_held(&wq_pool_mutex);
3656 lockdep_assert_held(&wq->mutex);
3657
3658 /* link_pwq() can handle duplicate calls */
3659 link_pwq(pwq);
3660
3661 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3662 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3663 return old_pwq;
3664}
3665
3666/* context to store the prepared attrs & pwqs before applying */
3667struct apply_wqattrs_ctx {
3668 struct workqueue_struct *wq; /* target workqueue */
3669 struct workqueue_attrs *attrs; /* attrs to apply */
3670 struct list_head list; /* queued for batching commit */
3671 struct pool_workqueue *dfl_pwq;
3672 struct pool_workqueue *pwq_tbl[];
3673};
3674
3675/* free the resources after success or abort */
3676static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3677{
3678 if (ctx) {
3679 int node;
3680
3681 for_each_node(node)
3682 put_pwq_unlocked(ctx->pwq_tbl[node]);
3683 put_pwq_unlocked(ctx->dfl_pwq);
3684
3685 free_workqueue_attrs(ctx->attrs);
3686
3687 kfree(ctx);
3688 }
3689}
3690
3691/* allocate the attrs and pwqs for later installation */
3692static struct apply_wqattrs_ctx *
3693apply_wqattrs_prepare(struct workqueue_struct *wq,
3694 const struct workqueue_attrs *attrs)
3695{
3696 struct apply_wqattrs_ctx *ctx;
3697 struct workqueue_attrs *new_attrs, *tmp_attrs;
3698 int node;
3699
3700 lockdep_assert_held(&wq_pool_mutex);
3701
3702 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3703 GFP_KERNEL);
3704
3705 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3706 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3707 if (!ctx || !new_attrs || !tmp_attrs)
3708 goto out_free;
3709
3710 /*
3711 * Calculate the attrs of the default pwq.
3712 * If the user configured cpumask doesn't overlap with the
3713 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3714 */
3715 copy_workqueue_attrs(new_attrs, attrs);
3716 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3717 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3718 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3719
3720 /*
3721 * We may create multiple pwqs with differing cpumasks. Make a
3722 * copy of @new_attrs which will be modified and used to obtain
3723 * pools.
3724 */
3725 copy_workqueue_attrs(tmp_attrs, new_attrs);
3726
3727 /*
3728 * If something goes wrong during CPU up/down, we'll fall back to
3729 * the default pwq covering whole @attrs->cpumask. Always create
3730 * it even if we don't use it immediately.
3731 */
3732 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3733 if (!ctx->dfl_pwq)
3734 goto out_free;
3735
3736 for_each_node(node) {
3737 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3738 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3739 if (!ctx->pwq_tbl[node])
3740 goto out_free;
3741 } else {
3742 ctx->dfl_pwq->refcnt++;
3743 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3744 }
3745 }
3746
3747 /* save the user configured attrs and sanitize it. */
3748 copy_workqueue_attrs(new_attrs, attrs);
3749 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3750 ctx->attrs = new_attrs;
3751
3752 ctx->wq = wq;
3753 free_workqueue_attrs(tmp_attrs);
3754 return ctx;
3755
3756out_free:
3757 free_workqueue_attrs(tmp_attrs);
3758 free_workqueue_attrs(new_attrs);
3759 apply_wqattrs_cleanup(ctx);
3760 return NULL;
3761}
3762
3763/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3764static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3765{
3766 int node;
3767
3768 /* all pwqs have been created successfully, let's install'em */
3769 mutex_lock(&ctx->wq->mutex);
3770
3771 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3772
3773 /* save the previous pwq and install the new one */
3774 for_each_node(node)
3775 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3776 ctx->pwq_tbl[node]);
3777
3778 /* @dfl_pwq might not have been used, ensure it's linked */
3779 link_pwq(ctx->dfl_pwq);
3780 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3781
3782 mutex_unlock(&ctx->wq->mutex);
3783}
3784
3785static void apply_wqattrs_lock(void)
3786{
3787 /* CPUs should stay stable across pwq creations and installations */
3788 get_online_cpus();
3789 mutex_lock(&wq_pool_mutex);
3790}
3791
3792static void apply_wqattrs_unlock(void)
3793{
3794 mutex_unlock(&wq_pool_mutex);
3795 put_online_cpus();
3796}
3797
3798static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3799 const struct workqueue_attrs *attrs)
3800{
3801 struct apply_wqattrs_ctx *ctx;
3802
3803 /* only unbound workqueues can change attributes */
3804 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3805 return -EINVAL;
3806
3807 /* creating multiple pwqs breaks ordering guarantee */
3808 if (!list_empty(&wq->pwqs)) {
3809 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3810 return -EINVAL;
3811
3812 wq->flags &= ~__WQ_ORDERED;
3813 }
3814
3815 ctx = apply_wqattrs_prepare(wq, attrs);
3816 if (!ctx)
3817 return -ENOMEM;
3818
3819 /* the ctx has been prepared successfully, let's commit it */
3820 apply_wqattrs_commit(ctx);
3821 apply_wqattrs_cleanup(ctx);
3822
3823 return 0;
3824}
3825
3826/**
3827 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3828 * @wq: the target workqueue
3829 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3830 *
3831 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3832 * machines, this function maps a separate pwq to each NUMA node with
3833 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3834 * NUMA node it was issued on. Older pwqs are released as in-flight work
3835 * items finish. Note that a work item which repeatedly requeues itself
3836 * back-to-back will stay on its current pwq.
3837 *
3838 * Performs GFP_KERNEL allocations.
3839 *
3840 * Return: 0 on success and -errno on failure.
3841 */
3842int apply_workqueue_attrs(struct workqueue_struct *wq,
3843 const struct workqueue_attrs *attrs)
3844{
3845 int ret;
3846
3847 apply_wqattrs_lock();
3848 ret = apply_workqueue_attrs_locked(wq, attrs);
3849 apply_wqattrs_unlock();
3850
3851 return ret;
3852}
3853EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3854
3855/**
3856 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3857 * @wq: the target workqueue
3858 * @cpu: the CPU coming up or going down
3859 * @online: whether @cpu is coming up or going down
3860 *
3861 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3862 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3863 * @wq accordingly.
3864 *
3865 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3866 * falls back to @wq->dfl_pwq which may not be optimal but is always
3867 * correct.
3868 *
3869 * Note that when the last allowed CPU of a NUMA node goes offline for a
3870 * workqueue with a cpumask spanning multiple nodes, the workers which were
3871 * already executing the work items for the workqueue will lose their CPU
3872 * affinity and may execute on any CPU. This is similar to how per-cpu
3873 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3874 * affinity, it's the user's responsibility to flush the work item from
3875 * CPU_DOWN_PREPARE.
3876 */
3877static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3878 bool online)
3879{
3880 int node = cpu_to_node(cpu);
3881 int cpu_off = online ? -1 : cpu;
3882 struct pool_workqueue *old_pwq = NULL, *pwq;
3883 struct workqueue_attrs *target_attrs;
3884 cpumask_t *cpumask;
3885
3886 lockdep_assert_held(&wq_pool_mutex);
3887
3888 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3889 wq->unbound_attrs->no_numa)
3890 return;
3891
3892 /*
3893 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3894 * Let's use a preallocated one. The following buf is protected by
3895 * CPU hotplug exclusion.
3896 */
3897 target_attrs = wq_update_unbound_numa_attrs_buf;
3898 cpumask = target_attrs->cpumask;
3899
3900 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3901 pwq = unbound_pwq_by_node(wq, node);
3902
3903 /*
3904 * Let's determine what needs to be done. If the target cpumask is
3905 * different from the default pwq's, we need to compare it to @pwq's
3906 * and create a new one if they don't match. If the target cpumask
3907 * equals the default pwq's, the default pwq should be used.
3908 */
3909 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3910 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3911 return;
3912 } else {
3913 goto use_dfl_pwq;
3914 }
3915
3916 /* create a new pwq */
3917 pwq = alloc_unbound_pwq(wq, target_attrs);
3918 if (!pwq) {
3919 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3920 wq->name);
3921 goto use_dfl_pwq;
3922 }
3923
3924 /* Install the new pwq. */
3925 mutex_lock(&wq->mutex);
3926 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3927 goto out_unlock;
3928
3929use_dfl_pwq:
3930 mutex_lock(&wq->mutex);
3931 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3932 get_pwq(wq->dfl_pwq);
3933 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3934 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3935out_unlock:
3936 mutex_unlock(&wq->mutex);
3937 put_pwq_unlocked(old_pwq);
3938}
3939
3940static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3941{
3942 bool highpri = wq->flags & WQ_HIGHPRI;
3943 int cpu, ret;
3944
3945 if (!(wq->flags & WQ_UNBOUND)) {
3946 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3947 if (!wq->cpu_pwqs)
3948 return -ENOMEM;
3949
3950 for_each_possible_cpu(cpu) {
3951 struct pool_workqueue *pwq =
3952 per_cpu_ptr(wq->cpu_pwqs, cpu);
3953 struct worker_pool *cpu_pools =
3954 per_cpu(cpu_worker_pools, cpu);
3955
3956 init_pwq(pwq, wq, &cpu_pools[highpri]);
3957
3958 mutex_lock(&wq->mutex);
3959 link_pwq(pwq);
3960 mutex_unlock(&wq->mutex);
3961 }
3962 return 0;
3963 } else if (wq->flags & __WQ_ORDERED) {
3964 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3965 /* there should only be single pwq for ordering guarantee */
3966 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3967 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3968 "ordering guarantee broken for workqueue %s\n", wq->name);
3969 return ret;
3970 } else {
3971 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3972 }
3973}
3974
3975static int wq_clamp_max_active(int max_active, unsigned int flags,
3976 const char *name)
3977{
3978 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3979
3980 if (max_active < 1 || max_active > lim)
3981 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3982 max_active, name, 1, lim);
3983
3984 return clamp_val(max_active, 1, lim);
3985}
3986
3987/*
3988 * Workqueues which may be used during memory reclaim should have a rescuer
3989 * to guarantee forward progress.
3990 */
3991static int init_rescuer(struct workqueue_struct *wq)
3992{
3993 struct worker *rescuer;
3994 int ret;
3995
3996 if (!(wq->flags & WQ_MEM_RECLAIM))
3997 return 0;
3998
3999 rescuer = alloc_worker(NUMA_NO_NODE);
4000 if (!rescuer)
4001 return -ENOMEM;
4002
4003 rescuer->rescue_wq = wq;
4004 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4005 ret = PTR_ERR_OR_ZERO(rescuer->task);
4006 if (ret) {
4007 kfree(rescuer);
4008 return ret;
4009 }
4010
4011 wq->rescuer = rescuer;
4012 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4013 wake_up_process(rescuer->task);
4014
4015 return 0;
4016}
4017
4018struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4019 unsigned int flags,
4020 int max_active,
4021 struct lock_class_key *key,
4022 const char *lock_name, ...)
4023{
4024 size_t tbl_size = 0;
4025 va_list args;
4026 struct workqueue_struct *wq;
4027 struct pool_workqueue *pwq;
4028
4029 /*
4030 * Unbound && max_active == 1 used to imply ordered, which is no
4031 * longer the case on NUMA machines due to per-node pools. While
4032 * alloc_ordered_workqueue() is the right way to create an ordered
4033 * workqueue, keep the previous behavior to avoid subtle breakages
4034 * on NUMA.
4035 */
4036 if ((flags & WQ_UNBOUND) && max_active == 1)
4037 flags |= __WQ_ORDERED;
4038
4039 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4040 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4041 flags |= WQ_UNBOUND;
4042
4043 /* allocate wq and format name */
4044 if (flags & WQ_UNBOUND)
4045 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4046
4047 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4048 if (!wq)
4049 return NULL;
4050
4051 if (flags & WQ_UNBOUND) {
4052 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4053 if (!wq->unbound_attrs)
4054 goto err_free_wq;
4055 }
4056
4057 va_start(args, lock_name);
4058 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4059 va_end(args);
4060
4061 max_active = max_active ?: WQ_DFL_ACTIVE;
4062 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4063
4064 /* init wq */
4065 wq->flags = flags;
4066 wq->saved_max_active = max_active;
4067 mutex_init(&wq->mutex);
4068 atomic_set(&wq->nr_pwqs_to_flush, 0);
4069 INIT_LIST_HEAD(&wq->pwqs);
4070 INIT_LIST_HEAD(&wq->flusher_queue);
4071 INIT_LIST_HEAD(&wq->flusher_overflow);
4072 INIT_LIST_HEAD(&wq->maydays);
4073
4074 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4075 INIT_LIST_HEAD(&wq->list);
4076
4077 if (alloc_and_link_pwqs(wq) < 0)
4078 goto err_free_wq;
4079
4080 if (wq_online && init_rescuer(wq) < 0)
4081 goto err_destroy;
4082
4083 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4084 goto err_destroy;
4085
4086 /*
4087 * wq_pool_mutex protects global freeze state and workqueues list.
4088 * Grab it, adjust max_active and add the new @wq to workqueues
4089 * list.
4090 */
4091 mutex_lock(&wq_pool_mutex);
4092
4093 mutex_lock(&wq->mutex);
4094 for_each_pwq(pwq, wq)
4095 pwq_adjust_max_active(pwq);
4096 mutex_unlock(&wq->mutex);
4097
4098 list_add_tail_rcu(&wq->list, &workqueues);
4099
4100 mutex_unlock(&wq_pool_mutex);
4101
4102 return wq;
4103
4104err_free_wq:
4105 free_workqueue_attrs(wq->unbound_attrs);
4106 kfree(wq);
4107 return NULL;
4108err_destroy:
4109 destroy_workqueue(wq);
4110 return NULL;
4111}
4112EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4113
4114/**
4115 * destroy_workqueue - safely terminate a workqueue
4116 * @wq: target workqueue
4117 *
4118 * Safely destroy a workqueue. All work currently pending will be done first.
4119 */
4120void destroy_workqueue(struct workqueue_struct *wq)
4121{
4122 struct pool_workqueue *pwq;
4123 int node;
4124
4125 /* drain it before proceeding with destruction */
4126 drain_workqueue(wq);
4127
4128 /* sanity checks */
4129 mutex_lock(&wq->mutex);
4130 for_each_pwq(pwq, wq) {
4131 int i;
4132
4133 for (i = 0; i < WORK_NR_COLORS; i++) {
4134 if (WARN_ON(pwq->nr_in_flight[i])) {
4135 mutex_unlock(&wq->mutex);
4136 show_workqueue_state();
4137 return;
4138 }
4139 }
4140
4141 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4142 WARN_ON(pwq->nr_active) ||
4143 WARN_ON(!list_empty(&pwq->delayed_works))) {
4144 mutex_unlock(&wq->mutex);
4145 show_workqueue_state();
4146 return;
4147 }
4148 }
4149 mutex_unlock(&wq->mutex);
4150
4151 /*
4152 * wq list is used to freeze wq, remove from list after
4153 * flushing is complete in case freeze races us.
4154 */
4155 mutex_lock(&wq_pool_mutex);
4156 list_del_rcu(&wq->list);
4157 mutex_unlock(&wq_pool_mutex);
4158
4159 workqueue_sysfs_unregister(wq);
4160
4161 if (wq->rescuer)
4162 kthread_stop(wq->rescuer->task);
4163
4164 if (!(wq->flags & WQ_UNBOUND)) {
4165 /*
4166 * The base ref is never dropped on per-cpu pwqs. Directly
4167 * schedule RCU free.
4168 */
4169 call_rcu_sched(&wq->rcu, rcu_free_wq);
4170 } else {
4171 /*
4172 * We're the sole accessor of @wq at this point. Directly
4173 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4174 * @wq will be freed when the last pwq is released.
4175 */
4176 for_each_node(node) {
4177 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4178 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4179 put_pwq_unlocked(pwq);
4180 }
4181
4182 /*
4183 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4184 * put. Don't access it afterwards.
4185 */
4186 pwq = wq->dfl_pwq;
4187 wq->dfl_pwq = NULL;
4188 put_pwq_unlocked(pwq);
4189 }
4190}
4191EXPORT_SYMBOL_GPL(destroy_workqueue);
4192
4193/**
4194 * workqueue_set_max_active - adjust max_active of a workqueue
4195 * @wq: target workqueue
4196 * @max_active: new max_active value.
4197 *
4198 * Set max_active of @wq to @max_active.
4199 *
4200 * CONTEXT:
4201 * Don't call from IRQ context.
4202 */
4203void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4204{
4205 struct pool_workqueue *pwq;
4206
4207 /* disallow meddling with max_active for ordered workqueues */
4208 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4209 return;
4210
4211 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4212
4213 mutex_lock(&wq->mutex);
4214
4215 wq->flags &= ~__WQ_ORDERED;
4216 wq->saved_max_active = max_active;
4217
4218 for_each_pwq(pwq, wq)
4219 pwq_adjust_max_active(pwq);
4220
4221 mutex_unlock(&wq->mutex);
4222}
4223EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4224
4225/**
4226 * current_work - retrieve %current task's work struct
4227 *
4228 * Determine if %current task is a workqueue worker and what it's working on.
4229 * Useful to find out the context that the %current task is running in.
4230 *
4231 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4232 */
4233struct work_struct *current_work(void)
4234{
4235 struct worker *worker = current_wq_worker();
4236
4237 return worker ? worker->current_work : NULL;
4238}
4239EXPORT_SYMBOL(current_work);
4240
4241/**
4242 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4243 *
4244 * Determine whether %current is a workqueue rescuer. Can be used from
4245 * work functions to determine whether it's being run off the rescuer task.
4246 *
4247 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4248 */
4249bool current_is_workqueue_rescuer(void)
4250{
4251 struct worker *worker = current_wq_worker();
4252
4253 return worker && worker->rescue_wq;
4254}
4255
4256/**
4257 * workqueue_congested - test whether a workqueue is congested
4258 * @cpu: CPU in question
4259 * @wq: target workqueue
4260 *
4261 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4262 * no synchronization around this function and the test result is
4263 * unreliable and only useful as advisory hints or for debugging.
4264 *
4265 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4266 * Note that both per-cpu and unbound workqueues may be associated with
4267 * multiple pool_workqueues which have separate congested states. A
4268 * workqueue being congested on one CPU doesn't mean the workqueue is also
4269 * contested on other CPUs / NUMA nodes.
4270 *
4271 * Return:
4272 * %true if congested, %false otherwise.
4273 */
4274bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4275{
4276 struct pool_workqueue *pwq;
4277 bool ret;
4278
4279 rcu_read_lock_sched();
4280
4281 if (cpu == WORK_CPU_UNBOUND)
4282 cpu = smp_processor_id();
4283
4284 if (!(wq->flags & WQ_UNBOUND))
4285 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4286 else
4287 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4288
4289 ret = !list_empty(&pwq->delayed_works);
4290 rcu_read_unlock_sched();
4291
4292 return ret;
4293}
4294EXPORT_SYMBOL_GPL(workqueue_congested);
4295
4296/**
4297 * work_busy - test whether a work is currently pending or running
4298 * @work: the work to be tested
4299 *
4300 * Test whether @work is currently pending or running. There is no
4301 * synchronization around this function and the test result is
4302 * unreliable and only useful as advisory hints or for debugging.
4303 *
4304 * Return:
4305 * OR'd bitmask of WORK_BUSY_* bits.
4306 */
4307unsigned int work_busy(struct work_struct *work)
4308{
4309 struct worker_pool *pool;
4310 unsigned long flags;
4311 unsigned int ret = 0;
4312
4313 if (work_pending(work))
4314 ret |= WORK_BUSY_PENDING;
4315
4316 local_irq_save(flags);
4317 pool = get_work_pool(work);
4318 if (pool) {
4319 spin_lock(&pool->lock);
4320 if (find_worker_executing_work(pool, work))
4321 ret |= WORK_BUSY_RUNNING;
4322 spin_unlock(&pool->lock);
4323 }
4324 local_irq_restore(flags);
4325
4326 return ret;
4327}
4328EXPORT_SYMBOL_GPL(work_busy);
4329
4330/**
4331 * set_worker_desc - set description for the current work item
4332 * @fmt: printf-style format string
4333 * @...: arguments for the format string
4334 *
4335 * This function can be called by a running work function to describe what
4336 * the work item is about. If the worker task gets dumped, this
4337 * information will be printed out together to help debugging. The
4338 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4339 */
4340void set_worker_desc(const char *fmt, ...)
4341{
4342 struct worker *worker = current_wq_worker();
4343 va_list args;
4344
4345 if (worker) {
4346 va_start(args, fmt);
4347 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4348 va_end(args);
4349 worker->desc_valid = true;
4350 }
4351}
4352
4353/**
4354 * print_worker_info - print out worker information and description
4355 * @log_lvl: the log level to use when printing
4356 * @task: target task
4357 *
4358 * If @task is a worker and currently executing a work item, print out the
4359 * name of the workqueue being serviced and worker description set with
4360 * set_worker_desc() by the currently executing work item.
4361 *
4362 * This function can be safely called on any task as long as the
4363 * task_struct itself is accessible. While safe, this function isn't
4364 * synchronized and may print out mixups or garbages of limited length.
4365 */
4366void print_worker_info(const char *log_lvl, struct task_struct *task)
4367{
4368 work_func_t *fn = NULL;
4369 char name[WQ_NAME_LEN] = { };
4370 char desc[WORKER_DESC_LEN] = { };
4371 struct pool_workqueue *pwq = NULL;
4372 struct workqueue_struct *wq = NULL;
4373 bool desc_valid = false;
4374 struct worker *worker;
4375
4376 if (!(task->flags & PF_WQ_WORKER))
4377 return;
4378
4379 /*
4380 * This function is called without any synchronization and @task
4381 * could be in any state. Be careful with dereferences.
4382 */
4383 worker = kthread_probe_data(task);
4384
4385 /*
4386 * Carefully copy the associated workqueue's workfn and name. Keep
4387 * the original last '\0' in case the original contains garbage.
4388 */
4389 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4390 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4391 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4392 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4393
4394 /* copy worker description */
4395 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4396 if (desc_valid)
4397 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4398
4399 if (fn || name[0] || desc[0]) {
4400 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4401 if (desc[0])
4402 pr_cont(" (%s)", desc);
4403 pr_cont("\n");
4404 }
4405}
4406
4407static void pr_cont_pool_info(struct worker_pool *pool)
4408{
4409 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4410 if (pool->node != NUMA_NO_NODE)
4411 pr_cont(" node=%d", pool->node);
4412 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4413}
4414
4415static void pr_cont_work(bool comma, struct work_struct *work)
4416{
4417 if (work->func == wq_barrier_func) {
4418 struct wq_barrier *barr;
4419
4420 barr = container_of(work, struct wq_barrier, work);
4421
4422 pr_cont("%s BAR(%d)", comma ? "," : "",
4423 task_pid_nr(barr->task));
4424 } else {
4425 pr_cont("%s %pf", comma ? "," : "", work->func);
4426 }
4427}
4428
4429static void show_pwq(struct pool_workqueue *pwq)
4430{
4431 struct worker_pool *pool = pwq->pool;
4432 struct work_struct *work;
4433 struct worker *worker;
4434 bool has_in_flight = false, has_pending = false;
4435 int bkt;
4436
4437 pr_info(" pwq %d:", pool->id);
4438 pr_cont_pool_info(pool);
4439
4440 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4441 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4442
4443 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4444 if (worker->current_pwq == pwq) {
4445 has_in_flight = true;
4446 break;
4447 }
4448 }
4449 if (has_in_flight) {
4450 bool comma = false;
4451
4452 pr_info(" in-flight:");
4453 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4454 if (worker->current_pwq != pwq)
4455 continue;
4456
4457 pr_cont("%s %d%s:%pf", comma ? "," : "",
4458 task_pid_nr(worker->task),
4459 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4460 worker->current_func);
4461 list_for_each_entry(work, &worker->scheduled, entry)
4462 pr_cont_work(false, work);
4463 comma = true;
4464 }
4465 pr_cont("\n");
4466 }
4467
4468 list_for_each_entry(work, &pool->worklist, entry) {
4469 if (get_work_pwq(work) == pwq) {
4470 has_pending = true;
4471 break;
4472 }
4473 }
4474 if (has_pending) {
4475 bool comma = false;
4476
4477 pr_info(" pending:");
4478 list_for_each_entry(work, &pool->worklist, entry) {
4479 if (get_work_pwq(work) != pwq)
4480 continue;
4481
4482 pr_cont_work(comma, work);
4483 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4484 }
4485 pr_cont("\n");
4486 }
4487
4488 if (!list_empty(&pwq->delayed_works)) {
4489 bool comma = false;
4490
4491 pr_info(" delayed:");
4492 list_for_each_entry(work, &pwq->delayed_works, entry) {
4493 pr_cont_work(comma, work);
4494 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4495 }
4496 pr_cont("\n");
4497 }
4498}
4499
4500/**
4501 * show_workqueue_state - dump workqueue state
4502 *
4503 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4504 * all busy workqueues and pools.
4505 */
4506void show_workqueue_state(void)
4507{
4508 struct workqueue_struct *wq;
4509 struct worker_pool *pool;
4510 unsigned long flags;
4511 int pi;
4512
4513 rcu_read_lock_sched();
4514
4515 pr_info("Showing busy workqueues and worker pools:\n");
4516
4517 list_for_each_entry_rcu(wq, &workqueues, list) {
4518 struct pool_workqueue *pwq;
4519 bool idle = true;
4520
4521 for_each_pwq(pwq, wq) {
4522 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4523 idle = false;
4524 break;
4525 }
4526 }
4527 if (idle)
4528 continue;
4529
4530 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4531
4532 for_each_pwq(pwq, wq) {
4533 spin_lock_irqsave(&pwq->pool->lock, flags);
4534 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4535 show_pwq(pwq);
4536 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4537 /*
4538 * We could be printing a lot from atomic context, e.g.
4539 * sysrq-t -> show_workqueue_state(). Avoid triggering
4540 * hard lockup.
4541 */
4542 touch_nmi_watchdog();
4543 }
4544 }
4545
4546 for_each_pool(pool, pi) {
4547 struct worker *worker;
4548 bool first = true;
4549
4550 spin_lock_irqsave(&pool->lock, flags);
4551 if (pool->nr_workers == pool->nr_idle)
4552 goto next_pool;
4553
4554 pr_info("pool %d:", pool->id);
4555 pr_cont_pool_info(pool);
4556 pr_cont(" hung=%us workers=%d",
4557 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4558 pool->nr_workers);
4559 if (pool->manager)
4560 pr_cont(" manager: %d",
4561 task_pid_nr(pool->manager->task));
4562 list_for_each_entry(worker, &pool->idle_list, entry) {
4563 pr_cont(" %s%d", first ? "idle: " : "",
4564 task_pid_nr(worker->task));
4565 first = false;
4566 }
4567 pr_cont("\n");
4568 next_pool:
4569 spin_unlock_irqrestore(&pool->lock, flags);
4570 /*
4571 * We could be printing a lot from atomic context, e.g.
4572 * sysrq-t -> show_workqueue_state(). Avoid triggering
4573 * hard lockup.
4574 */
4575 touch_nmi_watchdog();
4576 }
4577
4578 rcu_read_unlock_sched();
4579}
4580
4581/*
4582 * CPU hotplug.
4583 *
4584 * There are two challenges in supporting CPU hotplug. Firstly, there
4585 * are a lot of assumptions on strong associations among work, pwq and
4586 * pool which make migrating pending and scheduled works very
4587 * difficult to implement without impacting hot paths. Secondly,
4588 * worker pools serve mix of short, long and very long running works making
4589 * blocked draining impractical.
4590 *
4591 * This is solved by allowing the pools to be disassociated from the CPU
4592 * running as an unbound one and allowing it to be reattached later if the
4593 * cpu comes back online.
4594 */
4595
4596static void unbind_workers(int cpu)
4597{
4598 struct worker_pool *pool;
4599 struct worker *worker;
4600
4601 for_each_cpu_worker_pool(pool, cpu) {
4602 mutex_lock(&wq_pool_attach_mutex);
4603 spin_lock_irq(&pool->lock);
4604
4605 /*
4606 * We've blocked all attach/detach operations. Make all workers
4607 * unbound and set DISASSOCIATED. Before this, all workers
4608 * except for the ones which are still executing works from
4609 * before the last CPU down must be on the cpu. After
4610 * this, they may become diasporas.
4611 */
4612 for_each_pool_worker(worker, pool)
4613 worker->flags |= WORKER_UNBOUND;
4614
4615 pool->flags |= POOL_DISASSOCIATED;
4616
4617 spin_unlock_irq(&pool->lock);
4618 mutex_unlock(&wq_pool_attach_mutex);
4619
4620 /*
4621 * Call schedule() so that we cross rq->lock and thus can
4622 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4623 * This is necessary as scheduler callbacks may be invoked
4624 * from other cpus.
4625 */
4626 schedule();
4627
4628 /*
4629 * Sched callbacks are disabled now. Zap nr_running.
4630 * After this, nr_running stays zero and need_more_worker()
4631 * and keep_working() are always true as long as the
4632 * worklist is not empty. This pool now behaves as an
4633 * unbound (in terms of concurrency management) pool which
4634 * are served by workers tied to the pool.
4635 */
4636 atomic_set(&pool->nr_running, 0);
4637
4638 /*
4639 * With concurrency management just turned off, a busy
4640 * worker blocking could lead to lengthy stalls. Kick off
4641 * unbound chain execution of currently pending work items.
4642 */
4643 spin_lock_irq(&pool->lock);
4644 wake_up_worker(pool);
4645 spin_unlock_irq(&pool->lock);
4646 }
4647}
4648
4649/**
4650 * rebind_workers - rebind all workers of a pool to the associated CPU
4651 * @pool: pool of interest
4652 *
4653 * @pool->cpu is coming online. Rebind all workers to the CPU.
4654 */
4655static void rebind_workers(struct worker_pool *pool)
4656{
4657 struct worker *worker;
4658
4659 lockdep_assert_held(&wq_pool_attach_mutex);
4660
4661 /*
4662 * Restore CPU affinity of all workers. As all idle workers should
4663 * be on the run-queue of the associated CPU before any local
4664 * wake-ups for concurrency management happen, restore CPU affinity
4665 * of all workers first and then clear UNBOUND. As we're called
4666 * from CPU_ONLINE, the following shouldn't fail.
4667 */
4668 for_each_pool_worker(worker, pool)
4669 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4670 pool->attrs->cpumask) < 0);
4671
4672 spin_lock_irq(&pool->lock);
4673
4674 pool->flags &= ~POOL_DISASSOCIATED;
4675
4676 for_each_pool_worker(worker, pool) {
4677 unsigned int worker_flags = worker->flags;
4678
4679 /*
4680 * A bound idle worker should actually be on the runqueue
4681 * of the associated CPU for local wake-ups targeting it to
4682 * work. Kick all idle workers so that they migrate to the
4683 * associated CPU. Doing this in the same loop as
4684 * replacing UNBOUND with REBOUND is safe as no worker will
4685 * be bound before @pool->lock is released.
4686 */
4687 if (worker_flags & WORKER_IDLE)
4688 wake_up_process(worker->task);
4689
4690 /*
4691 * We want to clear UNBOUND but can't directly call
4692 * worker_clr_flags() or adjust nr_running. Atomically
4693 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4694 * @worker will clear REBOUND using worker_clr_flags() when
4695 * it initiates the next execution cycle thus restoring
4696 * concurrency management. Note that when or whether
4697 * @worker clears REBOUND doesn't affect correctness.
4698 *
4699 * WRITE_ONCE() is necessary because @worker->flags may be
4700 * tested without holding any lock in
4701 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4702 * fail incorrectly leading to premature concurrency
4703 * management operations.
4704 */
4705 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4706 worker_flags |= WORKER_REBOUND;
4707 worker_flags &= ~WORKER_UNBOUND;
4708 WRITE_ONCE(worker->flags, worker_flags);
4709 }
4710
4711 spin_unlock_irq(&pool->lock);
4712}
4713
4714/**
4715 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4716 * @pool: unbound pool of interest
4717 * @cpu: the CPU which is coming up
4718 *
4719 * An unbound pool may end up with a cpumask which doesn't have any online
4720 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4721 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4722 * online CPU before, cpus_allowed of all its workers should be restored.
4723 */
4724static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4725{
4726 static cpumask_t cpumask;
4727 struct worker *worker;
4728
4729 lockdep_assert_held(&wq_pool_attach_mutex);
4730
4731 /* is @cpu allowed for @pool? */
4732 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4733 return;
4734
4735 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4736
4737 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4738 for_each_pool_worker(worker, pool)
4739 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4740}
4741
4742int workqueue_prepare_cpu(unsigned int cpu)
4743{
4744 struct worker_pool *pool;
4745
4746 for_each_cpu_worker_pool(pool, cpu) {
4747 if (pool->nr_workers)
4748 continue;
4749 if (!create_worker(pool))
4750 return -ENOMEM;
4751 }
4752 return 0;
4753}
4754
4755int workqueue_online_cpu(unsigned int cpu)
4756{
4757 struct worker_pool *pool;
4758 struct workqueue_struct *wq;
4759 int pi;
4760
4761 mutex_lock(&wq_pool_mutex);
4762
4763 for_each_pool(pool, pi) {
4764 mutex_lock(&wq_pool_attach_mutex);
4765
4766 if (pool->cpu == cpu)
4767 rebind_workers(pool);
4768 else if (pool->cpu < 0)
4769 restore_unbound_workers_cpumask(pool, cpu);
4770
4771 mutex_unlock(&wq_pool_attach_mutex);
4772 }
4773
4774 /* update NUMA affinity of unbound workqueues */
4775 list_for_each_entry(wq, &workqueues, list)
4776 wq_update_unbound_numa(wq, cpu, true);
4777
4778 mutex_unlock(&wq_pool_mutex);
4779 return 0;
4780}
4781
4782int workqueue_offline_cpu(unsigned int cpu)
4783{
4784 struct workqueue_struct *wq;
4785
4786 /* unbinding per-cpu workers should happen on the local CPU */
4787 if (WARN_ON(cpu != smp_processor_id()))
4788 return -1;
4789
4790 unbind_workers(cpu);
4791
4792 /* update NUMA affinity of unbound workqueues */
4793 mutex_lock(&wq_pool_mutex);
4794 list_for_each_entry(wq, &workqueues, list)
4795 wq_update_unbound_numa(wq, cpu, false);
4796 mutex_unlock(&wq_pool_mutex);
4797
4798 return 0;
4799}
4800
4801#ifdef CONFIG_SMP
4802
4803struct work_for_cpu {
4804 struct work_struct work;
4805 long (*fn)(void *);
4806 void *arg;
4807 long ret;
4808};
4809
4810static void work_for_cpu_fn(struct work_struct *work)
4811{
4812 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4813
4814 wfc->ret = wfc->fn(wfc->arg);
4815}
4816
4817/**
4818 * work_on_cpu - run a function in thread context on a particular cpu
4819 * @cpu: the cpu to run on
4820 * @fn: the function to run
4821 * @arg: the function arg
4822 *
4823 * It is up to the caller to ensure that the cpu doesn't go offline.
4824 * The caller must not hold any locks which would prevent @fn from completing.
4825 *
4826 * Return: The value @fn returns.
4827 */
4828long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4829{
4830 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4831
4832 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4833 schedule_work_on(cpu, &wfc.work);
4834 flush_work(&wfc.work);
4835 destroy_work_on_stack(&wfc.work);
4836 return wfc.ret;
4837}
4838EXPORT_SYMBOL_GPL(work_on_cpu);
4839
4840/**
4841 * work_on_cpu_safe - run a function in thread context on a particular cpu
4842 * @cpu: the cpu to run on
4843 * @fn: the function to run
4844 * @arg: the function argument
4845 *
4846 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4847 * any locks which would prevent @fn from completing.
4848 *
4849 * Return: The value @fn returns.
4850 */
4851long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4852{
4853 long ret = -ENODEV;
4854
4855 get_online_cpus();
4856 if (cpu_online(cpu))
4857 ret = work_on_cpu(cpu, fn, arg);
4858 put_online_cpus();
4859 return ret;
4860}
4861EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4862#endif /* CONFIG_SMP */
4863
4864#ifdef CONFIG_FREEZER
4865
4866/**
4867 * freeze_workqueues_begin - begin freezing workqueues
4868 *
4869 * Start freezing workqueues. After this function returns, all freezable
4870 * workqueues will queue new works to their delayed_works list instead of
4871 * pool->worklist.
4872 *
4873 * CONTEXT:
4874 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4875 */
4876void freeze_workqueues_begin(void)
4877{
4878 struct workqueue_struct *wq;
4879 struct pool_workqueue *pwq;
4880
4881 mutex_lock(&wq_pool_mutex);
4882
4883 WARN_ON_ONCE(workqueue_freezing);
4884 workqueue_freezing = true;
4885
4886 list_for_each_entry(wq, &workqueues, list) {
4887 mutex_lock(&wq->mutex);
4888 for_each_pwq(pwq, wq)
4889 pwq_adjust_max_active(pwq);
4890 mutex_unlock(&wq->mutex);
4891 }
4892
4893 mutex_unlock(&wq_pool_mutex);
4894}
4895
4896/**
4897 * freeze_workqueues_busy - are freezable workqueues still busy?
4898 *
4899 * Check whether freezing is complete. This function must be called
4900 * between freeze_workqueues_begin() and thaw_workqueues().
4901 *
4902 * CONTEXT:
4903 * Grabs and releases wq_pool_mutex.
4904 *
4905 * Return:
4906 * %true if some freezable workqueues are still busy. %false if freezing
4907 * is complete.
4908 */
4909bool freeze_workqueues_busy(void)
4910{
4911 bool busy = false;
4912 struct workqueue_struct *wq;
4913 struct pool_workqueue *pwq;
4914
4915 mutex_lock(&wq_pool_mutex);
4916
4917 WARN_ON_ONCE(!workqueue_freezing);
4918
4919 list_for_each_entry(wq, &workqueues, list) {
4920 if (!(wq->flags & WQ_FREEZABLE))
4921 continue;
4922 /*
4923 * nr_active is monotonically decreasing. It's safe
4924 * to peek without lock.
4925 */
4926 rcu_read_lock_sched();
4927 for_each_pwq(pwq, wq) {
4928 WARN_ON_ONCE(pwq->nr_active < 0);
4929 if (pwq->nr_active) {
4930 busy = true;
4931 rcu_read_unlock_sched();
4932 goto out_unlock;
4933 }
4934 }
4935 rcu_read_unlock_sched();
4936 }
4937out_unlock:
4938 mutex_unlock(&wq_pool_mutex);
4939 return busy;
4940}
4941
4942/**
4943 * thaw_workqueues - thaw workqueues
4944 *
4945 * Thaw workqueues. Normal queueing is restored and all collected
4946 * frozen works are transferred to their respective pool worklists.
4947 *
4948 * CONTEXT:
4949 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4950 */
4951void thaw_workqueues(void)
4952{
4953 struct workqueue_struct *wq;
4954 struct pool_workqueue *pwq;
4955
4956 mutex_lock(&wq_pool_mutex);
4957
4958 if (!workqueue_freezing)
4959 goto out_unlock;
4960
4961 workqueue_freezing = false;
4962
4963 /* restore max_active and repopulate worklist */
4964 list_for_each_entry(wq, &workqueues, list) {
4965 mutex_lock(&wq->mutex);
4966 for_each_pwq(pwq, wq)
4967 pwq_adjust_max_active(pwq);
4968 mutex_unlock(&wq->mutex);
4969 }
4970
4971out_unlock:
4972 mutex_unlock(&wq_pool_mutex);
4973}
4974#endif /* CONFIG_FREEZER */
4975
4976static int workqueue_apply_unbound_cpumask(void)
4977{
4978 LIST_HEAD(ctxs);
4979 int ret = 0;
4980 struct workqueue_struct *wq;
4981 struct apply_wqattrs_ctx *ctx, *n;
4982
4983 lockdep_assert_held(&wq_pool_mutex);
4984
4985 list_for_each_entry(wq, &workqueues, list) {
4986 if (!(wq->flags & WQ_UNBOUND))
4987 continue;
4988 /* creating multiple pwqs breaks ordering guarantee */
4989 if (wq->flags & __WQ_ORDERED)
4990 continue;
4991
4992 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4993 if (!ctx) {
4994 ret = -ENOMEM;
4995 break;
4996 }
4997
4998 list_add_tail(&ctx->list, &ctxs);
4999 }
5000
5001 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5002 if (!ret)
5003 apply_wqattrs_commit(ctx);
5004 apply_wqattrs_cleanup(ctx);
5005 }
5006
5007 return ret;
5008}
5009
5010/**
5011 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5012 * @cpumask: the cpumask to set
5013 *
5014 * The low-level workqueues cpumask is a global cpumask that limits
5015 * the affinity of all unbound workqueues. This function check the @cpumask
5016 * and apply it to all unbound workqueues and updates all pwqs of them.
5017 *
5018 * Retun: 0 - Success
5019 * -EINVAL - Invalid @cpumask
5020 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5021 */
5022int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5023{
5024 int ret = -EINVAL;
5025 cpumask_var_t saved_cpumask;
5026
5027 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5028 return -ENOMEM;
5029
5030 /*
5031 * Not excluding isolated cpus on purpose.
5032 * If the user wishes to include them, we allow that.
5033 */
5034 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5035 if (!cpumask_empty(cpumask)) {
5036 apply_wqattrs_lock();
5037
5038 /* save the old wq_unbound_cpumask. */
5039 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5040
5041 /* update wq_unbound_cpumask at first and apply it to wqs. */
5042 cpumask_copy(wq_unbound_cpumask, cpumask);
5043 ret = workqueue_apply_unbound_cpumask();
5044
5045 /* restore the wq_unbound_cpumask when failed. */
5046 if (ret < 0)
5047 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5048
5049 apply_wqattrs_unlock();
5050 }
5051
5052 free_cpumask_var(saved_cpumask);
5053 return ret;
5054}
5055
5056#ifdef CONFIG_SYSFS
5057/*
5058 * Workqueues with WQ_SYSFS flag set is visible to userland via
5059 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5060 * following attributes.
5061 *
5062 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5063 * max_active RW int : maximum number of in-flight work items
5064 *
5065 * Unbound workqueues have the following extra attributes.
5066 *
5067 * pool_ids RO int : the associated pool IDs for each node
5068 * nice RW int : nice value of the workers
5069 * cpumask RW mask : bitmask of allowed CPUs for the workers
5070 * numa RW bool : whether enable NUMA affinity
5071 */
5072struct wq_device {
5073 struct workqueue_struct *wq;
5074 struct device dev;
5075};
5076
5077static struct workqueue_struct *dev_to_wq(struct device *dev)
5078{
5079 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5080
5081 return wq_dev->wq;
5082}
5083
5084static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5085 char *buf)
5086{
5087 struct workqueue_struct *wq = dev_to_wq(dev);
5088
5089 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5090}
5091static DEVICE_ATTR_RO(per_cpu);
5092
5093static ssize_t max_active_show(struct device *dev,
5094 struct device_attribute *attr, char *buf)
5095{
5096 struct workqueue_struct *wq = dev_to_wq(dev);
5097
5098 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5099}
5100
5101static ssize_t max_active_store(struct device *dev,
5102 struct device_attribute *attr, const char *buf,
5103 size_t count)
5104{
5105 struct workqueue_struct *wq = dev_to_wq(dev);
5106 int val;
5107
5108 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5109 return -EINVAL;
5110
5111 workqueue_set_max_active(wq, val);
5112 return count;
5113}
5114static DEVICE_ATTR_RW(max_active);
5115
5116static struct attribute *wq_sysfs_attrs[] = {
5117 &dev_attr_per_cpu.attr,
5118 &dev_attr_max_active.attr,
5119 NULL,
5120};
5121ATTRIBUTE_GROUPS(wq_sysfs);
5122
5123static ssize_t wq_pool_ids_show(struct device *dev,
5124 struct device_attribute *attr, char *buf)
5125{
5126 struct workqueue_struct *wq = dev_to_wq(dev);
5127 const char *delim = "";
5128 int node, written = 0;
5129
5130 rcu_read_lock_sched();
5131 for_each_node(node) {
5132 written += scnprintf(buf + written, PAGE_SIZE - written,
5133 "%s%d:%d", delim, node,
5134 unbound_pwq_by_node(wq, node)->pool->id);
5135 delim = " ";
5136 }
5137 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5138 rcu_read_unlock_sched();
5139
5140 return written;
5141}
5142
5143static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5144 char *buf)
5145{
5146 struct workqueue_struct *wq = dev_to_wq(dev);
5147 int written;
5148
5149 mutex_lock(&wq->mutex);
5150 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5151 mutex_unlock(&wq->mutex);
5152
5153 return written;
5154}
5155
5156/* prepare workqueue_attrs for sysfs store operations */
5157static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5158{
5159 struct workqueue_attrs *attrs;
5160
5161 lockdep_assert_held(&wq_pool_mutex);
5162
5163 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5164 if (!attrs)
5165 return NULL;
5166
5167 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5168 return attrs;
5169}
5170
5171static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5172 const char *buf, size_t count)
5173{
5174 struct workqueue_struct *wq = dev_to_wq(dev);
5175 struct workqueue_attrs *attrs;
5176 int ret = -ENOMEM;
5177
5178 apply_wqattrs_lock();
5179
5180 attrs = wq_sysfs_prep_attrs(wq);
5181 if (!attrs)
5182 goto out_unlock;
5183
5184 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5185 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5186 ret = apply_workqueue_attrs_locked(wq, attrs);
5187 else
5188 ret = -EINVAL;
5189
5190out_unlock:
5191 apply_wqattrs_unlock();
5192 free_workqueue_attrs(attrs);
5193 return ret ?: count;
5194}
5195
5196static ssize_t wq_cpumask_show(struct device *dev,
5197 struct device_attribute *attr, char *buf)
5198{
5199 struct workqueue_struct *wq = dev_to_wq(dev);
5200 int written;
5201
5202 mutex_lock(&wq->mutex);
5203 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5204 cpumask_pr_args(wq->unbound_attrs->cpumask));
5205 mutex_unlock(&wq->mutex);
5206 return written;
5207}
5208
5209static ssize_t wq_cpumask_store(struct device *dev,
5210 struct device_attribute *attr,
5211 const char *buf, size_t count)
5212{
5213 struct workqueue_struct *wq = dev_to_wq(dev);
5214 struct workqueue_attrs *attrs;
5215 int ret = -ENOMEM;
5216
5217 apply_wqattrs_lock();
5218
5219 attrs = wq_sysfs_prep_attrs(wq);
5220 if (!attrs)
5221 goto out_unlock;
5222
5223 ret = cpumask_parse(buf, attrs->cpumask);
5224 if (!ret)
5225 ret = apply_workqueue_attrs_locked(wq, attrs);
5226
5227out_unlock:
5228 apply_wqattrs_unlock();
5229 free_workqueue_attrs(attrs);
5230 return ret ?: count;
5231}
5232
5233static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5234 char *buf)
5235{
5236 struct workqueue_struct *wq = dev_to_wq(dev);
5237 int written;
5238
5239 mutex_lock(&wq->mutex);
5240 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5241 !wq->unbound_attrs->no_numa);
5242 mutex_unlock(&wq->mutex);
5243
5244 return written;
5245}
5246
5247static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5248 const char *buf, size_t count)
5249{
5250 struct workqueue_struct *wq = dev_to_wq(dev);
5251 struct workqueue_attrs *attrs;
5252 int v, ret = -ENOMEM;
5253
5254 apply_wqattrs_lock();
5255
5256 attrs = wq_sysfs_prep_attrs(wq);
5257 if (!attrs)
5258 goto out_unlock;
5259
5260 ret = -EINVAL;
5261 if (sscanf(buf, "%d", &v) == 1) {
5262 attrs->no_numa = !v;
5263 ret = apply_workqueue_attrs_locked(wq, attrs);
5264 }
5265
5266out_unlock:
5267 apply_wqattrs_unlock();
5268 free_workqueue_attrs(attrs);
5269 return ret ?: count;
5270}
5271
5272static struct device_attribute wq_sysfs_unbound_attrs[] = {
5273 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5274 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5275 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5276 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5277 __ATTR_NULL,
5278};
5279
5280static struct bus_type wq_subsys = {
5281 .name = "workqueue",
5282 .dev_groups = wq_sysfs_groups,
5283};
5284
5285static ssize_t wq_unbound_cpumask_show(struct device *dev,
5286 struct device_attribute *attr, char *buf)
5287{
5288 int written;
5289
5290 mutex_lock(&wq_pool_mutex);
5291 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5292 cpumask_pr_args(wq_unbound_cpumask));
5293 mutex_unlock(&wq_pool_mutex);
5294
5295 return written;
5296}
5297
5298static ssize_t wq_unbound_cpumask_store(struct device *dev,
5299 struct device_attribute *attr, const char *buf, size_t count)
5300{
5301 cpumask_var_t cpumask;
5302 int ret;
5303
5304 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5305 return -ENOMEM;
5306
5307 ret = cpumask_parse(buf, cpumask);
5308 if (!ret)
5309 ret = workqueue_set_unbound_cpumask(cpumask);
5310
5311 free_cpumask_var(cpumask);
5312 return ret ? ret : count;
5313}
5314
5315static struct device_attribute wq_sysfs_cpumask_attr =
5316 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5317 wq_unbound_cpumask_store);
5318
5319static int __init wq_sysfs_init(void)
5320{
5321 int err;
5322
5323 err = subsys_virtual_register(&wq_subsys, NULL);
5324 if (err)
5325 return err;
5326
5327 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5328}
5329core_initcall(wq_sysfs_init);
5330
5331static void wq_device_release(struct device *dev)
5332{
5333 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5334
5335 kfree(wq_dev);
5336}
5337
5338/**
5339 * workqueue_sysfs_register - make a workqueue visible in sysfs
5340 * @wq: the workqueue to register
5341 *
5342 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5343 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5344 * which is the preferred method.
5345 *
5346 * Workqueue user should use this function directly iff it wants to apply
5347 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5348 * apply_workqueue_attrs() may race against userland updating the
5349 * attributes.
5350 *
5351 * Return: 0 on success, -errno on failure.
5352 */
5353int workqueue_sysfs_register(struct workqueue_struct *wq)
5354{
5355 struct wq_device *wq_dev;
5356 int ret;
5357
5358 /*
5359 * Adjusting max_active or creating new pwqs by applying
5360 * attributes breaks ordering guarantee. Disallow exposing ordered
5361 * workqueues.
5362 */
5363 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5364 return -EINVAL;
5365
5366 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5367 if (!wq_dev)
5368 return -ENOMEM;
5369
5370 wq_dev->wq = wq;
5371 wq_dev->dev.bus = &wq_subsys;
5372 wq_dev->dev.release = wq_device_release;
5373 dev_set_name(&wq_dev->dev, "%s", wq->name);
5374
5375 /*
5376 * unbound_attrs are created separately. Suppress uevent until
5377 * everything is ready.
5378 */
5379 dev_set_uevent_suppress(&wq_dev->dev, true);
5380
5381 ret = device_register(&wq_dev->dev);
5382 if (ret) {
5383 put_device(&wq_dev->dev);
5384 wq->wq_dev = NULL;
5385 return ret;
5386 }
5387
5388 if (wq->flags & WQ_UNBOUND) {
5389 struct device_attribute *attr;
5390
5391 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5392 ret = device_create_file(&wq_dev->dev, attr);
5393 if (ret) {
5394 device_unregister(&wq_dev->dev);
5395 wq->wq_dev = NULL;
5396 return ret;
5397 }
5398 }
5399 }
5400
5401 dev_set_uevent_suppress(&wq_dev->dev, false);
5402 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5403 return 0;
5404}
5405
5406/**
5407 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5408 * @wq: the workqueue to unregister
5409 *
5410 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5411 */
5412static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5413{
5414 struct wq_device *wq_dev = wq->wq_dev;
5415
5416 if (!wq->wq_dev)
5417 return;
5418
5419 wq->wq_dev = NULL;
5420 device_unregister(&wq_dev->dev);
5421}
5422#else /* CONFIG_SYSFS */
5423static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5424#endif /* CONFIG_SYSFS */
5425
5426/*
5427 * Workqueue watchdog.
5428 *
5429 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5430 * flush dependency, a concurrency managed work item which stays RUNNING
5431 * indefinitely. Workqueue stalls can be very difficult to debug as the
5432 * usual warning mechanisms don't trigger and internal workqueue state is
5433 * largely opaque.
5434 *
5435 * Workqueue watchdog monitors all worker pools periodically and dumps
5436 * state if some pools failed to make forward progress for a while where
5437 * forward progress is defined as the first item on ->worklist changing.
5438 *
5439 * This mechanism is controlled through the kernel parameter
5440 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5441 * corresponding sysfs parameter file.
5442 */
5443#ifdef CONFIG_WQ_WATCHDOG
5444
5445static unsigned long wq_watchdog_thresh = 30;
5446static struct timer_list wq_watchdog_timer;
5447
5448static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5449static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5450
5451static void wq_watchdog_reset_touched(void)
5452{
5453 int cpu;
5454
5455 wq_watchdog_touched = jiffies;
5456 for_each_possible_cpu(cpu)
5457 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5458}
5459
5460static void wq_watchdog_timer_fn(struct timer_list *unused)
5461{
5462 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5463 bool lockup_detected = false;
5464 struct worker_pool *pool;
5465 int pi;
5466
5467 if (!thresh)
5468 return;
5469
5470 rcu_read_lock();
5471
5472 for_each_pool(pool, pi) {
5473 unsigned long pool_ts, touched, ts;
5474
5475 if (list_empty(&pool->worklist))
5476 continue;
5477
5478 /* get the latest of pool and touched timestamps */
5479 pool_ts = READ_ONCE(pool->watchdog_ts);
5480 touched = READ_ONCE(wq_watchdog_touched);
5481
5482 if (time_after(pool_ts, touched))
5483 ts = pool_ts;
5484 else
5485 ts = touched;
5486
5487 if (pool->cpu >= 0) {
5488 unsigned long cpu_touched =
5489 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5490 pool->cpu));
5491 if (time_after(cpu_touched, ts))
5492 ts = cpu_touched;
5493 }
5494
5495 /* did we stall? */
5496 if (time_after(jiffies, ts + thresh)) {
5497 lockup_detected = true;
5498 pr_emerg("BUG: workqueue lockup - pool");
5499 pr_cont_pool_info(pool);
5500 pr_cont(" stuck for %us!\n",
5501 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5502 }
5503 }
5504
5505 rcu_read_unlock();
5506
5507 if (lockup_detected)
5508 show_workqueue_state();
5509
5510 wq_watchdog_reset_touched();
5511 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5512}
5513
5514void wq_watchdog_touch(int cpu)
5515{
5516 if (cpu >= 0)
5517 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5518 else
5519 wq_watchdog_touched = jiffies;
5520}
5521
5522static void wq_watchdog_set_thresh(unsigned long thresh)
5523{
5524 wq_watchdog_thresh = 0;
5525 del_timer_sync(&wq_watchdog_timer);
5526
5527 if (thresh) {
5528 wq_watchdog_thresh = thresh;
5529 wq_watchdog_reset_touched();
5530 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5531 }
5532}
5533
5534static int wq_watchdog_param_set_thresh(const char *val,
5535 const struct kernel_param *kp)
5536{
5537 unsigned long thresh;
5538 int ret;
5539
5540 ret = kstrtoul(val, 0, &thresh);
5541 if (ret)
5542 return ret;
5543
5544 if (system_wq)
5545 wq_watchdog_set_thresh(thresh);
5546 else
5547 wq_watchdog_thresh = thresh;
5548
5549 return 0;
5550}
5551
5552static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5553 .set = wq_watchdog_param_set_thresh,
5554 .get = param_get_ulong,
5555};
5556
5557module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5558 0644);
5559
5560static void wq_watchdog_init(void)
5561{
5562 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5563 wq_watchdog_set_thresh(wq_watchdog_thresh);
5564}
5565
5566#else /* CONFIG_WQ_WATCHDOG */
5567
5568static inline void wq_watchdog_init(void) { }
5569
5570#endif /* CONFIG_WQ_WATCHDOG */
5571
5572static void __init wq_numa_init(void)
5573{
5574 cpumask_var_t *tbl;
5575 int node, cpu;
5576
5577 if (num_possible_nodes() <= 1)
5578 return;
5579
5580 if (wq_disable_numa) {
5581 pr_info("workqueue: NUMA affinity support disabled\n");
5582 return;
5583 }
5584
5585 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5586 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5587
5588 /*
5589 * We want masks of possible CPUs of each node which isn't readily
5590 * available. Build one from cpu_to_node() which should have been
5591 * fully initialized by now.
5592 */
5593 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5594 BUG_ON(!tbl);
5595
5596 for_each_node(node)
5597 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5598 node_online(node) ? node : NUMA_NO_NODE));
5599
5600 for_each_possible_cpu(cpu) {
5601 node = cpu_to_node(cpu);
5602 if (WARN_ON(node == NUMA_NO_NODE)) {
5603 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5604 /* happens iff arch is bonkers, let's just proceed */
5605 return;
5606 }
5607 cpumask_set_cpu(cpu, tbl[node]);
5608 }
5609
5610 wq_numa_possible_cpumask = tbl;
5611 wq_numa_enabled = true;
5612}
5613
5614/**
5615 * workqueue_init_early - early init for workqueue subsystem
5616 *
5617 * This is the first half of two-staged workqueue subsystem initialization
5618 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5619 * idr are up. It sets up all the data structures and system workqueues
5620 * and allows early boot code to create workqueues and queue/cancel work
5621 * items. Actual work item execution starts only after kthreads can be
5622 * created and scheduled right before early initcalls.
5623 */
5624int __init workqueue_init_early(void)
5625{
5626 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5627 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5628 int i, cpu;
5629
5630 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5631
5632 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5633 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5634
5635 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5636
5637 /* initialize CPU pools */
5638 for_each_possible_cpu(cpu) {
5639 struct worker_pool *pool;
5640
5641 i = 0;
5642 for_each_cpu_worker_pool(pool, cpu) {
5643 BUG_ON(init_worker_pool(pool));
5644 pool->cpu = cpu;
5645 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5646 pool->attrs->nice = std_nice[i++];
5647 pool->node = cpu_to_node(cpu);
5648
5649 /* alloc pool ID */
5650 mutex_lock(&wq_pool_mutex);
5651 BUG_ON(worker_pool_assign_id(pool));
5652 mutex_unlock(&wq_pool_mutex);
5653 }
5654 }
5655
5656 /* create default unbound and ordered wq attrs */
5657 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5658 struct workqueue_attrs *attrs;
5659
5660 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5661 attrs->nice = std_nice[i];
5662 unbound_std_wq_attrs[i] = attrs;
5663
5664 /*
5665 * An ordered wq should have only one pwq as ordering is
5666 * guaranteed by max_active which is enforced by pwqs.
5667 * Turn off NUMA so that dfl_pwq is used for all nodes.
5668 */
5669 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5670 attrs->nice = std_nice[i];
5671 attrs->no_numa = true;
5672 ordered_wq_attrs[i] = attrs;
5673 }
5674
5675 system_wq = alloc_workqueue("events", 0, 0);
5676 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5677 system_long_wq = alloc_workqueue("events_long", 0, 0);
5678 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5679 WQ_UNBOUND_MAX_ACTIVE);
5680 system_freezable_wq = alloc_workqueue("events_freezable",
5681 WQ_FREEZABLE, 0);
5682 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5683 WQ_POWER_EFFICIENT, 0);
5684 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5685 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5686 0);
5687 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5688 !system_unbound_wq || !system_freezable_wq ||
5689 !system_power_efficient_wq ||
5690 !system_freezable_power_efficient_wq);
5691
5692 return 0;
5693}
5694
5695/**
5696 * workqueue_init - bring workqueue subsystem fully online
5697 *
5698 * This is the latter half of two-staged workqueue subsystem initialization
5699 * and invoked as soon as kthreads can be created and scheduled.
5700 * Workqueues have been created and work items queued on them, but there
5701 * are no kworkers executing the work items yet. Populate the worker pools
5702 * with the initial workers and enable future kworker creations.
5703 */
5704int __init workqueue_init(void)
5705{
5706 struct workqueue_struct *wq;
5707 struct worker_pool *pool;
5708 int cpu, bkt;
5709
5710 /*
5711 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5712 * CPU to node mapping may not be available that early on some
5713 * archs such as power and arm64. As per-cpu pools created
5714 * previously could be missing node hint and unbound pools NUMA
5715 * affinity, fix them up.
5716 *
5717 * Also, while iterating workqueues, create rescuers if requested.
5718 */
5719 wq_numa_init();
5720
5721 mutex_lock(&wq_pool_mutex);
5722
5723 for_each_possible_cpu(cpu) {
5724 for_each_cpu_worker_pool(pool, cpu) {
5725 pool->node = cpu_to_node(cpu);
5726 }
5727 }
5728
5729 list_for_each_entry(wq, &workqueues, list) {
5730 wq_update_unbound_numa(wq, smp_processor_id(), true);
5731 WARN(init_rescuer(wq),
5732 "workqueue: failed to create early rescuer for %s",
5733 wq->name);
5734 }
5735
5736 mutex_unlock(&wq_pool_mutex);
5737
5738 /* create the initial workers */
5739 for_each_online_cpu(cpu) {
5740 for_each_cpu_worker_pool(pool, cpu) {
5741 pool->flags &= ~POOL_DISASSOCIATED;
5742 BUG_ON(!create_worker(pool));
5743 }
5744 }
5745
5746 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5747 BUG_ON(!create_worker(pool));
5748
5749 wq_online = true;
5750 wq_watchdog_init();
5751
5752 return 0;
5753}