]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - kernel/workqueue.c
lockdep: Add an in_workqueue_context() lockdep-based test function
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
... / ...
CommitLineData
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
30#include <linux/hardirq.h>
31#include <linux/mempolicy.h>
32#include <linux/freezer.h>
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
35#include <linux/lockdep.h>
36#define CREATE_TRACE_POINTS
37#include <trace/events/workqueue.h>
38
39/*
40 * The per-CPU workqueue (if single thread, we always use the first
41 * possible cpu).
42 */
43struct cpu_workqueue_struct {
44
45 spinlock_t lock;
46
47 struct list_head worklist;
48 wait_queue_head_t more_work;
49 struct work_struct *current_work;
50
51 struct workqueue_struct *wq;
52 struct task_struct *thread;
53} ____cacheline_aligned;
54
55/*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 int rt;
66#ifdef CONFIG_LOCKDEP
67 struct lockdep_map lockdep_map;
68#endif
69};
70
71#ifdef CONFIG_LOCKDEP
72/**
73 * in_workqueue_context() - in context of specified workqueue?
74 * @wq: the workqueue of interest
75 *
76 * Checks lockdep state to see if the current task is executing from
77 * within a workqueue item. This function exists only if lockdep is
78 * enabled.
79 */
80int in_workqueue_context(struct workqueue_struct *wq)
81{
82 return lock_is_held(&wq->lockdep_map);
83}
84#endif
85
86#ifdef CONFIG_DEBUG_OBJECTS_WORK
87
88static struct debug_obj_descr work_debug_descr;
89
90/*
91 * fixup_init is called when:
92 * - an active object is initialized
93 */
94static int work_fixup_init(void *addr, enum debug_obj_state state)
95{
96 struct work_struct *work = addr;
97
98 switch (state) {
99 case ODEBUG_STATE_ACTIVE:
100 cancel_work_sync(work);
101 debug_object_init(work, &work_debug_descr);
102 return 1;
103 default:
104 return 0;
105 }
106}
107
108/*
109 * fixup_activate is called when:
110 * - an active object is activated
111 * - an unknown object is activated (might be a statically initialized object)
112 */
113static int work_fixup_activate(void *addr, enum debug_obj_state state)
114{
115 struct work_struct *work = addr;
116
117 switch (state) {
118
119 case ODEBUG_STATE_NOTAVAILABLE:
120 /*
121 * This is not really a fixup. The work struct was
122 * statically initialized. We just make sure that it
123 * is tracked in the object tracker.
124 */
125 if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) {
126 debug_object_init(work, &work_debug_descr);
127 debug_object_activate(work, &work_debug_descr);
128 return 0;
129 }
130 WARN_ON_ONCE(1);
131 return 0;
132
133 case ODEBUG_STATE_ACTIVE:
134 WARN_ON(1);
135
136 default:
137 return 0;
138 }
139}
140
141/*
142 * fixup_free is called when:
143 * - an active object is freed
144 */
145static int work_fixup_free(void *addr, enum debug_obj_state state)
146{
147 struct work_struct *work = addr;
148
149 switch (state) {
150 case ODEBUG_STATE_ACTIVE:
151 cancel_work_sync(work);
152 debug_object_free(work, &work_debug_descr);
153 return 1;
154 default:
155 return 0;
156 }
157}
158
159static struct debug_obj_descr work_debug_descr = {
160 .name = "work_struct",
161 .fixup_init = work_fixup_init,
162 .fixup_activate = work_fixup_activate,
163 .fixup_free = work_fixup_free,
164};
165
166static inline void debug_work_activate(struct work_struct *work)
167{
168 debug_object_activate(work, &work_debug_descr);
169}
170
171static inline void debug_work_deactivate(struct work_struct *work)
172{
173 debug_object_deactivate(work, &work_debug_descr);
174}
175
176void __init_work(struct work_struct *work, int onstack)
177{
178 if (onstack)
179 debug_object_init_on_stack(work, &work_debug_descr);
180 else
181 debug_object_init(work, &work_debug_descr);
182}
183EXPORT_SYMBOL_GPL(__init_work);
184
185void destroy_work_on_stack(struct work_struct *work)
186{
187 debug_object_free(work, &work_debug_descr);
188}
189EXPORT_SYMBOL_GPL(destroy_work_on_stack);
190
191#else
192static inline void debug_work_activate(struct work_struct *work) { }
193static inline void debug_work_deactivate(struct work_struct *work) { }
194#endif
195
196/* Serializes the accesses to the list of workqueues. */
197static DEFINE_SPINLOCK(workqueue_lock);
198static LIST_HEAD(workqueues);
199
200static int singlethread_cpu __read_mostly;
201static const struct cpumask *cpu_singlethread_map __read_mostly;
202/*
203 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
204 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
205 * which comes in between can't use for_each_online_cpu(). We could
206 * use cpu_possible_map, the cpumask below is more a documentation
207 * than optimization.
208 */
209static cpumask_var_t cpu_populated_map __read_mostly;
210
211/* If it's single threaded, it isn't in the list of workqueues. */
212static inline int is_wq_single_threaded(struct workqueue_struct *wq)
213{
214 return wq->singlethread;
215}
216
217static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
218{
219 return is_wq_single_threaded(wq)
220 ? cpu_singlethread_map : cpu_populated_map;
221}
222
223static
224struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
225{
226 if (unlikely(is_wq_single_threaded(wq)))
227 cpu = singlethread_cpu;
228 return per_cpu_ptr(wq->cpu_wq, cpu);
229}
230
231/*
232 * Set the workqueue on which a work item is to be run
233 * - Must *only* be called if the pending flag is set
234 */
235static inline void set_wq_data(struct work_struct *work,
236 struct cpu_workqueue_struct *cwq)
237{
238 unsigned long new;
239
240 BUG_ON(!work_pending(work));
241
242 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
243 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
244 atomic_long_set(&work->data, new);
245}
246
247/*
248 * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
249 */
250static inline void clear_wq_data(struct work_struct *work)
251{
252 unsigned long flags = *work_data_bits(work) &
253 (1UL << WORK_STRUCT_STATIC);
254 atomic_long_set(&work->data, flags);
255}
256
257static inline
258struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
259{
260 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
261}
262
263static void insert_work(struct cpu_workqueue_struct *cwq,
264 struct work_struct *work, struct list_head *head)
265{
266 trace_workqueue_insertion(cwq->thread, work);
267
268 set_wq_data(work, cwq);
269 /*
270 * Ensure that we get the right work->data if we see the
271 * result of list_add() below, see try_to_grab_pending().
272 */
273 smp_wmb();
274 list_add_tail(&work->entry, head);
275 wake_up(&cwq->more_work);
276}
277
278static void __queue_work(struct cpu_workqueue_struct *cwq,
279 struct work_struct *work)
280{
281 unsigned long flags;
282
283 debug_work_activate(work);
284 spin_lock_irqsave(&cwq->lock, flags);
285 insert_work(cwq, work, &cwq->worklist);
286 spin_unlock_irqrestore(&cwq->lock, flags);
287}
288
289/**
290 * queue_work - queue work on a workqueue
291 * @wq: workqueue to use
292 * @work: work to queue
293 *
294 * Returns 0 if @work was already on a queue, non-zero otherwise.
295 *
296 * We queue the work to the CPU on which it was submitted, but if the CPU dies
297 * it can be processed by another CPU.
298 */
299int queue_work(struct workqueue_struct *wq, struct work_struct *work)
300{
301 int ret;
302
303 ret = queue_work_on(get_cpu(), wq, work);
304 put_cpu();
305
306 return ret;
307}
308EXPORT_SYMBOL_GPL(queue_work);
309
310/**
311 * queue_work_on - queue work on specific cpu
312 * @cpu: CPU number to execute work on
313 * @wq: workqueue to use
314 * @work: work to queue
315 *
316 * Returns 0 if @work was already on a queue, non-zero otherwise.
317 *
318 * We queue the work to a specific CPU, the caller must ensure it
319 * can't go away.
320 */
321int
322queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
323{
324 int ret = 0;
325
326 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
327 BUG_ON(!list_empty(&work->entry));
328 __queue_work(wq_per_cpu(wq, cpu), work);
329 ret = 1;
330 }
331 return ret;
332}
333EXPORT_SYMBOL_GPL(queue_work_on);
334
335static void delayed_work_timer_fn(unsigned long __data)
336{
337 struct delayed_work *dwork = (struct delayed_work *)__data;
338 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
339 struct workqueue_struct *wq = cwq->wq;
340
341 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
342}
343
344/**
345 * queue_delayed_work - queue work on a workqueue after delay
346 * @wq: workqueue to use
347 * @dwork: delayable work to queue
348 * @delay: number of jiffies to wait before queueing
349 *
350 * Returns 0 if @work was already on a queue, non-zero otherwise.
351 */
352int queue_delayed_work(struct workqueue_struct *wq,
353 struct delayed_work *dwork, unsigned long delay)
354{
355 if (delay == 0)
356 return queue_work(wq, &dwork->work);
357
358 return queue_delayed_work_on(-1, wq, dwork, delay);
359}
360EXPORT_SYMBOL_GPL(queue_delayed_work);
361
362/**
363 * queue_delayed_work_on - queue work on specific CPU after delay
364 * @cpu: CPU number to execute work on
365 * @wq: workqueue to use
366 * @dwork: work to queue
367 * @delay: number of jiffies to wait before queueing
368 *
369 * Returns 0 if @work was already on a queue, non-zero otherwise.
370 */
371int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
372 struct delayed_work *dwork, unsigned long delay)
373{
374 int ret = 0;
375 struct timer_list *timer = &dwork->timer;
376 struct work_struct *work = &dwork->work;
377
378 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
379 BUG_ON(timer_pending(timer));
380 BUG_ON(!list_empty(&work->entry));
381
382 timer_stats_timer_set_start_info(&dwork->timer);
383
384 /* This stores cwq for the moment, for the timer_fn */
385 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
386 timer->expires = jiffies + delay;
387 timer->data = (unsigned long)dwork;
388 timer->function = delayed_work_timer_fn;
389
390 if (unlikely(cpu >= 0))
391 add_timer_on(timer, cpu);
392 else
393 add_timer(timer);
394 ret = 1;
395 }
396 return ret;
397}
398EXPORT_SYMBOL_GPL(queue_delayed_work_on);
399
400static void run_workqueue(struct cpu_workqueue_struct *cwq)
401{
402 spin_lock_irq(&cwq->lock);
403 while (!list_empty(&cwq->worklist)) {
404 struct work_struct *work = list_entry(cwq->worklist.next,
405 struct work_struct, entry);
406 work_func_t f = work->func;
407#ifdef CONFIG_LOCKDEP
408 /*
409 * It is permissible to free the struct work_struct
410 * from inside the function that is called from it,
411 * this we need to take into account for lockdep too.
412 * To avoid bogus "held lock freed" warnings as well
413 * as problems when looking into work->lockdep_map,
414 * make a copy and use that here.
415 */
416 struct lockdep_map lockdep_map = work->lockdep_map;
417#endif
418 trace_workqueue_execution(cwq->thread, work);
419 debug_work_deactivate(work);
420 cwq->current_work = work;
421 list_del_init(cwq->worklist.next);
422 spin_unlock_irq(&cwq->lock);
423
424 BUG_ON(get_wq_data(work) != cwq);
425 work_clear_pending(work);
426 lock_map_acquire(&cwq->wq->lockdep_map);
427 lock_map_acquire(&lockdep_map);
428 f(work);
429 lock_map_release(&lockdep_map);
430 lock_map_release(&cwq->wq->lockdep_map);
431
432 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
433 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
434 "%s/0x%08x/%d\n",
435 current->comm, preempt_count(),
436 task_pid_nr(current));
437 printk(KERN_ERR " last function: ");
438 print_symbol("%s\n", (unsigned long)f);
439 debug_show_held_locks(current);
440 dump_stack();
441 }
442
443 spin_lock_irq(&cwq->lock);
444 cwq->current_work = NULL;
445 }
446 spin_unlock_irq(&cwq->lock);
447}
448
449static int worker_thread(void *__cwq)
450{
451 struct cpu_workqueue_struct *cwq = __cwq;
452 DEFINE_WAIT(wait);
453
454 if (cwq->wq->freezeable)
455 set_freezable();
456
457 for (;;) {
458 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
459 if (!freezing(current) &&
460 !kthread_should_stop() &&
461 list_empty(&cwq->worklist))
462 schedule();
463 finish_wait(&cwq->more_work, &wait);
464
465 try_to_freeze();
466
467 if (kthread_should_stop())
468 break;
469
470 run_workqueue(cwq);
471 }
472
473 return 0;
474}
475
476struct wq_barrier {
477 struct work_struct work;
478 struct completion done;
479};
480
481static void wq_barrier_func(struct work_struct *work)
482{
483 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
484 complete(&barr->done);
485}
486
487static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
488 struct wq_barrier *barr, struct list_head *head)
489{
490 /*
491 * debugobject calls are safe here even with cwq->lock locked
492 * as we know for sure that this will not trigger any of the
493 * checks and call back into the fixup functions where we
494 * might deadlock.
495 */
496 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
497 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
498
499 init_completion(&barr->done);
500
501 debug_work_activate(&barr->work);
502 insert_work(cwq, &barr->work, head);
503}
504
505static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
506{
507 int active = 0;
508 struct wq_barrier barr;
509
510 WARN_ON(cwq->thread == current);
511
512 spin_lock_irq(&cwq->lock);
513 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
514 insert_wq_barrier(cwq, &barr, &cwq->worklist);
515 active = 1;
516 }
517 spin_unlock_irq(&cwq->lock);
518
519 if (active) {
520 wait_for_completion(&barr.done);
521 destroy_work_on_stack(&barr.work);
522 }
523
524 return active;
525}
526
527/**
528 * flush_workqueue - ensure that any scheduled work has run to completion.
529 * @wq: workqueue to flush
530 *
531 * Forces execution of the workqueue and blocks until its completion.
532 * This is typically used in driver shutdown handlers.
533 *
534 * We sleep until all works which were queued on entry have been handled,
535 * but we are not livelocked by new incoming ones.
536 *
537 * This function used to run the workqueues itself. Now we just wait for the
538 * helper threads to do it.
539 */
540void flush_workqueue(struct workqueue_struct *wq)
541{
542 const struct cpumask *cpu_map = wq_cpu_map(wq);
543 int cpu;
544
545 might_sleep();
546 lock_map_acquire(&wq->lockdep_map);
547 lock_map_release(&wq->lockdep_map);
548 for_each_cpu(cpu, cpu_map)
549 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
550}
551EXPORT_SYMBOL_GPL(flush_workqueue);
552
553/**
554 * flush_work - block until a work_struct's callback has terminated
555 * @work: the work which is to be flushed
556 *
557 * Returns false if @work has already terminated.
558 *
559 * It is expected that, prior to calling flush_work(), the caller has
560 * arranged for the work to not be requeued, otherwise it doesn't make
561 * sense to use this function.
562 */
563int flush_work(struct work_struct *work)
564{
565 struct cpu_workqueue_struct *cwq;
566 struct list_head *prev;
567 struct wq_barrier barr;
568
569 might_sleep();
570 cwq = get_wq_data(work);
571 if (!cwq)
572 return 0;
573
574 lock_map_acquire(&cwq->wq->lockdep_map);
575 lock_map_release(&cwq->wq->lockdep_map);
576
577 prev = NULL;
578 spin_lock_irq(&cwq->lock);
579 if (!list_empty(&work->entry)) {
580 /*
581 * See the comment near try_to_grab_pending()->smp_rmb().
582 * If it was re-queued under us we are not going to wait.
583 */
584 smp_rmb();
585 if (unlikely(cwq != get_wq_data(work)))
586 goto out;
587 prev = &work->entry;
588 } else {
589 if (cwq->current_work != work)
590 goto out;
591 prev = &cwq->worklist;
592 }
593 insert_wq_barrier(cwq, &barr, prev->next);
594out:
595 spin_unlock_irq(&cwq->lock);
596 if (!prev)
597 return 0;
598
599 wait_for_completion(&barr.done);
600 destroy_work_on_stack(&barr.work);
601 return 1;
602}
603EXPORT_SYMBOL_GPL(flush_work);
604
605/*
606 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
607 * so this work can't be re-armed in any way.
608 */
609static int try_to_grab_pending(struct work_struct *work)
610{
611 struct cpu_workqueue_struct *cwq;
612 int ret = -1;
613
614 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
615 return 0;
616
617 /*
618 * The queueing is in progress, or it is already queued. Try to
619 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
620 */
621
622 cwq = get_wq_data(work);
623 if (!cwq)
624 return ret;
625
626 spin_lock_irq(&cwq->lock);
627 if (!list_empty(&work->entry)) {
628 /*
629 * This work is queued, but perhaps we locked the wrong cwq.
630 * In that case we must see the new value after rmb(), see
631 * insert_work()->wmb().
632 */
633 smp_rmb();
634 if (cwq == get_wq_data(work)) {
635 debug_work_deactivate(work);
636 list_del_init(&work->entry);
637 ret = 1;
638 }
639 }
640 spin_unlock_irq(&cwq->lock);
641
642 return ret;
643}
644
645static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
646 struct work_struct *work)
647{
648 struct wq_barrier barr;
649 int running = 0;
650
651 spin_lock_irq(&cwq->lock);
652 if (unlikely(cwq->current_work == work)) {
653 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
654 running = 1;
655 }
656 spin_unlock_irq(&cwq->lock);
657
658 if (unlikely(running)) {
659 wait_for_completion(&barr.done);
660 destroy_work_on_stack(&barr.work);
661 }
662}
663
664static void wait_on_work(struct work_struct *work)
665{
666 struct cpu_workqueue_struct *cwq;
667 struct workqueue_struct *wq;
668 const struct cpumask *cpu_map;
669 int cpu;
670
671 might_sleep();
672
673 lock_map_acquire(&work->lockdep_map);
674 lock_map_release(&work->lockdep_map);
675
676 cwq = get_wq_data(work);
677 if (!cwq)
678 return;
679
680 wq = cwq->wq;
681 cpu_map = wq_cpu_map(wq);
682
683 for_each_cpu(cpu, cpu_map)
684 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
685}
686
687static int __cancel_work_timer(struct work_struct *work,
688 struct timer_list* timer)
689{
690 int ret;
691
692 do {
693 ret = (timer && likely(del_timer(timer)));
694 if (!ret)
695 ret = try_to_grab_pending(work);
696 wait_on_work(work);
697 } while (unlikely(ret < 0));
698
699 clear_wq_data(work);
700 return ret;
701}
702
703/**
704 * cancel_work_sync - block until a work_struct's callback has terminated
705 * @work: the work which is to be flushed
706 *
707 * Returns true if @work was pending.
708 *
709 * cancel_work_sync() will cancel the work if it is queued. If the work's
710 * callback appears to be running, cancel_work_sync() will block until it
711 * has completed.
712 *
713 * It is possible to use this function if the work re-queues itself. It can
714 * cancel the work even if it migrates to another workqueue, however in that
715 * case it only guarantees that work->func() has completed on the last queued
716 * workqueue.
717 *
718 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
719 * pending, otherwise it goes into a busy-wait loop until the timer expires.
720 *
721 * The caller must ensure that workqueue_struct on which this work was last
722 * queued can't be destroyed before this function returns.
723 */
724int cancel_work_sync(struct work_struct *work)
725{
726 return __cancel_work_timer(work, NULL);
727}
728EXPORT_SYMBOL_GPL(cancel_work_sync);
729
730/**
731 * cancel_delayed_work_sync - reliably kill off a delayed work.
732 * @dwork: the delayed work struct
733 *
734 * Returns true if @dwork was pending.
735 *
736 * It is possible to use this function if @dwork rearms itself via queue_work()
737 * or queue_delayed_work(). See also the comment for cancel_work_sync().
738 */
739int cancel_delayed_work_sync(struct delayed_work *dwork)
740{
741 return __cancel_work_timer(&dwork->work, &dwork->timer);
742}
743EXPORT_SYMBOL(cancel_delayed_work_sync);
744
745static struct workqueue_struct *keventd_wq __read_mostly;
746
747/**
748 * schedule_work - put work task in global workqueue
749 * @work: job to be done
750 *
751 * Returns zero if @work was already on the kernel-global workqueue and
752 * non-zero otherwise.
753 *
754 * This puts a job in the kernel-global workqueue if it was not already
755 * queued and leaves it in the same position on the kernel-global
756 * workqueue otherwise.
757 */
758int schedule_work(struct work_struct *work)
759{
760 return queue_work(keventd_wq, work);
761}
762EXPORT_SYMBOL(schedule_work);
763
764/*
765 * schedule_work_on - put work task on a specific cpu
766 * @cpu: cpu to put the work task on
767 * @work: job to be done
768 *
769 * This puts a job on a specific cpu
770 */
771int schedule_work_on(int cpu, struct work_struct *work)
772{
773 return queue_work_on(cpu, keventd_wq, work);
774}
775EXPORT_SYMBOL(schedule_work_on);
776
777/**
778 * schedule_delayed_work - put work task in global workqueue after delay
779 * @dwork: job to be done
780 * @delay: number of jiffies to wait or 0 for immediate execution
781 *
782 * After waiting for a given time this puts a job in the kernel-global
783 * workqueue.
784 */
785int schedule_delayed_work(struct delayed_work *dwork,
786 unsigned long delay)
787{
788 return queue_delayed_work(keventd_wq, dwork, delay);
789}
790EXPORT_SYMBOL(schedule_delayed_work);
791
792/**
793 * flush_delayed_work - block until a dwork_struct's callback has terminated
794 * @dwork: the delayed work which is to be flushed
795 *
796 * Any timeout is cancelled, and any pending work is run immediately.
797 */
798void flush_delayed_work(struct delayed_work *dwork)
799{
800 if (del_timer_sync(&dwork->timer)) {
801 struct cpu_workqueue_struct *cwq;
802 cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu());
803 __queue_work(cwq, &dwork->work);
804 put_cpu();
805 }
806 flush_work(&dwork->work);
807}
808EXPORT_SYMBOL(flush_delayed_work);
809
810/**
811 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
812 * @cpu: cpu to use
813 * @dwork: job to be done
814 * @delay: number of jiffies to wait
815 *
816 * After waiting for a given time this puts a job in the kernel-global
817 * workqueue on the specified CPU.
818 */
819int schedule_delayed_work_on(int cpu,
820 struct delayed_work *dwork, unsigned long delay)
821{
822 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
823}
824EXPORT_SYMBOL(schedule_delayed_work_on);
825
826/**
827 * schedule_on_each_cpu - call a function on each online CPU from keventd
828 * @func: the function to call
829 *
830 * Returns zero on success.
831 * Returns -ve errno on failure.
832 *
833 * schedule_on_each_cpu() is very slow.
834 */
835int schedule_on_each_cpu(work_func_t func)
836{
837 int cpu;
838 int orig = -1;
839 struct work_struct *works;
840
841 works = alloc_percpu(struct work_struct);
842 if (!works)
843 return -ENOMEM;
844
845 get_online_cpus();
846
847 /*
848 * When running in keventd don't schedule a work item on
849 * itself. Can just call directly because the work queue is
850 * already bound. This also is faster.
851 */
852 if (current_is_keventd())
853 orig = raw_smp_processor_id();
854
855 for_each_online_cpu(cpu) {
856 struct work_struct *work = per_cpu_ptr(works, cpu);
857
858 INIT_WORK(work, func);
859 if (cpu != orig)
860 schedule_work_on(cpu, work);
861 }
862 if (orig >= 0)
863 func(per_cpu_ptr(works, orig));
864
865 for_each_online_cpu(cpu)
866 flush_work(per_cpu_ptr(works, cpu));
867
868 put_online_cpus();
869 free_percpu(works);
870 return 0;
871}
872
873/**
874 * flush_scheduled_work - ensure that any scheduled work has run to completion.
875 *
876 * Forces execution of the kernel-global workqueue and blocks until its
877 * completion.
878 *
879 * Think twice before calling this function! It's very easy to get into
880 * trouble if you don't take great care. Either of the following situations
881 * will lead to deadlock:
882 *
883 * One of the work items currently on the workqueue needs to acquire
884 * a lock held by your code or its caller.
885 *
886 * Your code is running in the context of a work routine.
887 *
888 * They will be detected by lockdep when they occur, but the first might not
889 * occur very often. It depends on what work items are on the workqueue and
890 * what locks they need, which you have no control over.
891 *
892 * In most situations flushing the entire workqueue is overkill; you merely
893 * need to know that a particular work item isn't queued and isn't running.
894 * In such cases you should use cancel_delayed_work_sync() or
895 * cancel_work_sync() instead.
896 */
897void flush_scheduled_work(void)
898{
899 flush_workqueue(keventd_wq);
900}
901EXPORT_SYMBOL(flush_scheduled_work);
902
903/**
904 * execute_in_process_context - reliably execute the routine with user context
905 * @fn: the function to execute
906 * @ew: guaranteed storage for the execute work structure (must
907 * be available when the work executes)
908 *
909 * Executes the function immediately if process context is available,
910 * otherwise schedules the function for delayed execution.
911 *
912 * Returns: 0 - function was executed
913 * 1 - function was scheduled for execution
914 */
915int execute_in_process_context(work_func_t fn, struct execute_work *ew)
916{
917 if (!in_interrupt()) {
918 fn(&ew->work);
919 return 0;
920 }
921
922 INIT_WORK(&ew->work, fn);
923 schedule_work(&ew->work);
924
925 return 1;
926}
927EXPORT_SYMBOL_GPL(execute_in_process_context);
928
929int keventd_up(void)
930{
931 return keventd_wq != NULL;
932}
933
934int current_is_keventd(void)
935{
936 struct cpu_workqueue_struct *cwq;
937 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
938 int ret = 0;
939
940 BUG_ON(!keventd_wq);
941
942 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
943 if (current == cwq->thread)
944 ret = 1;
945
946 return ret;
947
948}
949
950static struct cpu_workqueue_struct *
951init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
952{
953 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
954
955 cwq->wq = wq;
956 spin_lock_init(&cwq->lock);
957 INIT_LIST_HEAD(&cwq->worklist);
958 init_waitqueue_head(&cwq->more_work);
959
960 return cwq;
961}
962
963static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
964{
965 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
966 struct workqueue_struct *wq = cwq->wq;
967 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
968 struct task_struct *p;
969
970 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
971 /*
972 * Nobody can add the work_struct to this cwq,
973 * if (caller is __create_workqueue)
974 * nobody should see this wq
975 * else // caller is CPU_UP_PREPARE
976 * cpu is not on cpu_online_map
977 * so we can abort safely.
978 */
979 if (IS_ERR(p))
980 return PTR_ERR(p);
981 if (cwq->wq->rt)
982 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
983 cwq->thread = p;
984
985 trace_workqueue_creation(cwq->thread, cpu);
986
987 return 0;
988}
989
990static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
991{
992 struct task_struct *p = cwq->thread;
993
994 if (p != NULL) {
995 if (cpu >= 0)
996 kthread_bind(p, cpu);
997 wake_up_process(p);
998 }
999}
1000
1001struct workqueue_struct *__create_workqueue_key(const char *name,
1002 int singlethread,
1003 int freezeable,
1004 int rt,
1005 struct lock_class_key *key,
1006 const char *lock_name)
1007{
1008 struct workqueue_struct *wq;
1009 struct cpu_workqueue_struct *cwq;
1010 int err = 0, cpu;
1011
1012 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1013 if (!wq)
1014 return NULL;
1015
1016 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
1017 if (!wq->cpu_wq) {
1018 kfree(wq);
1019 return NULL;
1020 }
1021
1022 wq->name = name;
1023 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
1024 wq->singlethread = singlethread;
1025 wq->freezeable = freezeable;
1026 wq->rt = rt;
1027 INIT_LIST_HEAD(&wq->list);
1028
1029 if (singlethread) {
1030 cwq = init_cpu_workqueue(wq, singlethread_cpu);
1031 err = create_workqueue_thread(cwq, singlethread_cpu);
1032 start_workqueue_thread(cwq, -1);
1033 } else {
1034 cpu_maps_update_begin();
1035 /*
1036 * We must place this wq on list even if the code below fails.
1037 * cpu_down(cpu) can remove cpu from cpu_populated_map before
1038 * destroy_workqueue() takes the lock, in that case we leak
1039 * cwq[cpu]->thread.
1040 */
1041 spin_lock(&workqueue_lock);
1042 list_add(&wq->list, &workqueues);
1043 spin_unlock(&workqueue_lock);
1044 /*
1045 * We must initialize cwqs for each possible cpu even if we
1046 * are going to call destroy_workqueue() finally. Otherwise
1047 * cpu_up() can hit the uninitialized cwq once we drop the
1048 * lock.
1049 */
1050 for_each_possible_cpu(cpu) {
1051 cwq = init_cpu_workqueue(wq, cpu);
1052 if (err || !cpu_online(cpu))
1053 continue;
1054 err = create_workqueue_thread(cwq, cpu);
1055 start_workqueue_thread(cwq, cpu);
1056 }
1057 cpu_maps_update_done();
1058 }
1059
1060 if (err) {
1061 destroy_workqueue(wq);
1062 wq = NULL;
1063 }
1064 return wq;
1065}
1066EXPORT_SYMBOL_GPL(__create_workqueue_key);
1067
1068static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
1069{
1070 /*
1071 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1072 * cpu_add_remove_lock protects cwq->thread.
1073 */
1074 if (cwq->thread == NULL)
1075 return;
1076
1077 lock_map_acquire(&cwq->wq->lockdep_map);
1078 lock_map_release(&cwq->wq->lockdep_map);
1079
1080 flush_cpu_workqueue(cwq);
1081 /*
1082 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
1083 * a concurrent flush_workqueue() can insert a barrier after us.
1084 * However, in that case run_workqueue() won't return and check
1085 * kthread_should_stop() until it flushes all work_struct's.
1086 * When ->worklist becomes empty it is safe to exit because no
1087 * more work_structs can be queued on this cwq: flush_workqueue
1088 * checks list_empty(), and a "normal" queue_work() can't use
1089 * a dead CPU.
1090 */
1091 trace_workqueue_destruction(cwq->thread);
1092 kthread_stop(cwq->thread);
1093 cwq->thread = NULL;
1094}
1095
1096/**
1097 * destroy_workqueue - safely terminate a workqueue
1098 * @wq: target workqueue
1099 *
1100 * Safely destroy a workqueue. All work currently pending will be done first.
1101 */
1102void destroy_workqueue(struct workqueue_struct *wq)
1103{
1104 const struct cpumask *cpu_map = wq_cpu_map(wq);
1105 int cpu;
1106
1107 cpu_maps_update_begin();
1108 spin_lock(&workqueue_lock);
1109 list_del(&wq->list);
1110 spin_unlock(&workqueue_lock);
1111
1112 for_each_cpu(cpu, cpu_map)
1113 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
1114 cpu_maps_update_done();
1115
1116 free_percpu(wq->cpu_wq);
1117 kfree(wq);
1118}
1119EXPORT_SYMBOL_GPL(destroy_workqueue);
1120
1121static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1122 unsigned long action,
1123 void *hcpu)
1124{
1125 unsigned int cpu = (unsigned long)hcpu;
1126 struct cpu_workqueue_struct *cwq;
1127 struct workqueue_struct *wq;
1128 int err = 0;
1129
1130 action &= ~CPU_TASKS_FROZEN;
1131
1132 switch (action) {
1133 case CPU_UP_PREPARE:
1134 cpumask_set_cpu(cpu, cpu_populated_map);
1135 }
1136undo:
1137 list_for_each_entry(wq, &workqueues, list) {
1138 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1139
1140 switch (action) {
1141 case CPU_UP_PREPARE:
1142 err = create_workqueue_thread(cwq, cpu);
1143 if (!err)
1144 break;
1145 printk(KERN_ERR "workqueue [%s] for %i failed\n",
1146 wq->name, cpu);
1147 action = CPU_UP_CANCELED;
1148 err = -ENOMEM;
1149 goto undo;
1150
1151 case CPU_ONLINE:
1152 start_workqueue_thread(cwq, cpu);
1153 break;
1154
1155 case CPU_UP_CANCELED:
1156 start_workqueue_thread(cwq, -1);
1157 case CPU_POST_DEAD:
1158 cleanup_workqueue_thread(cwq);
1159 break;
1160 }
1161 }
1162
1163 switch (action) {
1164 case CPU_UP_CANCELED:
1165 case CPU_POST_DEAD:
1166 cpumask_clear_cpu(cpu, cpu_populated_map);
1167 }
1168
1169 return notifier_from_errno(err);
1170}
1171
1172#ifdef CONFIG_SMP
1173
1174struct work_for_cpu {
1175 struct completion completion;
1176 long (*fn)(void *);
1177 void *arg;
1178 long ret;
1179};
1180
1181static int do_work_for_cpu(void *_wfc)
1182{
1183 struct work_for_cpu *wfc = _wfc;
1184 wfc->ret = wfc->fn(wfc->arg);
1185 complete(&wfc->completion);
1186 return 0;
1187}
1188
1189/**
1190 * work_on_cpu - run a function in user context on a particular cpu
1191 * @cpu: the cpu to run on
1192 * @fn: the function to run
1193 * @arg: the function arg
1194 *
1195 * This will return the value @fn returns.
1196 * It is up to the caller to ensure that the cpu doesn't go offline.
1197 * The caller must not hold any locks which would prevent @fn from completing.
1198 */
1199long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1200{
1201 struct task_struct *sub_thread;
1202 struct work_for_cpu wfc = {
1203 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1204 .fn = fn,
1205 .arg = arg,
1206 };
1207
1208 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1209 if (IS_ERR(sub_thread))
1210 return PTR_ERR(sub_thread);
1211 kthread_bind(sub_thread, cpu);
1212 wake_up_process(sub_thread);
1213 wait_for_completion(&wfc.completion);
1214 return wfc.ret;
1215}
1216EXPORT_SYMBOL_GPL(work_on_cpu);
1217#endif /* CONFIG_SMP */
1218
1219void __init init_workqueues(void)
1220{
1221 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1222
1223 cpumask_copy(cpu_populated_map, cpu_online_mask);
1224 singlethread_cpu = cpumask_first(cpu_possible_mask);
1225 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1226 hotcpu_notifier(workqueue_cpu_callback, 0);
1227 keventd_wq = create_workqueue("events");
1228 BUG_ON(!keventd_wq);
1229}