]> git.proxmox.com Git - mirror_frr.git/blame_incremental - lib/command_match.c
Merge pull request #12708 from donaldsharp/no_notification
[mirror_frr.git] / lib / command_match.c
... / ...
CommitLineData
1/*
2 * Input matching routines for CLI backend.
3 *
4 * --
5 * Copyright (C) 2016 Cumulus Networks, Inc.
6 *
7 * This file is part of GNU Zebra.
8 *
9 * GNU Zebra is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * GNU Zebra is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; see the file COPYING; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <zebra.h>
25
26#include "command_match.h"
27#include "memory.h"
28
29DEFINE_MTYPE_STATIC(LIB, CMD_MATCHSTACK, "Command Match Stack");
30
31#ifdef TRACE_MATCHER
32#define TM 1
33#else
34#define TM 0
35#endif
36
37#define trace_matcher(...) \
38 do { \
39 if (TM) \
40 fprintf(stderr, __VA_ARGS__); \
41 } while (0);
42
43/* matcher helper prototypes */
44static int add_nexthops(struct list *, struct graph_node *,
45 struct graph_node **, size_t, bool);
46
47static enum matcher_rv command_match_r(struct graph_node *, vector,
48 unsigned int, struct graph_node **,
49 struct list **);
50
51static int score_precedence(enum cmd_token_type);
52
53static enum match_type min_match_level(enum cmd_token_type);
54
55static void del_arglist(struct list *);
56
57static struct cmd_token *disambiguate_tokens(struct cmd_token *,
58 struct cmd_token *, char *);
59
60static struct list *disambiguate(struct list *, struct list *, vector,
61 unsigned int);
62
63int compare_completions(const void *, const void *);
64
65/* token matcher prototypes */
66static enum match_type match_token(struct cmd_token *, char *);
67
68static enum match_type match_ipv4(const char *);
69
70static enum match_type match_ipv4_prefix(const char *);
71
72static enum match_type match_ipv6_prefix(const char *, bool);
73
74static enum match_type match_range(struct cmd_token *, const char *);
75
76static enum match_type match_word(struct cmd_token *, const char *);
77
78static enum match_type match_variable(struct cmd_token *, const char *);
79
80static enum match_type match_mac(const char *, bool);
81
82static bool is_neg(vector vline, size_t idx)
83{
84 if (idx >= vector_active(vline) || !vector_slot(vline, idx))
85 return false;
86 return !strcmp(vector_slot(vline, idx), "no");
87}
88
89enum matcher_rv command_match(struct graph *cmdgraph, vector vline,
90 struct list **argv, const struct cmd_element **el)
91{
92 struct graph_node *stack[CMD_ARGC_MAX];
93 enum matcher_rv status;
94 *argv = NULL;
95
96 // prepend a dummy token to match that pesky start node
97 vector vvline = vector_init(vline->alloced + 1);
98 vector_set_index(vvline, 0, XSTRDUP(MTYPE_TMP, "dummy"));
99 memcpy(vvline->index + 1, vline->index,
100 sizeof(void *) * vline->alloced);
101 vvline->active = vline->active + 1;
102
103 struct graph_node *start = vector_slot(cmdgraph->nodes, 0);
104 status = command_match_r(start, vvline, 0, stack, argv);
105 if (status == MATCHER_OK) { // successful match
106 struct listnode *head = listhead(*argv);
107 struct listnode *tail = listtail(*argv);
108
109 assert(head);
110 assert(tail);
111
112 // delete dummy start node
113 cmd_token_del((struct cmd_token *)head->data);
114 list_delete_node(*argv, head);
115
116 // get cmd_element out of list tail
117 *el = listgetdata(tail);
118 list_delete_node(*argv, tail);
119
120 // now argv is an ordered list of cmd_token matching the user
121 // input, with each cmd_token->arg holding the corresponding
122 // input
123 assert(*el);
124 } else if (*argv) {
125 del_arglist(*argv);
126 *argv = NULL;
127 }
128
129 if (!*el) {
130 trace_matcher("No match\n");
131 } else {
132 trace_matcher("Matched command\n->string %s\n->desc %s\n",
133 (*el)->string, (*el)->doc);
134 }
135
136 // free the leader token we alloc'd
137 XFREE(MTYPE_TMP, vector_slot(vvline, 0));
138 // free vector
139 vector_free(vvline);
140
141 return status;
142}
143
144/**
145 * Builds an argument list given a DFA and a matching input line.
146 *
147 * First the function determines if the node it is passed matches the first
148 * token of input. If it does not, it returns NULL (MATCHER_NO_MATCH). If it
149 * does match, then it saves the input token as the head of an argument list.
150 *
151 * The next step is to see if there is further input in the input line. If
152 * there is not, the current node's children are searched to see if any of them
153 * are leaves (type END_TKN). If this is the case, then the bottom of the
154 * recursion stack has been reached, the leaf is pushed onto the argument list,
155 * the current node is pushed, and the resulting argument list is
156 * returned (MATCHER_OK). If it is not the case, NULL is returned, indicating
157 * that there is no match for the input along this path (MATCHER_INCOMPLETE).
158 *
159 * If there is further input, then the function recurses on each of the current
160 * node's children, passing them the input line minus the token that was just
161 * matched. For each child, the return value of the recursive call is
162 * inspected. If it is null, then there is no match for the input along the
163 * subgraph headed by that child. If it is not null, then there is at least one
164 * input match in that subgraph (more on this in a moment).
165 *
166 * If a recursive call on a child returns a non-null value, then it has matched
167 * the input given it on the subgraph that starts with that child. However, due
168 * to the flexibility of the grammar, it is sometimes the case that two or more
169 * child graphs match the same input (two or more of the recursive calls have
170 * non-NULL return values). This is not a valid state, since only one true
171 * match is possible. In order to resolve this conflict, the function keeps a
172 * reference to the child node that most specifically matches the input. This
173 * is done by assigning each node type a precedence. If a child is found to
174 * match the remaining input, then the precedence values of the current
175 * best-matching child and this new match are compared. The node with higher
176 * precedence is kept, and the other match is discarded. Due to the recursive
177 * nature of this function, it is only necessary to compare the precedence of
178 * immediate children, since all subsequent children will already have been
179 * disambiguated in this way.
180 *
181 * In the event that two children are found to match with the same precedence,
182 * then the input is ambiguous for the passed cmd_element and NULL is returned.
183 *
184 * @param[in] start the start node.
185 * @param[in] vline the vectorized input line.
186 * @param[in] n the index of the first input token.
187 * @return A linked list of n elements. The first n-1 elements are pointers to
188 * struct cmd_token and represent the sequence of tokens matched by the input.
189 * The ->arg field of each token points to a copy of the input matched on it.
190 * The final nth element is a pointer to struct cmd_element, which is the
191 * command that was matched.
192 *
193 * If no match was found, the return value is NULL.
194 */
195static enum matcher_rv command_match_r(struct graph_node *start, vector vline,
196 unsigned int n,
197 struct graph_node **stack,
198 struct list **currbest)
199{
200 assert(n < vector_active(vline));
201
202 enum matcher_rv status = MATCHER_NO_MATCH;
203
204 // get the minimum match level that can count as a full match
205 struct cmd_token *copy, *token = start->data;
206 enum match_type minmatch = min_match_level(token->type);
207
208 /* check history/stack of tokens
209 * this disallows matching the same one more than once if there is a
210 * circle in the graph (used for keyword arguments) */
211 if (n == CMD_ARGC_MAX)
212 return MATCHER_NO_MATCH;
213 if (!token->allowrepeat)
214 for (size_t s = 0; s < n; s++)
215 if (stack[s] == start)
216 return MATCHER_NO_MATCH;
217
218 // get the current operating input token
219 char *input_token = vector_slot(vline, n);
220
221#ifdef TRACE_MATCHER
222 fprintf(stdout, "\"%-20s\" matches \"%-30s\" ? ", input_token,
223 token->text);
224 enum match_type mt = match_token(token, input_token);
225 fprintf(stdout, "type: %d ", token->type);
226 fprintf(stdout, "min: %d - ", minmatch);
227 switch (mt) {
228 case trivial_match:
229 fprintf(stdout, "trivial_match ");
230 break;
231 case no_match:
232 fprintf(stdout, "no_match ");
233 break;
234 case partly_match:
235 fprintf(stdout, "partly_match ");
236 break;
237 case exact_match:
238 fprintf(stdout, "exact_match ");
239 break;
240 }
241 if (mt >= minmatch)
242 fprintf(stdout, " MATCH");
243 fprintf(stdout, "\n");
244#endif
245
246 // if we don't match this node, die
247 if (match_token(token, input_token) < minmatch)
248 return MATCHER_NO_MATCH;
249
250 stack[n] = start;
251
252 // pointers for iterating linklist
253 struct listnode *ln;
254 struct graph_node *gn;
255
256 // get all possible nexthops
257 struct list *next = list_new();
258 add_nexthops(next, start, NULL, 0, is_neg(vline, 1));
259
260 // determine the best match
261 for (ALL_LIST_ELEMENTS_RO(next, ln, gn)) {
262 // if we've matched all input we're looking for END_TKN
263 if (n + 1 == vector_active(vline)) {
264 struct cmd_token *tok = gn->data;
265 if (tok->type == END_TKN) {
266 // if more than one END_TKN in the follow set
267 if (*currbest) {
268 status = MATCHER_AMBIGUOUS;
269 break;
270 } else {
271 status = MATCHER_OK;
272 }
273 *currbest = list_new();
274 // node should have one child node with the
275 // element
276 struct graph_node *leaf =
277 vector_slot(gn->to, 0);
278 // last node in the list will hold the
279 // cmd_element; this is important because
280 // list_delete() expects that all nodes have
281 // the same data type, so when deleting this
282 // list the last node must be manually deleted
283 struct cmd_element *el = leaf->data;
284 listnode_add(*currbest, el);
285 (*currbest)->del =
286 (void (*)(void *)) & cmd_token_del;
287 // do not break immediately; continue walking
288 // through the follow set to ensure that there
289 // is exactly one END_TKN
290 }
291 continue;
292 }
293
294 // else recurse on candidate child node
295 struct list *result = NULL;
296 enum matcher_rv rstat =
297 command_match_r(gn, vline, n + 1, stack, &result);
298
299 // save the best match
300 if (result && *currbest) {
301 // pick the best of two matches
302 struct list *newbest =
303 disambiguate(*currbest, result, vline, n + 1);
304
305 // current best and result are ambiguous
306 if (!newbest)
307 status = MATCHER_AMBIGUOUS;
308 // current best is still the best, but ambiguous
309 else if (newbest == *currbest
310 && status == MATCHER_AMBIGUOUS)
311 status = MATCHER_AMBIGUOUS;
312 // result is better, but also ambiguous
313 else if (newbest == result
314 && rstat == MATCHER_AMBIGUOUS)
315 status = MATCHER_AMBIGUOUS;
316 // one or the other is superior and not ambiguous
317 else
318 status = MATCHER_OK;
319
320 // delete the unnecessary result
321 struct list *todelete =
322 ((newbest && newbest == result) ? *currbest
323 : result);
324 del_arglist(todelete);
325
326 *currbest = newbest ? newbest : *currbest;
327 } else if (result) {
328 status = rstat;
329 *currbest = result;
330 } else if (!*currbest) {
331 status = MAX(rstat, status);
332 }
333 }
334 if (*currbest) {
335 // copy token, set arg and prepend to currbest
336 token = start->data;
337 copy = cmd_token_dup(token);
338 copy->arg = XSTRDUP(MTYPE_CMD_ARG, input_token);
339 listnode_add_before(*currbest, (*currbest)->head, copy);
340 } else if (n + 1 == vector_active(vline) && status == MATCHER_NO_MATCH)
341 status = MATCHER_INCOMPLETE;
342
343 // cleanup
344 list_delete(&next);
345
346 return status;
347}
348
349static void stack_del(void *val)
350{
351 XFREE(MTYPE_CMD_MATCHSTACK, val);
352}
353
354enum matcher_rv command_complete(struct graph *graph, vector vline,
355 struct list **completions)
356{
357 // pointer to next input token to match
358 char *input_token;
359 bool neg = is_neg(vline, 0);
360
361 struct list *
362 current =
363 list_new(), // current nodes to match input token against
364 *next = list_new(); // possible next hops after current input
365 // token
366 current->del = next->del = stack_del;
367
368 // pointers used for iterating lists
369 struct graph_node **gstack, **newstack;
370 struct listnode *node;
371
372 // add all children of start node to list
373 struct graph_node *start = vector_slot(graph->nodes, 0);
374 add_nexthops(next, start, &start, 0, neg);
375
376 unsigned int idx;
377 for (idx = 0; idx < vector_active(vline) && next->count > 0; idx++) {
378 list_delete(&current);
379 current = next;
380 next = list_new();
381 next->del = stack_del;
382
383 input_token = vector_slot(vline, idx);
384
385 int exact_match_exists = 0;
386 for (ALL_LIST_ELEMENTS_RO(current, node, gstack))
387 if (!exact_match_exists)
388 exact_match_exists =
389 (match_token(gstack[0]->data,
390 input_token)
391 == exact_match);
392 else
393 break;
394
395 for (ALL_LIST_ELEMENTS_RO(current, node, gstack)) {
396 struct cmd_token *token = gstack[0]->data;
397
398 if (token->attr & CMD_ATTR_HIDDEN)
399 continue;
400
401 enum match_type minmatch = min_match_level(token->type);
402 trace_matcher("\"%s\" matches \"%s\" (%d) ? ",
403 input_token, token->text, token->type);
404
405 unsigned int last_token =
406 (vector_active(vline) - 1 == idx);
407 enum match_type matchtype =
408 match_token(token, input_token);
409 switch (matchtype) {
410 // occurs when last token is whitespace
411 case trivial_match:
412 trace_matcher("trivial_match\n");
413 assert(last_token);
414 newstack = XMALLOC(MTYPE_CMD_MATCHSTACK,
415 sizeof(struct graph_node *));
416 /* we're not recursing here, just the first
417 * element is OK */
418 newstack[0] = gstack[0];
419 listnode_add(next, newstack);
420 break;
421 case partly_match:
422 trace_matcher("trivial_match\n");
423 if (exact_match_exists && !last_token)
424 break;
425 /* fallthru */
426 case exact_match:
427 trace_matcher("exact_match\n");
428 if (last_token) {
429 newstack = XMALLOC(
430 MTYPE_CMD_MATCHSTACK,
431 sizeof(struct graph_node *));
432 /* same as above, not recursing on this
433 */
434 newstack[0] = gstack[0];
435 listnode_add(next, newstack);
436 } else if (matchtype >= minmatch)
437 add_nexthops(next, gstack[0], gstack,
438 idx + 1, neg);
439 break;
440 default:
441 trace_matcher("no_match\n");
442 break;
443 }
444 }
445 }
446
447 /* Variable summary
448 * -----------------------------------------------------------------
449 * token = last input token processed
450 * idx = index in `command` of last token processed
451 * current = set of all transitions from the previous input token
452 * next = set of all nodes reachable from all nodes in `matched`
453 */
454
455 enum matcher_rv mrv = idx == vector_active(vline) && next->count
456 ? MATCHER_OK
457 : MATCHER_NO_MATCH;
458
459 *completions = NULL;
460 if (!MATCHER_ERROR(mrv)) {
461 // extract cmd_token into list
462 *completions = list_new();
463 for (ALL_LIST_ELEMENTS_RO(next, node, gstack)) {
464 listnode_add(*completions, gstack[0]->data);
465 }
466 }
467
468 list_delete(&current);
469 list_delete(&next);
470
471 return mrv;
472}
473
474/**
475 * Adds all children that are reachable by one parser hop to the given list.
476 * special tokens except END_TKN are treated as transparent.
477 *
478 * @param[in] list to add the nexthops to
479 * @param[in] node to start calculating nexthops from
480 * @param[in] stack listing previously visited nodes, if non-NULL.
481 * @param[in] stackpos how many valid entries are in stack
482 * @return the number of children added to the list
483 *
484 * NB: non-null "stack" means that new stacks will be added to "list" as
485 * output, instead of direct node pointers!
486 */
487static int add_nexthops(struct list *list, struct graph_node *node,
488 struct graph_node **stack, size_t stackpos, bool neg)
489{
490 int added = 0;
491 struct graph_node *child;
492 struct graph_node **nextstack;
493 for (unsigned int i = 0; i < vector_active(node->to); i++) {
494 child = vector_slot(node->to, i);
495 size_t j;
496 struct cmd_token *token = child->data;
497 if (!token->allowrepeat && stack) {
498 for (j = 0; j < stackpos; j++)
499 if (child == stack[j])
500 break;
501 if (j != stackpos)
502 continue;
503 }
504
505 if (token->type == NEG_ONLY_TKN && !neg)
506 continue;
507
508 if (token->type >= SPECIAL_TKN && token->type != END_TKN) {
509 added +=
510 add_nexthops(list, child, stack, stackpos, neg);
511 } else {
512 if (stack) {
513 nextstack = XMALLOC(
514 MTYPE_CMD_MATCHSTACK,
515 (stackpos + 1)
516 * sizeof(struct graph_node *));
517 nextstack[0] = child;
518 memcpy(nextstack + 1, stack,
519 stackpos * sizeof(struct graph_node *));
520
521 listnode_add(list, nextstack);
522 } else
523 listnode_add(list, child);
524 added++;
525 }
526 }
527
528 return added;
529}
530
531/**
532 * Determines the node types for which a partial match may count as a full
533 * match. Enables command abbrevations.
534 *
535 * @param[in] type node type
536 * @return minimum match level needed to for a token to fully match
537 */
538static enum match_type min_match_level(enum cmd_token_type type)
539{
540 switch (type) {
541 // anything matches a start node, for the sake of recursion
542 case START_TKN:
543 return no_match;
544 // allowing words to partly match enables command abbreviation
545 case WORD_TKN:
546 return partly_match;
547 default:
548 return exact_match;
549 }
550}
551
552/**
553 * Assigns precedence scores to node types.
554 *
555 * @param[in] type node type to score
556 * @return precedence score
557 */
558static int score_precedence(enum cmd_token_type type)
559{
560 switch (type) {
561 // some of these are mutually exclusive, so they share
562 // the same precedence value
563 case IPV4_TKN:
564 case IPV4_PREFIX_TKN:
565 case IPV6_TKN:
566 case IPV6_PREFIX_TKN:
567 case MAC_TKN:
568 case MAC_PREFIX_TKN:
569 case RANGE_TKN:
570 return 2;
571 case WORD_TKN:
572 return 3;
573 case VARIABLE_TKN:
574 return 4;
575 default:
576 return 10;
577 }
578}
579
580/**
581 * Picks the better of two possible matches for a token.
582 *
583 * @param[in] first candidate node matching token
584 * @param[in] second candidate node matching token
585 * @param[in] token the token being matched
586 * @return the best-matching node, or NULL if the two are entirely ambiguous
587 */
588static struct cmd_token *disambiguate_tokens(struct cmd_token *first,
589 struct cmd_token *second,
590 char *input_token)
591{
592 // if the types are different, simply go off of type precedence
593 if (first->type != second->type) {
594 int firstprec = score_precedence(first->type);
595 int secndprec = score_precedence(second->type);
596 if (firstprec != secndprec)
597 return firstprec < secndprec ? first : second;
598 else
599 return NULL;
600 }
601
602 // if they're the same, return the more exact match
603 enum match_type fmtype = match_token(first, input_token);
604 enum match_type smtype = match_token(second, input_token);
605 if (fmtype != smtype)
606 return fmtype > smtype ? first : second;
607
608 return NULL;
609}
610
611/**
612 * Picks the better of two possible matches for an input line.
613 *
614 * @param[in] first candidate list of cmd_token matching vline
615 * @param[in] second candidate list of cmd_token matching vline
616 * @param[in] vline the input line being matched
617 * @param[in] n index into vline to start comparing at
618 * @return the best-matching list, or NULL if the two are entirely ambiguous
619 */
620static struct list *disambiguate(struct list *first, struct list *second,
621 vector vline, unsigned int n)
622{
623 assert(first != NULL);
624 assert(second != NULL);
625 // doesn't make sense for these to be inequal length
626 assert(first->count == second->count);
627 assert(first->count == vector_active(vline) - n + 1);
628
629 struct listnode *fnode = listhead_unchecked(first),
630 *snode = listhead_unchecked(second);
631 struct cmd_token *ftok = listgetdata(fnode), *stok = listgetdata(snode),
632 *best = NULL;
633
634 // compare each token, if one matches better use that one
635 for (unsigned int i = n; i < vector_active(vline); i++) {
636 char *token = vector_slot(vline, i);
637 if ((best = disambiguate_tokens(ftok, stok, token)))
638 return best == ftok ? first : second;
639 fnode = listnextnode(fnode);
640 snode = listnextnode(snode);
641 ftok = listgetdata(fnode);
642 stok = listgetdata(snode);
643 }
644
645 return NULL;
646}
647
648/*
649 * Deletion function for arglist.
650 *
651 * Since list->del for arglists expects all listnode->data to hold cmd_token,
652 * but arglists have cmd_element as the data for the tail, this function
653 * manually deletes the tail before deleting the rest of the list as usual.
654 *
655 * The cmd_element at the end is *not* a copy. It is the one and only.
656 *
657 * @param list the arglist to delete
658 */
659static void del_arglist(struct list *list)
660{
661 // manually delete last node
662 struct listnode *tail = listtail(list);
663 tail->data = NULL;
664 list_delete_node(list, tail);
665
666 // delete the rest of the list as usual
667 list_delete(&list);
668}
669
670/*---------- token level matching functions ----------*/
671
672static enum match_type match_token(struct cmd_token *token, char *input_token)
673{
674 // nothing trivially matches everything
675 if (!input_token)
676 return trivial_match;
677
678 switch (token->type) {
679 case WORD_TKN:
680 return match_word(token, input_token);
681 case IPV4_TKN:
682 return match_ipv4(input_token);
683 case IPV4_PREFIX_TKN:
684 return match_ipv4_prefix(input_token);
685 case IPV6_TKN:
686 return match_ipv6_prefix(input_token, false);
687 case IPV6_PREFIX_TKN:
688 return match_ipv6_prefix(input_token, true);
689 case RANGE_TKN:
690 return match_range(token, input_token);
691 case VARIABLE_TKN:
692 return match_variable(token, input_token);
693 case MAC_TKN:
694 return match_mac(input_token, false);
695 case MAC_PREFIX_TKN:
696 return match_mac(input_token, true);
697 case END_TKN:
698 default:
699 return no_match;
700 }
701}
702
703#define IPV4_ADDR_STR "0123456789."
704#define IPV4_PREFIX_STR "0123456789./"
705
706static enum match_type match_ipv4(const char *str)
707{
708 const char *sp;
709 int dots = 0, nums = 0;
710 char buf[4];
711
712 for (;;) {
713 memset(buf, 0, sizeof(buf));
714 sp = str;
715 while (*str != '\0') {
716 if (*str == '.') {
717 if (dots >= 3)
718 return no_match;
719
720 if (*(str + 1) == '.')
721 return no_match;
722
723 if (*(str + 1) == '\0')
724 return partly_match;
725
726 dots++;
727 break;
728 }
729 if (!isdigit((unsigned char)*str))
730 return no_match;
731
732 str++;
733 }
734
735 if (str - sp > 3)
736 return no_match;
737
738 memcpy(buf, sp, str - sp);
739
740 int v = atoi(buf);
741
742 if (v > 255)
743 return no_match;
744 if (v > 0 && buf[0] == '0')
745 return no_match;
746
747 nums++;
748
749 if (*str == '\0')
750 break;
751
752 str++;
753 }
754
755 if (nums < 4)
756 return partly_match;
757
758 return exact_match;
759}
760
761static enum match_type match_ipv4_prefix(const char *str)
762{
763 const char *sp;
764 int dots = 0;
765 char buf[4];
766
767 for (;;) {
768 memset(buf, 0, sizeof(buf));
769 sp = str;
770 while (*str != '\0' && *str != '/') {
771 if (*str == '.') {
772 if (dots == 3)
773 return no_match;
774
775 if (*(str + 1) == '.' || *(str + 1) == '/')
776 return no_match;
777
778 if (*(str + 1) == '\0')
779 return partly_match;
780
781 dots++;
782 break;
783 }
784
785 if (!isdigit((unsigned char)*str))
786 return no_match;
787
788 str++;
789 }
790
791 if (str - sp > 3)
792 return no_match;
793
794 memcpy(buf, sp, str - sp);
795
796 int v = atoi(buf);
797
798 if (v > 255)
799 return no_match;
800 if (v > 0 && buf[0] == '0')
801 return no_match;
802
803 if (dots == 3) {
804 if (*str == '/') {
805 if (*(str + 1) == '\0')
806 return partly_match;
807
808 str++;
809 break;
810 } else if (*str == '\0')
811 return partly_match;
812 }
813
814 if (*str == '\0')
815 return partly_match;
816
817 str++;
818 }
819
820 sp = str;
821 while (*str != '\0') {
822 if (!isdigit((unsigned char)*str))
823 return no_match;
824
825 str++;
826 }
827
828 if (atoi(sp) > IPV4_MAX_BITLEN)
829 return no_match;
830
831 return exact_match;
832}
833
834
835#define IPV6_ADDR_STR "0123456789abcdefABCDEF:."
836#define IPV6_PREFIX_STR "0123456789abcdefABCDEF:./"
837#define STATE_START 1
838#define STATE_COLON 2
839#define STATE_DOUBLE 3
840#define STATE_ADDR 4
841#define STATE_DOT 5
842#define STATE_SLASH 6
843#define STATE_MASK 7
844
845static enum match_type match_ipv6_prefix(const char *str, bool prefix)
846{
847 int state = STATE_START;
848 int colons = 0, nums = 0, double_colon = 0;
849 int mask;
850 const char *sp = NULL, *start = str;
851 char *endptr = NULL;
852
853 if (str == NULL)
854 return partly_match;
855
856 if (strspn(str, prefix ? IPV6_PREFIX_STR : IPV6_ADDR_STR)
857 != strlen(str))
858 return no_match;
859
860 while (*str != '\0' && state != STATE_MASK) {
861 switch (state) {
862 case STATE_START:
863 if (*str == ':') {
864 if (*(str + 1) != ':' && *(str + 1) != '\0')
865 return no_match;
866 colons--;
867 state = STATE_COLON;
868 } else {
869 sp = str;
870 state = STATE_ADDR;
871 }
872
873 continue;
874 case STATE_COLON:
875 colons++;
876 if (*(str + 1) == '/')
877 return no_match;
878 else if (*(str + 1) == ':')
879 state = STATE_DOUBLE;
880 else {
881 sp = str + 1;
882 state = STATE_ADDR;
883 }
884 break;
885 case STATE_DOUBLE:
886 if (double_colon)
887 return no_match;
888
889 if (*(str + 1) == ':')
890 return no_match;
891 else {
892 if (*(str + 1) != '\0' && *(str + 1) != '/')
893 colons++;
894 sp = str + 1;
895
896 if (*(str + 1) == '/')
897 state = STATE_SLASH;
898 else
899 state = STATE_ADDR;
900 }
901
902 double_colon++;
903 nums += 1;
904 break;
905 case STATE_ADDR:
906 if (*(str + 1) == ':' || *(str + 1) == '.'
907 || *(str + 1) == '\0' || *(str + 1) == '/') {
908 if (str - sp > 3)
909 return no_match;
910
911 for (; sp <= str; sp++)
912 if (*sp == '/')
913 return no_match;
914
915 nums++;
916
917 if (*(str + 1) == ':')
918 state = STATE_COLON;
919 else if (*(str + 1) == '.') {
920 if (colons || double_colon)
921 state = STATE_DOT;
922 else
923 return no_match;
924 } else if (*(str + 1) == '/')
925 state = STATE_SLASH;
926 }
927 break;
928 case STATE_DOT:
929 state = STATE_ADDR;
930 break;
931 case STATE_SLASH:
932 if (*(str + 1) == '\0')
933 return partly_match;
934
935 state = STATE_MASK;
936 break;
937 default:
938 break;
939 }
940
941 if (nums > 11)
942 return no_match;
943
944 if (colons > 7)
945 return no_match;
946
947 str++;
948 }
949
950 if (!prefix) {
951 struct sockaddr_in6 sin6_dummy;
952 int ret = inet_pton(AF_INET6, start, &sin6_dummy.sin6_addr);
953 return ret == 1 ? exact_match : partly_match;
954 }
955
956 if (state < STATE_MASK)
957 return partly_match;
958
959 mask = strtol(str, &endptr, 10);
960 if (*endptr != '\0')
961 return no_match;
962
963 if (mask < 0 || mask > IPV6_MAX_BITLEN)
964 return no_match;
965
966 return exact_match;
967}
968
969static enum match_type match_range(struct cmd_token *token, const char *str)
970{
971 assert(token->type == RANGE_TKN);
972
973 char *endptr = NULL;
974 long long val;
975
976 val = strtoll(str, &endptr, 10);
977 if (*endptr != '\0')
978 return no_match;
979
980 if (val < token->min || val > token->max)
981 return no_match;
982 else
983 return exact_match;
984}
985
986static enum match_type match_word(struct cmd_token *token, const char *word)
987{
988 assert(token->type == WORD_TKN);
989
990 // if the passed token is 0 length, partly match
991 if (!strlen(word))
992 return partly_match;
993
994 // if the passed token is strictly a prefix of the full word, partly
995 // match
996 if (strlen(word) < strlen(token->text))
997 return !strncmp(token->text, word, strlen(word)) ? partly_match
998 : no_match;
999
1000 // if they are the same length and exactly equal, exact match
1001 else if (strlen(word) == strlen(token->text))
1002 return !strncmp(token->text, word, strlen(word)) ? exact_match
1003 : no_match;
1004
1005 return no_match;
1006}
1007
1008static enum match_type match_variable(struct cmd_token *token, const char *word)
1009{
1010 assert(token->type == VARIABLE_TKN);
1011 return exact_match;
1012}
1013
1014#define MAC_CHARS "ABCDEFabcdef0123456789:"
1015
1016static enum match_type match_mac(const char *word, bool prefix)
1017{
1018 /* 6 2-digit hex numbers separated by 5 colons */
1019 size_t mac_explen = 6 * 2 + 5;
1020 /* '/' + 2-digit integer */
1021 size_t mask_len = 1 + 2;
1022 unsigned int i;
1023 char *eptr;
1024 unsigned int maskval;
1025
1026 /* length check */
1027 if (strlen(word) > mac_explen + (prefix ? mask_len : 0))
1028 return no_match;
1029
1030 /* address check */
1031 for (i = 0; i < mac_explen; i++) {
1032 if (word[i] == '\0' || !strchr(MAC_CHARS, word[i]))
1033 break;
1034 if (((i + 1) % 3 == 0) != (word[i] == ':'))
1035 return no_match;
1036 }
1037
1038 /* incomplete address */
1039 if (i < mac_explen && word[i] == '\0')
1040 return partly_match;
1041 else if (i < mac_explen)
1042 return no_match;
1043
1044 /* mask check */
1045 if (prefix && word[i] == '/') {
1046 if (word[++i] == '\0')
1047 return partly_match;
1048
1049 maskval = strtoul(&word[i], &eptr, 10);
1050 if (*eptr != '\0' || maskval > 48)
1051 return no_match;
1052 } else if (prefix && word[i] == '\0') {
1053 return partly_match;
1054 } else if (prefix) {
1055 return no_match;
1056 }
1057
1058 return exact_match;
1059}