]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - lib/radix-tree.c
drivers/hwspinlock: use correct radix tree API
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
28#include <linux/export.h>
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
32#include <linux/kmemleak.h>
33#include <linux/notifier.h>
34#include <linux/cpu.h>
35#include <linux/string.h>
36#include <linux/bitops.h>
37#include <linux/rcupdate.h>
38#include <linux/preempt.h> /* in_interrupt() */
39
40
41/*
42 * The height_to_maxindex array needs to be one deeper than the maximum
43 * path as height 0 holds only 1 entry.
44 */
45static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46
47/*
48 * Radix tree node cache.
49 */
50static struct kmem_cache *radix_tree_node_cachep;
51
52/*
53 * The radix tree is variable-height, so an insert operation not only has
54 * to build the branch to its corresponding item, it also has to build the
55 * branch to existing items if the size has to be increased (by
56 * radix_tree_extend).
57 *
58 * The worst case is a zero height tree with just a single item at index 0,
59 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
60 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 * Hence:
62 */
63#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64
65/*
66 * Per-cpu pool of preloaded nodes
67 */
68struct radix_tree_preload {
69 int nr;
70 /* nodes->private_data points to next preallocated node */
71 struct radix_tree_node *nodes;
72};
73static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
74
75static inline void *ptr_to_indirect(void *ptr)
76{
77 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
78}
79
80#define RADIX_TREE_RETRY ptr_to_indirect(NULL)
81
82#ifdef CONFIG_RADIX_TREE_MULTIORDER
83/* Sibling slots point directly to another slot in the same node */
84static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
85{
86 void **ptr = node;
87 return (parent->slots <= ptr) &&
88 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
89}
90#else
91static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
92{
93 return false;
94}
95#endif
96
97static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
98 void **slot)
99{
100 return slot - parent->slots;
101}
102
103static unsigned radix_tree_descend(struct radix_tree_node *parent,
104 struct radix_tree_node **nodep, unsigned offset)
105{
106 void **entry = rcu_dereference_raw(parent->slots[offset]);
107
108#ifdef CONFIG_RADIX_TREE_MULTIORDER
109 if (radix_tree_is_indirect_ptr(entry)) {
110 unsigned long siboff = get_slot_offset(parent, entry);
111 if (siboff < RADIX_TREE_MAP_SIZE) {
112 offset = siboff;
113 entry = rcu_dereference_raw(parent->slots[offset]);
114 }
115 }
116#endif
117
118 *nodep = (void *)entry;
119 return offset;
120}
121
122static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
123{
124 return root->gfp_mask & __GFP_BITS_MASK;
125}
126
127static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129{
130 __set_bit(offset, node->tags[tag]);
131}
132
133static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135{
136 __clear_bit(offset, node->tags[tag]);
137}
138
139static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
140 int offset)
141{
142 return test_bit(offset, node->tags[tag]);
143}
144
145static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
146{
147 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
148}
149
150static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
151{
152 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
153}
154
155static inline void root_tag_clear_all(struct radix_tree_root *root)
156{
157 root->gfp_mask &= __GFP_BITS_MASK;
158}
159
160static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
161{
162 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
163}
164
165static inline unsigned root_tags_get(struct radix_tree_root *root)
166{
167 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
168}
169
170/*
171 * Returns 1 if any slot in the node has this tag set.
172 * Otherwise returns 0.
173 */
174static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
175{
176 int idx;
177 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
178 if (node->tags[tag][idx])
179 return 1;
180 }
181 return 0;
182}
183
184/**
185 * radix_tree_find_next_bit - find the next set bit in a memory region
186 *
187 * @addr: The address to base the search on
188 * @size: The bitmap size in bits
189 * @offset: The bitnumber to start searching at
190 *
191 * Unrollable variant of find_next_bit() for constant size arrays.
192 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
193 * Returns next bit offset, or size if nothing found.
194 */
195static __always_inline unsigned long
196radix_tree_find_next_bit(const unsigned long *addr,
197 unsigned long size, unsigned long offset)
198{
199 if (!__builtin_constant_p(size))
200 return find_next_bit(addr, size, offset);
201
202 if (offset < size) {
203 unsigned long tmp;
204
205 addr += offset / BITS_PER_LONG;
206 tmp = *addr >> (offset % BITS_PER_LONG);
207 if (tmp)
208 return __ffs(tmp) + offset;
209 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
210 while (offset < size) {
211 tmp = *++addr;
212 if (tmp)
213 return __ffs(tmp) + offset;
214 offset += BITS_PER_LONG;
215 }
216 }
217 return size;
218}
219
220#ifndef __KERNEL__
221static void dump_node(struct radix_tree_node *node, unsigned offset,
222 unsigned shift, unsigned long index)
223{
224 unsigned long i;
225
226 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
227 node, offset,
228 node->tags[0][0], node->tags[1][0], node->tags[2][0],
229 node->path, node->count, node->parent);
230
231 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
232 unsigned long first = index | (i << shift);
233 unsigned long last = first | ((1UL << shift) - 1);
234 void *entry = node->slots[i];
235 if (!entry)
236 continue;
237 if (is_sibling_entry(node, entry)) {
238 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
239 entry, i,
240 *(void **)indirect_to_ptr(entry),
241 first, last);
242 } else if (!radix_tree_is_indirect_ptr(entry)) {
243 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
244 entry, i, first, last);
245 } else {
246 dump_node(indirect_to_ptr(entry), i,
247 shift - RADIX_TREE_MAP_SHIFT, first);
248 }
249 }
250}
251
252/* For debug */
253static void radix_tree_dump(struct radix_tree_root *root)
254{
255 pr_debug("radix root: %p height %d rnode %p tags %x\n",
256 root, root->height, root->rnode,
257 root->gfp_mask >> __GFP_BITS_SHIFT);
258 if (!radix_tree_is_indirect_ptr(root->rnode))
259 return;
260 dump_node(indirect_to_ptr(root->rnode), 0,
261 (root->height - 1) * RADIX_TREE_MAP_SHIFT, 0);
262}
263#endif
264
265/*
266 * This assumes that the caller has performed appropriate preallocation, and
267 * that the caller has pinned this thread of control to the current CPU.
268 */
269static struct radix_tree_node *
270radix_tree_node_alloc(struct radix_tree_root *root)
271{
272 struct radix_tree_node *ret = NULL;
273 gfp_t gfp_mask = root_gfp_mask(root);
274
275 /*
276 * Preload code isn't irq safe and it doesn't make sence to use
277 * preloading in the interrupt anyway as all the allocations have to
278 * be atomic. So just do normal allocation when in interrupt.
279 */
280 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
281 struct radix_tree_preload *rtp;
282
283 /*
284 * Even if the caller has preloaded, try to allocate from the
285 * cache first for the new node to get accounted.
286 */
287 ret = kmem_cache_alloc(radix_tree_node_cachep,
288 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
289 if (ret)
290 goto out;
291
292 /*
293 * Provided the caller has preloaded here, we will always
294 * succeed in getting a node here (and never reach
295 * kmem_cache_alloc)
296 */
297 rtp = this_cpu_ptr(&radix_tree_preloads);
298 if (rtp->nr) {
299 ret = rtp->nodes;
300 rtp->nodes = ret->private_data;
301 ret->private_data = NULL;
302 rtp->nr--;
303 }
304 /*
305 * Update the allocation stack trace as this is more useful
306 * for debugging.
307 */
308 kmemleak_update_trace(ret);
309 goto out;
310 }
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_ACCOUNT);
313out:
314 BUG_ON(radix_tree_is_indirect_ptr(ret));
315 return ret;
316}
317
318static void radix_tree_node_rcu_free(struct rcu_head *head)
319{
320 struct radix_tree_node *node =
321 container_of(head, struct radix_tree_node, rcu_head);
322 int i;
323
324 /*
325 * must only free zeroed nodes into the slab. radix_tree_shrink
326 * can leave us with a non-NULL entry in the first slot, so clear
327 * that here to make sure.
328 */
329 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
330 tag_clear(node, i, 0);
331
332 node->slots[0] = NULL;
333 node->count = 0;
334
335 kmem_cache_free(radix_tree_node_cachep, node);
336}
337
338static inline void
339radix_tree_node_free(struct radix_tree_node *node)
340{
341 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
342}
343
344/*
345 * Load up this CPU's radix_tree_node buffer with sufficient objects to
346 * ensure that the addition of a single element in the tree cannot fail. On
347 * success, return zero, with preemption disabled. On error, return -ENOMEM
348 * with preemption not disabled.
349 *
350 * To make use of this facility, the radix tree must be initialised without
351 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
352 */
353static int __radix_tree_preload(gfp_t gfp_mask)
354{
355 struct radix_tree_preload *rtp;
356 struct radix_tree_node *node;
357 int ret = -ENOMEM;
358
359 preempt_disable();
360 rtp = this_cpu_ptr(&radix_tree_preloads);
361 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
362 preempt_enable();
363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
364 if (node == NULL)
365 goto out;
366 preempt_disable();
367 rtp = this_cpu_ptr(&radix_tree_preloads);
368 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
369 node->private_data = rtp->nodes;
370 rtp->nodes = node;
371 rtp->nr++;
372 } else {
373 kmem_cache_free(radix_tree_node_cachep, node);
374 }
375 }
376 ret = 0;
377out:
378 return ret;
379}
380
381/*
382 * Load up this CPU's radix_tree_node buffer with sufficient objects to
383 * ensure that the addition of a single element in the tree cannot fail. On
384 * success, return zero, with preemption disabled. On error, return -ENOMEM
385 * with preemption not disabled.
386 *
387 * To make use of this facility, the radix tree must be initialised without
388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
389 */
390int radix_tree_preload(gfp_t gfp_mask)
391{
392 /* Warn on non-sensical use... */
393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
394 return __radix_tree_preload(gfp_mask);
395}
396EXPORT_SYMBOL(radix_tree_preload);
397
398/*
399 * The same as above function, except we don't guarantee preloading happens.
400 * We do it, if we decide it helps. On success, return zero with preemption
401 * disabled. On error, return -ENOMEM with preemption not disabled.
402 */
403int radix_tree_maybe_preload(gfp_t gfp_mask)
404{
405 if (gfpflags_allow_blocking(gfp_mask))
406 return __radix_tree_preload(gfp_mask);
407 /* Preloading doesn't help anything with this gfp mask, skip it */
408 preempt_disable();
409 return 0;
410}
411EXPORT_SYMBOL(radix_tree_maybe_preload);
412
413/*
414 * Return the maximum key which can be store into a
415 * radix tree with height HEIGHT.
416 */
417static inline unsigned long radix_tree_maxindex(unsigned int height)
418{
419 return height_to_maxindex[height];
420}
421
422static inline unsigned long node_maxindex(struct radix_tree_node *node)
423{
424 return radix_tree_maxindex(node->path & RADIX_TREE_HEIGHT_MASK);
425}
426
427static unsigned radix_tree_load_root(struct radix_tree_root *root,
428 struct radix_tree_node **nodep, unsigned long *maxindex)
429{
430 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
431
432 *nodep = node;
433
434 if (likely(radix_tree_is_indirect_ptr(node))) {
435 node = indirect_to_ptr(node);
436 *maxindex = node_maxindex(node);
437 return (node->path & RADIX_TREE_HEIGHT_MASK) *
438 RADIX_TREE_MAP_SHIFT;
439 }
440
441 *maxindex = 0;
442 return 0;
443}
444
445/*
446 * Extend a radix tree so it can store key @index.
447 */
448static int radix_tree_extend(struct radix_tree_root *root,
449 unsigned long index)
450{
451 struct radix_tree_node *node;
452 struct radix_tree_node *slot;
453 unsigned int height;
454 int tag;
455
456 /* Figure out what the height should be. */
457 height = root->height + 1;
458 while (index > radix_tree_maxindex(height))
459 height++;
460
461 if (root->rnode == NULL) {
462 root->height = height;
463 goto out;
464 }
465
466 do {
467 unsigned int newheight;
468 if (!(node = radix_tree_node_alloc(root)))
469 return -ENOMEM;
470
471 /* Propagate the aggregated tag info into the new root */
472 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
473 if (root_tag_get(root, tag))
474 tag_set(node, tag, 0);
475 }
476
477 /* Increase the height. */
478 newheight = root->height+1;
479 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
480 node->path = newheight;
481 node->count = 1;
482 node->parent = NULL;
483 slot = root->rnode;
484 if (radix_tree_is_indirect_ptr(slot)) {
485 slot = indirect_to_ptr(slot);
486 slot->parent = node;
487 slot = ptr_to_indirect(slot);
488 }
489 node->slots[0] = slot;
490 node = ptr_to_indirect(node);
491 rcu_assign_pointer(root->rnode, node);
492 root->height = newheight;
493 } while (height > root->height);
494out:
495 return height * RADIX_TREE_MAP_SHIFT;
496}
497
498/**
499 * __radix_tree_create - create a slot in a radix tree
500 * @root: radix tree root
501 * @index: index key
502 * @order: index occupies 2^order aligned slots
503 * @nodep: returns node
504 * @slotp: returns slot
505 *
506 * Create, if necessary, and return the node and slot for an item
507 * at position @index in the radix tree @root.
508 *
509 * Until there is more than one item in the tree, no nodes are
510 * allocated and @root->rnode is used as a direct slot instead of
511 * pointing to a node, in which case *@nodep will be NULL.
512 *
513 * Returns -ENOMEM, or 0 for success.
514 */
515int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
516 unsigned order, struct radix_tree_node **nodep,
517 void ***slotp)
518{
519 struct radix_tree_node *node = NULL, *slot;
520 unsigned long maxindex;
521 unsigned int height, shift, offset;
522 unsigned long max = index | ((1UL << order) - 1);
523
524 shift = radix_tree_load_root(root, &slot, &maxindex);
525
526 /* Make sure the tree is high enough. */
527 if (max > maxindex) {
528 int error = radix_tree_extend(root, max);
529 if (error < 0)
530 return error;
531 shift = error;
532 slot = root->rnode;
533 if (order == shift) {
534 shift += RADIX_TREE_MAP_SHIFT;
535 root->height++;
536 }
537 }
538
539 height = root->height;
540
541 offset = 0; /* uninitialised var warning */
542 while (shift > order) {
543 if (slot == NULL) {
544 /* Have to add a child node. */
545 if (!(slot = radix_tree_node_alloc(root)))
546 return -ENOMEM;
547 slot->path = height;
548 slot->parent = node;
549 if (node) {
550 rcu_assign_pointer(node->slots[offset],
551 ptr_to_indirect(slot));
552 node->count++;
553 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
554 } else
555 rcu_assign_pointer(root->rnode,
556 ptr_to_indirect(slot));
557 } else if (!radix_tree_is_indirect_ptr(slot))
558 break;
559
560 /* Go a level down */
561 height--;
562 shift -= RADIX_TREE_MAP_SHIFT;
563 node = indirect_to_ptr(slot);
564 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
565 offset = radix_tree_descend(node, &slot, offset);
566 }
567
568#ifdef CONFIG_RADIX_TREE_MULTIORDER
569 /* Insert pointers to the canonical entry */
570 if (order > shift) {
571 int i, n = 1 << (order - shift);
572 offset = offset & ~(n - 1);
573 slot = ptr_to_indirect(&node->slots[offset]);
574 for (i = 0; i < n; i++) {
575 if (node->slots[offset + i])
576 return -EEXIST;
577 }
578
579 for (i = 1; i < n; i++) {
580 rcu_assign_pointer(node->slots[offset + i], slot);
581 node->count++;
582 }
583 }
584#endif
585
586 if (nodep)
587 *nodep = node;
588 if (slotp)
589 *slotp = node ? node->slots + offset : (void **)&root->rnode;
590 return 0;
591}
592
593/**
594 * __radix_tree_insert - insert into a radix tree
595 * @root: radix tree root
596 * @index: index key
597 * @order: key covers the 2^order indices around index
598 * @item: item to insert
599 *
600 * Insert an item into the radix tree at position @index.
601 */
602int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
603 unsigned order, void *item)
604{
605 struct radix_tree_node *node;
606 void **slot;
607 int error;
608
609 BUG_ON(radix_tree_is_indirect_ptr(item));
610
611 error = __radix_tree_create(root, index, order, &node, &slot);
612 if (error)
613 return error;
614 if (*slot != NULL)
615 return -EEXIST;
616 rcu_assign_pointer(*slot, item);
617
618 if (node) {
619 unsigned offset = get_slot_offset(node, slot);
620 node->count++;
621 BUG_ON(tag_get(node, 0, offset));
622 BUG_ON(tag_get(node, 1, offset));
623 BUG_ON(tag_get(node, 2, offset));
624 } else {
625 BUG_ON(root_tags_get(root));
626 }
627
628 return 0;
629}
630EXPORT_SYMBOL(__radix_tree_insert);
631
632/**
633 * __radix_tree_lookup - lookup an item in a radix tree
634 * @root: radix tree root
635 * @index: index key
636 * @nodep: returns node
637 * @slotp: returns slot
638 *
639 * Lookup and return the item at position @index in the radix
640 * tree @root.
641 *
642 * Until there is more than one item in the tree, no nodes are
643 * allocated and @root->rnode is used as a direct slot instead of
644 * pointing to a node, in which case *@nodep will be NULL.
645 */
646void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
647 struct radix_tree_node **nodep, void ***slotp)
648{
649 struct radix_tree_node *node, *parent;
650 unsigned long maxindex;
651 unsigned int shift;
652 void **slot;
653
654 restart:
655 parent = NULL;
656 slot = (void **)&root->rnode;
657 shift = radix_tree_load_root(root, &node, &maxindex);
658 if (index > maxindex)
659 return NULL;
660
661 while (radix_tree_is_indirect_ptr(node)) {
662 unsigned offset;
663
664 if (node == RADIX_TREE_RETRY)
665 goto restart;
666 parent = indirect_to_ptr(node);
667 shift -= RADIX_TREE_MAP_SHIFT;
668 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
669 offset = radix_tree_descend(parent, &node, offset);
670 slot = parent->slots + offset;
671 }
672
673 if (nodep)
674 *nodep = parent;
675 if (slotp)
676 *slotp = slot;
677 return node;
678}
679
680/**
681 * radix_tree_lookup_slot - lookup a slot in a radix tree
682 * @root: radix tree root
683 * @index: index key
684 *
685 * Returns: the slot corresponding to the position @index in the
686 * radix tree @root. This is useful for update-if-exists operations.
687 *
688 * This function can be called under rcu_read_lock iff the slot is not
689 * modified by radix_tree_replace_slot, otherwise it must be called
690 * exclusive from other writers. Any dereference of the slot must be done
691 * using radix_tree_deref_slot.
692 */
693void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
694{
695 void **slot;
696
697 if (!__radix_tree_lookup(root, index, NULL, &slot))
698 return NULL;
699 return slot;
700}
701EXPORT_SYMBOL(radix_tree_lookup_slot);
702
703/**
704 * radix_tree_lookup - perform lookup operation on a radix tree
705 * @root: radix tree root
706 * @index: index key
707 *
708 * Lookup the item at the position @index in the radix tree @root.
709 *
710 * This function can be called under rcu_read_lock, however the caller
711 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
712 * them safely). No RCU barriers are required to access or modify the
713 * returned item, however.
714 */
715void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
716{
717 return __radix_tree_lookup(root, index, NULL, NULL);
718}
719EXPORT_SYMBOL(radix_tree_lookup);
720
721/**
722 * radix_tree_tag_set - set a tag on a radix tree node
723 * @root: radix tree root
724 * @index: index key
725 * @tag: tag index
726 *
727 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
728 * corresponding to @index in the radix tree. From
729 * the root all the way down to the leaf node.
730 *
731 * Returns the address of the tagged item. Setting a tag on a not-present
732 * item is a bug.
733 */
734void *radix_tree_tag_set(struct radix_tree_root *root,
735 unsigned long index, unsigned int tag)
736{
737 struct radix_tree_node *node, *parent;
738 unsigned long maxindex;
739 unsigned int shift;
740
741 shift = radix_tree_load_root(root, &node, &maxindex);
742 BUG_ON(index > maxindex);
743
744 while (radix_tree_is_indirect_ptr(node)) {
745 unsigned offset;
746
747 shift -= RADIX_TREE_MAP_SHIFT;
748 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
749
750 parent = indirect_to_ptr(node);
751 offset = radix_tree_descend(parent, &node, offset);
752 BUG_ON(!node);
753
754 if (!tag_get(parent, tag, offset))
755 tag_set(parent, tag, offset);
756 }
757
758 /* set the root's tag bit */
759 if (!root_tag_get(root, tag))
760 root_tag_set(root, tag);
761
762 return node;
763}
764EXPORT_SYMBOL(radix_tree_tag_set);
765
766/**
767 * radix_tree_tag_clear - clear a tag on a radix tree node
768 * @root: radix tree root
769 * @index: index key
770 * @tag: tag index
771 *
772 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
773 * corresponding to @index in the radix tree. If
774 * this causes the leaf node to have no tags set then clear the tag in the
775 * next-to-leaf node, etc.
776 *
777 * Returns the address of the tagged item on success, else NULL. ie:
778 * has the same return value and semantics as radix_tree_lookup().
779 */
780void *radix_tree_tag_clear(struct radix_tree_root *root,
781 unsigned long index, unsigned int tag)
782{
783 struct radix_tree_node *node, *parent;
784 unsigned long maxindex;
785 unsigned int shift;
786 int uninitialized_var(offset);
787
788 shift = radix_tree_load_root(root, &node, &maxindex);
789 if (index > maxindex)
790 return NULL;
791
792 parent = NULL;
793
794 while (radix_tree_is_indirect_ptr(node)) {
795 shift -= RADIX_TREE_MAP_SHIFT;
796 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
797
798 parent = indirect_to_ptr(node);
799 offset = radix_tree_descend(parent, &node, offset);
800 }
801
802 if (node == NULL)
803 goto out;
804
805 index >>= shift;
806
807 while (parent) {
808 if (!tag_get(parent, tag, offset))
809 goto out;
810 tag_clear(parent, tag, offset);
811 if (any_tag_set(parent, tag))
812 goto out;
813
814 index >>= RADIX_TREE_MAP_SHIFT;
815 offset = index & RADIX_TREE_MAP_MASK;
816 parent = parent->parent;
817 }
818
819 /* clear the root's tag bit */
820 if (root_tag_get(root, tag))
821 root_tag_clear(root, tag);
822
823out:
824 return node;
825}
826EXPORT_SYMBOL(radix_tree_tag_clear);
827
828/**
829 * radix_tree_tag_get - get a tag on a radix tree node
830 * @root: radix tree root
831 * @index: index key
832 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
833 *
834 * Return values:
835 *
836 * 0: tag not present or not set
837 * 1: tag set
838 *
839 * Note that the return value of this function may not be relied on, even if
840 * the RCU lock is held, unless tag modification and node deletion are excluded
841 * from concurrency.
842 */
843int radix_tree_tag_get(struct radix_tree_root *root,
844 unsigned long index, unsigned int tag)
845{
846 struct radix_tree_node *node, *parent;
847 unsigned long maxindex;
848 unsigned int shift;
849
850 if (!root_tag_get(root, tag))
851 return 0;
852
853 shift = radix_tree_load_root(root, &node, &maxindex);
854 if (index > maxindex)
855 return 0;
856 if (node == NULL)
857 return 0;
858
859 while (radix_tree_is_indirect_ptr(node)) {
860 int offset;
861
862 shift -= RADIX_TREE_MAP_SHIFT;
863 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
864
865 parent = indirect_to_ptr(node);
866 offset = radix_tree_descend(parent, &node, offset);
867
868 if (!node)
869 return 0;
870 if (!tag_get(parent, tag, offset))
871 return 0;
872 if (node == RADIX_TREE_RETRY)
873 break;
874 }
875
876 return 1;
877}
878EXPORT_SYMBOL(radix_tree_tag_get);
879
880static inline void __set_iter_shift(struct radix_tree_iter *iter,
881 unsigned int shift)
882{
883#ifdef CONFIG_RADIX_TREE_MULTIORDER
884 iter->shift = shift;
885#endif
886}
887
888/**
889 * radix_tree_next_chunk - find next chunk of slots for iteration
890 *
891 * @root: radix tree root
892 * @iter: iterator state
893 * @flags: RADIX_TREE_ITER_* flags and tag index
894 * Returns: pointer to chunk first slot, or NULL if iteration is over
895 */
896void **radix_tree_next_chunk(struct radix_tree_root *root,
897 struct radix_tree_iter *iter, unsigned flags)
898{
899 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
900 struct radix_tree_node *rnode, *node;
901 unsigned long index, offset, maxindex;
902
903 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
904 return NULL;
905
906 /*
907 * Catch next_index overflow after ~0UL. iter->index never overflows
908 * during iterating; it can be zero only at the beginning.
909 * And we cannot overflow iter->next_index in a single step,
910 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
911 *
912 * This condition also used by radix_tree_next_slot() to stop
913 * contiguous iterating, and forbid swithing to the next chunk.
914 */
915 index = iter->next_index;
916 if (!index && iter->index)
917 return NULL;
918
919 restart:
920 shift = radix_tree_load_root(root, &rnode, &maxindex);
921 if (index > maxindex)
922 return NULL;
923
924 if (radix_tree_is_indirect_ptr(rnode)) {
925 rnode = indirect_to_ptr(rnode);
926 } else if (rnode) {
927 /* Single-slot tree */
928 iter->index = index;
929 iter->next_index = maxindex + 1;
930 iter->tags = 1;
931 __set_iter_shift(iter, shift);
932 return (void **)&root->rnode;
933 } else
934 return NULL;
935
936 shift -= RADIX_TREE_MAP_SHIFT;
937 offset = index >> shift;
938
939 node = rnode;
940 while (1) {
941 struct radix_tree_node *slot;
942 unsigned new_off = radix_tree_descend(node, &slot, offset);
943
944 if (new_off < offset) {
945 offset = new_off;
946 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
947 index |= offset << shift;
948 }
949
950 if ((flags & RADIX_TREE_ITER_TAGGED) ?
951 !tag_get(node, tag, offset) : !slot) {
952 /* Hole detected */
953 if (flags & RADIX_TREE_ITER_CONTIG)
954 return NULL;
955
956 if (flags & RADIX_TREE_ITER_TAGGED)
957 offset = radix_tree_find_next_bit(
958 node->tags[tag],
959 RADIX_TREE_MAP_SIZE,
960 offset + 1);
961 else
962 while (++offset < RADIX_TREE_MAP_SIZE) {
963 void *slot = node->slots[offset];
964 if (is_sibling_entry(node, slot))
965 continue;
966 if (slot)
967 break;
968 }
969 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
970 index += offset << shift;
971 /* Overflow after ~0UL */
972 if (!index)
973 return NULL;
974 if (offset == RADIX_TREE_MAP_SIZE)
975 goto restart;
976 slot = rcu_dereference_raw(node->slots[offset]);
977 }
978
979 if ((slot == NULL) || (slot == RADIX_TREE_RETRY))
980 goto restart;
981 if (!radix_tree_is_indirect_ptr(slot))
982 break;
983
984 node = indirect_to_ptr(slot);
985 shift -= RADIX_TREE_MAP_SHIFT;
986 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
987 }
988
989 /* Update the iterator state */
990 iter->index = index & ~((1 << shift) - 1);
991 iter->next_index = (index | ((RADIX_TREE_MAP_SIZE << shift) - 1)) + 1;
992 __set_iter_shift(iter, shift);
993
994 /* Construct iter->tags bit-mask from node->tags[tag] array */
995 if (flags & RADIX_TREE_ITER_TAGGED) {
996 unsigned tag_long, tag_bit;
997
998 tag_long = offset / BITS_PER_LONG;
999 tag_bit = offset % BITS_PER_LONG;
1000 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1001 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1002 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1003 /* Pick tags from next element */
1004 if (tag_bit)
1005 iter->tags |= node->tags[tag][tag_long + 1] <<
1006 (BITS_PER_LONG - tag_bit);
1007 /* Clip chunk size, here only BITS_PER_LONG tags */
1008 iter->next_index = index + BITS_PER_LONG;
1009 }
1010 }
1011
1012 return node->slots + offset;
1013}
1014EXPORT_SYMBOL(radix_tree_next_chunk);
1015
1016/**
1017 * radix_tree_range_tag_if_tagged - for each item in given range set given
1018 * tag if item has another tag set
1019 * @root: radix tree root
1020 * @first_indexp: pointer to a starting index of a range to scan
1021 * @last_index: last index of a range to scan
1022 * @nr_to_tag: maximum number items to tag
1023 * @iftag: tag index to test
1024 * @settag: tag index to set if tested tag is set
1025 *
1026 * This function scans range of radix tree from first_index to last_index
1027 * (inclusive). For each item in the range if iftag is set, the function sets
1028 * also settag. The function stops either after tagging nr_to_tag items or
1029 * after reaching last_index.
1030 *
1031 * The tags must be set from the leaf level only and propagated back up the
1032 * path to the root. We must do this so that we resolve the full path before
1033 * setting any tags on intermediate nodes. If we set tags as we descend, then
1034 * we can get to the leaf node and find that the index that has the iftag
1035 * set is outside the range we are scanning. This reults in dangling tags and
1036 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1037 *
1038 * The function returns number of leaves where the tag was set and sets
1039 * *first_indexp to the first unscanned index.
1040 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1041 * be prepared to handle that.
1042 */
1043unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1044 unsigned long *first_indexp, unsigned long last_index,
1045 unsigned long nr_to_tag,
1046 unsigned int iftag, unsigned int settag)
1047{
1048 struct radix_tree_node *slot, *node = NULL;
1049 unsigned long maxindex;
1050 unsigned int shift = radix_tree_load_root(root, &slot, &maxindex);
1051 unsigned long tagged = 0;
1052 unsigned long index = *first_indexp;
1053
1054 last_index = min(last_index, maxindex);
1055 if (index > last_index)
1056 return 0;
1057 if (!nr_to_tag)
1058 return 0;
1059 if (!root_tag_get(root, iftag)) {
1060 *first_indexp = last_index + 1;
1061 return 0;
1062 }
1063 if (!radix_tree_is_indirect_ptr(slot)) {
1064 *first_indexp = last_index + 1;
1065 root_tag_set(root, settag);
1066 return 1;
1067 }
1068
1069 node = indirect_to_ptr(slot);
1070 shift -= RADIX_TREE_MAP_SHIFT;
1071
1072 for (;;) {
1073 unsigned long upindex;
1074 unsigned offset;
1075
1076 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1077 offset = radix_tree_descend(node, &slot, offset);
1078 if (!slot)
1079 goto next;
1080 if (!tag_get(node, iftag, offset))
1081 goto next;
1082 /* Sibling slots never have tags set on them */
1083 if (radix_tree_is_indirect_ptr(slot)) {
1084 node = indirect_to_ptr(slot);
1085 shift -= RADIX_TREE_MAP_SHIFT;
1086 continue;
1087 }
1088
1089 /* tag the leaf */
1090 tagged++;
1091 tag_set(node, settag, offset);
1092
1093 slot = node->parent;
1094 /* walk back up the path tagging interior nodes */
1095 upindex = index >> shift;
1096 while (slot) {
1097 upindex >>= RADIX_TREE_MAP_SHIFT;
1098 offset = upindex & RADIX_TREE_MAP_MASK;
1099
1100 /* stop if we find a node with the tag already set */
1101 if (tag_get(slot, settag, offset))
1102 break;
1103 tag_set(slot, settag, offset);
1104 slot = slot->parent;
1105 }
1106
1107 next:
1108 /* Go to next item at level determined by 'shift' */
1109 index = ((index >> shift) + 1) << shift;
1110 /* Overflow can happen when last_index is ~0UL... */
1111 if (index > last_index || !index)
1112 break;
1113 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1114 while (offset == 0) {
1115 /*
1116 * We've fully scanned this node. Go up. Because
1117 * last_index is guaranteed to be in the tree, what
1118 * we do below cannot wander astray.
1119 */
1120 node = node->parent;
1121 shift += RADIX_TREE_MAP_SHIFT;
1122 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1123 }
1124 if (is_sibling_entry(node, node->slots[offset]))
1125 goto next;
1126 if (tagged >= nr_to_tag)
1127 break;
1128 }
1129 /*
1130 * We need not to tag the root tag if there is no tag which is set with
1131 * settag within the range from *first_indexp to last_index.
1132 */
1133 if (tagged > 0)
1134 root_tag_set(root, settag);
1135 *first_indexp = index;
1136
1137 return tagged;
1138}
1139EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1140
1141/**
1142 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1143 * @root: radix tree root
1144 * @results: where the results of the lookup are placed
1145 * @first_index: start the lookup from this key
1146 * @max_items: place up to this many items at *results
1147 *
1148 * Performs an index-ascending scan of the tree for present items. Places
1149 * them at *@results and returns the number of items which were placed at
1150 * *@results.
1151 *
1152 * The implementation is naive.
1153 *
1154 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1155 * rcu_read_lock. In this case, rather than the returned results being
1156 * an atomic snapshot of the tree at a single point in time, the semantics
1157 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1158 * have been issued in individual locks, and results stored in 'results'.
1159 */
1160unsigned int
1161radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1162 unsigned long first_index, unsigned int max_items)
1163{
1164 struct radix_tree_iter iter;
1165 void **slot;
1166 unsigned int ret = 0;
1167
1168 if (unlikely(!max_items))
1169 return 0;
1170
1171 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1172 results[ret] = rcu_dereference_raw(*slot);
1173 if (!results[ret])
1174 continue;
1175 if (radix_tree_is_indirect_ptr(results[ret])) {
1176 slot = radix_tree_iter_retry(&iter);
1177 continue;
1178 }
1179 if (++ret == max_items)
1180 break;
1181 }
1182
1183 return ret;
1184}
1185EXPORT_SYMBOL(radix_tree_gang_lookup);
1186
1187/**
1188 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1189 * @root: radix tree root
1190 * @results: where the results of the lookup are placed
1191 * @indices: where their indices should be placed (but usually NULL)
1192 * @first_index: start the lookup from this key
1193 * @max_items: place up to this many items at *results
1194 *
1195 * Performs an index-ascending scan of the tree for present items. Places
1196 * their slots at *@results and returns the number of items which were
1197 * placed at *@results.
1198 *
1199 * The implementation is naive.
1200 *
1201 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1202 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1203 * protection, radix_tree_deref_slot may fail requiring a retry.
1204 */
1205unsigned int
1206radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1207 void ***results, unsigned long *indices,
1208 unsigned long first_index, unsigned int max_items)
1209{
1210 struct radix_tree_iter iter;
1211 void **slot;
1212 unsigned int ret = 0;
1213
1214 if (unlikely(!max_items))
1215 return 0;
1216
1217 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1218 results[ret] = slot;
1219 if (indices)
1220 indices[ret] = iter.index;
1221 if (++ret == max_items)
1222 break;
1223 }
1224
1225 return ret;
1226}
1227EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1228
1229/**
1230 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1231 * based on a tag
1232 * @root: radix tree root
1233 * @results: where the results of the lookup are placed
1234 * @first_index: start the lookup from this key
1235 * @max_items: place up to this many items at *results
1236 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1237 *
1238 * Performs an index-ascending scan of the tree for present items which
1239 * have the tag indexed by @tag set. Places the items at *@results and
1240 * returns the number of items which were placed at *@results.
1241 */
1242unsigned int
1243radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1244 unsigned long first_index, unsigned int max_items,
1245 unsigned int tag)
1246{
1247 struct radix_tree_iter iter;
1248 void **slot;
1249 unsigned int ret = 0;
1250
1251 if (unlikely(!max_items))
1252 return 0;
1253
1254 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1255 results[ret] = rcu_dereference_raw(*slot);
1256 if (!results[ret])
1257 continue;
1258 if (radix_tree_is_indirect_ptr(results[ret])) {
1259 slot = radix_tree_iter_retry(&iter);
1260 continue;
1261 }
1262 if (++ret == max_items)
1263 break;
1264 }
1265
1266 return ret;
1267}
1268EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1269
1270/**
1271 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1272 * radix tree based on a tag
1273 * @root: radix tree root
1274 * @results: where the results of the lookup are placed
1275 * @first_index: start the lookup from this key
1276 * @max_items: place up to this many items at *results
1277 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1278 *
1279 * Performs an index-ascending scan of the tree for present items which
1280 * have the tag indexed by @tag set. Places the slots at *@results and
1281 * returns the number of slots which were placed at *@results.
1282 */
1283unsigned int
1284radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1285 unsigned long first_index, unsigned int max_items,
1286 unsigned int tag)
1287{
1288 struct radix_tree_iter iter;
1289 void **slot;
1290 unsigned int ret = 0;
1291
1292 if (unlikely(!max_items))
1293 return 0;
1294
1295 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1296 results[ret] = slot;
1297 if (++ret == max_items)
1298 break;
1299 }
1300
1301 return ret;
1302}
1303EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1304
1305#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1306#include <linux/sched.h> /* for cond_resched() */
1307
1308struct locate_info {
1309 unsigned long found_index;
1310 bool stop;
1311};
1312
1313/*
1314 * This linear search is at present only useful to shmem_unuse_inode().
1315 */
1316static unsigned long __locate(struct radix_tree_node *slot, void *item,
1317 unsigned long index, struct locate_info *info)
1318{
1319 unsigned int shift, height;
1320 unsigned long i;
1321
1322 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1323 shift = height * RADIX_TREE_MAP_SHIFT;
1324
1325 do {
1326 shift -= RADIX_TREE_MAP_SHIFT;
1327
1328 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1329 i < RADIX_TREE_MAP_SIZE;
1330 i++, index += (1UL << shift)) {
1331 struct radix_tree_node *node =
1332 rcu_dereference_raw(slot->slots[i]);
1333 if (node == RADIX_TREE_RETRY)
1334 goto out;
1335 if (!radix_tree_is_indirect_ptr(node)) {
1336 if (node == item) {
1337 info->found_index = index;
1338 info->stop = true;
1339 goto out;
1340 }
1341 continue;
1342 }
1343 node = indirect_to_ptr(node);
1344 if (is_sibling_entry(slot, node))
1345 continue;
1346 slot = node;
1347 break;
1348 }
1349 if (i == RADIX_TREE_MAP_SIZE)
1350 break;
1351 } while (shift);
1352
1353out:
1354 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1355 info->stop = true;
1356 return index;
1357}
1358
1359/**
1360 * radix_tree_locate_item - search through radix tree for item
1361 * @root: radix tree root
1362 * @item: item to be found
1363 *
1364 * Returns index where item was found, or -1 if not found.
1365 * Caller must hold no lock (since this time-consuming function needs
1366 * to be preemptible), and must check afterwards if item is still there.
1367 */
1368unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1369{
1370 struct radix_tree_node *node;
1371 unsigned long max_index;
1372 unsigned long cur_index = 0;
1373 struct locate_info info = {
1374 .found_index = -1,
1375 .stop = false,
1376 };
1377
1378 do {
1379 rcu_read_lock();
1380 node = rcu_dereference_raw(root->rnode);
1381 if (!radix_tree_is_indirect_ptr(node)) {
1382 rcu_read_unlock();
1383 if (node == item)
1384 info.found_index = 0;
1385 break;
1386 }
1387
1388 node = indirect_to_ptr(node);
1389
1390 max_index = node_maxindex(node);
1391 if (cur_index > max_index) {
1392 rcu_read_unlock();
1393 break;
1394 }
1395
1396 cur_index = __locate(node, item, cur_index, &info);
1397 rcu_read_unlock();
1398 cond_resched();
1399 } while (!info.stop && cur_index <= max_index);
1400
1401 return info.found_index;
1402}
1403#else
1404unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1405{
1406 return -1;
1407}
1408#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1409
1410/**
1411 * radix_tree_shrink - shrink height of a radix tree to minimal
1412 * @root radix tree root
1413 */
1414static inline void radix_tree_shrink(struct radix_tree_root *root)
1415{
1416 /* try to shrink tree height */
1417 while (root->height > 0) {
1418 struct radix_tree_node *to_free = root->rnode;
1419 struct radix_tree_node *slot;
1420
1421 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1422 to_free = indirect_to_ptr(to_free);
1423
1424 /*
1425 * The candidate node has more than one child, or its child
1426 * is not at the leftmost slot, or it is a multiorder entry,
1427 * we cannot shrink.
1428 */
1429 if (to_free->count != 1)
1430 break;
1431 slot = to_free->slots[0];
1432 if (!slot)
1433 break;
1434 if (!radix_tree_is_indirect_ptr(slot) && (root->height > 1))
1435 break;
1436
1437 if (radix_tree_is_indirect_ptr(slot)) {
1438 slot = indirect_to_ptr(slot);
1439 slot->parent = NULL;
1440 slot = ptr_to_indirect(slot);
1441 }
1442
1443 /*
1444 * We don't need rcu_assign_pointer(), since we are simply
1445 * moving the node from one part of the tree to another: if it
1446 * was safe to dereference the old pointer to it
1447 * (to_free->slots[0]), it will be safe to dereference the new
1448 * one (root->rnode) as far as dependent read barriers go.
1449 */
1450 root->rnode = slot;
1451 root->height--;
1452
1453 /*
1454 * We have a dilemma here. The node's slot[0] must not be
1455 * NULLed in case there are concurrent lookups expecting to
1456 * find the item. However if this was a bottom-level node,
1457 * then it may be subject to the slot pointer being visible
1458 * to callers dereferencing it. If item corresponding to
1459 * slot[0] is subsequently deleted, these callers would expect
1460 * their slot to become empty sooner or later.
1461 *
1462 * For example, lockless pagecache will look up a slot, deref
1463 * the page pointer, and if the page is 0 refcount it means it
1464 * was concurrently deleted from pagecache so try the deref
1465 * again. Fortunately there is already a requirement for logic
1466 * to retry the entire slot lookup -- the indirect pointer
1467 * problem (replacing direct root node with an indirect pointer
1468 * also results in a stale slot). So tag the slot as indirect
1469 * to force callers to retry.
1470 */
1471 if (!radix_tree_is_indirect_ptr(slot))
1472 to_free->slots[0] = RADIX_TREE_RETRY;
1473
1474 radix_tree_node_free(to_free);
1475 }
1476}
1477
1478/**
1479 * __radix_tree_delete_node - try to free node after clearing a slot
1480 * @root: radix tree root
1481 * @node: node containing @index
1482 *
1483 * After clearing the slot at @index in @node from radix tree
1484 * rooted at @root, call this function to attempt freeing the
1485 * node and shrinking the tree.
1486 *
1487 * Returns %true if @node was freed, %false otherwise.
1488 */
1489bool __radix_tree_delete_node(struct radix_tree_root *root,
1490 struct radix_tree_node *node)
1491{
1492 bool deleted = false;
1493
1494 do {
1495 struct radix_tree_node *parent;
1496
1497 if (node->count) {
1498 if (node == indirect_to_ptr(root->rnode)) {
1499 radix_tree_shrink(root);
1500 if (root->height == 0)
1501 deleted = true;
1502 }
1503 return deleted;
1504 }
1505
1506 parent = node->parent;
1507 if (parent) {
1508 unsigned int offset;
1509
1510 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1511 parent->slots[offset] = NULL;
1512 parent->count--;
1513 } else {
1514 root_tag_clear_all(root);
1515 root->height = 0;
1516 root->rnode = NULL;
1517 }
1518
1519 radix_tree_node_free(node);
1520 deleted = true;
1521
1522 node = parent;
1523 } while (node);
1524
1525 return deleted;
1526}
1527
1528static inline void delete_sibling_entries(struct radix_tree_node *node,
1529 void *ptr, unsigned offset)
1530{
1531#ifdef CONFIG_RADIX_TREE_MULTIORDER
1532 int i;
1533 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1534 if (node->slots[offset + i] != ptr)
1535 break;
1536 node->slots[offset + i] = NULL;
1537 node->count--;
1538 }
1539#endif
1540}
1541
1542/**
1543 * radix_tree_delete_item - delete an item from a radix tree
1544 * @root: radix tree root
1545 * @index: index key
1546 * @item: expected item
1547 *
1548 * Remove @item at @index from the radix tree rooted at @root.
1549 *
1550 * Returns the address of the deleted item, or NULL if it was not present
1551 * or the entry at the given @index was not @item.
1552 */
1553void *radix_tree_delete_item(struct radix_tree_root *root,
1554 unsigned long index, void *item)
1555{
1556 struct radix_tree_node *node;
1557 unsigned int offset;
1558 void **slot;
1559 void *entry;
1560 int tag;
1561
1562 entry = __radix_tree_lookup(root, index, &node, &slot);
1563 if (!entry)
1564 return NULL;
1565
1566 if (item && entry != item)
1567 return NULL;
1568
1569 if (!node) {
1570 root_tag_clear_all(root);
1571 root->rnode = NULL;
1572 return entry;
1573 }
1574
1575 offset = get_slot_offset(node, slot);
1576
1577 /*
1578 * Clear all tags associated with the item to be deleted.
1579 * This way of doing it would be inefficient, but seldom is any set.
1580 */
1581 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1582 if (tag_get(node, tag, offset))
1583 radix_tree_tag_clear(root, index, tag);
1584 }
1585
1586 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1587 node->slots[offset] = NULL;
1588 node->count--;
1589
1590 __radix_tree_delete_node(root, node);
1591
1592 return entry;
1593}
1594EXPORT_SYMBOL(radix_tree_delete_item);
1595
1596/**
1597 * radix_tree_delete - delete an item from a radix tree
1598 * @root: radix tree root
1599 * @index: index key
1600 *
1601 * Remove the item at @index from the radix tree rooted at @root.
1602 *
1603 * Returns the address of the deleted item, or NULL if it was not present.
1604 */
1605void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1606{
1607 return radix_tree_delete_item(root, index, NULL);
1608}
1609EXPORT_SYMBOL(radix_tree_delete);
1610
1611/**
1612 * radix_tree_tagged - test whether any items in the tree are tagged
1613 * @root: radix tree root
1614 * @tag: tag to test
1615 */
1616int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1617{
1618 return root_tag_get(root, tag);
1619}
1620EXPORT_SYMBOL(radix_tree_tagged);
1621
1622static void
1623radix_tree_node_ctor(void *arg)
1624{
1625 struct radix_tree_node *node = arg;
1626
1627 memset(node, 0, sizeof(*node));
1628 INIT_LIST_HEAD(&node->private_list);
1629}
1630
1631static __init unsigned long __maxindex(unsigned int height)
1632{
1633 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1634 int shift = RADIX_TREE_INDEX_BITS - width;
1635
1636 if (shift < 0)
1637 return ~0UL;
1638 if (shift >= BITS_PER_LONG)
1639 return 0UL;
1640 return ~0UL >> shift;
1641}
1642
1643static __init void radix_tree_init_maxindex(void)
1644{
1645 unsigned int i;
1646
1647 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1648 height_to_maxindex[i] = __maxindex(i);
1649}
1650
1651static int radix_tree_callback(struct notifier_block *nfb,
1652 unsigned long action,
1653 void *hcpu)
1654{
1655 int cpu = (long)hcpu;
1656 struct radix_tree_preload *rtp;
1657 struct radix_tree_node *node;
1658
1659 /* Free per-cpu pool of perloaded nodes */
1660 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1661 rtp = &per_cpu(radix_tree_preloads, cpu);
1662 while (rtp->nr) {
1663 node = rtp->nodes;
1664 rtp->nodes = node->private_data;
1665 kmem_cache_free(radix_tree_node_cachep, node);
1666 rtp->nr--;
1667 }
1668 }
1669 return NOTIFY_OK;
1670}
1671
1672void __init radix_tree_init(void)
1673{
1674 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1675 sizeof(struct radix_tree_node), 0,
1676 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1677 radix_tree_node_ctor);
1678 radix_tree_init_maxindex();
1679 hotcpu_notifier(radix_tree_callback, 0);
1680}