]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - memory.c
memory: Do not allocate FlatView in address_space_init
[mirror_qemu.git] / memory.c
... / ...
CommitLineData
1/*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16#include "qemu/osdep.h"
17#include "qapi/error.h"
18#include "qemu-common.h"
19#include "cpu.h"
20#include "exec/memory.h"
21#include "exec/address-spaces.h"
22#include "exec/ioport.h"
23#include "qapi/visitor.h"
24#include "qemu/bitops.h"
25#include "qemu/error-report.h"
26#include "qom/object.h"
27#include "trace-root.h"
28
29#include "exec/memory-internal.h"
30#include "exec/ram_addr.h"
31#include "sysemu/kvm.h"
32#include "sysemu/sysemu.h"
33#include "hw/misc/mmio_interface.h"
34#include "hw/qdev-properties.h"
35#include "migration/vmstate.h"
36
37//#define DEBUG_UNASSIGNED
38
39static unsigned memory_region_transaction_depth;
40static bool memory_region_update_pending;
41static bool ioeventfd_update_pending;
42static bool global_dirty_log = false;
43
44static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50static GHashTable *flat_views;
51
52typedef struct AddrRange AddrRange;
53
54/*
55 * Note that signed integers are needed for negative offsetting in aliases
56 * (large MemoryRegion::alias_offset).
57 */
58struct AddrRange {
59 Int128 start;
60 Int128 size;
61};
62
63static AddrRange addrrange_make(Int128 start, Int128 size)
64{
65 return (AddrRange) { start, size };
66}
67
68static bool addrrange_equal(AddrRange r1, AddrRange r2)
69{
70 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71}
72
73static Int128 addrrange_end(AddrRange r)
74{
75 return int128_add(r.start, r.size);
76}
77
78static AddrRange addrrange_shift(AddrRange range, Int128 delta)
79{
80 int128_addto(&range.start, delta);
81 return range;
82}
83
84static bool addrrange_contains(AddrRange range, Int128 addr)
85{
86 return int128_ge(addr, range.start)
87 && int128_lt(addr, addrrange_end(range));
88}
89
90static bool addrrange_intersects(AddrRange r1, AddrRange r2)
91{
92 return addrrange_contains(r1, r2.start)
93 || addrrange_contains(r2, r1.start);
94}
95
96static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
97{
98 Int128 start = int128_max(r1.start, r2.start);
99 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
100 return addrrange_make(start, int128_sub(end, start));
101}
102
103enum ListenerDirection { Forward, Reverse };
104
105#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 do { \
107 MemoryListener *_listener; \
108 \
109 switch (_direction) { \
110 case Forward: \
111 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
112 if (_listener->_callback) { \
113 _listener->_callback(_listener, ##_args); \
114 } \
115 } \
116 break; \
117 case Reverse: \
118 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
119 memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 struct memory_listeners_as *list = &(_as)->listeners; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, list, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
140 } \
141 } \
142 break; \
143 case Reverse: \
144 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
145 link_as) { \
146 if (_listener->_callback) { \
147 _listener->_callback(_listener, _section, ##_args); \
148 } \
149 } \
150 break; \
151 default: \
152 abort(); \
153 } \
154 } while (0)
155
156/* No need to ref/unref .mr, the FlatRange keeps it alive. */
157#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 do { \
159 MemoryRegionSection mrs = section_from_flat_range(fr, \
160 address_space_to_flatview(as)); \
161 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 } while(0)
163
164struct CoalescedMemoryRange {
165 AddrRange addr;
166 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167};
168
169struct MemoryRegionIoeventfd {
170 AddrRange addr;
171 bool match_data;
172 uint64_t data;
173 EventNotifier *e;
174};
175
176static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
177 MemoryRegionIoeventfd b)
178{
179 if (int128_lt(a.addr.start, b.addr.start)) {
180 return true;
181 } else if (int128_gt(a.addr.start, b.addr.start)) {
182 return false;
183 } else if (int128_lt(a.addr.size, b.addr.size)) {
184 return true;
185 } else if (int128_gt(a.addr.size, b.addr.size)) {
186 return false;
187 } else if (a.match_data < b.match_data) {
188 return true;
189 } else if (a.match_data > b.match_data) {
190 return false;
191 } else if (a.match_data) {
192 if (a.data < b.data) {
193 return true;
194 } else if (a.data > b.data) {
195 return false;
196 }
197 }
198 if (a.e < b.e) {
199 return true;
200 } else if (a.e > b.e) {
201 return false;
202 }
203 return false;
204}
205
206static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
207 MemoryRegionIoeventfd b)
208{
209 return !memory_region_ioeventfd_before(a, b)
210 && !memory_region_ioeventfd_before(b, a);
211}
212
213typedef struct FlatRange FlatRange;
214
215/* Range of memory in the global map. Addresses are absolute. */
216struct FlatRange {
217 MemoryRegion *mr;
218 hwaddr offset_in_region;
219 AddrRange addr;
220 uint8_t dirty_log_mask;
221 bool romd_mode;
222 bool readonly;
223};
224
225/* Flattened global view of current active memory hierarchy. Kept in sorted
226 * order.
227 */
228struct FlatView {
229 struct rcu_head rcu;
230 unsigned ref;
231 FlatRange *ranges;
232 unsigned nr;
233 unsigned nr_allocated;
234 struct AddressSpaceDispatch *dispatch;
235 MemoryRegion *root;
236};
237
238typedef struct AddressSpaceOps AddressSpaceOps;
239
240#define FOR_EACH_FLAT_RANGE(var, view) \
241 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243static inline MemoryRegionSection
244section_from_flat_range(FlatRange *fr, FlatView *fv)
245{
246 return (MemoryRegionSection) {
247 .mr = fr->mr,
248 .fv = fv,
249 .offset_within_region = fr->offset_in_region,
250 .size = fr->addr.size,
251 .offset_within_address_space = int128_get64(fr->addr.start),
252 .readonly = fr->readonly,
253 };
254}
255
256static bool flatrange_equal(FlatRange *a, FlatRange *b)
257{
258 return a->mr == b->mr
259 && addrrange_equal(a->addr, b->addr)
260 && a->offset_in_region == b->offset_in_region
261 && a->romd_mode == b->romd_mode
262 && a->readonly == b->readonly;
263}
264
265static FlatView *flatview_new(MemoryRegion *mr_root)
266{
267 FlatView *view;
268
269 view = g_new0(FlatView, 1);
270 view->ref = 1;
271 view->root = mr_root;
272 memory_region_ref(mr_root);
273
274 return view;
275}
276
277/* Insert a range into a given position. Caller is responsible for maintaining
278 * sorting order.
279 */
280static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
281{
282 if (view->nr == view->nr_allocated) {
283 view->nr_allocated = MAX(2 * view->nr, 10);
284 view->ranges = g_realloc(view->ranges,
285 view->nr_allocated * sizeof(*view->ranges));
286 }
287 memmove(view->ranges + pos + 1, view->ranges + pos,
288 (view->nr - pos) * sizeof(FlatRange));
289 view->ranges[pos] = *range;
290 memory_region_ref(range->mr);
291 ++view->nr;
292}
293
294static void flatview_destroy(FlatView *view)
295{
296 int i;
297
298 if (view->dispatch) {
299 address_space_dispatch_free(view->dispatch);
300 }
301 for (i = 0; i < view->nr; i++) {
302 memory_region_unref(view->ranges[i].mr);
303 }
304 g_free(view->ranges);
305 memory_region_unref(view->root);
306 g_free(view);
307}
308
309static bool flatview_ref(FlatView *view)
310{
311 return atomic_fetch_inc_nonzero(&view->ref) > 0;
312}
313
314static void flatview_unref(FlatView *view)
315{
316 if (atomic_fetch_dec(&view->ref) == 1) {
317 call_rcu(view, flatview_destroy, rcu);
318 }
319}
320
321FlatView *address_space_to_flatview(AddressSpace *as)
322{
323 return atomic_rcu_read(&as->current_map);
324}
325
326AddressSpaceDispatch *flatview_to_dispatch(FlatView *fv)
327{
328 return fv->dispatch;
329}
330
331AddressSpaceDispatch *address_space_to_dispatch(AddressSpace *as)
332{
333 return flatview_to_dispatch(address_space_to_flatview(as));
334}
335
336static bool can_merge(FlatRange *r1, FlatRange *r2)
337{
338 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
339 && r1->mr == r2->mr
340 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
341 r1->addr.size),
342 int128_make64(r2->offset_in_region))
343 && r1->dirty_log_mask == r2->dirty_log_mask
344 && r1->romd_mode == r2->romd_mode
345 && r1->readonly == r2->readonly;
346}
347
348/* Attempt to simplify a view by merging adjacent ranges */
349static void flatview_simplify(FlatView *view)
350{
351 unsigned i, j;
352
353 i = 0;
354 while (i < view->nr) {
355 j = i + 1;
356 while (j < view->nr
357 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
358 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
359 ++j;
360 }
361 ++i;
362 memmove(&view->ranges[i], &view->ranges[j],
363 (view->nr - j) * sizeof(view->ranges[j]));
364 view->nr -= j - i;
365 }
366}
367
368static bool memory_region_big_endian(MemoryRegion *mr)
369{
370#ifdef TARGET_WORDS_BIGENDIAN
371 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
372#else
373 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
374#endif
375}
376
377static bool memory_region_wrong_endianness(MemoryRegion *mr)
378{
379#ifdef TARGET_WORDS_BIGENDIAN
380 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
381#else
382 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
383#endif
384}
385
386static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
387{
388 if (memory_region_wrong_endianness(mr)) {
389 switch (size) {
390 case 1:
391 break;
392 case 2:
393 *data = bswap16(*data);
394 break;
395 case 4:
396 *data = bswap32(*data);
397 break;
398 case 8:
399 *data = bswap64(*data);
400 break;
401 default:
402 abort();
403 }
404 }
405}
406
407static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
408{
409 MemoryRegion *root;
410 hwaddr abs_addr = offset;
411
412 abs_addr += mr->addr;
413 for (root = mr; root->container; ) {
414 root = root->container;
415 abs_addr += root->addr;
416 }
417
418 return abs_addr;
419}
420
421static int get_cpu_index(void)
422{
423 if (current_cpu) {
424 return current_cpu->cpu_index;
425 }
426 return -1;
427}
428
429static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
430 hwaddr addr,
431 uint64_t *value,
432 unsigned size,
433 unsigned shift,
434 uint64_t mask,
435 MemTxAttrs attrs)
436{
437 uint64_t tmp;
438
439 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
440 if (mr->subpage) {
441 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
442 } else if (mr == &io_mem_notdirty) {
443 /* Accesses to code which has previously been translated into a TB show
444 * up in the MMIO path, as accesses to the io_mem_notdirty
445 * MemoryRegion. */
446 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
447 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
448 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
449 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
450 }
451 *value |= (tmp & mask) << shift;
452 return MEMTX_OK;
453}
454
455static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
456 hwaddr addr,
457 uint64_t *value,
458 unsigned size,
459 unsigned shift,
460 uint64_t mask,
461 MemTxAttrs attrs)
462{
463 uint64_t tmp;
464
465 tmp = mr->ops->read(mr->opaque, addr, size);
466 if (mr->subpage) {
467 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
468 } else if (mr == &io_mem_notdirty) {
469 /* Accesses to code which has previously been translated into a TB show
470 * up in the MMIO path, as accesses to the io_mem_notdirty
471 * MemoryRegion. */
472 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
473 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
474 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
475 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
476 }
477 *value |= (tmp & mask) << shift;
478 return MEMTX_OK;
479}
480
481static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
482 hwaddr addr,
483 uint64_t *value,
484 unsigned size,
485 unsigned shift,
486 uint64_t mask,
487 MemTxAttrs attrs)
488{
489 uint64_t tmp = 0;
490 MemTxResult r;
491
492 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
493 if (mr->subpage) {
494 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
495 } else if (mr == &io_mem_notdirty) {
496 /* Accesses to code which has previously been translated into a TB show
497 * up in the MMIO path, as accesses to the io_mem_notdirty
498 * MemoryRegion. */
499 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
500 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
501 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
502 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
503 }
504 *value |= (tmp & mask) << shift;
505 return r;
506}
507
508static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
509 hwaddr addr,
510 uint64_t *value,
511 unsigned size,
512 unsigned shift,
513 uint64_t mask,
514 MemTxAttrs attrs)
515{
516 uint64_t tmp;
517
518 tmp = (*value >> shift) & mask;
519 if (mr->subpage) {
520 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
521 } else if (mr == &io_mem_notdirty) {
522 /* Accesses to code which has previously been translated into a TB show
523 * up in the MMIO path, as accesses to the io_mem_notdirty
524 * MemoryRegion. */
525 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
526 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
527 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
528 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
529 }
530 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
531 return MEMTX_OK;
532}
533
534static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
535 hwaddr addr,
536 uint64_t *value,
537 unsigned size,
538 unsigned shift,
539 uint64_t mask,
540 MemTxAttrs attrs)
541{
542 uint64_t tmp;
543
544 tmp = (*value >> shift) & mask;
545 if (mr->subpage) {
546 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
547 } else if (mr == &io_mem_notdirty) {
548 /* Accesses to code which has previously been translated into a TB show
549 * up in the MMIO path, as accesses to the io_mem_notdirty
550 * MemoryRegion. */
551 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
552 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
553 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
554 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
555 }
556 mr->ops->write(mr->opaque, addr, tmp, size);
557 return MEMTX_OK;
558}
559
560static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
561 hwaddr addr,
562 uint64_t *value,
563 unsigned size,
564 unsigned shift,
565 uint64_t mask,
566 MemTxAttrs attrs)
567{
568 uint64_t tmp;
569
570 tmp = (*value >> shift) & mask;
571 if (mr->subpage) {
572 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
573 } else if (mr == &io_mem_notdirty) {
574 /* Accesses to code which has previously been translated into a TB show
575 * up in the MMIO path, as accesses to the io_mem_notdirty
576 * MemoryRegion. */
577 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
578 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
579 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
580 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
581 }
582 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
583}
584
585static MemTxResult access_with_adjusted_size(hwaddr addr,
586 uint64_t *value,
587 unsigned size,
588 unsigned access_size_min,
589 unsigned access_size_max,
590 MemTxResult (*access_fn)
591 (MemoryRegion *mr,
592 hwaddr addr,
593 uint64_t *value,
594 unsigned size,
595 unsigned shift,
596 uint64_t mask,
597 MemTxAttrs attrs),
598 MemoryRegion *mr,
599 MemTxAttrs attrs)
600{
601 uint64_t access_mask;
602 unsigned access_size;
603 unsigned i;
604 MemTxResult r = MEMTX_OK;
605
606 if (!access_size_min) {
607 access_size_min = 1;
608 }
609 if (!access_size_max) {
610 access_size_max = 4;
611 }
612
613 /* FIXME: support unaligned access? */
614 access_size = MAX(MIN(size, access_size_max), access_size_min);
615 access_mask = -1ULL >> (64 - access_size * 8);
616 if (memory_region_big_endian(mr)) {
617 for (i = 0; i < size; i += access_size) {
618 r |= access_fn(mr, addr + i, value, access_size,
619 (size - access_size - i) * 8, access_mask, attrs);
620 }
621 } else {
622 for (i = 0; i < size; i += access_size) {
623 r |= access_fn(mr, addr + i, value, access_size, i * 8,
624 access_mask, attrs);
625 }
626 }
627 return r;
628}
629
630static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
631{
632 AddressSpace *as;
633
634 while (mr->container) {
635 mr = mr->container;
636 }
637 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
638 if (mr == as->root) {
639 return as;
640 }
641 }
642 return NULL;
643}
644
645/* Render a memory region into the global view. Ranges in @view obscure
646 * ranges in @mr.
647 */
648static void render_memory_region(FlatView *view,
649 MemoryRegion *mr,
650 Int128 base,
651 AddrRange clip,
652 bool readonly)
653{
654 MemoryRegion *subregion;
655 unsigned i;
656 hwaddr offset_in_region;
657 Int128 remain;
658 Int128 now;
659 FlatRange fr;
660 AddrRange tmp;
661
662 if (!mr->enabled) {
663 return;
664 }
665
666 int128_addto(&base, int128_make64(mr->addr));
667 readonly |= mr->readonly;
668
669 tmp = addrrange_make(base, mr->size);
670
671 if (!addrrange_intersects(tmp, clip)) {
672 return;
673 }
674
675 clip = addrrange_intersection(tmp, clip);
676
677 if (mr->alias) {
678 int128_subfrom(&base, int128_make64(mr->alias->addr));
679 int128_subfrom(&base, int128_make64(mr->alias_offset));
680 render_memory_region(view, mr->alias, base, clip, readonly);
681 return;
682 }
683
684 /* Render subregions in priority order. */
685 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
686 render_memory_region(view, subregion, base, clip, readonly);
687 }
688
689 if (!mr->terminates) {
690 return;
691 }
692
693 offset_in_region = int128_get64(int128_sub(clip.start, base));
694 base = clip.start;
695 remain = clip.size;
696
697 fr.mr = mr;
698 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
699 fr.romd_mode = mr->romd_mode;
700 fr.readonly = readonly;
701
702 /* Render the region itself into any gaps left by the current view. */
703 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
704 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
705 continue;
706 }
707 if (int128_lt(base, view->ranges[i].addr.start)) {
708 now = int128_min(remain,
709 int128_sub(view->ranges[i].addr.start, base));
710 fr.offset_in_region = offset_in_region;
711 fr.addr = addrrange_make(base, now);
712 flatview_insert(view, i, &fr);
713 ++i;
714 int128_addto(&base, now);
715 offset_in_region += int128_get64(now);
716 int128_subfrom(&remain, now);
717 }
718 now = int128_sub(int128_min(int128_add(base, remain),
719 addrrange_end(view->ranges[i].addr)),
720 base);
721 int128_addto(&base, now);
722 offset_in_region += int128_get64(now);
723 int128_subfrom(&remain, now);
724 }
725 if (int128_nz(remain)) {
726 fr.offset_in_region = offset_in_region;
727 fr.addr = addrrange_make(base, remain);
728 flatview_insert(view, i, &fr);
729 }
730}
731
732static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
733{
734 while (mr->alias && !mr->alias_offset &&
735 int128_ge(mr->size, mr->alias->size)) {
736 /* The alias is included in its entirety. Use it as
737 * the "real" root, so that we can share more FlatViews.
738 */
739 mr = mr->alias;
740 }
741
742 return mr;
743}
744
745/* Render a memory topology into a list of disjoint absolute ranges. */
746static FlatView *generate_memory_topology(MemoryRegion *mr)
747{
748 int i;
749 FlatView *view;
750
751 view = flatview_new(mr);
752
753 if (mr) {
754 render_memory_region(view, mr, int128_zero(),
755 addrrange_make(int128_zero(), int128_2_64()), false);
756 }
757 flatview_simplify(view);
758
759 view->dispatch = address_space_dispatch_new(view);
760 for (i = 0; i < view->nr; i++) {
761 MemoryRegionSection mrs =
762 section_from_flat_range(&view->ranges[i], view);
763 flatview_add_to_dispatch(view, &mrs);
764 }
765 address_space_dispatch_compact(view->dispatch);
766 g_hash_table_replace(flat_views, mr, view);
767
768 return view;
769}
770
771static void address_space_add_del_ioeventfds(AddressSpace *as,
772 MemoryRegionIoeventfd *fds_new,
773 unsigned fds_new_nb,
774 MemoryRegionIoeventfd *fds_old,
775 unsigned fds_old_nb)
776{
777 unsigned iold, inew;
778 MemoryRegionIoeventfd *fd;
779 MemoryRegionSection section;
780
781 /* Generate a symmetric difference of the old and new fd sets, adding
782 * and deleting as necessary.
783 */
784
785 iold = inew = 0;
786 while (iold < fds_old_nb || inew < fds_new_nb) {
787 if (iold < fds_old_nb
788 && (inew == fds_new_nb
789 || memory_region_ioeventfd_before(fds_old[iold],
790 fds_new[inew]))) {
791 fd = &fds_old[iold];
792 section = (MemoryRegionSection) {
793 .fv = address_space_to_flatview(as),
794 .offset_within_address_space = int128_get64(fd->addr.start),
795 .size = fd->addr.size,
796 };
797 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
798 fd->match_data, fd->data, fd->e);
799 ++iold;
800 } else if (inew < fds_new_nb
801 && (iold == fds_old_nb
802 || memory_region_ioeventfd_before(fds_new[inew],
803 fds_old[iold]))) {
804 fd = &fds_new[inew];
805 section = (MemoryRegionSection) {
806 .fv = address_space_to_flatview(as),
807 .offset_within_address_space = int128_get64(fd->addr.start),
808 .size = fd->addr.size,
809 };
810 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
811 fd->match_data, fd->data, fd->e);
812 ++inew;
813 } else {
814 ++iold;
815 ++inew;
816 }
817 }
818}
819
820static FlatView *address_space_get_flatview(AddressSpace *as)
821{
822 FlatView *view;
823
824 rcu_read_lock();
825 do {
826 view = address_space_to_flatview(as);
827 /* If somebody has replaced as->current_map concurrently,
828 * flatview_ref returns false.
829 */
830 } while (!flatview_ref(view));
831 rcu_read_unlock();
832 return view;
833}
834
835static void address_space_update_ioeventfds(AddressSpace *as)
836{
837 FlatView *view;
838 FlatRange *fr;
839 unsigned ioeventfd_nb = 0;
840 MemoryRegionIoeventfd *ioeventfds = NULL;
841 AddrRange tmp;
842 unsigned i;
843
844 view = address_space_get_flatview(as);
845 FOR_EACH_FLAT_RANGE(fr, view) {
846 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
847 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
848 int128_sub(fr->addr.start,
849 int128_make64(fr->offset_in_region)));
850 if (addrrange_intersects(fr->addr, tmp)) {
851 ++ioeventfd_nb;
852 ioeventfds = g_realloc(ioeventfds,
853 ioeventfd_nb * sizeof(*ioeventfds));
854 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
855 ioeventfds[ioeventfd_nb-1].addr = tmp;
856 }
857 }
858 }
859
860 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
861 as->ioeventfds, as->ioeventfd_nb);
862
863 g_free(as->ioeventfds);
864 as->ioeventfds = ioeventfds;
865 as->ioeventfd_nb = ioeventfd_nb;
866 flatview_unref(view);
867}
868
869static void address_space_update_topology_pass(AddressSpace *as,
870 const FlatView *old_view,
871 const FlatView *new_view,
872 bool adding)
873{
874 unsigned iold, inew;
875 FlatRange *frold, *frnew;
876
877 /* Generate a symmetric difference of the old and new memory maps.
878 * Kill ranges in the old map, and instantiate ranges in the new map.
879 */
880 iold = inew = 0;
881 while (iold < old_view->nr || inew < new_view->nr) {
882 if (iold < old_view->nr) {
883 frold = &old_view->ranges[iold];
884 } else {
885 frold = NULL;
886 }
887 if (inew < new_view->nr) {
888 frnew = &new_view->ranges[inew];
889 } else {
890 frnew = NULL;
891 }
892
893 if (frold
894 && (!frnew
895 || int128_lt(frold->addr.start, frnew->addr.start)
896 || (int128_eq(frold->addr.start, frnew->addr.start)
897 && !flatrange_equal(frold, frnew)))) {
898 /* In old but not in new, or in both but attributes changed. */
899
900 if (!adding) {
901 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
902 }
903
904 ++iold;
905 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
906 /* In both and unchanged (except logging may have changed) */
907
908 if (adding) {
909 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
910 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
911 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
912 frold->dirty_log_mask,
913 frnew->dirty_log_mask);
914 }
915 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
916 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
917 frold->dirty_log_mask,
918 frnew->dirty_log_mask);
919 }
920 }
921
922 ++iold;
923 ++inew;
924 } else {
925 /* In new */
926
927 if (adding) {
928 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
929 }
930
931 ++inew;
932 }
933 }
934}
935
936static void flatviews_init(void)
937{
938 if (flat_views) {
939 return;
940 }
941
942 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
943 (GDestroyNotify) flatview_unref);
944}
945
946static void flatviews_reset(void)
947{
948 AddressSpace *as;
949
950 if (flat_views) {
951 g_hash_table_unref(flat_views);
952 flat_views = NULL;
953 }
954 flatviews_init();
955
956 /* Render unique FVs */
957 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
958 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
959
960 if (g_hash_table_lookup(flat_views, physmr)) {
961 continue;
962 }
963
964 generate_memory_topology(physmr);
965 }
966}
967
968static void address_space_set_flatview(AddressSpace *as)
969{
970 FlatView *old_view = address_space_to_flatview(as);
971 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
972 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
973
974 assert(new_view);
975
976 if (old_view == new_view) {
977 return;
978 }
979
980 if (old_view) {
981 flatview_ref(old_view);
982 }
983
984 flatview_ref(new_view);
985
986 if (!QTAILQ_EMPTY(&as->listeners)) {
987 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
988
989 if (!old_view2) {
990 old_view2 = &tmpview;
991 }
992 address_space_update_topology_pass(as, old_view2, new_view, false);
993 address_space_update_topology_pass(as, old_view2, new_view, true);
994 }
995
996 /* Writes are protected by the BQL. */
997 atomic_rcu_set(&as->current_map, new_view);
998 if (old_view) {
999 flatview_unref(old_view);
1000 }
1001
1002 /* Note that all the old MemoryRegions are still alive up to this
1003 * point. This relieves most MemoryListeners from the need to
1004 * ref/unref the MemoryRegions they get---unless they use them
1005 * outside the iothread mutex, in which case precise reference
1006 * counting is necessary.
1007 */
1008 if (old_view) {
1009 flatview_unref(old_view);
1010 }
1011}
1012
1013void memory_region_transaction_begin(void)
1014{
1015 qemu_flush_coalesced_mmio_buffer();
1016 ++memory_region_transaction_depth;
1017}
1018
1019void memory_region_transaction_commit(void)
1020{
1021 AddressSpace *as;
1022
1023 assert(memory_region_transaction_depth);
1024 assert(qemu_mutex_iothread_locked());
1025
1026 --memory_region_transaction_depth;
1027 if (!memory_region_transaction_depth) {
1028 if (memory_region_update_pending) {
1029 flatviews_reset();
1030
1031 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1032
1033 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1034 address_space_set_flatview(as);
1035 address_space_update_ioeventfds(as);
1036 }
1037 memory_region_update_pending = false;
1038 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1039 } else if (ioeventfd_update_pending) {
1040 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1041 address_space_update_ioeventfds(as);
1042 }
1043 ioeventfd_update_pending = false;
1044 }
1045 }
1046}
1047
1048static void memory_region_destructor_none(MemoryRegion *mr)
1049{
1050}
1051
1052static void memory_region_destructor_ram(MemoryRegion *mr)
1053{
1054 qemu_ram_free(mr->ram_block);
1055}
1056
1057static bool memory_region_need_escape(char c)
1058{
1059 return c == '/' || c == '[' || c == '\\' || c == ']';
1060}
1061
1062static char *memory_region_escape_name(const char *name)
1063{
1064 const char *p;
1065 char *escaped, *q;
1066 uint8_t c;
1067 size_t bytes = 0;
1068
1069 for (p = name; *p; p++) {
1070 bytes += memory_region_need_escape(*p) ? 4 : 1;
1071 }
1072 if (bytes == p - name) {
1073 return g_memdup(name, bytes + 1);
1074 }
1075
1076 escaped = g_malloc(bytes + 1);
1077 for (p = name, q = escaped; *p; p++) {
1078 c = *p;
1079 if (unlikely(memory_region_need_escape(c))) {
1080 *q++ = '\\';
1081 *q++ = 'x';
1082 *q++ = "0123456789abcdef"[c >> 4];
1083 c = "0123456789abcdef"[c & 15];
1084 }
1085 *q++ = c;
1086 }
1087 *q = 0;
1088 return escaped;
1089}
1090
1091static void memory_region_do_init(MemoryRegion *mr,
1092 Object *owner,
1093 const char *name,
1094 uint64_t size)
1095{
1096 mr->size = int128_make64(size);
1097 if (size == UINT64_MAX) {
1098 mr->size = int128_2_64();
1099 }
1100 mr->name = g_strdup(name);
1101 mr->owner = owner;
1102 mr->ram_block = NULL;
1103
1104 if (name) {
1105 char *escaped_name = memory_region_escape_name(name);
1106 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1107
1108 if (!owner) {
1109 owner = container_get(qdev_get_machine(), "/unattached");
1110 }
1111
1112 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1113 object_unref(OBJECT(mr));
1114 g_free(name_array);
1115 g_free(escaped_name);
1116 }
1117}
1118
1119void memory_region_init(MemoryRegion *mr,
1120 Object *owner,
1121 const char *name,
1122 uint64_t size)
1123{
1124 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1125 memory_region_do_init(mr, owner, name, size);
1126}
1127
1128static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1129 void *opaque, Error **errp)
1130{
1131 MemoryRegion *mr = MEMORY_REGION(obj);
1132 uint64_t value = mr->addr;
1133
1134 visit_type_uint64(v, name, &value, errp);
1135}
1136
1137static void memory_region_get_container(Object *obj, Visitor *v,
1138 const char *name, void *opaque,
1139 Error **errp)
1140{
1141 MemoryRegion *mr = MEMORY_REGION(obj);
1142 gchar *path = (gchar *)"";
1143
1144 if (mr->container) {
1145 path = object_get_canonical_path(OBJECT(mr->container));
1146 }
1147 visit_type_str(v, name, &path, errp);
1148 if (mr->container) {
1149 g_free(path);
1150 }
1151}
1152
1153static Object *memory_region_resolve_container(Object *obj, void *opaque,
1154 const char *part)
1155{
1156 MemoryRegion *mr = MEMORY_REGION(obj);
1157
1158 return OBJECT(mr->container);
1159}
1160
1161static void memory_region_get_priority(Object *obj, Visitor *v,
1162 const char *name, void *opaque,
1163 Error **errp)
1164{
1165 MemoryRegion *mr = MEMORY_REGION(obj);
1166 int32_t value = mr->priority;
1167
1168 visit_type_int32(v, name, &value, errp);
1169}
1170
1171static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1172 void *opaque, Error **errp)
1173{
1174 MemoryRegion *mr = MEMORY_REGION(obj);
1175 uint64_t value = memory_region_size(mr);
1176
1177 visit_type_uint64(v, name, &value, errp);
1178}
1179
1180static void memory_region_initfn(Object *obj)
1181{
1182 MemoryRegion *mr = MEMORY_REGION(obj);
1183 ObjectProperty *op;
1184
1185 mr->ops = &unassigned_mem_ops;
1186 mr->enabled = true;
1187 mr->romd_mode = true;
1188 mr->global_locking = true;
1189 mr->destructor = memory_region_destructor_none;
1190 QTAILQ_INIT(&mr->subregions);
1191 QTAILQ_INIT(&mr->coalesced);
1192
1193 op = object_property_add(OBJECT(mr), "container",
1194 "link<" TYPE_MEMORY_REGION ">",
1195 memory_region_get_container,
1196 NULL, /* memory_region_set_container */
1197 NULL, NULL, &error_abort);
1198 op->resolve = memory_region_resolve_container;
1199
1200 object_property_add(OBJECT(mr), "addr", "uint64",
1201 memory_region_get_addr,
1202 NULL, /* memory_region_set_addr */
1203 NULL, NULL, &error_abort);
1204 object_property_add(OBJECT(mr), "priority", "uint32",
1205 memory_region_get_priority,
1206 NULL, /* memory_region_set_priority */
1207 NULL, NULL, &error_abort);
1208 object_property_add(OBJECT(mr), "size", "uint64",
1209 memory_region_get_size,
1210 NULL, /* memory_region_set_size, */
1211 NULL, NULL, &error_abort);
1212}
1213
1214static void iommu_memory_region_initfn(Object *obj)
1215{
1216 MemoryRegion *mr = MEMORY_REGION(obj);
1217
1218 mr->is_iommu = true;
1219}
1220
1221static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1222 unsigned size)
1223{
1224#ifdef DEBUG_UNASSIGNED
1225 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1226#endif
1227 if (current_cpu != NULL) {
1228 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1229 }
1230 return 0;
1231}
1232
1233static void unassigned_mem_write(void *opaque, hwaddr addr,
1234 uint64_t val, unsigned size)
1235{
1236#ifdef DEBUG_UNASSIGNED
1237 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1238#endif
1239 if (current_cpu != NULL) {
1240 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1241 }
1242}
1243
1244static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1245 unsigned size, bool is_write)
1246{
1247 return false;
1248}
1249
1250const MemoryRegionOps unassigned_mem_ops = {
1251 .valid.accepts = unassigned_mem_accepts,
1252 .endianness = DEVICE_NATIVE_ENDIAN,
1253};
1254
1255static uint64_t memory_region_ram_device_read(void *opaque,
1256 hwaddr addr, unsigned size)
1257{
1258 MemoryRegion *mr = opaque;
1259 uint64_t data = (uint64_t)~0;
1260
1261 switch (size) {
1262 case 1:
1263 data = *(uint8_t *)(mr->ram_block->host + addr);
1264 break;
1265 case 2:
1266 data = *(uint16_t *)(mr->ram_block->host + addr);
1267 break;
1268 case 4:
1269 data = *(uint32_t *)(mr->ram_block->host + addr);
1270 break;
1271 case 8:
1272 data = *(uint64_t *)(mr->ram_block->host + addr);
1273 break;
1274 }
1275
1276 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1277
1278 return data;
1279}
1280
1281static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1282 uint64_t data, unsigned size)
1283{
1284 MemoryRegion *mr = opaque;
1285
1286 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1287
1288 switch (size) {
1289 case 1:
1290 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1291 break;
1292 case 2:
1293 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1294 break;
1295 case 4:
1296 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1297 break;
1298 case 8:
1299 *(uint64_t *)(mr->ram_block->host + addr) = data;
1300 break;
1301 }
1302}
1303
1304static const MemoryRegionOps ram_device_mem_ops = {
1305 .read = memory_region_ram_device_read,
1306 .write = memory_region_ram_device_write,
1307 .endianness = DEVICE_HOST_ENDIAN,
1308 .valid = {
1309 .min_access_size = 1,
1310 .max_access_size = 8,
1311 .unaligned = true,
1312 },
1313 .impl = {
1314 .min_access_size = 1,
1315 .max_access_size = 8,
1316 .unaligned = true,
1317 },
1318};
1319
1320bool memory_region_access_valid(MemoryRegion *mr,
1321 hwaddr addr,
1322 unsigned size,
1323 bool is_write)
1324{
1325 int access_size_min, access_size_max;
1326 int access_size, i;
1327
1328 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1329 return false;
1330 }
1331
1332 if (!mr->ops->valid.accepts) {
1333 return true;
1334 }
1335
1336 access_size_min = mr->ops->valid.min_access_size;
1337 if (!mr->ops->valid.min_access_size) {
1338 access_size_min = 1;
1339 }
1340
1341 access_size_max = mr->ops->valid.max_access_size;
1342 if (!mr->ops->valid.max_access_size) {
1343 access_size_max = 4;
1344 }
1345
1346 access_size = MAX(MIN(size, access_size_max), access_size_min);
1347 for (i = 0; i < size; i += access_size) {
1348 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1349 is_write)) {
1350 return false;
1351 }
1352 }
1353
1354 return true;
1355}
1356
1357static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1358 hwaddr addr,
1359 uint64_t *pval,
1360 unsigned size,
1361 MemTxAttrs attrs)
1362{
1363 *pval = 0;
1364
1365 if (mr->ops->read) {
1366 return access_with_adjusted_size(addr, pval, size,
1367 mr->ops->impl.min_access_size,
1368 mr->ops->impl.max_access_size,
1369 memory_region_read_accessor,
1370 mr, attrs);
1371 } else if (mr->ops->read_with_attrs) {
1372 return access_with_adjusted_size(addr, pval, size,
1373 mr->ops->impl.min_access_size,
1374 mr->ops->impl.max_access_size,
1375 memory_region_read_with_attrs_accessor,
1376 mr, attrs);
1377 } else {
1378 return access_with_adjusted_size(addr, pval, size, 1, 4,
1379 memory_region_oldmmio_read_accessor,
1380 mr, attrs);
1381 }
1382}
1383
1384MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1385 hwaddr addr,
1386 uint64_t *pval,
1387 unsigned size,
1388 MemTxAttrs attrs)
1389{
1390 MemTxResult r;
1391
1392 if (!memory_region_access_valid(mr, addr, size, false)) {
1393 *pval = unassigned_mem_read(mr, addr, size);
1394 return MEMTX_DECODE_ERROR;
1395 }
1396
1397 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1398 adjust_endianness(mr, pval, size);
1399 return r;
1400}
1401
1402/* Return true if an eventfd was signalled */
1403static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1404 hwaddr addr,
1405 uint64_t data,
1406 unsigned size,
1407 MemTxAttrs attrs)
1408{
1409 MemoryRegionIoeventfd ioeventfd = {
1410 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1411 .data = data,
1412 };
1413 unsigned i;
1414
1415 for (i = 0; i < mr->ioeventfd_nb; i++) {
1416 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1417 ioeventfd.e = mr->ioeventfds[i].e;
1418
1419 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1420 event_notifier_set(ioeventfd.e);
1421 return true;
1422 }
1423 }
1424
1425 return false;
1426}
1427
1428MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1429 hwaddr addr,
1430 uint64_t data,
1431 unsigned size,
1432 MemTxAttrs attrs)
1433{
1434 if (!memory_region_access_valid(mr, addr, size, true)) {
1435 unassigned_mem_write(mr, addr, data, size);
1436 return MEMTX_DECODE_ERROR;
1437 }
1438
1439 adjust_endianness(mr, &data, size);
1440
1441 if ((!kvm_eventfds_enabled()) &&
1442 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1443 return MEMTX_OK;
1444 }
1445
1446 if (mr->ops->write) {
1447 return access_with_adjusted_size(addr, &data, size,
1448 mr->ops->impl.min_access_size,
1449 mr->ops->impl.max_access_size,
1450 memory_region_write_accessor, mr,
1451 attrs);
1452 } else if (mr->ops->write_with_attrs) {
1453 return
1454 access_with_adjusted_size(addr, &data, size,
1455 mr->ops->impl.min_access_size,
1456 mr->ops->impl.max_access_size,
1457 memory_region_write_with_attrs_accessor,
1458 mr, attrs);
1459 } else {
1460 return access_with_adjusted_size(addr, &data, size, 1, 4,
1461 memory_region_oldmmio_write_accessor,
1462 mr, attrs);
1463 }
1464}
1465
1466void memory_region_init_io(MemoryRegion *mr,
1467 Object *owner,
1468 const MemoryRegionOps *ops,
1469 void *opaque,
1470 const char *name,
1471 uint64_t size)
1472{
1473 memory_region_init(mr, owner, name, size);
1474 mr->ops = ops ? ops : &unassigned_mem_ops;
1475 mr->opaque = opaque;
1476 mr->terminates = true;
1477}
1478
1479void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1480 Object *owner,
1481 const char *name,
1482 uint64_t size,
1483 Error **errp)
1484{
1485 memory_region_init(mr, owner, name, size);
1486 mr->ram = true;
1487 mr->terminates = true;
1488 mr->destructor = memory_region_destructor_ram;
1489 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1490 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1491}
1492
1493void memory_region_init_resizeable_ram(MemoryRegion *mr,
1494 Object *owner,
1495 const char *name,
1496 uint64_t size,
1497 uint64_t max_size,
1498 void (*resized)(const char*,
1499 uint64_t length,
1500 void *host),
1501 Error **errp)
1502{
1503 memory_region_init(mr, owner, name, size);
1504 mr->ram = true;
1505 mr->terminates = true;
1506 mr->destructor = memory_region_destructor_ram;
1507 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1508 mr, errp);
1509 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1510}
1511
1512#ifdef __linux__
1513void memory_region_init_ram_from_file(MemoryRegion *mr,
1514 struct Object *owner,
1515 const char *name,
1516 uint64_t size,
1517 bool share,
1518 const char *path,
1519 Error **errp)
1520{
1521 memory_region_init(mr, owner, name, size);
1522 mr->ram = true;
1523 mr->terminates = true;
1524 mr->destructor = memory_region_destructor_ram;
1525 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1526 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1527}
1528
1529void memory_region_init_ram_from_fd(MemoryRegion *mr,
1530 struct Object *owner,
1531 const char *name,
1532 uint64_t size,
1533 bool share,
1534 int fd,
1535 Error **errp)
1536{
1537 memory_region_init(mr, owner, name, size);
1538 mr->ram = true;
1539 mr->terminates = true;
1540 mr->destructor = memory_region_destructor_ram;
1541 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1542 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1543}
1544#endif
1545
1546void memory_region_init_ram_ptr(MemoryRegion *mr,
1547 Object *owner,
1548 const char *name,
1549 uint64_t size,
1550 void *ptr)
1551{
1552 memory_region_init(mr, owner, name, size);
1553 mr->ram = true;
1554 mr->terminates = true;
1555 mr->destructor = memory_region_destructor_ram;
1556 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1557
1558 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1559 assert(ptr != NULL);
1560 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1561}
1562
1563void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1564 Object *owner,
1565 const char *name,
1566 uint64_t size,
1567 void *ptr)
1568{
1569 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1570 mr->ram_device = true;
1571 mr->ops = &ram_device_mem_ops;
1572 mr->opaque = mr;
1573}
1574
1575void memory_region_init_alias(MemoryRegion *mr,
1576 Object *owner,
1577 const char *name,
1578 MemoryRegion *orig,
1579 hwaddr offset,
1580 uint64_t size)
1581{
1582 memory_region_init(mr, owner, name, size);
1583 mr->alias = orig;
1584 mr->alias_offset = offset;
1585}
1586
1587void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1588 struct Object *owner,
1589 const char *name,
1590 uint64_t size,
1591 Error **errp)
1592{
1593 memory_region_init(mr, owner, name, size);
1594 mr->ram = true;
1595 mr->readonly = true;
1596 mr->terminates = true;
1597 mr->destructor = memory_region_destructor_ram;
1598 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1599 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1600}
1601
1602void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1603 Object *owner,
1604 const MemoryRegionOps *ops,
1605 void *opaque,
1606 const char *name,
1607 uint64_t size,
1608 Error **errp)
1609{
1610 assert(ops);
1611 memory_region_init(mr, owner, name, size);
1612 mr->ops = ops;
1613 mr->opaque = opaque;
1614 mr->terminates = true;
1615 mr->rom_device = true;
1616 mr->destructor = memory_region_destructor_ram;
1617 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1618}
1619
1620void memory_region_init_iommu(void *_iommu_mr,
1621 size_t instance_size,
1622 const char *mrtypename,
1623 Object *owner,
1624 const char *name,
1625 uint64_t size)
1626{
1627 struct IOMMUMemoryRegion *iommu_mr;
1628 struct MemoryRegion *mr;
1629
1630 object_initialize(_iommu_mr, instance_size, mrtypename);
1631 mr = MEMORY_REGION(_iommu_mr);
1632 memory_region_do_init(mr, owner, name, size);
1633 iommu_mr = IOMMU_MEMORY_REGION(mr);
1634 mr->terminates = true; /* then re-forwards */
1635 QLIST_INIT(&iommu_mr->iommu_notify);
1636 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1637}
1638
1639static void memory_region_finalize(Object *obj)
1640{
1641 MemoryRegion *mr = MEMORY_REGION(obj);
1642
1643 assert(!mr->container);
1644
1645 /* We know the region is not visible in any address space (it
1646 * does not have a container and cannot be a root either because
1647 * it has no references, so we can blindly clear mr->enabled.
1648 * memory_region_set_enabled instead could trigger a transaction
1649 * and cause an infinite loop.
1650 */
1651 mr->enabled = false;
1652 memory_region_transaction_begin();
1653 while (!QTAILQ_EMPTY(&mr->subregions)) {
1654 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1655 memory_region_del_subregion(mr, subregion);
1656 }
1657 memory_region_transaction_commit();
1658
1659 mr->destructor(mr);
1660 memory_region_clear_coalescing(mr);
1661 g_free((char *)mr->name);
1662 g_free(mr->ioeventfds);
1663}
1664
1665Object *memory_region_owner(MemoryRegion *mr)
1666{
1667 Object *obj = OBJECT(mr);
1668 return obj->parent;
1669}
1670
1671void memory_region_ref(MemoryRegion *mr)
1672{
1673 /* MMIO callbacks most likely will access data that belongs
1674 * to the owner, hence the need to ref/unref the owner whenever
1675 * the memory region is in use.
1676 *
1677 * The memory region is a child of its owner. As long as the
1678 * owner doesn't call unparent itself on the memory region,
1679 * ref-ing the owner will also keep the memory region alive.
1680 * Memory regions without an owner are supposed to never go away;
1681 * we do not ref/unref them because it slows down DMA sensibly.
1682 */
1683 if (mr && mr->owner) {
1684 object_ref(mr->owner);
1685 }
1686}
1687
1688void memory_region_unref(MemoryRegion *mr)
1689{
1690 if (mr && mr->owner) {
1691 object_unref(mr->owner);
1692 }
1693}
1694
1695uint64_t memory_region_size(MemoryRegion *mr)
1696{
1697 if (int128_eq(mr->size, int128_2_64())) {
1698 return UINT64_MAX;
1699 }
1700 return int128_get64(mr->size);
1701}
1702
1703const char *memory_region_name(const MemoryRegion *mr)
1704{
1705 if (!mr->name) {
1706 ((MemoryRegion *)mr)->name =
1707 object_get_canonical_path_component(OBJECT(mr));
1708 }
1709 return mr->name;
1710}
1711
1712bool memory_region_is_ram_device(MemoryRegion *mr)
1713{
1714 return mr->ram_device;
1715}
1716
1717uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1718{
1719 uint8_t mask = mr->dirty_log_mask;
1720 if (global_dirty_log && mr->ram_block) {
1721 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1722 }
1723 return mask;
1724}
1725
1726bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1727{
1728 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1729}
1730
1731static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1732{
1733 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1734 IOMMUNotifier *iommu_notifier;
1735 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1736
1737 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1738 flags |= iommu_notifier->notifier_flags;
1739 }
1740
1741 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1742 imrc->notify_flag_changed(iommu_mr,
1743 iommu_mr->iommu_notify_flags,
1744 flags);
1745 }
1746
1747 iommu_mr->iommu_notify_flags = flags;
1748}
1749
1750void memory_region_register_iommu_notifier(MemoryRegion *mr,
1751 IOMMUNotifier *n)
1752{
1753 IOMMUMemoryRegion *iommu_mr;
1754
1755 if (mr->alias) {
1756 memory_region_register_iommu_notifier(mr->alias, n);
1757 return;
1758 }
1759
1760 /* We need to register for at least one bitfield */
1761 iommu_mr = IOMMU_MEMORY_REGION(mr);
1762 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1763 assert(n->start <= n->end);
1764 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1765 memory_region_update_iommu_notify_flags(iommu_mr);
1766}
1767
1768uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1769{
1770 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1771
1772 if (imrc->get_min_page_size) {
1773 return imrc->get_min_page_size(iommu_mr);
1774 }
1775 return TARGET_PAGE_SIZE;
1776}
1777
1778void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1779{
1780 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1781 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1782 hwaddr addr, granularity;
1783 IOMMUTLBEntry iotlb;
1784
1785 /* If the IOMMU has its own replay callback, override */
1786 if (imrc->replay) {
1787 imrc->replay(iommu_mr, n);
1788 return;
1789 }
1790
1791 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1792
1793 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1794 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1795 if (iotlb.perm != IOMMU_NONE) {
1796 n->notify(n, &iotlb);
1797 }
1798
1799 /* if (2^64 - MR size) < granularity, it's possible to get an
1800 * infinite loop here. This should catch such a wraparound */
1801 if ((addr + granularity) < addr) {
1802 break;
1803 }
1804 }
1805}
1806
1807void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1808{
1809 IOMMUNotifier *notifier;
1810
1811 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1812 memory_region_iommu_replay(iommu_mr, notifier);
1813 }
1814}
1815
1816void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1817 IOMMUNotifier *n)
1818{
1819 IOMMUMemoryRegion *iommu_mr;
1820
1821 if (mr->alias) {
1822 memory_region_unregister_iommu_notifier(mr->alias, n);
1823 return;
1824 }
1825 QLIST_REMOVE(n, node);
1826 iommu_mr = IOMMU_MEMORY_REGION(mr);
1827 memory_region_update_iommu_notify_flags(iommu_mr);
1828}
1829
1830void memory_region_notify_one(IOMMUNotifier *notifier,
1831 IOMMUTLBEntry *entry)
1832{
1833 IOMMUNotifierFlag request_flags;
1834
1835 /*
1836 * Skip the notification if the notification does not overlap
1837 * with registered range.
1838 */
1839 if (notifier->start > entry->iova + entry->addr_mask + 1 ||
1840 notifier->end < entry->iova) {
1841 return;
1842 }
1843
1844 if (entry->perm & IOMMU_RW) {
1845 request_flags = IOMMU_NOTIFIER_MAP;
1846 } else {
1847 request_flags = IOMMU_NOTIFIER_UNMAP;
1848 }
1849
1850 if (notifier->notifier_flags & request_flags) {
1851 notifier->notify(notifier, entry);
1852 }
1853}
1854
1855void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1856 IOMMUTLBEntry entry)
1857{
1858 IOMMUNotifier *iommu_notifier;
1859
1860 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1861
1862 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1863 memory_region_notify_one(iommu_notifier, &entry);
1864 }
1865}
1866
1867void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1868{
1869 uint8_t mask = 1 << client;
1870 uint8_t old_logging;
1871
1872 assert(client == DIRTY_MEMORY_VGA);
1873 old_logging = mr->vga_logging_count;
1874 mr->vga_logging_count += log ? 1 : -1;
1875 if (!!old_logging == !!mr->vga_logging_count) {
1876 return;
1877 }
1878
1879 memory_region_transaction_begin();
1880 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1881 memory_region_update_pending |= mr->enabled;
1882 memory_region_transaction_commit();
1883}
1884
1885bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1886 hwaddr size, unsigned client)
1887{
1888 assert(mr->ram_block);
1889 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1890 size, client);
1891}
1892
1893void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1894 hwaddr size)
1895{
1896 assert(mr->ram_block);
1897 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1898 size,
1899 memory_region_get_dirty_log_mask(mr));
1900}
1901
1902bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1903 hwaddr size, unsigned client)
1904{
1905 assert(mr->ram_block);
1906 return cpu_physical_memory_test_and_clear_dirty(
1907 memory_region_get_ram_addr(mr) + addr, size, client);
1908}
1909
1910DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1911 hwaddr addr,
1912 hwaddr size,
1913 unsigned client)
1914{
1915 assert(mr->ram_block);
1916 return cpu_physical_memory_snapshot_and_clear_dirty(
1917 memory_region_get_ram_addr(mr) + addr, size, client);
1918}
1919
1920bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1921 hwaddr addr, hwaddr size)
1922{
1923 assert(mr->ram_block);
1924 return cpu_physical_memory_snapshot_get_dirty(snap,
1925 memory_region_get_ram_addr(mr) + addr, size);
1926}
1927
1928void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1929{
1930 MemoryListener *listener;
1931 AddressSpace *as;
1932 FlatView *view;
1933 FlatRange *fr;
1934
1935 /* If the same address space has multiple log_sync listeners, we
1936 * visit that address space's FlatView multiple times. But because
1937 * log_sync listeners are rare, it's still cheaper than walking each
1938 * address space once.
1939 */
1940 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1941 if (!listener->log_sync) {
1942 continue;
1943 }
1944 as = listener->address_space;
1945 view = address_space_get_flatview(as);
1946 FOR_EACH_FLAT_RANGE(fr, view) {
1947 if (fr->mr == mr) {
1948 MemoryRegionSection mrs = section_from_flat_range(fr, view);
1949 listener->log_sync(listener, &mrs);
1950 }
1951 }
1952 flatview_unref(view);
1953 }
1954}
1955
1956void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1957{
1958 if (mr->readonly != readonly) {
1959 memory_region_transaction_begin();
1960 mr->readonly = readonly;
1961 memory_region_update_pending |= mr->enabled;
1962 memory_region_transaction_commit();
1963 }
1964}
1965
1966void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1967{
1968 if (mr->romd_mode != romd_mode) {
1969 memory_region_transaction_begin();
1970 mr->romd_mode = romd_mode;
1971 memory_region_update_pending |= mr->enabled;
1972 memory_region_transaction_commit();
1973 }
1974}
1975
1976void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1977 hwaddr size, unsigned client)
1978{
1979 assert(mr->ram_block);
1980 cpu_physical_memory_test_and_clear_dirty(
1981 memory_region_get_ram_addr(mr) + addr, size, client);
1982}
1983
1984int memory_region_get_fd(MemoryRegion *mr)
1985{
1986 int fd;
1987
1988 rcu_read_lock();
1989 while (mr->alias) {
1990 mr = mr->alias;
1991 }
1992 fd = mr->ram_block->fd;
1993 rcu_read_unlock();
1994
1995 return fd;
1996}
1997
1998void *memory_region_get_ram_ptr(MemoryRegion *mr)
1999{
2000 void *ptr;
2001 uint64_t offset = 0;
2002
2003 rcu_read_lock();
2004 while (mr->alias) {
2005 offset += mr->alias_offset;
2006 mr = mr->alias;
2007 }
2008 assert(mr->ram_block);
2009 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2010 rcu_read_unlock();
2011
2012 return ptr;
2013}
2014
2015MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2016{
2017 RAMBlock *block;
2018
2019 block = qemu_ram_block_from_host(ptr, false, offset);
2020 if (!block) {
2021 return NULL;
2022 }
2023
2024 return block->mr;
2025}
2026
2027ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2028{
2029 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2030}
2031
2032void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2033{
2034 assert(mr->ram_block);
2035
2036 qemu_ram_resize(mr->ram_block, newsize, errp);
2037}
2038
2039static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2040{
2041 FlatView *view;
2042 FlatRange *fr;
2043 CoalescedMemoryRange *cmr;
2044 AddrRange tmp;
2045 MemoryRegionSection section;
2046
2047 view = address_space_get_flatview(as);
2048 FOR_EACH_FLAT_RANGE(fr, view) {
2049 if (fr->mr == mr) {
2050 section = (MemoryRegionSection) {
2051 .fv = view,
2052 .offset_within_address_space = int128_get64(fr->addr.start),
2053 .size = fr->addr.size,
2054 };
2055
2056 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
2057 int128_get64(fr->addr.start),
2058 int128_get64(fr->addr.size));
2059 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2060 tmp = addrrange_shift(cmr->addr,
2061 int128_sub(fr->addr.start,
2062 int128_make64(fr->offset_in_region)));
2063 if (!addrrange_intersects(tmp, fr->addr)) {
2064 continue;
2065 }
2066 tmp = addrrange_intersection(tmp, fr->addr);
2067 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
2068 int128_get64(tmp.start),
2069 int128_get64(tmp.size));
2070 }
2071 }
2072 }
2073 flatview_unref(view);
2074}
2075
2076static void memory_region_update_coalesced_range(MemoryRegion *mr)
2077{
2078 AddressSpace *as;
2079
2080 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2081 memory_region_update_coalesced_range_as(mr, as);
2082 }
2083}
2084
2085void memory_region_set_coalescing(MemoryRegion *mr)
2086{
2087 memory_region_clear_coalescing(mr);
2088 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2089}
2090
2091void memory_region_add_coalescing(MemoryRegion *mr,
2092 hwaddr offset,
2093 uint64_t size)
2094{
2095 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2096
2097 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2098 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2099 memory_region_update_coalesced_range(mr);
2100 memory_region_set_flush_coalesced(mr);
2101}
2102
2103void memory_region_clear_coalescing(MemoryRegion *mr)
2104{
2105 CoalescedMemoryRange *cmr;
2106 bool updated = false;
2107
2108 qemu_flush_coalesced_mmio_buffer();
2109 mr->flush_coalesced_mmio = false;
2110
2111 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2112 cmr = QTAILQ_FIRST(&mr->coalesced);
2113 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2114 g_free(cmr);
2115 updated = true;
2116 }
2117
2118 if (updated) {
2119 memory_region_update_coalesced_range(mr);
2120 }
2121}
2122
2123void memory_region_set_flush_coalesced(MemoryRegion *mr)
2124{
2125 mr->flush_coalesced_mmio = true;
2126}
2127
2128void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2129{
2130 qemu_flush_coalesced_mmio_buffer();
2131 if (QTAILQ_EMPTY(&mr->coalesced)) {
2132 mr->flush_coalesced_mmio = false;
2133 }
2134}
2135
2136void memory_region_set_global_locking(MemoryRegion *mr)
2137{
2138 mr->global_locking = true;
2139}
2140
2141void memory_region_clear_global_locking(MemoryRegion *mr)
2142{
2143 mr->global_locking = false;
2144}
2145
2146static bool userspace_eventfd_warning;
2147
2148void memory_region_add_eventfd(MemoryRegion *mr,
2149 hwaddr addr,
2150 unsigned size,
2151 bool match_data,
2152 uint64_t data,
2153 EventNotifier *e)
2154{
2155 MemoryRegionIoeventfd mrfd = {
2156 .addr.start = int128_make64(addr),
2157 .addr.size = int128_make64(size),
2158 .match_data = match_data,
2159 .data = data,
2160 .e = e,
2161 };
2162 unsigned i;
2163
2164 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2165 userspace_eventfd_warning))) {
2166 userspace_eventfd_warning = true;
2167 error_report("Using eventfd without MMIO binding in KVM. "
2168 "Suboptimal performance expected");
2169 }
2170
2171 if (size) {
2172 adjust_endianness(mr, &mrfd.data, size);
2173 }
2174 memory_region_transaction_begin();
2175 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2176 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2177 break;
2178 }
2179 }
2180 ++mr->ioeventfd_nb;
2181 mr->ioeventfds = g_realloc(mr->ioeventfds,
2182 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2183 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2184 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2185 mr->ioeventfds[i] = mrfd;
2186 ioeventfd_update_pending |= mr->enabled;
2187 memory_region_transaction_commit();
2188}
2189
2190void memory_region_del_eventfd(MemoryRegion *mr,
2191 hwaddr addr,
2192 unsigned size,
2193 bool match_data,
2194 uint64_t data,
2195 EventNotifier *e)
2196{
2197 MemoryRegionIoeventfd mrfd = {
2198 .addr.start = int128_make64(addr),
2199 .addr.size = int128_make64(size),
2200 .match_data = match_data,
2201 .data = data,
2202 .e = e,
2203 };
2204 unsigned i;
2205
2206 if (size) {
2207 adjust_endianness(mr, &mrfd.data, size);
2208 }
2209 memory_region_transaction_begin();
2210 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2211 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2212 break;
2213 }
2214 }
2215 assert(i != mr->ioeventfd_nb);
2216 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2217 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2218 --mr->ioeventfd_nb;
2219 mr->ioeventfds = g_realloc(mr->ioeventfds,
2220 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2221 ioeventfd_update_pending |= mr->enabled;
2222 memory_region_transaction_commit();
2223}
2224
2225static void memory_region_update_container_subregions(MemoryRegion *subregion)
2226{
2227 MemoryRegion *mr = subregion->container;
2228 MemoryRegion *other;
2229
2230 memory_region_transaction_begin();
2231
2232 memory_region_ref(subregion);
2233 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2234 if (subregion->priority >= other->priority) {
2235 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2236 goto done;
2237 }
2238 }
2239 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2240done:
2241 memory_region_update_pending |= mr->enabled && subregion->enabled;
2242 memory_region_transaction_commit();
2243}
2244
2245static void memory_region_add_subregion_common(MemoryRegion *mr,
2246 hwaddr offset,
2247 MemoryRegion *subregion)
2248{
2249 assert(!subregion->container);
2250 subregion->container = mr;
2251 subregion->addr = offset;
2252 memory_region_update_container_subregions(subregion);
2253}
2254
2255void memory_region_add_subregion(MemoryRegion *mr,
2256 hwaddr offset,
2257 MemoryRegion *subregion)
2258{
2259 subregion->priority = 0;
2260 memory_region_add_subregion_common(mr, offset, subregion);
2261}
2262
2263void memory_region_add_subregion_overlap(MemoryRegion *mr,
2264 hwaddr offset,
2265 MemoryRegion *subregion,
2266 int priority)
2267{
2268 subregion->priority = priority;
2269 memory_region_add_subregion_common(mr, offset, subregion);
2270}
2271
2272void memory_region_del_subregion(MemoryRegion *mr,
2273 MemoryRegion *subregion)
2274{
2275 memory_region_transaction_begin();
2276 assert(subregion->container == mr);
2277 subregion->container = NULL;
2278 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2279 memory_region_unref(subregion);
2280 memory_region_update_pending |= mr->enabled && subregion->enabled;
2281 memory_region_transaction_commit();
2282}
2283
2284void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2285{
2286 if (enabled == mr->enabled) {
2287 return;
2288 }
2289 memory_region_transaction_begin();
2290 mr->enabled = enabled;
2291 memory_region_update_pending = true;
2292 memory_region_transaction_commit();
2293}
2294
2295void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2296{
2297 Int128 s = int128_make64(size);
2298
2299 if (size == UINT64_MAX) {
2300 s = int128_2_64();
2301 }
2302 if (int128_eq(s, mr->size)) {
2303 return;
2304 }
2305 memory_region_transaction_begin();
2306 mr->size = s;
2307 memory_region_update_pending = true;
2308 memory_region_transaction_commit();
2309}
2310
2311static void memory_region_readd_subregion(MemoryRegion *mr)
2312{
2313 MemoryRegion *container = mr->container;
2314
2315 if (container) {
2316 memory_region_transaction_begin();
2317 memory_region_ref(mr);
2318 memory_region_del_subregion(container, mr);
2319 mr->container = container;
2320 memory_region_update_container_subregions(mr);
2321 memory_region_unref(mr);
2322 memory_region_transaction_commit();
2323 }
2324}
2325
2326void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2327{
2328 if (addr != mr->addr) {
2329 mr->addr = addr;
2330 memory_region_readd_subregion(mr);
2331 }
2332}
2333
2334void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2335{
2336 assert(mr->alias);
2337
2338 if (offset == mr->alias_offset) {
2339 return;
2340 }
2341
2342 memory_region_transaction_begin();
2343 mr->alias_offset = offset;
2344 memory_region_update_pending |= mr->enabled;
2345 memory_region_transaction_commit();
2346}
2347
2348uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2349{
2350 return mr->align;
2351}
2352
2353static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2354{
2355 const AddrRange *addr = addr_;
2356 const FlatRange *fr = fr_;
2357
2358 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2359 return -1;
2360 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2361 return 1;
2362 }
2363 return 0;
2364}
2365
2366static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2367{
2368 return bsearch(&addr, view->ranges, view->nr,
2369 sizeof(FlatRange), cmp_flatrange_addr);
2370}
2371
2372bool memory_region_is_mapped(MemoryRegion *mr)
2373{
2374 return mr->container ? true : false;
2375}
2376
2377/* Same as memory_region_find, but it does not add a reference to the
2378 * returned region. It must be called from an RCU critical section.
2379 */
2380static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2381 hwaddr addr, uint64_t size)
2382{
2383 MemoryRegionSection ret = { .mr = NULL };
2384 MemoryRegion *root;
2385 AddressSpace *as;
2386 AddrRange range;
2387 FlatView *view;
2388 FlatRange *fr;
2389
2390 addr += mr->addr;
2391 for (root = mr; root->container; ) {
2392 root = root->container;
2393 addr += root->addr;
2394 }
2395
2396 as = memory_region_to_address_space(root);
2397 if (!as) {
2398 return ret;
2399 }
2400 range = addrrange_make(int128_make64(addr), int128_make64(size));
2401
2402 view = address_space_to_flatview(as);
2403 fr = flatview_lookup(view, range);
2404 if (!fr) {
2405 return ret;
2406 }
2407
2408 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2409 --fr;
2410 }
2411
2412 ret.mr = fr->mr;
2413 ret.fv = view;
2414 range = addrrange_intersection(range, fr->addr);
2415 ret.offset_within_region = fr->offset_in_region;
2416 ret.offset_within_region += int128_get64(int128_sub(range.start,
2417 fr->addr.start));
2418 ret.size = range.size;
2419 ret.offset_within_address_space = int128_get64(range.start);
2420 ret.readonly = fr->readonly;
2421 return ret;
2422}
2423
2424MemoryRegionSection memory_region_find(MemoryRegion *mr,
2425 hwaddr addr, uint64_t size)
2426{
2427 MemoryRegionSection ret;
2428 rcu_read_lock();
2429 ret = memory_region_find_rcu(mr, addr, size);
2430 if (ret.mr) {
2431 memory_region_ref(ret.mr);
2432 }
2433 rcu_read_unlock();
2434 return ret;
2435}
2436
2437bool memory_region_present(MemoryRegion *container, hwaddr addr)
2438{
2439 MemoryRegion *mr;
2440
2441 rcu_read_lock();
2442 mr = memory_region_find_rcu(container, addr, 1).mr;
2443 rcu_read_unlock();
2444 return mr && mr != container;
2445}
2446
2447void memory_global_dirty_log_sync(void)
2448{
2449 MemoryListener *listener;
2450 AddressSpace *as;
2451 FlatView *view;
2452 FlatRange *fr;
2453
2454 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2455 if (!listener->log_sync) {
2456 continue;
2457 }
2458 as = listener->address_space;
2459 view = address_space_get_flatview(as);
2460 FOR_EACH_FLAT_RANGE(fr, view) {
2461 if (fr->dirty_log_mask) {
2462 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2463
2464 listener->log_sync(listener, &mrs);
2465 }
2466 }
2467 flatview_unref(view);
2468 }
2469}
2470
2471static VMChangeStateEntry *vmstate_change;
2472
2473void memory_global_dirty_log_start(void)
2474{
2475 if (vmstate_change) {
2476 qemu_del_vm_change_state_handler(vmstate_change);
2477 vmstate_change = NULL;
2478 }
2479
2480 global_dirty_log = true;
2481
2482 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2483
2484 /* Refresh DIRTY_LOG_MIGRATION bit. */
2485 memory_region_transaction_begin();
2486 memory_region_update_pending = true;
2487 memory_region_transaction_commit();
2488}
2489
2490static void memory_global_dirty_log_do_stop(void)
2491{
2492 global_dirty_log = false;
2493
2494 /* Refresh DIRTY_LOG_MIGRATION bit. */
2495 memory_region_transaction_begin();
2496 memory_region_update_pending = true;
2497 memory_region_transaction_commit();
2498
2499 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2500}
2501
2502static void memory_vm_change_state_handler(void *opaque, int running,
2503 RunState state)
2504{
2505 if (running) {
2506 memory_global_dirty_log_do_stop();
2507
2508 if (vmstate_change) {
2509 qemu_del_vm_change_state_handler(vmstate_change);
2510 vmstate_change = NULL;
2511 }
2512 }
2513}
2514
2515void memory_global_dirty_log_stop(void)
2516{
2517 if (!runstate_is_running()) {
2518 if (vmstate_change) {
2519 return;
2520 }
2521 vmstate_change = qemu_add_vm_change_state_handler(
2522 memory_vm_change_state_handler, NULL);
2523 return;
2524 }
2525
2526 memory_global_dirty_log_do_stop();
2527}
2528
2529static void listener_add_address_space(MemoryListener *listener,
2530 AddressSpace *as)
2531{
2532 FlatView *view;
2533 FlatRange *fr;
2534
2535 if (listener->begin) {
2536 listener->begin(listener);
2537 }
2538 if (global_dirty_log) {
2539 if (listener->log_global_start) {
2540 listener->log_global_start(listener);
2541 }
2542 }
2543
2544 view = address_space_get_flatview(as);
2545 FOR_EACH_FLAT_RANGE(fr, view) {
2546 MemoryRegionSection section = {
2547 .mr = fr->mr,
2548 .fv = view,
2549 .offset_within_region = fr->offset_in_region,
2550 .size = fr->addr.size,
2551 .offset_within_address_space = int128_get64(fr->addr.start),
2552 .readonly = fr->readonly,
2553 };
2554 if (fr->dirty_log_mask && listener->log_start) {
2555 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2556 }
2557 if (listener->region_add) {
2558 listener->region_add(listener, &section);
2559 }
2560 }
2561 if (listener->commit) {
2562 listener->commit(listener);
2563 }
2564 flatview_unref(view);
2565}
2566
2567void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2568{
2569 MemoryListener *other = NULL;
2570
2571 listener->address_space = as;
2572 if (QTAILQ_EMPTY(&memory_listeners)
2573 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2574 memory_listeners)->priority) {
2575 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2576 } else {
2577 QTAILQ_FOREACH(other, &memory_listeners, link) {
2578 if (listener->priority < other->priority) {
2579 break;
2580 }
2581 }
2582 QTAILQ_INSERT_BEFORE(other, listener, link);
2583 }
2584
2585 if (QTAILQ_EMPTY(&as->listeners)
2586 || listener->priority >= QTAILQ_LAST(&as->listeners,
2587 memory_listeners)->priority) {
2588 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2589 } else {
2590 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2591 if (listener->priority < other->priority) {
2592 break;
2593 }
2594 }
2595 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2596 }
2597
2598 listener_add_address_space(listener, as);
2599}
2600
2601void memory_listener_unregister(MemoryListener *listener)
2602{
2603 if (!listener->address_space) {
2604 return;
2605 }
2606
2607 QTAILQ_REMOVE(&memory_listeners, listener, link);
2608 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2609 listener->address_space = NULL;
2610}
2611
2612bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2613{
2614 void *host;
2615 unsigned size = 0;
2616 unsigned offset = 0;
2617 Object *new_interface;
2618
2619 if (!mr || !mr->ops->request_ptr) {
2620 return false;
2621 }
2622
2623 /*
2624 * Avoid an update if the request_ptr call
2625 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2626 * a cache.
2627 */
2628 memory_region_transaction_begin();
2629
2630 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2631
2632 if (!host || !size) {
2633 memory_region_transaction_commit();
2634 return false;
2635 }
2636
2637 new_interface = object_new("mmio_interface");
2638 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2639 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2640 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2641 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2642 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2643 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2644
2645 memory_region_transaction_commit();
2646 return true;
2647}
2648
2649typedef struct MMIOPtrInvalidate {
2650 MemoryRegion *mr;
2651 hwaddr offset;
2652 unsigned size;
2653 int busy;
2654 int allocated;
2655} MMIOPtrInvalidate;
2656
2657#define MAX_MMIO_INVALIDATE 10
2658static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2659
2660static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2661 run_on_cpu_data data)
2662{
2663 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2664 MemoryRegion *mr = invalidate_data->mr;
2665 hwaddr offset = invalidate_data->offset;
2666 unsigned size = invalidate_data->size;
2667 MemoryRegionSection section = memory_region_find(mr, offset, size);
2668
2669 qemu_mutex_lock_iothread();
2670
2671 /* Reset dirty so this doesn't happen later. */
2672 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2673
2674 if (section.mr != mr) {
2675 /* memory_region_find add a ref on section.mr */
2676 memory_region_unref(section.mr);
2677 if (MMIO_INTERFACE(section.mr->owner)) {
2678 /* We found the interface just drop it. */
2679 object_property_set_bool(section.mr->owner, false, "realized",
2680 NULL);
2681 object_unref(section.mr->owner);
2682 object_unparent(section.mr->owner);
2683 }
2684 }
2685
2686 qemu_mutex_unlock_iothread();
2687
2688 if (invalidate_data->allocated) {
2689 g_free(invalidate_data);
2690 } else {
2691 invalidate_data->busy = 0;
2692 }
2693}
2694
2695void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2696 unsigned size)
2697{
2698 size_t i;
2699 MMIOPtrInvalidate *invalidate_data = NULL;
2700
2701 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2702 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2703 invalidate_data = &mmio_ptr_invalidate_list[i];
2704 break;
2705 }
2706 }
2707
2708 if (!invalidate_data) {
2709 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2710 invalidate_data->allocated = 1;
2711 }
2712
2713 invalidate_data->mr = mr;
2714 invalidate_data->offset = offset;
2715 invalidate_data->size = size;
2716
2717 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2718 RUN_ON_CPU_HOST_PTR(invalidate_data));
2719}
2720
2721void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2722{
2723 memory_region_ref(root);
2724 memory_region_transaction_begin();
2725 as->ref_count = 1;
2726 as->root = root;
2727 as->malloced = false;
2728 as->current_map = NULL;
2729 as->ioeventfd_nb = 0;
2730 as->ioeventfds = NULL;
2731 QTAILQ_INIT(&as->listeners);
2732 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2733 as->name = g_strdup(name ? name : "anonymous");
2734 memory_region_update_pending |= root->enabled;
2735 memory_region_transaction_commit();
2736}
2737
2738static void do_address_space_destroy(AddressSpace *as)
2739{
2740 bool do_free = as->malloced;
2741
2742 assert(QTAILQ_EMPTY(&as->listeners));
2743
2744 flatview_unref(as->current_map);
2745 g_free(as->name);
2746 g_free(as->ioeventfds);
2747 memory_region_unref(as->root);
2748 if (do_free) {
2749 g_free(as);
2750 }
2751}
2752
2753AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2754{
2755 AddressSpace *as;
2756
2757 as = g_malloc0(sizeof *as);
2758 address_space_init(as, root, name);
2759 as->malloced = true;
2760 return as;
2761}
2762
2763void address_space_destroy(AddressSpace *as)
2764{
2765 MemoryRegion *root = as->root;
2766
2767 as->ref_count--;
2768 if (as->ref_count) {
2769 return;
2770 }
2771 /* Flush out anything from MemoryListeners listening in on this */
2772 memory_region_transaction_begin();
2773 as->root = NULL;
2774 memory_region_transaction_commit();
2775 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2776
2777 /* At this point, as->dispatch and as->current_map are dummy
2778 * entries that the guest should never use. Wait for the old
2779 * values to expire before freeing the data.
2780 */
2781 as->root = root;
2782 call_rcu(as, do_address_space_destroy, rcu);
2783}
2784
2785static const char *memory_region_type(MemoryRegion *mr)
2786{
2787 if (memory_region_is_ram_device(mr)) {
2788 return "ramd";
2789 } else if (memory_region_is_romd(mr)) {
2790 return "romd";
2791 } else if (memory_region_is_rom(mr)) {
2792 return "rom";
2793 } else if (memory_region_is_ram(mr)) {
2794 return "ram";
2795 } else {
2796 return "i/o";
2797 }
2798}
2799
2800typedef struct MemoryRegionList MemoryRegionList;
2801
2802struct MemoryRegionList {
2803 const MemoryRegion *mr;
2804 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2805};
2806
2807typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2808
2809#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2810 int128_sub((size), int128_one())) : 0)
2811#define MTREE_INDENT " "
2812
2813static void mtree_print_mr(fprintf_function mon_printf, void *f,
2814 const MemoryRegion *mr, unsigned int level,
2815 hwaddr base,
2816 MemoryRegionListHead *alias_print_queue)
2817{
2818 MemoryRegionList *new_ml, *ml, *next_ml;
2819 MemoryRegionListHead submr_print_queue;
2820 const MemoryRegion *submr;
2821 unsigned int i;
2822 hwaddr cur_start, cur_end;
2823
2824 if (!mr) {
2825 return;
2826 }
2827
2828 for (i = 0; i < level; i++) {
2829 mon_printf(f, MTREE_INDENT);
2830 }
2831
2832 cur_start = base + mr->addr;
2833 cur_end = cur_start + MR_SIZE(mr->size);
2834
2835 /*
2836 * Try to detect overflow of memory region. This should never
2837 * happen normally. When it happens, we dump something to warn the
2838 * user who is observing this.
2839 */
2840 if (cur_start < base || cur_end < cur_start) {
2841 mon_printf(f, "[DETECTED OVERFLOW!] ");
2842 }
2843
2844 if (mr->alias) {
2845 MemoryRegionList *ml;
2846 bool found = false;
2847
2848 /* check if the alias is already in the queue */
2849 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2850 if (ml->mr == mr->alias) {
2851 found = true;
2852 }
2853 }
2854
2855 if (!found) {
2856 ml = g_new(MemoryRegionList, 1);
2857 ml->mr = mr->alias;
2858 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2859 }
2860 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2861 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2862 "-" TARGET_FMT_plx "%s\n",
2863 cur_start, cur_end,
2864 mr->priority,
2865 memory_region_type((MemoryRegion *)mr),
2866 memory_region_name(mr),
2867 memory_region_name(mr->alias),
2868 mr->alias_offset,
2869 mr->alias_offset + MR_SIZE(mr->size),
2870 mr->enabled ? "" : " [disabled]");
2871 } else {
2872 mon_printf(f,
2873 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2874 cur_start, cur_end,
2875 mr->priority,
2876 memory_region_type((MemoryRegion *)mr),
2877 memory_region_name(mr),
2878 mr->enabled ? "" : " [disabled]");
2879 }
2880
2881 QTAILQ_INIT(&submr_print_queue);
2882
2883 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2884 new_ml = g_new(MemoryRegionList, 1);
2885 new_ml->mr = submr;
2886 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2887 if (new_ml->mr->addr < ml->mr->addr ||
2888 (new_ml->mr->addr == ml->mr->addr &&
2889 new_ml->mr->priority > ml->mr->priority)) {
2890 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2891 new_ml = NULL;
2892 break;
2893 }
2894 }
2895 if (new_ml) {
2896 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2897 }
2898 }
2899
2900 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2901 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2902 alias_print_queue);
2903 }
2904
2905 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2906 g_free(ml);
2907 }
2908}
2909
2910static void mtree_print_flatview(fprintf_function p, void *f,
2911 AddressSpace *as)
2912{
2913 FlatView *view = address_space_get_flatview(as);
2914 FlatRange *range = &view->ranges[0];
2915 MemoryRegion *mr;
2916 int n = view->nr;
2917
2918 if (n <= 0) {
2919 p(f, MTREE_INDENT "No rendered FlatView for "
2920 "address space '%s'\n", as->name);
2921 flatview_unref(view);
2922 return;
2923 }
2924
2925 while (n--) {
2926 mr = range->mr;
2927 if (range->offset_in_region) {
2928 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2929 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2930 int128_get64(range->addr.start),
2931 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2932 mr->priority,
2933 range->readonly ? "rom" : memory_region_type(mr),
2934 memory_region_name(mr),
2935 range->offset_in_region);
2936 } else {
2937 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2938 TARGET_FMT_plx " (prio %d, %s): %s\n",
2939 int128_get64(range->addr.start),
2940 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2941 mr->priority,
2942 range->readonly ? "rom" : memory_region_type(mr),
2943 memory_region_name(mr));
2944 }
2945 range++;
2946 }
2947
2948 flatview_unref(view);
2949}
2950
2951void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
2952{
2953 MemoryRegionListHead ml_head;
2954 MemoryRegionList *ml, *ml2;
2955 AddressSpace *as;
2956
2957 if (flatview) {
2958 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2959 mon_printf(f, "address-space (flat view): %s\n", as->name);
2960 mtree_print_flatview(mon_printf, f, as);
2961 mon_printf(f, "\n");
2962 }
2963 return;
2964 }
2965
2966 QTAILQ_INIT(&ml_head);
2967
2968 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2969 mon_printf(f, "address-space: %s\n", as->name);
2970 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2971 mon_printf(f, "\n");
2972 }
2973
2974 /* print aliased regions */
2975 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
2976 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2977 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2978 mon_printf(f, "\n");
2979 }
2980
2981 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
2982 g_free(ml);
2983 }
2984}
2985
2986void memory_region_init_ram(MemoryRegion *mr,
2987 struct Object *owner,
2988 const char *name,
2989 uint64_t size,
2990 Error **errp)
2991{
2992 DeviceState *owner_dev;
2993 Error *err = NULL;
2994
2995 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
2996 if (err) {
2997 error_propagate(errp, err);
2998 return;
2999 }
3000 /* This will assert if owner is neither NULL nor a DeviceState.
3001 * We only want the owner here for the purposes of defining a
3002 * unique name for migration. TODO: Ideally we should implement
3003 * a naming scheme for Objects which are not DeviceStates, in
3004 * which case we can relax this restriction.
3005 */
3006 owner_dev = DEVICE(owner);
3007 vmstate_register_ram(mr, owner_dev);
3008}
3009
3010void memory_region_init_rom(MemoryRegion *mr,
3011 struct Object *owner,
3012 const char *name,
3013 uint64_t size,
3014 Error **errp)
3015{
3016 DeviceState *owner_dev;
3017 Error *err = NULL;
3018
3019 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3020 if (err) {
3021 error_propagate(errp, err);
3022 return;
3023 }
3024 /* This will assert if owner is neither NULL nor a DeviceState.
3025 * We only want the owner here for the purposes of defining a
3026 * unique name for migration. TODO: Ideally we should implement
3027 * a naming scheme for Objects which are not DeviceStates, in
3028 * which case we can relax this restriction.
3029 */
3030 owner_dev = DEVICE(owner);
3031 vmstate_register_ram(mr, owner_dev);
3032}
3033
3034void memory_region_init_rom_device(MemoryRegion *mr,
3035 struct Object *owner,
3036 const MemoryRegionOps *ops,
3037 void *opaque,
3038 const char *name,
3039 uint64_t size,
3040 Error **errp)
3041{
3042 DeviceState *owner_dev;
3043 Error *err = NULL;
3044
3045 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3046 name, size, &err);
3047 if (err) {
3048 error_propagate(errp, err);
3049 return;
3050 }
3051 /* This will assert if owner is neither NULL nor a DeviceState.
3052 * We only want the owner here for the purposes of defining a
3053 * unique name for migration. TODO: Ideally we should implement
3054 * a naming scheme for Objects which are not DeviceStates, in
3055 * which case we can relax this restriction.
3056 */
3057 owner_dev = DEVICE(owner);
3058 vmstate_register_ram(mr, owner_dev);
3059}
3060
3061static const TypeInfo memory_region_info = {
3062 .parent = TYPE_OBJECT,
3063 .name = TYPE_MEMORY_REGION,
3064 .instance_size = sizeof(MemoryRegion),
3065 .instance_init = memory_region_initfn,
3066 .instance_finalize = memory_region_finalize,
3067};
3068
3069static const TypeInfo iommu_memory_region_info = {
3070 .parent = TYPE_MEMORY_REGION,
3071 .name = TYPE_IOMMU_MEMORY_REGION,
3072 .class_size = sizeof(IOMMUMemoryRegionClass),
3073 .instance_size = sizeof(IOMMUMemoryRegion),
3074 .instance_init = iommu_memory_region_initfn,
3075 .abstract = true,
3076};
3077
3078static void memory_register_types(void)
3079{
3080 type_register_static(&memory_region_info);
3081 type_register_static(&iommu_memory_region_info);
3082}
3083
3084type_init(memory_register_types)