]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - migration/ram.c
migration/postcopy: remove redundant cpu_synchronize_all_post_init
[mirror_qemu.git] / migration / ram.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29#include "qemu/osdep.h"
30#include "cpu.h"
31#include <zlib.h>
32#include "qemu/cutils.h"
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
35#include "qemu/main-loop.h"
36#include "qemu/pmem.h"
37#include "xbzrle.h"
38#include "ram.h"
39#include "migration.h"
40#include "socket.h"
41#include "migration/register.h"
42#include "migration/misc.h"
43#include "qemu-file.h"
44#include "postcopy-ram.h"
45#include "page_cache.h"
46#include "qemu/error-report.h"
47#include "qapi/error.h"
48#include "qapi/qapi-events-migration.h"
49#include "qapi/qmp/qerror.h"
50#include "trace.h"
51#include "exec/ram_addr.h"
52#include "exec/target_page.h"
53#include "qemu/rcu_queue.h"
54#include "migration/colo.h"
55#include "block.h"
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
58#include "savevm.h"
59#include "qemu/iov.h"
60
61/***********************************************************/
62/* ram save/restore */
63
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71#define RAM_SAVE_FLAG_ZERO 0x02
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
82 return buffer_is_zero(p, size);
83}
84
85XBZRLECacheStats xbzrle_counters;
86
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101} XBZRLE;
102
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128int xbzrle_cache_resize(int64_t new_size, Error **errp)
129{
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
168/* Should be holding either ram_list.mutex, or the RCU lock. */
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177#undef RAMBLOCK_FOREACH
178
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
305/* State of RAM for migration */
306struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354};
355typedef struct RAMState RAMState;
356
357static RAMState *ram_state;
358
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
394uint64_t ram_bytes_remaining(void)
395{
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398}
399
400MigrationStats ram_counters;
401
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
413CompressionStats compression_counters;
414
415struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
454static QEMUFile *decomp_file;
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
459
460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495}
496
497static void compress_threads_save_cleanup(void)
498{
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534}
535
536static int compress_threads_save_setup(void)
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
577}
578
579/* Multiple fd's */
580
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
586/* This value needs to be a multiple of qemu_target_page_size() */
587#define MULTIFD_PACKET_SIZE (512 * 1024)
588
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596} __attribute__((packed)) MultiFDInit_t;
597
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
680 /* array of pages to receive */
681 MultiFDPages_t *pages;
682 /* packet allocated len */
683 uint32_t packet_len;
684 /* pointer to the packet */
685 MultiFDPacket_t *packet;
686 /* multifd flags for each packet */
687 uint32_t flags;
688 /* global number of generated multifd packets */
689 uint64_t packet_num;
690 /* thread local variables */
691 /* size of the next packet that contains pages */
692 uint32_t next_packet_size;
693 /* packets sent through this channel */
694 uint64_t num_packets;
695 /* pages sent through this channel */
696 uint64_t num_pages;
697 /* syncs main thread and channels */
698 QemuSemaphore sem_sync;
699} MultiFDRecvParams;
700
701static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
702{
703 MultiFDInit_t msg;
704 int ret;
705
706 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
707 msg.version = cpu_to_be32(MULTIFD_VERSION);
708 msg.id = p->id;
709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
710
711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
712 if (ret != 0) {
713 return -1;
714 }
715 return 0;
716}
717
718static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
719{
720 MultiFDInit_t msg;
721 int ret;
722
723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
724 if (ret != 0) {
725 return -1;
726 }
727
728 msg.magic = be32_to_cpu(msg.magic);
729 msg.version = be32_to_cpu(msg.version);
730
731 if (msg.magic != MULTIFD_MAGIC) {
732 error_setg(errp, "multifd: received packet magic %x "
733 "expected %x", msg.magic, MULTIFD_MAGIC);
734 return -1;
735 }
736
737 if (msg.version != MULTIFD_VERSION) {
738 error_setg(errp, "multifd: received packet version %d "
739 "expected %d", msg.version, MULTIFD_VERSION);
740 return -1;
741 }
742
743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
746
747 error_setg(errp, "multifd: received uuid '%s' and expected "
748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
749 g_free(uuid);
750 g_free(msg_uuid);
751 return -1;
752 }
753
754 if (msg.id > migrate_multifd_channels()) {
755 error_setg(errp, "multifd: received channel version %d "
756 "expected %d", msg.version, MULTIFD_VERSION);
757 return -1;
758 }
759
760 return msg.id;
761}
762
763static MultiFDPages_t *multifd_pages_init(size_t size)
764{
765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
766
767 pages->allocated = size;
768 pages->iov = g_new0(struct iovec, size);
769 pages->offset = g_new0(ram_addr_t, size);
770
771 return pages;
772}
773
774static void multifd_pages_clear(MultiFDPages_t *pages)
775{
776 pages->used = 0;
777 pages->allocated = 0;
778 pages->packet_num = 0;
779 pages->block = NULL;
780 g_free(pages->iov);
781 pages->iov = NULL;
782 g_free(pages->offset);
783 pages->offset = NULL;
784 g_free(pages);
785}
786
787static void multifd_send_fill_packet(MultiFDSendParams *p)
788{
789 MultiFDPacket_t *packet = p->packet;
790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
791 int i;
792
793 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
794 packet->version = cpu_to_be32(MULTIFD_VERSION);
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(page_max);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808}
809
810static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811{
812 MultiFDPacket_t *packet = p->packet;
813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
814 RAMBlock *block;
815 int i;
816
817 packet->magic = be32_to_cpu(packet->magic);
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
825 packet->version = be32_to_cpu(packet->version);
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
836 /*
837 * If we recevied a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
841 error_setg(errp, "multifd: received packet "
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
844 return -1;
845 }
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
852 p->pages = multifd_pages_init(packet->pages_alloc);
853 }
854
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
857 error_setg(errp, "multifd: received packet "
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
860 return -1;
861 }
862
863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used) {
867 /* make sure that ramblock is 0 terminated */
868 packet->ramblock[255] = 0;
869 block = qemu_ram_block_by_name(packet->ramblock);
870 if (!block) {
871 error_setg(errp, "multifd: unknown ram block %s",
872 packet->ramblock);
873 return -1;
874 }
875 }
876
877 for (i = 0; i < p->pages->used; i++) {
878 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
879
880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
882 " (max " RAM_ADDR_FMT ")",
883 offset, block->max_length);
884 return -1;
885 }
886 p->pages->iov[i].iov_base = block->host + offset;
887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
888 }
889
890 return 0;
891}
892
893struct {
894 MultiFDSendParams *params;
895 /* array of pages to sent */
896 MultiFDPages_t *pages;
897 /* syncs main thread and channels */
898 QemuSemaphore sem_sync;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
901 /* send channels ready */
902 QemuSemaphore channels_ready;
903} *multifd_send_state;
904
905/*
906 * How we use multifd_send_state->pages and channel->pages?
907 *
908 * We create a pages for each channel, and a main one. Each time that
909 * we need to send a batch of pages we interchange the ones between
910 * multifd_send_state and the channel that is sending it. There are
911 * two reasons for that:
912 * - to not have to do so many mallocs during migration
913 * - to make easier to know what to free at the end of migration
914 *
915 * This way we always know who is the owner of each "pages" struct,
916 * and we don't need any locking. It belongs to the migration thread
917 * or to the channel thread. Switching is safe because the migration
918 * thread is using the channel mutex when changing it, and the channel
919 * have to had finish with its own, otherwise pending_job can't be
920 * false.
921 */
922
923static void multifd_send_pages(void)
924{
925 int i;
926 static int next_channel;
927 MultiFDSendParams *p = NULL; /* make happy gcc */
928 MultiFDPages_t *pages = multifd_send_state->pages;
929 uint64_t transferred;
930
931 qemu_sem_wait(&multifd_send_state->channels_ready);
932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
933 p = &multifd_send_state->params[i];
934
935 qemu_mutex_lock(&p->mutex);
936 if (!p->pending_job) {
937 p->pending_job++;
938 next_channel = (i + 1) % migrate_multifd_channels();
939 break;
940 }
941 qemu_mutex_unlock(&p->mutex);
942 }
943 p->pages->used = 0;
944
945 p->packet_num = multifd_send_state->packet_num++;
946 p->pages->block = NULL;
947 multifd_send_state->pages = p->pages;
948 p->pages = pages;
949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
950 ram_counters.multifd_bytes += transferred;
951 ram_counters.transferred += transferred;;
952 qemu_mutex_unlock(&p->mutex);
953 qemu_sem_post(&p->sem);
954}
955
956static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
957{
958 MultiFDPages_t *pages = multifd_send_state->pages;
959
960 if (!pages->block) {
961 pages->block = block;
962 }
963
964 if (pages->block == block) {
965 pages->offset[pages->used] = offset;
966 pages->iov[pages->used].iov_base = block->host + offset;
967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
968 pages->used++;
969
970 if (pages->used < pages->allocated) {
971 return;
972 }
973 }
974
975 multifd_send_pages();
976
977 if (pages->block != block) {
978 multifd_queue_page(block, offset);
979 }
980}
981
982static void multifd_send_terminate_threads(Error *err)
983{
984 int i;
985
986 if (err) {
987 MigrationState *s = migrate_get_current();
988 migrate_set_error(s, err);
989 if (s->state == MIGRATION_STATUS_SETUP ||
990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
991 s->state == MIGRATION_STATUS_DEVICE ||
992 s->state == MIGRATION_STATUS_ACTIVE) {
993 migrate_set_state(&s->state, s->state,
994 MIGRATION_STATUS_FAILED);
995 }
996 }
997
998 for (i = 0; i < migrate_multifd_channels(); i++) {
999 MultiFDSendParams *p = &multifd_send_state->params[i];
1000
1001 qemu_mutex_lock(&p->mutex);
1002 p->quit = true;
1003 qemu_sem_post(&p->sem);
1004 qemu_mutex_unlock(&p->mutex);
1005 }
1006}
1007
1008void multifd_save_cleanup(void)
1009{
1010 int i;
1011
1012 if (!migrate_use_multifd()) {
1013 return;
1014 }
1015 multifd_send_terminate_threads(NULL);
1016 for (i = 0; i < migrate_multifd_channels(); i++) {
1017 MultiFDSendParams *p = &multifd_send_state->params[i];
1018
1019 if (p->running) {
1020 qemu_thread_join(&p->thread);
1021 }
1022 socket_send_channel_destroy(p->c);
1023 p->c = NULL;
1024 qemu_mutex_destroy(&p->mutex);
1025 qemu_sem_destroy(&p->sem);
1026 g_free(p->name);
1027 p->name = NULL;
1028 multifd_pages_clear(p->pages);
1029 p->pages = NULL;
1030 p->packet_len = 0;
1031 g_free(p->packet);
1032 p->packet = NULL;
1033 }
1034 qemu_sem_destroy(&multifd_send_state->channels_ready);
1035 qemu_sem_destroy(&multifd_send_state->sem_sync);
1036 g_free(multifd_send_state->params);
1037 multifd_send_state->params = NULL;
1038 multifd_pages_clear(multifd_send_state->pages);
1039 multifd_send_state->pages = NULL;
1040 g_free(multifd_send_state);
1041 multifd_send_state = NULL;
1042}
1043
1044static void multifd_send_sync_main(void)
1045{
1046 int i;
1047
1048 if (!migrate_use_multifd()) {
1049 return;
1050 }
1051 if (multifd_send_state->pages->used) {
1052 multifd_send_pages();
1053 }
1054 for (i = 0; i < migrate_multifd_channels(); i++) {
1055 MultiFDSendParams *p = &multifd_send_state->params[i];
1056
1057 trace_multifd_send_sync_main_signal(p->id);
1058
1059 qemu_mutex_lock(&p->mutex);
1060
1061 p->packet_num = multifd_send_state->packet_num++;
1062 p->flags |= MULTIFD_FLAG_SYNC;
1063 p->pending_job++;
1064 qemu_mutex_unlock(&p->mutex);
1065 qemu_sem_post(&p->sem);
1066 }
1067 for (i = 0; i < migrate_multifd_channels(); i++) {
1068 MultiFDSendParams *p = &multifd_send_state->params[i];
1069
1070 trace_multifd_send_sync_main_wait(p->id);
1071 qemu_sem_wait(&multifd_send_state->sem_sync);
1072 }
1073 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1074}
1075
1076static void *multifd_send_thread(void *opaque)
1077{
1078 MultiFDSendParams *p = opaque;
1079 Error *local_err = NULL;
1080 int ret;
1081
1082 trace_multifd_send_thread_start(p->id);
1083 rcu_register_thread();
1084
1085 if (multifd_send_initial_packet(p, &local_err) < 0) {
1086 goto out;
1087 }
1088 /* initial packet */
1089 p->num_packets = 1;
1090
1091 while (true) {
1092 qemu_sem_wait(&p->sem);
1093 qemu_mutex_lock(&p->mutex);
1094
1095 if (p->pending_job) {
1096 uint32_t used = p->pages->used;
1097 uint64_t packet_num = p->packet_num;
1098 uint32_t flags = p->flags;
1099
1100 p->next_packet_size = used * qemu_target_page_size();
1101 multifd_send_fill_packet(p);
1102 p->flags = 0;
1103 p->num_packets++;
1104 p->num_pages += used;
1105 p->pages->used = 0;
1106 qemu_mutex_unlock(&p->mutex);
1107
1108 trace_multifd_send(p->id, packet_num, used, flags,
1109 p->next_packet_size);
1110
1111 ret = qio_channel_write_all(p->c, (void *)p->packet,
1112 p->packet_len, &local_err);
1113 if (ret != 0) {
1114 break;
1115 }
1116
1117 if (used) {
1118 ret = qio_channel_writev_all(p->c, p->pages->iov,
1119 used, &local_err);
1120 if (ret != 0) {
1121 break;
1122 }
1123 }
1124
1125 qemu_mutex_lock(&p->mutex);
1126 p->pending_job--;
1127 qemu_mutex_unlock(&p->mutex);
1128
1129 if (flags & MULTIFD_FLAG_SYNC) {
1130 qemu_sem_post(&multifd_send_state->sem_sync);
1131 }
1132 qemu_sem_post(&multifd_send_state->channels_ready);
1133 } else if (p->quit) {
1134 qemu_mutex_unlock(&p->mutex);
1135 break;
1136 } else {
1137 qemu_mutex_unlock(&p->mutex);
1138 /* sometimes there are spurious wakeups */
1139 }
1140 }
1141
1142out:
1143 if (local_err) {
1144 multifd_send_terminate_threads(local_err);
1145 }
1146
1147 qemu_mutex_lock(&p->mutex);
1148 p->running = false;
1149 qemu_mutex_unlock(&p->mutex);
1150
1151 rcu_unregister_thread();
1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1153
1154 return NULL;
1155}
1156
1157static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1158{
1159 MultiFDSendParams *p = opaque;
1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1161 Error *local_err = NULL;
1162
1163 if (qio_task_propagate_error(task, &local_err)) {
1164 migrate_set_error(migrate_get_current(), local_err);
1165 multifd_save_cleanup();
1166 } else {
1167 p->c = QIO_CHANNEL(sioc);
1168 qio_channel_set_delay(p->c, false);
1169 p->running = true;
1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1171 QEMU_THREAD_JOINABLE);
1172 }
1173}
1174
1175int multifd_save_setup(void)
1176{
1177 int thread_count;
1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1179 uint8_t i;
1180
1181 if (!migrate_use_multifd()) {
1182 return 0;
1183 }
1184 thread_count = migrate_multifd_channels();
1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1187 multifd_send_state->pages = multifd_pages_init(page_count);
1188 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1189 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1190
1191 for (i = 0; i < thread_count; i++) {
1192 MultiFDSendParams *p = &multifd_send_state->params[i];
1193
1194 qemu_mutex_init(&p->mutex);
1195 qemu_sem_init(&p->sem, 0);
1196 p->quit = false;
1197 p->pending_job = 0;
1198 p->id = i;
1199 p->pages = multifd_pages_init(page_count);
1200 p->packet_len = sizeof(MultiFDPacket_t)
1201 + sizeof(ram_addr_t) * page_count;
1202 p->packet = g_malloc0(p->packet_len);
1203 p->name = g_strdup_printf("multifdsend_%d", i);
1204 socket_send_channel_create(multifd_new_send_channel_async, p);
1205 }
1206 return 0;
1207}
1208
1209struct {
1210 MultiFDRecvParams *params;
1211 /* number of created threads */
1212 int count;
1213 /* syncs main thread and channels */
1214 QemuSemaphore sem_sync;
1215 /* global number of generated multifd packets */
1216 uint64_t packet_num;
1217} *multifd_recv_state;
1218
1219static void multifd_recv_terminate_threads(Error *err)
1220{
1221 int i;
1222
1223 if (err) {
1224 MigrationState *s = migrate_get_current();
1225 migrate_set_error(s, err);
1226 if (s->state == MIGRATION_STATUS_SETUP ||
1227 s->state == MIGRATION_STATUS_ACTIVE) {
1228 migrate_set_state(&s->state, s->state,
1229 MIGRATION_STATUS_FAILED);
1230 }
1231 }
1232
1233 for (i = 0; i < migrate_multifd_channels(); i++) {
1234 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1235
1236 qemu_mutex_lock(&p->mutex);
1237 /* We could arrive here for two reasons:
1238 - normal quit, i.e. everything went fine, just finished
1239 - error quit: We close the channels so the channel threads
1240 finish the qio_channel_read_all_eof() */
1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1242 qemu_mutex_unlock(&p->mutex);
1243 }
1244}
1245
1246int multifd_load_cleanup(Error **errp)
1247{
1248 int i;
1249 int ret = 0;
1250
1251 if (!migrate_use_multifd()) {
1252 return 0;
1253 }
1254 multifd_recv_terminate_threads(NULL);
1255 for (i = 0; i < migrate_multifd_channels(); i++) {
1256 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1257
1258 if (p->running) {
1259 qemu_thread_join(&p->thread);
1260 }
1261 object_unref(OBJECT(p->c));
1262 p->c = NULL;
1263 qemu_mutex_destroy(&p->mutex);
1264 qemu_sem_destroy(&p->sem_sync);
1265 g_free(p->name);
1266 p->name = NULL;
1267 multifd_pages_clear(p->pages);
1268 p->pages = NULL;
1269 p->packet_len = 0;
1270 g_free(p->packet);
1271 p->packet = NULL;
1272 }
1273 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1274 g_free(multifd_recv_state->params);
1275 multifd_recv_state->params = NULL;
1276 g_free(multifd_recv_state);
1277 multifd_recv_state = NULL;
1278
1279 return ret;
1280}
1281
1282static void multifd_recv_sync_main(void)
1283{
1284 int i;
1285
1286 if (!migrate_use_multifd()) {
1287 return;
1288 }
1289 for (i = 0; i < migrate_multifd_channels(); i++) {
1290 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291
1292 trace_multifd_recv_sync_main_wait(p->id);
1293 qemu_sem_wait(&multifd_recv_state->sem_sync);
1294 }
1295 for (i = 0; i < migrate_multifd_channels(); i++) {
1296 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1297
1298 qemu_mutex_lock(&p->mutex);
1299 if (multifd_recv_state->packet_num < p->packet_num) {
1300 multifd_recv_state->packet_num = p->packet_num;
1301 }
1302 qemu_mutex_unlock(&p->mutex);
1303 trace_multifd_recv_sync_main_signal(p->id);
1304 qemu_sem_post(&p->sem_sync);
1305 }
1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1307}
1308
1309static void *multifd_recv_thread(void *opaque)
1310{
1311 MultiFDRecvParams *p = opaque;
1312 Error *local_err = NULL;
1313 int ret;
1314
1315 trace_multifd_recv_thread_start(p->id);
1316 rcu_register_thread();
1317
1318 while (true) {
1319 uint32_t used;
1320 uint32_t flags;
1321
1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1323 p->packet_len, &local_err);
1324 if (ret == 0) { /* EOF */
1325 break;
1326 }
1327 if (ret == -1) { /* Error */
1328 break;
1329 }
1330
1331 qemu_mutex_lock(&p->mutex);
1332 ret = multifd_recv_unfill_packet(p, &local_err);
1333 if (ret) {
1334 qemu_mutex_unlock(&p->mutex);
1335 break;
1336 }
1337
1338 used = p->pages->used;
1339 flags = p->flags;
1340 trace_multifd_recv(p->id, p->packet_num, used, flags,
1341 p->next_packet_size);
1342 p->num_packets++;
1343 p->num_pages += used;
1344 qemu_mutex_unlock(&p->mutex);
1345
1346 if (used) {
1347 ret = qio_channel_readv_all(p->c, p->pages->iov,
1348 used, &local_err);
1349 if (ret != 0) {
1350 break;
1351 }
1352 }
1353
1354 if (flags & MULTIFD_FLAG_SYNC) {
1355 qemu_sem_post(&multifd_recv_state->sem_sync);
1356 qemu_sem_wait(&p->sem_sync);
1357 }
1358 }
1359
1360 if (local_err) {
1361 multifd_recv_terminate_threads(local_err);
1362 }
1363 qemu_mutex_lock(&p->mutex);
1364 p->running = false;
1365 qemu_mutex_unlock(&p->mutex);
1366
1367 rcu_unregister_thread();
1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1369
1370 return NULL;
1371}
1372
1373int multifd_load_setup(void)
1374{
1375 int thread_count;
1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1377 uint8_t i;
1378
1379 if (!migrate_use_multifd()) {
1380 return 0;
1381 }
1382 thread_count = migrate_multifd_channels();
1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1385 atomic_set(&multifd_recv_state->count, 0);
1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1387
1388 for (i = 0; i < thread_count; i++) {
1389 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1390
1391 qemu_mutex_init(&p->mutex);
1392 qemu_sem_init(&p->sem_sync, 0);
1393 p->id = i;
1394 p->pages = multifd_pages_init(page_count);
1395 p->packet_len = sizeof(MultiFDPacket_t)
1396 + sizeof(ram_addr_t) * page_count;
1397 p->packet = g_malloc0(p->packet_len);
1398 p->name = g_strdup_printf("multifdrecv_%d", i);
1399 }
1400 return 0;
1401}
1402
1403bool multifd_recv_all_channels_created(void)
1404{
1405 int thread_count = migrate_multifd_channels();
1406
1407 if (!migrate_use_multifd()) {
1408 return true;
1409 }
1410
1411 return thread_count == atomic_read(&multifd_recv_state->count);
1412}
1413
1414/*
1415 * Try to receive all multifd channels to get ready for the migration.
1416 * - Return true and do not set @errp when correctly receving all channels;
1417 * - Return false and do not set @errp when correctly receiving the current one;
1418 * - Return false and set @errp when failing to receive the current channel.
1419 */
1420bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1421{
1422 MultiFDRecvParams *p;
1423 Error *local_err = NULL;
1424 int id;
1425
1426 id = multifd_recv_initial_packet(ioc, &local_err);
1427 if (id < 0) {
1428 multifd_recv_terminate_threads(local_err);
1429 error_propagate_prepend(errp, local_err,
1430 "failed to receive packet"
1431 " via multifd channel %d: ",
1432 atomic_read(&multifd_recv_state->count));
1433 return false;
1434 }
1435
1436 p = &multifd_recv_state->params[id];
1437 if (p->c != NULL) {
1438 error_setg(&local_err, "multifd: received id '%d' already setup'",
1439 id);
1440 multifd_recv_terminate_threads(local_err);
1441 error_propagate(errp, local_err);
1442 return false;
1443 }
1444 p->c = ioc;
1445 object_ref(OBJECT(ioc));
1446 /* initial packet */
1447 p->num_packets = 1;
1448
1449 p->running = true;
1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1451 QEMU_THREAD_JOINABLE);
1452 atomic_inc(&multifd_recv_state->count);
1453 return atomic_read(&multifd_recv_state->count) ==
1454 migrate_multifd_channels();
1455}
1456
1457/**
1458 * save_page_header: write page header to wire
1459 *
1460 * If this is the 1st block, it also writes the block identification
1461 *
1462 * Returns the number of bytes written
1463 *
1464 * @f: QEMUFile where to send the data
1465 * @block: block that contains the page we want to send
1466 * @offset: offset inside the block for the page
1467 * in the lower bits, it contains flags
1468 */
1469static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1470 ram_addr_t offset)
1471{
1472 size_t size, len;
1473
1474 if (block == rs->last_sent_block) {
1475 offset |= RAM_SAVE_FLAG_CONTINUE;
1476 }
1477 qemu_put_be64(f, offset);
1478 size = 8;
1479
1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1481 len = strlen(block->idstr);
1482 qemu_put_byte(f, len);
1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1484 size += 1 + len;
1485 rs->last_sent_block = block;
1486 }
1487 return size;
1488}
1489
1490/**
1491 * mig_throttle_guest_down: throotle down the guest
1492 *
1493 * Reduce amount of guest cpu execution to hopefully slow down memory
1494 * writes. If guest dirty memory rate is reduced below the rate at
1495 * which we can transfer pages to the destination then we should be
1496 * able to complete migration. Some workloads dirty memory way too
1497 * fast and will not effectively converge, even with auto-converge.
1498 */
1499static void mig_throttle_guest_down(void)
1500{
1501 MigrationState *s = migrate_get_current();
1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1504 int pct_max = s->parameters.max_cpu_throttle;
1505
1506 /* We have not started throttling yet. Let's start it. */
1507 if (!cpu_throttle_active()) {
1508 cpu_throttle_set(pct_initial);
1509 } else {
1510 /* Throttling already on, just increase the rate */
1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1512 pct_max));
1513 }
1514}
1515
1516/**
1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1518 *
1519 * @rs: current RAM state
1520 * @current_addr: address for the zero page
1521 *
1522 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1523 * The important thing is that a stale (not-yet-0'd) page be replaced
1524 * by the new data.
1525 * As a bonus, if the page wasn't in the cache it gets added so that
1526 * when a small write is made into the 0'd page it gets XBZRLE sent.
1527 */
1528static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1529{
1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1531 return;
1532 }
1533
1534 /* We don't care if this fails to allocate a new cache page
1535 * as long as it updated an old one */
1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1537 ram_counters.dirty_sync_count);
1538}
1539
1540#define ENCODING_FLAG_XBZRLE 0x1
1541
1542/**
1543 * save_xbzrle_page: compress and send current page
1544 *
1545 * Returns: 1 means that we wrote the page
1546 * 0 means that page is identical to the one already sent
1547 * -1 means that xbzrle would be longer than normal
1548 *
1549 * @rs: current RAM state
1550 * @current_data: pointer to the address of the page contents
1551 * @current_addr: addr of the page
1552 * @block: block that contains the page we want to send
1553 * @offset: offset inside the block for the page
1554 * @last_stage: if we are at the completion stage
1555 */
1556static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1557 ram_addr_t current_addr, RAMBlock *block,
1558 ram_addr_t offset, bool last_stage)
1559{
1560 int encoded_len = 0, bytes_xbzrle;
1561 uint8_t *prev_cached_page;
1562
1563 if (!cache_is_cached(XBZRLE.cache, current_addr,
1564 ram_counters.dirty_sync_count)) {
1565 xbzrle_counters.cache_miss++;
1566 if (!last_stage) {
1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1568 ram_counters.dirty_sync_count) == -1) {
1569 return -1;
1570 } else {
1571 /* update *current_data when the page has been
1572 inserted into cache */
1573 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1574 }
1575 }
1576 return -1;
1577 }
1578
1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1580
1581 /* save current buffer into memory */
1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1583
1584 /* XBZRLE encoding (if there is no overflow) */
1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1587 TARGET_PAGE_SIZE);
1588
1589 /*
1590 * Update the cache contents, so that it corresponds to the data
1591 * sent, in all cases except where we skip the page.
1592 */
1593 if (!last_stage && encoded_len != 0) {
1594 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1595 /*
1596 * In the case where we couldn't compress, ensure that the caller
1597 * sends the data from the cache, since the guest might have
1598 * changed the RAM since we copied it.
1599 */
1600 *current_data = prev_cached_page;
1601 }
1602
1603 if (encoded_len == 0) {
1604 trace_save_xbzrle_page_skipping();
1605 return 0;
1606 } else if (encoded_len == -1) {
1607 trace_save_xbzrle_page_overflow();
1608 xbzrle_counters.overflow++;
1609 return -1;
1610 }
1611
1612 /* Send XBZRLE based compressed page */
1613 bytes_xbzrle = save_page_header(rs, rs->f, block,
1614 offset | RAM_SAVE_FLAG_XBZRLE);
1615 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1616 qemu_put_be16(rs->f, encoded_len);
1617 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1618 bytes_xbzrle += encoded_len + 1 + 2;
1619 xbzrle_counters.pages++;
1620 xbzrle_counters.bytes += bytes_xbzrle;
1621 ram_counters.transferred += bytes_xbzrle;
1622
1623 return 1;
1624}
1625
1626/**
1627 * migration_bitmap_find_dirty: find the next dirty page from start
1628 *
1629 * Returns the page offset within memory region of the start of a dirty page
1630 *
1631 * @rs: current RAM state
1632 * @rb: RAMBlock where to search for dirty pages
1633 * @start: page where we start the search
1634 */
1635static inline
1636unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1637 unsigned long start)
1638{
1639 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1640 unsigned long *bitmap = rb->bmap;
1641 unsigned long next;
1642
1643 if (ramblock_is_ignored(rb)) {
1644 return size;
1645 }
1646
1647 /*
1648 * When the free page optimization is enabled, we need to check the bitmap
1649 * to send the non-free pages rather than all the pages in the bulk stage.
1650 */
1651 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1652 next = start + 1;
1653 } else {
1654 next = find_next_bit(bitmap, size, start);
1655 }
1656
1657 return next;
1658}
1659
1660static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1661 RAMBlock *rb,
1662 unsigned long page)
1663{
1664 bool ret;
1665
1666 qemu_mutex_lock(&rs->bitmap_mutex);
1667
1668 /*
1669 * Clear dirty bitmap if needed. This _must_ be called before we
1670 * send any of the page in the chunk because we need to make sure
1671 * we can capture further page content changes when we sync dirty
1672 * log the next time. So as long as we are going to send any of
1673 * the page in the chunk we clear the remote dirty bitmap for all.
1674 * Clearing it earlier won't be a problem, but too late will.
1675 */
1676 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1677 uint8_t shift = rb->clear_bmap_shift;
1678 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1679 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1680
1681 /*
1682 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1683 * can make things easier sometimes since then start address
1684 * of the small chunk will always be 64 pages aligned so the
1685 * bitmap will always be aligned to unsigned long. We should
1686 * even be able to remove this restriction but I'm simply
1687 * keeping it.
1688 */
1689 assert(shift >= 6);
1690 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1691 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1692 }
1693
1694 ret = test_and_clear_bit(page, rb->bmap);
1695
1696 if (ret) {
1697 rs->migration_dirty_pages--;
1698 }
1699 qemu_mutex_unlock(&rs->bitmap_mutex);
1700
1701 return ret;
1702}
1703
1704/* Called with RCU critical section */
1705static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1706 ram_addr_t length)
1707{
1708 rs->migration_dirty_pages +=
1709 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
1710 &rs->num_dirty_pages_period);
1711}
1712
1713/**
1714 * ram_pagesize_summary: calculate all the pagesizes of a VM
1715 *
1716 * Returns a summary bitmap of the page sizes of all RAMBlocks
1717 *
1718 * For VMs with just normal pages this is equivalent to the host page
1719 * size. If it's got some huge pages then it's the OR of all the
1720 * different page sizes.
1721 */
1722uint64_t ram_pagesize_summary(void)
1723{
1724 RAMBlock *block;
1725 uint64_t summary = 0;
1726
1727 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1728 summary |= block->page_size;
1729 }
1730
1731 return summary;
1732}
1733
1734uint64_t ram_get_total_transferred_pages(void)
1735{
1736 return ram_counters.normal + ram_counters.duplicate +
1737 compression_counters.pages + xbzrle_counters.pages;
1738}
1739
1740static void migration_update_rates(RAMState *rs, int64_t end_time)
1741{
1742 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1743 double compressed_size;
1744
1745 /* calculate period counters */
1746 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1747 / (end_time - rs->time_last_bitmap_sync);
1748
1749 if (!page_count) {
1750 return;
1751 }
1752
1753 if (migrate_use_xbzrle()) {
1754 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1755 rs->xbzrle_cache_miss_prev) / page_count;
1756 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1757 }
1758
1759 if (migrate_use_compression()) {
1760 compression_counters.busy_rate = (double)(compression_counters.busy -
1761 rs->compress_thread_busy_prev) / page_count;
1762 rs->compress_thread_busy_prev = compression_counters.busy;
1763
1764 compressed_size = compression_counters.compressed_size -
1765 rs->compressed_size_prev;
1766 if (compressed_size) {
1767 double uncompressed_size = (compression_counters.pages -
1768 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1769
1770 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1771 compression_counters.compression_rate =
1772 uncompressed_size / compressed_size;
1773
1774 rs->compress_pages_prev = compression_counters.pages;
1775 rs->compressed_size_prev = compression_counters.compressed_size;
1776 }
1777 }
1778}
1779
1780static void migration_bitmap_sync(RAMState *rs)
1781{
1782 RAMBlock *block;
1783 int64_t end_time;
1784 uint64_t bytes_xfer_now;
1785
1786 ram_counters.dirty_sync_count++;
1787
1788 if (!rs->time_last_bitmap_sync) {
1789 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1790 }
1791
1792 trace_migration_bitmap_sync_start();
1793 memory_global_dirty_log_sync();
1794
1795 qemu_mutex_lock(&rs->bitmap_mutex);
1796 rcu_read_lock();
1797 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1798 migration_bitmap_sync_range(rs, block, block->used_length);
1799 }
1800 ram_counters.remaining = ram_bytes_remaining();
1801 rcu_read_unlock();
1802 qemu_mutex_unlock(&rs->bitmap_mutex);
1803
1804 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1805
1806 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1807
1808 /* more than 1 second = 1000 millisecons */
1809 if (end_time > rs->time_last_bitmap_sync + 1000) {
1810 bytes_xfer_now = ram_counters.transferred;
1811
1812 /* During block migration the auto-converge logic incorrectly detects
1813 * that ram migration makes no progress. Avoid this by disabling the
1814 * throttling logic during the bulk phase of block migration. */
1815 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1816 /* The following detection logic can be refined later. For now:
1817 Check to see if the dirtied bytes is 50% more than the approx.
1818 amount of bytes that just got transferred since the last time we
1819 were in this routine. If that happens twice, start or increase
1820 throttling */
1821
1822 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1823 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1824 (++rs->dirty_rate_high_cnt >= 2)) {
1825 trace_migration_throttle();
1826 rs->dirty_rate_high_cnt = 0;
1827 mig_throttle_guest_down();
1828 }
1829 }
1830
1831 migration_update_rates(rs, end_time);
1832
1833 rs->target_page_count_prev = rs->target_page_count;
1834
1835 /* reset period counters */
1836 rs->time_last_bitmap_sync = end_time;
1837 rs->num_dirty_pages_period = 0;
1838 rs->bytes_xfer_prev = bytes_xfer_now;
1839 }
1840 if (migrate_use_events()) {
1841 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1842 }
1843}
1844
1845static void migration_bitmap_sync_precopy(RAMState *rs)
1846{
1847 Error *local_err = NULL;
1848
1849 /*
1850 * The current notifier usage is just an optimization to migration, so we
1851 * don't stop the normal migration process in the error case.
1852 */
1853 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1854 error_report_err(local_err);
1855 }
1856
1857 migration_bitmap_sync(rs);
1858
1859 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1860 error_report_err(local_err);
1861 }
1862}
1863
1864/**
1865 * save_zero_page_to_file: send the zero page to the file
1866 *
1867 * Returns the size of data written to the file, 0 means the page is not
1868 * a zero page
1869 *
1870 * @rs: current RAM state
1871 * @file: the file where the data is saved
1872 * @block: block that contains the page we want to send
1873 * @offset: offset inside the block for the page
1874 */
1875static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1876 RAMBlock *block, ram_addr_t offset)
1877{
1878 uint8_t *p = block->host + offset;
1879 int len = 0;
1880
1881 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1882 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1883 qemu_put_byte(file, 0);
1884 len += 1;
1885 }
1886 return len;
1887}
1888
1889/**
1890 * save_zero_page: send the zero page to the stream
1891 *
1892 * Returns the number of pages written.
1893 *
1894 * @rs: current RAM state
1895 * @block: block that contains the page we want to send
1896 * @offset: offset inside the block for the page
1897 */
1898static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1899{
1900 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1901
1902 if (len) {
1903 ram_counters.duplicate++;
1904 ram_counters.transferred += len;
1905 return 1;
1906 }
1907 return -1;
1908}
1909
1910static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1911{
1912 if (!migrate_release_ram() || !migration_in_postcopy()) {
1913 return;
1914 }
1915
1916 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1917}
1918
1919/*
1920 * @pages: the number of pages written by the control path,
1921 * < 0 - error
1922 * > 0 - number of pages written
1923 *
1924 * Return true if the pages has been saved, otherwise false is returned.
1925 */
1926static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1927 int *pages)
1928{
1929 uint64_t bytes_xmit = 0;
1930 int ret;
1931
1932 *pages = -1;
1933 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1934 &bytes_xmit);
1935 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1936 return false;
1937 }
1938
1939 if (bytes_xmit) {
1940 ram_counters.transferred += bytes_xmit;
1941 *pages = 1;
1942 }
1943
1944 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1945 return true;
1946 }
1947
1948 if (bytes_xmit > 0) {
1949 ram_counters.normal++;
1950 } else if (bytes_xmit == 0) {
1951 ram_counters.duplicate++;
1952 }
1953
1954 return true;
1955}
1956
1957/*
1958 * directly send the page to the stream
1959 *
1960 * Returns the number of pages written.
1961 *
1962 * @rs: current RAM state
1963 * @block: block that contains the page we want to send
1964 * @offset: offset inside the block for the page
1965 * @buf: the page to be sent
1966 * @async: send to page asyncly
1967 */
1968static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1969 uint8_t *buf, bool async)
1970{
1971 ram_counters.transferred += save_page_header(rs, rs->f, block,
1972 offset | RAM_SAVE_FLAG_PAGE);
1973 if (async) {
1974 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1975 migrate_release_ram() &
1976 migration_in_postcopy());
1977 } else {
1978 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1979 }
1980 ram_counters.transferred += TARGET_PAGE_SIZE;
1981 ram_counters.normal++;
1982 return 1;
1983}
1984
1985/**
1986 * ram_save_page: send the given page to the stream
1987 *
1988 * Returns the number of pages written.
1989 * < 0 - error
1990 * >=0 - Number of pages written - this might legally be 0
1991 * if xbzrle noticed the page was the same.
1992 *
1993 * @rs: current RAM state
1994 * @block: block that contains the page we want to send
1995 * @offset: offset inside the block for the page
1996 * @last_stage: if we are at the completion stage
1997 */
1998static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1999{
2000 int pages = -1;
2001 uint8_t *p;
2002 bool send_async = true;
2003 RAMBlock *block = pss->block;
2004 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2005 ram_addr_t current_addr = block->offset + offset;
2006
2007 p = block->host + offset;
2008 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2009
2010 XBZRLE_cache_lock();
2011 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2012 migrate_use_xbzrle()) {
2013 pages = save_xbzrle_page(rs, &p, current_addr, block,
2014 offset, last_stage);
2015 if (!last_stage) {
2016 /* Can't send this cached data async, since the cache page
2017 * might get updated before it gets to the wire
2018 */
2019 send_async = false;
2020 }
2021 }
2022
2023 /* XBZRLE overflow or normal page */
2024 if (pages == -1) {
2025 pages = save_normal_page(rs, block, offset, p, send_async);
2026 }
2027
2028 XBZRLE_cache_unlock();
2029
2030 return pages;
2031}
2032
2033static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2034 ram_addr_t offset)
2035{
2036 multifd_queue_page(block, offset);
2037 ram_counters.normal++;
2038
2039 return 1;
2040}
2041
2042static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2043 ram_addr_t offset, uint8_t *source_buf)
2044{
2045 RAMState *rs = ram_state;
2046 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2047 bool zero_page = false;
2048 int ret;
2049
2050 if (save_zero_page_to_file(rs, f, block, offset)) {
2051 zero_page = true;
2052 goto exit;
2053 }
2054
2055 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2056
2057 /*
2058 * copy it to a internal buffer to avoid it being modified by VM
2059 * so that we can catch up the error during compression and
2060 * decompression
2061 */
2062 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2063 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2064 if (ret < 0) {
2065 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2066 error_report("compressed data failed!");
2067 return false;
2068 }
2069
2070exit:
2071 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2072 return zero_page;
2073}
2074
2075static void
2076update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2077{
2078 ram_counters.transferred += bytes_xmit;
2079
2080 if (param->zero_page) {
2081 ram_counters.duplicate++;
2082 return;
2083 }
2084
2085 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2086 compression_counters.compressed_size += bytes_xmit - 8;
2087 compression_counters.pages++;
2088}
2089
2090static bool save_page_use_compression(RAMState *rs);
2091
2092static void flush_compressed_data(RAMState *rs)
2093{
2094 int idx, len, thread_count;
2095
2096 if (!save_page_use_compression(rs)) {
2097 return;
2098 }
2099 thread_count = migrate_compress_threads();
2100
2101 qemu_mutex_lock(&comp_done_lock);
2102 for (idx = 0; idx < thread_count; idx++) {
2103 while (!comp_param[idx].done) {
2104 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2105 }
2106 }
2107 qemu_mutex_unlock(&comp_done_lock);
2108
2109 for (idx = 0; idx < thread_count; idx++) {
2110 qemu_mutex_lock(&comp_param[idx].mutex);
2111 if (!comp_param[idx].quit) {
2112 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2113 /*
2114 * it's safe to fetch zero_page without holding comp_done_lock
2115 * as there is no further request submitted to the thread,
2116 * i.e, the thread should be waiting for a request at this point.
2117 */
2118 update_compress_thread_counts(&comp_param[idx], len);
2119 }
2120 qemu_mutex_unlock(&comp_param[idx].mutex);
2121 }
2122}
2123
2124static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2125 ram_addr_t offset)
2126{
2127 param->block = block;
2128 param->offset = offset;
2129}
2130
2131static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2132 ram_addr_t offset)
2133{
2134 int idx, thread_count, bytes_xmit = -1, pages = -1;
2135 bool wait = migrate_compress_wait_thread();
2136
2137 thread_count = migrate_compress_threads();
2138 qemu_mutex_lock(&comp_done_lock);
2139retry:
2140 for (idx = 0; idx < thread_count; idx++) {
2141 if (comp_param[idx].done) {
2142 comp_param[idx].done = false;
2143 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2144 qemu_mutex_lock(&comp_param[idx].mutex);
2145 set_compress_params(&comp_param[idx], block, offset);
2146 qemu_cond_signal(&comp_param[idx].cond);
2147 qemu_mutex_unlock(&comp_param[idx].mutex);
2148 pages = 1;
2149 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2150 break;
2151 }
2152 }
2153
2154 /*
2155 * wait for the free thread if the user specifies 'compress-wait-thread',
2156 * otherwise we will post the page out in the main thread as normal page.
2157 */
2158 if (pages < 0 && wait) {
2159 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2160 goto retry;
2161 }
2162 qemu_mutex_unlock(&comp_done_lock);
2163
2164 return pages;
2165}
2166
2167/**
2168 * find_dirty_block: find the next dirty page and update any state
2169 * associated with the search process.
2170 *
2171 * Returns true if a page is found
2172 *
2173 * @rs: current RAM state
2174 * @pss: data about the state of the current dirty page scan
2175 * @again: set to false if the search has scanned the whole of RAM
2176 */
2177static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2178{
2179 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2180 if (pss->complete_round && pss->block == rs->last_seen_block &&
2181 pss->page >= rs->last_page) {
2182 /*
2183 * We've been once around the RAM and haven't found anything.
2184 * Give up.
2185 */
2186 *again = false;
2187 return false;
2188 }
2189 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2190 /* Didn't find anything in this RAM Block */
2191 pss->page = 0;
2192 pss->block = QLIST_NEXT_RCU(pss->block, next);
2193 if (!pss->block) {
2194 /*
2195 * If memory migration starts over, we will meet a dirtied page
2196 * which may still exists in compression threads's ring, so we
2197 * should flush the compressed data to make sure the new page
2198 * is not overwritten by the old one in the destination.
2199 *
2200 * Also If xbzrle is on, stop using the data compression at this
2201 * point. In theory, xbzrle can do better than compression.
2202 */
2203 flush_compressed_data(rs);
2204
2205 /* Hit the end of the list */
2206 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2207 /* Flag that we've looped */
2208 pss->complete_round = true;
2209 rs->ram_bulk_stage = false;
2210 }
2211 /* Didn't find anything this time, but try again on the new block */
2212 *again = true;
2213 return false;
2214 } else {
2215 /* Can go around again, but... */
2216 *again = true;
2217 /* We've found something so probably don't need to */
2218 return true;
2219 }
2220}
2221
2222/**
2223 * unqueue_page: gets a page of the queue
2224 *
2225 * Helper for 'get_queued_page' - gets a page off the queue
2226 *
2227 * Returns the block of the page (or NULL if none available)
2228 *
2229 * @rs: current RAM state
2230 * @offset: used to return the offset within the RAMBlock
2231 */
2232static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2233{
2234 RAMBlock *block = NULL;
2235
2236 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2237 return NULL;
2238 }
2239
2240 qemu_mutex_lock(&rs->src_page_req_mutex);
2241 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2242 struct RAMSrcPageRequest *entry =
2243 QSIMPLEQ_FIRST(&rs->src_page_requests);
2244 block = entry->rb;
2245 *offset = entry->offset;
2246
2247 if (entry->len > TARGET_PAGE_SIZE) {
2248 entry->len -= TARGET_PAGE_SIZE;
2249 entry->offset += TARGET_PAGE_SIZE;
2250 } else {
2251 memory_region_unref(block->mr);
2252 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2253 g_free(entry);
2254 migration_consume_urgent_request();
2255 }
2256 }
2257 qemu_mutex_unlock(&rs->src_page_req_mutex);
2258
2259 return block;
2260}
2261
2262/**
2263 * get_queued_page: unqueue a page from the postcopy requests
2264 *
2265 * Skips pages that are already sent (!dirty)
2266 *
2267 * Returns true if a queued page is found
2268 *
2269 * @rs: current RAM state
2270 * @pss: data about the state of the current dirty page scan
2271 */
2272static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2273{
2274 RAMBlock *block;
2275 ram_addr_t offset;
2276 bool dirty;
2277
2278 do {
2279 block = unqueue_page(rs, &offset);
2280 /*
2281 * We're sending this page, and since it's postcopy nothing else
2282 * will dirty it, and we must make sure it doesn't get sent again
2283 * even if this queue request was received after the background
2284 * search already sent it.
2285 */
2286 if (block) {
2287 unsigned long page;
2288
2289 page = offset >> TARGET_PAGE_BITS;
2290 dirty = test_bit(page, block->bmap);
2291 if (!dirty) {
2292 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2293 page, test_bit(page, block->unsentmap));
2294 } else {
2295 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2296 }
2297 }
2298
2299 } while (block && !dirty);
2300
2301 if (block) {
2302 /*
2303 * As soon as we start servicing pages out of order, then we have
2304 * to kill the bulk stage, since the bulk stage assumes
2305 * in (migration_bitmap_find_and_reset_dirty) that every page is
2306 * dirty, that's no longer true.
2307 */
2308 rs->ram_bulk_stage = false;
2309
2310 /*
2311 * We want the background search to continue from the queued page
2312 * since the guest is likely to want other pages near to the page
2313 * it just requested.
2314 */
2315 pss->block = block;
2316 pss->page = offset >> TARGET_PAGE_BITS;
2317
2318 /*
2319 * This unqueued page would break the "one round" check, even is
2320 * really rare.
2321 */
2322 pss->complete_round = false;
2323 }
2324
2325 return !!block;
2326}
2327
2328/**
2329 * migration_page_queue_free: drop any remaining pages in the ram
2330 * request queue
2331 *
2332 * It should be empty at the end anyway, but in error cases there may
2333 * be some left. in case that there is any page left, we drop it.
2334 *
2335 */
2336static void migration_page_queue_free(RAMState *rs)
2337{
2338 struct RAMSrcPageRequest *mspr, *next_mspr;
2339 /* This queue generally should be empty - but in the case of a failed
2340 * migration might have some droppings in.
2341 */
2342 rcu_read_lock();
2343 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2344 memory_region_unref(mspr->rb->mr);
2345 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2346 g_free(mspr);
2347 }
2348 rcu_read_unlock();
2349}
2350
2351/**
2352 * ram_save_queue_pages: queue the page for transmission
2353 *
2354 * A request from postcopy destination for example.
2355 *
2356 * Returns zero on success or negative on error
2357 *
2358 * @rbname: Name of the RAMBLock of the request. NULL means the
2359 * same that last one.
2360 * @start: starting address from the start of the RAMBlock
2361 * @len: length (in bytes) to send
2362 */
2363int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2364{
2365 RAMBlock *ramblock;
2366 RAMState *rs = ram_state;
2367
2368 ram_counters.postcopy_requests++;
2369 rcu_read_lock();
2370 if (!rbname) {
2371 /* Reuse last RAMBlock */
2372 ramblock = rs->last_req_rb;
2373
2374 if (!ramblock) {
2375 /*
2376 * Shouldn't happen, we can't reuse the last RAMBlock if
2377 * it's the 1st request.
2378 */
2379 error_report("ram_save_queue_pages no previous block");
2380 goto err;
2381 }
2382 } else {
2383 ramblock = qemu_ram_block_by_name(rbname);
2384
2385 if (!ramblock) {
2386 /* We shouldn't be asked for a non-existent RAMBlock */
2387 error_report("ram_save_queue_pages no block '%s'", rbname);
2388 goto err;
2389 }
2390 rs->last_req_rb = ramblock;
2391 }
2392 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2393 if (start+len > ramblock->used_length) {
2394 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2395 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2396 __func__, start, len, ramblock->used_length);
2397 goto err;
2398 }
2399
2400 struct RAMSrcPageRequest *new_entry =
2401 g_malloc0(sizeof(struct RAMSrcPageRequest));
2402 new_entry->rb = ramblock;
2403 new_entry->offset = start;
2404 new_entry->len = len;
2405
2406 memory_region_ref(ramblock->mr);
2407 qemu_mutex_lock(&rs->src_page_req_mutex);
2408 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2409 migration_make_urgent_request();
2410 qemu_mutex_unlock(&rs->src_page_req_mutex);
2411 rcu_read_unlock();
2412
2413 return 0;
2414
2415err:
2416 rcu_read_unlock();
2417 return -1;
2418}
2419
2420static bool save_page_use_compression(RAMState *rs)
2421{
2422 if (!migrate_use_compression()) {
2423 return false;
2424 }
2425
2426 /*
2427 * If xbzrle is on, stop using the data compression after first
2428 * round of migration even if compression is enabled. In theory,
2429 * xbzrle can do better than compression.
2430 */
2431 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2432 return true;
2433 }
2434
2435 return false;
2436}
2437
2438/*
2439 * try to compress the page before posting it out, return true if the page
2440 * has been properly handled by compression, otherwise needs other
2441 * paths to handle it
2442 */
2443static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2444{
2445 if (!save_page_use_compression(rs)) {
2446 return false;
2447 }
2448
2449 /*
2450 * When starting the process of a new block, the first page of
2451 * the block should be sent out before other pages in the same
2452 * block, and all the pages in last block should have been sent
2453 * out, keeping this order is important, because the 'cont' flag
2454 * is used to avoid resending the block name.
2455 *
2456 * We post the fist page as normal page as compression will take
2457 * much CPU resource.
2458 */
2459 if (block != rs->last_sent_block) {
2460 flush_compressed_data(rs);
2461 return false;
2462 }
2463
2464 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2465 return true;
2466 }
2467
2468 compression_counters.busy++;
2469 return false;
2470}
2471
2472/**
2473 * ram_save_target_page: save one target page
2474 *
2475 * Returns the number of pages written
2476 *
2477 * @rs: current RAM state
2478 * @pss: data about the page we want to send
2479 * @last_stage: if we are at the completion stage
2480 */
2481static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2482 bool last_stage)
2483{
2484 RAMBlock *block = pss->block;
2485 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2486 int res;
2487
2488 if (control_save_page(rs, block, offset, &res)) {
2489 return res;
2490 }
2491
2492 if (save_compress_page(rs, block, offset)) {
2493 return 1;
2494 }
2495
2496 res = save_zero_page(rs, block, offset);
2497 if (res > 0) {
2498 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2499 * page would be stale
2500 */
2501 if (!save_page_use_compression(rs)) {
2502 XBZRLE_cache_lock();
2503 xbzrle_cache_zero_page(rs, block->offset + offset);
2504 XBZRLE_cache_unlock();
2505 }
2506 ram_release_pages(block->idstr, offset, res);
2507 return res;
2508 }
2509
2510 /*
2511 * do not use multifd for compression as the first page in the new
2512 * block should be posted out before sending the compressed page
2513 */
2514 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2515 return ram_save_multifd_page(rs, block, offset);
2516 }
2517
2518 return ram_save_page(rs, pss, last_stage);
2519}
2520
2521/**
2522 * ram_save_host_page: save a whole host page
2523 *
2524 * Starting at *offset send pages up to the end of the current host
2525 * page. It's valid for the initial offset to point into the middle of
2526 * a host page in which case the remainder of the hostpage is sent.
2527 * Only dirty target pages are sent. Note that the host page size may
2528 * be a huge page for this block.
2529 * The saving stops at the boundary of the used_length of the block
2530 * if the RAMBlock isn't a multiple of the host page size.
2531 *
2532 * Returns the number of pages written or negative on error
2533 *
2534 * @rs: current RAM state
2535 * @ms: current migration state
2536 * @pss: data about the page we want to send
2537 * @last_stage: if we are at the completion stage
2538 */
2539static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2540 bool last_stage)
2541{
2542 int tmppages, pages = 0;
2543 size_t pagesize_bits =
2544 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2545
2546 if (ramblock_is_ignored(pss->block)) {
2547 error_report("block %s should not be migrated !", pss->block->idstr);
2548 return 0;
2549 }
2550
2551 do {
2552 /* Check the pages is dirty and if it is send it */
2553 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2554 pss->page++;
2555 continue;
2556 }
2557
2558 tmppages = ram_save_target_page(rs, pss, last_stage);
2559 if (tmppages < 0) {
2560 return tmppages;
2561 }
2562
2563 pages += tmppages;
2564 if (pss->block->unsentmap) {
2565 clear_bit(pss->page, pss->block->unsentmap);
2566 }
2567
2568 pss->page++;
2569 } while ((pss->page & (pagesize_bits - 1)) &&
2570 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2571
2572 /* The offset we leave with is the last one we looked at */
2573 pss->page--;
2574 return pages;
2575}
2576
2577/**
2578 * ram_find_and_save_block: finds a dirty page and sends it to f
2579 *
2580 * Called within an RCU critical section.
2581 *
2582 * Returns the number of pages written where zero means no dirty pages,
2583 * or negative on error
2584 *
2585 * @rs: current RAM state
2586 * @last_stage: if we are at the completion stage
2587 *
2588 * On systems where host-page-size > target-page-size it will send all the
2589 * pages in a host page that are dirty.
2590 */
2591
2592static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2593{
2594 PageSearchStatus pss;
2595 int pages = 0;
2596 bool again, found;
2597
2598 /* No dirty page as there is zero RAM */
2599 if (!ram_bytes_total()) {
2600 return pages;
2601 }
2602
2603 pss.block = rs->last_seen_block;
2604 pss.page = rs->last_page;
2605 pss.complete_round = false;
2606
2607 if (!pss.block) {
2608 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2609 }
2610
2611 do {
2612 again = true;
2613 found = get_queued_page(rs, &pss);
2614
2615 if (!found) {
2616 /* priority queue empty, so just search for something dirty */
2617 found = find_dirty_block(rs, &pss, &again);
2618 }
2619
2620 if (found) {
2621 pages = ram_save_host_page(rs, &pss, last_stage);
2622 }
2623 } while (!pages && again);
2624
2625 rs->last_seen_block = pss.block;
2626 rs->last_page = pss.page;
2627
2628 return pages;
2629}
2630
2631void acct_update_position(QEMUFile *f, size_t size, bool zero)
2632{
2633 uint64_t pages = size / TARGET_PAGE_SIZE;
2634
2635 if (zero) {
2636 ram_counters.duplicate += pages;
2637 } else {
2638 ram_counters.normal += pages;
2639 ram_counters.transferred += size;
2640 qemu_update_position(f, size);
2641 }
2642}
2643
2644static uint64_t ram_bytes_total_common(bool count_ignored)
2645{
2646 RAMBlock *block;
2647 uint64_t total = 0;
2648
2649 rcu_read_lock();
2650 if (count_ignored) {
2651 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2652 total += block->used_length;
2653 }
2654 } else {
2655 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2656 total += block->used_length;
2657 }
2658 }
2659 rcu_read_unlock();
2660 return total;
2661}
2662
2663uint64_t ram_bytes_total(void)
2664{
2665 return ram_bytes_total_common(false);
2666}
2667
2668static void xbzrle_load_setup(void)
2669{
2670 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2671}
2672
2673static void xbzrle_load_cleanup(void)
2674{
2675 g_free(XBZRLE.decoded_buf);
2676 XBZRLE.decoded_buf = NULL;
2677}
2678
2679static void ram_state_cleanup(RAMState **rsp)
2680{
2681 if (*rsp) {
2682 migration_page_queue_free(*rsp);
2683 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2684 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2685 g_free(*rsp);
2686 *rsp = NULL;
2687 }
2688}
2689
2690static void xbzrle_cleanup(void)
2691{
2692 XBZRLE_cache_lock();
2693 if (XBZRLE.cache) {
2694 cache_fini(XBZRLE.cache);
2695 g_free(XBZRLE.encoded_buf);
2696 g_free(XBZRLE.current_buf);
2697 g_free(XBZRLE.zero_target_page);
2698 XBZRLE.cache = NULL;
2699 XBZRLE.encoded_buf = NULL;
2700 XBZRLE.current_buf = NULL;
2701 XBZRLE.zero_target_page = NULL;
2702 }
2703 XBZRLE_cache_unlock();
2704}
2705
2706static void ram_save_cleanup(void *opaque)
2707{
2708 RAMState **rsp = opaque;
2709 RAMBlock *block;
2710
2711 /* caller have hold iothread lock or is in a bh, so there is
2712 * no writing race against the migration bitmap
2713 */
2714 memory_global_dirty_log_stop();
2715
2716 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2717 g_free(block->clear_bmap);
2718 block->clear_bmap = NULL;
2719 g_free(block->bmap);
2720 block->bmap = NULL;
2721 g_free(block->unsentmap);
2722 block->unsentmap = NULL;
2723 }
2724
2725 xbzrle_cleanup();
2726 compress_threads_save_cleanup();
2727 ram_state_cleanup(rsp);
2728}
2729
2730static void ram_state_reset(RAMState *rs)
2731{
2732 rs->last_seen_block = NULL;
2733 rs->last_sent_block = NULL;
2734 rs->last_page = 0;
2735 rs->last_version = ram_list.version;
2736 rs->ram_bulk_stage = true;
2737 rs->fpo_enabled = false;
2738}
2739
2740#define MAX_WAIT 50 /* ms, half buffered_file limit */
2741
2742/*
2743 * 'expected' is the value you expect the bitmap mostly to be full
2744 * of; it won't bother printing lines that are all this value.
2745 * If 'todump' is null the migration bitmap is dumped.
2746 */
2747void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2748 unsigned long pages)
2749{
2750 int64_t cur;
2751 int64_t linelen = 128;
2752 char linebuf[129];
2753
2754 for (cur = 0; cur < pages; cur += linelen) {
2755 int64_t curb;
2756 bool found = false;
2757 /*
2758 * Last line; catch the case where the line length
2759 * is longer than remaining ram
2760 */
2761 if (cur + linelen > pages) {
2762 linelen = pages - cur;
2763 }
2764 for (curb = 0; curb < linelen; curb++) {
2765 bool thisbit = test_bit(cur + curb, todump);
2766 linebuf[curb] = thisbit ? '1' : '.';
2767 found = found || (thisbit != expected);
2768 }
2769 if (found) {
2770 linebuf[curb] = '\0';
2771 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2772 }
2773 }
2774}
2775
2776/* **** functions for postcopy ***** */
2777
2778void ram_postcopy_migrated_memory_release(MigrationState *ms)
2779{
2780 struct RAMBlock *block;
2781
2782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2783 unsigned long *bitmap = block->bmap;
2784 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2785 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2786
2787 while (run_start < range) {
2788 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2789 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2790 (run_end - run_start) << TARGET_PAGE_BITS);
2791 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2792 }
2793 }
2794}
2795
2796/**
2797 * postcopy_send_discard_bm_ram: discard a RAMBlock
2798 *
2799 * Returns zero on success
2800 *
2801 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2802 * Note: At this point the 'unsentmap' is the processed bitmap combined
2803 * with the dirtymap; so a '1' means it's either dirty or unsent.
2804 *
2805 * @ms: current migration state
2806 * @pds: state for postcopy
2807 * @block: RAMBlock to discard
2808 */
2809static int postcopy_send_discard_bm_ram(MigrationState *ms,
2810 PostcopyDiscardState *pds,
2811 RAMBlock *block)
2812{
2813 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2814 unsigned long current;
2815 unsigned long *unsentmap = block->unsentmap;
2816
2817 for (current = 0; current < end; ) {
2818 unsigned long one = find_next_bit(unsentmap, end, current);
2819
2820 if (one <= end) {
2821 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2822 unsigned long discard_length;
2823
2824 if (zero >= end) {
2825 discard_length = end - one;
2826 } else {
2827 discard_length = zero - one;
2828 }
2829 if (discard_length) {
2830 postcopy_discard_send_range(ms, pds, one, discard_length);
2831 }
2832 current = one + discard_length;
2833 } else {
2834 current = one;
2835 }
2836 }
2837
2838 return 0;
2839}
2840
2841/**
2842 * postcopy_each_ram_send_discard: discard all RAMBlocks
2843 *
2844 * Returns 0 for success or negative for error
2845 *
2846 * Utility for the outgoing postcopy code.
2847 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2848 * passing it bitmap indexes and name.
2849 * (qemu_ram_foreach_block ends up passing unscaled lengths
2850 * which would mean postcopy code would have to deal with target page)
2851 *
2852 * @ms: current migration state
2853 */
2854static int postcopy_each_ram_send_discard(MigrationState *ms)
2855{
2856 struct RAMBlock *block;
2857 int ret;
2858
2859 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2860 PostcopyDiscardState *pds =
2861 postcopy_discard_send_init(ms, block->idstr);
2862
2863 /*
2864 * Postcopy sends chunks of bitmap over the wire, but it
2865 * just needs indexes at this point, avoids it having
2866 * target page specific code.
2867 */
2868 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2869 postcopy_discard_send_finish(ms, pds);
2870 if (ret) {
2871 return ret;
2872 }
2873 }
2874
2875 return 0;
2876}
2877
2878/**
2879 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2880 *
2881 * Helper for postcopy_chunk_hostpages; it's called twice to
2882 * canonicalize the two bitmaps, that are similar, but one is
2883 * inverted.
2884 *
2885 * Postcopy requires that all target pages in a hostpage are dirty or
2886 * clean, not a mix. This function canonicalizes the bitmaps.
2887 *
2888 * @ms: current migration state
2889 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2890 * otherwise we need to canonicalize partially dirty host pages
2891 * @block: block that contains the page we want to canonicalize
2892 * @pds: state for postcopy
2893 */
2894static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2895 RAMBlock *block,
2896 PostcopyDiscardState *pds)
2897{
2898 RAMState *rs = ram_state;
2899 unsigned long *bitmap = block->bmap;
2900 unsigned long *unsentmap = block->unsentmap;
2901 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2902 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2903 unsigned long run_start;
2904
2905 if (block->page_size == TARGET_PAGE_SIZE) {
2906 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2907 return;
2908 }
2909
2910 if (unsent_pass) {
2911 /* Find a sent page */
2912 run_start = find_next_zero_bit(unsentmap, pages, 0);
2913 } else {
2914 /* Find a dirty page */
2915 run_start = find_next_bit(bitmap, pages, 0);
2916 }
2917
2918 while (run_start < pages) {
2919 bool do_fixup = false;
2920 unsigned long fixup_start_addr;
2921 unsigned long host_offset;
2922
2923 /*
2924 * If the start of this run of pages is in the middle of a host
2925 * page, then we need to fixup this host page.
2926 */
2927 host_offset = run_start % host_ratio;
2928 if (host_offset) {
2929 do_fixup = true;
2930 run_start -= host_offset;
2931 fixup_start_addr = run_start;
2932 /* For the next pass */
2933 run_start = run_start + host_ratio;
2934 } else {
2935 /* Find the end of this run */
2936 unsigned long run_end;
2937 if (unsent_pass) {
2938 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2939 } else {
2940 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2941 }
2942 /*
2943 * If the end isn't at the start of a host page, then the
2944 * run doesn't finish at the end of a host page
2945 * and we need to discard.
2946 */
2947 host_offset = run_end % host_ratio;
2948 if (host_offset) {
2949 do_fixup = true;
2950 fixup_start_addr = run_end - host_offset;
2951 /*
2952 * This host page has gone, the next loop iteration starts
2953 * from after the fixup
2954 */
2955 run_start = fixup_start_addr + host_ratio;
2956 } else {
2957 /*
2958 * No discards on this iteration, next loop starts from
2959 * next sent/dirty page
2960 */
2961 run_start = run_end + 1;
2962 }
2963 }
2964
2965 if (do_fixup) {
2966 unsigned long page;
2967
2968 /* Tell the destination to discard this page */
2969 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2970 /* For the unsent_pass we:
2971 * discard partially sent pages
2972 * For the !unsent_pass (dirty) we:
2973 * discard partially dirty pages that were sent
2974 * (any partially sent pages were already discarded
2975 * by the previous unsent_pass)
2976 */
2977 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2978 host_ratio);
2979 }
2980
2981 /* Clean up the bitmap */
2982 for (page = fixup_start_addr;
2983 page < fixup_start_addr + host_ratio; page++) {
2984 /* All pages in this host page are now not sent */
2985 set_bit(page, unsentmap);
2986
2987 /*
2988 * Remark them as dirty, updating the count for any pages
2989 * that weren't previously dirty.
2990 */
2991 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2992 }
2993 }
2994
2995 if (unsent_pass) {
2996 /* Find the next sent page for the next iteration */
2997 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2998 } else {
2999 /* Find the next dirty page for the next iteration */
3000 run_start = find_next_bit(bitmap, pages, run_start);
3001 }
3002 }
3003}
3004
3005/**
3006 * postcopy_chunk_hostpages: discard any partially sent host page
3007 *
3008 * Utility for the outgoing postcopy code.
3009 *
3010 * Discard any partially sent host-page size chunks, mark any partially
3011 * dirty host-page size chunks as all dirty. In this case the host-page
3012 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3013 *
3014 * Returns zero on success
3015 *
3016 * @ms: current migration state
3017 * @block: block we want to work with
3018 */
3019static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3020{
3021 PostcopyDiscardState *pds =
3022 postcopy_discard_send_init(ms, block->idstr);
3023
3024 /* First pass: Discard all partially sent host pages */
3025 postcopy_chunk_hostpages_pass(ms, true, block, pds);
3026 /*
3027 * Second pass: Ensure that all partially dirty host pages are made
3028 * fully dirty.
3029 */
3030 postcopy_chunk_hostpages_pass(ms, false, block, pds);
3031
3032 postcopy_discard_send_finish(ms, pds);
3033 return 0;
3034}
3035
3036/**
3037 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3038 *
3039 * Returns zero on success
3040 *
3041 * Transmit the set of pages to be discarded after precopy to the target
3042 * these are pages that:
3043 * a) Have been previously transmitted but are now dirty again
3044 * b) Pages that have never been transmitted, this ensures that
3045 * any pages on the destination that have been mapped by background
3046 * tasks get discarded (transparent huge pages is the specific concern)
3047 * Hopefully this is pretty sparse
3048 *
3049 * @ms: current migration state
3050 */
3051int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3052{
3053 RAMState *rs = ram_state;
3054 RAMBlock *block;
3055 int ret;
3056
3057 rcu_read_lock();
3058
3059 /* This should be our last sync, the src is now paused */
3060 migration_bitmap_sync(rs);
3061
3062 /* Easiest way to make sure we don't resume in the middle of a host-page */
3063 rs->last_seen_block = NULL;
3064 rs->last_sent_block = NULL;
3065 rs->last_page = 0;
3066
3067 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3068 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3069 unsigned long *bitmap = block->bmap;
3070 unsigned long *unsentmap = block->unsentmap;
3071
3072 if (!unsentmap) {
3073 /* We don't have a safe way to resize the sentmap, so
3074 * if the bitmap was resized it will be NULL at this
3075 * point.
3076 */
3077 error_report("migration ram resized during precopy phase");
3078 rcu_read_unlock();
3079 return -EINVAL;
3080 }
3081 /* Deal with TPS != HPS and huge pages */
3082 ret = postcopy_chunk_hostpages(ms, block);
3083 if (ret) {
3084 rcu_read_unlock();
3085 return ret;
3086 }
3087
3088 /*
3089 * Update the unsentmap to be unsentmap = unsentmap | dirty
3090 */
3091 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3092#ifdef DEBUG_POSTCOPY
3093 ram_debug_dump_bitmap(unsentmap, true, pages);
3094#endif
3095 }
3096 trace_ram_postcopy_send_discard_bitmap();
3097
3098 ret = postcopy_each_ram_send_discard(ms);
3099 rcu_read_unlock();
3100
3101 return ret;
3102}
3103
3104/**
3105 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3106 *
3107 * Returns zero on success
3108 *
3109 * @rbname: name of the RAMBlock of the request. NULL means the
3110 * same that last one.
3111 * @start: RAMBlock starting page
3112 * @length: RAMBlock size
3113 */
3114int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3115{
3116 int ret = -1;
3117
3118 trace_ram_discard_range(rbname, start, length);
3119
3120 rcu_read_lock();
3121 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3122
3123 if (!rb) {
3124 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3125 goto err;
3126 }
3127
3128 /*
3129 * On source VM, we don't need to update the received bitmap since
3130 * we don't even have one.
3131 */
3132 if (rb->receivedmap) {
3133 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3134 length >> qemu_target_page_bits());
3135 }
3136
3137 ret = ram_block_discard_range(rb, start, length);
3138
3139err:
3140 rcu_read_unlock();
3141
3142 return ret;
3143}
3144
3145/*
3146 * For every allocation, we will try not to crash the VM if the
3147 * allocation failed.
3148 */
3149static int xbzrle_init(void)
3150{
3151 Error *local_err = NULL;
3152
3153 if (!migrate_use_xbzrle()) {
3154 return 0;
3155 }
3156
3157 XBZRLE_cache_lock();
3158
3159 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3160 if (!XBZRLE.zero_target_page) {
3161 error_report("%s: Error allocating zero page", __func__);
3162 goto err_out;
3163 }
3164
3165 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3166 TARGET_PAGE_SIZE, &local_err);
3167 if (!XBZRLE.cache) {
3168 error_report_err(local_err);
3169 goto free_zero_page;
3170 }
3171
3172 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3173 if (!XBZRLE.encoded_buf) {
3174 error_report("%s: Error allocating encoded_buf", __func__);
3175 goto free_cache;
3176 }
3177
3178 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3179 if (!XBZRLE.current_buf) {
3180 error_report("%s: Error allocating current_buf", __func__);
3181 goto free_encoded_buf;
3182 }
3183
3184 /* We are all good */
3185 XBZRLE_cache_unlock();
3186 return 0;
3187
3188free_encoded_buf:
3189 g_free(XBZRLE.encoded_buf);
3190 XBZRLE.encoded_buf = NULL;
3191free_cache:
3192 cache_fini(XBZRLE.cache);
3193 XBZRLE.cache = NULL;
3194free_zero_page:
3195 g_free(XBZRLE.zero_target_page);
3196 XBZRLE.zero_target_page = NULL;
3197err_out:
3198 XBZRLE_cache_unlock();
3199 return -ENOMEM;
3200}
3201
3202static int ram_state_init(RAMState **rsp)
3203{
3204 *rsp = g_try_new0(RAMState, 1);
3205
3206 if (!*rsp) {
3207 error_report("%s: Init ramstate fail", __func__);
3208 return -1;
3209 }
3210
3211 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3212 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3213 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3214
3215 /*
3216 * This must match with the initial values of dirty bitmap.
3217 * Currently we initialize the dirty bitmap to all zeros so
3218 * here the total dirty page count is zero.
3219 */
3220 (*rsp)->migration_dirty_pages = 0;
3221 ram_state_reset(*rsp);
3222
3223 return 0;
3224}
3225
3226static void ram_list_init_bitmaps(void)
3227{
3228 MigrationState *ms = migrate_get_current();
3229 RAMBlock *block;
3230 unsigned long pages;
3231 uint8_t shift;
3232
3233 /* Skip setting bitmap if there is no RAM */
3234 if (ram_bytes_total()) {
3235 shift = ms->clear_bitmap_shift;
3236 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3237 error_report("clear_bitmap_shift (%u) too big, using "
3238 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3239 shift = CLEAR_BITMAP_SHIFT_MAX;
3240 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3241 error_report("clear_bitmap_shift (%u) too small, using "
3242 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3243 shift = CLEAR_BITMAP_SHIFT_MIN;
3244 }
3245
3246 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3247 pages = block->max_length >> TARGET_PAGE_BITS;
3248 /*
3249 * The initial dirty bitmap for migration must be set with all
3250 * ones to make sure we'll migrate every guest RAM page to
3251 * destination.
3252 * Here we didn't set RAMBlock.bmap simply because it is already
3253 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in
3254 * ram_block_add, and that's where we'll sync the dirty bitmaps.
3255 * Here setting RAMBlock.bmap would be fine too but not necessary.
3256 */
3257 block->bmap = bitmap_new(pages);
3258 block->clear_bmap_shift = shift;
3259 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3260 if (migrate_postcopy_ram()) {
3261 block->unsentmap = bitmap_new(pages);
3262 bitmap_set(block->unsentmap, 0, pages);
3263 }
3264 }
3265 }
3266}
3267
3268static void ram_init_bitmaps(RAMState *rs)
3269{
3270 /* For memory_global_dirty_log_start below. */
3271 qemu_mutex_lock_iothread();
3272 qemu_mutex_lock_ramlist();
3273 rcu_read_lock();
3274
3275 ram_list_init_bitmaps();
3276 memory_global_dirty_log_start();
3277 migration_bitmap_sync_precopy(rs);
3278
3279 rcu_read_unlock();
3280 qemu_mutex_unlock_ramlist();
3281 qemu_mutex_unlock_iothread();
3282}
3283
3284static int ram_init_all(RAMState **rsp)
3285{
3286 if (ram_state_init(rsp)) {
3287 return -1;
3288 }
3289
3290 if (xbzrle_init()) {
3291 ram_state_cleanup(rsp);
3292 return -1;
3293 }
3294
3295 ram_init_bitmaps(*rsp);
3296
3297 return 0;
3298}
3299
3300static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3301{
3302 RAMBlock *block;
3303 uint64_t pages = 0;
3304
3305 /*
3306 * Postcopy is not using xbzrle/compression, so no need for that.
3307 * Also, since source are already halted, we don't need to care
3308 * about dirty page logging as well.
3309 */
3310
3311 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3312 pages += bitmap_count_one(block->bmap,
3313 block->used_length >> TARGET_PAGE_BITS);
3314 }
3315
3316 /* This may not be aligned with current bitmaps. Recalculate. */
3317 rs->migration_dirty_pages = pages;
3318
3319 rs->last_seen_block = NULL;
3320 rs->last_sent_block = NULL;
3321 rs->last_page = 0;
3322 rs->last_version = ram_list.version;
3323 /*
3324 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3325 * matter what we have sent.
3326 */
3327 rs->ram_bulk_stage = false;
3328
3329 /* Update RAMState cache of output QEMUFile */
3330 rs->f = out;
3331
3332 trace_ram_state_resume_prepare(pages);
3333}
3334
3335/*
3336 * This function clears bits of the free pages reported by the caller from the
3337 * migration dirty bitmap. @addr is the host address corresponding to the
3338 * start of the continuous guest free pages, and @len is the total bytes of
3339 * those pages.
3340 */
3341void qemu_guest_free_page_hint(void *addr, size_t len)
3342{
3343 RAMBlock *block;
3344 ram_addr_t offset;
3345 size_t used_len, start, npages;
3346 MigrationState *s = migrate_get_current();
3347
3348 /* This function is currently expected to be used during live migration */
3349 if (!migration_is_setup_or_active(s->state)) {
3350 return;
3351 }
3352
3353 for (; len > 0; len -= used_len, addr += used_len) {
3354 block = qemu_ram_block_from_host(addr, false, &offset);
3355 if (unlikely(!block || offset >= block->used_length)) {
3356 /*
3357 * The implementation might not support RAMBlock resize during
3358 * live migration, but it could happen in theory with future
3359 * updates. So we add a check here to capture that case.
3360 */
3361 error_report_once("%s unexpected error", __func__);
3362 return;
3363 }
3364
3365 if (len <= block->used_length - offset) {
3366 used_len = len;
3367 } else {
3368 used_len = block->used_length - offset;
3369 }
3370
3371 start = offset >> TARGET_PAGE_BITS;
3372 npages = used_len >> TARGET_PAGE_BITS;
3373
3374 qemu_mutex_lock(&ram_state->bitmap_mutex);
3375 ram_state->migration_dirty_pages -=
3376 bitmap_count_one_with_offset(block->bmap, start, npages);
3377 bitmap_clear(block->bmap, start, npages);
3378 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3379 }
3380}
3381
3382/*
3383 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3384 * long-running RCU critical section. When rcu-reclaims in the code
3385 * start to become numerous it will be necessary to reduce the
3386 * granularity of these critical sections.
3387 */
3388
3389/**
3390 * ram_save_setup: Setup RAM for migration
3391 *
3392 * Returns zero to indicate success and negative for error
3393 *
3394 * @f: QEMUFile where to send the data
3395 * @opaque: RAMState pointer
3396 */
3397static int ram_save_setup(QEMUFile *f, void *opaque)
3398{
3399 RAMState **rsp = opaque;
3400 RAMBlock *block;
3401
3402 if (compress_threads_save_setup()) {
3403 return -1;
3404 }
3405
3406 /* migration has already setup the bitmap, reuse it. */
3407 if (!migration_in_colo_state()) {
3408 if (ram_init_all(rsp) != 0) {
3409 compress_threads_save_cleanup();
3410 return -1;
3411 }
3412 }
3413 (*rsp)->f = f;
3414
3415 rcu_read_lock();
3416
3417 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3418
3419 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3420 qemu_put_byte(f, strlen(block->idstr));
3421 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3422 qemu_put_be64(f, block->used_length);
3423 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3424 qemu_put_be64(f, block->page_size);
3425 }
3426 if (migrate_ignore_shared()) {
3427 qemu_put_be64(f, block->mr->addr);
3428 }
3429 }
3430
3431 rcu_read_unlock();
3432
3433 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3434 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3435
3436 multifd_send_sync_main();
3437 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3438 qemu_fflush(f);
3439
3440 return 0;
3441}
3442
3443/**
3444 * ram_save_iterate: iterative stage for migration
3445 *
3446 * Returns zero to indicate success and negative for error
3447 *
3448 * @f: QEMUFile where to send the data
3449 * @opaque: RAMState pointer
3450 */
3451static int ram_save_iterate(QEMUFile *f, void *opaque)
3452{
3453 RAMState **temp = opaque;
3454 RAMState *rs = *temp;
3455 int ret;
3456 int i;
3457 int64_t t0;
3458 int done = 0;
3459
3460 if (blk_mig_bulk_active()) {
3461 /* Avoid transferring ram during bulk phase of block migration as
3462 * the bulk phase will usually take a long time and transferring
3463 * ram updates during that time is pointless. */
3464 goto out;
3465 }
3466
3467 rcu_read_lock();
3468 if (ram_list.version != rs->last_version) {
3469 ram_state_reset(rs);
3470 }
3471
3472 /* Read version before ram_list.blocks */
3473 smp_rmb();
3474
3475 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3476
3477 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3478 i = 0;
3479 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3480 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3481 int pages;
3482
3483 if (qemu_file_get_error(f)) {
3484 break;
3485 }
3486
3487 pages = ram_find_and_save_block(rs, false);
3488 /* no more pages to sent */
3489 if (pages == 0) {
3490 done = 1;
3491 break;
3492 }
3493
3494 if (pages < 0) {
3495 qemu_file_set_error(f, pages);
3496 break;
3497 }
3498
3499 rs->target_page_count += pages;
3500
3501 /* we want to check in the 1st loop, just in case it was the 1st time
3502 and we had to sync the dirty bitmap.
3503 qemu_clock_get_ns() is a bit expensive, so we only check each some
3504 iterations
3505 */
3506 if ((i & 63) == 0) {
3507 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3508 if (t1 > MAX_WAIT) {
3509 trace_ram_save_iterate_big_wait(t1, i);
3510 break;
3511 }
3512 }
3513 i++;
3514 }
3515 rcu_read_unlock();
3516
3517 /*
3518 * Must occur before EOS (or any QEMUFile operation)
3519 * because of RDMA protocol.
3520 */
3521 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3522
3523out:
3524 multifd_send_sync_main();
3525 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3526 qemu_fflush(f);
3527 ram_counters.transferred += 8;
3528
3529 ret = qemu_file_get_error(f);
3530 if (ret < 0) {
3531 return ret;
3532 }
3533
3534 return done;
3535}
3536
3537/**
3538 * ram_save_complete: function called to send the remaining amount of ram
3539 *
3540 * Returns zero to indicate success or negative on error
3541 *
3542 * Called with iothread lock
3543 *
3544 * @f: QEMUFile where to send the data
3545 * @opaque: RAMState pointer
3546 */
3547static int ram_save_complete(QEMUFile *f, void *opaque)
3548{
3549 RAMState **temp = opaque;
3550 RAMState *rs = *temp;
3551 int ret = 0;
3552
3553 rcu_read_lock();
3554
3555 if (!migration_in_postcopy()) {
3556 migration_bitmap_sync_precopy(rs);
3557 }
3558
3559 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3560
3561 /* try transferring iterative blocks of memory */
3562
3563 /* flush all remaining blocks regardless of rate limiting */
3564 while (true) {
3565 int pages;
3566
3567 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3568 /* no more blocks to sent */
3569 if (pages == 0) {
3570 break;
3571 }
3572 if (pages < 0) {
3573 ret = pages;
3574 break;
3575 }
3576 }
3577
3578 flush_compressed_data(rs);
3579 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3580
3581 rcu_read_unlock();
3582
3583 multifd_send_sync_main();
3584 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3585 qemu_fflush(f);
3586
3587 return ret;
3588}
3589
3590static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3591 uint64_t *res_precopy_only,
3592 uint64_t *res_compatible,
3593 uint64_t *res_postcopy_only)
3594{
3595 RAMState **temp = opaque;
3596 RAMState *rs = *temp;
3597 uint64_t remaining_size;
3598
3599 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3600
3601 if (!migration_in_postcopy() &&
3602 remaining_size < max_size) {
3603 qemu_mutex_lock_iothread();
3604 rcu_read_lock();
3605 migration_bitmap_sync_precopy(rs);
3606 rcu_read_unlock();
3607 qemu_mutex_unlock_iothread();
3608 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3609 }
3610
3611 if (migrate_postcopy_ram()) {
3612 /* We can do postcopy, and all the data is postcopiable */
3613 *res_compatible += remaining_size;
3614 } else {
3615 *res_precopy_only += remaining_size;
3616 }
3617}
3618
3619static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3620{
3621 unsigned int xh_len;
3622 int xh_flags;
3623 uint8_t *loaded_data;
3624
3625 /* extract RLE header */
3626 xh_flags = qemu_get_byte(f);
3627 xh_len = qemu_get_be16(f);
3628
3629 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3630 error_report("Failed to load XBZRLE page - wrong compression!");
3631 return -1;
3632 }
3633
3634 if (xh_len > TARGET_PAGE_SIZE) {
3635 error_report("Failed to load XBZRLE page - len overflow!");
3636 return -1;
3637 }
3638 loaded_data = XBZRLE.decoded_buf;
3639 /* load data and decode */
3640 /* it can change loaded_data to point to an internal buffer */
3641 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3642
3643 /* decode RLE */
3644 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3645 TARGET_PAGE_SIZE) == -1) {
3646 error_report("Failed to load XBZRLE page - decode error!");
3647 return -1;
3648 }
3649
3650 return 0;
3651}
3652
3653/**
3654 * ram_block_from_stream: read a RAMBlock id from the migration stream
3655 *
3656 * Must be called from within a rcu critical section.
3657 *
3658 * Returns a pointer from within the RCU-protected ram_list.
3659 *
3660 * @f: QEMUFile where to read the data from
3661 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3662 */
3663static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3664{
3665 static RAMBlock *block = NULL;
3666 char id[256];
3667 uint8_t len;
3668
3669 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3670 if (!block) {
3671 error_report("Ack, bad migration stream!");
3672 return NULL;
3673 }
3674 return block;
3675 }
3676
3677 len = qemu_get_byte(f);
3678 qemu_get_buffer(f, (uint8_t *)id, len);
3679 id[len] = 0;
3680
3681 block = qemu_ram_block_by_name(id);
3682 if (!block) {
3683 error_report("Can't find block %s", id);
3684 return NULL;
3685 }
3686
3687 if (ramblock_is_ignored(block)) {
3688 error_report("block %s should not be migrated !", id);
3689 return NULL;
3690 }
3691
3692 return block;
3693}
3694
3695static inline void *host_from_ram_block_offset(RAMBlock *block,
3696 ram_addr_t offset)
3697{
3698 if (!offset_in_ramblock(block, offset)) {
3699 return NULL;
3700 }
3701
3702 return block->host + offset;
3703}
3704
3705static inline void *colo_cache_from_block_offset(RAMBlock *block,
3706 ram_addr_t offset)
3707{
3708 if (!offset_in_ramblock(block, offset)) {
3709 return NULL;
3710 }
3711 if (!block->colo_cache) {
3712 error_report("%s: colo_cache is NULL in block :%s",
3713 __func__, block->idstr);
3714 return NULL;
3715 }
3716
3717 /*
3718 * During colo checkpoint, we need bitmap of these migrated pages.
3719 * It help us to decide which pages in ram cache should be flushed
3720 * into VM's RAM later.
3721 */
3722 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3723 ram_state->migration_dirty_pages++;
3724 }
3725 return block->colo_cache + offset;
3726}
3727
3728/**
3729 * ram_handle_compressed: handle the zero page case
3730 *
3731 * If a page (or a whole RDMA chunk) has been
3732 * determined to be zero, then zap it.
3733 *
3734 * @host: host address for the zero page
3735 * @ch: what the page is filled from. We only support zero
3736 * @size: size of the zero page
3737 */
3738void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3739{
3740 if (ch != 0 || !is_zero_range(host, size)) {
3741 memset(host, ch, size);
3742 }
3743}
3744
3745/* return the size after decompression, or negative value on error */
3746static int
3747qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3748 const uint8_t *source, size_t source_len)
3749{
3750 int err;
3751
3752 err = inflateReset(stream);
3753 if (err != Z_OK) {
3754 return -1;
3755 }
3756
3757 stream->avail_in = source_len;
3758 stream->next_in = (uint8_t *)source;
3759 stream->avail_out = dest_len;
3760 stream->next_out = dest;
3761
3762 err = inflate(stream, Z_NO_FLUSH);
3763 if (err != Z_STREAM_END) {
3764 return -1;
3765 }
3766
3767 return stream->total_out;
3768}
3769
3770static void *do_data_decompress(void *opaque)
3771{
3772 DecompressParam *param = opaque;
3773 unsigned long pagesize;
3774 uint8_t *des;
3775 int len, ret;
3776
3777 qemu_mutex_lock(&param->mutex);
3778 while (!param->quit) {
3779 if (param->des) {
3780 des = param->des;
3781 len = param->len;
3782 param->des = 0;
3783 qemu_mutex_unlock(&param->mutex);
3784
3785 pagesize = TARGET_PAGE_SIZE;
3786
3787 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3788 param->compbuf, len);
3789 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3790 error_report("decompress data failed");
3791 qemu_file_set_error(decomp_file, ret);
3792 }
3793
3794 qemu_mutex_lock(&decomp_done_lock);
3795 param->done = true;
3796 qemu_cond_signal(&decomp_done_cond);
3797 qemu_mutex_unlock(&decomp_done_lock);
3798
3799 qemu_mutex_lock(&param->mutex);
3800 } else {
3801 qemu_cond_wait(&param->cond, &param->mutex);
3802 }
3803 }
3804 qemu_mutex_unlock(&param->mutex);
3805
3806 return NULL;
3807}
3808
3809static int wait_for_decompress_done(void)
3810{
3811 int idx, thread_count;
3812
3813 if (!migrate_use_compression()) {
3814 return 0;
3815 }
3816
3817 thread_count = migrate_decompress_threads();
3818 qemu_mutex_lock(&decomp_done_lock);
3819 for (idx = 0; idx < thread_count; idx++) {
3820 while (!decomp_param[idx].done) {
3821 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3822 }
3823 }
3824 qemu_mutex_unlock(&decomp_done_lock);
3825 return qemu_file_get_error(decomp_file);
3826}
3827
3828static void compress_threads_load_cleanup(void)
3829{
3830 int i, thread_count;
3831
3832 if (!migrate_use_compression()) {
3833 return;
3834 }
3835 thread_count = migrate_decompress_threads();
3836 for (i = 0; i < thread_count; i++) {
3837 /*
3838 * we use it as a indicator which shows if the thread is
3839 * properly init'd or not
3840 */
3841 if (!decomp_param[i].compbuf) {
3842 break;
3843 }
3844
3845 qemu_mutex_lock(&decomp_param[i].mutex);
3846 decomp_param[i].quit = true;
3847 qemu_cond_signal(&decomp_param[i].cond);
3848 qemu_mutex_unlock(&decomp_param[i].mutex);
3849 }
3850 for (i = 0; i < thread_count; i++) {
3851 if (!decomp_param[i].compbuf) {
3852 break;
3853 }
3854
3855 qemu_thread_join(decompress_threads + i);
3856 qemu_mutex_destroy(&decomp_param[i].mutex);
3857 qemu_cond_destroy(&decomp_param[i].cond);
3858 inflateEnd(&decomp_param[i].stream);
3859 g_free(decomp_param[i].compbuf);
3860 decomp_param[i].compbuf = NULL;
3861 }
3862 g_free(decompress_threads);
3863 g_free(decomp_param);
3864 decompress_threads = NULL;
3865 decomp_param = NULL;
3866 decomp_file = NULL;
3867}
3868
3869static int compress_threads_load_setup(QEMUFile *f)
3870{
3871 int i, thread_count;
3872
3873 if (!migrate_use_compression()) {
3874 return 0;
3875 }
3876
3877 thread_count = migrate_decompress_threads();
3878 decompress_threads = g_new0(QemuThread, thread_count);
3879 decomp_param = g_new0(DecompressParam, thread_count);
3880 qemu_mutex_init(&decomp_done_lock);
3881 qemu_cond_init(&decomp_done_cond);
3882 decomp_file = f;
3883 for (i = 0; i < thread_count; i++) {
3884 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3885 goto exit;
3886 }
3887
3888 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3889 qemu_mutex_init(&decomp_param[i].mutex);
3890 qemu_cond_init(&decomp_param[i].cond);
3891 decomp_param[i].done = true;
3892 decomp_param[i].quit = false;
3893 qemu_thread_create(decompress_threads + i, "decompress",
3894 do_data_decompress, decomp_param + i,
3895 QEMU_THREAD_JOINABLE);
3896 }
3897 return 0;
3898exit:
3899 compress_threads_load_cleanup();
3900 return -1;
3901}
3902
3903static void decompress_data_with_multi_threads(QEMUFile *f,
3904 void *host, int len)
3905{
3906 int idx, thread_count;
3907
3908 thread_count = migrate_decompress_threads();
3909 qemu_mutex_lock(&decomp_done_lock);
3910 while (true) {
3911 for (idx = 0; idx < thread_count; idx++) {
3912 if (decomp_param[idx].done) {
3913 decomp_param[idx].done = false;
3914 qemu_mutex_lock(&decomp_param[idx].mutex);
3915 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3916 decomp_param[idx].des = host;
3917 decomp_param[idx].len = len;
3918 qemu_cond_signal(&decomp_param[idx].cond);
3919 qemu_mutex_unlock(&decomp_param[idx].mutex);
3920 break;
3921 }
3922 }
3923 if (idx < thread_count) {
3924 break;
3925 } else {
3926 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3927 }
3928 }
3929 qemu_mutex_unlock(&decomp_done_lock);
3930}
3931
3932/*
3933 * colo cache: this is for secondary VM, we cache the whole
3934 * memory of the secondary VM, it is need to hold the global lock
3935 * to call this helper.
3936 */
3937int colo_init_ram_cache(void)
3938{
3939 RAMBlock *block;
3940
3941 rcu_read_lock();
3942 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3943 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3944 NULL,
3945 false);
3946 if (!block->colo_cache) {
3947 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3948 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3949 block->used_length);
3950 goto out_locked;
3951 }
3952 memcpy(block->colo_cache, block->host, block->used_length);
3953 }
3954 rcu_read_unlock();
3955 /*
3956 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3957 * with to decide which page in cache should be flushed into SVM's RAM. Here
3958 * we use the same name 'ram_bitmap' as for migration.
3959 */
3960 if (ram_bytes_total()) {
3961 RAMBlock *block;
3962
3963 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3964 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3965
3966 block->bmap = bitmap_new(pages);
3967 bitmap_set(block->bmap, 0, pages);
3968 }
3969 }
3970 ram_state = g_new0(RAMState, 1);
3971 ram_state->migration_dirty_pages = 0;
3972 qemu_mutex_init(&ram_state->bitmap_mutex);
3973 memory_global_dirty_log_start();
3974
3975 return 0;
3976
3977out_locked:
3978
3979 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3980 if (block->colo_cache) {
3981 qemu_anon_ram_free(block->colo_cache, block->used_length);
3982 block->colo_cache = NULL;
3983 }
3984 }
3985
3986 rcu_read_unlock();
3987 return -errno;
3988}
3989
3990/* It is need to hold the global lock to call this helper */
3991void colo_release_ram_cache(void)
3992{
3993 RAMBlock *block;
3994
3995 memory_global_dirty_log_stop();
3996 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3997 g_free(block->bmap);
3998 block->bmap = NULL;
3999 }
4000
4001 rcu_read_lock();
4002
4003 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4004 if (block->colo_cache) {
4005 qemu_anon_ram_free(block->colo_cache, block->used_length);
4006 block->colo_cache = NULL;
4007 }
4008 }
4009
4010 rcu_read_unlock();
4011 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4012 g_free(ram_state);
4013 ram_state = NULL;
4014}
4015
4016/**
4017 * ram_load_setup: Setup RAM for migration incoming side
4018 *
4019 * Returns zero to indicate success and negative for error
4020 *
4021 * @f: QEMUFile where to receive the data
4022 * @opaque: RAMState pointer
4023 */
4024static int ram_load_setup(QEMUFile *f, void *opaque)
4025{
4026 if (compress_threads_load_setup(f)) {
4027 return -1;
4028 }
4029
4030 xbzrle_load_setup();
4031 ramblock_recv_map_init();
4032
4033 return 0;
4034}
4035
4036static int ram_load_cleanup(void *opaque)
4037{
4038 RAMBlock *rb;
4039
4040 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4041 if (ramblock_is_pmem(rb)) {
4042 pmem_persist(rb->host, rb->used_length);
4043 }
4044 }
4045
4046 xbzrle_load_cleanup();
4047 compress_threads_load_cleanup();
4048
4049 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4050 g_free(rb->receivedmap);
4051 rb->receivedmap = NULL;
4052 }
4053
4054 return 0;
4055}
4056
4057/**
4058 * ram_postcopy_incoming_init: allocate postcopy data structures
4059 *
4060 * Returns 0 for success and negative if there was one error
4061 *
4062 * @mis: current migration incoming state
4063 *
4064 * Allocate data structures etc needed by incoming migration with
4065 * postcopy-ram. postcopy-ram's similarly names
4066 * postcopy_ram_incoming_init does the work.
4067 */
4068int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4069{
4070 return postcopy_ram_incoming_init(mis);
4071}
4072
4073/**
4074 * ram_load_postcopy: load a page in postcopy case
4075 *
4076 * Returns 0 for success or -errno in case of error
4077 *
4078 * Called in postcopy mode by ram_load().
4079 * rcu_read_lock is taken prior to this being called.
4080 *
4081 * @f: QEMUFile where to send the data
4082 */
4083static int ram_load_postcopy(QEMUFile *f)
4084{
4085 int flags = 0, ret = 0;
4086 bool place_needed = false;
4087 bool matches_target_page_size = false;
4088 MigrationIncomingState *mis = migration_incoming_get_current();
4089 /* Temporary page that is later 'placed' */
4090 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4091 void *last_host = NULL;
4092 bool all_zero = false;
4093
4094 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4095 ram_addr_t addr;
4096 void *host = NULL;
4097 void *page_buffer = NULL;
4098 void *place_source = NULL;
4099 RAMBlock *block = NULL;
4100 uint8_t ch;
4101
4102 addr = qemu_get_be64(f);
4103
4104 /*
4105 * If qemu file error, we should stop here, and then "addr"
4106 * may be invalid
4107 */
4108 ret = qemu_file_get_error(f);
4109 if (ret) {
4110 break;
4111 }
4112
4113 flags = addr & ~TARGET_PAGE_MASK;
4114 addr &= TARGET_PAGE_MASK;
4115
4116 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4117 place_needed = false;
4118 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4119 block = ram_block_from_stream(f, flags);
4120
4121 host = host_from_ram_block_offset(block, addr);
4122 if (!host) {
4123 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4124 ret = -EINVAL;
4125 break;
4126 }
4127 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4128 /*
4129 * Postcopy requires that we place whole host pages atomically;
4130 * these may be huge pages for RAMBlocks that are backed by
4131 * hugetlbfs.
4132 * To make it atomic, the data is read into a temporary page
4133 * that's moved into place later.
4134 * The migration protocol uses, possibly smaller, target-pages
4135 * however the source ensures it always sends all the components
4136 * of a host page in order.
4137 */
4138 page_buffer = postcopy_host_page +
4139 ((uintptr_t)host & (block->page_size - 1));
4140 /* If all TP are zero then we can optimise the place */
4141 if (!((uintptr_t)host & (block->page_size - 1))) {
4142 all_zero = true;
4143 } else {
4144 /* not the 1st TP within the HP */
4145 if (host != (last_host + TARGET_PAGE_SIZE)) {
4146 error_report("Non-sequential target page %p/%p",
4147 host, last_host);
4148 ret = -EINVAL;
4149 break;
4150 }
4151 }
4152
4153
4154 /*
4155 * If it's the last part of a host page then we place the host
4156 * page
4157 */
4158 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4159 (block->page_size - 1)) == 0;
4160 place_source = postcopy_host_page;
4161 }
4162 last_host = host;
4163
4164 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4165 case RAM_SAVE_FLAG_ZERO:
4166 ch = qemu_get_byte(f);
4167 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4168 if (ch) {
4169 all_zero = false;
4170 }
4171 break;
4172
4173 case RAM_SAVE_FLAG_PAGE:
4174 all_zero = false;
4175 if (!matches_target_page_size) {
4176 /* For huge pages, we always use temporary buffer */
4177 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4178 } else {
4179 /*
4180 * For small pages that matches target page size, we
4181 * avoid the qemu_file copy. Instead we directly use
4182 * the buffer of QEMUFile to place the page. Note: we
4183 * cannot do any QEMUFile operation before using that
4184 * buffer to make sure the buffer is valid when
4185 * placing the page.
4186 */
4187 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4188 TARGET_PAGE_SIZE);
4189 }
4190 break;
4191 case RAM_SAVE_FLAG_EOS:
4192 /* normal exit */
4193 multifd_recv_sync_main();
4194 break;
4195 default:
4196 error_report("Unknown combination of migration flags: %#x"
4197 " (postcopy mode)", flags);
4198 ret = -EINVAL;
4199 break;
4200 }
4201
4202 /* Detect for any possible file errors */
4203 if (!ret && qemu_file_get_error(f)) {
4204 ret = qemu_file_get_error(f);
4205 }
4206
4207 if (!ret && place_needed) {
4208 /* This gets called at the last target page in the host page */
4209 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4210
4211 if (all_zero) {
4212 ret = postcopy_place_page_zero(mis, place_dest,
4213 block);
4214 } else {
4215 ret = postcopy_place_page(mis, place_dest,
4216 place_source, block);
4217 }
4218 }
4219 }
4220
4221 return ret;
4222}
4223
4224static bool postcopy_is_advised(void)
4225{
4226 PostcopyState ps = postcopy_state_get();
4227 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4228}
4229
4230static bool postcopy_is_running(void)
4231{
4232 PostcopyState ps = postcopy_state_get();
4233 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4234}
4235
4236/*
4237 * Flush content of RAM cache into SVM's memory.
4238 * Only flush the pages that be dirtied by PVM or SVM or both.
4239 */
4240static void colo_flush_ram_cache(void)
4241{
4242 RAMBlock *block = NULL;
4243 void *dst_host;
4244 void *src_host;
4245 unsigned long offset = 0;
4246
4247 memory_global_dirty_log_sync();
4248 rcu_read_lock();
4249 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4250 migration_bitmap_sync_range(ram_state, block, block->used_length);
4251 }
4252 rcu_read_unlock();
4253
4254 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4255 rcu_read_lock();
4256 block = QLIST_FIRST_RCU(&ram_list.blocks);
4257
4258 while (block) {
4259 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4260
4261 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4262 offset = 0;
4263 block = QLIST_NEXT_RCU(block, next);
4264 } else {
4265 migration_bitmap_clear_dirty(ram_state, block, offset);
4266 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4267 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4268 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4269 }
4270 }
4271
4272 rcu_read_unlock();
4273 trace_colo_flush_ram_cache_end();
4274}
4275
4276static int ram_load(QEMUFile *f, void *opaque, int version_id)
4277{
4278 int flags = 0, ret = 0, invalid_flags = 0;
4279 static uint64_t seq_iter;
4280 int len = 0;
4281 /*
4282 * If system is running in postcopy mode, page inserts to host memory must
4283 * be atomic
4284 */
4285 bool postcopy_running = postcopy_is_running();
4286 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4287 bool postcopy_advised = postcopy_is_advised();
4288
4289 seq_iter++;
4290
4291 if (version_id != 4) {
4292 ret = -EINVAL;
4293 }
4294
4295 if (!migrate_use_compression()) {
4296 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4297 }
4298 /* This RCU critical section can be very long running.
4299 * When RCU reclaims in the code start to become numerous,
4300 * it will be necessary to reduce the granularity of this
4301 * critical section.
4302 */
4303 rcu_read_lock();
4304
4305 if (postcopy_running) {
4306 ret = ram_load_postcopy(f);
4307 }
4308
4309 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4310 ram_addr_t addr, total_ram_bytes;
4311 void *host = NULL;
4312 uint8_t ch;
4313
4314 addr = qemu_get_be64(f);
4315 flags = addr & ~TARGET_PAGE_MASK;
4316 addr &= TARGET_PAGE_MASK;
4317
4318 if (flags & invalid_flags) {
4319 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4320 error_report("Received an unexpected compressed page");
4321 }
4322
4323 ret = -EINVAL;
4324 break;
4325 }
4326
4327 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4328 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4329 RAMBlock *block = ram_block_from_stream(f, flags);
4330
4331 /*
4332 * After going into COLO, we should load the Page into colo_cache.
4333 */
4334 if (migration_incoming_in_colo_state()) {
4335 host = colo_cache_from_block_offset(block, addr);
4336 } else {
4337 host = host_from_ram_block_offset(block, addr);
4338 }
4339 if (!host) {
4340 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4341 ret = -EINVAL;
4342 break;
4343 }
4344
4345 if (!migration_incoming_in_colo_state()) {
4346 ramblock_recv_bitmap_set(block, host);
4347 }
4348
4349 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4350 }
4351
4352 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4353 case RAM_SAVE_FLAG_MEM_SIZE:
4354 /* Synchronize RAM block list */
4355 total_ram_bytes = addr;
4356 while (!ret && total_ram_bytes) {
4357 RAMBlock *block;
4358 char id[256];
4359 ram_addr_t length;
4360
4361 len = qemu_get_byte(f);
4362 qemu_get_buffer(f, (uint8_t *)id, len);
4363 id[len] = 0;
4364 length = qemu_get_be64(f);
4365
4366 block = qemu_ram_block_by_name(id);
4367 if (block && !qemu_ram_is_migratable(block)) {
4368 error_report("block %s should not be migrated !", id);
4369 ret = -EINVAL;
4370 } else if (block) {
4371 if (length != block->used_length) {
4372 Error *local_err = NULL;
4373
4374 ret = qemu_ram_resize(block, length,
4375 &local_err);
4376 if (local_err) {
4377 error_report_err(local_err);
4378 }
4379 }
4380 /* For postcopy we need to check hugepage sizes match */
4381 if (postcopy_advised &&
4382 block->page_size != qemu_host_page_size) {
4383 uint64_t remote_page_size = qemu_get_be64(f);
4384 if (remote_page_size != block->page_size) {
4385 error_report("Mismatched RAM page size %s "
4386 "(local) %zd != %" PRId64,
4387 id, block->page_size,
4388 remote_page_size);
4389 ret = -EINVAL;
4390 }
4391 }
4392 if (migrate_ignore_shared()) {
4393 hwaddr addr = qemu_get_be64(f);
4394 if (ramblock_is_ignored(block) &&
4395 block->mr->addr != addr) {
4396 error_report("Mismatched GPAs for block %s "
4397 "%" PRId64 "!= %" PRId64,
4398 id, (uint64_t)addr,
4399 (uint64_t)block->mr->addr);
4400 ret = -EINVAL;
4401 }
4402 }
4403 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4404 block->idstr);
4405 } else {
4406 error_report("Unknown ramblock \"%s\", cannot "
4407 "accept migration", id);
4408 ret = -EINVAL;
4409 }
4410
4411 total_ram_bytes -= length;
4412 }
4413 break;
4414
4415 case RAM_SAVE_FLAG_ZERO:
4416 ch = qemu_get_byte(f);
4417 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4418 break;
4419
4420 case RAM_SAVE_FLAG_PAGE:
4421 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4422 break;
4423
4424 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4425 len = qemu_get_be32(f);
4426 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4427 error_report("Invalid compressed data length: %d", len);
4428 ret = -EINVAL;
4429 break;
4430 }
4431 decompress_data_with_multi_threads(f, host, len);
4432 break;
4433
4434 case RAM_SAVE_FLAG_XBZRLE:
4435 if (load_xbzrle(f, addr, host) < 0) {
4436 error_report("Failed to decompress XBZRLE page at "
4437 RAM_ADDR_FMT, addr);
4438 ret = -EINVAL;
4439 break;
4440 }
4441 break;
4442 case RAM_SAVE_FLAG_EOS:
4443 /* normal exit */
4444 multifd_recv_sync_main();
4445 break;
4446 default:
4447 if (flags & RAM_SAVE_FLAG_HOOK) {
4448 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4449 } else {
4450 error_report("Unknown combination of migration flags: %#x",
4451 flags);
4452 ret = -EINVAL;
4453 }
4454 }
4455 if (!ret) {
4456 ret = qemu_file_get_error(f);
4457 }
4458 }
4459
4460 ret |= wait_for_decompress_done();
4461 rcu_read_unlock();
4462 trace_ram_load_complete(ret, seq_iter);
4463
4464 if (!ret && migration_incoming_in_colo_state()) {
4465 colo_flush_ram_cache();
4466 }
4467 return ret;
4468}
4469
4470static bool ram_has_postcopy(void *opaque)
4471{
4472 RAMBlock *rb;
4473 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4474 if (ramblock_is_pmem(rb)) {
4475 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4476 "is not supported now!", rb->idstr, rb->host);
4477 return false;
4478 }
4479 }
4480
4481 return migrate_postcopy_ram();
4482}
4483
4484/* Sync all the dirty bitmap with destination VM. */
4485static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4486{
4487 RAMBlock *block;
4488 QEMUFile *file = s->to_dst_file;
4489 int ramblock_count = 0;
4490
4491 trace_ram_dirty_bitmap_sync_start();
4492
4493 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4494 qemu_savevm_send_recv_bitmap(file, block->idstr);
4495 trace_ram_dirty_bitmap_request(block->idstr);
4496 ramblock_count++;
4497 }
4498
4499 trace_ram_dirty_bitmap_sync_wait();
4500
4501 /* Wait until all the ramblocks' dirty bitmap synced */
4502 while (ramblock_count--) {
4503 qemu_sem_wait(&s->rp_state.rp_sem);
4504 }
4505
4506 trace_ram_dirty_bitmap_sync_complete();
4507
4508 return 0;
4509}
4510
4511static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4512{
4513 qemu_sem_post(&s->rp_state.rp_sem);
4514}
4515
4516/*
4517 * Read the received bitmap, revert it as the initial dirty bitmap.
4518 * This is only used when the postcopy migration is paused but wants
4519 * to resume from a middle point.
4520 */
4521int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4522{
4523 int ret = -EINVAL;
4524 QEMUFile *file = s->rp_state.from_dst_file;
4525 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4526 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4527 uint64_t size, end_mark;
4528
4529 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4530
4531 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4532 error_report("%s: incorrect state %s", __func__,
4533 MigrationStatus_str(s->state));
4534 return -EINVAL;
4535 }
4536
4537 /*
4538 * Note: see comments in ramblock_recv_bitmap_send() on why we
4539 * need the endianess convertion, and the paddings.
4540 */
4541 local_size = ROUND_UP(local_size, 8);
4542
4543 /* Add paddings */
4544 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4545
4546 size = qemu_get_be64(file);
4547
4548 /* The size of the bitmap should match with our ramblock */
4549 if (size != local_size) {
4550 error_report("%s: ramblock '%s' bitmap size mismatch "
4551 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4552 block->idstr, size, local_size);
4553 ret = -EINVAL;
4554 goto out;
4555 }
4556
4557 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4558 end_mark = qemu_get_be64(file);
4559
4560 ret = qemu_file_get_error(file);
4561 if (ret || size != local_size) {
4562 error_report("%s: read bitmap failed for ramblock '%s': %d"
4563 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4564 __func__, block->idstr, ret, local_size, size);
4565 ret = -EIO;
4566 goto out;
4567 }
4568
4569 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4570 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4571 __func__, block->idstr, end_mark);
4572 ret = -EINVAL;
4573 goto out;
4574 }
4575
4576 /*
4577 * Endianess convertion. We are during postcopy (though paused).
4578 * The dirty bitmap won't change. We can directly modify it.
4579 */
4580 bitmap_from_le(block->bmap, le_bitmap, nbits);
4581
4582 /*
4583 * What we received is "received bitmap". Revert it as the initial
4584 * dirty bitmap for this ramblock.
4585 */
4586 bitmap_complement(block->bmap, block->bmap, nbits);
4587
4588 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4589
4590 /*
4591 * We succeeded to sync bitmap for current ramblock. If this is
4592 * the last one to sync, we need to notify the main send thread.
4593 */
4594 ram_dirty_bitmap_reload_notify(s);
4595
4596 ret = 0;
4597out:
4598 g_free(le_bitmap);
4599 return ret;
4600}
4601
4602static int ram_resume_prepare(MigrationState *s, void *opaque)
4603{
4604 RAMState *rs = *(RAMState **)opaque;
4605 int ret;
4606
4607 ret = ram_dirty_bitmap_sync_all(s, rs);
4608 if (ret) {
4609 return ret;
4610 }
4611
4612 ram_state_resume_prepare(rs, s->to_dst_file);
4613
4614 return 0;
4615}
4616
4617static SaveVMHandlers savevm_ram_handlers = {
4618 .save_setup = ram_save_setup,
4619 .save_live_iterate = ram_save_iterate,
4620 .save_live_complete_postcopy = ram_save_complete,
4621 .save_live_complete_precopy = ram_save_complete,
4622 .has_postcopy = ram_has_postcopy,
4623 .save_live_pending = ram_save_pending,
4624 .load_state = ram_load,
4625 .save_cleanup = ram_save_cleanup,
4626 .load_setup = ram_load_setup,
4627 .load_cleanup = ram_load_cleanup,
4628 .resume_prepare = ram_resume_prepare,
4629};
4630
4631void ram_mig_init(void)
4632{
4633 qemu_mutex_init(&XBZRLE.lock);
4634 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4635}