]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/huge_memory.c
mm: uninline and cleanup page-mapping related helpers
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
21#include <linux/freezer.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/migrate.h>
25#include <linux/hashtable.h>
26
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
31/*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39unsigned long transparent_hugepage_flags __read_mostly =
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
69static int khugepaged_slab_init(void);
70static void khugepaged_slab_exit(void);
71
72#define MM_SLOTS_HASH_BITS 10
73static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74
75static struct kmem_cache *mm_slot_cache __read_mostly;
76
77/**
78 * struct mm_slot - hash lookup from mm to mm_slot
79 * @hash: hash collision list
80 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
81 * @mm: the mm that this information is valid for
82 */
83struct mm_slot {
84 struct hlist_node hash;
85 struct list_head mm_node;
86 struct mm_struct *mm;
87};
88
89/**
90 * struct khugepaged_scan - cursor for scanning
91 * @mm_head: the head of the mm list to scan
92 * @mm_slot: the current mm_slot we are scanning
93 * @address: the next address inside that to be scanned
94 *
95 * There is only the one khugepaged_scan instance of this cursor structure.
96 */
97struct khugepaged_scan {
98 struct list_head mm_head;
99 struct mm_slot *mm_slot;
100 unsigned long address;
101};
102static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104};
105
106
107static int set_recommended_min_free_kbytes(void)
108{
109 struct zone *zone;
110 int nr_zones = 0;
111 unsigned long recommended_min;
112
113 /* khugepaged thread has stopped to failed to start */
114 if (!khugepaged_thread)
115 return 0;
116
117 for_each_populated_zone(zone)
118 nr_zones++;
119
120 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
121 recommended_min = pageblock_nr_pages * nr_zones * 2;
122
123 /*
124 * Make sure that on average at least two pageblocks are almost free
125 * of another type, one for a migratetype to fall back to and a
126 * second to avoid subsequent fallbacks of other types There are 3
127 * MIGRATE_TYPES we care about.
128 */
129 recommended_min += pageblock_nr_pages * nr_zones *
130 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
131
132 /* don't ever allow to reserve more than 5% of the lowmem */
133 recommended_min = min(recommended_min,
134 (unsigned long) nr_free_buffer_pages() / 20);
135 recommended_min <<= (PAGE_SHIFT-10);
136
137 if (recommended_min > min_free_kbytes) {
138 if (user_min_free_kbytes >= 0)
139 pr_info("raising min_free_kbytes from %d to %lu "
140 "to help transparent hugepage allocations\n",
141 min_free_kbytes, recommended_min);
142
143 min_free_kbytes = recommended_min;
144 }
145 setup_per_zone_wmarks();
146 return 0;
147}
148late_initcall(set_recommended_min_free_kbytes);
149
150static int start_khugepaged(void)
151{
152 int err = 0;
153 if (khugepaged_enabled()) {
154 if (!khugepaged_thread)
155 khugepaged_thread = kthread_run(khugepaged, NULL,
156 "khugepaged");
157 if (unlikely(IS_ERR(khugepaged_thread))) {
158 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
159 err = PTR_ERR(khugepaged_thread);
160 khugepaged_thread = NULL;
161 }
162
163 if (!list_empty(&khugepaged_scan.mm_head))
164 wake_up_interruptible(&khugepaged_wait);
165
166 set_recommended_min_free_kbytes();
167 } else if (khugepaged_thread) {
168 kthread_stop(khugepaged_thread);
169 khugepaged_thread = NULL;
170 }
171
172 return err;
173}
174
175static atomic_t huge_zero_refcount;
176struct page *huge_zero_page __read_mostly;
177
178static inline bool is_huge_zero_pmd(pmd_t pmd)
179{
180 return is_huge_zero_page(pmd_page(pmd));
181}
182
183static struct page *get_huge_zero_page(void)
184{
185 struct page *zero_page;
186retry:
187 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
188 return READ_ONCE(huge_zero_page);
189
190 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
191 HPAGE_PMD_ORDER);
192 if (!zero_page) {
193 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
194 return NULL;
195 }
196 count_vm_event(THP_ZERO_PAGE_ALLOC);
197 preempt_disable();
198 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
199 preempt_enable();
200 __free_pages(zero_page, compound_order(zero_page));
201 goto retry;
202 }
203
204 /* We take additional reference here. It will be put back by shrinker */
205 atomic_set(&huge_zero_refcount, 2);
206 preempt_enable();
207 return READ_ONCE(huge_zero_page);
208}
209
210static void put_huge_zero_page(void)
211{
212 /*
213 * Counter should never go to zero here. Only shrinker can put
214 * last reference.
215 */
216 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
217}
218
219static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
220 struct shrink_control *sc)
221{
222 /* we can free zero page only if last reference remains */
223 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
224}
225
226static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
227 struct shrink_control *sc)
228{
229 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
230 struct page *zero_page = xchg(&huge_zero_page, NULL);
231 BUG_ON(zero_page == NULL);
232 __free_pages(zero_page, compound_order(zero_page));
233 return HPAGE_PMD_NR;
234 }
235
236 return 0;
237}
238
239static struct shrinker huge_zero_page_shrinker = {
240 .count_objects = shrink_huge_zero_page_count,
241 .scan_objects = shrink_huge_zero_page_scan,
242 .seeks = DEFAULT_SEEKS,
243};
244
245#ifdef CONFIG_SYSFS
246
247static ssize_t double_flag_show(struct kobject *kobj,
248 struct kobj_attribute *attr, char *buf,
249 enum transparent_hugepage_flag enabled,
250 enum transparent_hugepage_flag req_madv)
251{
252 if (test_bit(enabled, &transparent_hugepage_flags)) {
253 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
254 return sprintf(buf, "[always] madvise never\n");
255 } else if (test_bit(req_madv, &transparent_hugepage_flags))
256 return sprintf(buf, "always [madvise] never\n");
257 else
258 return sprintf(buf, "always madvise [never]\n");
259}
260static ssize_t double_flag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count,
263 enum transparent_hugepage_flag enabled,
264 enum transparent_hugepage_flag req_madv)
265{
266 if (!memcmp("always", buf,
267 min(sizeof("always")-1, count))) {
268 set_bit(enabled, &transparent_hugepage_flags);
269 clear_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("madvise", buf,
271 min(sizeof("madvise")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 set_bit(req_madv, &transparent_hugepage_flags);
274 } else if (!memcmp("never", buf,
275 min(sizeof("never")-1, count))) {
276 clear_bit(enabled, &transparent_hugepage_flags);
277 clear_bit(req_madv, &transparent_hugepage_flags);
278 } else
279 return -EINVAL;
280
281 return count;
282}
283
284static ssize_t enabled_show(struct kobject *kobj,
285 struct kobj_attribute *attr, char *buf)
286{
287 return double_flag_show(kobj, attr, buf,
288 TRANSPARENT_HUGEPAGE_FLAG,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
290}
291static ssize_t enabled_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count)
294{
295 ssize_t ret;
296
297 ret = double_flag_store(kobj, attr, buf, count,
298 TRANSPARENT_HUGEPAGE_FLAG,
299 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
300
301 if (ret > 0) {
302 int err;
303
304 mutex_lock(&khugepaged_mutex);
305 err = start_khugepaged();
306 mutex_unlock(&khugepaged_mutex);
307
308 if (err)
309 ret = err;
310 }
311
312 return ret;
313}
314static struct kobj_attribute enabled_attr =
315 __ATTR(enabled, 0644, enabled_show, enabled_store);
316
317static ssize_t single_flag_show(struct kobject *kobj,
318 struct kobj_attribute *attr, char *buf,
319 enum transparent_hugepage_flag flag)
320{
321 return sprintf(buf, "%d\n",
322 !!test_bit(flag, &transparent_hugepage_flags));
323}
324
325static ssize_t single_flag_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count,
328 enum transparent_hugepage_flag flag)
329{
330 unsigned long value;
331 int ret;
332
333 ret = kstrtoul(buf, 10, &value);
334 if (ret < 0)
335 return ret;
336 if (value > 1)
337 return -EINVAL;
338
339 if (value)
340 set_bit(flag, &transparent_hugepage_flags);
341 else
342 clear_bit(flag, &transparent_hugepage_flags);
343
344 return count;
345}
346
347/*
348 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
349 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
350 * memory just to allocate one more hugepage.
351 */
352static ssize_t defrag_show(struct kobject *kobj,
353 struct kobj_attribute *attr, char *buf)
354{
355 return double_flag_show(kobj, attr, buf,
356 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
357 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
358}
359static ssize_t defrag_store(struct kobject *kobj,
360 struct kobj_attribute *attr,
361 const char *buf, size_t count)
362{
363 return double_flag_store(kobj, attr, buf, count,
364 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
365 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
366}
367static struct kobj_attribute defrag_attr =
368 __ATTR(defrag, 0644, defrag_show, defrag_store);
369
370static ssize_t use_zero_page_show(struct kobject *kobj,
371 struct kobj_attribute *attr, char *buf)
372{
373 return single_flag_show(kobj, attr, buf,
374 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
375}
376static ssize_t use_zero_page_store(struct kobject *kobj,
377 struct kobj_attribute *attr, const char *buf, size_t count)
378{
379 return single_flag_store(kobj, attr, buf, count,
380 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
381}
382static struct kobj_attribute use_zero_page_attr =
383 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
384#ifdef CONFIG_DEBUG_VM
385static ssize_t debug_cow_show(struct kobject *kobj,
386 struct kobj_attribute *attr, char *buf)
387{
388 return single_flag_show(kobj, attr, buf,
389 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
390}
391static ssize_t debug_cow_store(struct kobject *kobj,
392 struct kobj_attribute *attr,
393 const char *buf, size_t count)
394{
395 return single_flag_store(kobj, attr, buf, count,
396 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
397}
398static struct kobj_attribute debug_cow_attr =
399 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
400#endif /* CONFIG_DEBUG_VM */
401
402static struct attribute *hugepage_attr[] = {
403 &enabled_attr.attr,
404 &defrag_attr.attr,
405 &use_zero_page_attr.attr,
406#ifdef CONFIG_DEBUG_VM
407 &debug_cow_attr.attr,
408#endif
409 NULL,
410};
411
412static struct attribute_group hugepage_attr_group = {
413 .attrs = hugepage_attr,
414};
415
416static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419{
420 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
421}
422
423static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
424 struct kobj_attribute *attr,
425 const char *buf, size_t count)
426{
427 unsigned long msecs;
428 int err;
429
430 err = kstrtoul(buf, 10, &msecs);
431 if (err || msecs > UINT_MAX)
432 return -EINVAL;
433
434 khugepaged_scan_sleep_millisecs = msecs;
435 wake_up_interruptible(&khugepaged_wait);
436
437 return count;
438}
439static struct kobj_attribute scan_sleep_millisecs_attr =
440 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
441 scan_sleep_millisecs_store);
442
443static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 char *buf)
446{
447 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
448}
449
450static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 const char *buf, size_t count)
453{
454 unsigned long msecs;
455 int err;
456
457 err = kstrtoul(buf, 10, &msecs);
458 if (err || msecs > UINT_MAX)
459 return -EINVAL;
460
461 khugepaged_alloc_sleep_millisecs = msecs;
462 wake_up_interruptible(&khugepaged_wait);
463
464 return count;
465}
466static struct kobj_attribute alloc_sleep_millisecs_attr =
467 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
468 alloc_sleep_millisecs_store);
469
470static ssize_t pages_to_scan_show(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 char *buf)
473{
474 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
475}
476static ssize_t pages_to_scan_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479{
480 int err;
481 unsigned long pages;
482
483 err = kstrtoul(buf, 10, &pages);
484 if (err || !pages || pages > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_pages_to_scan = pages;
488
489 return count;
490}
491static struct kobj_attribute pages_to_scan_attr =
492 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
493 pages_to_scan_store);
494
495static ssize_t pages_collapsed_show(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 char *buf)
498{
499 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
500}
501static struct kobj_attribute pages_collapsed_attr =
502 __ATTR_RO(pages_collapsed);
503
504static ssize_t full_scans_show(struct kobject *kobj,
505 struct kobj_attribute *attr,
506 char *buf)
507{
508 return sprintf(buf, "%u\n", khugepaged_full_scans);
509}
510static struct kobj_attribute full_scans_attr =
511 __ATTR_RO(full_scans);
512
513static ssize_t khugepaged_defrag_show(struct kobject *kobj,
514 struct kobj_attribute *attr, char *buf)
515{
516 return single_flag_show(kobj, attr, buf,
517 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
518}
519static ssize_t khugepaged_defrag_store(struct kobject *kobj,
520 struct kobj_attribute *attr,
521 const char *buf, size_t count)
522{
523 return single_flag_store(kobj, attr, buf, count,
524 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
525}
526static struct kobj_attribute khugepaged_defrag_attr =
527 __ATTR(defrag, 0644, khugepaged_defrag_show,
528 khugepaged_defrag_store);
529
530/*
531 * max_ptes_none controls if khugepaged should collapse hugepages over
532 * any unmapped ptes in turn potentially increasing the memory
533 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
534 * reduce the available free memory in the system as it
535 * runs. Increasing max_ptes_none will instead potentially reduce the
536 * free memory in the system during the khugepaged scan.
537 */
538static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
539 struct kobj_attribute *attr,
540 char *buf)
541{
542 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
543}
544static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 const char *buf, size_t count)
547{
548 int err;
549 unsigned long max_ptes_none;
550
551 err = kstrtoul(buf, 10, &max_ptes_none);
552 if (err || max_ptes_none > HPAGE_PMD_NR-1)
553 return -EINVAL;
554
555 khugepaged_max_ptes_none = max_ptes_none;
556
557 return count;
558}
559static struct kobj_attribute khugepaged_max_ptes_none_attr =
560 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
561 khugepaged_max_ptes_none_store);
562
563static struct attribute *khugepaged_attr[] = {
564 &khugepaged_defrag_attr.attr,
565 &khugepaged_max_ptes_none_attr.attr,
566 &pages_to_scan_attr.attr,
567 &pages_collapsed_attr.attr,
568 &full_scans_attr.attr,
569 &scan_sleep_millisecs_attr.attr,
570 &alloc_sleep_millisecs_attr.attr,
571 NULL,
572};
573
574static struct attribute_group khugepaged_attr_group = {
575 .attrs = khugepaged_attr,
576 .name = "khugepaged",
577};
578
579static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
580{
581 int err;
582
583 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
584 if (unlikely(!*hugepage_kobj)) {
585 pr_err("failed to create transparent hugepage kobject\n");
586 return -ENOMEM;
587 }
588
589 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
590 if (err) {
591 pr_err("failed to register transparent hugepage group\n");
592 goto delete_obj;
593 }
594
595 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
596 if (err) {
597 pr_err("failed to register transparent hugepage group\n");
598 goto remove_hp_group;
599 }
600
601 return 0;
602
603remove_hp_group:
604 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
605delete_obj:
606 kobject_put(*hugepage_kobj);
607 return err;
608}
609
610static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
611{
612 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
613 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
614 kobject_put(hugepage_kobj);
615}
616#else
617static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
618{
619 return 0;
620}
621
622static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
623{
624}
625#endif /* CONFIG_SYSFS */
626
627static int __init hugepage_init(void)
628{
629 int err;
630 struct kobject *hugepage_kobj;
631
632 if (!has_transparent_hugepage()) {
633 transparent_hugepage_flags = 0;
634 return -EINVAL;
635 }
636
637 err = hugepage_init_sysfs(&hugepage_kobj);
638 if (err)
639 goto err_sysfs;
640
641 err = khugepaged_slab_init();
642 if (err)
643 goto err_slab;
644
645 err = register_shrinker(&huge_zero_page_shrinker);
646 if (err)
647 goto err_hzp_shrinker;
648
649 /*
650 * By default disable transparent hugepages on smaller systems,
651 * where the extra memory used could hurt more than TLB overhead
652 * is likely to save. The admin can still enable it through /sys.
653 */
654 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 transparent_hugepage_flags = 0;
656
657 err = start_khugepaged();
658 if (err)
659 goto err_khugepaged;
660
661 return 0;
662err_khugepaged:
663 unregister_shrinker(&huge_zero_page_shrinker);
664err_hzp_shrinker:
665 khugepaged_slab_exit();
666err_slab:
667 hugepage_exit_sysfs(hugepage_kobj);
668err_sysfs:
669 return err;
670}
671subsys_initcall(hugepage_init);
672
673static int __init setup_transparent_hugepage(char *str)
674{
675 int ret = 0;
676 if (!str)
677 goto out;
678 if (!strcmp(str, "always")) {
679 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "madvise")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 } else if (!strcmp(str, "never")) {
691 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
692 &transparent_hugepage_flags);
693 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
694 &transparent_hugepage_flags);
695 ret = 1;
696 }
697out:
698 if (!ret)
699 pr_warn("transparent_hugepage= cannot parse, ignored\n");
700 return ret;
701}
702__setup("transparent_hugepage=", setup_transparent_hugepage);
703
704pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
705{
706 if (likely(vma->vm_flags & VM_WRITE))
707 pmd = pmd_mkwrite(pmd);
708 return pmd;
709}
710
711static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
712{
713 pmd_t entry;
714 entry = mk_pmd(page, prot);
715 entry = pmd_mkhuge(entry);
716 return entry;
717}
718
719static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
720 struct vm_area_struct *vma,
721 unsigned long haddr, pmd_t *pmd,
722 struct page *page, gfp_t gfp)
723{
724 struct mem_cgroup *memcg;
725 pgtable_t pgtable;
726 spinlock_t *ptl;
727
728 VM_BUG_ON_PAGE(!PageCompound(page), page);
729
730 if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
731 return VM_FAULT_OOM;
732
733 pgtable = pte_alloc_one(mm, haddr);
734 if (unlikely(!pgtable)) {
735 mem_cgroup_cancel_charge(page, memcg);
736 return VM_FAULT_OOM;
737 }
738
739 clear_huge_page(page, haddr, HPAGE_PMD_NR);
740 /*
741 * The memory barrier inside __SetPageUptodate makes sure that
742 * clear_huge_page writes become visible before the set_pmd_at()
743 * write.
744 */
745 __SetPageUptodate(page);
746
747 ptl = pmd_lock(mm, pmd);
748 if (unlikely(!pmd_none(*pmd))) {
749 spin_unlock(ptl);
750 mem_cgroup_cancel_charge(page, memcg);
751 put_page(page);
752 pte_free(mm, pgtable);
753 } else {
754 pmd_t entry;
755 entry = mk_huge_pmd(page, vma->vm_page_prot);
756 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
757 page_add_new_anon_rmap(page, vma, haddr);
758 mem_cgroup_commit_charge(page, memcg, false);
759 lru_cache_add_active_or_unevictable(page, vma);
760 pgtable_trans_huge_deposit(mm, pmd, pgtable);
761 set_pmd_at(mm, haddr, pmd, entry);
762 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
763 atomic_long_inc(&mm->nr_ptes);
764 spin_unlock(ptl);
765 }
766
767 return 0;
768}
769
770static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
771{
772 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
773}
774
775/* Caller must hold page table lock. */
776static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
777 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
778 struct page *zero_page)
779{
780 pmd_t entry;
781 if (!pmd_none(*pmd))
782 return false;
783 entry = mk_pmd(zero_page, vma->vm_page_prot);
784 entry = pmd_mkhuge(entry);
785 pgtable_trans_huge_deposit(mm, pmd, pgtable);
786 set_pmd_at(mm, haddr, pmd, entry);
787 atomic_long_inc(&mm->nr_ptes);
788 return true;
789}
790
791int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
792 unsigned long address, pmd_t *pmd,
793 unsigned int flags)
794{
795 gfp_t gfp;
796 struct page *page;
797 unsigned long haddr = address & HPAGE_PMD_MASK;
798
799 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
800 return VM_FAULT_FALLBACK;
801 if (unlikely(anon_vma_prepare(vma)))
802 return VM_FAULT_OOM;
803 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
804 return VM_FAULT_OOM;
805 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
806 transparent_hugepage_use_zero_page()) {
807 spinlock_t *ptl;
808 pgtable_t pgtable;
809 struct page *zero_page;
810 bool set;
811 pgtable = pte_alloc_one(mm, haddr);
812 if (unlikely(!pgtable))
813 return VM_FAULT_OOM;
814 zero_page = get_huge_zero_page();
815 if (unlikely(!zero_page)) {
816 pte_free(mm, pgtable);
817 count_vm_event(THP_FAULT_FALLBACK);
818 return VM_FAULT_FALLBACK;
819 }
820 ptl = pmd_lock(mm, pmd);
821 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
822 zero_page);
823 spin_unlock(ptl);
824 if (!set) {
825 pte_free(mm, pgtable);
826 put_huge_zero_page();
827 }
828 return 0;
829 }
830 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
831 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
832 if (unlikely(!page)) {
833 count_vm_event(THP_FAULT_FALLBACK);
834 return VM_FAULT_FALLBACK;
835 }
836 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
837 put_page(page);
838 count_vm_event(THP_FAULT_FALLBACK);
839 return VM_FAULT_FALLBACK;
840 }
841
842 count_vm_event(THP_FAULT_ALLOC);
843 return 0;
844}
845
846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 struct vm_area_struct *vma)
849{
850 spinlock_t *dst_ptl, *src_ptl;
851 struct page *src_page;
852 pmd_t pmd;
853 pgtable_t pgtable;
854 int ret;
855
856 ret = -ENOMEM;
857 pgtable = pte_alloc_one(dst_mm, addr);
858 if (unlikely(!pgtable))
859 goto out;
860
861 dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 src_ptl = pmd_lockptr(src_mm, src_pmd);
863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864
865 ret = -EAGAIN;
866 pmd = *src_pmd;
867 if (unlikely(!pmd_trans_huge(pmd))) {
868 pte_free(dst_mm, pgtable);
869 goto out_unlock;
870 }
871 /*
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
874 * a page table.
875 */
876 if (is_huge_zero_pmd(pmd)) {
877 struct page *zero_page;
878 bool set;
879 /*
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
882 * reference.
883 */
884 zero_page = get_huge_zero_page();
885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 zero_page);
887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 ret = 0;
889 goto out_unlock;
890 }
891
892 if (unlikely(pmd_trans_splitting(pmd))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl);
895 spin_unlock(dst_ptl);
896 pte_free(dst_mm, pgtable);
897
898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 goto out;
900 }
901 src_page = pmd_page(pmd);
902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 get_page(src_page);
904 page_dup_rmap(src_page);
905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906
907 pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 pmd = pmd_mkold(pmd_wrprotect(pmd));
909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 atomic_long_inc(&dst_mm->nr_ptes);
912
913 ret = 0;
914out_unlock:
915 spin_unlock(src_ptl);
916 spin_unlock(dst_ptl);
917out:
918 return ret;
919}
920
921void huge_pmd_set_accessed(struct mm_struct *mm,
922 struct vm_area_struct *vma,
923 unsigned long address,
924 pmd_t *pmd, pmd_t orig_pmd,
925 int dirty)
926{
927 spinlock_t *ptl;
928 pmd_t entry;
929 unsigned long haddr;
930
931 ptl = pmd_lock(mm, pmd);
932 if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 goto unlock;
934
935 entry = pmd_mkyoung(orig_pmd);
936 haddr = address & HPAGE_PMD_MASK;
937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 update_mmu_cache_pmd(vma, address, pmd);
939
940unlock:
941 spin_unlock(ptl);
942}
943
944/*
945 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
946 * during copy_user_huge_page()'s copy_page_rep(): in the case when
947 * the source page gets split and a tail freed before copy completes.
948 * Called under pmd_lock of checked pmd, so safe from splitting itself.
949 */
950static void get_user_huge_page(struct page *page)
951{
952 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
953 struct page *endpage = page + HPAGE_PMD_NR;
954
955 atomic_add(HPAGE_PMD_NR, &page->_count);
956 while (++page < endpage)
957 get_huge_page_tail(page);
958 } else {
959 get_page(page);
960 }
961}
962
963static void put_user_huge_page(struct page *page)
964{
965 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
966 struct page *endpage = page + HPAGE_PMD_NR;
967
968 while (page < endpage)
969 put_page(page++);
970 } else {
971 put_page(page);
972 }
973}
974
975static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
976 struct vm_area_struct *vma,
977 unsigned long address,
978 pmd_t *pmd, pmd_t orig_pmd,
979 struct page *page,
980 unsigned long haddr)
981{
982 struct mem_cgroup *memcg;
983 spinlock_t *ptl;
984 pgtable_t pgtable;
985 pmd_t _pmd;
986 int ret = 0, i;
987 struct page **pages;
988 unsigned long mmun_start; /* For mmu_notifiers */
989 unsigned long mmun_end; /* For mmu_notifiers */
990
991 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
992 GFP_KERNEL);
993 if (unlikely(!pages)) {
994 ret |= VM_FAULT_OOM;
995 goto out;
996 }
997
998 for (i = 0; i < HPAGE_PMD_NR; i++) {
999 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1000 __GFP_OTHER_NODE,
1001 vma, address, page_to_nid(page));
1002 if (unlikely(!pages[i] ||
1003 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1004 &memcg))) {
1005 if (pages[i])
1006 put_page(pages[i]);
1007 while (--i >= 0) {
1008 memcg = (void *)page_private(pages[i]);
1009 set_page_private(pages[i], 0);
1010 mem_cgroup_cancel_charge(pages[i], memcg);
1011 put_page(pages[i]);
1012 }
1013 kfree(pages);
1014 ret |= VM_FAULT_OOM;
1015 goto out;
1016 }
1017 set_page_private(pages[i], (unsigned long)memcg);
1018 }
1019
1020 for (i = 0; i < HPAGE_PMD_NR; i++) {
1021 copy_user_highpage(pages[i], page + i,
1022 haddr + PAGE_SIZE * i, vma);
1023 __SetPageUptodate(pages[i]);
1024 cond_resched();
1025 }
1026
1027 mmun_start = haddr;
1028 mmun_end = haddr + HPAGE_PMD_SIZE;
1029 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1030
1031 ptl = pmd_lock(mm, pmd);
1032 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1033 goto out_free_pages;
1034 VM_BUG_ON_PAGE(!PageHead(page), page);
1035
1036 pmdp_clear_flush_notify(vma, haddr, pmd);
1037 /* leave pmd empty until pte is filled */
1038
1039 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1040 pmd_populate(mm, &_pmd, pgtable);
1041
1042 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1043 pte_t *pte, entry;
1044 entry = mk_pte(pages[i], vma->vm_page_prot);
1045 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1046 memcg = (void *)page_private(pages[i]);
1047 set_page_private(pages[i], 0);
1048 page_add_new_anon_rmap(pages[i], vma, haddr);
1049 mem_cgroup_commit_charge(pages[i], memcg, false);
1050 lru_cache_add_active_or_unevictable(pages[i], vma);
1051 pte = pte_offset_map(&_pmd, haddr);
1052 VM_BUG_ON(!pte_none(*pte));
1053 set_pte_at(mm, haddr, pte, entry);
1054 pte_unmap(pte);
1055 }
1056 kfree(pages);
1057
1058 smp_wmb(); /* make pte visible before pmd */
1059 pmd_populate(mm, pmd, pgtable);
1060 page_remove_rmap(page);
1061 spin_unlock(ptl);
1062
1063 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1064
1065 ret |= VM_FAULT_WRITE;
1066 put_page(page);
1067
1068out:
1069 return ret;
1070
1071out_free_pages:
1072 spin_unlock(ptl);
1073 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1074 for (i = 0; i < HPAGE_PMD_NR; i++) {
1075 memcg = (void *)page_private(pages[i]);
1076 set_page_private(pages[i], 0);
1077 mem_cgroup_cancel_charge(pages[i], memcg);
1078 put_page(pages[i]);
1079 }
1080 kfree(pages);
1081 goto out;
1082}
1083
1084int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1085 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1086{
1087 spinlock_t *ptl;
1088 int ret = 0;
1089 struct page *page = NULL, *new_page;
1090 struct mem_cgroup *memcg;
1091 unsigned long haddr;
1092 unsigned long mmun_start; /* For mmu_notifiers */
1093 unsigned long mmun_end; /* For mmu_notifiers */
1094 gfp_t huge_gfp; /* for allocation and charge */
1095
1096 ptl = pmd_lockptr(mm, pmd);
1097 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1098 haddr = address & HPAGE_PMD_MASK;
1099 if (is_huge_zero_pmd(orig_pmd))
1100 goto alloc;
1101 spin_lock(ptl);
1102 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1103 goto out_unlock;
1104
1105 page = pmd_page(orig_pmd);
1106 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1107 if (page_mapcount(page) == 1) {
1108 pmd_t entry;
1109 entry = pmd_mkyoung(orig_pmd);
1110 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1111 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1112 update_mmu_cache_pmd(vma, address, pmd);
1113 ret |= VM_FAULT_WRITE;
1114 goto out_unlock;
1115 }
1116 get_user_huge_page(page);
1117 spin_unlock(ptl);
1118alloc:
1119 if (transparent_hugepage_enabled(vma) &&
1120 !transparent_hugepage_debug_cow()) {
1121 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1122 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1123 } else
1124 new_page = NULL;
1125
1126 if (unlikely(!new_page)) {
1127 if (!page) {
1128 split_huge_page_pmd(vma, address, pmd);
1129 ret |= VM_FAULT_FALLBACK;
1130 } else {
1131 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1132 pmd, orig_pmd, page, haddr);
1133 if (ret & VM_FAULT_OOM) {
1134 split_huge_page(page);
1135 ret |= VM_FAULT_FALLBACK;
1136 }
1137 put_user_huge_page(page);
1138 }
1139 count_vm_event(THP_FAULT_FALLBACK);
1140 goto out;
1141 }
1142
1143 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1144 put_page(new_page);
1145 if (page) {
1146 split_huge_page(page);
1147 put_user_huge_page(page);
1148 } else
1149 split_huge_page_pmd(vma, address, pmd);
1150 ret |= VM_FAULT_FALLBACK;
1151 count_vm_event(THP_FAULT_FALLBACK);
1152 goto out;
1153 }
1154
1155 count_vm_event(THP_FAULT_ALLOC);
1156
1157 if (!page)
1158 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1159 else
1160 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1161 __SetPageUptodate(new_page);
1162
1163 mmun_start = haddr;
1164 mmun_end = haddr + HPAGE_PMD_SIZE;
1165 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1166
1167 spin_lock(ptl);
1168 if (page)
1169 put_user_huge_page(page);
1170 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1171 spin_unlock(ptl);
1172 mem_cgroup_cancel_charge(new_page, memcg);
1173 put_page(new_page);
1174 goto out_mn;
1175 } else {
1176 pmd_t entry;
1177 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1178 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1179 pmdp_clear_flush_notify(vma, haddr, pmd);
1180 page_add_new_anon_rmap(new_page, vma, haddr);
1181 mem_cgroup_commit_charge(new_page, memcg, false);
1182 lru_cache_add_active_or_unevictable(new_page, vma);
1183 set_pmd_at(mm, haddr, pmd, entry);
1184 update_mmu_cache_pmd(vma, address, pmd);
1185 if (!page) {
1186 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1187 put_huge_zero_page();
1188 } else {
1189 VM_BUG_ON_PAGE(!PageHead(page), page);
1190 page_remove_rmap(page);
1191 put_page(page);
1192 }
1193 ret |= VM_FAULT_WRITE;
1194 }
1195 spin_unlock(ptl);
1196out_mn:
1197 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1198out:
1199 return ret;
1200out_unlock:
1201 spin_unlock(ptl);
1202 return ret;
1203}
1204
1205struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1206 unsigned long addr,
1207 pmd_t *pmd,
1208 unsigned int flags)
1209{
1210 struct mm_struct *mm = vma->vm_mm;
1211 struct page *page = NULL;
1212
1213 assert_spin_locked(pmd_lockptr(mm, pmd));
1214
1215 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1216 goto out;
1217
1218 /* Avoid dumping huge zero page */
1219 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1220 return ERR_PTR(-EFAULT);
1221
1222 /* Full NUMA hinting faults to serialise migration in fault paths */
1223 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1224 goto out;
1225
1226 page = pmd_page(*pmd);
1227 VM_BUG_ON_PAGE(!PageHead(page), page);
1228 if (flags & FOLL_TOUCH) {
1229 pmd_t _pmd;
1230 /*
1231 * We should set the dirty bit only for FOLL_WRITE but
1232 * for now the dirty bit in the pmd is meaningless.
1233 * And if the dirty bit will become meaningful and
1234 * we'll only set it with FOLL_WRITE, an atomic
1235 * set_bit will be required on the pmd to set the
1236 * young bit, instead of the current set_pmd_at.
1237 */
1238 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1239 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1240 pmd, _pmd, 1))
1241 update_mmu_cache_pmd(vma, addr, pmd);
1242 }
1243 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
1244 if (page->mapping && trylock_page(page)) {
1245 lru_add_drain();
1246 if (page->mapping)
1247 mlock_vma_page(page);
1248 unlock_page(page);
1249 }
1250 }
1251 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1252 VM_BUG_ON_PAGE(!PageCompound(page), page);
1253 if (flags & FOLL_GET)
1254 get_page_foll(page);
1255
1256out:
1257 return page;
1258}
1259
1260/* NUMA hinting page fault entry point for trans huge pmds */
1261int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1262 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1263{
1264 spinlock_t *ptl;
1265 struct anon_vma *anon_vma = NULL;
1266 struct page *page;
1267 unsigned long haddr = addr & HPAGE_PMD_MASK;
1268 int page_nid = -1, this_nid = numa_node_id();
1269 int target_nid, last_cpupid = -1;
1270 bool page_locked;
1271 bool migrated = false;
1272 bool was_writable;
1273 int flags = 0;
1274
1275 /* A PROT_NONE fault should not end up here */
1276 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1277
1278 ptl = pmd_lock(mm, pmdp);
1279 if (unlikely(!pmd_same(pmd, *pmdp)))
1280 goto out_unlock;
1281
1282 /*
1283 * If there are potential migrations, wait for completion and retry
1284 * without disrupting NUMA hinting information. Do not relock and
1285 * check_same as the page may no longer be mapped.
1286 */
1287 if (unlikely(pmd_trans_migrating(*pmdp))) {
1288 page = pmd_page(*pmdp);
1289 spin_unlock(ptl);
1290 wait_on_page_locked(page);
1291 goto out;
1292 }
1293
1294 page = pmd_page(pmd);
1295 BUG_ON(is_huge_zero_page(page));
1296 page_nid = page_to_nid(page);
1297 last_cpupid = page_cpupid_last(page);
1298 count_vm_numa_event(NUMA_HINT_FAULTS);
1299 if (page_nid == this_nid) {
1300 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1301 flags |= TNF_FAULT_LOCAL;
1302 }
1303
1304 /* See similar comment in do_numa_page for explanation */
1305 if (!(vma->vm_flags & VM_WRITE))
1306 flags |= TNF_NO_GROUP;
1307
1308 /*
1309 * Acquire the page lock to serialise THP migrations but avoid dropping
1310 * page_table_lock if at all possible
1311 */
1312 page_locked = trylock_page(page);
1313 target_nid = mpol_misplaced(page, vma, haddr);
1314 if (target_nid == -1) {
1315 /* If the page was locked, there are no parallel migrations */
1316 if (page_locked)
1317 goto clear_pmdnuma;
1318 }
1319
1320 /* Migration could have started since the pmd_trans_migrating check */
1321 if (!page_locked) {
1322 spin_unlock(ptl);
1323 wait_on_page_locked(page);
1324 page_nid = -1;
1325 goto out;
1326 }
1327
1328 /*
1329 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1330 * to serialises splits
1331 */
1332 get_page(page);
1333 spin_unlock(ptl);
1334 anon_vma = page_lock_anon_vma_read(page);
1335
1336 /* Confirm the PMD did not change while page_table_lock was released */
1337 spin_lock(ptl);
1338 if (unlikely(!pmd_same(pmd, *pmdp))) {
1339 unlock_page(page);
1340 put_page(page);
1341 page_nid = -1;
1342 goto out_unlock;
1343 }
1344
1345 /* Bail if we fail to protect against THP splits for any reason */
1346 if (unlikely(!anon_vma)) {
1347 put_page(page);
1348 page_nid = -1;
1349 goto clear_pmdnuma;
1350 }
1351
1352 /*
1353 * Migrate the THP to the requested node, returns with page unlocked
1354 * and access rights restored.
1355 */
1356 spin_unlock(ptl);
1357 migrated = migrate_misplaced_transhuge_page(mm, vma,
1358 pmdp, pmd, addr, page, target_nid);
1359 if (migrated) {
1360 flags |= TNF_MIGRATED;
1361 page_nid = target_nid;
1362 } else
1363 flags |= TNF_MIGRATE_FAIL;
1364
1365 goto out;
1366clear_pmdnuma:
1367 BUG_ON(!PageLocked(page));
1368 was_writable = pmd_write(pmd);
1369 pmd = pmd_modify(pmd, vma->vm_page_prot);
1370 pmd = pmd_mkyoung(pmd);
1371 if (was_writable)
1372 pmd = pmd_mkwrite(pmd);
1373 set_pmd_at(mm, haddr, pmdp, pmd);
1374 update_mmu_cache_pmd(vma, addr, pmdp);
1375 unlock_page(page);
1376out_unlock:
1377 spin_unlock(ptl);
1378
1379out:
1380 if (anon_vma)
1381 page_unlock_anon_vma_read(anon_vma);
1382
1383 if (page_nid != -1)
1384 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1385
1386 return 0;
1387}
1388
1389int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1390 pmd_t *pmd, unsigned long addr)
1391{
1392 spinlock_t *ptl;
1393 int ret = 0;
1394
1395 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1396 struct page *page;
1397 pgtable_t pgtable;
1398 pmd_t orig_pmd;
1399 /*
1400 * For architectures like ppc64 we look at deposited pgtable
1401 * when calling pmdp_get_and_clear. So do the
1402 * pgtable_trans_huge_withdraw after finishing pmdp related
1403 * operations.
1404 */
1405 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1406 tlb->fullmm);
1407 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1408 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1409 if (is_huge_zero_pmd(orig_pmd)) {
1410 atomic_long_dec(&tlb->mm->nr_ptes);
1411 spin_unlock(ptl);
1412 put_huge_zero_page();
1413 } else {
1414 page = pmd_page(orig_pmd);
1415 page_remove_rmap(page);
1416 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1417 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1418 VM_BUG_ON_PAGE(!PageHead(page), page);
1419 atomic_long_dec(&tlb->mm->nr_ptes);
1420 spin_unlock(ptl);
1421 tlb_remove_page(tlb, page);
1422 }
1423 pte_free(tlb->mm, pgtable);
1424 ret = 1;
1425 }
1426 return ret;
1427}
1428
1429int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1430 unsigned long old_addr,
1431 unsigned long new_addr, unsigned long old_end,
1432 pmd_t *old_pmd, pmd_t *new_pmd)
1433{
1434 spinlock_t *old_ptl, *new_ptl;
1435 int ret = 0;
1436 pmd_t pmd;
1437
1438 struct mm_struct *mm = vma->vm_mm;
1439
1440 if ((old_addr & ~HPAGE_PMD_MASK) ||
1441 (new_addr & ~HPAGE_PMD_MASK) ||
1442 old_end - old_addr < HPAGE_PMD_SIZE ||
1443 (new_vma->vm_flags & VM_NOHUGEPAGE))
1444 goto out;
1445
1446 /*
1447 * The destination pmd shouldn't be established, free_pgtables()
1448 * should have release it.
1449 */
1450 if (WARN_ON(!pmd_none(*new_pmd))) {
1451 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1452 goto out;
1453 }
1454
1455 /*
1456 * We don't have to worry about the ordering of src and dst
1457 * ptlocks because exclusive mmap_sem prevents deadlock.
1458 */
1459 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1460 if (ret == 1) {
1461 new_ptl = pmd_lockptr(mm, new_pmd);
1462 if (new_ptl != old_ptl)
1463 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1464 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1465 VM_BUG_ON(!pmd_none(*new_pmd));
1466
1467 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1468 pgtable_t pgtable;
1469 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1470 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1471 }
1472 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1473 if (new_ptl != old_ptl)
1474 spin_unlock(new_ptl);
1475 spin_unlock(old_ptl);
1476 }
1477out:
1478 return ret;
1479}
1480
1481/*
1482 * Returns
1483 * - 0 if PMD could not be locked
1484 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1485 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1486 */
1487int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1488 unsigned long addr, pgprot_t newprot, int prot_numa)
1489{
1490 struct mm_struct *mm = vma->vm_mm;
1491 spinlock_t *ptl;
1492 int ret = 0;
1493
1494 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1495 pmd_t entry;
1496 bool preserve_write = prot_numa && pmd_write(*pmd);
1497 ret = 1;
1498
1499 /*
1500 * Avoid trapping faults against the zero page. The read-only
1501 * data is likely to be read-cached on the local CPU and
1502 * local/remote hits to the zero page are not interesting.
1503 */
1504 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1505 spin_unlock(ptl);
1506 return ret;
1507 }
1508
1509 if (!prot_numa || !pmd_protnone(*pmd)) {
1510 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1511 entry = pmd_modify(entry, newprot);
1512 if (preserve_write)
1513 entry = pmd_mkwrite(entry);
1514 ret = HPAGE_PMD_NR;
1515 set_pmd_at(mm, addr, pmd, entry);
1516 BUG_ON(!preserve_write && pmd_write(entry));
1517 }
1518 spin_unlock(ptl);
1519 }
1520
1521 return ret;
1522}
1523
1524/*
1525 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1526 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1527 *
1528 * Note that if it returns 1, this routine returns without unlocking page
1529 * table locks. So callers must unlock them.
1530 */
1531int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1532 spinlock_t **ptl)
1533{
1534 *ptl = pmd_lock(vma->vm_mm, pmd);
1535 if (likely(pmd_trans_huge(*pmd))) {
1536 if (unlikely(pmd_trans_splitting(*pmd))) {
1537 spin_unlock(*ptl);
1538 wait_split_huge_page(vma->anon_vma, pmd);
1539 return -1;
1540 } else {
1541 /* Thp mapped by 'pmd' is stable, so we can
1542 * handle it as it is. */
1543 return 1;
1544 }
1545 }
1546 spin_unlock(*ptl);
1547 return 0;
1548}
1549
1550/*
1551 * This function returns whether a given @page is mapped onto the @address
1552 * in the virtual space of @mm.
1553 *
1554 * When it's true, this function returns *pmd with holding the page table lock
1555 * and passing it back to the caller via @ptl.
1556 * If it's false, returns NULL without holding the page table lock.
1557 */
1558pmd_t *page_check_address_pmd(struct page *page,
1559 struct mm_struct *mm,
1560 unsigned long address,
1561 enum page_check_address_pmd_flag flag,
1562 spinlock_t **ptl)
1563{
1564 pgd_t *pgd;
1565 pud_t *pud;
1566 pmd_t *pmd;
1567
1568 if (address & ~HPAGE_PMD_MASK)
1569 return NULL;
1570
1571 pgd = pgd_offset(mm, address);
1572 if (!pgd_present(*pgd))
1573 return NULL;
1574 pud = pud_offset(pgd, address);
1575 if (!pud_present(*pud))
1576 return NULL;
1577 pmd = pmd_offset(pud, address);
1578
1579 *ptl = pmd_lock(mm, pmd);
1580 if (!pmd_present(*pmd))
1581 goto unlock;
1582 if (pmd_page(*pmd) != page)
1583 goto unlock;
1584 /*
1585 * split_vma() may create temporary aliased mappings. There is
1586 * no risk as long as all huge pmd are found and have their
1587 * splitting bit set before __split_huge_page_refcount
1588 * runs. Finding the same huge pmd more than once during the
1589 * same rmap walk is not a problem.
1590 */
1591 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1592 pmd_trans_splitting(*pmd))
1593 goto unlock;
1594 if (pmd_trans_huge(*pmd)) {
1595 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1596 !pmd_trans_splitting(*pmd));
1597 return pmd;
1598 }
1599unlock:
1600 spin_unlock(*ptl);
1601 return NULL;
1602}
1603
1604static int __split_huge_page_splitting(struct page *page,
1605 struct vm_area_struct *vma,
1606 unsigned long address)
1607{
1608 struct mm_struct *mm = vma->vm_mm;
1609 spinlock_t *ptl;
1610 pmd_t *pmd;
1611 int ret = 0;
1612 /* For mmu_notifiers */
1613 const unsigned long mmun_start = address;
1614 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1615
1616 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1617 pmd = page_check_address_pmd(page, mm, address,
1618 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1619 if (pmd) {
1620 /*
1621 * We can't temporarily set the pmd to null in order
1622 * to split it, the pmd must remain marked huge at all
1623 * times or the VM won't take the pmd_trans_huge paths
1624 * and it won't wait on the anon_vma->root->rwsem to
1625 * serialize against split_huge_page*.
1626 */
1627 pmdp_splitting_flush(vma, address, pmd);
1628
1629 ret = 1;
1630 spin_unlock(ptl);
1631 }
1632 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1633
1634 return ret;
1635}
1636
1637static void __split_huge_page_refcount(struct page *page,
1638 struct list_head *list)
1639{
1640 int i;
1641 struct zone *zone = page_zone(page);
1642 struct lruvec *lruvec;
1643 int tail_count = 0;
1644
1645 /* prevent PageLRU to go away from under us, and freeze lru stats */
1646 spin_lock_irq(&zone->lru_lock);
1647 lruvec = mem_cgroup_page_lruvec(page, zone);
1648
1649 compound_lock(page);
1650 /* complete memcg works before add pages to LRU */
1651 mem_cgroup_split_huge_fixup(page);
1652
1653 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1654 struct page *page_tail = page + i;
1655
1656 /* tail_page->_mapcount cannot change */
1657 BUG_ON(page_mapcount(page_tail) < 0);
1658 tail_count += page_mapcount(page_tail);
1659 /* check for overflow */
1660 BUG_ON(tail_count < 0);
1661 BUG_ON(atomic_read(&page_tail->_count) != 0);
1662 /*
1663 * tail_page->_count is zero and not changing from
1664 * under us. But get_page_unless_zero() may be running
1665 * from under us on the tail_page. If we used
1666 * atomic_set() below instead of atomic_add(), we
1667 * would then run atomic_set() concurrently with
1668 * get_page_unless_zero(), and atomic_set() is
1669 * implemented in C not using locked ops. spin_unlock
1670 * on x86 sometime uses locked ops because of PPro
1671 * errata 66, 92, so unless somebody can guarantee
1672 * atomic_set() here would be safe on all archs (and
1673 * not only on x86), it's safer to use atomic_add().
1674 */
1675 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1676 &page_tail->_count);
1677
1678 /* after clearing PageTail the gup refcount can be released */
1679 smp_mb__after_atomic();
1680
1681 /*
1682 * retain hwpoison flag of the poisoned tail page:
1683 * fix for the unsuitable process killed on Guest Machine(KVM)
1684 * by the memory-failure.
1685 */
1686 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1687 page_tail->flags |= (page->flags &
1688 ((1L << PG_referenced) |
1689 (1L << PG_swapbacked) |
1690 (1L << PG_mlocked) |
1691 (1L << PG_uptodate) |
1692 (1L << PG_active) |
1693 (1L << PG_unevictable)));
1694 page_tail->flags |= (1L << PG_dirty);
1695
1696 /* clear PageTail before overwriting first_page */
1697 smp_wmb();
1698
1699 /*
1700 * __split_huge_page_splitting() already set the
1701 * splitting bit in all pmd that could map this
1702 * hugepage, that will ensure no CPU can alter the
1703 * mapcount on the head page. The mapcount is only
1704 * accounted in the head page and it has to be
1705 * transferred to all tail pages in the below code. So
1706 * for this code to be safe, the split the mapcount
1707 * can't change. But that doesn't mean userland can't
1708 * keep changing and reading the page contents while
1709 * we transfer the mapcount, so the pmd splitting
1710 * status is achieved setting a reserved bit in the
1711 * pmd, not by clearing the present bit.
1712 */
1713 page_tail->_mapcount = page->_mapcount;
1714
1715 BUG_ON(page_tail->mapping);
1716 page_tail->mapping = page->mapping;
1717
1718 page_tail->index = page->index + i;
1719 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1720
1721 BUG_ON(!PageAnon(page_tail));
1722 BUG_ON(!PageUptodate(page_tail));
1723 BUG_ON(!PageDirty(page_tail));
1724 BUG_ON(!PageSwapBacked(page_tail));
1725
1726 lru_add_page_tail(page, page_tail, lruvec, list);
1727 }
1728 atomic_sub(tail_count, &page->_count);
1729 BUG_ON(atomic_read(&page->_count) <= 0);
1730
1731 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1732
1733 ClearPageCompound(page);
1734 compound_unlock(page);
1735 spin_unlock_irq(&zone->lru_lock);
1736
1737 for (i = 1; i < HPAGE_PMD_NR; i++) {
1738 struct page *page_tail = page + i;
1739 BUG_ON(page_count(page_tail) <= 0);
1740 /*
1741 * Tail pages may be freed if there wasn't any mapping
1742 * like if add_to_swap() is running on a lru page that
1743 * had its mapping zapped. And freeing these pages
1744 * requires taking the lru_lock so we do the put_page
1745 * of the tail pages after the split is complete.
1746 */
1747 put_page(page_tail);
1748 }
1749
1750 /*
1751 * Only the head page (now become a regular page) is required
1752 * to be pinned by the caller.
1753 */
1754 BUG_ON(page_count(page) <= 0);
1755}
1756
1757static int __split_huge_page_map(struct page *page,
1758 struct vm_area_struct *vma,
1759 unsigned long address)
1760{
1761 struct mm_struct *mm = vma->vm_mm;
1762 spinlock_t *ptl;
1763 pmd_t *pmd, _pmd;
1764 int ret = 0, i;
1765 pgtable_t pgtable;
1766 unsigned long haddr;
1767
1768 pmd = page_check_address_pmd(page, mm, address,
1769 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1770 if (pmd) {
1771 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1772 pmd_populate(mm, &_pmd, pgtable);
1773 if (pmd_write(*pmd))
1774 BUG_ON(page_mapcount(page) != 1);
1775
1776 haddr = address;
1777 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1778 pte_t *pte, entry;
1779 BUG_ON(PageCompound(page+i));
1780 /*
1781 * Note that NUMA hinting access restrictions are not
1782 * transferred to avoid any possibility of altering
1783 * permissions across VMAs.
1784 */
1785 entry = mk_pte(page + i, vma->vm_page_prot);
1786 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1787 if (!pmd_write(*pmd))
1788 entry = pte_wrprotect(entry);
1789 if (!pmd_young(*pmd))
1790 entry = pte_mkold(entry);
1791 pte = pte_offset_map(&_pmd, haddr);
1792 BUG_ON(!pte_none(*pte));
1793 set_pte_at(mm, haddr, pte, entry);
1794 pte_unmap(pte);
1795 }
1796
1797 smp_wmb(); /* make pte visible before pmd */
1798 /*
1799 * Up to this point the pmd is present and huge and
1800 * userland has the whole access to the hugepage
1801 * during the split (which happens in place). If we
1802 * overwrite the pmd with the not-huge version
1803 * pointing to the pte here (which of course we could
1804 * if all CPUs were bug free), userland could trigger
1805 * a small page size TLB miss on the small sized TLB
1806 * while the hugepage TLB entry is still established
1807 * in the huge TLB. Some CPU doesn't like that. See
1808 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1809 * Erratum 383 on page 93. Intel should be safe but is
1810 * also warns that it's only safe if the permission
1811 * and cache attributes of the two entries loaded in
1812 * the two TLB is identical (which should be the case
1813 * here). But it is generally safer to never allow
1814 * small and huge TLB entries for the same virtual
1815 * address to be loaded simultaneously. So instead of
1816 * doing "pmd_populate(); flush_tlb_range();" we first
1817 * mark the current pmd notpresent (atomically because
1818 * here the pmd_trans_huge and pmd_trans_splitting
1819 * must remain set at all times on the pmd until the
1820 * split is complete for this pmd), then we flush the
1821 * SMP TLB and finally we write the non-huge version
1822 * of the pmd entry with pmd_populate.
1823 */
1824 pmdp_invalidate(vma, address, pmd);
1825 pmd_populate(mm, pmd, pgtable);
1826 ret = 1;
1827 spin_unlock(ptl);
1828 }
1829
1830 return ret;
1831}
1832
1833/* must be called with anon_vma->root->rwsem held */
1834static void __split_huge_page(struct page *page,
1835 struct anon_vma *anon_vma,
1836 struct list_head *list)
1837{
1838 int mapcount, mapcount2;
1839 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1840 struct anon_vma_chain *avc;
1841
1842 BUG_ON(!PageHead(page));
1843 BUG_ON(PageTail(page));
1844
1845 mapcount = 0;
1846 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1847 struct vm_area_struct *vma = avc->vma;
1848 unsigned long addr = vma_address(page, vma);
1849 BUG_ON(is_vma_temporary_stack(vma));
1850 mapcount += __split_huge_page_splitting(page, vma, addr);
1851 }
1852 /*
1853 * It is critical that new vmas are added to the tail of the
1854 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1855 * and establishes a child pmd before
1856 * __split_huge_page_splitting() freezes the parent pmd (so if
1857 * we fail to prevent copy_huge_pmd() from running until the
1858 * whole __split_huge_page() is complete), we will still see
1859 * the newly established pmd of the child later during the
1860 * walk, to be able to set it as pmd_trans_splitting too.
1861 */
1862 if (mapcount != page_mapcount(page)) {
1863 pr_err("mapcount %d page_mapcount %d\n",
1864 mapcount, page_mapcount(page));
1865 BUG();
1866 }
1867
1868 __split_huge_page_refcount(page, list);
1869
1870 mapcount2 = 0;
1871 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1872 struct vm_area_struct *vma = avc->vma;
1873 unsigned long addr = vma_address(page, vma);
1874 BUG_ON(is_vma_temporary_stack(vma));
1875 mapcount2 += __split_huge_page_map(page, vma, addr);
1876 }
1877 if (mapcount != mapcount2) {
1878 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1879 mapcount, mapcount2, page_mapcount(page));
1880 BUG();
1881 }
1882}
1883
1884/*
1885 * Split a hugepage into normal pages. This doesn't change the position of head
1886 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1887 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1888 * from the hugepage.
1889 * Return 0 if the hugepage is split successfully otherwise return 1.
1890 */
1891int split_huge_page_to_list(struct page *page, struct list_head *list)
1892{
1893 struct anon_vma *anon_vma;
1894 int ret = 1;
1895
1896 BUG_ON(is_huge_zero_page(page));
1897 BUG_ON(!PageAnon(page));
1898
1899 /*
1900 * The caller does not necessarily hold an mmap_sem that would prevent
1901 * the anon_vma disappearing so we first we take a reference to it
1902 * and then lock the anon_vma for write. This is similar to
1903 * page_lock_anon_vma_read except the write lock is taken to serialise
1904 * against parallel split or collapse operations.
1905 */
1906 anon_vma = page_get_anon_vma(page);
1907 if (!anon_vma)
1908 goto out;
1909 anon_vma_lock_write(anon_vma);
1910
1911 ret = 0;
1912 if (!PageCompound(page))
1913 goto out_unlock;
1914
1915 BUG_ON(!PageSwapBacked(page));
1916 __split_huge_page(page, anon_vma, list);
1917 count_vm_event(THP_SPLIT);
1918
1919 BUG_ON(PageCompound(page));
1920out_unlock:
1921 anon_vma_unlock_write(anon_vma);
1922 put_anon_vma(anon_vma);
1923out:
1924 return ret;
1925}
1926
1927#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1928
1929int hugepage_madvise(struct vm_area_struct *vma,
1930 unsigned long *vm_flags, int advice)
1931{
1932 switch (advice) {
1933 case MADV_HUGEPAGE:
1934#ifdef CONFIG_S390
1935 /*
1936 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1937 * can't handle this properly after s390_enable_sie, so we simply
1938 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1939 */
1940 if (mm_has_pgste(vma->vm_mm))
1941 return 0;
1942#endif
1943 /*
1944 * Be somewhat over-protective like KSM for now!
1945 */
1946 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1947 return -EINVAL;
1948 *vm_flags &= ~VM_NOHUGEPAGE;
1949 *vm_flags |= VM_HUGEPAGE;
1950 /*
1951 * If the vma become good for khugepaged to scan,
1952 * register it here without waiting a page fault that
1953 * may not happen any time soon.
1954 */
1955 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1956 return -ENOMEM;
1957 break;
1958 case MADV_NOHUGEPAGE:
1959 /*
1960 * Be somewhat over-protective like KSM for now!
1961 */
1962 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1963 return -EINVAL;
1964 *vm_flags &= ~VM_HUGEPAGE;
1965 *vm_flags |= VM_NOHUGEPAGE;
1966 /*
1967 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1968 * this vma even if we leave the mm registered in khugepaged if
1969 * it got registered before VM_NOHUGEPAGE was set.
1970 */
1971 break;
1972 }
1973
1974 return 0;
1975}
1976
1977static int __init khugepaged_slab_init(void)
1978{
1979 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1980 sizeof(struct mm_slot),
1981 __alignof__(struct mm_slot), 0, NULL);
1982 if (!mm_slot_cache)
1983 return -ENOMEM;
1984
1985 return 0;
1986}
1987
1988static void __init khugepaged_slab_exit(void)
1989{
1990 kmem_cache_destroy(mm_slot_cache);
1991}
1992
1993static inline struct mm_slot *alloc_mm_slot(void)
1994{
1995 if (!mm_slot_cache) /* initialization failed */
1996 return NULL;
1997 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1998}
1999
2000static inline void free_mm_slot(struct mm_slot *mm_slot)
2001{
2002 kmem_cache_free(mm_slot_cache, mm_slot);
2003}
2004
2005static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2006{
2007 struct mm_slot *mm_slot;
2008
2009 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2010 if (mm == mm_slot->mm)
2011 return mm_slot;
2012
2013 return NULL;
2014}
2015
2016static void insert_to_mm_slots_hash(struct mm_struct *mm,
2017 struct mm_slot *mm_slot)
2018{
2019 mm_slot->mm = mm;
2020 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2021}
2022
2023static inline int khugepaged_test_exit(struct mm_struct *mm)
2024{
2025 return atomic_read(&mm->mm_users) == 0;
2026}
2027
2028int __khugepaged_enter(struct mm_struct *mm)
2029{
2030 struct mm_slot *mm_slot;
2031 int wakeup;
2032
2033 mm_slot = alloc_mm_slot();
2034 if (!mm_slot)
2035 return -ENOMEM;
2036
2037 /* __khugepaged_exit() must not run from under us */
2038 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2039 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2040 free_mm_slot(mm_slot);
2041 return 0;
2042 }
2043
2044 spin_lock(&khugepaged_mm_lock);
2045 insert_to_mm_slots_hash(mm, mm_slot);
2046 /*
2047 * Insert just behind the scanning cursor, to let the area settle
2048 * down a little.
2049 */
2050 wakeup = list_empty(&khugepaged_scan.mm_head);
2051 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2052 spin_unlock(&khugepaged_mm_lock);
2053
2054 atomic_inc(&mm->mm_count);
2055 if (wakeup)
2056 wake_up_interruptible(&khugepaged_wait);
2057
2058 return 0;
2059}
2060
2061int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2062 unsigned long vm_flags)
2063{
2064 unsigned long hstart, hend;
2065 if (!vma->anon_vma)
2066 /*
2067 * Not yet faulted in so we will register later in the
2068 * page fault if needed.
2069 */
2070 return 0;
2071 if (vma->vm_ops)
2072 /* khugepaged not yet working on file or special mappings */
2073 return 0;
2074 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2075 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2076 hend = vma->vm_end & HPAGE_PMD_MASK;
2077 if (hstart < hend)
2078 return khugepaged_enter(vma, vm_flags);
2079 return 0;
2080}
2081
2082void __khugepaged_exit(struct mm_struct *mm)
2083{
2084 struct mm_slot *mm_slot;
2085 int free = 0;
2086
2087 spin_lock(&khugepaged_mm_lock);
2088 mm_slot = get_mm_slot(mm);
2089 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2090 hash_del(&mm_slot->hash);
2091 list_del(&mm_slot->mm_node);
2092 free = 1;
2093 }
2094 spin_unlock(&khugepaged_mm_lock);
2095
2096 if (free) {
2097 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2098 free_mm_slot(mm_slot);
2099 mmdrop(mm);
2100 } else if (mm_slot) {
2101 /*
2102 * This is required to serialize against
2103 * khugepaged_test_exit() (which is guaranteed to run
2104 * under mmap sem read mode). Stop here (after we
2105 * return all pagetables will be destroyed) until
2106 * khugepaged has finished working on the pagetables
2107 * under the mmap_sem.
2108 */
2109 down_write(&mm->mmap_sem);
2110 up_write(&mm->mmap_sem);
2111 }
2112}
2113
2114static void release_pte_page(struct page *page)
2115{
2116 /* 0 stands for page_is_file_cache(page) == false */
2117 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2118 unlock_page(page);
2119 putback_lru_page(page);
2120}
2121
2122static void release_pte_pages(pte_t *pte, pte_t *_pte)
2123{
2124 while (--_pte >= pte) {
2125 pte_t pteval = *_pte;
2126 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2127 release_pte_page(pte_page(pteval));
2128 }
2129}
2130
2131static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2132 unsigned long address,
2133 pte_t *pte)
2134{
2135 struct page *page;
2136 pte_t *_pte;
2137 int none_or_zero = 0;
2138 bool referenced = false, writable = false;
2139 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2140 _pte++, address += PAGE_SIZE) {
2141 pte_t pteval = *_pte;
2142 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2143 if (++none_or_zero <= khugepaged_max_ptes_none)
2144 continue;
2145 else
2146 goto out;
2147 }
2148 if (!pte_present(pteval))
2149 goto out;
2150 page = vm_normal_page(vma, address, pteval);
2151 if (unlikely(!page))
2152 goto out;
2153
2154 VM_BUG_ON_PAGE(PageCompound(page), page);
2155 VM_BUG_ON_PAGE(!PageAnon(page), page);
2156 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2157
2158 /*
2159 * We can do it before isolate_lru_page because the
2160 * page can't be freed from under us. NOTE: PG_lock
2161 * is needed to serialize against split_huge_page
2162 * when invoked from the VM.
2163 */
2164 if (!trylock_page(page))
2165 goto out;
2166
2167 /*
2168 * cannot use mapcount: can't collapse if there's a gup pin.
2169 * The page must only be referenced by the scanned process
2170 * and page swap cache.
2171 */
2172 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2173 unlock_page(page);
2174 goto out;
2175 }
2176 if (pte_write(pteval)) {
2177 writable = true;
2178 } else {
2179 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2180 unlock_page(page);
2181 goto out;
2182 }
2183 /*
2184 * Page is not in the swap cache. It can be collapsed
2185 * into a THP.
2186 */
2187 }
2188
2189 /*
2190 * Isolate the page to avoid collapsing an hugepage
2191 * currently in use by the VM.
2192 */
2193 if (isolate_lru_page(page)) {
2194 unlock_page(page);
2195 goto out;
2196 }
2197 /* 0 stands for page_is_file_cache(page) == false */
2198 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2199 VM_BUG_ON_PAGE(!PageLocked(page), page);
2200 VM_BUG_ON_PAGE(PageLRU(page), page);
2201
2202 /* If there is no mapped pte young don't collapse the page */
2203 if (pte_young(pteval) || PageReferenced(page) ||
2204 mmu_notifier_test_young(vma->vm_mm, address))
2205 referenced = true;
2206 }
2207 if (likely(referenced && writable))
2208 return 1;
2209out:
2210 release_pte_pages(pte, _pte);
2211 return 0;
2212}
2213
2214static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2215 struct vm_area_struct *vma,
2216 unsigned long address,
2217 spinlock_t *ptl)
2218{
2219 pte_t *_pte;
2220 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2221 pte_t pteval = *_pte;
2222 struct page *src_page;
2223
2224 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2225 clear_user_highpage(page, address);
2226 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2227 if (is_zero_pfn(pte_pfn(pteval))) {
2228 /*
2229 * ptl mostly unnecessary.
2230 */
2231 spin_lock(ptl);
2232 /*
2233 * paravirt calls inside pte_clear here are
2234 * superfluous.
2235 */
2236 pte_clear(vma->vm_mm, address, _pte);
2237 spin_unlock(ptl);
2238 }
2239 } else {
2240 src_page = pte_page(pteval);
2241 copy_user_highpage(page, src_page, address, vma);
2242 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2243 release_pte_page(src_page);
2244 /*
2245 * ptl mostly unnecessary, but preempt has to
2246 * be disabled to update the per-cpu stats
2247 * inside page_remove_rmap().
2248 */
2249 spin_lock(ptl);
2250 /*
2251 * paravirt calls inside pte_clear here are
2252 * superfluous.
2253 */
2254 pte_clear(vma->vm_mm, address, _pte);
2255 page_remove_rmap(src_page);
2256 spin_unlock(ptl);
2257 free_page_and_swap_cache(src_page);
2258 }
2259
2260 address += PAGE_SIZE;
2261 page++;
2262 }
2263}
2264
2265static void khugepaged_alloc_sleep(void)
2266{
2267 wait_event_freezable_timeout(khugepaged_wait, false,
2268 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2269}
2270
2271static int khugepaged_node_load[MAX_NUMNODES];
2272
2273static bool khugepaged_scan_abort(int nid)
2274{
2275 int i;
2276
2277 /*
2278 * If zone_reclaim_mode is disabled, then no extra effort is made to
2279 * allocate memory locally.
2280 */
2281 if (!zone_reclaim_mode)
2282 return false;
2283
2284 /* If there is a count for this node already, it must be acceptable */
2285 if (khugepaged_node_load[nid])
2286 return false;
2287
2288 for (i = 0; i < MAX_NUMNODES; i++) {
2289 if (!khugepaged_node_load[i])
2290 continue;
2291 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2292 return true;
2293 }
2294 return false;
2295}
2296
2297#ifdef CONFIG_NUMA
2298static int khugepaged_find_target_node(void)
2299{
2300 static int last_khugepaged_target_node = NUMA_NO_NODE;
2301 int nid, target_node = 0, max_value = 0;
2302
2303 /* find first node with max normal pages hit */
2304 for (nid = 0; nid < MAX_NUMNODES; nid++)
2305 if (khugepaged_node_load[nid] > max_value) {
2306 max_value = khugepaged_node_load[nid];
2307 target_node = nid;
2308 }
2309
2310 /* do some balance if several nodes have the same hit record */
2311 if (target_node <= last_khugepaged_target_node)
2312 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2313 nid++)
2314 if (max_value == khugepaged_node_load[nid]) {
2315 target_node = nid;
2316 break;
2317 }
2318
2319 last_khugepaged_target_node = target_node;
2320 return target_node;
2321}
2322
2323static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2324{
2325 if (IS_ERR(*hpage)) {
2326 if (!*wait)
2327 return false;
2328
2329 *wait = false;
2330 *hpage = NULL;
2331 khugepaged_alloc_sleep();
2332 } else if (*hpage) {
2333 put_page(*hpage);
2334 *hpage = NULL;
2335 }
2336
2337 return true;
2338}
2339
2340static struct page *
2341khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2342 struct vm_area_struct *vma, unsigned long address,
2343 int node)
2344{
2345 VM_BUG_ON_PAGE(*hpage, *hpage);
2346
2347 /*
2348 * Before allocating the hugepage, release the mmap_sem read lock.
2349 * The allocation can take potentially a long time if it involves
2350 * sync compaction, and we do not need to hold the mmap_sem during
2351 * that. We will recheck the vma after taking it again in write mode.
2352 */
2353 up_read(&mm->mmap_sem);
2354
2355 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
2356 if (unlikely(!*hpage)) {
2357 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2358 *hpage = ERR_PTR(-ENOMEM);
2359 return NULL;
2360 }
2361
2362 count_vm_event(THP_COLLAPSE_ALLOC);
2363 return *hpage;
2364}
2365#else
2366static int khugepaged_find_target_node(void)
2367{
2368 return 0;
2369}
2370
2371static inline struct page *alloc_hugepage(int defrag)
2372{
2373 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2374 HPAGE_PMD_ORDER);
2375}
2376
2377static struct page *khugepaged_alloc_hugepage(bool *wait)
2378{
2379 struct page *hpage;
2380
2381 do {
2382 hpage = alloc_hugepage(khugepaged_defrag());
2383 if (!hpage) {
2384 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2385 if (!*wait)
2386 return NULL;
2387
2388 *wait = false;
2389 khugepaged_alloc_sleep();
2390 } else
2391 count_vm_event(THP_COLLAPSE_ALLOC);
2392 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2393
2394 return hpage;
2395}
2396
2397static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2398{
2399 if (!*hpage)
2400 *hpage = khugepaged_alloc_hugepage(wait);
2401
2402 if (unlikely(!*hpage))
2403 return false;
2404
2405 return true;
2406}
2407
2408static struct page *
2409khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2410 struct vm_area_struct *vma, unsigned long address,
2411 int node)
2412{
2413 up_read(&mm->mmap_sem);
2414 VM_BUG_ON(!*hpage);
2415
2416 return *hpage;
2417}
2418#endif
2419
2420static bool hugepage_vma_check(struct vm_area_struct *vma)
2421{
2422 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2423 (vma->vm_flags & VM_NOHUGEPAGE))
2424 return false;
2425
2426 if (!vma->anon_vma || vma->vm_ops)
2427 return false;
2428 if (is_vma_temporary_stack(vma))
2429 return false;
2430 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2431 return true;
2432}
2433
2434static void collapse_huge_page(struct mm_struct *mm,
2435 unsigned long address,
2436 struct page **hpage,
2437 struct vm_area_struct *vma,
2438 int node)
2439{
2440 pmd_t *pmd, _pmd;
2441 pte_t *pte;
2442 pgtable_t pgtable;
2443 struct page *new_page;
2444 spinlock_t *pmd_ptl, *pte_ptl;
2445 int isolated;
2446 unsigned long hstart, hend;
2447 struct mem_cgroup *memcg;
2448 unsigned long mmun_start; /* For mmu_notifiers */
2449 unsigned long mmun_end; /* For mmu_notifiers */
2450 gfp_t gfp;
2451
2452 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
2454 /* Only allocate from the target node */
2455 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2456 __GFP_THISNODE;
2457
2458 /* release the mmap_sem read lock. */
2459 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
2460 if (!new_page)
2461 return;
2462
2463 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2464 gfp, &memcg)))
2465 return;
2466
2467 /*
2468 * Prevent all access to pagetables with the exception of
2469 * gup_fast later hanlded by the ptep_clear_flush and the VM
2470 * handled by the anon_vma lock + PG_lock.
2471 */
2472 down_write(&mm->mmap_sem);
2473 if (unlikely(khugepaged_test_exit(mm)))
2474 goto out;
2475
2476 vma = find_vma(mm, address);
2477 if (!vma)
2478 goto out;
2479 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2480 hend = vma->vm_end & HPAGE_PMD_MASK;
2481 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2482 goto out;
2483 if (!hugepage_vma_check(vma))
2484 goto out;
2485 pmd = mm_find_pmd(mm, address);
2486 if (!pmd)
2487 goto out;
2488
2489 anon_vma_lock_write(vma->anon_vma);
2490
2491 pte = pte_offset_map(pmd, address);
2492 pte_ptl = pte_lockptr(mm, pmd);
2493
2494 mmun_start = address;
2495 mmun_end = address + HPAGE_PMD_SIZE;
2496 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2497 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2498 /*
2499 * After this gup_fast can't run anymore. This also removes
2500 * any huge TLB entry from the CPU so we won't allow
2501 * huge and small TLB entries for the same virtual address
2502 * to avoid the risk of CPU bugs in that area.
2503 */
2504 _pmd = pmdp_clear_flush(vma, address, pmd);
2505 spin_unlock(pmd_ptl);
2506 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2507
2508 spin_lock(pte_ptl);
2509 isolated = __collapse_huge_page_isolate(vma, address, pte);
2510 spin_unlock(pte_ptl);
2511
2512 if (unlikely(!isolated)) {
2513 pte_unmap(pte);
2514 spin_lock(pmd_ptl);
2515 BUG_ON(!pmd_none(*pmd));
2516 /*
2517 * We can only use set_pmd_at when establishing
2518 * hugepmds and never for establishing regular pmds that
2519 * points to regular pagetables. Use pmd_populate for that
2520 */
2521 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2522 spin_unlock(pmd_ptl);
2523 anon_vma_unlock_write(vma->anon_vma);
2524 goto out;
2525 }
2526
2527 /*
2528 * All pages are isolated and locked so anon_vma rmap
2529 * can't run anymore.
2530 */
2531 anon_vma_unlock_write(vma->anon_vma);
2532
2533 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2534 pte_unmap(pte);
2535 __SetPageUptodate(new_page);
2536 pgtable = pmd_pgtable(_pmd);
2537
2538 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2539 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2540
2541 /*
2542 * spin_lock() below is not the equivalent of smp_wmb(), so
2543 * this is needed to avoid the copy_huge_page writes to become
2544 * visible after the set_pmd_at() write.
2545 */
2546 smp_wmb();
2547
2548 spin_lock(pmd_ptl);
2549 BUG_ON(!pmd_none(*pmd));
2550 page_add_new_anon_rmap(new_page, vma, address);
2551 mem_cgroup_commit_charge(new_page, memcg, false);
2552 lru_cache_add_active_or_unevictable(new_page, vma);
2553 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2554 set_pmd_at(mm, address, pmd, _pmd);
2555 update_mmu_cache_pmd(vma, address, pmd);
2556 spin_unlock(pmd_ptl);
2557
2558 *hpage = NULL;
2559
2560 khugepaged_pages_collapsed++;
2561out_up_write:
2562 up_write(&mm->mmap_sem);
2563 return;
2564
2565out:
2566 mem_cgroup_cancel_charge(new_page, memcg);
2567 goto out_up_write;
2568}
2569
2570static int khugepaged_scan_pmd(struct mm_struct *mm,
2571 struct vm_area_struct *vma,
2572 unsigned long address,
2573 struct page **hpage)
2574{
2575 pmd_t *pmd;
2576 pte_t *pte, *_pte;
2577 int ret = 0, none_or_zero = 0;
2578 struct page *page;
2579 unsigned long _address;
2580 spinlock_t *ptl;
2581 int node = NUMA_NO_NODE;
2582 bool writable = false, referenced = false;
2583
2584 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2585
2586 pmd = mm_find_pmd(mm, address);
2587 if (!pmd)
2588 goto out;
2589
2590 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2591 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2592 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2593 _pte++, _address += PAGE_SIZE) {
2594 pte_t pteval = *_pte;
2595 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2596 if (++none_or_zero <= khugepaged_max_ptes_none)
2597 continue;
2598 else
2599 goto out_unmap;
2600 }
2601 if (!pte_present(pteval))
2602 goto out_unmap;
2603 if (pte_write(pteval))
2604 writable = true;
2605
2606 page = vm_normal_page(vma, _address, pteval);
2607 if (unlikely(!page))
2608 goto out_unmap;
2609 /*
2610 * Record which node the original page is from and save this
2611 * information to khugepaged_node_load[].
2612 * Khupaged will allocate hugepage from the node has the max
2613 * hit record.
2614 */
2615 node = page_to_nid(page);
2616 if (khugepaged_scan_abort(node))
2617 goto out_unmap;
2618 khugepaged_node_load[node]++;
2619 VM_BUG_ON_PAGE(PageCompound(page), page);
2620 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2621 goto out_unmap;
2622 /*
2623 * cannot use mapcount: can't collapse if there's a gup pin.
2624 * The page must only be referenced by the scanned process
2625 * and page swap cache.
2626 */
2627 if (page_count(page) != 1 + !!PageSwapCache(page))
2628 goto out_unmap;
2629 if (pte_young(pteval) || PageReferenced(page) ||
2630 mmu_notifier_test_young(vma->vm_mm, address))
2631 referenced = true;
2632 }
2633 if (referenced && writable)
2634 ret = 1;
2635out_unmap:
2636 pte_unmap_unlock(pte, ptl);
2637 if (ret) {
2638 node = khugepaged_find_target_node();
2639 /* collapse_huge_page will return with the mmap_sem released */
2640 collapse_huge_page(mm, address, hpage, vma, node);
2641 }
2642out:
2643 return ret;
2644}
2645
2646static void collect_mm_slot(struct mm_slot *mm_slot)
2647{
2648 struct mm_struct *mm = mm_slot->mm;
2649
2650 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2651
2652 if (khugepaged_test_exit(mm)) {
2653 /* free mm_slot */
2654 hash_del(&mm_slot->hash);
2655 list_del(&mm_slot->mm_node);
2656
2657 /*
2658 * Not strictly needed because the mm exited already.
2659 *
2660 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2661 */
2662
2663 /* khugepaged_mm_lock actually not necessary for the below */
2664 free_mm_slot(mm_slot);
2665 mmdrop(mm);
2666 }
2667}
2668
2669static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2670 struct page **hpage)
2671 __releases(&khugepaged_mm_lock)
2672 __acquires(&khugepaged_mm_lock)
2673{
2674 struct mm_slot *mm_slot;
2675 struct mm_struct *mm;
2676 struct vm_area_struct *vma;
2677 int progress = 0;
2678
2679 VM_BUG_ON(!pages);
2680 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2681
2682 if (khugepaged_scan.mm_slot)
2683 mm_slot = khugepaged_scan.mm_slot;
2684 else {
2685 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2686 struct mm_slot, mm_node);
2687 khugepaged_scan.address = 0;
2688 khugepaged_scan.mm_slot = mm_slot;
2689 }
2690 spin_unlock(&khugepaged_mm_lock);
2691
2692 mm = mm_slot->mm;
2693 down_read(&mm->mmap_sem);
2694 if (unlikely(khugepaged_test_exit(mm)))
2695 vma = NULL;
2696 else
2697 vma = find_vma(mm, khugepaged_scan.address);
2698
2699 progress++;
2700 for (; vma; vma = vma->vm_next) {
2701 unsigned long hstart, hend;
2702
2703 cond_resched();
2704 if (unlikely(khugepaged_test_exit(mm))) {
2705 progress++;
2706 break;
2707 }
2708 if (!hugepage_vma_check(vma)) {
2709skip:
2710 progress++;
2711 continue;
2712 }
2713 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2714 hend = vma->vm_end & HPAGE_PMD_MASK;
2715 if (hstart >= hend)
2716 goto skip;
2717 if (khugepaged_scan.address > hend)
2718 goto skip;
2719 if (khugepaged_scan.address < hstart)
2720 khugepaged_scan.address = hstart;
2721 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2722
2723 while (khugepaged_scan.address < hend) {
2724 int ret;
2725 cond_resched();
2726 if (unlikely(khugepaged_test_exit(mm)))
2727 goto breakouterloop;
2728
2729 VM_BUG_ON(khugepaged_scan.address < hstart ||
2730 khugepaged_scan.address + HPAGE_PMD_SIZE >
2731 hend);
2732 ret = khugepaged_scan_pmd(mm, vma,
2733 khugepaged_scan.address,
2734 hpage);
2735 /* move to next address */
2736 khugepaged_scan.address += HPAGE_PMD_SIZE;
2737 progress += HPAGE_PMD_NR;
2738 if (ret)
2739 /* we released mmap_sem so break loop */
2740 goto breakouterloop_mmap_sem;
2741 if (progress >= pages)
2742 goto breakouterloop;
2743 }
2744 }
2745breakouterloop:
2746 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2747breakouterloop_mmap_sem:
2748
2749 spin_lock(&khugepaged_mm_lock);
2750 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2751 /*
2752 * Release the current mm_slot if this mm is about to die, or
2753 * if we scanned all vmas of this mm.
2754 */
2755 if (khugepaged_test_exit(mm) || !vma) {
2756 /*
2757 * Make sure that if mm_users is reaching zero while
2758 * khugepaged runs here, khugepaged_exit will find
2759 * mm_slot not pointing to the exiting mm.
2760 */
2761 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2762 khugepaged_scan.mm_slot = list_entry(
2763 mm_slot->mm_node.next,
2764 struct mm_slot, mm_node);
2765 khugepaged_scan.address = 0;
2766 } else {
2767 khugepaged_scan.mm_slot = NULL;
2768 khugepaged_full_scans++;
2769 }
2770
2771 collect_mm_slot(mm_slot);
2772 }
2773
2774 return progress;
2775}
2776
2777static int khugepaged_has_work(void)
2778{
2779 return !list_empty(&khugepaged_scan.mm_head) &&
2780 khugepaged_enabled();
2781}
2782
2783static int khugepaged_wait_event(void)
2784{
2785 return !list_empty(&khugepaged_scan.mm_head) ||
2786 kthread_should_stop();
2787}
2788
2789static void khugepaged_do_scan(void)
2790{
2791 struct page *hpage = NULL;
2792 unsigned int progress = 0, pass_through_head = 0;
2793 unsigned int pages = khugepaged_pages_to_scan;
2794 bool wait = true;
2795
2796 barrier(); /* write khugepaged_pages_to_scan to local stack */
2797
2798 while (progress < pages) {
2799 if (!khugepaged_prealloc_page(&hpage, &wait))
2800 break;
2801
2802 cond_resched();
2803
2804 if (unlikely(kthread_should_stop() || freezing(current)))
2805 break;
2806
2807 spin_lock(&khugepaged_mm_lock);
2808 if (!khugepaged_scan.mm_slot)
2809 pass_through_head++;
2810 if (khugepaged_has_work() &&
2811 pass_through_head < 2)
2812 progress += khugepaged_scan_mm_slot(pages - progress,
2813 &hpage);
2814 else
2815 progress = pages;
2816 spin_unlock(&khugepaged_mm_lock);
2817 }
2818
2819 if (!IS_ERR_OR_NULL(hpage))
2820 put_page(hpage);
2821}
2822
2823static void khugepaged_wait_work(void)
2824{
2825 try_to_freeze();
2826
2827 if (khugepaged_has_work()) {
2828 if (!khugepaged_scan_sleep_millisecs)
2829 return;
2830
2831 wait_event_freezable_timeout(khugepaged_wait,
2832 kthread_should_stop(),
2833 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2834 return;
2835 }
2836
2837 if (khugepaged_enabled())
2838 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2839}
2840
2841static int khugepaged(void *none)
2842{
2843 struct mm_slot *mm_slot;
2844
2845 set_freezable();
2846 set_user_nice(current, MAX_NICE);
2847
2848 while (!kthread_should_stop()) {
2849 khugepaged_do_scan();
2850 khugepaged_wait_work();
2851 }
2852
2853 spin_lock(&khugepaged_mm_lock);
2854 mm_slot = khugepaged_scan.mm_slot;
2855 khugepaged_scan.mm_slot = NULL;
2856 if (mm_slot)
2857 collect_mm_slot(mm_slot);
2858 spin_unlock(&khugepaged_mm_lock);
2859 return 0;
2860}
2861
2862static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2863 unsigned long haddr, pmd_t *pmd)
2864{
2865 struct mm_struct *mm = vma->vm_mm;
2866 pgtable_t pgtable;
2867 pmd_t _pmd;
2868 int i;
2869
2870 pmdp_clear_flush_notify(vma, haddr, pmd);
2871 /* leave pmd empty until pte is filled */
2872
2873 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2874 pmd_populate(mm, &_pmd, pgtable);
2875
2876 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2877 pte_t *pte, entry;
2878 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2879 entry = pte_mkspecial(entry);
2880 pte = pte_offset_map(&_pmd, haddr);
2881 VM_BUG_ON(!pte_none(*pte));
2882 set_pte_at(mm, haddr, pte, entry);
2883 pte_unmap(pte);
2884 }
2885 smp_wmb(); /* make pte visible before pmd */
2886 pmd_populate(mm, pmd, pgtable);
2887 put_huge_zero_page();
2888}
2889
2890void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2891 pmd_t *pmd)
2892{
2893 spinlock_t *ptl;
2894 struct page *page;
2895 struct mm_struct *mm = vma->vm_mm;
2896 unsigned long haddr = address & HPAGE_PMD_MASK;
2897 unsigned long mmun_start; /* For mmu_notifiers */
2898 unsigned long mmun_end; /* For mmu_notifiers */
2899
2900 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2901
2902 mmun_start = haddr;
2903 mmun_end = haddr + HPAGE_PMD_SIZE;
2904again:
2905 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2906 ptl = pmd_lock(mm, pmd);
2907 if (unlikely(!pmd_trans_huge(*pmd))) {
2908 spin_unlock(ptl);
2909 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2910 return;
2911 }
2912 if (is_huge_zero_pmd(*pmd)) {
2913 __split_huge_zero_page_pmd(vma, haddr, pmd);
2914 spin_unlock(ptl);
2915 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2916 return;
2917 }
2918 page = pmd_page(*pmd);
2919 VM_BUG_ON_PAGE(!page_count(page), page);
2920 get_page(page);
2921 spin_unlock(ptl);
2922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2923
2924 split_huge_page(page);
2925
2926 put_page(page);
2927
2928 /*
2929 * We don't always have down_write of mmap_sem here: a racing
2930 * do_huge_pmd_wp_page() might have copied-on-write to another
2931 * huge page before our split_huge_page() got the anon_vma lock.
2932 */
2933 if (unlikely(pmd_trans_huge(*pmd)))
2934 goto again;
2935}
2936
2937void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2938 pmd_t *pmd)
2939{
2940 struct vm_area_struct *vma;
2941
2942 vma = find_vma(mm, address);
2943 BUG_ON(vma == NULL);
2944 split_huge_page_pmd(vma, address, pmd);
2945}
2946
2947static void split_huge_page_address(struct mm_struct *mm,
2948 unsigned long address)
2949{
2950 pgd_t *pgd;
2951 pud_t *pud;
2952 pmd_t *pmd;
2953
2954 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2955
2956 pgd = pgd_offset(mm, address);
2957 if (!pgd_present(*pgd))
2958 return;
2959
2960 pud = pud_offset(pgd, address);
2961 if (!pud_present(*pud))
2962 return;
2963
2964 pmd = pmd_offset(pud, address);
2965 if (!pmd_present(*pmd))
2966 return;
2967 /*
2968 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2969 * materialize from under us.
2970 */
2971 split_huge_page_pmd_mm(mm, address, pmd);
2972}
2973
2974void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2975 unsigned long start,
2976 unsigned long end,
2977 long adjust_next)
2978{
2979 /*
2980 * If the new start address isn't hpage aligned and it could
2981 * previously contain an hugepage: check if we need to split
2982 * an huge pmd.
2983 */
2984 if (start & ~HPAGE_PMD_MASK &&
2985 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2986 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2987 split_huge_page_address(vma->vm_mm, start);
2988
2989 /*
2990 * If the new end address isn't hpage aligned and it could
2991 * previously contain an hugepage: check if we need to split
2992 * an huge pmd.
2993 */
2994 if (end & ~HPAGE_PMD_MASK &&
2995 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2996 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2997 split_huge_page_address(vma->vm_mm, end);
2998
2999 /*
3000 * If we're also updating the vma->vm_next->vm_start, if the new
3001 * vm_next->vm_start isn't page aligned and it could previously
3002 * contain an hugepage: check if we need to split an huge pmd.
3003 */
3004 if (adjust_next > 0) {
3005 struct vm_area_struct *next = vma->vm_next;
3006 unsigned long nstart = next->vm_start;
3007 nstart += adjust_next << PAGE_SHIFT;
3008 if (nstart & ~HPAGE_PMD_MASK &&
3009 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3010 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3011 split_huge_page_address(next->vm_mm, nstart);
3012 }
3013}