]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/huge_memory.c
mm, numa: skip PTE-mapped THP on numa fault
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/dax.h>
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
22#include <linux/freezer.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/migrate.h>
26#include <linux/hashtable.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/page_idle.h>
29
30#include <asm/tlb.h>
31#include <asm/pgalloc.h>
32#include "internal.h"
33
34enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_PAGE_COMPOUND,
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_SWAP_CACHE_PAGE,
54 SCAN_DEL_PAGE_LRU,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL
57};
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/huge_memory.h>
61
62/*
63 * By default transparent hugepage support is disabled in order that avoid
64 * to risk increase the memory footprint of applications without a guaranteed
65 * benefit. When transparent hugepage support is enabled, is for all mappings,
66 * and khugepaged scans all mappings.
67 * Defrag is invoked by khugepaged hugepage allocations and by page faults
68 * for all hugepage allocations.
69 */
70unsigned long transparent_hugepage_flags __read_mostly =
71#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
72 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
73#endif
74#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
75 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
76#endif
77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
79 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
80
81/* default scan 8*512 pte (or vmas) every 30 second */
82static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
83static unsigned int khugepaged_pages_collapsed;
84static unsigned int khugepaged_full_scans;
85static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
86/* during fragmentation poll the hugepage allocator once every minute */
87static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
88static struct task_struct *khugepaged_thread __read_mostly;
89static DEFINE_MUTEX(khugepaged_mutex);
90static DEFINE_SPINLOCK(khugepaged_mm_lock);
91static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
92/*
93 * default collapse hugepages if there is at least one pte mapped like
94 * it would have happened if the vma was large enough during page
95 * fault.
96 */
97static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
98
99static int khugepaged(void *none);
100static int khugepaged_slab_init(void);
101static void khugepaged_slab_exit(void);
102
103#define MM_SLOTS_HASH_BITS 10
104static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
105
106static struct kmem_cache *mm_slot_cache __read_mostly;
107
108/**
109 * struct mm_slot - hash lookup from mm to mm_slot
110 * @hash: hash collision list
111 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
112 * @mm: the mm that this information is valid for
113 */
114struct mm_slot {
115 struct hlist_node hash;
116 struct list_head mm_node;
117 struct mm_struct *mm;
118};
119
120/**
121 * struct khugepaged_scan - cursor for scanning
122 * @mm_head: the head of the mm list to scan
123 * @mm_slot: the current mm_slot we are scanning
124 * @address: the next address inside that to be scanned
125 *
126 * There is only the one khugepaged_scan instance of this cursor structure.
127 */
128struct khugepaged_scan {
129 struct list_head mm_head;
130 struct mm_slot *mm_slot;
131 unsigned long address;
132};
133static struct khugepaged_scan khugepaged_scan = {
134 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135};
136
137
138static void set_recommended_min_free_kbytes(void)
139{
140 struct zone *zone;
141 int nr_zones = 0;
142 unsigned long recommended_min;
143
144 for_each_populated_zone(zone)
145 nr_zones++;
146
147 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
148 recommended_min = pageblock_nr_pages * nr_zones * 2;
149
150 /*
151 * Make sure that on average at least two pageblocks are almost free
152 * of another type, one for a migratetype to fall back to and a
153 * second to avoid subsequent fallbacks of other types There are 3
154 * MIGRATE_TYPES we care about.
155 */
156 recommended_min += pageblock_nr_pages * nr_zones *
157 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
158
159 /* don't ever allow to reserve more than 5% of the lowmem */
160 recommended_min = min(recommended_min,
161 (unsigned long) nr_free_buffer_pages() / 20);
162 recommended_min <<= (PAGE_SHIFT-10);
163
164 if (recommended_min > min_free_kbytes) {
165 if (user_min_free_kbytes >= 0)
166 pr_info("raising min_free_kbytes from %d to %lu "
167 "to help transparent hugepage allocations\n",
168 min_free_kbytes, recommended_min);
169
170 min_free_kbytes = recommended_min;
171 }
172 setup_per_zone_wmarks();
173}
174
175static int start_stop_khugepaged(void)
176{
177 int err = 0;
178 if (khugepaged_enabled()) {
179 if (!khugepaged_thread)
180 khugepaged_thread = kthread_run(khugepaged, NULL,
181 "khugepaged");
182 if (IS_ERR(khugepaged_thread)) {
183 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
184 err = PTR_ERR(khugepaged_thread);
185 khugepaged_thread = NULL;
186 goto fail;
187 }
188
189 if (!list_empty(&khugepaged_scan.mm_head))
190 wake_up_interruptible(&khugepaged_wait);
191
192 set_recommended_min_free_kbytes();
193 } else if (khugepaged_thread) {
194 kthread_stop(khugepaged_thread);
195 khugepaged_thread = NULL;
196 }
197fail:
198 return err;
199}
200
201static atomic_t huge_zero_refcount;
202struct page *huge_zero_page __read_mostly;
203
204struct page *get_huge_zero_page(void)
205{
206 struct page *zero_page;
207retry:
208 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
209 return READ_ONCE(huge_zero_page);
210
211 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
212 HPAGE_PMD_ORDER);
213 if (!zero_page) {
214 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
215 return NULL;
216 }
217 count_vm_event(THP_ZERO_PAGE_ALLOC);
218 preempt_disable();
219 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
220 preempt_enable();
221 __free_pages(zero_page, compound_order(zero_page));
222 goto retry;
223 }
224
225 /* We take additional reference here. It will be put back by shrinker */
226 atomic_set(&huge_zero_refcount, 2);
227 preempt_enable();
228 return READ_ONCE(huge_zero_page);
229}
230
231static void put_huge_zero_page(void)
232{
233 /*
234 * Counter should never go to zero here. Only shrinker can put
235 * last reference.
236 */
237 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
238}
239
240static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
241 struct shrink_control *sc)
242{
243 /* we can free zero page only if last reference remains */
244 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
245}
246
247static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
248 struct shrink_control *sc)
249{
250 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
251 struct page *zero_page = xchg(&huge_zero_page, NULL);
252 BUG_ON(zero_page == NULL);
253 __free_pages(zero_page, compound_order(zero_page));
254 return HPAGE_PMD_NR;
255 }
256
257 return 0;
258}
259
260static struct shrinker huge_zero_page_shrinker = {
261 .count_objects = shrink_huge_zero_page_count,
262 .scan_objects = shrink_huge_zero_page_scan,
263 .seeks = DEFAULT_SEEKS,
264};
265
266#ifdef CONFIG_SYSFS
267
268static ssize_t double_flag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf,
270 enum transparent_hugepage_flag enabled,
271 enum transparent_hugepage_flag req_madv)
272{
273 if (test_bit(enabled, &transparent_hugepage_flags)) {
274 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
275 return sprintf(buf, "[always] madvise never\n");
276 } else if (test_bit(req_madv, &transparent_hugepage_flags))
277 return sprintf(buf, "always [madvise] never\n");
278 else
279 return sprintf(buf, "always madvise [never]\n");
280}
281static ssize_t double_flag_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count,
284 enum transparent_hugepage_flag enabled,
285 enum transparent_hugepage_flag req_madv)
286{
287 if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 set_bit(enabled, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
294 set_bit(req_madv, &transparent_hugepage_flags);
295 } else if (!memcmp("never", buf,
296 min(sizeof("never")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(req_madv, &transparent_hugepage_flags);
299 } else
300 return -EINVAL;
301
302 return count;
303}
304
305static ssize_t enabled_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return double_flag_show(kobj, attr, buf,
309 TRANSPARENT_HUGEPAGE_FLAG,
310 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
311}
312static ssize_t enabled_store(struct kobject *kobj,
313 struct kobj_attribute *attr,
314 const char *buf, size_t count)
315{
316 ssize_t ret;
317
318 ret = double_flag_store(kobj, attr, buf, count,
319 TRANSPARENT_HUGEPAGE_FLAG,
320 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
321
322 if (ret > 0) {
323 int err;
324
325 mutex_lock(&khugepaged_mutex);
326 err = start_stop_khugepaged();
327 mutex_unlock(&khugepaged_mutex);
328
329 if (err)
330 ret = err;
331 }
332
333 return ret;
334}
335static struct kobj_attribute enabled_attr =
336 __ATTR(enabled, 0644, enabled_show, enabled_store);
337
338static ssize_t single_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341{
342 return sprintf(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
344}
345
346static ssize_t single_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350{
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
361 set_bit(flag, &transparent_hugepage_flags);
362 else
363 clear_bit(flag, &transparent_hugepage_flags);
364
365 return count;
366}
367
368/*
369 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
370 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
371 * memory just to allocate one more hugepage.
372 */
373static ssize_t defrag_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375{
376 return double_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
378 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
379}
380static ssize_t defrag_store(struct kobject *kobj,
381 struct kobj_attribute *attr,
382 const char *buf, size_t count)
383{
384 return double_flag_store(kobj, attr, buf, count,
385 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387}
388static struct kobj_attribute defrag_attr =
389 __ATTR(defrag, 0644, defrag_show, defrag_store);
390
391static ssize_t use_zero_page_show(struct kobject *kobj,
392 struct kobj_attribute *attr, char *buf)
393{
394 return single_flag_show(kobj, attr, buf,
395 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
396}
397static ssize_t use_zero_page_store(struct kobject *kobj,
398 struct kobj_attribute *attr, const char *buf, size_t count)
399{
400 return single_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402}
403static struct kobj_attribute use_zero_page_attr =
404 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
405#ifdef CONFIG_DEBUG_VM
406static ssize_t debug_cow_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
411}
412static ssize_t debug_cow_store(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 const char *buf, size_t count)
415{
416 return single_flag_store(kobj, attr, buf, count,
417 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418}
419static struct kobj_attribute debug_cow_attr =
420 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
421#endif /* CONFIG_DEBUG_VM */
422
423static struct attribute *hugepage_attr[] = {
424 &enabled_attr.attr,
425 &defrag_attr.attr,
426 &use_zero_page_attr.attr,
427#ifdef CONFIG_DEBUG_VM
428 &debug_cow_attr.attr,
429#endif
430 NULL,
431};
432
433static struct attribute_group hugepage_attr_group = {
434 .attrs = hugepage_attr,
435};
436
437static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
438 struct kobj_attribute *attr,
439 char *buf)
440{
441 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
442}
443
444static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 const char *buf, size_t count)
447{
448 unsigned long msecs;
449 int err;
450
451 err = kstrtoul(buf, 10, &msecs);
452 if (err || msecs > UINT_MAX)
453 return -EINVAL;
454
455 khugepaged_scan_sleep_millisecs = msecs;
456 wake_up_interruptible(&khugepaged_wait);
457
458 return count;
459}
460static struct kobj_attribute scan_sleep_millisecs_attr =
461 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
462 scan_sleep_millisecs_store);
463
464static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467{
468 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
469}
470
471static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474{
475 unsigned long msecs;
476 int err;
477
478 err = kstrtoul(buf, 10, &msecs);
479 if (err || msecs > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_alloc_sleep_millisecs = msecs;
483 wake_up_interruptible(&khugepaged_wait);
484
485 return count;
486}
487static struct kobj_attribute alloc_sleep_millisecs_attr =
488 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
489 alloc_sleep_millisecs_store);
490
491static ssize_t pages_to_scan_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494{
495 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
496}
497static ssize_t pages_to_scan_store(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 const char *buf, size_t count)
500{
501 int err;
502 unsigned long pages;
503
504 err = kstrtoul(buf, 10, &pages);
505 if (err || !pages || pages > UINT_MAX)
506 return -EINVAL;
507
508 khugepaged_pages_to_scan = pages;
509
510 return count;
511}
512static struct kobj_attribute pages_to_scan_attr =
513 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
514 pages_to_scan_store);
515
516static ssize_t pages_collapsed_show(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 char *buf)
519{
520 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
521}
522static struct kobj_attribute pages_collapsed_attr =
523 __ATTR_RO(pages_collapsed);
524
525static ssize_t full_scans_show(struct kobject *kobj,
526 struct kobj_attribute *attr,
527 char *buf)
528{
529 return sprintf(buf, "%u\n", khugepaged_full_scans);
530}
531static struct kobj_attribute full_scans_attr =
532 __ATTR_RO(full_scans);
533
534static ssize_t khugepaged_defrag_show(struct kobject *kobj,
535 struct kobj_attribute *attr, char *buf)
536{
537 return single_flag_show(kobj, attr, buf,
538 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
539}
540static ssize_t khugepaged_defrag_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543{
544 return single_flag_store(kobj, attr, buf, count,
545 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546}
547static struct kobj_attribute khugepaged_defrag_attr =
548 __ATTR(defrag, 0644, khugepaged_defrag_show,
549 khugepaged_defrag_store);
550
551/*
552 * max_ptes_none controls if khugepaged should collapse hugepages over
553 * any unmapped ptes in turn potentially increasing the memory
554 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
555 * reduce the available free memory in the system as it
556 * runs. Increasing max_ptes_none will instead potentially reduce the
557 * free memory in the system during the khugepaged scan.
558 */
559static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 char *buf)
562{
563 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
564}
565static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
566 struct kobj_attribute *attr,
567 const char *buf, size_t count)
568{
569 int err;
570 unsigned long max_ptes_none;
571
572 err = kstrtoul(buf, 10, &max_ptes_none);
573 if (err || max_ptes_none > HPAGE_PMD_NR-1)
574 return -EINVAL;
575
576 khugepaged_max_ptes_none = max_ptes_none;
577
578 return count;
579}
580static struct kobj_attribute khugepaged_max_ptes_none_attr =
581 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
582 khugepaged_max_ptes_none_store);
583
584static struct attribute *khugepaged_attr[] = {
585 &khugepaged_defrag_attr.attr,
586 &khugepaged_max_ptes_none_attr.attr,
587 &pages_to_scan_attr.attr,
588 &pages_collapsed_attr.attr,
589 &full_scans_attr.attr,
590 &scan_sleep_millisecs_attr.attr,
591 &alloc_sleep_millisecs_attr.attr,
592 NULL,
593};
594
595static struct attribute_group khugepaged_attr_group = {
596 .attrs = khugepaged_attr,
597 .name = "khugepaged",
598};
599
600static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
601{
602 int err;
603
604 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
605 if (unlikely(!*hugepage_kobj)) {
606 pr_err("failed to create transparent hugepage kobject\n");
607 return -ENOMEM;
608 }
609
610 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
611 if (err) {
612 pr_err("failed to register transparent hugepage group\n");
613 goto delete_obj;
614 }
615
616 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
617 if (err) {
618 pr_err("failed to register transparent hugepage group\n");
619 goto remove_hp_group;
620 }
621
622 return 0;
623
624remove_hp_group:
625 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
626delete_obj:
627 kobject_put(*hugepage_kobj);
628 return err;
629}
630
631static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
632{
633 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
634 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
635 kobject_put(hugepage_kobj);
636}
637#else
638static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
639{
640 return 0;
641}
642
643static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
644{
645}
646#endif /* CONFIG_SYSFS */
647
648static int __init hugepage_init(void)
649{
650 int err;
651 struct kobject *hugepage_kobj;
652
653 if (!has_transparent_hugepage()) {
654 transparent_hugepage_flags = 0;
655 return -EINVAL;
656 }
657
658 err = hugepage_init_sysfs(&hugepage_kobj);
659 if (err)
660 goto err_sysfs;
661
662 err = khugepaged_slab_init();
663 if (err)
664 goto err_slab;
665
666 err = register_shrinker(&huge_zero_page_shrinker);
667 if (err)
668 goto err_hzp_shrinker;
669
670 /*
671 * By default disable transparent hugepages on smaller systems,
672 * where the extra memory used could hurt more than TLB overhead
673 * is likely to save. The admin can still enable it through /sys.
674 */
675 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
676 transparent_hugepage_flags = 0;
677 return 0;
678 }
679
680 err = start_stop_khugepaged();
681 if (err)
682 goto err_khugepaged;
683
684 return 0;
685err_khugepaged:
686 unregister_shrinker(&huge_zero_page_shrinker);
687err_hzp_shrinker:
688 khugepaged_slab_exit();
689err_slab:
690 hugepage_exit_sysfs(hugepage_kobj);
691err_sysfs:
692 return err;
693}
694subsys_initcall(hugepage_init);
695
696static int __init setup_transparent_hugepage(char *str)
697{
698 int ret = 0;
699 if (!str)
700 goto out;
701 if (!strcmp(str, "always")) {
702 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
703 &transparent_hugepage_flags);
704 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
705 &transparent_hugepage_flags);
706 ret = 1;
707 } else if (!strcmp(str, "madvise")) {
708 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
709 &transparent_hugepage_flags);
710 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
711 &transparent_hugepage_flags);
712 ret = 1;
713 } else if (!strcmp(str, "never")) {
714 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
715 &transparent_hugepage_flags);
716 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717 &transparent_hugepage_flags);
718 ret = 1;
719 }
720out:
721 if (!ret)
722 pr_warn("transparent_hugepage= cannot parse, ignored\n");
723 return ret;
724}
725__setup("transparent_hugepage=", setup_transparent_hugepage);
726
727pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
728{
729 if (likely(vma->vm_flags & VM_WRITE))
730 pmd = pmd_mkwrite(pmd);
731 return pmd;
732}
733
734static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
735{
736 pmd_t entry;
737 entry = mk_pmd(page, prot);
738 entry = pmd_mkhuge(entry);
739 return entry;
740}
741
742static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
743 struct vm_area_struct *vma,
744 unsigned long address, pmd_t *pmd,
745 struct page *page, gfp_t gfp,
746 unsigned int flags)
747{
748 struct mem_cgroup *memcg;
749 pgtable_t pgtable;
750 spinlock_t *ptl;
751 unsigned long haddr = address & HPAGE_PMD_MASK;
752
753 VM_BUG_ON_PAGE(!PageCompound(page), page);
754
755 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
756 put_page(page);
757 count_vm_event(THP_FAULT_FALLBACK);
758 return VM_FAULT_FALLBACK;
759 }
760
761 pgtable = pte_alloc_one(mm, haddr);
762 if (unlikely(!pgtable)) {
763 mem_cgroup_cancel_charge(page, memcg, true);
764 put_page(page);
765 return VM_FAULT_OOM;
766 }
767
768 clear_huge_page(page, haddr, HPAGE_PMD_NR);
769 /*
770 * The memory barrier inside __SetPageUptodate makes sure that
771 * clear_huge_page writes become visible before the set_pmd_at()
772 * write.
773 */
774 __SetPageUptodate(page);
775
776 ptl = pmd_lock(mm, pmd);
777 if (unlikely(!pmd_none(*pmd))) {
778 spin_unlock(ptl);
779 mem_cgroup_cancel_charge(page, memcg, true);
780 put_page(page);
781 pte_free(mm, pgtable);
782 } else {
783 pmd_t entry;
784
785 /* Deliver the page fault to userland */
786 if (userfaultfd_missing(vma)) {
787 int ret;
788
789 spin_unlock(ptl);
790 mem_cgroup_cancel_charge(page, memcg, true);
791 put_page(page);
792 pte_free(mm, pgtable);
793 ret = handle_userfault(vma, address, flags,
794 VM_UFFD_MISSING);
795 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
796 return ret;
797 }
798
799 entry = mk_huge_pmd(page, vma->vm_page_prot);
800 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
801 page_add_new_anon_rmap(page, vma, haddr, true);
802 mem_cgroup_commit_charge(page, memcg, false, true);
803 lru_cache_add_active_or_unevictable(page, vma);
804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 set_pmd_at(mm, haddr, pmd, entry);
806 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
807 atomic_long_inc(&mm->nr_ptes);
808 spin_unlock(ptl);
809 count_vm_event(THP_FAULT_ALLOC);
810 }
811
812 return 0;
813}
814
815static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
816{
817 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
818}
819
820/* Caller must hold page table lock. */
821static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
822 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
823 struct page *zero_page)
824{
825 pmd_t entry;
826 if (!pmd_none(*pmd))
827 return false;
828 entry = mk_pmd(zero_page, vma->vm_page_prot);
829 entry = pmd_mkhuge(entry);
830 pgtable_trans_huge_deposit(mm, pmd, pgtable);
831 set_pmd_at(mm, haddr, pmd, entry);
832 atomic_long_inc(&mm->nr_ptes);
833 return true;
834}
835
836int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
837 unsigned long address, pmd_t *pmd,
838 unsigned int flags)
839{
840 gfp_t gfp;
841 struct page *page;
842 unsigned long haddr = address & HPAGE_PMD_MASK;
843
844 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
845 return VM_FAULT_FALLBACK;
846 if (vma->vm_flags & VM_LOCKED)
847 return VM_FAULT_FALLBACK;
848 if (unlikely(anon_vma_prepare(vma)))
849 return VM_FAULT_OOM;
850 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
851 return VM_FAULT_OOM;
852 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
853 transparent_hugepage_use_zero_page()) {
854 spinlock_t *ptl;
855 pgtable_t pgtable;
856 struct page *zero_page;
857 bool set;
858 int ret;
859 pgtable = pte_alloc_one(mm, haddr);
860 if (unlikely(!pgtable))
861 return VM_FAULT_OOM;
862 zero_page = get_huge_zero_page();
863 if (unlikely(!zero_page)) {
864 pte_free(mm, pgtable);
865 count_vm_event(THP_FAULT_FALLBACK);
866 return VM_FAULT_FALLBACK;
867 }
868 ptl = pmd_lock(mm, pmd);
869 ret = 0;
870 set = false;
871 if (pmd_none(*pmd)) {
872 if (userfaultfd_missing(vma)) {
873 spin_unlock(ptl);
874 ret = handle_userfault(vma, address, flags,
875 VM_UFFD_MISSING);
876 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
877 } else {
878 set_huge_zero_page(pgtable, mm, vma,
879 haddr, pmd,
880 zero_page);
881 spin_unlock(ptl);
882 set = true;
883 }
884 } else
885 spin_unlock(ptl);
886 if (!set) {
887 pte_free(mm, pgtable);
888 put_huge_zero_page();
889 }
890 return ret;
891 }
892 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
893 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
894 if (unlikely(!page)) {
895 count_vm_event(THP_FAULT_FALLBACK);
896 return VM_FAULT_FALLBACK;
897 }
898 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
899 flags);
900}
901
902static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
903 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
904{
905 struct mm_struct *mm = vma->vm_mm;
906 pmd_t entry;
907 spinlock_t *ptl;
908
909 ptl = pmd_lock(mm, pmd);
910 if (pmd_none(*pmd)) {
911 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
912 if (write) {
913 entry = pmd_mkyoung(pmd_mkdirty(entry));
914 entry = maybe_pmd_mkwrite(entry, vma);
915 }
916 set_pmd_at(mm, addr, pmd, entry);
917 update_mmu_cache_pmd(vma, addr, pmd);
918 }
919 spin_unlock(ptl);
920}
921
922int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
923 pmd_t *pmd, unsigned long pfn, bool write)
924{
925 pgprot_t pgprot = vma->vm_page_prot;
926 /*
927 * If we had pmd_special, we could avoid all these restrictions,
928 * but we need to be consistent with PTEs and architectures that
929 * can't support a 'special' bit.
930 */
931 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
932 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
933 (VM_PFNMAP|VM_MIXEDMAP));
934 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
935 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
936
937 if (addr < vma->vm_start || addr >= vma->vm_end)
938 return VM_FAULT_SIGBUS;
939 if (track_pfn_insert(vma, &pgprot, pfn))
940 return VM_FAULT_SIGBUS;
941 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
942 return VM_FAULT_NOPAGE;
943}
944
945int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
947 struct vm_area_struct *vma)
948{
949 spinlock_t *dst_ptl, *src_ptl;
950 struct page *src_page;
951 pmd_t pmd;
952 pgtable_t pgtable;
953 int ret;
954
955 ret = -ENOMEM;
956 pgtable = pte_alloc_one(dst_mm, addr);
957 if (unlikely(!pgtable))
958 goto out;
959
960 dst_ptl = pmd_lock(dst_mm, dst_pmd);
961 src_ptl = pmd_lockptr(src_mm, src_pmd);
962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
963
964 ret = -EAGAIN;
965 pmd = *src_pmd;
966 if (unlikely(!pmd_trans_huge(pmd))) {
967 pte_free(dst_mm, pgtable);
968 goto out_unlock;
969 }
970 /*
971 * When page table lock is held, the huge zero pmd should not be
972 * under splitting since we don't split the page itself, only pmd to
973 * a page table.
974 */
975 if (is_huge_zero_pmd(pmd)) {
976 struct page *zero_page;
977 /*
978 * get_huge_zero_page() will never allocate a new page here,
979 * since we already have a zero page to copy. It just takes a
980 * reference.
981 */
982 zero_page = get_huge_zero_page();
983 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
984 zero_page);
985 ret = 0;
986 goto out_unlock;
987 }
988
989 src_page = pmd_page(pmd);
990 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
991 get_page(src_page);
992 page_dup_rmap(src_page, true);
993 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
994
995 pmdp_set_wrprotect(src_mm, addr, src_pmd);
996 pmd = pmd_mkold(pmd_wrprotect(pmd));
997 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
998 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
999 atomic_long_inc(&dst_mm->nr_ptes);
1000
1001 ret = 0;
1002out_unlock:
1003 spin_unlock(src_ptl);
1004 spin_unlock(dst_ptl);
1005out:
1006 return ret;
1007}
1008
1009void huge_pmd_set_accessed(struct mm_struct *mm,
1010 struct vm_area_struct *vma,
1011 unsigned long address,
1012 pmd_t *pmd, pmd_t orig_pmd,
1013 int dirty)
1014{
1015 spinlock_t *ptl;
1016 pmd_t entry;
1017 unsigned long haddr;
1018
1019 ptl = pmd_lock(mm, pmd);
1020 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1021 goto unlock;
1022
1023 entry = pmd_mkyoung(orig_pmd);
1024 haddr = address & HPAGE_PMD_MASK;
1025 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1026 update_mmu_cache_pmd(vma, address, pmd);
1027
1028unlock:
1029 spin_unlock(ptl);
1030}
1031
1032static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1033 struct vm_area_struct *vma,
1034 unsigned long address,
1035 pmd_t *pmd, pmd_t orig_pmd,
1036 struct page *page,
1037 unsigned long haddr)
1038{
1039 struct mem_cgroup *memcg;
1040 spinlock_t *ptl;
1041 pgtable_t pgtable;
1042 pmd_t _pmd;
1043 int ret = 0, i;
1044 struct page **pages;
1045 unsigned long mmun_start; /* For mmu_notifiers */
1046 unsigned long mmun_end; /* For mmu_notifiers */
1047
1048 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1049 GFP_KERNEL);
1050 if (unlikely(!pages)) {
1051 ret |= VM_FAULT_OOM;
1052 goto out;
1053 }
1054
1055 for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1057 __GFP_OTHER_NODE,
1058 vma, address, page_to_nid(page));
1059 if (unlikely(!pages[i] ||
1060 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1061 &memcg, false))) {
1062 if (pages[i])
1063 put_page(pages[i]);
1064 while (--i >= 0) {
1065 memcg = (void *)page_private(pages[i]);
1066 set_page_private(pages[i], 0);
1067 mem_cgroup_cancel_charge(pages[i], memcg,
1068 false);
1069 put_page(pages[i]);
1070 }
1071 kfree(pages);
1072 ret |= VM_FAULT_OOM;
1073 goto out;
1074 }
1075 set_page_private(pages[i], (unsigned long)memcg);
1076 }
1077
1078 for (i = 0; i < HPAGE_PMD_NR; i++) {
1079 copy_user_highpage(pages[i], page + i,
1080 haddr + PAGE_SIZE * i, vma);
1081 __SetPageUptodate(pages[i]);
1082 cond_resched();
1083 }
1084
1085 mmun_start = haddr;
1086 mmun_end = haddr + HPAGE_PMD_SIZE;
1087 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1088
1089 ptl = pmd_lock(mm, pmd);
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 goto out_free_pages;
1092 VM_BUG_ON_PAGE(!PageHead(page), page);
1093
1094 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1095 /* leave pmd empty until pte is filled */
1096
1097 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1098 pmd_populate(mm, &_pmd, pgtable);
1099
1100 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1101 pte_t *pte, entry;
1102 entry = mk_pte(pages[i], vma->vm_page_prot);
1103 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1104 memcg = (void *)page_private(pages[i]);
1105 set_page_private(pages[i], 0);
1106 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1107 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1108 lru_cache_add_active_or_unevictable(pages[i], vma);
1109 pte = pte_offset_map(&_pmd, haddr);
1110 VM_BUG_ON(!pte_none(*pte));
1111 set_pte_at(mm, haddr, pte, entry);
1112 pte_unmap(pte);
1113 }
1114 kfree(pages);
1115
1116 smp_wmb(); /* make pte visible before pmd */
1117 pmd_populate(mm, pmd, pgtable);
1118 page_remove_rmap(page, true);
1119 spin_unlock(ptl);
1120
1121 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1122
1123 ret |= VM_FAULT_WRITE;
1124 put_page(page);
1125
1126out:
1127 return ret;
1128
1129out_free_pages:
1130 spin_unlock(ptl);
1131 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1132 for (i = 0; i < HPAGE_PMD_NR; i++) {
1133 memcg = (void *)page_private(pages[i]);
1134 set_page_private(pages[i], 0);
1135 mem_cgroup_cancel_charge(pages[i], memcg, false);
1136 put_page(pages[i]);
1137 }
1138 kfree(pages);
1139 goto out;
1140}
1141
1142int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1143 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1144{
1145 spinlock_t *ptl;
1146 int ret = 0;
1147 struct page *page = NULL, *new_page;
1148 struct mem_cgroup *memcg;
1149 unsigned long haddr;
1150 unsigned long mmun_start; /* For mmu_notifiers */
1151 unsigned long mmun_end; /* For mmu_notifiers */
1152 gfp_t huge_gfp; /* for allocation and charge */
1153
1154 ptl = pmd_lockptr(mm, pmd);
1155 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1156 haddr = address & HPAGE_PMD_MASK;
1157 if (is_huge_zero_pmd(orig_pmd))
1158 goto alloc;
1159 spin_lock(ptl);
1160 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1161 goto out_unlock;
1162
1163 page = pmd_page(orig_pmd);
1164 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1165 /*
1166 * We can only reuse the page if nobody else maps the huge page or it's
1167 * part. We can do it by checking page_mapcount() on each sub-page, but
1168 * it's expensive.
1169 * The cheaper way is to check page_count() to be equal 1: every
1170 * mapcount takes page reference reference, so this way we can
1171 * guarantee, that the PMD is the only mapping.
1172 * This can give false negative if somebody pinned the page, but that's
1173 * fine.
1174 */
1175 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1176 pmd_t entry;
1177 entry = pmd_mkyoung(orig_pmd);
1178 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1179 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1180 update_mmu_cache_pmd(vma, address, pmd);
1181 ret |= VM_FAULT_WRITE;
1182 goto out_unlock;
1183 }
1184 get_page(page);
1185 spin_unlock(ptl);
1186alloc:
1187 if (transparent_hugepage_enabled(vma) &&
1188 !transparent_hugepage_debug_cow()) {
1189 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1190 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1191 } else
1192 new_page = NULL;
1193
1194 if (unlikely(!new_page)) {
1195 if (!page) {
1196 split_huge_pmd(vma, pmd, address);
1197 ret |= VM_FAULT_FALLBACK;
1198 } else {
1199 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1200 pmd, orig_pmd, page, haddr);
1201 if (ret & VM_FAULT_OOM) {
1202 split_huge_pmd(vma, pmd, address);
1203 ret |= VM_FAULT_FALLBACK;
1204 }
1205 put_page(page);
1206 }
1207 count_vm_event(THP_FAULT_FALLBACK);
1208 goto out;
1209 }
1210
1211 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1212 true))) {
1213 put_page(new_page);
1214 if (page) {
1215 split_huge_pmd(vma, pmd, address);
1216 put_page(page);
1217 } else
1218 split_huge_pmd(vma, pmd, address);
1219 ret |= VM_FAULT_FALLBACK;
1220 count_vm_event(THP_FAULT_FALLBACK);
1221 goto out;
1222 }
1223
1224 count_vm_event(THP_FAULT_ALLOC);
1225
1226 if (!page)
1227 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1228 else
1229 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1230 __SetPageUptodate(new_page);
1231
1232 mmun_start = haddr;
1233 mmun_end = haddr + HPAGE_PMD_SIZE;
1234 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1235
1236 spin_lock(ptl);
1237 if (page)
1238 put_page(page);
1239 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1240 spin_unlock(ptl);
1241 mem_cgroup_cancel_charge(new_page, memcg, true);
1242 put_page(new_page);
1243 goto out_mn;
1244 } else {
1245 pmd_t entry;
1246 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1247 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1248 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1249 page_add_new_anon_rmap(new_page, vma, haddr, true);
1250 mem_cgroup_commit_charge(new_page, memcg, false, true);
1251 lru_cache_add_active_or_unevictable(new_page, vma);
1252 set_pmd_at(mm, haddr, pmd, entry);
1253 update_mmu_cache_pmd(vma, address, pmd);
1254 if (!page) {
1255 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1256 put_huge_zero_page();
1257 } else {
1258 VM_BUG_ON_PAGE(!PageHead(page), page);
1259 page_remove_rmap(page, true);
1260 put_page(page);
1261 }
1262 ret |= VM_FAULT_WRITE;
1263 }
1264 spin_unlock(ptl);
1265out_mn:
1266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1267out:
1268 return ret;
1269out_unlock:
1270 spin_unlock(ptl);
1271 return ret;
1272}
1273
1274struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1275 unsigned long addr,
1276 pmd_t *pmd,
1277 unsigned int flags)
1278{
1279 struct mm_struct *mm = vma->vm_mm;
1280 struct page *page = NULL;
1281
1282 assert_spin_locked(pmd_lockptr(mm, pmd));
1283
1284 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1285 goto out;
1286
1287 /* Avoid dumping huge zero page */
1288 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1289 return ERR_PTR(-EFAULT);
1290
1291 /* Full NUMA hinting faults to serialise migration in fault paths */
1292 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1293 goto out;
1294
1295 page = pmd_page(*pmd);
1296 VM_BUG_ON_PAGE(!PageHead(page), page);
1297 if (flags & FOLL_TOUCH) {
1298 pmd_t _pmd;
1299 /*
1300 * We should set the dirty bit only for FOLL_WRITE but
1301 * for now the dirty bit in the pmd is meaningless.
1302 * And if the dirty bit will become meaningful and
1303 * we'll only set it with FOLL_WRITE, an atomic
1304 * set_bit will be required on the pmd to set the
1305 * young bit, instead of the current set_pmd_at.
1306 */
1307 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1308 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1309 pmd, _pmd, 1))
1310 update_mmu_cache_pmd(vma, addr, pmd);
1311 }
1312 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1313 if (page->mapping && trylock_page(page)) {
1314 lru_add_drain();
1315 if (page->mapping)
1316 mlock_vma_page(page);
1317 unlock_page(page);
1318 }
1319 }
1320 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1321 VM_BUG_ON_PAGE(!PageCompound(page), page);
1322 if (flags & FOLL_GET)
1323 get_page(page);
1324
1325out:
1326 return page;
1327}
1328
1329/* NUMA hinting page fault entry point for trans huge pmds */
1330int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1331 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1332{
1333 spinlock_t *ptl;
1334 struct anon_vma *anon_vma = NULL;
1335 struct page *page;
1336 unsigned long haddr = addr & HPAGE_PMD_MASK;
1337 int page_nid = -1, this_nid = numa_node_id();
1338 int target_nid, last_cpupid = -1;
1339 bool page_locked;
1340 bool migrated = false;
1341 bool was_writable;
1342 int flags = 0;
1343
1344 /* A PROT_NONE fault should not end up here */
1345 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1346
1347 ptl = pmd_lock(mm, pmdp);
1348 if (unlikely(!pmd_same(pmd, *pmdp)))
1349 goto out_unlock;
1350
1351 /*
1352 * If there are potential migrations, wait for completion and retry
1353 * without disrupting NUMA hinting information. Do not relock and
1354 * check_same as the page may no longer be mapped.
1355 */
1356 if (unlikely(pmd_trans_migrating(*pmdp))) {
1357 page = pmd_page(*pmdp);
1358 spin_unlock(ptl);
1359 wait_on_page_locked(page);
1360 goto out;
1361 }
1362
1363 page = pmd_page(pmd);
1364 BUG_ON(is_huge_zero_page(page));
1365 page_nid = page_to_nid(page);
1366 last_cpupid = page_cpupid_last(page);
1367 count_vm_numa_event(NUMA_HINT_FAULTS);
1368 if (page_nid == this_nid) {
1369 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1370 flags |= TNF_FAULT_LOCAL;
1371 }
1372
1373 /* See similar comment in do_numa_page for explanation */
1374 if (!(vma->vm_flags & VM_WRITE))
1375 flags |= TNF_NO_GROUP;
1376
1377 /*
1378 * Acquire the page lock to serialise THP migrations but avoid dropping
1379 * page_table_lock if at all possible
1380 */
1381 page_locked = trylock_page(page);
1382 target_nid = mpol_misplaced(page, vma, haddr);
1383 if (target_nid == -1) {
1384 /* If the page was locked, there are no parallel migrations */
1385 if (page_locked)
1386 goto clear_pmdnuma;
1387 }
1388
1389 /* Migration could have started since the pmd_trans_migrating check */
1390 if (!page_locked) {
1391 spin_unlock(ptl);
1392 wait_on_page_locked(page);
1393 page_nid = -1;
1394 goto out;
1395 }
1396
1397 /*
1398 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1399 * to serialises splits
1400 */
1401 get_page(page);
1402 spin_unlock(ptl);
1403 anon_vma = page_lock_anon_vma_read(page);
1404
1405 /* Confirm the PMD did not change while page_table_lock was released */
1406 spin_lock(ptl);
1407 if (unlikely(!pmd_same(pmd, *pmdp))) {
1408 unlock_page(page);
1409 put_page(page);
1410 page_nid = -1;
1411 goto out_unlock;
1412 }
1413
1414 /* Bail if we fail to protect against THP splits for any reason */
1415 if (unlikely(!anon_vma)) {
1416 put_page(page);
1417 page_nid = -1;
1418 goto clear_pmdnuma;
1419 }
1420
1421 /*
1422 * Migrate the THP to the requested node, returns with page unlocked
1423 * and access rights restored.
1424 */
1425 spin_unlock(ptl);
1426 migrated = migrate_misplaced_transhuge_page(mm, vma,
1427 pmdp, pmd, addr, page, target_nid);
1428 if (migrated) {
1429 flags |= TNF_MIGRATED;
1430 page_nid = target_nid;
1431 } else
1432 flags |= TNF_MIGRATE_FAIL;
1433
1434 goto out;
1435clear_pmdnuma:
1436 BUG_ON(!PageLocked(page));
1437 was_writable = pmd_write(pmd);
1438 pmd = pmd_modify(pmd, vma->vm_page_prot);
1439 pmd = pmd_mkyoung(pmd);
1440 if (was_writable)
1441 pmd = pmd_mkwrite(pmd);
1442 set_pmd_at(mm, haddr, pmdp, pmd);
1443 update_mmu_cache_pmd(vma, addr, pmdp);
1444 unlock_page(page);
1445out_unlock:
1446 spin_unlock(ptl);
1447
1448out:
1449 if (anon_vma)
1450 page_unlock_anon_vma_read(anon_vma);
1451
1452 if (page_nid != -1)
1453 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1454
1455 return 0;
1456}
1457
1458int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1459 pmd_t *pmd, unsigned long addr)
1460{
1461 pmd_t orig_pmd;
1462 spinlock_t *ptl;
1463
1464 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
1465 return 0;
1466 /*
1467 * For architectures like ppc64 we look at deposited pgtable
1468 * when calling pmdp_huge_get_and_clear. So do the
1469 * pgtable_trans_huge_withdraw after finishing pmdp related
1470 * operations.
1471 */
1472 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1473 tlb->fullmm);
1474 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1475 if (vma_is_dax(vma)) {
1476 spin_unlock(ptl);
1477 if (is_huge_zero_pmd(orig_pmd))
1478 put_huge_zero_page();
1479 } else if (is_huge_zero_pmd(orig_pmd)) {
1480 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1481 atomic_long_dec(&tlb->mm->nr_ptes);
1482 spin_unlock(ptl);
1483 put_huge_zero_page();
1484 } else {
1485 struct page *page = pmd_page(orig_pmd);
1486 page_remove_rmap(page, true);
1487 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1488 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1489 VM_BUG_ON_PAGE(!PageHead(page), page);
1490 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1491 atomic_long_dec(&tlb->mm->nr_ptes);
1492 spin_unlock(ptl);
1493 tlb_remove_page(tlb, page);
1494 }
1495 return 1;
1496}
1497
1498bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1499 unsigned long old_addr,
1500 unsigned long new_addr, unsigned long old_end,
1501 pmd_t *old_pmd, pmd_t *new_pmd)
1502{
1503 spinlock_t *old_ptl, *new_ptl;
1504 pmd_t pmd;
1505
1506 struct mm_struct *mm = vma->vm_mm;
1507
1508 if ((old_addr & ~HPAGE_PMD_MASK) ||
1509 (new_addr & ~HPAGE_PMD_MASK) ||
1510 old_end - old_addr < HPAGE_PMD_SIZE ||
1511 (new_vma->vm_flags & VM_NOHUGEPAGE))
1512 return false;
1513
1514 /*
1515 * The destination pmd shouldn't be established, free_pgtables()
1516 * should have release it.
1517 */
1518 if (WARN_ON(!pmd_none(*new_pmd))) {
1519 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1520 return false;
1521 }
1522
1523 /*
1524 * We don't have to worry about the ordering of src and dst
1525 * ptlocks because exclusive mmap_sem prevents deadlock.
1526 */
1527 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
1528 new_ptl = pmd_lockptr(mm, new_pmd);
1529 if (new_ptl != old_ptl)
1530 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1531 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1532 VM_BUG_ON(!pmd_none(*new_pmd));
1533
1534 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1535 pgtable_t pgtable;
1536 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1537 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1538 }
1539 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1540 if (new_ptl != old_ptl)
1541 spin_unlock(new_ptl);
1542 spin_unlock(old_ptl);
1543 return true;
1544 }
1545 return false;
1546}
1547
1548/*
1549 * Returns
1550 * - 0 if PMD could not be locked
1551 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1552 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1553 */
1554int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1555 unsigned long addr, pgprot_t newprot, int prot_numa)
1556{
1557 struct mm_struct *mm = vma->vm_mm;
1558 spinlock_t *ptl;
1559 int ret = 0;
1560
1561 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
1562 pmd_t entry;
1563 bool preserve_write = prot_numa && pmd_write(*pmd);
1564 ret = 1;
1565
1566 /*
1567 * Avoid trapping faults against the zero page. The read-only
1568 * data is likely to be read-cached on the local CPU and
1569 * local/remote hits to the zero page are not interesting.
1570 */
1571 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1572 spin_unlock(ptl);
1573 return ret;
1574 }
1575
1576 if (!prot_numa || !pmd_protnone(*pmd)) {
1577 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1578 entry = pmd_modify(entry, newprot);
1579 if (preserve_write)
1580 entry = pmd_mkwrite(entry);
1581 ret = HPAGE_PMD_NR;
1582 set_pmd_at(mm, addr, pmd, entry);
1583 BUG_ON(!preserve_write && pmd_write(entry));
1584 }
1585 spin_unlock(ptl);
1586 }
1587
1588 return ret;
1589}
1590
1591/*
1592 * Returns true if a given pmd maps a thp, false otherwise.
1593 *
1594 * Note that if it returns true, this routine returns without unlocking page
1595 * table lock. So callers must unlock it.
1596 */
1597bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1598 spinlock_t **ptl)
1599{
1600 *ptl = pmd_lock(vma->vm_mm, pmd);
1601 if (likely(pmd_trans_huge(*pmd)))
1602 return true;
1603 spin_unlock(*ptl);
1604 return false;
1605}
1606
1607/*
1608 * This function returns whether a given @page is mapped onto the @address
1609 * in the virtual space of @mm.
1610 *
1611 * When it's true, this function returns *pmd with holding the page table lock
1612 * and passing it back to the caller via @ptl.
1613 * If it's false, returns NULL without holding the page table lock.
1614 */
1615pmd_t *page_check_address_pmd(struct page *page,
1616 struct mm_struct *mm,
1617 unsigned long address,
1618 spinlock_t **ptl)
1619{
1620 pgd_t *pgd;
1621 pud_t *pud;
1622 pmd_t *pmd;
1623
1624 if (address & ~HPAGE_PMD_MASK)
1625 return NULL;
1626
1627 pgd = pgd_offset(mm, address);
1628 if (!pgd_present(*pgd))
1629 return NULL;
1630 pud = pud_offset(pgd, address);
1631 if (!pud_present(*pud))
1632 return NULL;
1633 pmd = pmd_offset(pud, address);
1634
1635 *ptl = pmd_lock(mm, pmd);
1636 if (!pmd_present(*pmd))
1637 goto unlock;
1638 if (pmd_page(*pmd) != page)
1639 goto unlock;
1640 if (pmd_trans_huge(*pmd))
1641 return pmd;
1642unlock:
1643 spin_unlock(*ptl);
1644 return NULL;
1645}
1646
1647#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1648
1649int hugepage_madvise(struct vm_area_struct *vma,
1650 unsigned long *vm_flags, int advice)
1651{
1652 switch (advice) {
1653 case MADV_HUGEPAGE:
1654#ifdef CONFIG_S390
1655 /*
1656 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1657 * can't handle this properly after s390_enable_sie, so we simply
1658 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1659 */
1660 if (mm_has_pgste(vma->vm_mm))
1661 return 0;
1662#endif
1663 /*
1664 * Be somewhat over-protective like KSM for now!
1665 */
1666 if (*vm_flags & VM_NO_THP)
1667 return -EINVAL;
1668 *vm_flags &= ~VM_NOHUGEPAGE;
1669 *vm_flags |= VM_HUGEPAGE;
1670 /*
1671 * If the vma become good for khugepaged to scan,
1672 * register it here without waiting a page fault that
1673 * may not happen any time soon.
1674 */
1675 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1676 return -ENOMEM;
1677 break;
1678 case MADV_NOHUGEPAGE:
1679 /*
1680 * Be somewhat over-protective like KSM for now!
1681 */
1682 if (*vm_flags & VM_NO_THP)
1683 return -EINVAL;
1684 *vm_flags &= ~VM_HUGEPAGE;
1685 *vm_flags |= VM_NOHUGEPAGE;
1686 /*
1687 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1688 * this vma even if we leave the mm registered in khugepaged if
1689 * it got registered before VM_NOHUGEPAGE was set.
1690 */
1691 break;
1692 }
1693
1694 return 0;
1695}
1696
1697static int __init khugepaged_slab_init(void)
1698{
1699 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1700 sizeof(struct mm_slot),
1701 __alignof__(struct mm_slot), 0, NULL);
1702 if (!mm_slot_cache)
1703 return -ENOMEM;
1704
1705 return 0;
1706}
1707
1708static void __init khugepaged_slab_exit(void)
1709{
1710 kmem_cache_destroy(mm_slot_cache);
1711}
1712
1713static inline struct mm_slot *alloc_mm_slot(void)
1714{
1715 if (!mm_slot_cache) /* initialization failed */
1716 return NULL;
1717 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1718}
1719
1720static inline void free_mm_slot(struct mm_slot *mm_slot)
1721{
1722 kmem_cache_free(mm_slot_cache, mm_slot);
1723}
1724
1725static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1726{
1727 struct mm_slot *mm_slot;
1728
1729 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1730 if (mm == mm_slot->mm)
1731 return mm_slot;
1732
1733 return NULL;
1734}
1735
1736static void insert_to_mm_slots_hash(struct mm_struct *mm,
1737 struct mm_slot *mm_slot)
1738{
1739 mm_slot->mm = mm;
1740 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1741}
1742
1743static inline int khugepaged_test_exit(struct mm_struct *mm)
1744{
1745 return atomic_read(&mm->mm_users) == 0;
1746}
1747
1748int __khugepaged_enter(struct mm_struct *mm)
1749{
1750 struct mm_slot *mm_slot;
1751 int wakeup;
1752
1753 mm_slot = alloc_mm_slot();
1754 if (!mm_slot)
1755 return -ENOMEM;
1756
1757 /* __khugepaged_exit() must not run from under us */
1758 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1759 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1760 free_mm_slot(mm_slot);
1761 return 0;
1762 }
1763
1764 spin_lock(&khugepaged_mm_lock);
1765 insert_to_mm_slots_hash(mm, mm_slot);
1766 /*
1767 * Insert just behind the scanning cursor, to let the area settle
1768 * down a little.
1769 */
1770 wakeup = list_empty(&khugepaged_scan.mm_head);
1771 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1772 spin_unlock(&khugepaged_mm_lock);
1773
1774 atomic_inc(&mm->mm_count);
1775 if (wakeup)
1776 wake_up_interruptible(&khugepaged_wait);
1777
1778 return 0;
1779}
1780
1781int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1782 unsigned long vm_flags)
1783{
1784 unsigned long hstart, hend;
1785 if (!vma->anon_vma)
1786 /*
1787 * Not yet faulted in so we will register later in the
1788 * page fault if needed.
1789 */
1790 return 0;
1791 if (vma->vm_ops)
1792 /* khugepaged not yet working on file or special mappings */
1793 return 0;
1794 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1795 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1796 hend = vma->vm_end & HPAGE_PMD_MASK;
1797 if (hstart < hend)
1798 return khugepaged_enter(vma, vm_flags);
1799 return 0;
1800}
1801
1802void __khugepaged_exit(struct mm_struct *mm)
1803{
1804 struct mm_slot *mm_slot;
1805 int free = 0;
1806
1807 spin_lock(&khugepaged_mm_lock);
1808 mm_slot = get_mm_slot(mm);
1809 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1810 hash_del(&mm_slot->hash);
1811 list_del(&mm_slot->mm_node);
1812 free = 1;
1813 }
1814 spin_unlock(&khugepaged_mm_lock);
1815
1816 if (free) {
1817 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1818 free_mm_slot(mm_slot);
1819 mmdrop(mm);
1820 } else if (mm_slot) {
1821 /*
1822 * This is required to serialize against
1823 * khugepaged_test_exit() (which is guaranteed to run
1824 * under mmap sem read mode). Stop here (after we
1825 * return all pagetables will be destroyed) until
1826 * khugepaged has finished working on the pagetables
1827 * under the mmap_sem.
1828 */
1829 down_write(&mm->mmap_sem);
1830 up_write(&mm->mmap_sem);
1831 }
1832}
1833
1834static void release_pte_page(struct page *page)
1835{
1836 /* 0 stands for page_is_file_cache(page) == false */
1837 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1838 unlock_page(page);
1839 putback_lru_page(page);
1840}
1841
1842static void release_pte_pages(pte_t *pte, pte_t *_pte)
1843{
1844 while (--_pte >= pte) {
1845 pte_t pteval = *_pte;
1846 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1847 release_pte_page(pte_page(pteval));
1848 }
1849}
1850
1851static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1852 unsigned long address,
1853 pte_t *pte)
1854{
1855 struct page *page = NULL;
1856 pte_t *_pte;
1857 int none_or_zero = 0, result = 0;
1858 bool referenced = false, writable = false;
1859
1860 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1861 _pte++, address += PAGE_SIZE) {
1862 pte_t pteval = *_pte;
1863 if (pte_none(pteval) || (pte_present(pteval) &&
1864 is_zero_pfn(pte_pfn(pteval)))) {
1865 if (!userfaultfd_armed(vma) &&
1866 ++none_or_zero <= khugepaged_max_ptes_none) {
1867 continue;
1868 } else {
1869 result = SCAN_EXCEED_NONE_PTE;
1870 goto out;
1871 }
1872 }
1873 if (!pte_present(pteval)) {
1874 result = SCAN_PTE_NON_PRESENT;
1875 goto out;
1876 }
1877 page = vm_normal_page(vma, address, pteval);
1878 if (unlikely(!page)) {
1879 result = SCAN_PAGE_NULL;
1880 goto out;
1881 }
1882
1883 VM_BUG_ON_PAGE(PageCompound(page), page);
1884 VM_BUG_ON_PAGE(!PageAnon(page), page);
1885 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1886
1887 /*
1888 * We can do it before isolate_lru_page because the
1889 * page can't be freed from under us. NOTE: PG_lock
1890 * is needed to serialize against split_huge_page
1891 * when invoked from the VM.
1892 */
1893 if (!trylock_page(page)) {
1894 result = SCAN_PAGE_LOCK;
1895 goto out;
1896 }
1897
1898 /*
1899 * cannot use mapcount: can't collapse if there's a gup pin.
1900 * The page must only be referenced by the scanned process
1901 * and page swap cache.
1902 */
1903 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1904 unlock_page(page);
1905 result = SCAN_PAGE_COUNT;
1906 goto out;
1907 }
1908 if (pte_write(pteval)) {
1909 writable = true;
1910 } else {
1911 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1912 unlock_page(page);
1913 result = SCAN_SWAP_CACHE_PAGE;
1914 goto out;
1915 }
1916 /*
1917 * Page is not in the swap cache. It can be collapsed
1918 * into a THP.
1919 */
1920 }
1921
1922 /*
1923 * Isolate the page to avoid collapsing an hugepage
1924 * currently in use by the VM.
1925 */
1926 if (isolate_lru_page(page)) {
1927 unlock_page(page);
1928 result = SCAN_DEL_PAGE_LRU;
1929 goto out;
1930 }
1931 /* 0 stands for page_is_file_cache(page) == false */
1932 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1933 VM_BUG_ON_PAGE(!PageLocked(page), page);
1934 VM_BUG_ON_PAGE(PageLRU(page), page);
1935
1936 /* If there is no mapped pte young don't collapse the page */
1937 if (pte_young(pteval) ||
1938 page_is_young(page) || PageReferenced(page) ||
1939 mmu_notifier_test_young(vma->vm_mm, address))
1940 referenced = true;
1941 }
1942 if (likely(writable)) {
1943 if (likely(referenced)) {
1944 result = SCAN_SUCCEED;
1945 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1946 referenced, writable, result);
1947 return 1;
1948 }
1949 } else {
1950 result = SCAN_PAGE_RO;
1951 }
1952
1953out:
1954 release_pte_pages(pte, _pte);
1955 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1956 referenced, writable, result);
1957 return 0;
1958}
1959
1960static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1961 struct vm_area_struct *vma,
1962 unsigned long address,
1963 spinlock_t *ptl)
1964{
1965 pte_t *_pte;
1966 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1967 pte_t pteval = *_pte;
1968 struct page *src_page;
1969
1970 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1971 clear_user_highpage(page, address);
1972 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1973 if (is_zero_pfn(pte_pfn(pteval))) {
1974 /*
1975 * ptl mostly unnecessary.
1976 */
1977 spin_lock(ptl);
1978 /*
1979 * paravirt calls inside pte_clear here are
1980 * superfluous.
1981 */
1982 pte_clear(vma->vm_mm, address, _pte);
1983 spin_unlock(ptl);
1984 }
1985 } else {
1986 src_page = pte_page(pteval);
1987 copy_user_highpage(page, src_page, address, vma);
1988 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
1989 release_pte_page(src_page);
1990 /*
1991 * ptl mostly unnecessary, but preempt has to
1992 * be disabled to update the per-cpu stats
1993 * inside page_remove_rmap().
1994 */
1995 spin_lock(ptl);
1996 /*
1997 * paravirt calls inside pte_clear here are
1998 * superfluous.
1999 */
2000 pte_clear(vma->vm_mm, address, _pte);
2001 page_remove_rmap(src_page, false);
2002 spin_unlock(ptl);
2003 free_page_and_swap_cache(src_page);
2004 }
2005
2006 address += PAGE_SIZE;
2007 page++;
2008 }
2009}
2010
2011static void khugepaged_alloc_sleep(void)
2012{
2013 DEFINE_WAIT(wait);
2014
2015 add_wait_queue(&khugepaged_wait, &wait);
2016 freezable_schedule_timeout_interruptible(
2017 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2018 remove_wait_queue(&khugepaged_wait, &wait);
2019}
2020
2021static int khugepaged_node_load[MAX_NUMNODES];
2022
2023static bool khugepaged_scan_abort(int nid)
2024{
2025 int i;
2026
2027 /*
2028 * If zone_reclaim_mode is disabled, then no extra effort is made to
2029 * allocate memory locally.
2030 */
2031 if (!zone_reclaim_mode)
2032 return false;
2033
2034 /* If there is a count for this node already, it must be acceptable */
2035 if (khugepaged_node_load[nid])
2036 return false;
2037
2038 for (i = 0; i < MAX_NUMNODES; i++) {
2039 if (!khugepaged_node_load[i])
2040 continue;
2041 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2042 return true;
2043 }
2044 return false;
2045}
2046
2047#ifdef CONFIG_NUMA
2048static int khugepaged_find_target_node(void)
2049{
2050 static int last_khugepaged_target_node = NUMA_NO_NODE;
2051 int nid, target_node = 0, max_value = 0;
2052
2053 /* find first node with max normal pages hit */
2054 for (nid = 0; nid < MAX_NUMNODES; nid++)
2055 if (khugepaged_node_load[nid] > max_value) {
2056 max_value = khugepaged_node_load[nid];
2057 target_node = nid;
2058 }
2059
2060 /* do some balance if several nodes have the same hit record */
2061 if (target_node <= last_khugepaged_target_node)
2062 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2063 nid++)
2064 if (max_value == khugepaged_node_load[nid]) {
2065 target_node = nid;
2066 break;
2067 }
2068
2069 last_khugepaged_target_node = target_node;
2070 return target_node;
2071}
2072
2073static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2074{
2075 if (IS_ERR(*hpage)) {
2076 if (!*wait)
2077 return false;
2078
2079 *wait = false;
2080 *hpage = NULL;
2081 khugepaged_alloc_sleep();
2082 } else if (*hpage) {
2083 put_page(*hpage);
2084 *hpage = NULL;
2085 }
2086
2087 return true;
2088}
2089
2090static struct page *
2091khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2092 unsigned long address, int node)
2093{
2094 VM_BUG_ON_PAGE(*hpage, *hpage);
2095
2096 /*
2097 * Before allocating the hugepage, release the mmap_sem read lock.
2098 * The allocation can take potentially a long time if it involves
2099 * sync compaction, and we do not need to hold the mmap_sem during
2100 * that. We will recheck the vma after taking it again in write mode.
2101 */
2102 up_read(&mm->mmap_sem);
2103
2104 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2105 if (unlikely(!*hpage)) {
2106 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2107 *hpage = ERR_PTR(-ENOMEM);
2108 return NULL;
2109 }
2110
2111 count_vm_event(THP_COLLAPSE_ALLOC);
2112 return *hpage;
2113}
2114#else
2115static int khugepaged_find_target_node(void)
2116{
2117 return 0;
2118}
2119
2120static inline struct page *alloc_hugepage(int defrag)
2121{
2122 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2123 HPAGE_PMD_ORDER);
2124}
2125
2126static struct page *khugepaged_alloc_hugepage(bool *wait)
2127{
2128 struct page *hpage;
2129
2130 do {
2131 hpage = alloc_hugepage(khugepaged_defrag());
2132 if (!hpage) {
2133 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2134 if (!*wait)
2135 return NULL;
2136
2137 *wait = false;
2138 khugepaged_alloc_sleep();
2139 } else
2140 count_vm_event(THP_COLLAPSE_ALLOC);
2141 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2142
2143 return hpage;
2144}
2145
2146static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2147{
2148 if (!*hpage)
2149 *hpage = khugepaged_alloc_hugepage(wait);
2150
2151 if (unlikely(!*hpage))
2152 return false;
2153
2154 return true;
2155}
2156
2157static struct page *
2158khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2159 unsigned long address, int node)
2160{
2161 up_read(&mm->mmap_sem);
2162 VM_BUG_ON(!*hpage);
2163
2164 return *hpage;
2165}
2166#endif
2167
2168static bool hugepage_vma_check(struct vm_area_struct *vma)
2169{
2170 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2171 (vma->vm_flags & VM_NOHUGEPAGE))
2172 return false;
2173 if (vma->vm_flags & VM_LOCKED)
2174 return false;
2175 if (!vma->anon_vma || vma->vm_ops)
2176 return false;
2177 if (is_vma_temporary_stack(vma))
2178 return false;
2179 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2180 return true;
2181}
2182
2183static void collapse_huge_page(struct mm_struct *mm,
2184 unsigned long address,
2185 struct page **hpage,
2186 struct vm_area_struct *vma,
2187 int node)
2188{
2189 pmd_t *pmd, _pmd;
2190 pte_t *pte;
2191 pgtable_t pgtable;
2192 struct page *new_page;
2193 spinlock_t *pmd_ptl, *pte_ptl;
2194 int isolated, result = 0;
2195 unsigned long hstart, hend;
2196 struct mem_cgroup *memcg;
2197 unsigned long mmun_start; /* For mmu_notifiers */
2198 unsigned long mmun_end; /* For mmu_notifiers */
2199 gfp_t gfp;
2200
2201 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2202
2203 /* Only allocate from the target node */
2204 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2205 __GFP_THISNODE;
2206
2207 /* release the mmap_sem read lock. */
2208 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2209 if (!new_page) {
2210 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2211 goto out_nolock;
2212 }
2213
2214 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2215 result = SCAN_CGROUP_CHARGE_FAIL;
2216 goto out_nolock;
2217 }
2218
2219 /*
2220 * Prevent all access to pagetables with the exception of
2221 * gup_fast later hanlded by the ptep_clear_flush and the VM
2222 * handled by the anon_vma lock + PG_lock.
2223 */
2224 down_write(&mm->mmap_sem);
2225 if (unlikely(khugepaged_test_exit(mm))) {
2226 result = SCAN_ANY_PROCESS;
2227 goto out;
2228 }
2229
2230 vma = find_vma(mm, address);
2231 if (!vma) {
2232 result = SCAN_VMA_NULL;
2233 goto out;
2234 }
2235 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2236 hend = vma->vm_end & HPAGE_PMD_MASK;
2237 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2238 result = SCAN_ADDRESS_RANGE;
2239 goto out;
2240 }
2241 if (!hugepage_vma_check(vma)) {
2242 result = SCAN_VMA_CHECK;
2243 goto out;
2244 }
2245 pmd = mm_find_pmd(mm, address);
2246 if (!pmd) {
2247 result = SCAN_PMD_NULL;
2248 goto out;
2249 }
2250
2251 anon_vma_lock_write(vma->anon_vma);
2252
2253 pte = pte_offset_map(pmd, address);
2254 pte_ptl = pte_lockptr(mm, pmd);
2255
2256 mmun_start = address;
2257 mmun_end = address + HPAGE_PMD_SIZE;
2258 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2259 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2260 /*
2261 * After this gup_fast can't run anymore. This also removes
2262 * any huge TLB entry from the CPU so we won't allow
2263 * huge and small TLB entries for the same virtual address
2264 * to avoid the risk of CPU bugs in that area.
2265 */
2266 _pmd = pmdp_collapse_flush(vma, address, pmd);
2267 spin_unlock(pmd_ptl);
2268 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2269
2270 spin_lock(pte_ptl);
2271 isolated = __collapse_huge_page_isolate(vma, address, pte);
2272 spin_unlock(pte_ptl);
2273
2274 if (unlikely(!isolated)) {
2275 pte_unmap(pte);
2276 spin_lock(pmd_ptl);
2277 BUG_ON(!pmd_none(*pmd));
2278 /*
2279 * We can only use set_pmd_at when establishing
2280 * hugepmds and never for establishing regular pmds that
2281 * points to regular pagetables. Use pmd_populate for that
2282 */
2283 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2284 spin_unlock(pmd_ptl);
2285 anon_vma_unlock_write(vma->anon_vma);
2286 result = SCAN_FAIL;
2287 goto out;
2288 }
2289
2290 /*
2291 * All pages are isolated and locked so anon_vma rmap
2292 * can't run anymore.
2293 */
2294 anon_vma_unlock_write(vma->anon_vma);
2295
2296 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2297 pte_unmap(pte);
2298 __SetPageUptodate(new_page);
2299 pgtable = pmd_pgtable(_pmd);
2300
2301 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2302 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2303
2304 /*
2305 * spin_lock() below is not the equivalent of smp_wmb(), so
2306 * this is needed to avoid the copy_huge_page writes to become
2307 * visible after the set_pmd_at() write.
2308 */
2309 smp_wmb();
2310
2311 spin_lock(pmd_ptl);
2312 BUG_ON(!pmd_none(*pmd));
2313 page_add_new_anon_rmap(new_page, vma, address, true);
2314 mem_cgroup_commit_charge(new_page, memcg, false, true);
2315 lru_cache_add_active_or_unevictable(new_page, vma);
2316 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2317 set_pmd_at(mm, address, pmd, _pmd);
2318 update_mmu_cache_pmd(vma, address, pmd);
2319 spin_unlock(pmd_ptl);
2320
2321 *hpage = NULL;
2322
2323 khugepaged_pages_collapsed++;
2324 result = SCAN_SUCCEED;
2325out_up_write:
2326 up_write(&mm->mmap_sem);
2327 trace_mm_collapse_huge_page(mm, isolated, result);
2328 return;
2329
2330out_nolock:
2331 trace_mm_collapse_huge_page(mm, isolated, result);
2332 return;
2333out:
2334 mem_cgroup_cancel_charge(new_page, memcg, true);
2335 goto out_up_write;
2336}
2337
2338static int khugepaged_scan_pmd(struct mm_struct *mm,
2339 struct vm_area_struct *vma,
2340 unsigned long address,
2341 struct page **hpage)
2342{
2343 pmd_t *pmd;
2344 pte_t *pte, *_pte;
2345 int ret = 0, none_or_zero = 0, result = 0;
2346 struct page *page = NULL;
2347 unsigned long _address;
2348 spinlock_t *ptl;
2349 int node = NUMA_NO_NODE;
2350 bool writable = false, referenced = false;
2351
2352 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2353
2354 pmd = mm_find_pmd(mm, address);
2355 if (!pmd) {
2356 result = SCAN_PMD_NULL;
2357 goto out;
2358 }
2359
2360 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2361 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2362 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2363 _pte++, _address += PAGE_SIZE) {
2364 pte_t pteval = *_pte;
2365 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2366 if (!userfaultfd_armed(vma) &&
2367 ++none_or_zero <= khugepaged_max_ptes_none) {
2368 continue;
2369 } else {
2370 result = SCAN_EXCEED_NONE_PTE;
2371 goto out_unmap;
2372 }
2373 }
2374 if (!pte_present(pteval)) {
2375 result = SCAN_PTE_NON_PRESENT;
2376 goto out_unmap;
2377 }
2378 if (pte_write(pteval))
2379 writable = true;
2380
2381 page = vm_normal_page(vma, _address, pteval);
2382 if (unlikely(!page)) {
2383 result = SCAN_PAGE_NULL;
2384 goto out_unmap;
2385 }
2386
2387 /* TODO: teach khugepaged to collapse THP mapped with pte */
2388 if (PageCompound(page)) {
2389 result = SCAN_PAGE_COMPOUND;
2390 goto out_unmap;
2391 }
2392
2393 /*
2394 * Record which node the original page is from and save this
2395 * information to khugepaged_node_load[].
2396 * Khupaged will allocate hugepage from the node has the max
2397 * hit record.
2398 */
2399 node = page_to_nid(page);
2400 if (khugepaged_scan_abort(node)) {
2401 result = SCAN_SCAN_ABORT;
2402 goto out_unmap;
2403 }
2404 khugepaged_node_load[node]++;
2405 if (!PageLRU(page)) {
2406 result = SCAN_SCAN_ABORT;
2407 goto out_unmap;
2408 }
2409 if (PageLocked(page)) {
2410 result = SCAN_PAGE_LOCK;
2411 goto out_unmap;
2412 }
2413 if (!PageAnon(page)) {
2414 result = SCAN_PAGE_ANON;
2415 goto out_unmap;
2416 }
2417
2418 /*
2419 * cannot use mapcount: can't collapse if there's a gup pin.
2420 * The page must only be referenced by the scanned process
2421 * and page swap cache.
2422 */
2423 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2424 result = SCAN_PAGE_COUNT;
2425 goto out_unmap;
2426 }
2427 if (pte_young(pteval) ||
2428 page_is_young(page) || PageReferenced(page) ||
2429 mmu_notifier_test_young(vma->vm_mm, address))
2430 referenced = true;
2431 }
2432 if (writable) {
2433 if (referenced) {
2434 result = SCAN_SUCCEED;
2435 ret = 1;
2436 } else {
2437 result = SCAN_NO_REFERENCED_PAGE;
2438 }
2439 } else {
2440 result = SCAN_PAGE_RO;
2441 }
2442out_unmap:
2443 pte_unmap_unlock(pte, ptl);
2444 if (ret) {
2445 node = khugepaged_find_target_node();
2446 /* collapse_huge_page will return with the mmap_sem released */
2447 collapse_huge_page(mm, address, hpage, vma, node);
2448 }
2449out:
2450 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2451 none_or_zero, result);
2452 return ret;
2453}
2454
2455static void collect_mm_slot(struct mm_slot *mm_slot)
2456{
2457 struct mm_struct *mm = mm_slot->mm;
2458
2459 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2460
2461 if (khugepaged_test_exit(mm)) {
2462 /* free mm_slot */
2463 hash_del(&mm_slot->hash);
2464 list_del(&mm_slot->mm_node);
2465
2466 /*
2467 * Not strictly needed because the mm exited already.
2468 *
2469 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2470 */
2471
2472 /* khugepaged_mm_lock actually not necessary for the below */
2473 free_mm_slot(mm_slot);
2474 mmdrop(mm);
2475 }
2476}
2477
2478static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2479 struct page **hpage)
2480 __releases(&khugepaged_mm_lock)
2481 __acquires(&khugepaged_mm_lock)
2482{
2483 struct mm_slot *mm_slot;
2484 struct mm_struct *mm;
2485 struct vm_area_struct *vma;
2486 int progress = 0;
2487
2488 VM_BUG_ON(!pages);
2489 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2490
2491 if (khugepaged_scan.mm_slot)
2492 mm_slot = khugepaged_scan.mm_slot;
2493 else {
2494 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2495 struct mm_slot, mm_node);
2496 khugepaged_scan.address = 0;
2497 khugepaged_scan.mm_slot = mm_slot;
2498 }
2499 spin_unlock(&khugepaged_mm_lock);
2500
2501 mm = mm_slot->mm;
2502 down_read(&mm->mmap_sem);
2503 if (unlikely(khugepaged_test_exit(mm)))
2504 vma = NULL;
2505 else
2506 vma = find_vma(mm, khugepaged_scan.address);
2507
2508 progress++;
2509 for (; vma; vma = vma->vm_next) {
2510 unsigned long hstart, hend;
2511
2512 cond_resched();
2513 if (unlikely(khugepaged_test_exit(mm))) {
2514 progress++;
2515 break;
2516 }
2517 if (!hugepage_vma_check(vma)) {
2518skip:
2519 progress++;
2520 continue;
2521 }
2522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2523 hend = vma->vm_end & HPAGE_PMD_MASK;
2524 if (hstart >= hend)
2525 goto skip;
2526 if (khugepaged_scan.address > hend)
2527 goto skip;
2528 if (khugepaged_scan.address < hstart)
2529 khugepaged_scan.address = hstart;
2530 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2531
2532 while (khugepaged_scan.address < hend) {
2533 int ret;
2534 cond_resched();
2535 if (unlikely(khugepaged_test_exit(mm)))
2536 goto breakouterloop;
2537
2538 VM_BUG_ON(khugepaged_scan.address < hstart ||
2539 khugepaged_scan.address + HPAGE_PMD_SIZE >
2540 hend);
2541 ret = khugepaged_scan_pmd(mm, vma,
2542 khugepaged_scan.address,
2543 hpage);
2544 /* move to next address */
2545 khugepaged_scan.address += HPAGE_PMD_SIZE;
2546 progress += HPAGE_PMD_NR;
2547 if (ret)
2548 /* we released mmap_sem so break loop */
2549 goto breakouterloop_mmap_sem;
2550 if (progress >= pages)
2551 goto breakouterloop;
2552 }
2553 }
2554breakouterloop:
2555 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2556breakouterloop_mmap_sem:
2557
2558 spin_lock(&khugepaged_mm_lock);
2559 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2560 /*
2561 * Release the current mm_slot if this mm is about to die, or
2562 * if we scanned all vmas of this mm.
2563 */
2564 if (khugepaged_test_exit(mm) || !vma) {
2565 /*
2566 * Make sure that if mm_users is reaching zero while
2567 * khugepaged runs here, khugepaged_exit will find
2568 * mm_slot not pointing to the exiting mm.
2569 */
2570 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2571 khugepaged_scan.mm_slot = list_entry(
2572 mm_slot->mm_node.next,
2573 struct mm_slot, mm_node);
2574 khugepaged_scan.address = 0;
2575 } else {
2576 khugepaged_scan.mm_slot = NULL;
2577 khugepaged_full_scans++;
2578 }
2579
2580 collect_mm_slot(mm_slot);
2581 }
2582
2583 return progress;
2584}
2585
2586static int khugepaged_has_work(void)
2587{
2588 return !list_empty(&khugepaged_scan.mm_head) &&
2589 khugepaged_enabled();
2590}
2591
2592static int khugepaged_wait_event(void)
2593{
2594 return !list_empty(&khugepaged_scan.mm_head) ||
2595 kthread_should_stop();
2596}
2597
2598static void khugepaged_do_scan(void)
2599{
2600 struct page *hpage = NULL;
2601 unsigned int progress = 0, pass_through_head = 0;
2602 unsigned int pages = khugepaged_pages_to_scan;
2603 bool wait = true;
2604
2605 barrier(); /* write khugepaged_pages_to_scan to local stack */
2606
2607 while (progress < pages) {
2608 if (!khugepaged_prealloc_page(&hpage, &wait))
2609 break;
2610
2611 cond_resched();
2612
2613 if (unlikely(kthread_should_stop() || try_to_freeze()))
2614 break;
2615
2616 spin_lock(&khugepaged_mm_lock);
2617 if (!khugepaged_scan.mm_slot)
2618 pass_through_head++;
2619 if (khugepaged_has_work() &&
2620 pass_through_head < 2)
2621 progress += khugepaged_scan_mm_slot(pages - progress,
2622 &hpage);
2623 else
2624 progress = pages;
2625 spin_unlock(&khugepaged_mm_lock);
2626 }
2627
2628 if (!IS_ERR_OR_NULL(hpage))
2629 put_page(hpage);
2630}
2631
2632static void khugepaged_wait_work(void)
2633{
2634 if (khugepaged_has_work()) {
2635 if (!khugepaged_scan_sleep_millisecs)
2636 return;
2637
2638 wait_event_freezable_timeout(khugepaged_wait,
2639 kthread_should_stop(),
2640 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2641 return;
2642 }
2643
2644 if (khugepaged_enabled())
2645 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2646}
2647
2648static int khugepaged(void *none)
2649{
2650 struct mm_slot *mm_slot;
2651
2652 set_freezable();
2653 set_user_nice(current, MAX_NICE);
2654
2655 while (!kthread_should_stop()) {
2656 khugepaged_do_scan();
2657 khugepaged_wait_work();
2658 }
2659
2660 spin_lock(&khugepaged_mm_lock);
2661 mm_slot = khugepaged_scan.mm_slot;
2662 khugepaged_scan.mm_slot = NULL;
2663 if (mm_slot)
2664 collect_mm_slot(mm_slot);
2665 spin_unlock(&khugepaged_mm_lock);
2666 return 0;
2667}
2668
2669static void split_huge_pmd_address(struct vm_area_struct *vma,
2670 unsigned long address)
2671{
2672 pgd_t *pgd;
2673 pud_t *pud;
2674 pmd_t *pmd;
2675
2676 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2677
2678 pgd = pgd_offset(vma->vm_mm, address);
2679 if (!pgd_present(*pgd))
2680 return;
2681
2682 pud = pud_offset(pgd, address);
2683 if (!pud_present(*pud))
2684 return;
2685
2686 pmd = pmd_offset(pud, address);
2687 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
2688 return;
2689 /*
2690 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2691 * materialize from under us.
2692 */
2693 split_huge_pmd(vma, pmd, address);
2694}
2695
2696void vma_adjust_trans_huge(struct vm_area_struct *vma,
2697 unsigned long start,
2698 unsigned long end,
2699 long adjust_next)
2700{
2701 /*
2702 * If the new start address isn't hpage aligned and it could
2703 * previously contain an hugepage: check if we need to split
2704 * an huge pmd.
2705 */
2706 if (start & ~HPAGE_PMD_MASK &&
2707 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2708 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2709 split_huge_pmd_address(vma, start);
2710
2711 /*
2712 * If the new end address isn't hpage aligned and it could
2713 * previously contain an hugepage: check if we need to split
2714 * an huge pmd.
2715 */
2716 if (end & ~HPAGE_PMD_MASK &&
2717 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2718 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2719 split_huge_pmd_address(vma, end);
2720
2721 /*
2722 * If we're also updating the vma->vm_next->vm_start, if the new
2723 * vm_next->vm_start isn't page aligned and it could previously
2724 * contain an hugepage: check if we need to split an huge pmd.
2725 */
2726 if (adjust_next > 0) {
2727 struct vm_area_struct *next = vma->vm_next;
2728 unsigned long nstart = next->vm_start;
2729 nstart += adjust_next << PAGE_SHIFT;
2730 if (nstart & ~HPAGE_PMD_MASK &&
2731 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2732 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2733 split_huge_pmd_address(next, nstart);
2734 }
2735}