]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/hugetlb.c
mm/hugetlb: avoid soft lockup in set_max_huge_pages()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/mm.h>
8#include <linux/seq_file.h>
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
11#include <linux/mmu_notifier.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/compiler.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25#include <linux/jhash.h>
26
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/tlb.h>
30
31#include <linux/io.h>
32#include <linux/hugetlb.h>
33#include <linux/hugetlb_cgroup.h>
34#include <linux/node.h>
35#include "internal.h"
36
37int hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48__initdata LIST_HEAD(huge_boot_pages);
49
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
53static unsigned long __initdata default_hstate_size;
54static bool __initdata parsed_valid_hugepagesz = true;
55
56/*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60DEFINE_SPINLOCK(hugetlb_lock);
61
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87}
88
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91{
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131{
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
166}
167
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
176{
177 long ret = delta;
178
179 if (!spool)
180 return delta;
181
182 spin_lock(&spool->lock);
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
203 unlock_or_release_subpool(spool);
204
205 return ret;
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
215 return subpool_inode(file_inode(vma->vm_file));
216}
217
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
221 *
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
243/*
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
256 */
257static long region_add(struct resv_map *resv, long f, long t)
258{
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
262
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
318
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
323
324out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
329}
330
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
352 */
353static long region_chg(struct resv_map *resv, long f, long t)
354{
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
358
359retry:
360 spin_lock(&resv->lock);
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
380 }
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
409
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
426
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
445}
446
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
466/*
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
479 */
480static long region_del(struct resv_map *resv, long f, long t)
481{
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
486
487retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
499
500 if (rg->from >= t)
501 break;
502
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
516
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
554 }
555
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
559}
560
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
587static long region_count(struct resv_map *resv, long f, long t)
588{
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
592
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
609 spin_unlock(&resv->lock);
610
611 return chg;
612}
613
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
620{
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
623}
624
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
630EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632/*
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
635 */
636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637{
638 struct hstate *hstate;
639
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
642
643 hstate = hstate_vma(vma);
644
645 return 1UL << huge_page_shift(hstate);
646}
647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649/*
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
654 */
655#ifndef vma_mmu_pagesize
656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657{
658 return vma_kernel_pagesize(vma);
659}
660#endif
661
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
689 */
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
701struct resv_map *resv_map_alloc(void)
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
709 return NULL;
710 }
711
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
715
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
722 return resv_map;
723}
724
725void resv_map_release(struct kref *ref)
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
730
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
742 kfree(resv_map);
743}
744
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751{
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
762 }
763}
764
765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766{
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786 return (get_vma_private_data(vma) & flag) != 0;
787}
788
789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799{
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 return true;
812 else
813 return false;
814 }
815
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
856
857 return false;
858}
859
860static void enqueue_huge_page(struct hstate *h, struct page *page)
861{
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
866}
867
868static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869{
870 struct page *page;
871
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
880 return NULL;
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
888/* Movability of hugepages depends on migration support. */
889static inline gfp_t htlb_alloc_mask(struct hstate *h)
890{
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
895}
896
897static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
900 long chg)
901{
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
906 struct zone *zone;
907 struct zoneref *z;
908 unsigned int cpuset_mems_cookie;
909
910 /*
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
914 */
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
917 goto err;
918
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 goto err;
922
923retry_cpuset:
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
927
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
937
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
940 break;
941 }
942 }
943 }
944
945 mpol_cond_put(mpol);
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 goto retry_cpuset;
948 return page;
949
950err:
951 return NULL;
952}
953
954/*
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
960 */
961static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962{
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
965
966 return nid;
967}
968
969static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970{
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
974}
975
976/*
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
981 */
982static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
984{
985 int nid;
986
987 VM_BUG_ON(!nodes_allowed);
988
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992 return nid;
993}
994
995/*
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1000 */
1001static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1018
1019#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1024
1025#if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028static void destroy_compound_gigantic_page(struct page *page,
1029 unsigned int order)
1030{
1031 int i;
1032 int nr_pages = 1 << order;
1033 struct page *p = page + 1;
1034
1035 atomic_set(compound_mapcount_ptr(page), 0);
1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 clear_compound_head(p);
1038 set_page_refcounted(p);
1039 }
1040
1041 set_compound_order(page, 0);
1042 __ClearPageHead(page);
1043}
1044
1045static void free_gigantic_page(struct page *page, unsigned int order)
1046{
1047 free_contig_range(page_to_pfn(page), 1 << order);
1048}
1049
1050static int __alloc_gigantic_page(unsigned long start_pfn,
1051 unsigned long nr_pages)
1052{
1053 unsigned long end_pfn = start_pfn + nr_pages;
1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055}
1056
1057static bool pfn_range_valid_gigantic(struct zone *z,
1058 unsigned long start_pfn, unsigned long nr_pages)
1059{
1060 unsigned long i, end_pfn = start_pfn + nr_pages;
1061 struct page *page;
1062
1063 for (i = start_pfn; i < end_pfn; i++) {
1064 if (!pfn_valid(i))
1065 return false;
1066
1067 page = pfn_to_page(i);
1068
1069 if (page_zone(page) != z)
1070 return false;
1071
1072 if (PageReserved(page))
1073 return false;
1074
1075 if (page_count(page) > 0)
1076 return false;
1077
1078 if (PageHuge(page))
1079 return false;
1080 }
1081
1082 return true;
1083}
1084
1085static bool zone_spans_last_pfn(const struct zone *zone,
1086 unsigned long start_pfn, unsigned long nr_pages)
1087{
1088 unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 return zone_spans_pfn(zone, last_pfn);
1090}
1091
1092static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093{
1094 unsigned long nr_pages = 1 << order;
1095 unsigned long ret, pfn, flags;
1096 struct zone *z;
1097
1098 z = NODE_DATA(nid)->node_zones;
1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 spin_lock_irqsave(&z->lock, flags);
1101
1102 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 /*
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1111 */
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 ret = __alloc_gigantic_page(pfn, nr_pages);
1114 if (!ret)
1115 return pfn_to_page(pfn);
1116 spin_lock_irqsave(&z->lock, flags);
1117 }
1118 pfn += nr_pages;
1119 }
1120
1121 spin_unlock_irqrestore(&z->lock, flags);
1122 }
1123
1124 return NULL;
1125}
1126
1127static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131{
1132 struct page *page;
1133
1134 page = alloc_gigantic_page(nid, huge_page_order(h));
1135 if (page) {
1136 prep_compound_gigantic_page(page, huge_page_order(h));
1137 prep_new_huge_page(h, page, nid);
1138 }
1139
1140 return page;
1141}
1142
1143static int alloc_fresh_gigantic_page(struct hstate *h,
1144 nodemask_t *nodes_allowed)
1145{
1146 struct page *page = NULL;
1147 int nr_nodes, node;
1148
1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 page = alloc_fresh_gigantic_page_node(h, node);
1151 if (page)
1152 return 1;
1153 }
1154
1155 return 0;
1156}
1157
1158static inline bool gigantic_page_supported(void) { return true; }
1159#else
1160static inline bool gigantic_page_supported(void) { return false; }
1161static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 nodemask_t *nodes_allowed) { return 0; }
1166#endif
1167
1168static void update_and_free_page(struct hstate *h, struct page *page)
1169{
1170 int i;
1171
1172 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173 return;
1174
1175 h->nr_huge_pages--;
1176 h->nr_huge_pages_node[page_to_nid(page)]--;
1177 for (i = 0; i < pages_per_huge_page(h); i++) {
1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 1 << PG_referenced | 1 << PG_dirty |
1180 1 << PG_active | 1 << PG_private |
1181 1 << PG_writeback);
1182 }
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 set_page_refcounted(page);
1186 if (hstate_is_gigantic(h)) {
1187 destroy_compound_gigantic_page(page, huge_page_order(h));
1188 free_gigantic_page(page, huge_page_order(h));
1189 } else {
1190 __free_pages(page, huge_page_order(h));
1191 }
1192}
1193
1194struct hstate *size_to_hstate(unsigned long size)
1195{
1196 struct hstate *h;
1197
1198 for_each_hstate(h) {
1199 if (huge_page_size(h) == size)
1200 return h;
1201 }
1202 return NULL;
1203}
1204
1205/*
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1208 *
1209 * This function can be called for tail pages, but never returns true for them.
1210 */
1211bool page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 return PageHead(page) && PagePrivate(&page[1]);
1215}
1216
1217/* never called for tail page */
1218static void set_page_huge_active(struct page *page)
1219{
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 SetPagePrivate(&page[1]);
1222}
1223
1224static void clear_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 ClearPagePrivate(&page[1]);
1228}
1229
1230void free_huge_page(struct page *page)
1231{
1232 /*
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1235 */
1236 struct hstate *h = page_hstate(page);
1237 int nid = page_to_nid(page);
1238 struct hugepage_subpool *spool =
1239 (struct hugepage_subpool *)page_private(page);
1240 bool restore_reserve;
1241
1242 set_page_private(page, 0);
1243 page->mapping = NULL;
1244 VM_BUG_ON_PAGE(page_count(page), page);
1245 VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 restore_reserve = PagePrivate(page);
1247 ClearPagePrivate(page);
1248
1249 /*
1250 * A return code of zero implies that the subpool will be under its
1251 * minimum size if the reservation is not restored after page is free.
1252 * Therefore, force restore_reserve operation.
1253 */
1254 if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 restore_reserve = true;
1256
1257 spin_lock(&hugetlb_lock);
1258 clear_page_huge_active(page);
1259 hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 pages_per_huge_page(h), page);
1261 if (restore_reserve)
1262 h->resv_huge_pages++;
1263
1264 if (h->surplus_huge_pages_node[nid]) {
1265 /* remove the page from active list */
1266 list_del(&page->lru);
1267 update_and_free_page(h, page);
1268 h->surplus_huge_pages--;
1269 h->surplus_huge_pages_node[nid]--;
1270 } else {
1271 arch_clear_hugepage_flags(page);
1272 enqueue_huge_page(h, page);
1273 }
1274 spin_unlock(&hugetlb_lock);
1275}
1276
1277static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278{
1279 INIT_LIST_HEAD(&page->lru);
1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 spin_lock(&hugetlb_lock);
1282 set_hugetlb_cgroup(page, NULL);
1283 h->nr_huge_pages++;
1284 h->nr_huge_pages_node[nid]++;
1285 spin_unlock(&hugetlb_lock);
1286 put_page(page); /* free it into the hugepage allocator */
1287}
1288
1289static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290{
1291 int i;
1292 int nr_pages = 1 << order;
1293 struct page *p = page + 1;
1294
1295 /* we rely on prep_new_huge_page to set the destructor */
1296 set_compound_order(page, order);
1297 __ClearPageReserved(page);
1298 __SetPageHead(page);
1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 /*
1301 * For gigantic hugepages allocated through bootmem at
1302 * boot, it's safer to be consistent with the not-gigantic
1303 * hugepages and clear the PG_reserved bit from all tail pages
1304 * too. Otherwse drivers using get_user_pages() to access tail
1305 * pages may get the reference counting wrong if they see
1306 * PG_reserved set on a tail page (despite the head page not
1307 * having PG_reserved set). Enforcing this consistency between
1308 * head and tail pages allows drivers to optimize away a check
1309 * on the head page when they need know if put_page() is needed
1310 * after get_user_pages().
1311 */
1312 __ClearPageReserved(p);
1313 set_page_count(p, 0);
1314 set_compound_head(p, page);
1315 }
1316 atomic_set(compound_mapcount_ptr(page), -1);
1317}
1318
1319/*
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages. See the PageTransHuge() documentation for more
1322 * details.
1323 */
1324int PageHuge(struct page *page)
1325{
1326 if (!PageCompound(page))
1327 return 0;
1328
1329 page = compound_head(page);
1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331}
1332EXPORT_SYMBOL_GPL(PageHuge);
1333
1334/*
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1337 */
1338int PageHeadHuge(struct page *page_head)
1339{
1340 if (!PageHead(page_head))
1341 return 0;
1342
1343 return get_compound_page_dtor(page_head) == free_huge_page;
1344}
1345
1346pgoff_t __basepage_index(struct page *page)
1347{
1348 struct page *page_head = compound_head(page);
1349 pgoff_t index = page_index(page_head);
1350 unsigned long compound_idx;
1351
1352 if (!PageHuge(page_head))
1353 return page_index(page);
1354
1355 if (compound_order(page_head) >= MAX_ORDER)
1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357 else
1358 compound_idx = page - page_head;
1359
1360 return (index << compound_order(page_head)) + compound_idx;
1361}
1362
1363static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364{
1365 struct page *page;
1366
1367 page = __alloc_pages_node(nid,
1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 __GFP_REPEAT|__GFP_NOWARN,
1370 huge_page_order(h));
1371 if (page) {
1372 prep_new_huge_page(h, page, nid);
1373 }
1374
1375 return page;
1376}
1377
1378static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379{
1380 struct page *page;
1381 int nr_nodes, node;
1382 int ret = 0;
1383
1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 page = alloc_fresh_huge_page_node(h, node);
1386 if (page) {
1387 ret = 1;
1388 break;
1389 }
1390 }
1391
1392 if (ret)
1393 count_vm_event(HTLB_BUDDY_PGALLOC);
1394 else
1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397 return ret;
1398}
1399
1400/*
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1405 */
1406static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407 bool acct_surplus)
1408{
1409 int nr_nodes, node;
1410 int ret = 0;
1411
1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 /*
1414 * If we're returning unused surplus pages, only examine
1415 * nodes with surplus pages.
1416 */
1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 !list_empty(&h->hugepage_freelists[node])) {
1419 struct page *page =
1420 list_entry(h->hugepage_freelists[node].next,
1421 struct page, lru);
1422 list_del(&page->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[node]--;
1425 if (acct_surplus) {
1426 h->surplus_huge_pages--;
1427 h->surplus_huge_pages_node[node]--;
1428 }
1429 update_and_free_page(h, page);
1430 ret = 1;
1431 break;
1432 }
1433 }
1434
1435 return ret;
1436}
1437
1438/*
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages.
1441 */
1442static void dissolve_free_huge_page(struct page *page)
1443{
1444 spin_lock(&hugetlb_lock);
1445 if (PageHuge(page) && !page_count(page)) {
1446 struct hstate *h = page_hstate(page);
1447 int nid = page_to_nid(page);
1448 list_del(&page->lru);
1449 h->free_huge_pages--;
1450 h->free_huge_pages_node[nid]--;
1451 update_and_free_page(h, page);
1452 }
1453 spin_unlock(&hugetlb_lock);
1454}
1455
1456/*
1457 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1458 * make specified memory blocks removable from the system.
1459 * Note that start_pfn should aligned with (minimum) hugepage size.
1460 */
1461void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1462{
1463 unsigned long pfn;
1464
1465 if (!hugepages_supported())
1466 return;
1467
1468 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1469 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1470 dissolve_free_huge_page(pfn_to_page(pfn));
1471}
1472
1473/*
1474 * There are 3 ways this can get called:
1475 * 1. With vma+addr: we use the VMA's memory policy
1476 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1477 * page from any node, and let the buddy allocator itself figure
1478 * it out.
1479 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1480 * strictly from 'nid'
1481 */
1482static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1483 struct vm_area_struct *vma, unsigned long addr, int nid)
1484{
1485 int order = huge_page_order(h);
1486 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1487 unsigned int cpuset_mems_cookie;
1488
1489 /*
1490 * We need a VMA to get a memory policy. If we do not
1491 * have one, we use the 'nid' argument.
1492 *
1493 * The mempolicy stuff below has some non-inlined bits
1494 * and calls ->vm_ops. That makes it hard to optimize at
1495 * compile-time, even when NUMA is off and it does
1496 * nothing. This helps the compiler optimize it out.
1497 */
1498 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1499 /*
1500 * If a specific node is requested, make sure to
1501 * get memory from there, but only when a node
1502 * is explicitly specified.
1503 */
1504 if (nid != NUMA_NO_NODE)
1505 gfp |= __GFP_THISNODE;
1506 /*
1507 * Make sure to call something that can handle
1508 * nid=NUMA_NO_NODE
1509 */
1510 return alloc_pages_node(nid, gfp, order);
1511 }
1512
1513 /*
1514 * OK, so we have a VMA. Fetch the mempolicy and try to
1515 * allocate a huge page with it. We will only reach this
1516 * when CONFIG_NUMA=y.
1517 */
1518 do {
1519 struct page *page;
1520 struct mempolicy *mpol;
1521 struct zonelist *zl;
1522 nodemask_t *nodemask;
1523
1524 cpuset_mems_cookie = read_mems_allowed_begin();
1525 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1526 mpol_cond_put(mpol);
1527 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1528 if (page)
1529 return page;
1530 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1531
1532 return NULL;
1533}
1534
1535/*
1536 * There are two ways to allocate a huge page:
1537 * 1. When you have a VMA and an address (like a fault)
1538 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1539 *
1540 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1541 * this case which signifies that the allocation should be done with
1542 * respect for the VMA's memory policy.
1543 *
1544 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1545 * implies that memory policies will not be taken in to account.
1546 */
1547static struct page *__alloc_buddy_huge_page(struct hstate *h,
1548 struct vm_area_struct *vma, unsigned long addr, int nid)
1549{
1550 struct page *page;
1551 unsigned int r_nid;
1552
1553 if (hstate_is_gigantic(h))
1554 return NULL;
1555
1556 /*
1557 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1558 * This makes sure the caller is picking _one_ of the modes with which
1559 * we can call this function, not both.
1560 */
1561 if (vma || (addr != -1)) {
1562 VM_WARN_ON_ONCE(addr == -1);
1563 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1564 }
1565 /*
1566 * Assume we will successfully allocate the surplus page to
1567 * prevent racing processes from causing the surplus to exceed
1568 * overcommit
1569 *
1570 * This however introduces a different race, where a process B
1571 * tries to grow the static hugepage pool while alloc_pages() is
1572 * called by process A. B will only examine the per-node
1573 * counters in determining if surplus huge pages can be
1574 * converted to normal huge pages in adjust_pool_surplus(). A
1575 * won't be able to increment the per-node counter, until the
1576 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1577 * no more huge pages can be converted from surplus to normal
1578 * state (and doesn't try to convert again). Thus, we have a
1579 * case where a surplus huge page exists, the pool is grown, and
1580 * the surplus huge page still exists after, even though it
1581 * should just have been converted to a normal huge page. This
1582 * does not leak memory, though, as the hugepage will be freed
1583 * once it is out of use. It also does not allow the counters to
1584 * go out of whack in adjust_pool_surplus() as we don't modify
1585 * the node values until we've gotten the hugepage and only the
1586 * per-node value is checked there.
1587 */
1588 spin_lock(&hugetlb_lock);
1589 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1590 spin_unlock(&hugetlb_lock);
1591 return NULL;
1592 } else {
1593 h->nr_huge_pages++;
1594 h->surplus_huge_pages++;
1595 }
1596 spin_unlock(&hugetlb_lock);
1597
1598 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1599
1600 spin_lock(&hugetlb_lock);
1601 if (page) {
1602 INIT_LIST_HEAD(&page->lru);
1603 r_nid = page_to_nid(page);
1604 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1605 set_hugetlb_cgroup(page, NULL);
1606 /*
1607 * We incremented the global counters already
1608 */
1609 h->nr_huge_pages_node[r_nid]++;
1610 h->surplus_huge_pages_node[r_nid]++;
1611 __count_vm_event(HTLB_BUDDY_PGALLOC);
1612 } else {
1613 h->nr_huge_pages--;
1614 h->surplus_huge_pages--;
1615 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1616 }
1617 spin_unlock(&hugetlb_lock);
1618
1619 return page;
1620}
1621
1622/*
1623 * Allocate a huge page from 'nid'. Note, 'nid' may be
1624 * NUMA_NO_NODE, which means that it may be allocated
1625 * anywhere.
1626 */
1627static
1628struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1629{
1630 unsigned long addr = -1;
1631
1632 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1633}
1634
1635/*
1636 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1637 */
1638static
1639struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1640 struct vm_area_struct *vma, unsigned long addr)
1641{
1642 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1643}
1644
1645/*
1646 * This allocation function is useful in the context where vma is irrelevant.
1647 * E.g. soft-offlining uses this function because it only cares physical
1648 * address of error page.
1649 */
1650struct page *alloc_huge_page_node(struct hstate *h, int nid)
1651{
1652 struct page *page = NULL;
1653
1654 spin_lock(&hugetlb_lock);
1655 if (h->free_huge_pages - h->resv_huge_pages > 0)
1656 page = dequeue_huge_page_node(h, nid);
1657 spin_unlock(&hugetlb_lock);
1658
1659 if (!page)
1660 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1661
1662 return page;
1663}
1664
1665/*
1666 * Increase the hugetlb pool such that it can accommodate a reservation
1667 * of size 'delta'.
1668 */
1669static int gather_surplus_pages(struct hstate *h, int delta)
1670{
1671 struct list_head surplus_list;
1672 struct page *page, *tmp;
1673 int ret, i;
1674 int needed, allocated;
1675 bool alloc_ok = true;
1676
1677 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1678 if (needed <= 0) {
1679 h->resv_huge_pages += delta;
1680 return 0;
1681 }
1682
1683 allocated = 0;
1684 INIT_LIST_HEAD(&surplus_list);
1685
1686 ret = -ENOMEM;
1687retry:
1688 spin_unlock(&hugetlb_lock);
1689 for (i = 0; i < needed; i++) {
1690 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1691 if (!page) {
1692 alloc_ok = false;
1693 break;
1694 }
1695 list_add(&page->lru, &surplus_list);
1696 }
1697 allocated += i;
1698
1699 /*
1700 * After retaking hugetlb_lock, we need to recalculate 'needed'
1701 * because either resv_huge_pages or free_huge_pages may have changed.
1702 */
1703 spin_lock(&hugetlb_lock);
1704 needed = (h->resv_huge_pages + delta) -
1705 (h->free_huge_pages + allocated);
1706 if (needed > 0) {
1707 if (alloc_ok)
1708 goto retry;
1709 /*
1710 * We were not able to allocate enough pages to
1711 * satisfy the entire reservation so we free what
1712 * we've allocated so far.
1713 */
1714 goto free;
1715 }
1716 /*
1717 * The surplus_list now contains _at_least_ the number of extra pages
1718 * needed to accommodate the reservation. Add the appropriate number
1719 * of pages to the hugetlb pool and free the extras back to the buddy
1720 * allocator. Commit the entire reservation here to prevent another
1721 * process from stealing the pages as they are added to the pool but
1722 * before they are reserved.
1723 */
1724 needed += allocated;
1725 h->resv_huge_pages += delta;
1726 ret = 0;
1727
1728 /* Free the needed pages to the hugetlb pool */
1729 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1730 if ((--needed) < 0)
1731 break;
1732 /*
1733 * This page is now managed by the hugetlb allocator and has
1734 * no users -- drop the buddy allocator's reference.
1735 */
1736 put_page_testzero(page);
1737 VM_BUG_ON_PAGE(page_count(page), page);
1738 enqueue_huge_page(h, page);
1739 }
1740free:
1741 spin_unlock(&hugetlb_lock);
1742
1743 /* Free unnecessary surplus pages to the buddy allocator */
1744 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1745 put_page(page);
1746 spin_lock(&hugetlb_lock);
1747
1748 return ret;
1749}
1750
1751/*
1752 * When releasing a hugetlb pool reservation, any surplus pages that were
1753 * allocated to satisfy the reservation must be explicitly freed if they were
1754 * never used.
1755 * Called with hugetlb_lock held.
1756 */
1757static void return_unused_surplus_pages(struct hstate *h,
1758 unsigned long unused_resv_pages)
1759{
1760 unsigned long nr_pages;
1761
1762 /* Uncommit the reservation */
1763 h->resv_huge_pages -= unused_resv_pages;
1764
1765 /* Cannot return gigantic pages currently */
1766 if (hstate_is_gigantic(h))
1767 return;
1768
1769 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1770
1771 /*
1772 * We want to release as many surplus pages as possible, spread
1773 * evenly across all nodes with memory. Iterate across these nodes
1774 * until we can no longer free unreserved surplus pages. This occurs
1775 * when the nodes with surplus pages have no free pages.
1776 * free_pool_huge_page() will balance the the freed pages across the
1777 * on-line nodes with memory and will handle the hstate accounting.
1778 */
1779 while (nr_pages--) {
1780 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781 break;
1782 cond_resched_lock(&hugetlb_lock);
1783 }
1784}
1785
1786
1787/*
1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789 * are used by the huge page allocation routines to manage reservations.
1790 *
1791 * vma_needs_reservation is called to determine if the huge page at addr
1792 * within the vma has an associated reservation. If a reservation is
1793 * needed, the value 1 is returned. The caller is then responsible for
1794 * managing the global reservation and subpool usage counts. After
1795 * the huge page has been allocated, vma_commit_reservation is called
1796 * to add the page to the reservation map. If the page allocation fails,
1797 * the reservation must be ended instead of committed. vma_end_reservation
1798 * is called in such cases.
1799 *
1800 * In the normal case, vma_commit_reservation returns the same value
1801 * as the preceding vma_needs_reservation call. The only time this
1802 * is not the case is if a reserve map was changed between calls. It
1803 * is the responsibility of the caller to notice the difference and
1804 * take appropriate action.
1805 */
1806enum vma_resv_mode {
1807 VMA_NEEDS_RESV,
1808 VMA_COMMIT_RESV,
1809 VMA_END_RESV,
1810};
1811static long __vma_reservation_common(struct hstate *h,
1812 struct vm_area_struct *vma, unsigned long addr,
1813 enum vma_resv_mode mode)
1814{
1815 struct resv_map *resv;
1816 pgoff_t idx;
1817 long ret;
1818
1819 resv = vma_resv_map(vma);
1820 if (!resv)
1821 return 1;
1822
1823 idx = vma_hugecache_offset(h, vma, addr);
1824 switch (mode) {
1825 case VMA_NEEDS_RESV:
1826 ret = region_chg(resv, idx, idx + 1);
1827 break;
1828 case VMA_COMMIT_RESV:
1829 ret = region_add(resv, idx, idx + 1);
1830 break;
1831 case VMA_END_RESV:
1832 region_abort(resv, idx, idx + 1);
1833 ret = 0;
1834 break;
1835 default:
1836 BUG();
1837 }
1838
1839 if (vma->vm_flags & VM_MAYSHARE)
1840 return ret;
1841 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1842 /*
1843 * In most cases, reserves always exist for private mappings.
1844 * However, a file associated with mapping could have been
1845 * hole punched or truncated after reserves were consumed.
1846 * As subsequent fault on such a range will not use reserves.
1847 * Subtle - The reserve map for private mappings has the
1848 * opposite meaning than that of shared mappings. If NO
1849 * entry is in the reserve map, it means a reservation exists.
1850 * If an entry exists in the reserve map, it means the
1851 * reservation has already been consumed. As a result, the
1852 * return value of this routine is the opposite of the
1853 * value returned from reserve map manipulation routines above.
1854 */
1855 if (ret)
1856 return 0;
1857 else
1858 return 1;
1859 }
1860 else
1861 return ret < 0 ? ret : 0;
1862}
1863
1864static long vma_needs_reservation(struct hstate *h,
1865 struct vm_area_struct *vma, unsigned long addr)
1866{
1867 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1868}
1869
1870static long vma_commit_reservation(struct hstate *h,
1871 struct vm_area_struct *vma, unsigned long addr)
1872{
1873 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1874}
1875
1876static void vma_end_reservation(struct hstate *h,
1877 struct vm_area_struct *vma, unsigned long addr)
1878{
1879 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1880}
1881
1882struct page *alloc_huge_page(struct vm_area_struct *vma,
1883 unsigned long addr, int avoid_reserve)
1884{
1885 struct hugepage_subpool *spool = subpool_vma(vma);
1886 struct hstate *h = hstate_vma(vma);
1887 struct page *page;
1888 long map_chg, map_commit;
1889 long gbl_chg;
1890 int ret, idx;
1891 struct hugetlb_cgroup *h_cg;
1892
1893 idx = hstate_index(h);
1894 /*
1895 * Examine the region/reserve map to determine if the process
1896 * has a reservation for the page to be allocated. A return
1897 * code of zero indicates a reservation exists (no change).
1898 */
1899 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1900 if (map_chg < 0)
1901 return ERR_PTR(-ENOMEM);
1902
1903 /*
1904 * Processes that did not create the mapping will have no
1905 * reserves as indicated by the region/reserve map. Check
1906 * that the allocation will not exceed the subpool limit.
1907 * Allocations for MAP_NORESERVE mappings also need to be
1908 * checked against any subpool limit.
1909 */
1910 if (map_chg || avoid_reserve) {
1911 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1912 if (gbl_chg < 0) {
1913 vma_end_reservation(h, vma, addr);
1914 return ERR_PTR(-ENOSPC);
1915 }
1916
1917 /*
1918 * Even though there was no reservation in the region/reserve
1919 * map, there could be reservations associated with the
1920 * subpool that can be used. This would be indicated if the
1921 * return value of hugepage_subpool_get_pages() is zero.
1922 * However, if avoid_reserve is specified we still avoid even
1923 * the subpool reservations.
1924 */
1925 if (avoid_reserve)
1926 gbl_chg = 1;
1927 }
1928
1929 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1930 if (ret)
1931 goto out_subpool_put;
1932
1933 spin_lock(&hugetlb_lock);
1934 /*
1935 * glb_chg is passed to indicate whether or not a page must be taken
1936 * from the global free pool (global change). gbl_chg == 0 indicates
1937 * a reservation exists for the allocation.
1938 */
1939 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1940 if (!page) {
1941 spin_unlock(&hugetlb_lock);
1942 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1943 if (!page)
1944 goto out_uncharge_cgroup;
1945 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1946 SetPagePrivate(page);
1947 h->resv_huge_pages--;
1948 }
1949 spin_lock(&hugetlb_lock);
1950 list_move(&page->lru, &h->hugepage_activelist);
1951 /* Fall through */
1952 }
1953 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1954 spin_unlock(&hugetlb_lock);
1955
1956 set_page_private(page, (unsigned long)spool);
1957
1958 map_commit = vma_commit_reservation(h, vma, addr);
1959 if (unlikely(map_chg > map_commit)) {
1960 /*
1961 * The page was added to the reservation map between
1962 * vma_needs_reservation and vma_commit_reservation.
1963 * This indicates a race with hugetlb_reserve_pages.
1964 * Adjust for the subpool count incremented above AND
1965 * in hugetlb_reserve_pages for the same page. Also,
1966 * the reservation count added in hugetlb_reserve_pages
1967 * no longer applies.
1968 */
1969 long rsv_adjust;
1970
1971 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1972 hugetlb_acct_memory(h, -rsv_adjust);
1973 }
1974 return page;
1975
1976out_uncharge_cgroup:
1977 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1978out_subpool_put:
1979 if (map_chg || avoid_reserve)
1980 hugepage_subpool_put_pages(spool, 1);
1981 vma_end_reservation(h, vma, addr);
1982 return ERR_PTR(-ENOSPC);
1983}
1984
1985/*
1986 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1987 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1988 * where no ERR_VALUE is expected to be returned.
1989 */
1990struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1991 unsigned long addr, int avoid_reserve)
1992{
1993 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1994 if (IS_ERR(page))
1995 page = NULL;
1996 return page;
1997}
1998
1999int __weak alloc_bootmem_huge_page(struct hstate *h)
2000{
2001 struct huge_bootmem_page *m;
2002 int nr_nodes, node;
2003
2004 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2005 void *addr;
2006
2007 addr = memblock_virt_alloc_try_nid_nopanic(
2008 huge_page_size(h), huge_page_size(h),
2009 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2010 if (addr) {
2011 /*
2012 * Use the beginning of the huge page to store the
2013 * huge_bootmem_page struct (until gather_bootmem
2014 * puts them into the mem_map).
2015 */
2016 m = addr;
2017 goto found;
2018 }
2019 }
2020 return 0;
2021
2022found:
2023 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2024 /* Put them into a private list first because mem_map is not up yet */
2025 list_add(&m->list, &huge_boot_pages);
2026 m->hstate = h;
2027 return 1;
2028}
2029
2030static void __init prep_compound_huge_page(struct page *page,
2031 unsigned int order)
2032{
2033 if (unlikely(order > (MAX_ORDER - 1)))
2034 prep_compound_gigantic_page(page, order);
2035 else
2036 prep_compound_page(page, order);
2037}
2038
2039/* Put bootmem huge pages into the standard lists after mem_map is up */
2040static void __init gather_bootmem_prealloc(void)
2041{
2042 struct huge_bootmem_page *m;
2043
2044 list_for_each_entry(m, &huge_boot_pages, list) {
2045 struct hstate *h = m->hstate;
2046 struct page *page;
2047
2048#ifdef CONFIG_HIGHMEM
2049 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2050 memblock_free_late(__pa(m),
2051 sizeof(struct huge_bootmem_page));
2052#else
2053 page = virt_to_page(m);
2054#endif
2055 WARN_ON(page_count(page) != 1);
2056 prep_compound_huge_page(page, h->order);
2057 WARN_ON(PageReserved(page));
2058 prep_new_huge_page(h, page, page_to_nid(page));
2059 /*
2060 * If we had gigantic hugepages allocated at boot time, we need
2061 * to restore the 'stolen' pages to totalram_pages in order to
2062 * fix confusing memory reports from free(1) and another
2063 * side-effects, like CommitLimit going negative.
2064 */
2065 if (hstate_is_gigantic(h))
2066 adjust_managed_page_count(page, 1 << h->order);
2067 }
2068}
2069
2070static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2071{
2072 unsigned long i;
2073
2074 for (i = 0; i < h->max_huge_pages; ++i) {
2075 if (hstate_is_gigantic(h)) {
2076 if (!alloc_bootmem_huge_page(h))
2077 break;
2078 } else if (!alloc_fresh_huge_page(h,
2079 &node_states[N_MEMORY]))
2080 break;
2081 }
2082 h->max_huge_pages = i;
2083}
2084
2085static void __init hugetlb_init_hstates(void)
2086{
2087 struct hstate *h;
2088
2089 for_each_hstate(h) {
2090 if (minimum_order > huge_page_order(h))
2091 minimum_order = huge_page_order(h);
2092
2093 /* oversize hugepages were init'ed in early boot */
2094 if (!hstate_is_gigantic(h))
2095 hugetlb_hstate_alloc_pages(h);
2096 }
2097 VM_BUG_ON(minimum_order == UINT_MAX);
2098}
2099
2100static char * __init memfmt(char *buf, unsigned long n)
2101{
2102 if (n >= (1UL << 30))
2103 sprintf(buf, "%lu GB", n >> 30);
2104 else if (n >= (1UL << 20))
2105 sprintf(buf, "%lu MB", n >> 20);
2106 else
2107 sprintf(buf, "%lu KB", n >> 10);
2108 return buf;
2109}
2110
2111static void __init report_hugepages(void)
2112{
2113 struct hstate *h;
2114
2115 for_each_hstate(h) {
2116 char buf[32];
2117 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2118 memfmt(buf, huge_page_size(h)),
2119 h->free_huge_pages);
2120 }
2121}
2122
2123#ifdef CONFIG_HIGHMEM
2124static void try_to_free_low(struct hstate *h, unsigned long count,
2125 nodemask_t *nodes_allowed)
2126{
2127 int i;
2128
2129 if (hstate_is_gigantic(h))
2130 return;
2131
2132 for_each_node_mask(i, *nodes_allowed) {
2133 struct page *page, *next;
2134 struct list_head *freel = &h->hugepage_freelists[i];
2135 list_for_each_entry_safe(page, next, freel, lru) {
2136 if (count >= h->nr_huge_pages)
2137 return;
2138 if (PageHighMem(page))
2139 continue;
2140 list_del(&page->lru);
2141 update_and_free_page(h, page);
2142 h->free_huge_pages--;
2143 h->free_huge_pages_node[page_to_nid(page)]--;
2144 }
2145 }
2146}
2147#else
2148static inline void try_to_free_low(struct hstate *h, unsigned long count,
2149 nodemask_t *nodes_allowed)
2150{
2151}
2152#endif
2153
2154/*
2155 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2156 * balanced by operating on them in a round-robin fashion.
2157 * Returns 1 if an adjustment was made.
2158 */
2159static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2160 int delta)
2161{
2162 int nr_nodes, node;
2163
2164 VM_BUG_ON(delta != -1 && delta != 1);
2165
2166 if (delta < 0) {
2167 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2168 if (h->surplus_huge_pages_node[node])
2169 goto found;
2170 }
2171 } else {
2172 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2173 if (h->surplus_huge_pages_node[node] <
2174 h->nr_huge_pages_node[node])
2175 goto found;
2176 }
2177 }
2178 return 0;
2179
2180found:
2181 h->surplus_huge_pages += delta;
2182 h->surplus_huge_pages_node[node] += delta;
2183 return 1;
2184}
2185
2186#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2187static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2188 nodemask_t *nodes_allowed)
2189{
2190 unsigned long min_count, ret;
2191
2192 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2193 return h->max_huge_pages;
2194
2195 /*
2196 * Increase the pool size
2197 * First take pages out of surplus state. Then make up the
2198 * remaining difference by allocating fresh huge pages.
2199 *
2200 * We might race with __alloc_buddy_huge_page() here and be unable
2201 * to convert a surplus huge page to a normal huge page. That is
2202 * not critical, though, it just means the overall size of the
2203 * pool might be one hugepage larger than it needs to be, but
2204 * within all the constraints specified by the sysctls.
2205 */
2206 spin_lock(&hugetlb_lock);
2207 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2208 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2209 break;
2210 }
2211
2212 while (count > persistent_huge_pages(h)) {
2213 /*
2214 * If this allocation races such that we no longer need the
2215 * page, free_huge_page will handle it by freeing the page
2216 * and reducing the surplus.
2217 */
2218 spin_unlock(&hugetlb_lock);
2219
2220 /* yield cpu to avoid soft lockup */
2221 cond_resched();
2222
2223 if (hstate_is_gigantic(h))
2224 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2225 else
2226 ret = alloc_fresh_huge_page(h, nodes_allowed);
2227 spin_lock(&hugetlb_lock);
2228 if (!ret)
2229 goto out;
2230
2231 /* Bail for signals. Probably ctrl-c from user */
2232 if (signal_pending(current))
2233 goto out;
2234 }
2235
2236 /*
2237 * Decrease the pool size
2238 * First return free pages to the buddy allocator (being careful
2239 * to keep enough around to satisfy reservations). Then place
2240 * pages into surplus state as needed so the pool will shrink
2241 * to the desired size as pages become free.
2242 *
2243 * By placing pages into the surplus state independent of the
2244 * overcommit value, we are allowing the surplus pool size to
2245 * exceed overcommit. There are few sane options here. Since
2246 * __alloc_buddy_huge_page() is checking the global counter,
2247 * though, we'll note that we're not allowed to exceed surplus
2248 * and won't grow the pool anywhere else. Not until one of the
2249 * sysctls are changed, or the surplus pages go out of use.
2250 */
2251 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2252 min_count = max(count, min_count);
2253 try_to_free_low(h, min_count, nodes_allowed);
2254 while (min_count < persistent_huge_pages(h)) {
2255 if (!free_pool_huge_page(h, nodes_allowed, 0))
2256 break;
2257 cond_resched_lock(&hugetlb_lock);
2258 }
2259 while (count < persistent_huge_pages(h)) {
2260 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2261 break;
2262 }
2263out:
2264 ret = persistent_huge_pages(h);
2265 spin_unlock(&hugetlb_lock);
2266 return ret;
2267}
2268
2269#define HSTATE_ATTR_RO(_name) \
2270 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2271
2272#define HSTATE_ATTR(_name) \
2273 static struct kobj_attribute _name##_attr = \
2274 __ATTR(_name, 0644, _name##_show, _name##_store)
2275
2276static struct kobject *hugepages_kobj;
2277static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2278
2279static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2280
2281static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2282{
2283 int i;
2284
2285 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2286 if (hstate_kobjs[i] == kobj) {
2287 if (nidp)
2288 *nidp = NUMA_NO_NODE;
2289 return &hstates[i];
2290 }
2291
2292 return kobj_to_node_hstate(kobj, nidp);
2293}
2294
2295static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2296 struct kobj_attribute *attr, char *buf)
2297{
2298 struct hstate *h;
2299 unsigned long nr_huge_pages;
2300 int nid;
2301
2302 h = kobj_to_hstate(kobj, &nid);
2303 if (nid == NUMA_NO_NODE)
2304 nr_huge_pages = h->nr_huge_pages;
2305 else
2306 nr_huge_pages = h->nr_huge_pages_node[nid];
2307
2308 return sprintf(buf, "%lu\n", nr_huge_pages);
2309}
2310
2311static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2312 struct hstate *h, int nid,
2313 unsigned long count, size_t len)
2314{
2315 int err;
2316 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2317
2318 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2319 err = -EINVAL;
2320 goto out;
2321 }
2322
2323 if (nid == NUMA_NO_NODE) {
2324 /*
2325 * global hstate attribute
2326 */
2327 if (!(obey_mempolicy &&
2328 init_nodemask_of_mempolicy(nodes_allowed))) {
2329 NODEMASK_FREE(nodes_allowed);
2330 nodes_allowed = &node_states[N_MEMORY];
2331 }
2332 } else if (nodes_allowed) {
2333 /*
2334 * per node hstate attribute: adjust count to global,
2335 * but restrict alloc/free to the specified node.
2336 */
2337 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2338 init_nodemask_of_node(nodes_allowed, nid);
2339 } else
2340 nodes_allowed = &node_states[N_MEMORY];
2341
2342 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2343
2344 if (nodes_allowed != &node_states[N_MEMORY])
2345 NODEMASK_FREE(nodes_allowed);
2346
2347 return len;
2348out:
2349 NODEMASK_FREE(nodes_allowed);
2350 return err;
2351}
2352
2353static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2354 struct kobject *kobj, const char *buf,
2355 size_t len)
2356{
2357 struct hstate *h;
2358 unsigned long count;
2359 int nid;
2360 int err;
2361
2362 err = kstrtoul(buf, 10, &count);
2363 if (err)
2364 return err;
2365
2366 h = kobj_to_hstate(kobj, &nid);
2367 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2368}
2369
2370static ssize_t nr_hugepages_show(struct kobject *kobj,
2371 struct kobj_attribute *attr, char *buf)
2372{
2373 return nr_hugepages_show_common(kobj, attr, buf);
2374}
2375
2376static ssize_t nr_hugepages_store(struct kobject *kobj,
2377 struct kobj_attribute *attr, const char *buf, size_t len)
2378{
2379 return nr_hugepages_store_common(false, kobj, buf, len);
2380}
2381HSTATE_ATTR(nr_hugepages);
2382
2383#ifdef CONFIG_NUMA
2384
2385/*
2386 * hstate attribute for optionally mempolicy-based constraint on persistent
2387 * huge page alloc/free.
2388 */
2389static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2390 struct kobj_attribute *attr, char *buf)
2391{
2392 return nr_hugepages_show_common(kobj, attr, buf);
2393}
2394
2395static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2396 struct kobj_attribute *attr, const char *buf, size_t len)
2397{
2398 return nr_hugepages_store_common(true, kobj, buf, len);
2399}
2400HSTATE_ATTR(nr_hugepages_mempolicy);
2401#endif
2402
2403
2404static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2405 struct kobj_attribute *attr, char *buf)
2406{
2407 struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2409}
2410
2411static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2412 struct kobj_attribute *attr, const char *buf, size_t count)
2413{
2414 int err;
2415 unsigned long input;
2416 struct hstate *h = kobj_to_hstate(kobj, NULL);
2417
2418 if (hstate_is_gigantic(h))
2419 return -EINVAL;
2420
2421 err = kstrtoul(buf, 10, &input);
2422 if (err)
2423 return err;
2424
2425 spin_lock(&hugetlb_lock);
2426 h->nr_overcommit_huge_pages = input;
2427 spin_unlock(&hugetlb_lock);
2428
2429 return count;
2430}
2431HSTATE_ATTR(nr_overcommit_hugepages);
2432
2433static ssize_t free_hugepages_show(struct kobject *kobj,
2434 struct kobj_attribute *attr, char *buf)
2435{
2436 struct hstate *h;
2437 unsigned long free_huge_pages;
2438 int nid;
2439
2440 h = kobj_to_hstate(kobj, &nid);
2441 if (nid == NUMA_NO_NODE)
2442 free_huge_pages = h->free_huge_pages;
2443 else
2444 free_huge_pages = h->free_huge_pages_node[nid];
2445
2446 return sprintf(buf, "%lu\n", free_huge_pages);
2447}
2448HSTATE_ATTR_RO(free_hugepages);
2449
2450static ssize_t resv_hugepages_show(struct kobject *kobj,
2451 struct kobj_attribute *attr, char *buf)
2452{
2453 struct hstate *h = kobj_to_hstate(kobj, NULL);
2454 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2455}
2456HSTATE_ATTR_RO(resv_hugepages);
2457
2458static ssize_t surplus_hugepages_show(struct kobject *kobj,
2459 struct kobj_attribute *attr, char *buf)
2460{
2461 struct hstate *h;
2462 unsigned long surplus_huge_pages;
2463 int nid;
2464
2465 h = kobj_to_hstate(kobj, &nid);
2466 if (nid == NUMA_NO_NODE)
2467 surplus_huge_pages = h->surplus_huge_pages;
2468 else
2469 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2470
2471 return sprintf(buf, "%lu\n", surplus_huge_pages);
2472}
2473HSTATE_ATTR_RO(surplus_hugepages);
2474
2475static struct attribute *hstate_attrs[] = {
2476 &nr_hugepages_attr.attr,
2477 &nr_overcommit_hugepages_attr.attr,
2478 &free_hugepages_attr.attr,
2479 &resv_hugepages_attr.attr,
2480 &surplus_hugepages_attr.attr,
2481#ifdef CONFIG_NUMA
2482 &nr_hugepages_mempolicy_attr.attr,
2483#endif
2484 NULL,
2485};
2486
2487static struct attribute_group hstate_attr_group = {
2488 .attrs = hstate_attrs,
2489};
2490
2491static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2492 struct kobject **hstate_kobjs,
2493 struct attribute_group *hstate_attr_group)
2494{
2495 int retval;
2496 int hi = hstate_index(h);
2497
2498 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2499 if (!hstate_kobjs[hi])
2500 return -ENOMEM;
2501
2502 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2503 if (retval)
2504 kobject_put(hstate_kobjs[hi]);
2505
2506 return retval;
2507}
2508
2509static void __init hugetlb_sysfs_init(void)
2510{
2511 struct hstate *h;
2512 int err;
2513
2514 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2515 if (!hugepages_kobj)
2516 return;
2517
2518 for_each_hstate(h) {
2519 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2520 hstate_kobjs, &hstate_attr_group);
2521 if (err)
2522 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2523 }
2524}
2525
2526#ifdef CONFIG_NUMA
2527
2528/*
2529 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2530 * with node devices in node_devices[] using a parallel array. The array
2531 * index of a node device or _hstate == node id.
2532 * This is here to avoid any static dependency of the node device driver, in
2533 * the base kernel, on the hugetlb module.
2534 */
2535struct node_hstate {
2536 struct kobject *hugepages_kobj;
2537 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2538};
2539static struct node_hstate node_hstates[MAX_NUMNODES];
2540
2541/*
2542 * A subset of global hstate attributes for node devices
2543 */
2544static struct attribute *per_node_hstate_attrs[] = {
2545 &nr_hugepages_attr.attr,
2546 &free_hugepages_attr.attr,
2547 &surplus_hugepages_attr.attr,
2548 NULL,
2549};
2550
2551static struct attribute_group per_node_hstate_attr_group = {
2552 .attrs = per_node_hstate_attrs,
2553};
2554
2555/*
2556 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2557 * Returns node id via non-NULL nidp.
2558 */
2559static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2560{
2561 int nid;
2562
2563 for (nid = 0; nid < nr_node_ids; nid++) {
2564 struct node_hstate *nhs = &node_hstates[nid];
2565 int i;
2566 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2567 if (nhs->hstate_kobjs[i] == kobj) {
2568 if (nidp)
2569 *nidp = nid;
2570 return &hstates[i];
2571 }
2572 }
2573
2574 BUG();
2575 return NULL;
2576}
2577
2578/*
2579 * Unregister hstate attributes from a single node device.
2580 * No-op if no hstate attributes attached.
2581 */
2582static void hugetlb_unregister_node(struct node *node)
2583{
2584 struct hstate *h;
2585 struct node_hstate *nhs = &node_hstates[node->dev.id];
2586
2587 if (!nhs->hugepages_kobj)
2588 return; /* no hstate attributes */
2589
2590 for_each_hstate(h) {
2591 int idx = hstate_index(h);
2592 if (nhs->hstate_kobjs[idx]) {
2593 kobject_put(nhs->hstate_kobjs[idx]);
2594 nhs->hstate_kobjs[idx] = NULL;
2595 }
2596 }
2597
2598 kobject_put(nhs->hugepages_kobj);
2599 nhs->hugepages_kobj = NULL;
2600}
2601
2602
2603/*
2604 * Register hstate attributes for a single node device.
2605 * No-op if attributes already registered.
2606 */
2607static void hugetlb_register_node(struct node *node)
2608{
2609 struct hstate *h;
2610 struct node_hstate *nhs = &node_hstates[node->dev.id];
2611 int err;
2612
2613 if (nhs->hugepages_kobj)
2614 return; /* already allocated */
2615
2616 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2617 &node->dev.kobj);
2618 if (!nhs->hugepages_kobj)
2619 return;
2620
2621 for_each_hstate(h) {
2622 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2623 nhs->hstate_kobjs,
2624 &per_node_hstate_attr_group);
2625 if (err) {
2626 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2627 h->name, node->dev.id);
2628 hugetlb_unregister_node(node);
2629 break;
2630 }
2631 }
2632}
2633
2634/*
2635 * hugetlb init time: register hstate attributes for all registered node
2636 * devices of nodes that have memory. All on-line nodes should have
2637 * registered their associated device by this time.
2638 */
2639static void __init hugetlb_register_all_nodes(void)
2640{
2641 int nid;
2642
2643 for_each_node_state(nid, N_MEMORY) {
2644 struct node *node = node_devices[nid];
2645 if (node->dev.id == nid)
2646 hugetlb_register_node(node);
2647 }
2648
2649 /*
2650 * Let the node device driver know we're here so it can
2651 * [un]register hstate attributes on node hotplug.
2652 */
2653 register_hugetlbfs_with_node(hugetlb_register_node,
2654 hugetlb_unregister_node);
2655}
2656#else /* !CONFIG_NUMA */
2657
2658static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2659{
2660 BUG();
2661 if (nidp)
2662 *nidp = -1;
2663 return NULL;
2664}
2665
2666static void hugetlb_register_all_nodes(void) { }
2667
2668#endif
2669
2670static int __init hugetlb_init(void)
2671{
2672 int i;
2673
2674 if (!hugepages_supported())
2675 return 0;
2676
2677 if (!size_to_hstate(default_hstate_size)) {
2678 default_hstate_size = HPAGE_SIZE;
2679 if (!size_to_hstate(default_hstate_size))
2680 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2681 }
2682 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2683 if (default_hstate_max_huge_pages) {
2684 if (!default_hstate.max_huge_pages)
2685 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2686 }
2687
2688 hugetlb_init_hstates();
2689 gather_bootmem_prealloc();
2690 report_hugepages();
2691
2692 hugetlb_sysfs_init();
2693 hugetlb_register_all_nodes();
2694 hugetlb_cgroup_file_init();
2695
2696#ifdef CONFIG_SMP
2697 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2698#else
2699 num_fault_mutexes = 1;
2700#endif
2701 hugetlb_fault_mutex_table =
2702 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2703 BUG_ON(!hugetlb_fault_mutex_table);
2704
2705 for (i = 0; i < num_fault_mutexes; i++)
2706 mutex_init(&hugetlb_fault_mutex_table[i]);
2707 return 0;
2708}
2709subsys_initcall(hugetlb_init);
2710
2711/* Should be called on processing a hugepagesz=... option */
2712void __init hugetlb_bad_size(void)
2713{
2714 parsed_valid_hugepagesz = false;
2715}
2716
2717void __init hugetlb_add_hstate(unsigned int order)
2718{
2719 struct hstate *h;
2720 unsigned long i;
2721
2722 if (size_to_hstate(PAGE_SIZE << order)) {
2723 pr_warn("hugepagesz= specified twice, ignoring\n");
2724 return;
2725 }
2726 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2727 BUG_ON(order == 0);
2728 h = &hstates[hugetlb_max_hstate++];
2729 h->order = order;
2730 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2731 h->nr_huge_pages = 0;
2732 h->free_huge_pages = 0;
2733 for (i = 0; i < MAX_NUMNODES; ++i)
2734 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2735 INIT_LIST_HEAD(&h->hugepage_activelist);
2736 h->next_nid_to_alloc = first_memory_node;
2737 h->next_nid_to_free = first_memory_node;
2738 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2739 huge_page_size(h)/1024);
2740
2741 parsed_hstate = h;
2742}
2743
2744static int __init hugetlb_nrpages_setup(char *s)
2745{
2746 unsigned long *mhp;
2747 static unsigned long *last_mhp;
2748
2749 if (!parsed_valid_hugepagesz) {
2750 pr_warn("hugepages = %s preceded by "
2751 "an unsupported hugepagesz, ignoring\n", s);
2752 parsed_valid_hugepagesz = true;
2753 return 1;
2754 }
2755 /*
2756 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2757 * so this hugepages= parameter goes to the "default hstate".
2758 */
2759 else if (!hugetlb_max_hstate)
2760 mhp = &default_hstate_max_huge_pages;
2761 else
2762 mhp = &parsed_hstate->max_huge_pages;
2763
2764 if (mhp == last_mhp) {
2765 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2766 return 1;
2767 }
2768
2769 if (sscanf(s, "%lu", mhp) <= 0)
2770 *mhp = 0;
2771
2772 /*
2773 * Global state is always initialized later in hugetlb_init.
2774 * But we need to allocate >= MAX_ORDER hstates here early to still
2775 * use the bootmem allocator.
2776 */
2777 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2778 hugetlb_hstate_alloc_pages(parsed_hstate);
2779
2780 last_mhp = mhp;
2781
2782 return 1;
2783}
2784__setup("hugepages=", hugetlb_nrpages_setup);
2785
2786static int __init hugetlb_default_setup(char *s)
2787{
2788 default_hstate_size = memparse(s, &s);
2789 return 1;
2790}
2791__setup("default_hugepagesz=", hugetlb_default_setup);
2792
2793static unsigned int cpuset_mems_nr(unsigned int *array)
2794{
2795 int node;
2796 unsigned int nr = 0;
2797
2798 for_each_node_mask(node, cpuset_current_mems_allowed)
2799 nr += array[node];
2800
2801 return nr;
2802}
2803
2804#ifdef CONFIG_SYSCTL
2805static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2806 struct ctl_table *table, int write,
2807 void __user *buffer, size_t *length, loff_t *ppos)
2808{
2809 struct hstate *h = &default_hstate;
2810 unsigned long tmp = h->max_huge_pages;
2811 int ret;
2812
2813 if (!hugepages_supported())
2814 return -EOPNOTSUPP;
2815
2816 table->data = &tmp;
2817 table->maxlen = sizeof(unsigned long);
2818 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819 if (ret)
2820 goto out;
2821
2822 if (write)
2823 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2824 NUMA_NO_NODE, tmp, *length);
2825out:
2826 return ret;
2827}
2828
2829int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2830 void __user *buffer, size_t *length, loff_t *ppos)
2831{
2832
2833 return hugetlb_sysctl_handler_common(false, table, write,
2834 buffer, length, ppos);
2835}
2836
2837#ifdef CONFIG_NUMA
2838int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2839 void __user *buffer, size_t *length, loff_t *ppos)
2840{
2841 return hugetlb_sysctl_handler_common(true, table, write,
2842 buffer, length, ppos);
2843}
2844#endif /* CONFIG_NUMA */
2845
2846int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2847 void __user *buffer,
2848 size_t *length, loff_t *ppos)
2849{
2850 struct hstate *h = &default_hstate;
2851 unsigned long tmp;
2852 int ret;
2853
2854 if (!hugepages_supported())
2855 return -EOPNOTSUPP;
2856
2857 tmp = h->nr_overcommit_huge_pages;
2858
2859 if (write && hstate_is_gigantic(h))
2860 return -EINVAL;
2861
2862 table->data = &tmp;
2863 table->maxlen = sizeof(unsigned long);
2864 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2865 if (ret)
2866 goto out;
2867
2868 if (write) {
2869 spin_lock(&hugetlb_lock);
2870 h->nr_overcommit_huge_pages = tmp;
2871 spin_unlock(&hugetlb_lock);
2872 }
2873out:
2874 return ret;
2875}
2876
2877#endif /* CONFIG_SYSCTL */
2878
2879void hugetlb_report_meminfo(struct seq_file *m)
2880{
2881 struct hstate *h = &default_hstate;
2882 if (!hugepages_supported())
2883 return;
2884 seq_printf(m,
2885 "HugePages_Total: %5lu\n"
2886 "HugePages_Free: %5lu\n"
2887 "HugePages_Rsvd: %5lu\n"
2888 "HugePages_Surp: %5lu\n"
2889 "Hugepagesize: %8lu kB\n",
2890 h->nr_huge_pages,
2891 h->free_huge_pages,
2892 h->resv_huge_pages,
2893 h->surplus_huge_pages,
2894 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2895}
2896
2897int hugetlb_report_node_meminfo(int nid, char *buf)
2898{
2899 struct hstate *h = &default_hstate;
2900 if (!hugepages_supported())
2901 return 0;
2902 return sprintf(buf,
2903 "Node %d HugePages_Total: %5u\n"
2904 "Node %d HugePages_Free: %5u\n"
2905 "Node %d HugePages_Surp: %5u\n",
2906 nid, h->nr_huge_pages_node[nid],
2907 nid, h->free_huge_pages_node[nid],
2908 nid, h->surplus_huge_pages_node[nid]);
2909}
2910
2911void hugetlb_show_meminfo(void)
2912{
2913 struct hstate *h;
2914 int nid;
2915
2916 if (!hugepages_supported())
2917 return;
2918
2919 for_each_node_state(nid, N_MEMORY)
2920 for_each_hstate(h)
2921 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2922 nid,
2923 h->nr_huge_pages_node[nid],
2924 h->free_huge_pages_node[nid],
2925 h->surplus_huge_pages_node[nid],
2926 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2927}
2928
2929void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2930{
2931 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2932 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2933}
2934
2935/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2936unsigned long hugetlb_total_pages(void)
2937{
2938 struct hstate *h;
2939 unsigned long nr_total_pages = 0;
2940
2941 for_each_hstate(h)
2942 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2943 return nr_total_pages;
2944}
2945
2946static int hugetlb_acct_memory(struct hstate *h, long delta)
2947{
2948 int ret = -ENOMEM;
2949
2950 spin_lock(&hugetlb_lock);
2951 /*
2952 * When cpuset is configured, it breaks the strict hugetlb page
2953 * reservation as the accounting is done on a global variable. Such
2954 * reservation is completely rubbish in the presence of cpuset because
2955 * the reservation is not checked against page availability for the
2956 * current cpuset. Application can still potentially OOM'ed by kernel
2957 * with lack of free htlb page in cpuset that the task is in.
2958 * Attempt to enforce strict accounting with cpuset is almost
2959 * impossible (or too ugly) because cpuset is too fluid that
2960 * task or memory node can be dynamically moved between cpusets.
2961 *
2962 * The change of semantics for shared hugetlb mapping with cpuset is
2963 * undesirable. However, in order to preserve some of the semantics,
2964 * we fall back to check against current free page availability as
2965 * a best attempt and hopefully to minimize the impact of changing
2966 * semantics that cpuset has.
2967 */
2968 if (delta > 0) {
2969 if (gather_surplus_pages(h, delta) < 0)
2970 goto out;
2971
2972 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2973 return_unused_surplus_pages(h, delta);
2974 goto out;
2975 }
2976 }
2977
2978 ret = 0;
2979 if (delta < 0)
2980 return_unused_surplus_pages(h, (unsigned long) -delta);
2981
2982out:
2983 spin_unlock(&hugetlb_lock);
2984 return ret;
2985}
2986
2987static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2988{
2989 struct resv_map *resv = vma_resv_map(vma);
2990
2991 /*
2992 * This new VMA should share its siblings reservation map if present.
2993 * The VMA will only ever have a valid reservation map pointer where
2994 * it is being copied for another still existing VMA. As that VMA
2995 * has a reference to the reservation map it cannot disappear until
2996 * after this open call completes. It is therefore safe to take a
2997 * new reference here without additional locking.
2998 */
2999 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3000 kref_get(&resv->refs);
3001}
3002
3003static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3004{
3005 struct hstate *h = hstate_vma(vma);
3006 struct resv_map *resv = vma_resv_map(vma);
3007 struct hugepage_subpool *spool = subpool_vma(vma);
3008 unsigned long reserve, start, end;
3009 long gbl_reserve;
3010
3011 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3012 return;
3013
3014 start = vma_hugecache_offset(h, vma, vma->vm_start);
3015 end = vma_hugecache_offset(h, vma, vma->vm_end);
3016
3017 reserve = (end - start) - region_count(resv, start, end);
3018
3019 kref_put(&resv->refs, resv_map_release);
3020
3021 if (reserve) {
3022 /*
3023 * Decrement reserve counts. The global reserve count may be
3024 * adjusted if the subpool has a minimum size.
3025 */
3026 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3027 hugetlb_acct_memory(h, -gbl_reserve);
3028 }
3029}
3030
3031/*
3032 * We cannot handle pagefaults against hugetlb pages at all. They cause
3033 * handle_mm_fault() to try to instantiate regular-sized pages in the
3034 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3035 * this far.
3036 */
3037static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3038{
3039 BUG();
3040 return 0;
3041}
3042
3043const struct vm_operations_struct hugetlb_vm_ops = {
3044 .fault = hugetlb_vm_op_fault,
3045 .open = hugetlb_vm_op_open,
3046 .close = hugetlb_vm_op_close,
3047};
3048
3049static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3050 int writable)
3051{
3052 pte_t entry;
3053
3054 if (writable) {
3055 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3056 vma->vm_page_prot)));
3057 } else {
3058 entry = huge_pte_wrprotect(mk_huge_pte(page,
3059 vma->vm_page_prot));
3060 }
3061 entry = pte_mkyoung(entry);
3062 entry = pte_mkhuge(entry);
3063 entry = arch_make_huge_pte(entry, vma, page, writable);
3064
3065 return entry;
3066}
3067
3068static void set_huge_ptep_writable(struct vm_area_struct *vma,
3069 unsigned long address, pte_t *ptep)
3070{
3071 pte_t entry;
3072
3073 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3074 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3075 update_mmu_cache(vma, address, ptep);
3076}
3077
3078static int is_hugetlb_entry_migration(pte_t pte)
3079{
3080 swp_entry_t swp;
3081
3082 if (huge_pte_none(pte) || pte_present(pte))
3083 return 0;
3084 swp = pte_to_swp_entry(pte);
3085 if (non_swap_entry(swp) && is_migration_entry(swp))
3086 return 1;
3087 else
3088 return 0;
3089}
3090
3091static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3092{
3093 swp_entry_t swp;
3094
3095 if (huge_pte_none(pte) || pte_present(pte))
3096 return 0;
3097 swp = pte_to_swp_entry(pte);
3098 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3099 return 1;
3100 else
3101 return 0;
3102}
3103
3104int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3105 struct vm_area_struct *vma)
3106{
3107 pte_t *src_pte, *dst_pte, entry;
3108 struct page *ptepage;
3109 unsigned long addr;
3110 int cow;
3111 struct hstate *h = hstate_vma(vma);
3112 unsigned long sz = huge_page_size(h);
3113 unsigned long mmun_start; /* For mmu_notifiers */
3114 unsigned long mmun_end; /* For mmu_notifiers */
3115 int ret = 0;
3116
3117 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3118
3119 mmun_start = vma->vm_start;
3120 mmun_end = vma->vm_end;
3121 if (cow)
3122 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3123
3124 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3125 spinlock_t *src_ptl, *dst_ptl;
3126 src_pte = huge_pte_offset(src, addr);
3127 if (!src_pte)
3128 continue;
3129 dst_pte = huge_pte_alloc(dst, addr, sz);
3130 if (!dst_pte) {
3131 ret = -ENOMEM;
3132 break;
3133 }
3134
3135 /* If the pagetables are shared don't copy or take references */
3136 if (dst_pte == src_pte)
3137 continue;
3138
3139 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3140 src_ptl = huge_pte_lockptr(h, src, src_pte);
3141 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3142 entry = huge_ptep_get(src_pte);
3143 if (huge_pte_none(entry)) { /* skip none entry */
3144 ;
3145 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3146 is_hugetlb_entry_hwpoisoned(entry))) {
3147 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3148
3149 if (is_write_migration_entry(swp_entry) && cow) {
3150 /*
3151 * COW mappings require pages in both
3152 * parent and child to be set to read.
3153 */
3154 make_migration_entry_read(&swp_entry);
3155 entry = swp_entry_to_pte(swp_entry);
3156 set_huge_pte_at(src, addr, src_pte, entry);
3157 }
3158 set_huge_pte_at(dst, addr, dst_pte, entry);
3159 } else {
3160 if (cow) {
3161 huge_ptep_set_wrprotect(src, addr, src_pte);
3162 mmu_notifier_invalidate_range(src, mmun_start,
3163 mmun_end);
3164 }
3165 entry = huge_ptep_get(src_pte);
3166 ptepage = pte_page(entry);
3167 get_page(ptepage);
3168 page_dup_rmap(ptepage, true);
3169 set_huge_pte_at(dst, addr, dst_pte, entry);
3170 hugetlb_count_add(pages_per_huge_page(h), dst);
3171 }
3172 spin_unlock(src_ptl);
3173 spin_unlock(dst_ptl);
3174 }
3175
3176 if (cow)
3177 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3178
3179 return ret;
3180}
3181
3182void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3183 unsigned long start, unsigned long end,
3184 struct page *ref_page)
3185{
3186 struct mm_struct *mm = vma->vm_mm;
3187 unsigned long address;
3188 pte_t *ptep;
3189 pte_t pte;
3190 spinlock_t *ptl;
3191 struct page *page;
3192 struct hstate *h = hstate_vma(vma);
3193 unsigned long sz = huge_page_size(h);
3194 const unsigned long mmun_start = start; /* For mmu_notifiers */
3195 const unsigned long mmun_end = end; /* For mmu_notifiers */
3196
3197 WARN_ON(!is_vm_hugetlb_page(vma));
3198 BUG_ON(start & ~huge_page_mask(h));
3199 BUG_ON(end & ~huge_page_mask(h));
3200
3201 tlb_start_vma(tlb, vma);
3202 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3203 address = start;
3204 for (; address < end; address += sz) {
3205 ptep = huge_pte_offset(mm, address);
3206 if (!ptep)
3207 continue;
3208
3209 ptl = huge_pte_lock(h, mm, ptep);
3210 if (huge_pmd_unshare(mm, &address, ptep)) {
3211 spin_unlock(ptl);
3212 continue;
3213 }
3214
3215 pte = huge_ptep_get(ptep);
3216 if (huge_pte_none(pte)) {
3217 spin_unlock(ptl);
3218 continue;
3219 }
3220
3221 /*
3222 * Migrating hugepage or HWPoisoned hugepage is already
3223 * unmapped and its refcount is dropped, so just clear pte here.
3224 */
3225 if (unlikely(!pte_present(pte))) {
3226 huge_pte_clear(mm, address, ptep);
3227 spin_unlock(ptl);
3228 continue;
3229 }
3230
3231 page = pte_page(pte);
3232 /*
3233 * If a reference page is supplied, it is because a specific
3234 * page is being unmapped, not a range. Ensure the page we
3235 * are about to unmap is the actual page of interest.
3236 */
3237 if (ref_page) {
3238 if (page != ref_page) {
3239 spin_unlock(ptl);
3240 continue;
3241 }
3242 /*
3243 * Mark the VMA as having unmapped its page so that
3244 * future faults in this VMA will fail rather than
3245 * looking like data was lost
3246 */
3247 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3248 }
3249
3250 pte = huge_ptep_get_and_clear(mm, address, ptep);
3251 tlb_remove_tlb_entry(tlb, ptep, address);
3252 if (huge_pte_dirty(pte))
3253 set_page_dirty(page);
3254
3255 hugetlb_count_sub(pages_per_huge_page(h), mm);
3256 page_remove_rmap(page, true);
3257
3258 spin_unlock(ptl);
3259 tlb_remove_page_size(tlb, page, huge_page_size(h));
3260 /*
3261 * Bail out after unmapping reference page if supplied
3262 */
3263 if (ref_page)
3264 break;
3265 }
3266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3267 tlb_end_vma(tlb, vma);
3268}
3269
3270void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3271 struct vm_area_struct *vma, unsigned long start,
3272 unsigned long end, struct page *ref_page)
3273{
3274 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3275
3276 /*
3277 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3278 * test will fail on a vma being torn down, and not grab a page table
3279 * on its way out. We're lucky that the flag has such an appropriate
3280 * name, and can in fact be safely cleared here. We could clear it
3281 * before the __unmap_hugepage_range above, but all that's necessary
3282 * is to clear it before releasing the i_mmap_rwsem. This works
3283 * because in the context this is called, the VMA is about to be
3284 * destroyed and the i_mmap_rwsem is held.
3285 */
3286 vma->vm_flags &= ~VM_MAYSHARE;
3287}
3288
3289void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3290 unsigned long end, struct page *ref_page)
3291{
3292 struct mm_struct *mm;
3293 struct mmu_gather tlb;
3294
3295 mm = vma->vm_mm;
3296
3297 tlb_gather_mmu(&tlb, mm, start, end);
3298 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3299 tlb_finish_mmu(&tlb, start, end);
3300}
3301
3302/*
3303 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3304 * mappping it owns the reserve page for. The intention is to unmap the page
3305 * from other VMAs and let the children be SIGKILLed if they are faulting the
3306 * same region.
3307 */
3308static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3309 struct page *page, unsigned long address)
3310{
3311 struct hstate *h = hstate_vma(vma);
3312 struct vm_area_struct *iter_vma;
3313 struct address_space *mapping;
3314 pgoff_t pgoff;
3315
3316 /*
3317 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3318 * from page cache lookup which is in HPAGE_SIZE units.
3319 */
3320 address = address & huge_page_mask(h);
3321 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3322 vma->vm_pgoff;
3323 mapping = vma->vm_file->f_mapping;
3324
3325 /*
3326 * Take the mapping lock for the duration of the table walk. As
3327 * this mapping should be shared between all the VMAs,
3328 * __unmap_hugepage_range() is called as the lock is already held
3329 */
3330 i_mmap_lock_write(mapping);
3331 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3332 /* Do not unmap the current VMA */
3333 if (iter_vma == vma)
3334 continue;
3335
3336 /*
3337 * Shared VMAs have their own reserves and do not affect
3338 * MAP_PRIVATE accounting but it is possible that a shared
3339 * VMA is using the same page so check and skip such VMAs.
3340 */
3341 if (iter_vma->vm_flags & VM_MAYSHARE)
3342 continue;
3343
3344 /*
3345 * Unmap the page from other VMAs without their own reserves.
3346 * They get marked to be SIGKILLed if they fault in these
3347 * areas. This is because a future no-page fault on this VMA
3348 * could insert a zeroed page instead of the data existing
3349 * from the time of fork. This would look like data corruption
3350 */
3351 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3352 unmap_hugepage_range(iter_vma, address,
3353 address + huge_page_size(h), page);
3354 }
3355 i_mmap_unlock_write(mapping);
3356}
3357
3358/*
3359 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3360 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3361 * cannot race with other handlers or page migration.
3362 * Keep the pte_same checks anyway to make transition from the mutex easier.
3363 */
3364static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3365 unsigned long address, pte_t *ptep, pte_t pte,
3366 struct page *pagecache_page, spinlock_t *ptl)
3367{
3368 struct hstate *h = hstate_vma(vma);
3369 struct page *old_page, *new_page;
3370 int ret = 0, outside_reserve = 0;
3371 unsigned long mmun_start; /* For mmu_notifiers */
3372 unsigned long mmun_end; /* For mmu_notifiers */
3373
3374 old_page = pte_page(pte);
3375
3376retry_avoidcopy:
3377 /* If no-one else is actually using this page, avoid the copy
3378 * and just make the page writable */
3379 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3380 page_move_anon_rmap(old_page, vma);
3381 set_huge_ptep_writable(vma, address, ptep);
3382 return 0;
3383 }
3384
3385 /*
3386 * If the process that created a MAP_PRIVATE mapping is about to
3387 * perform a COW due to a shared page count, attempt to satisfy
3388 * the allocation without using the existing reserves. The pagecache
3389 * page is used to determine if the reserve at this address was
3390 * consumed or not. If reserves were used, a partial faulted mapping
3391 * at the time of fork() could consume its reserves on COW instead
3392 * of the full address range.
3393 */
3394 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3395 old_page != pagecache_page)
3396 outside_reserve = 1;
3397
3398 get_page(old_page);
3399
3400 /*
3401 * Drop page table lock as buddy allocator may be called. It will
3402 * be acquired again before returning to the caller, as expected.
3403 */
3404 spin_unlock(ptl);
3405 new_page = alloc_huge_page(vma, address, outside_reserve);
3406
3407 if (IS_ERR(new_page)) {
3408 /*
3409 * If a process owning a MAP_PRIVATE mapping fails to COW,
3410 * it is due to references held by a child and an insufficient
3411 * huge page pool. To guarantee the original mappers
3412 * reliability, unmap the page from child processes. The child
3413 * may get SIGKILLed if it later faults.
3414 */
3415 if (outside_reserve) {
3416 put_page(old_page);
3417 BUG_ON(huge_pte_none(pte));
3418 unmap_ref_private(mm, vma, old_page, address);
3419 BUG_ON(huge_pte_none(pte));
3420 spin_lock(ptl);
3421 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3422 if (likely(ptep &&
3423 pte_same(huge_ptep_get(ptep), pte)))
3424 goto retry_avoidcopy;
3425 /*
3426 * race occurs while re-acquiring page table
3427 * lock, and our job is done.
3428 */
3429 return 0;
3430 }
3431
3432 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3433 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3434 goto out_release_old;
3435 }
3436
3437 /*
3438 * When the original hugepage is shared one, it does not have
3439 * anon_vma prepared.
3440 */
3441 if (unlikely(anon_vma_prepare(vma))) {
3442 ret = VM_FAULT_OOM;
3443 goto out_release_all;
3444 }
3445
3446 copy_user_huge_page(new_page, old_page, address, vma,
3447 pages_per_huge_page(h));
3448 __SetPageUptodate(new_page);
3449 set_page_huge_active(new_page);
3450
3451 mmun_start = address & huge_page_mask(h);
3452 mmun_end = mmun_start + huge_page_size(h);
3453 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3454
3455 /*
3456 * Retake the page table lock to check for racing updates
3457 * before the page tables are altered
3458 */
3459 spin_lock(ptl);
3460 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3461 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3462 ClearPagePrivate(new_page);
3463
3464 /* Break COW */
3465 huge_ptep_clear_flush(vma, address, ptep);
3466 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3467 set_huge_pte_at(mm, address, ptep,
3468 make_huge_pte(vma, new_page, 1));
3469 page_remove_rmap(old_page, true);
3470 hugepage_add_new_anon_rmap(new_page, vma, address);
3471 /* Make the old page be freed below */
3472 new_page = old_page;
3473 }
3474 spin_unlock(ptl);
3475 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3476out_release_all:
3477 put_page(new_page);
3478out_release_old:
3479 put_page(old_page);
3480
3481 spin_lock(ptl); /* Caller expects lock to be held */
3482 return ret;
3483}
3484
3485/* Return the pagecache page at a given address within a VMA */
3486static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3487 struct vm_area_struct *vma, unsigned long address)
3488{
3489 struct address_space *mapping;
3490 pgoff_t idx;
3491
3492 mapping = vma->vm_file->f_mapping;
3493 idx = vma_hugecache_offset(h, vma, address);
3494
3495 return find_lock_page(mapping, idx);
3496}
3497
3498/*
3499 * Return whether there is a pagecache page to back given address within VMA.
3500 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3501 */
3502static bool hugetlbfs_pagecache_present(struct hstate *h,
3503 struct vm_area_struct *vma, unsigned long address)
3504{
3505 struct address_space *mapping;
3506 pgoff_t idx;
3507 struct page *page;
3508
3509 mapping = vma->vm_file->f_mapping;
3510 idx = vma_hugecache_offset(h, vma, address);
3511
3512 page = find_get_page(mapping, idx);
3513 if (page)
3514 put_page(page);
3515 return page != NULL;
3516}
3517
3518int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3519 pgoff_t idx)
3520{
3521 struct inode *inode = mapping->host;
3522 struct hstate *h = hstate_inode(inode);
3523 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3524
3525 if (err)
3526 return err;
3527 ClearPagePrivate(page);
3528
3529 spin_lock(&inode->i_lock);
3530 inode->i_blocks += blocks_per_huge_page(h);
3531 spin_unlock(&inode->i_lock);
3532 return 0;
3533}
3534
3535static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3536 struct address_space *mapping, pgoff_t idx,
3537 unsigned long address, pte_t *ptep, unsigned int flags)
3538{
3539 struct hstate *h = hstate_vma(vma);
3540 int ret = VM_FAULT_SIGBUS;
3541 int anon_rmap = 0;
3542 unsigned long size;
3543 struct page *page;
3544 pte_t new_pte;
3545 spinlock_t *ptl;
3546
3547 /*
3548 * Currently, we are forced to kill the process in the event the
3549 * original mapper has unmapped pages from the child due to a failed
3550 * COW. Warn that such a situation has occurred as it may not be obvious
3551 */
3552 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3553 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3554 current->pid);
3555 return ret;
3556 }
3557
3558 /*
3559 * Use page lock to guard against racing truncation
3560 * before we get page_table_lock.
3561 */
3562retry:
3563 page = find_lock_page(mapping, idx);
3564 if (!page) {
3565 size = i_size_read(mapping->host) >> huge_page_shift(h);
3566 if (idx >= size)
3567 goto out;
3568 page = alloc_huge_page(vma, address, 0);
3569 if (IS_ERR(page)) {
3570 ret = PTR_ERR(page);
3571 if (ret == -ENOMEM)
3572 ret = VM_FAULT_OOM;
3573 else
3574 ret = VM_FAULT_SIGBUS;
3575 goto out;
3576 }
3577 clear_huge_page(page, address, pages_per_huge_page(h));
3578 __SetPageUptodate(page);
3579 set_page_huge_active(page);
3580
3581 if (vma->vm_flags & VM_MAYSHARE) {
3582 int err = huge_add_to_page_cache(page, mapping, idx);
3583 if (err) {
3584 put_page(page);
3585 if (err == -EEXIST)
3586 goto retry;
3587 goto out;
3588 }
3589 } else {
3590 lock_page(page);
3591 if (unlikely(anon_vma_prepare(vma))) {
3592 ret = VM_FAULT_OOM;
3593 goto backout_unlocked;
3594 }
3595 anon_rmap = 1;
3596 }
3597 } else {
3598 /*
3599 * If memory error occurs between mmap() and fault, some process
3600 * don't have hwpoisoned swap entry for errored virtual address.
3601 * So we need to block hugepage fault by PG_hwpoison bit check.
3602 */
3603 if (unlikely(PageHWPoison(page))) {
3604 ret = VM_FAULT_HWPOISON |
3605 VM_FAULT_SET_HINDEX(hstate_index(h));
3606 goto backout_unlocked;
3607 }
3608 }
3609
3610 /*
3611 * If we are going to COW a private mapping later, we examine the
3612 * pending reservations for this page now. This will ensure that
3613 * any allocations necessary to record that reservation occur outside
3614 * the spinlock.
3615 */
3616 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3617 if (vma_needs_reservation(h, vma, address) < 0) {
3618 ret = VM_FAULT_OOM;
3619 goto backout_unlocked;
3620 }
3621 /* Just decrements count, does not deallocate */
3622 vma_end_reservation(h, vma, address);
3623 }
3624
3625 ptl = huge_pte_lockptr(h, mm, ptep);
3626 spin_lock(ptl);
3627 size = i_size_read(mapping->host) >> huge_page_shift(h);
3628 if (idx >= size)
3629 goto backout;
3630
3631 ret = 0;
3632 if (!huge_pte_none(huge_ptep_get(ptep)))
3633 goto backout;
3634
3635 if (anon_rmap) {
3636 ClearPagePrivate(page);
3637 hugepage_add_new_anon_rmap(page, vma, address);
3638 } else
3639 page_dup_rmap(page, true);
3640 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3641 && (vma->vm_flags & VM_SHARED)));
3642 set_huge_pte_at(mm, address, ptep, new_pte);
3643
3644 hugetlb_count_add(pages_per_huge_page(h), mm);
3645 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3646 /* Optimization, do the COW without a second fault */
3647 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3648 }
3649
3650 spin_unlock(ptl);
3651 unlock_page(page);
3652out:
3653 return ret;
3654
3655backout:
3656 spin_unlock(ptl);
3657backout_unlocked:
3658 unlock_page(page);
3659 put_page(page);
3660 goto out;
3661}
3662
3663#ifdef CONFIG_SMP
3664u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3665 struct vm_area_struct *vma,
3666 struct address_space *mapping,
3667 pgoff_t idx, unsigned long address)
3668{
3669 unsigned long key[2];
3670 u32 hash;
3671
3672 if (vma->vm_flags & VM_SHARED) {
3673 key[0] = (unsigned long) mapping;
3674 key[1] = idx;
3675 } else {
3676 key[0] = (unsigned long) mm;
3677 key[1] = address >> huge_page_shift(h);
3678 }
3679
3680 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3681
3682 return hash & (num_fault_mutexes - 1);
3683}
3684#else
3685/*
3686 * For uniprocesor systems we always use a single mutex, so just
3687 * return 0 and avoid the hashing overhead.
3688 */
3689u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3690 struct vm_area_struct *vma,
3691 struct address_space *mapping,
3692 pgoff_t idx, unsigned long address)
3693{
3694 return 0;
3695}
3696#endif
3697
3698int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3699 unsigned long address, unsigned int flags)
3700{
3701 pte_t *ptep, entry;
3702 spinlock_t *ptl;
3703 int ret;
3704 u32 hash;
3705 pgoff_t idx;
3706 struct page *page = NULL;
3707 struct page *pagecache_page = NULL;
3708 struct hstate *h = hstate_vma(vma);
3709 struct address_space *mapping;
3710 int need_wait_lock = 0;
3711
3712 address &= huge_page_mask(h);
3713
3714 ptep = huge_pte_offset(mm, address);
3715 if (ptep) {
3716 entry = huge_ptep_get(ptep);
3717 if (unlikely(is_hugetlb_entry_migration(entry))) {
3718 migration_entry_wait_huge(vma, mm, ptep);
3719 return 0;
3720 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3721 return VM_FAULT_HWPOISON_LARGE |
3722 VM_FAULT_SET_HINDEX(hstate_index(h));
3723 } else {
3724 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3725 if (!ptep)
3726 return VM_FAULT_OOM;
3727 }
3728
3729 mapping = vma->vm_file->f_mapping;
3730 idx = vma_hugecache_offset(h, vma, address);
3731
3732 /*
3733 * Serialize hugepage allocation and instantiation, so that we don't
3734 * get spurious allocation failures if two CPUs race to instantiate
3735 * the same page in the page cache.
3736 */
3737 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3738 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739
3740 entry = huge_ptep_get(ptep);
3741 if (huge_pte_none(entry)) {
3742 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3743 goto out_mutex;
3744 }
3745
3746 ret = 0;
3747
3748 /*
3749 * entry could be a migration/hwpoison entry at this point, so this
3750 * check prevents the kernel from going below assuming that we have
3751 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3752 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3753 * handle it.
3754 */
3755 if (!pte_present(entry))
3756 goto out_mutex;
3757
3758 /*
3759 * If we are going to COW the mapping later, we examine the pending
3760 * reservations for this page now. This will ensure that any
3761 * allocations necessary to record that reservation occur outside the
3762 * spinlock. For private mappings, we also lookup the pagecache
3763 * page now as it is used to determine if a reservation has been
3764 * consumed.
3765 */
3766 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3767 if (vma_needs_reservation(h, vma, address) < 0) {
3768 ret = VM_FAULT_OOM;
3769 goto out_mutex;
3770 }
3771 /* Just decrements count, does not deallocate */
3772 vma_end_reservation(h, vma, address);
3773
3774 if (!(vma->vm_flags & VM_MAYSHARE))
3775 pagecache_page = hugetlbfs_pagecache_page(h,
3776 vma, address);
3777 }
3778
3779 ptl = huge_pte_lock(h, mm, ptep);
3780
3781 /* Check for a racing update before calling hugetlb_cow */
3782 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3783 goto out_ptl;
3784
3785 /*
3786 * hugetlb_cow() requires page locks of pte_page(entry) and
3787 * pagecache_page, so here we need take the former one
3788 * when page != pagecache_page or !pagecache_page.
3789 */
3790 page = pte_page(entry);
3791 if (page != pagecache_page)
3792 if (!trylock_page(page)) {
3793 need_wait_lock = 1;
3794 goto out_ptl;
3795 }
3796
3797 get_page(page);
3798
3799 if (flags & FAULT_FLAG_WRITE) {
3800 if (!huge_pte_write(entry)) {
3801 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3802 pagecache_page, ptl);
3803 goto out_put_page;
3804 }
3805 entry = huge_pte_mkdirty(entry);
3806 }
3807 entry = pte_mkyoung(entry);
3808 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3809 flags & FAULT_FLAG_WRITE))
3810 update_mmu_cache(vma, address, ptep);
3811out_put_page:
3812 if (page != pagecache_page)
3813 unlock_page(page);
3814 put_page(page);
3815out_ptl:
3816 spin_unlock(ptl);
3817
3818 if (pagecache_page) {
3819 unlock_page(pagecache_page);
3820 put_page(pagecache_page);
3821 }
3822out_mutex:
3823 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3824 /*
3825 * Generally it's safe to hold refcount during waiting page lock. But
3826 * here we just wait to defer the next page fault to avoid busy loop and
3827 * the page is not used after unlocked before returning from the current
3828 * page fault. So we are safe from accessing freed page, even if we wait
3829 * here without taking refcount.
3830 */
3831 if (need_wait_lock)
3832 wait_on_page_locked(page);
3833 return ret;
3834}
3835
3836long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3837 struct page **pages, struct vm_area_struct **vmas,
3838 unsigned long *position, unsigned long *nr_pages,
3839 long i, unsigned int flags)
3840{
3841 unsigned long pfn_offset;
3842 unsigned long vaddr = *position;
3843 unsigned long remainder = *nr_pages;
3844 struct hstate *h = hstate_vma(vma);
3845
3846 while (vaddr < vma->vm_end && remainder) {
3847 pte_t *pte;
3848 spinlock_t *ptl = NULL;
3849 int absent;
3850 struct page *page;
3851
3852 /*
3853 * If we have a pending SIGKILL, don't keep faulting pages and
3854 * potentially allocating memory.
3855 */
3856 if (unlikely(fatal_signal_pending(current))) {
3857 remainder = 0;
3858 break;
3859 }
3860
3861 /*
3862 * Some archs (sparc64, sh*) have multiple pte_ts to
3863 * each hugepage. We have to make sure we get the
3864 * first, for the page indexing below to work.
3865 *
3866 * Note that page table lock is not held when pte is null.
3867 */
3868 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3869 if (pte)
3870 ptl = huge_pte_lock(h, mm, pte);
3871 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3872
3873 /*
3874 * When coredumping, it suits get_dump_page if we just return
3875 * an error where there's an empty slot with no huge pagecache
3876 * to back it. This way, we avoid allocating a hugepage, and
3877 * the sparse dumpfile avoids allocating disk blocks, but its
3878 * huge holes still show up with zeroes where they need to be.
3879 */
3880 if (absent && (flags & FOLL_DUMP) &&
3881 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3882 if (pte)
3883 spin_unlock(ptl);
3884 remainder = 0;
3885 break;
3886 }
3887
3888 /*
3889 * We need call hugetlb_fault for both hugepages under migration
3890 * (in which case hugetlb_fault waits for the migration,) and
3891 * hwpoisoned hugepages (in which case we need to prevent the
3892 * caller from accessing to them.) In order to do this, we use
3893 * here is_swap_pte instead of is_hugetlb_entry_migration and
3894 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3895 * both cases, and because we can't follow correct pages
3896 * directly from any kind of swap entries.
3897 */
3898 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3899 ((flags & FOLL_WRITE) &&
3900 !huge_pte_write(huge_ptep_get(pte)))) {
3901 int ret;
3902
3903 if (pte)
3904 spin_unlock(ptl);
3905 ret = hugetlb_fault(mm, vma, vaddr,
3906 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3907 if (!(ret & VM_FAULT_ERROR))
3908 continue;
3909
3910 remainder = 0;
3911 break;
3912 }
3913
3914 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3915 page = pte_page(huge_ptep_get(pte));
3916same_page:
3917 if (pages) {
3918 pages[i] = mem_map_offset(page, pfn_offset);
3919 get_page(pages[i]);
3920 }
3921
3922 if (vmas)
3923 vmas[i] = vma;
3924
3925 vaddr += PAGE_SIZE;
3926 ++pfn_offset;
3927 --remainder;
3928 ++i;
3929 if (vaddr < vma->vm_end && remainder &&
3930 pfn_offset < pages_per_huge_page(h)) {
3931 /*
3932 * We use pfn_offset to avoid touching the pageframes
3933 * of this compound page.
3934 */
3935 goto same_page;
3936 }
3937 spin_unlock(ptl);
3938 }
3939 *nr_pages = remainder;
3940 *position = vaddr;
3941
3942 return i ? i : -EFAULT;
3943}
3944
3945unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3946 unsigned long address, unsigned long end, pgprot_t newprot)
3947{
3948 struct mm_struct *mm = vma->vm_mm;
3949 unsigned long start = address;
3950 pte_t *ptep;
3951 pte_t pte;
3952 struct hstate *h = hstate_vma(vma);
3953 unsigned long pages = 0;
3954
3955 BUG_ON(address >= end);
3956 flush_cache_range(vma, address, end);
3957
3958 mmu_notifier_invalidate_range_start(mm, start, end);
3959 i_mmap_lock_write(vma->vm_file->f_mapping);
3960 for (; address < end; address += huge_page_size(h)) {
3961 spinlock_t *ptl;
3962 ptep = huge_pte_offset(mm, address);
3963 if (!ptep)
3964 continue;
3965 ptl = huge_pte_lock(h, mm, ptep);
3966 if (huge_pmd_unshare(mm, &address, ptep)) {
3967 pages++;
3968 spin_unlock(ptl);
3969 continue;
3970 }
3971 pte = huge_ptep_get(ptep);
3972 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3973 spin_unlock(ptl);
3974 continue;
3975 }
3976 if (unlikely(is_hugetlb_entry_migration(pte))) {
3977 swp_entry_t entry = pte_to_swp_entry(pte);
3978
3979 if (is_write_migration_entry(entry)) {
3980 pte_t newpte;
3981
3982 make_migration_entry_read(&entry);
3983 newpte = swp_entry_to_pte(entry);
3984 set_huge_pte_at(mm, address, ptep, newpte);
3985 pages++;
3986 }
3987 spin_unlock(ptl);
3988 continue;
3989 }
3990 if (!huge_pte_none(pte)) {
3991 pte = huge_ptep_get_and_clear(mm, address, ptep);
3992 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3993 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3994 set_huge_pte_at(mm, address, ptep, pte);
3995 pages++;
3996 }
3997 spin_unlock(ptl);
3998 }
3999 /*
4000 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4001 * may have cleared our pud entry and done put_page on the page table:
4002 * once we release i_mmap_rwsem, another task can do the final put_page
4003 * and that page table be reused and filled with junk.
4004 */
4005 flush_tlb_range(vma, start, end);
4006 mmu_notifier_invalidate_range(mm, start, end);
4007 i_mmap_unlock_write(vma->vm_file->f_mapping);
4008 mmu_notifier_invalidate_range_end(mm, start, end);
4009
4010 return pages << h->order;
4011}
4012
4013int hugetlb_reserve_pages(struct inode *inode,
4014 long from, long to,
4015 struct vm_area_struct *vma,
4016 vm_flags_t vm_flags)
4017{
4018 long ret, chg;
4019 struct hstate *h = hstate_inode(inode);
4020 struct hugepage_subpool *spool = subpool_inode(inode);
4021 struct resv_map *resv_map;
4022 long gbl_reserve;
4023
4024 /*
4025 * Only apply hugepage reservation if asked. At fault time, an
4026 * attempt will be made for VM_NORESERVE to allocate a page
4027 * without using reserves
4028 */
4029 if (vm_flags & VM_NORESERVE)
4030 return 0;
4031
4032 /*
4033 * Shared mappings base their reservation on the number of pages that
4034 * are already allocated on behalf of the file. Private mappings need
4035 * to reserve the full area even if read-only as mprotect() may be
4036 * called to make the mapping read-write. Assume !vma is a shm mapping
4037 */
4038 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4039 resv_map = inode_resv_map(inode);
4040
4041 chg = region_chg(resv_map, from, to);
4042
4043 } else {
4044 resv_map = resv_map_alloc();
4045 if (!resv_map)
4046 return -ENOMEM;
4047
4048 chg = to - from;
4049
4050 set_vma_resv_map(vma, resv_map);
4051 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4052 }
4053
4054 if (chg < 0) {
4055 ret = chg;
4056 goto out_err;
4057 }
4058
4059 /*
4060 * There must be enough pages in the subpool for the mapping. If
4061 * the subpool has a minimum size, there may be some global
4062 * reservations already in place (gbl_reserve).
4063 */
4064 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4065 if (gbl_reserve < 0) {
4066 ret = -ENOSPC;
4067 goto out_err;
4068 }
4069
4070 /*
4071 * Check enough hugepages are available for the reservation.
4072 * Hand the pages back to the subpool if there are not
4073 */
4074 ret = hugetlb_acct_memory(h, gbl_reserve);
4075 if (ret < 0) {
4076 /* put back original number of pages, chg */
4077 (void)hugepage_subpool_put_pages(spool, chg);
4078 goto out_err;
4079 }
4080
4081 /*
4082 * Account for the reservations made. Shared mappings record regions
4083 * that have reservations as they are shared by multiple VMAs.
4084 * When the last VMA disappears, the region map says how much
4085 * the reservation was and the page cache tells how much of
4086 * the reservation was consumed. Private mappings are per-VMA and
4087 * only the consumed reservations are tracked. When the VMA
4088 * disappears, the original reservation is the VMA size and the
4089 * consumed reservations are stored in the map. Hence, nothing
4090 * else has to be done for private mappings here
4091 */
4092 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4093 long add = region_add(resv_map, from, to);
4094
4095 if (unlikely(chg > add)) {
4096 /*
4097 * pages in this range were added to the reserve
4098 * map between region_chg and region_add. This
4099 * indicates a race with alloc_huge_page. Adjust
4100 * the subpool and reserve counts modified above
4101 * based on the difference.
4102 */
4103 long rsv_adjust;
4104
4105 rsv_adjust = hugepage_subpool_put_pages(spool,
4106 chg - add);
4107 hugetlb_acct_memory(h, -rsv_adjust);
4108 }
4109 }
4110 return 0;
4111out_err:
4112 if (!vma || vma->vm_flags & VM_MAYSHARE)
4113 region_abort(resv_map, from, to);
4114 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4115 kref_put(&resv_map->refs, resv_map_release);
4116 return ret;
4117}
4118
4119long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4120 long freed)
4121{
4122 struct hstate *h = hstate_inode(inode);
4123 struct resv_map *resv_map = inode_resv_map(inode);
4124 long chg = 0;
4125 struct hugepage_subpool *spool = subpool_inode(inode);
4126 long gbl_reserve;
4127
4128 if (resv_map) {
4129 chg = region_del(resv_map, start, end);
4130 /*
4131 * region_del() can fail in the rare case where a region
4132 * must be split and another region descriptor can not be
4133 * allocated. If end == LONG_MAX, it will not fail.
4134 */
4135 if (chg < 0)
4136 return chg;
4137 }
4138
4139 spin_lock(&inode->i_lock);
4140 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4141 spin_unlock(&inode->i_lock);
4142
4143 /*
4144 * If the subpool has a minimum size, the number of global
4145 * reservations to be released may be adjusted.
4146 */
4147 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4148 hugetlb_acct_memory(h, -gbl_reserve);
4149
4150 return 0;
4151}
4152
4153#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4154static unsigned long page_table_shareable(struct vm_area_struct *svma,
4155 struct vm_area_struct *vma,
4156 unsigned long addr, pgoff_t idx)
4157{
4158 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4159 svma->vm_start;
4160 unsigned long sbase = saddr & PUD_MASK;
4161 unsigned long s_end = sbase + PUD_SIZE;
4162
4163 /* Allow segments to share if only one is marked locked */
4164 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4165 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4166
4167 /*
4168 * match the virtual addresses, permission and the alignment of the
4169 * page table page.
4170 */
4171 if (pmd_index(addr) != pmd_index(saddr) ||
4172 vm_flags != svm_flags ||
4173 sbase < svma->vm_start || svma->vm_end < s_end)
4174 return 0;
4175
4176 return saddr;
4177}
4178
4179static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4180{
4181 unsigned long base = addr & PUD_MASK;
4182 unsigned long end = base + PUD_SIZE;
4183
4184 /*
4185 * check on proper vm_flags and page table alignment
4186 */
4187 if (vma->vm_flags & VM_MAYSHARE &&
4188 vma->vm_start <= base && end <= vma->vm_end)
4189 return true;
4190 return false;
4191}
4192
4193/*
4194 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4195 * and returns the corresponding pte. While this is not necessary for the
4196 * !shared pmd case because we can allocate the pmd later as well, it makes the
4197 * code much cleaner. pmd allocation is essential for the shared case because
4198 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4199 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4200 * bad pmd for sharing.
4201 */
4202pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4203{
4204 struct vm_area_struct *vma = find_vma(mm, addr);
4205 struct address_space *mapping = vma->vm_file->f_mapping;
4206 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4207 vma->vm_pgoff;
4208 struct vm_area_struct *svma;
4209 unsigned long saddr;
4210 pte_t *spte = NULL;
4211 pte_t *pte;
4212 spinlock_t *ptl;
4213
4214 if (!vma_shareable(vma, addr))
4215 return (pte_t *)pmd_alloc(mm, pud, addr);
4216
4217 i_mmap_lock_write(mapping);
4218 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4219 if (svma == vma)
4220 continue;
4221
4222 saddr = page_table_shareable(svma, vma, addr, idx);
4223 if (saddr) {
4224 spte = huge_pte_offset(svma->vm_mm, saddr);
4225 if (spte) {
4226 get_page(virt_to_page(spte));
4227 break;
4228 }
4229 }
4230 }
4231
4232 if (!spte)
4233 goto out;
4234
4235 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4236 spin_lock(ptl);
4237 if (pud_none(*pud)) {
4238 pud_populate(mm, pud,
4239 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4240 mm_inc_nr_pmds(mm);
4241 } else {
4242 put_page(virt_to_page(spte));
4243 }
4244 spin_unlock(ptl);
4245out:
4246 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4247 i_mmap_unlock_write(mapping);
4248 return pte;
4249}
4250
4251/*
4252 * unmap huge page backed by shared pte.
4253 *
4254 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4255 * indicated by page_count > 1, unmap is achieved by clearing pud and
4256 * decrementing the ref count. If count == 1, the pte page is not shared.
4257 *
4258 * called with page table lock held.
4259 *
4260 * returns: 1 successfully unmapped a shared pte page
4261 * 0 the underlying pte page is not shared, or it is the last user
4262 */
4263int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4264{
4265 pgd_t *pgd = pgd_offset(mm, *addr);
4266 pud_t *pud = pud_offset(pgd, *addr);
4267
4268 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4269 if (page_count(virt_to_page(ptep)) == 1)
4270 return 0;
4271
4272 pud_clear(pud);
4273 put_page(virt_to_page(ptep));
4274 mm_dec_nr_pmds(mm);
4275 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4276 return 1;
4277}
4278#define want_pmd_share() (1)
4279#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4280pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4281{
4282 return NULL;
4283}
4284
4285int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4286{
4287 return 0;
4288}
4289#define want_pmd_share() (0)
4290#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4291
4292#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4293pte_t *huge_pte_alloc(struct mm_struct *mm,
4294 unsigned long addr, unsigned long sz)
4295{
4296 pgd_t *pgd;
4297 pud_t *pud;
4298 pte_t *pte = NULL;
4299
4300 pgd = pgd_offset(mm, addr);
4301 pud = pud_alloc(mm, pgd, addr);
4302 if (pud) {
4303 if (sz == PUD_SIZE) {
4304 pte = (pte_t *)pud;
4305 } else {
4306 BUG_ON(sz != PMD_SIZE);
4307 if (want_pmd_share() && pud_none(*pud))
4308 pte = huge_pmd_share(mm, addr, pud);
4309 else
4310 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4311 }
4312 }
4313 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4314
4315 return pte;
4316}
4317
4318pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4319{
4320 pgd_t *pgd;
4321 pud_t *pud;
4322 pmd_t *pmd = NULL;
4323
4324 pgd = pgd_offset(mm, addr);
4325 if (pgd_present(*pgd)) {
4326 pud = pud_offset(pgd, addr);
4327 if (pud_present(*pud)) {
4328 if (pud_huge(*pud))
4329 return (pte_t *)pud;
4330 pmd = pmd_offset(pud, addr);
4331 }
4332 }
4333 return (pte_t *) pmd;
4334}
4335
4336#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4337
4338/*
4339 * These functions are overwritable if your architecture needs its own
4340 * behavior.
4341 */
4342struct page * __weak
4343follow_huge_addr(struct mm_struct *mm, unsigned long address,
4344 int write)
4345{
4346 return ERR_PTR(-EINVAL);
4347}
4348
4349struct page * __weak
4350follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4351 pmd_t *pmd, int flags)
4352{
4353 struct page *page = NULL;
4354 spinlock_t *ptl;
4355retry:
4356 ptl = pmd_lockptr(mm, pmd);
4357 spin_lock(ptl);
4358 /*
4359 * make sure that the address range covered by this pmd is not
4360 * unmapped from other threads.
4361 */
4362 if (!pmd_huge(*pmd))
4363 goto out;
4364 if (pmd_present(*pmd)) {
4365 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4366 if (flags & FOLL_GET)
4367 get_page(page);
4368 } else {
4369 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4370 spin_unlock(ptl);
4371 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4372 goto retry;
4373 }
4374 /*
4375 * hwpoisoned entry is treated as no_page_table in
4376 * follow_page_mask().
4377 */
4378 }
4379out:
4380 spin_unlock(ptl);
4381 return page;
4382}
4383
4384struct page * __weak
4385follow_huge_pud(struct mm_struct *mm, unsigned long address,
4386 pud_t *pud, int flags)
4387{
4388 if (flags & FOLL_GET)
4389 return NULL;
4390
4391 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4392}
4393
4394#ifdef CONFIG_MEMORY_FAILURE
4395
4396/*
4397 * This function is called from memory failure code.
4398 */
4399int dequeue_hwpoisoned_huge_page(struct page *hpage)
4400{
4401 struct hstate *h = page_hstate(hpage);
4402 int nid = page_to_nid(hpage);
4403 int ret = -EBUSY;
4404
4405 spin_lock(&hugetlb_lock);
4406 /*
4407 * Just checking !page_huge_active is not enough, because that could be
4408 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4409 */
4410 if (!page_huge_active(hpage) && !page_count(hpage)) {
4411 /*
4412 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4413 * but dangling hpage->lru can trigger list-debug warnings
4414 * (this happens when we call unpoison_memory() on it),
4415 * so let it point to itself with list_del_init().
4416 */
4417 list_del_init(&hpage->lru);
4418 set_page_refcounted(hpage);
4419 h->free_huge_pages--;
4420 h->free_huge_pages_node[nid]--;
4421 ret = 0;
4422 }
4423 spin_unlock(&hugetlb_lock);
4424 return ret;
4425}
4426#endif
4427
4428bool isolate_huge_page(struct page *page, struct list_head *list)
4429{
4430 bool ret = true;
4431
4432 VM_BUG_ON_PAGE(!PageHead(page), page);
4433 spin_lock(&hugetlb_lock);
4434 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4435 ret = false;
4436 goto unlock;
4437 }
4438 clear_page_huge_active(page);
4439 list_move_tail(&page->lru, list);
4440unlock:
4441 spin_unlock(&hugetlb_lock);
4442 return ret;
4443}
4444
4445void putback_active_hugepage(struct page *page)
4446{
4447 VM_BUG_ON_PAGE(!PageHead(page), page);
4448 spin_lock(&hugetlb_lock);
4449 set_page_huge_active(page);
4450 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4451 spin_unlock(&hugetlb_lock);
4452 put_page(page);
4453}