]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - mm/hugetlb.c
mm: hugetlb: fix a race between freeing and dissolving the page
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33
34#include <asm/page.h>
35#include <asm/pgalloc.h>
36#include <asm/tlb.h>
37
38#include <linux/io.h>
39#include <linux/hugetlb.h>
40#include <linux/hugetlb_cgroup.h>
41#include <linux/node.h>
42#include <linux/userfaultfd_k.h>
43#include <linux/page_owner.h>
44#include "internal.h"
45
46int hugetlb_max_hstate __read_mostly;
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
49
50#ifdef CONFIG_CMA
51static struct cma *hugetlb_cma[MAX_NUMNODES];
52#endif
53static unsigned long hugetlb_cma_size __initdata;
54
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61__initdata LIST_HEAD(huge_boot_pages);
62
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
66static bool __initdata parsed_valid_hugepagesz = true;
67static bool __initdata parsed_default_hugepagesz;
68
69/*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73DEFINE_SPINLOCK(hugetlb_lock);
74
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82static inline bool PageHugeFreed(struct page *head)
83{
84 return page_private(head + 4) == -1UL;
85}
86
87static inline void SetPageHugeFreed(struct page *head)
88{
89 set_page_private(head + 4, -1UL);
90}
91
92static inline void ClearPageHugeFreed(struct page *head)
93{
94 set_page_private(head + 4, 0);
95}
96
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101{
102 bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104 spin_unlock(&spool->lock);
105
106 /* If no pages are used, and no other handles to the subpool
107 * remain, give up any reservations based on minimum size and
108 * free the subpool */
109 if (free) {
110 if (spool->min_hpages != -1)
111 hugetlb_acct_memory(spool->hstate,
112 -spool->min_hpages);
113 kfree(spool);
114 }
115}
116
117struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 long min_hpages)
119{
120 struct hugepage_subpool *spool;
121
122 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 if (!spool)
124 return NULL;
125
126 spin_lock_init(&spool->lock);
127 spool->count = 1;
128 spool->max_hpages = max_hpages;
129 spool->hstate = h;
130 spool->min_hpages = min_hpages;
131
132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 kfree(spool);
134 return NULL;
135 }
136 spool->rsv_hpages = min_hpages;
137
138 return spool;
139}
140
141void hugepage_put_subpool(struct hugepage_subpool *spool)
142{
143 spin_lock(&spool->lock);
144 BUG_ON(!spool->count);
145 spool->count--;
146 unlock_or_release_subpool(spool);
147}
148
149/*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
152 * request. Otherwise, return the number of pages by which the
153 * global pools must be adjusted (upward). The returned value may
154 * only be different than the passed value (delta) in the case where
155 * a subpool minimum size must be maintained.
156 */
157static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 long delta)
159{
160 long ret = delta;
161
162 if (!spool)
163 return ret;
164
165 spin_lock(&spool->lock);
166
167 if (spool->max_hpages != -1) { /* maximum size accounting */
168 if ((spool->used_hpages + delta) <= spool->max_hpages)
169 spool->used_hpages += delta;
170 else {
171 ret = -ENOMEM;
172 goto unlock_ret;
173 }
174 }
175
176 /* minimum size accounting */
177 if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 if (delta > spool->rsv_hpages) {
179 /*
180 * Asking for more reserves than those already taken on
181 * behalf of subpool. Return difference.
182 */
183 ret = delta - spool->rsv_hpages;
184 spool->rsv_hpages = 0;
185 } else {
186 ret = 0; /* reserves already accounted for */
187 spool->rsv_hpages -= delta;
188 }
189 }
190
191unlock_ret:
192 spin_unlock(&spool->lock);
193 return ret;
194}
195
196/*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
202static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 long delta)
204{
205 long ret = delta;
206
207 if (!spool)
208 return delta;
209
210 spin_lock(&spool->lock);
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
231 unlock_or_release_subpool(spool);
232
233 return ret;
234}
235
236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237{
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239}
240
241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242{
243 return subpool_inode(file_inode(vma->vm_file));
244}
245
246/* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249static struct file_region *
250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251{
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264}
265
266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274#endif
275}
276
277/* Helper that records hugetlb_cgroup uncharge info. */
278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
288 if (!resv->pages_per_hpage)
289 resv->pages_per_hpage = pages_per_huge_page(h);
290 /* pages_per_hpage should be the same for all entries in
291 * a resv_map.
292 */
293 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
294 } else {
295 nrg->reservation_counter = NULL;
296 nrg->css = NULL;
297 }
298#endif
299}
300
301static bool has_same_uncharge_info(struct file_region *rg,
302 struct file_region *org)
303{
304#ifdef CONFIG_CGROUP_HUGETLB
305 return rg && org &&
306 rg->reservation_counter == org->reservation_counter &&
307 rg->css == org->css;
308
309#else
310 return true;
311#endif
312}
313
314static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
315{
316 struct file_region *nrg = NULL, *prg = NULL;
317
318 prg = list_prev_entry(rg, link);
319 if (&prg->link != &resv->regions && prg->to == rg->from &&
320 has_same_uncharge_info(prg, rg)) {
321 prg->to = rg->to;
322
323 list_del(&rg->link);
324 kfree(rg);
325
326 rg = prg;
327 }
328
329 nrg = list_next_entry(rg, link);
330 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
331 has_same_uncharge_info(nrg, rg)) {
332 nrg->from = rg->from;
333
334 list_del(&rg->link);
335 kfree(rg);
336 }
337}
338
339/*
340 * Must be called with resv->lock held.
341 *
342 * Calling this with regions_needed != NULL will count the number of pages
343 * to be added but will not modify the linked list. And regions_needed will
344 * indicate the number of file_regions needed in the cache to carry out to add
345 * the regions for this range.
346 */
347static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348 struct hugetlb_cgroup *h_cg,
349 struct hstate *h, long *regions_needed)
350{
351 long add = 0;
352 struct list_head *head = &resv->regions;
353 long last_accounted_offset = f;
354 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
355
356 if (regions_needed)
357 *regions_needed = 0;
358
359 /* In this loop, we essentially handle an entry for the range
360 * [last_accounted_offset, rg->from), at every iteration, with some
361 * bounds checking.
362 */
363 list_for_each_entry_safe(rg, trg, head, link) {
364 /* Skip irrelevant regions that start before our range. */
365 if (rg->from < f) {
366 /* If this region ends after the last accounted offset,
367 * then we need to update last_accounted_offset.
368 */
369 if (rg->to > last_accounted_offset)
370 last_accounted_offset = rg->to;
371 continue;
372 }
373
374 /* When we find a region that starts beyond our range, we've
375 * finished.
376 */
377 if (rg->from > t)
378 break;
379
380 /* Add an entry for last_accounted_offset -> rg->from, and
381 * update last_accounted_offset.
382 */
383 if (rg->from > last_accounted_offset) {
384 add += rg->from - last_accounted_offset;
385 if (!regions_needed) {
386 nrg = get_file_region_entry_from_cache(
387 resv, last_accounted_offset, rg->from);
388 record_hugetlb_cgroup_uncharge_info(h_cg, h,
389 resv, nrg);
390 list_add(&nrg->link, rg->link.prev);
391 coalesce_file_region(resv, nrg);
392 } else
393 *regions_needed += 1;
394 }
395
396 last_accounted_offset = rg->to;
397 }
398
399 /* Handle the case where our range extends beyond
400 * last_accounted_offset.
401 */
402 if (last_accounted_offset < t) {
403 add += t - last_accounted_offset;
404 if (!regions_needed) {
405 nrg = get_file_region_entry_from_cache(
406 resv, last_accounted_offset, t);
407 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408 list_add(&nrg->link, rg->link.prev);
409 coalesce_file_region(resv, nrg);
410 } else
411 *regions_needed += 1;
412 }
413
414 VM_BUG_ON(add < 0);
415 return add;
416}
417
418/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
419 */
420static int allocate_file_region_entries(struct resv_map *resv,
421 int regions_needed)
422 __must_hold(&resv->lock)
423{
424 struct list_head allocated_regions;
425 int to_allocate = 0, i = 0;
426 struct file_region *trg = NULL, *rg = NULL;
427
428 VM_BUG_ON(regions_needed < 0);
429
430 INIT_LIST_HEAD(&allocated_regions);
431
432 /*
433 * Check for sufficient descriptors in the cache to accommodate
434 * the number of in progress add operations plus regions_needed.
435 *
436 * This is a while loop because when we drop the lock, some other call
437 * to region_add or region_del may have consumed some region_entries,
438 * so we keep looping here until we finally have enough entries for
439 * (adds_in_progress + regions_needed).
440 */
441 while (resv->region_cache_count <
442 (resv->adds_in_progress + regions_needed)) {
443 to_allocate = resv->adds_in_progress + regions_needed -
444 resv->region_cache_count;
445
446 /* At this point, we should have enough entries in the cache
447 * for all the existings adds_in_progress. We should only be
448 * needing to allocate for regions_needed.
449 */
450 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
451
452 spin_unlock(&resv->lock);
453 for (i = 0; i < to_allocate; i++) {
454 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455 if (!trg)
456 goto out_of_memory;
457 list_add(&trg->link, &allocated_regions);
458 }
459
460 spin_lock(&resv->lock);
461
462 list_splice(&allocated_regions, &resv->region_cache);
463 resv->region_cache_count += to_allocate;
464 }
465
466 return 0;
467
468out_of_memory:
469 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
470 list_del(&rg->link);
471 kfree(rg);
472 }
473 return -ENOMEM;
474}
475
476/*
477 * Add the huge page range represented by [f, t) to the reserve
478 * map. Regions will be taken from the cache to fill in this range.
479 * Sufficient regions should exist in the cache due to the previous
480 * call to region_chg with the same range, but in some cases the cache will not
481 * have sufficient entries due to races with other code doing region_add or
482 * region_del. The extra needed entries will be allocated.
483 *
484 * regions_needed is the out value provided by a previous call to region_chg.
485 *
486 * Return the number of new huge pages added to the map. This number is greater
487 * than or equal to zero. If file_region entries needed to be allocated for
488 * this operation and we were not able to allocate, it returns -ENOMEM.
489 * region_add of regions of length 1 never allocate file_regions and cannot
490 * fail; region_chg will always allocate at least 1 entry and a region_add for
491 * 1 page will only require at most 1 entry.
492 */
493static long region_add(struct resv_map *resv, long f, long t,
494 long in_regions_needed, struct hstate *h,
495 struct hugetlb_cgroup *h_cg)
496{
497 long add = 0, actual_regions_needed = 0;
498
499 spin_lock(&resv->lock);
500retry:
501
502 /* Count how many regions are actually needed to execute this add. */
503 add_reservation_in_range(resv, f, t, NULL, NULL,
504 &actual_regions_needed);
505
506 /*
507 * Check for sufficient descriptors in the cache to accommodate
508 * this add operation. Note that actual_regions_needed may be greater
509 * than in_regions_needed, as the resv_map may have been modified since
510 * the region_chg call. In this case, we need to make sure that we
511 * allocate extra entries, such that we have enough for all the
512 * existing adds_in_progress, plus the excess needed for this
513 * operation.
514 */
515 if (actual_regions_needed > in_regions_needed &&
516 resv->region_cache_count <
517 resv->adds_in_progress +
518 (actual_regions_needed - in_regions_needed)) {
519 /* region_add operation of range 1 should never need to
520 * allocate file_region entries.
521 */
522 VM_BUG_ON(t - f <= 1);
523
524 if (allocate_file_region_entries(
525 resv, actual_regions_needed - in_regions_needed)) {
526 return -ENOMEM;
527 }
528
529 goto retry;
530 }
531
532 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533
534 resv->adds_in_progress -= in_regions_needed;
535
536 spin_unlock(&resv->lock);
537 VM_BUG_ON(add < 0);
538 return add;
539}
540
541/*
542 * Examine the existing reserve map and determine how many
543 * huge pages in the specified range [f, t) are NOT currently
544 * represented. This routine is called before a subsequent
545 * call to region_add that will actually modify the reserve
546 * map to add the specified range [f, t). region_chg does
547 * not change the number of huge pages represented by the
548 * map. A number of new file_region structures is added to the cache as a
549 * placeholder, for the subsequent region_add call to use. At least 1
550 * file_region structure is added.
551 *
552 * out_regions_needed is the number of regions added to the
553 * resv->adds_in_progress. This value needs to be provided to a follow up call
554 * to region_add or region_abort for proper accounting.
555 *
556 * Returns the number of huge pages that need to be added to the existing
557 * reservation map for the range [f, t). This number is greater or equal to
558 * zero. -ENOMEM is returned if a new file_region structure or cache entry
559 * is needed and can not be allocated.
560 */
561static long region_chg(struct resv_map *resv, long f, long t,
562 long *out_regions_needed)
563{
564 long chg = 0;
565
566 spin_lock(&resv->lock);
567
568 /* Count how many hugepages in this range are NOT represented. */
569 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570 out_regions_needed);
571
572 if (*out_regions_needed == 0)
573 *out_regions_needed = 1;
574
575 if (allocate_file_region_entries(resv, *out_regions_needed))
576 return -ENOMEM;
577
578 resv->adds_in_progress += *out_regions_needed;
579
580 spin_unlock(&resv->lock);
581 return chg;
582}
583
584/*
585 * Abort the in progress add operation. The adds_in_progress field
586 * of the resv_map keeps track of the operations in progress between
587 * calls to region_chg and region_add. Operations are sometimes
588 * aborted after the call to region_chg. In such cases, region_abort
589 * is called to decrement the adds_in_progress counter. regions_needed
590 * is the value returned by the region_chg call, it is used to decrement
591 * the adds_in_progress counter.
592 *
593 * NOTE: The range arguments [f, t) are not needed or used in this
594 * routine. They are kept to make reading the calling code easier as
595 * arguments will match the associated region_chg call.
596 */
597static void region_abort(struct resv_map *resv, long f, long t,
598 long regions_needed)
599{
600 spin_lock(&resv->lock);
601 VM_BUG_ON(!resv->region_cache_count);
602 resv->adds_in_progress -= regions_needed;
603 spin_unlock(&resv->lock);
604}
605
606/*
607 * Delete the specified range [f, t) from the reserve map. If the
608 * t parameter is LONG_MAX, this indicates that ALL regions after f
609 * should be deleted. Locate the regions which intersect [f, t)
610 * and either trim, delete or split the existing regions.
611 *
612 * Returns the number of huge pages deleted from the reserve map.
613 * In the normal case, the return value is zero or more. In the
614 * case where a region must be split, a new region descriptor must
615 * be allocated. If the allocation fails, -ENOMEM will be returned.
616 * NOTE: If the parameter t == LONG_MAX, then we will never split
617 * a region and possibly return -ENOMEM. Callers specifying
618 * t == LONG_MAX do not need to check for -ENOMEM error.
619 */
620static long region_del(struct resv_map *resv, long f, long t)
621{
622 struct list_head *head = &resv->regions;
623 struct file_region *rg, *trg;
624 struct file_region *nrg = NULL;
625 long del = 0;
626
627retry:
628 spin_lock(&resv->lock);
629 list_for_each_entry_safe(rg, trg, head, link) {
630 /*
631 * Skip regions before the range to be deleted. file_region
632 * ranges are normally of the form [from, to). However, there
633 * may be a "placeholder" entry in the map which is of the form
634 * (from, to) with from == to. Check for placeholder entries
635 * at the beginning of the range to be deleted.
636 */
637 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638 continue;
639
640 if (rg->from >= t)
641 break;
642
643 if (f > rg->from && t < rg->to) { /* Must split region */
644 /*
645 * Check for an entry in the cache before dropping
646 * lock and attempting allocation.
647 */
648 if (!nrg &&
649 resv->region_cache_count > resv->adds_in_progress) {
650 nrg = list_first_entry(&resv->region_cache,
651 struct file_region,
652 link);
653 list_del(&nrg->link);
654 resv->region_cache_count--;
655 }
656
657 if (!nrg) {
658 spin_unlock(&resv->lock);
659 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
660 if (!nrg)
661 return -ENOMEM;
662 goto retry;
663 }
664
665 del += t - f;
666 hugetlb_cgroup_uncharge_file_region(
667 resv, rg, t - f);
668
669 /* New entry for end of split region */
670 nrg->from = t;
671 nrg->to = rg->to;
672
673 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
674
675 INIT_LIST_HEAD(&nrg->link);
676
677 /* Original entry is trimmed */
678 rg->to = f;
679
680 list_add(&nrg->link, &rg->link);
681 nrg = NULL;
682 break;
683 }
684
685 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
686 del += rg->to - rg->from;
687 hugetlb_cgroup_uncharge_file_region(resv, rg,
688 rg->to - rg->from);
689 list_del(&rg->link);
690 kfree(rg);
691 continue;
692 }
693
694 if (f <= rg->from) { /* Trim beginning of region */
695 hugetlb_cgroup_uncharge_file_region(resv, rg,
696 t - rg->from);
697
698 del += t - rg->from;
699 rg->from = t;
700 } else { /* Trim end of region */
701 hugetlb_cgroup_uncharge_file_region(resv, rg,
702 rg->to - f);
703
704 del += rg->to - f;
705 rg->to = f;
706 }
707 }
708
709 spin_unlock(&resv->lock);
710 kfree(nrg);
711 return del;
712}
713
714/*
715 * A rare out of memory error was encountered which prevented removal of
716 * the reserve map region for a page. The huge page itself was free'ed
717 * and removed from the page cache. This routine will adjust the subpool
718 * usage count, and the global reserve count if needed. By incrementing
719 * these counts, the reserve map entry which could not be deleted will
720 * appear as a "reserved" entry instead of simply dangling with incorrect
721 * counts.
722 */
723void hugetlb_fix_reserve_counts(struct inode *inode)
724{
725 struct hugepage_subpool *spool = subpool_inode(inode);
726 long rsv_adjust;
727
728 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729 if (rsv_adjust) {
730 struct hstate *h = hstate_inode(inode);
731
732 hugetlb_acct_memory(h, 1);
733 }
734}
735
736/*
737 * Count and return the number of huge pages in the reserve map
738 * that intersect with the range [f, t).
739 */
740static long region_count(struct resv_map *resv, long f, long t)
741{
742 struct list_head *head = &resv->regions;
743 struct file_region *rg;
744 long chg = 0;
745
746 spin_lock(&resv->lock);
747 /* Locate each segment we overlap with, and count that overlap. */
748 list_for_each_entry(rg, head, link) {
749 long seg_from;
750 long seg_to;
751
752 if (rg->to <= f)
753 continue;
754 if (rg->from >= t)
755 break;
756
757 seg_from = max(rg->from, f);
758 seg_to = min(rg->to, t);
759
760 chg += seg_to - seg_from;
761 }
762 spin_unlock(&resv->lock);
763
764 return chg;
765}
766
767/*
768 * Convert the address within this vma to the page offset within
769 * the mapping, in pagecache page units; huge pages here.
770 */
771static pgoff_t vma_hugecache_offset(struct hstate *h,
772 struct vm_area_struct *vma, unsigned long address)
773{
774 return ((address - vma->vm_start) >> huge_page_shift(h)) +
775 (vma->vm_pgoff >> huge_page_order(h));
776}
777
778pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
779 unsigned long address)
780{
781 return vma_hugecache_offset(hstate_vma(vma), vma, address);
782}
783EXPORT_SYMBOL_GPL(linear_hugepage_index);
784
785/*
786 * Return the size of the pages allocated when backing a VMA. In the majority
787 * cases this will be same size as used by the page table entries.
788 */
789unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
790{
791 if (vma->vm_ops && vma->vm_ops->pagesize)
792 return vma->vm_ops->pagesize(vma);
793 return PAGE_SIZE;
794}
795EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796
797/*
798 * Return the page size being used by the MMU to back a VMA. In the majority
799 * of cases, the page size used by the kernel matches the MMU size. On
800 * architectures where it differs, an architecture-specific 'strong'
801 * version of this symbol is required.
802 */
803__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804{
805 return vma_kernel_pagesize(vma);
806}
807
808/*
809 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
810 * bits of the reservation map pointer, which are always clear due to
811 * alignment.
812 */
813#define HPAGE_RESV_OWNER (1UL << 0)
814#define HPAGE_RESV_UNMAPPED (1UL << 1)
815#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816
817/*
818 * These helpers are used to track how many pages are reserved for
819 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
820 * is guaranteed to have their future faults succeed.
821 *
822 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
823 * the reserve counters are updated with the hugetlb_lock held. It is safe
824 * to reset the VMA at fork() time as it is not in use yet and there is no
825 * chance of the global counters getting corrupted as a result of the values.
826 *
827 * The private mapping reservation is represented in a subtly different
828 * manner to a shared mapping. A shared mapping has a region map associated
829 * with the underlying file, this region map represents the backing file
830 * pages which have ever had a reservation assigned which this persists even
831 * after the page is instantiated. A private mapping has a region map
832 * associated with the original mmap which is attached to all VMAs which
833 * reference it, this region map represents those offsets which have consumed
834 * reservation ie. where pages have been instantiated.
835 */
836static unsigned long get_vma_private_data(struct vm_area_struct *vma)
837{
838 return (unsigned long)vma->vm_private_data;
839}
840
841static void set_vma_private_data(struct vm_area_struct *vma,
842 unsigned long value)
843{
844 vma->vm_private_data = (void *)value;
845}
846
847static void
848resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
849 struct hugetlb_cgroup *h_cg,
850 struct hstate *h)
851{
852#ifdef CONFIG_CGROUP_HUGETLB
853 if (!h_cg || !h) {
854 resv_map->reservation_counter = NULL;
855 resv_map->pages_per_hpage = 0;
856 resv_map->css = NULL;
857 } else {
858 resv_map->reservation_counter =
859 &h_cg->rsvd_hugepage[hstate_index(h)];
860 resv_map->pages_per_hpage = pages_per_huge_page(h);
861 resv_map->css = &h_cg->css;
862 }
863#endif
864}
865
866struct resv_map *resv_map_alloc(void)
867{
868 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
870
871 if (!resv_map || !rg) {
872 kfree(resv_map);
873 kfree(rg);
874 return NULL;
875 }
876
877 kref_init(&resv_map->refs);
878 spin_lock_init(&resv_map->lock);
879 INIT_LIST_HEAD(&resv_map->regions);
880
881 resv_map->adds_in_progress = 0;
882 /*
883 * Initialize these to 0. On shared mappings, 0's here indicate these
884 * fields don't do cgroup accounting. On private mappings, these will be
885 * re-initialized to the proper values, to indicate that hugetlb cgroup
886 * reservations are to be un-charged from here.
887 */
888 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889
890 INIT_LIST_HEAD(&resv_map->region_cache);
891 list_add(&rg->link, &resv_map->region_cache);
892 resv_map->region_cache_count = 1;
893
894 return resv_map;
895}
896
897void resv_map_release(struct kref *ref)
898{
899 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900 struct list_head *head = &resv_map->region_cache;
901 struct file_region *rg, *trg;
902
903 /* Clear out any active regions before we release the map. */
904 region_del(resv_map, 0, LONG_MAX);
905
906 /* ... and any entries left in the cache */
907 list_for_each_entry_safe(rg, trg, head, link) {
908 list_del(&rg->link);
909 kfree(rg);
910 }
911
912 VM_BUG_ON(resv_map->adds_in_progress);
913
914 kfree(resv_map);
915}
916
917static inline struct resv_map *inode_resv_map(struct inode *inode)
918{
919 /*
920 * At inode evict time, i_mapping may not point to the original
921 * address space within the inode. This original address space
922 * contains the pointer to the resv_map. So, always use the
923 * address space embedded within the inode.
924 * The VERY common case is inode->mapping == &inode->i_data but,
925 * this may not be true for device special inodes.
926 */
927 return (struct resv_map *)(&inode->i_data)->private_data;
928}
929
930static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931{
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 if (vma->vm_flags & VM_MAYSHARE) {
934 struct address_space *mapping = vma->vm_file->f_mapping;
935 struct inode *inode = mapping->host;
936
937 return inode_resv_map(inode);
938
939 } else {
940 return (struct resv_map *)(get_vma_private_data(vma) &
941 ~HPAGE_RESV_MASK);
942 }
943}
944
945static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946{
947 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949
950 set_vma_private_data(vma, (get_vma_private_data(vma) &
951 HPAGE_RESV_MASK) | (unsigned long)map);
952}
953
954static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
955{
956 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958
959 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960}
961
962static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
963{
964 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965
966 return (get_vma_private_data(vma) & flag) != 0;
967}
968
969/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
971{
972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 if (!(vma->vm_flags & VM_MAYSHARE))
974 vma->vm_private_data = (void *)0;
975}
976
977/* Returns true if the VMA has associated reserve pages */
978static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979{
980 if (vma->vm_flags & VM_NORESERVE) {
981 /*
982 * This address is already reserved by other process(chg == 0),
983 * so, we should decrement reserved count. Without decrementing,
984 * reserve count remains after releasing inode, because this
985 * allocated page will go into page cache and is regarded as
986 * coming from reserved pool in releasing step. Currently, we
987 * don't have any other solution to deal with this situation
988 * properly, so add work-around here.
989 */
990 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991 return true;
992 else
993 return false;
994 }
995
996 /* Shared mappings always use reserves */
997 if (vma->vm_flags & VM_MAYSHARE) {
998 /*
999 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1000 * be a region map for all pages. The only situation where
1001 * there is no region map is if a hole was punched via
1002 * fallocate. In this case, there really are no reserves to
1003 * use. This situation is indicated if chg != 0.
1004 */
1005 if (chg)
1006 return false;
1007 else
1008 return true;
1009 }
1010
1011 /*
1012 * Only the process that called mmap() has reserves for
1013 * private mappings.
1014 */
1015 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1016 /*
1017 * Like the shared case above, a hole punch or truncate
1018 * could have been performed on the private mapping.
1019 * Examine the value of chg to determine if reserves
1020 * actually exist or were previously consumed.
1021 * Very Subtle - The value of chg comes from a previous
1022 * call to vma_needs_reserves(). The reserve map for
1023 * private mappings has different (opposite) semantics
1024 * than that of shared mappings. vma_needs_reserves()
1025 * has already taken this difference in semantics into
1026 * account. Therefore, the meaning of chg is the same
1027 * as in the shared case above. Code could easily be
1028 * combined, but keeping it separate draws attention to
1029 * subtle differences.
1030 */
1031 if (chg)
1032 return false;
1033 else
1034 return true;
1035 }
1036
1037 return false;
1038}
1039
1040static void enqueue_huge_page(struct hstate *h, struct page *page)
1041{
1042 int nid = page_to_nid(page);
1043 list_move(&page->lru, &h->hugepage_freelists[nid]);
1044 h->free_huge_pages++;
1045 h->free_huge_pages_node[nid]++;
1046 SetPageHugeFreed(page);
1047}
1048
1049static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050{
1051 struct page *page;
1052 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1053
1054 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1055 if (nocma && is_migrate_cma_page(page))
1056 continue;
1057
1058 if (PageHWPoison(page))
1059 continue;
1060
1061 list_move(&page->lru, &h->hugepage_activelist);
1062 set_page_refcounted(page);
1063 ClearPageHugeFreed(page);
1064 h->free_huge_pages--;
1065 h->free_huge_pages_node[nid]--;
1066 return page;
1067 }
1068
1069 return NULL;
1070}
1071
1072static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073 nodemask_t *nmask)
1074{
1075 unsigned int cpuset_mems_cookie;
1076 struct zonelist *zonelist;
1077 struct zone *zone;
1078 struct zoneref *z;
1079 int node = NUMA_NO_NODE;
1080
1081 zonelist = node_zonelist(nid, gfp_mask);
1082
1083retry_cpuset:
1084 cpuset_mems_cookie = read_mems_allowed_begin();
1085 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086 struct page *page;
1087
1088 if (!cpuset_zone_allowed(zone, gfp_mask))
1089 continue;
1090 /*
1091 * no need to ask again on the same node. Pool is node rather than
1092 * zone aware
1093 */
1094 if (zone_to_nid(zone) == node)
1095 continue;
1096 node = zone_to_nid(zone);
1097
1098 page = dequeue_huge_page_node_exact(h, node);
1099 if (page)
1100 return page;
1101 }
1102 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1103 goto retry_cpuset;
1104
1105 return NULL;
1106}
1107
1108static struct page *dequeue_huge_page_vma(struct hstate *h,
1109 struct vm_area_struct *vma,
1110 unsigned long address, int avoid_reserve,
1111 long chg)
1112{
1113 struct page *page;
1114 struct mempolicy *mpol;
1115 gfp_t gfp_mask;
1116 nodemask_t *nodemask;
1117 int nid;
1118
1119 /*
1120 * A child process with MAP_PRIVATE mappings created by their parent
1121 * have no page reserves. This check ensures that reservations are
1122 * not "stolen". The child may still get SIGKILLed
1123 */
1124 if (!vma_has_reserves(vma, chg) &&
1125 h->free_huge_pages - h->resv_huge_pages == 0)
1126 goto err;
1127
1128 /* If reserves cannot be used, ensure enough pages are in the pool */
1129 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130 goto err;
1131
1132 gfp_mask = htlb_alloc_mask(h);
1133 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1135 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1136 SetPagePrivate(page);
1137 h->resv_huge_pages--;
1138 }
1139
1140 mpol_cond_put(mpol);
1141 return page;
1142
1143err:
1144 return NULL;
1145}
1146
1147/*
1148 * common helper functions for hstate_next_node_to_{alloc|free}.
1149 * We may have allocated or freed a huge page based on a different
1150 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1151 * be outside of *nodes_allowed. Ensure that we use an allowed
1152 * node for alloc or free.
1153 */
1154static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1155{
1156 nid = next_node_in(nid, *nodes_allowed);
1157 VM_BUG_ON(nid >= MAX_NUMNODES);
1158
1159 return nid;
1160}
1161
1162static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1163{
1164 if (!node_isset(nid, *nodes_allowed))
1165 nid = next_node_allowed(nid, nodes_allowed);
1166 return nid;
1167}
1168
1169/*
1170 * returns the previously saved node ["this node"] from which to
1171 * allocate a persistent huge page for the pool and advance the
1172 * next node from which to allocate, handling wrap at end of node
1173 * mask.
1174 */
1175static int hstate_next_node_to_alloc(struct hstate *h,
1176 nodemask_t *nodes_allowed)
1177{
1178 int nid;
1179
1180 VM_BUG_ON(!nodes_allowed);
1181
1182 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1183 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1184
1185 return nid;
1186}
1187
1188/*
1189 * helper for free_pool_huge_page() - return the previously saved
1190 * node ["this node"] from which to free a huge page. Advance the
1191 * next node id whether or not we find a free huge page to free so
1192 * that the next attempt to free addresses the next node.
1193 */
1194static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1195{
1196 int nid;
1197
1198 VM_BUG_ON(!nodes_allowed);
1199
1200 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1201 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1202
1203 return nid;
1204}
1205
1206#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1207 for (nr_nodes = nodes_weight(*mask); \
1208 nr_nodes > 0 && \
1209 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1210 nr_nodes--)
1211
1212#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1213 for (nr_nodes = nodes_weight(*mask); \
1214 nr_nodes > 0 && \
1215 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1216 nr_nodes--)
1217
1218#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219static void destroy_compound_gigantic_page(struct page *page,
1220 unsigned int order)
1221{
1222 int i;
1223 int nr_pages = 1 << order;
1224 struct page *p = page + 1;
1225
1226 atomic_set(compound_mapcount_ptr(page), 0);
1227 if (hpage_pincount_available(page))
1228 atomic_set(compound_pincount_ptr(page), 0);
1229
1230 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231 clear_compound_head(p);
1232 set_page_refcounted(p);
1233 }
1234
1235 set_compound_order(page, 0);
1236 page[1].compound_nr = 0;
1237 __ClearPageHead(page);
1238}
1239
1240static void free_gigantic_page(struct page *page, unsigned int order)
1241{
1242 /*
1243 * If the page isn't allocated using the cma allocator,
1244 * cma_release() returns false.
1245 */
1246#ifdef CONFIG_CMA
1247 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248 return;
1249#endif
1250
1251 free_contig_range(page_to_pfn(page), 1 << order);
1252}
1253
1254#ifdef CONFIG_CONTIG_ALLOC
1255static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1256 int nid, nodemask_t *nodemask)
1257{
1258 unsigned long nr_pages = 1UL << huge_page_order(h);
1259 if (nid == NUMA_NO_NODE)
1260 nid = numa_mem_id();
1261
1262#ifdef CONFIG_CMA
1263 {
1264 struct page *page;
1265 int node;
1266
1267 if (hugetlb_cma[nid]) {
1268 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1269 huge_page_order(h), true);
1270 if (page)
1271 return page;
1272 }
1273
1274 if (!(gfp_mask & __GFP_THISNODE)) {
1275 for_each_node_mask(node, *nodemask) {
1276 if (node == nid || !hugetlb_cma[node])
1277 continue;
1278
1279 page = cma_alloc(hugetlb_cma[node], nr_pages,
1280 huge_page_order(h), true);
1281 if (page)
1282 return page;
1283 }
1284 }
1285 }
1286#endif
1287
1288 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289}
1290
1291static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293#else /* !CONFIG_CONTIG_ALLOC */
1294static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1295 int nid, nodemask_t *nodemask)
1296{
1297 return NULL;
1298}
1299#endif /* CONFIG_CONTIG_ALLOC */
1300
1301#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303 int nid, nodemask_t *nodemask)
1304{
1305 return NULL;
1306}
1307static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308static inline void destroy_compound_gigantic_page(struct page *page,
1309 unsigned int order) { }
1310#endif
1311
1312static void update_and_free_page(struct hstate *h, struct page *page)
1313{
1314 int i;
1315
1316 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1317 return;
1318
1319 h->nr_huge_pages--;
1320 h->nr_huge_pages_node[page_to_nid(page)]--;
1321 for (i = 0; i < pages_per_huge_page(h); i++) {
1322 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1323 1 << PG_referenced | 1 << PG_dirty |
1324 1 << PG_active | 1 << PG_private |
1325 1 << PG_writeback);
1326 }
1327 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1328 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1329 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1330 set_page_refcounted(page);
1331 if (hstate_is_gigantic(h)) {
1332 /*
1333 * Temporarily drop the hugetlb_lock, because
1334 * we might block in free_gigantic_page().
1335 */
1336 spin_unlock(&hugetlb_lock);
1337 destroy_compound_gigantic_page(page, huge_page_order(h));
1338 free_gigantic_page(page, huge_page_order(h));
1339 spin_lock(&hugetlb_lock);
1340 } else {
1341 __free_pages(page, huge_page_order(h));
1342 }
1343}
1344
1345struct hstate *size_to_hstate(unsigned long size)
1346{
1347 struct hstate *h;
1348
1349 for_each_hstate(h) {
1350 if (huge_page_size(h) == size)
1351 return h;
1352 }
1353 return NULL;
1354}
1355
1356/*
1357 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1358 * to hstate->hugepage_activelist.)
1359 *
1360 * This function can be called for tail pages, but never returns true for them.
1361 */
1362bool page_huge_active(struct page *page)
1363{
1364 VM_BUG_ON_PAGE(!PageHuge(page), page);
1365 return PageHead(page) && PagePrivate(&page[1]);
1366}
1367
1368/* never called for tail page */
1369void set_page_huge_active(struct page *page)
1370{
1371 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372 SetPagePrivate(&page[1]);
1373}
1374
1375static void clear_page_huge_active(struct page *page)
1376{
1377 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1378 ClearPagePrivate(&page[1]);
1379}
1380
1381/*
1382 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1383 * code
1384 */
1385static inline bool PageHugeTemporary(struct page *page)
1386{
1387 if (!PageHuge(page))
1388 return false;
1389
1390 return (unsigned long)page[2].mapping == -1U;
1391}
1392
1393static inline void SetPageHugeTemporary(struct page *page)
1394{
1395 page[2].mapping = (void *)-1U;
1396}
1397
1398static inline void ClearPageHugeTemporary(struct page *page)
1399{
1400 page[2].mapping = NULL;
1401}
1402
1403static void __free_huge_page(struct page *page)
1404{
1405 /*
1406 * Can't pass hstate in here because it is called from the
1407 * compound page destructor.
1408 */
1409 struct hstate *h = page_hstate(page);
1410 int nid = page_to_nid(page);
1411 struct hugepage_subpool *spool =
1412 (struct hugepage_subpool *)page_private(page);
1413 bool restore_reserve;
1414
1415 VM_BUG_ON_PAGE(page_count(page), page);
1416 VM_BUG_ON_PAGE(page_mapcount(page), page);
1417
1418 set_page_private(page, 0);
1419 page->mapping = NULL;
1420 restore_reserve = PagePrivate(page);
1421 ClearPagePrivate(page);
1422
1423 /*
1424 * If PagePrivate() was set on page, page allocation consumed a
1425 * reservation. If the page was associated with a subpool, there
1426 * would have been a page reserved in the subpool before allocation
1427 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1428 * reservtion, do not call hugepage_subpool_put_pages() as this will
1429 * remove the reserved page from the subpool.
1430 */
1431 if (!restore_reserve) {
1432 /*
1433 * A return code of zero implies that the subpool will be
1434 * under its minimum size if the reservation is not restored
1435 * after page is free. Therefore, force restore_reserve
1436 * operation.
1437 */
1438 if (hugepage_subpool_put_pages(spool, 1) == 0)
1439 restore_reserve = true;
1440 }
1441
1442 spin_lock(&hugetlb_lock);
1443 clear_page_huge_active(page);
1444 hugetlb_cgroup_uncharge_page(hstate_index(h),
1445 pages_per_huge_page(h), page);
1446 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1447 pages_per_huge_page(h), page);
1448 if (restore_reserve)
1449 h->resv_huge_pages++;
1450
1451 if (PageHugeTemporary(page)) {
1452 list_del(&page->lru);
1453 ClearPageHugeTemporary(page);
1454 update_and_free_page(h, page);
1455 } else if (h->surplus_huge_pages_node[nid]) {
1456 /* remove the page from active list */
1457 list_del(&page->lru);
1458 update_and_free_page(h, page);
1459 h->surplus_huge_pages--;
1460 h->surplus_huge_pages_node[nid]--;
1461 } else {
1462 arch_clear_hugepage_flags(page);
1463 enqueue_huge_page(h, page);
1464 }
1465 spin_unlock(&hugetlb_lock);
1466}
1467
1468/*
1469 * As free_huge_page() can be called from a non-task context, we have
1470 * to defer the actual freeing in a workqueue to prevent potential
1471 * hugetlb_lock deadlock.
1472 *
1473 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1474 * be freed and frees them one-by-one. As the page->mapping pointer is
1475 * going to be cleared in __free_huge_page() anyway, it is reused as the
1476 * llist_node structure of a lockless linked list of huge pages to be freed.
1477 */
1478static LLIST_HEAD(hpage_freelist);
1479
1480static void free_hpage_workfn(struct work_struct *work)
1481{
1482 struct llist_node *node;
1483 struct page *page;
1484
1485 node = llist_del_all(&hpage_freelist);
1486
1487 while (node) {
1488 page = container_of((struct address_space **)node,
1489 struct page, mapping);
1490 node = node->next;
1491 __free_huge_page(page);
1492 }
1493}
1494static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1495
1496void free_huge_page(struct page *page)
1497{
1498 /*
1499 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1500 */
1501 if (!in_task()) {
1502 /*
1503 * Only call schedule_work() if hpage_freelist is previously
1504 * empty. Otherwise, schedule_work() had been called but the
1505 * workfn hasn't retrieved the list yet.
1506 */
1507 if (llist_add((struct llist_node *)&page->mapping,
1508 &hpage_freelist))
1509 schedule_work(&free_hpage_work);
1510 return;
1511 }
1512
1513 __free_huge_page(page);
1514}
1515
1516static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1517{
1518 INIT_LIST_HEAD(&page->lru);
1519 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1520 set_hugetlb_cgroup(page, NULL);
1521 set_hugetlb_cgroup_rsvd(page, NULL);
1522 spin_lock(&hugetlb_lock);
1523 h->nr_huge_pages++;
1524 h->nr_huge_pages_node[nid]++;
1525 ClearPageHugeFreed(page);
1526 spin_unlock(&hugetlb_lock);
1527}
1528
1529static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1530{
1531 int i;
1532 int nr_pages = 1 << order;
1533 struct page *p = page + 1;
1534
1535 /* we rely on prep_new_huge_page to set the destructor */
1536 set_compound_order(page, order);
1537 __ClearPageReserved(page);
1538 __SetPageHead(page);
1539 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1540 /*
1541 * For gigantic hugepages allocated through bootmem at
1542 * boot, it's safer to be consistent with the not-gigantic
1543 * hugepages and clear the PG_reserved bit from all tail pages
1544 * too. Otherwise drivers using get_user_pages() to access tail
1545 * pages may get the reference counting wrong if they see
1546 * PG_reserved set on a tail page (despite the head page not
1547 * having PG_reserved set). Enforcing this consistency between
1548 * head and tail pages allows drivers to optimize away a check
1549 * on the head page when they need know if put_page() is needed
1550 * after get_user_pages().
1551 */
1552 __ClearPageReserved(p);
1553 set_page_count(p, 0);
1554 set_compound_head(p, page);
1555 }
1556 atomic_set(compound_mapcount_ptr(page), -1);
1557
1558 if (hpage_pincount_available(page))
1559 atomic_set(compound_pincount_ptr(page), 0);
1560}
1561
1562/*
1563 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1564 * transparent huge pages. See the PageTransHuge() documentation for more
1565 * details.
1566 */
1567int PageHuge(struct page *page)
1568{
1569 if (!PageCompound(page))
1570 return 0;
1571
1572 page = compound_head(page);
1573 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1574}
1575EXPORT_SYMBOL_GPL(PageHuge);
1576
1577/*
1578 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1579 * normal or transparent huge pages.
1580 */
1581int PageHeadHuge(struct page *page_head)
1582{
1583 if (!PageHead(page_head))
1584 return 0;
1585
1586 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1587}
1588
1589/*
1590 * Find and lock address space (mapping) in write mode.
1591 *
1592 * Upon entry, the page is locked which means that page_mapping() is
1593 * stable. Due to locking order, we can only trylock_write. If we can
1594 * not get the lock, simply return NULL to caller.
1595 */
1596struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1597{
1598 struct address_space *mapping = page_mapping(hpage);
1599
1600 if (!mapping)
1601 return mapping;
1602
1603 if (i_mmap_trylock_write(mapping))
1604 return mapping;
1605
1606 return NULL;
1607}
1608
1609pgoff_t __basepage_index(struct page *page)
1610{
1611 struct page *page_head = compound_head(page);
1612 pgoff_t index = page_index(page_head);
1613 unsigned long compound_idx;
1614
1615 if (!PageHuge(page_head))
1616 return page_index(page);
1617
1618 if (compound_order(page_head) >= MAX_ORDER)
1619 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1620 else
1621 compound_idx = page - page_head;
1622
1623 return (index << compound_order(page_head)) + compound_idx;
1624}
1625
1626static struct page *alloc_buddy_huge_page(struct hstate *h,
1627 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1628 nodemask_t *node_alloc_noretry)
1629{
1630 int order = huge_page_order(h);
1631 struct page *page;
1632 bool alloc_try_hard = true;
1633
1634 /*
1635 * By default we always try hard to allocate the page with
1636 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1637 * a loop (to adjust global huge page counts) and previous allocation
1638 * failed, do not continue to try hard on the same node. Use the
1639 * node_alloc_noretry bitmap to manage this state information.
1640 */
1641 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1642 alloc_try_hard = false;
1643 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1644 if (alloc_try_hard)
1645 gfp_mask |= __GFP_RETRY_MAYFAIL;
1646 if (nid == NUMA_NO_NODE)
1647 nid = numa_mem_id();
1648 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1649 if (page)
1650 __count_vm_event(HTLB_BUDDY_PGALLOC);
1651 else
1652 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1653
1654 /*
1655 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1656 * indicates an overall state change. Clear bit so that we resume
1657 * normal 'try hard' allocations.
1658 */
1659 if (node_alloc_noretry && page && !alloc_try_hard)
1660 node_clear(nid, *node_alloc_noretry);
1661
1662 /*
1663 * If we tried hard to get a page but failed, set bit so that
1664 * subsequent attempts will not try as hard until there is an
1665 * overall state change.
1666 */
1667 if (node_alloc_noretry && !page && alloc_try_hard)
1668 node_set(nid, *node_alloc_noretry);
1669
1670 return page;
1671}
1672
1673/*
1674 * Common helper to allocate a fresh hugetlb page. All specific allocators
1675 * should use this function to get new hugetlb pages
1676 */
1677static struct page *alloc_fresh_huge_page(struct hstate *h,
1678 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1679 nodemask_t *node_alloc_noretry)
1680{
1681 struct page *page;
1682
1683 if (hstate_is_gigantic(h))
1684 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1685 else
1686 page = alloc_buddy_huge_page(h, gfp_mask,
1687 nid, nmask, node_alloc_noretry);
1688 if (!page)
1689 return NULL;
1690
1691 if (hstate_is_gigantic(h))
1692 prep_compound_gigantic_page(page, huge_page_order(h));
1693 prep_new_huge_page(h, page, page_to_nid(page));
1694
1695 return page;
1696}
1697
1698/*
1699 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1700 * manner.
1701 */
1702static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1703 nodemask_t *node_alloc_noretry)
1704{
1705 struct page *page;
1706 int nr_nodes, node;
1707 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1708
1709 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1710 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1711 node_alloc_noretry);
1712 if (page)
1713 break;
1714 }
1715
1716 if (!page)
1717 return 0;
1718
1719 put_page(page); /* free it into the hugepage allocator */
1720
1721 return 1;
1722}
1723
1724/*
1725 * Free huge page from pool from next node to free.
1726 * Attempt to keep persistent huge pages more or less
1727 * balanced over allowed nodes.
1728 * Called with hugetlb_lock locked.
1729 */
1730static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1731 bool acct_surplus)
1732{
1733 int nr_nodes, node;
1734 int ret = 0;
1735
1736 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1737 /*
1738 * If we're returning unused surplus pages, only examine
1739 * nodes with surplus pages.
1740 */
1741 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1742 !list_empty(&h->hugepage_freelists[node])) {
1743 struct page *page =
1744 list_entry(h->hugepage_freelists[node].next,
1745 struct page, lru);
1746 list_del(&page->lru);
1747 h->free_huge_pages--;
1748 h->free_huge_pages_node[node]--;
1749 if (acct_surplus) {
1750 h->surplus_huge_pages--;
1751 h->surplus_huge_pages_node[node]--;
1752 }
1753 update_and_free_page(h, page);
1754 ret = 1;
1755 break;
1756 }
1757 }
1758
1759 return ret;
1760}
1761
1762/*
1763 * Dissolve a given free hugepage into free buddy pages. This function does
1764 * nothing for in-use hugepages and non-hugepages.
1765 * This function returns values like below:
1766 *
1767 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1768 * (allocated or reserved.)
1769 * 0: successfully dissolved free hugepages or the page is not a
1770 * hugepage (considered as already dissolved)
1771 */
1772int dissolve_free_huge_page(struct page *page)
1773{
1774 int rc = -EBUSY;
1775
1776retry:
1777 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1778 if (!PageHuge(page))
1779 return 0;
1780
1781 spin_lock(&hugetlb_lock);
1782 if (!PageHuge(page)) {
1783 rc = 0;
1784 goto out;
1785 }
1786
1787 if (!page_count(page)) {
1788 struct page *head = compound_head(page);
1789 struct hstate *h = page_hstate(head);
1790 int nid = page_to_nid(head);
1791 if (h->free_huge_pages - h->resv_huge_pages == 0)
1792 goto out;
1793
1794 /*
1795 * We should make sure that the page is already on the free list
1796 * when it is dissolved.
1797 */
1798 if (unlikely(!PageHugeFreed(head))) {
1799 spin_unlock(&hugetlb_lock);
1800 cond_resched();
1801
1802 /*
1803 * Theoretically, we should return -EBUSY when we
1804 * encounter this race. In fact, we have a chance
1805 * to successfully dissolve the page if we do a
1806 * retry. Because the race window is quite small.
1807 * If we seize this opportunity, it is an optimization
1808 * for increasing the success rate of dissolving page.
1809 */
1810 goto retry;
1811 }
1812
1813 /*
1814 * Move PageHWPoison flag from head page to the raw error page,
1815 * which makes any subpages rather than the error page reusable.
1816 */
1817 if (PageHWPoison(head) && page != head) {
1818 SetPageHWPoison(page);
1819 ClearPageHWPoison(head);
1820 }
1821 list_del(&head->lru);
1822 h->free_huge_pages--;
1823 h->free_huge_pages_node[nid]--;
1824 h->max_huge_pages--;
1825 update_and_free_page(h, head);
1826 rc = 0;
1827 }
1828out:
1829 spin_unlock(&hugetlb_lock);
1830 return rc;
1831}
1832
1833/*
1834 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1835 * make specified memory blocks removable from the system.
1836 * Note that this will dissolve a free gigantic hugepage completely, if any
1837 * part of it lies within the given range.
1838 * Also note that if dissolve_free_huge_page() returns with an error, all
1839 * free hugepages that were dissolved before that error are lost.
1840 */
1841int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1842{
1843 unsigned long pfn;
1844 struct page *page;
1845 int rc = 0;
1846
1847 if (!hugepages_supported())
1848 return rc;
1849
1850 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1851 page = pfn_to_page(pfn);
1852 rc = dissolve_free_huge_page(page);
1853 if (rc)
1854 break;
1855 }
1856
1857 return rc;
1858}
1859
1860/*
1861 * Allocates a fresh surplus page from the page allocator.
1862 */
1863static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1864 int nid, nodemask_t *nmask)
1865{
1866 struct page *page = NULL;
1867
1868 if (hstate_is_gigantic(h))
1869 return NULL;
1870
1871 spin_lock(&hugetlb_lock);
1872 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1873 goto out_unlock;
1874 spin_unlock(&hugetlb_lock);
1875
1876 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1877 if (!page)
1878 return NULL;
1879
1880 spin_lock(&hugetlb_lock);
1881 /*
1882 * We could have raced with the pool size change.
1883 * Double check that and simply deallocate the new page
1884 * if we would end up overcommiting the surpluses. Abuse
1885 * temporary page to workaround the nasty free_huge_page
1886 * codeflow
1887 */
1888 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1889 SetPageHugeTemporary(page);
1890 spin_unlock(&hugetlb_lock);
1891 put_page(page);
1892 return NULL;
1893 } else {
1894 h->surplus_huge_pages++;
1895 h->surplus_huge_pages_node[page_to_nid(page)]++;
1896 }
1897
1898out_unlock:
1899 spin_unlock(&hugetlb_lock);
1900
1901 return page;
1902}
1903
1904static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1905 int nid, nodemask_t *nmask)
1906{
1907 struct page *page;
1908
1909 if (hstate_is_gigantic(h))
1910 return NULL;
1911
1912 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1913 if (!page)
1914 return NULL;
1915
1916 /*
1917 * We do not account these pages as surplus because they are only
1918 * temporary and will be released properly on the last reference
1919 */
1920 SetPageHugeTemporary(page);
1921
1922 return page;
1923}
1924
1925/*
1926 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1927 */
1928static
1929struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
1932 struct page *page;
1933 struct mempolicy *mpol;
1934 gfp_t gfp_mask = htlb_alloc_mask(h);
1935 int nid;
1936 nodemask_t *nodemask;
1937
1938 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1939 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1940 mpol_cond_put(mpol);
1941
1942 return page;
1943}
1944
1945/* page migration callback function */
1946struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1947 nodemask_t *nmask, gfp_t gfp_mask)
1948{
1949 spin_lock(&hugetlb_lock);
1950 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1951 struct page *page;
1952
1953 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1954 if (page) {
1955 spin_unlock(&hugetlb_lock);
1956 return page;
1957 }
1958 }
1959 spin_unlock(&hugetlb_lock);
1960
1961 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1962}
1963
1964/* mempolicy aware migration callback */
1965struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1966 unsigned long address)
1967{
1968 struct mempolicy *mpol;
1969 nodemask_t *nodemask;
1970 struct page *page;
1971 gfp_t gfp_mask;
1972 int node;
1973
1974 gfp_mask = htlb_alloc_mask(h);
1975 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1976 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1977 mpol_cond_put(mpol);
1978
1979 return page;
1980}
1981
1982/*
1983 * Increase the hugetlb pool such that it can accommodate a reservation
1984 * of size 'delta'.
1985 */
1986static int gather_surplus_pages(struct hstate *h, long delta)
1987 __must_hold(&hugetlb_lock)
1988{
1989 struct list_head surplus_list;
1990 struct page *page, *tmp;
1991 int ret;
1992 long i;
1993 long needed, allocated;
1994 bool alloc_ok = true;
1995
1996 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1997 if (needed <= 0) {
1998 h->resv_huge_pages += delta;
1999 return 0;
2000 }
2001
2002 allocated = 0;
2003 INIT_LIST_HEAD(&surplus_list);
2004
2005 ret = -ENOMEM;
2006retry:
2007 spin_unlock(&hugetlb_lock);
2008 for (i = 0; i < needed; i++) {
2009 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2010 NUMA_NO_NODE, NULL);
2011 if (!page) {
2012 alloc_ok = false;
2013 break;
2014 }
2015 list_add(&page->lru, &surplus_list);
2016 cond_resched();
2017 }
2018 allocated += i;
2019
2020 /*
2021 * After retaking hugetlb_lock, we need to recalculate 'needed'
2022 * because either resv_huge_pages or free_huge_pages may have changed.
2023 */
2024 spin_lock(&hugetlb_lock);
2025 needed = (h->resv_huge_pages + delta) -
2026 (h->free_huge_pages + allocated);
2027 if (needed > 0) {
2028 if (alloc_ok)
2029 goto retry;
2030 /*
2031 * We were not able to allocate enough pages to
2032 * satisfy the entire reservation so we free what
2033 * we've allocated so far.
2034 */
2035 goto free;
2036 }
2037 /*
2038 * The surplus_list now contains _at_least_ the number of extra pages
2039 * needed to accommodate the reservation. Add the appropriate number
2040 * of pages to the hugetlb pool and free the extras back to the buddy
2041 * allocator. Commit the entire reservation here to prevent another
2042 * process from stealing the pages as they are added to the pool but
2043 * before they are reserved.
2044 */
2045 needed += allocated;
2046 h->resv_huge_pages += delta;
2047 ret = 0;
2048
2049 /* Free the needed pages to the hugetlb pool */
2050 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2051 if ((--needed) < 0)
2052 break;
2053 /*
2054 * This page is now managed by the hugetlb allocator and has
2055 * no users -- drop the buddy allocator's reference.
2056 */
2057 VM_BUG_ON_PAGE(!put_page_testzero(page), page);
2058 enqueue_huge_page(h, page);
2059 }
2060free:
2061 spin_unlock(&hugetlb_lock);
2062
2063 /* Free unnecessary surplus pages to the buddy allocator */
2064 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2065 put_page(page);
2066 spin_lock(&hugetlb_lock);
2067
2068 return ret;
2069}
2070
2071/*
2072 * This routine has two main purposes:
2073 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2074 * in unused_resv_pages. This corresponds to the prior adjustments made
2075 * to the associated reservation map.
2076 * 2) Free any unused surplus pages that may have been allocated to satisfy
2077 * the reservation. As many as unused_resv_pages may be freed.
2078 *
2079 * Called with hugetlb_lock held. However, the lock could be dropped (and
2080 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2081 * we must make sure nobody else can claim pages we are in the process of
2082 * freeing. Do this by ensuring resv_huge_page always is greater than the
2083 * number of huge pages we plan to free when dropping the lock.
2084 */
2085static void return_unused_surplus_pages(struct hstate *h,
2086 unsigned long unused_resv_pages)
2087{
2088 unsigned long nr_pages;
2089
2090 /* Cannot return gigantic pages currently */
2091 if (hstate_is_gigantic(h))
2092 goto out;
2093
2094 /*
2095 * Part (or even all) of the reservation could have been backed
2096 * by pre-allocated pages. Only free surplus pages.
2097 */
2098 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2099
2100 /*
2101 * We want to release as many surplus pages as possible, spread
2102 * evenly across all nodes with memory. Iterate across these nodes
2103 * until we can no longer free unreserved surplus pages. This occurs
2104 * when the nodes with surplus pages have no free pages.
2105 * free_pool_huge_page() will balance the freed pages across the
2106 * on-line nodes with memory and will handle the hstate accounting.
2107 *
2108 * Note that we decrement resv_huge_pages as we free the pages. If
2109 * we drop the lock, resv_huge_pages will still be sufficiently large
2110 * to cover subsequent pages we may free.
2111 */
2112 while (nr_pages--) {
2113 h->resv_huge_pages--;
2114 unused_resv_pages--;
2115 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2116 goto out;
2117 cond_resched_lock(&hugetlb_lock);
2118 }
2119
2120out:
2121 /* Fully uncommit the reservation */
2122 h->resv_huge_pages -= unused_resv_pages;
2123}
2124
2125
2126/*
2127 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2128 * are used by the huge page allocation routines to manage reservations.
2129 *
2130 * vma_needs_reservation is called to determine if the huge page at addr
2131 * within the vma has an associated reservation. If a reservation is
2132 * needed, the value 1 is returned. The caller is then responsible for
2133 * managing the global reservation and subpool usage counts. After
2134 * the huge page has been allocated, vma_commit_reservation is called
2135 * to add the page to the reservation map. If the page allocation fails,
2136 * the reservation must be ended instead of committed. vma_end_reservation
2137 * is called in such cases.
2138 *
2139 * In the normal case, vma_commit_reservation returns the same value
2140 * as the preceding vma_needs_reservation call. The only time this
2141 * is not the case is if a reserve map was changed between calls. It
2142 * is the responsibility of the caller to notice the difference and
2143 * take appropriate action.
2144 *
2145 * vma_add_reservation is used in error paths where a reservation must
2146 * be restored when a newly allocated huge page must be freed. It is
2147 * to be called after calling vma_needs_reservation to determine if a
2148 * reservation exists.
2149 */
2150enum vma_resv_mode {
2151 VMA_NEEDS_RESV,
2152 VMA_COMMIT_RESV,
2153 VMA_END_RESV,
2154 VMA_ADD_RESV,
2155};
2156static long __vma_reservation_common(struct hstate *h,
2157 struct vm_area_struct *vma, unsigned long addr,
2158 enum vma_resv_mode mode)
2159{
2160 struct resv_map *resv;
2161 pgoff_t idx;
2162 long ret;
2163 long dummy_out_regions_needed;
2164
2165 resv = vma_resv_map(vma);
2166 if (!resv)
2167 return 1;
2168
2169 idx = vma_hugecache_offset(h, vma, addr);
2170 switch (mode) {
2171 case VMA_NEEDS_RESV:
2172 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2173 /* We assume that vma_reservation_* routines always operate on
2174 * 1 page, and that adding to resv map a 1 page entry can only
2175 * ever require 1 region.
2176 */
2177 VM_BUG_ON(dummy_out_regions_needed != 1);
2178 break;
2179 case VMA_COMMIT_RESV:
2180 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2181 /* region_add calls of range 1 should never fail. */
2182 VM_BUG_ON(ret < 0);
2183 break;
2184 case VMA_END_RESV:
2185 region_abort(resv, idx, idx + 1, 1);
2186 ret = 0;
2187 break;
2188 case VMA_ADD_RESV:
2189 if (vma->vm_flags & VM_MAYSHARE) {
2190 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2191 /* region_add calls of range 1 should never fail. */
2192 VM_BUG_ON(ret < 0);
2193 } else {
2194 region_abort(resv, idx, idx + 1, 1);
2195 ret = region_del(resv, idx, idx + 1);
2196 }
2197 break;
2198 default:
2199 BUG();
2200 }
2201
2202 if (vma->vm_flags & VM_MAYSHARE)
2203 return ret;
2204 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2205 /*
2206 * In most cases, reserves always exist for private mappings.
2207 * However, a file associated with mapping could have been
2208 * hole punched or truncated after reserves were consumed.
2209 * As subsequent fault on such a range will not use reserves.
2210 * Subtle - The reserve map for private mappings has the
2211 * opposite meaning than that of shared mappings. If NO
2212 * entry is in the reserve map, it means a reservation exists.
2213 * If an entry exists in the reserve map, it means the
2214 * reservation has already been consumed. As a result, the
2215 * return value of this routine is the opposite of the
2216 * value returned from reserve map manipulation routines above.
2217 */
2218 if (ret)
2219 return 0;
2220 else
2221 return 1;
2222 }
2223 else
2224 return ret < 0 ? ret : 0;
2225}
2226
2227static long vma_needs_reservation(struct hstate *h,
2228 struct vm_area_struct *vma, unsigned long addr)
2229{
2230 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2231}
2232
2233static long vma_commit_reservation(struct hstate *h,
2234 struct vm_area_struct *vma, unsigned long addr)
2235{
2236 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2237}
2238
2239static void vma_end_reservation(struct hstate *h,
2240 struct vm_area_struct *vma, unsigned long addr)
2241{
2242 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2243}
2244
2245static long vma_add_reservation(struct hstate *h,
2246 struct vm_area_struct *vma, unsigned long addr)
2247{
2248 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2249}
2250
2251/*
2252 * This routine is called to restore a reservation on error paths. In the
2253 * specific error paths, a huge page was allocated (via alloc_huge_page)
2254 * and is about to be freed. If a reservation for the page existed,
2255 * alloc_huge_page would have consumed the reservation and set PagePrivate
2256 * in the newly allocated page. When the page is freed via free_huge_page,
2257 * the global reservation count will be incremented if PagePrivate is set.
2258 * However, free_huge_page can not adjust the reserve map. Adjust the
2259 * reserve map here to be consistent with global reserve count adjustments
2260 * to be made by free_huge_page.
2261 */
2262static void restore_reserve_on_error(struct hstate *h,
2263 struct vm_area_struct *vma, unsigned long address,
2264 struct page *page)
2265{
2266 if (unlikely(PagePrivate(page))) {
2267 long rc = vma_needs_reservation(h, vma, address);
2268
2269 if (unlikely(rc < 0)) {
2270 /*
2271 * Rare out of memory condition in reserve map
2272 * manipulation. Clear PagePrivate so that
2273 * global reserve count will not be incremented
2274 * by free_huge_page. This will make it appear
2275 * as though the reservation for this page was
2276 * consumed. This may prevent the task from
2277 * faulting in the page at a later time. This
2278 * is better than inconsistent global huge page
2279 * accounting of reserve counts.
2280 */
2281 ClearPagePrivate(page);
2282 } else if (rc) {
2283 rc = vma_add_reservation(h, vma, address);
2284 if (unlikely(rc < 0))
2285 /*
2286 * See above comment about rare out of
2287 * memory condition.
2288 */
2289 ClearPagePrivate(page);
2290 } else
2291 vma_end_reservation(h, vma, address);
2292 }
2293}
2294
2295struct page *alloc_huge_page(struct vm_area_struct *vma,
2296 unsigned long addr, int avoid_reserve)
2297{
2298 struct hugepage_subpool *spool = subpool_vma(vma);
2299 struct hstate *h = hstate_vma(vma);
2300 struct page *page;
2301 long map_chg, map_commit;
2302 long gbl_chg;
2303 int ret, idx;
2304 struct hugetlb_cgroup *h_cg;
2305 bool deferred_reserve;
2306
2307 idx = hstate_index(h);
2308 /*
2309 * Examine the region/reserve map to determine if the process
2310 * has a reservation for the page to be allocated. A return
2311 * code of zero indicates a reservation exists (no change).
2312 */
2313 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2314 if (map_chg < 0)
2315 return ERR_PTR(-ENOMEM);
2316
2317 /*
2318 * Processes that did not create the mapping will have no
2319 * reserves as indicated by the region/reserve map. Check
2320 * that the allocation will not exceed the subpool limit.
2321 * Allocations for MAP_NORESERVE mappings also need to be
2322 * checked against any subpool limit.
2323 */
2324 if (map_chg || avoid_reserve) {
2325 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2326 if (gbl_chg < 0) {
2327 vma_end_reservation(h, vma, addr);
2328 return ERR_PTR(-ENOSPC);
2329 }
2330
2331 /*
2332 * Even though there was no reservation in the region/reserve
2333 * map, there could be reservations associated with the
2334 * subpool that can be used. This would be indicated if the
2335 * return value of hugepage_subpool_get_pages() is zero.
2336 * However, if avoid_reserve is specified we still avoid even
2337 * the subpool reservations.
2338 */
2339 if (avoid_reserve)
2340 gbl_chg = 1;
2341 }
2342
2343 /* If this allocation is not consuming a reservation, charge it now.
2344 */
2345 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2346 if (deferred_reserve) {
2347 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2348 idx, pages_per_huge_page(h), &h_cg);
2349 if (ret)
2350 goto out_subpool_put;
2351 }
2352
2353 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2354 if (ret)
2355 goto out_uncharge_cgroup_reservation;
2356
2357 spin_lock(&hugetlb_lock);
2358 /*
2359 * glb_chg is passed to indicate whether or not a page must be taken
2360 * from the global free pool (global change). gbl_chg == 0 indicates
2361 * a reservation exists for the allocation.
2362 */
2363 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2364 if (!page) {
2365 spin_unlock(&hugetlb_lock);
2366 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2367 if (!page)
2368 goto out_uncharge_cgroup;
2369 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2370 SetPagePrivate(page);
2371 h->resv_huge_pages--;
2372 }
2373 spin_lock(&hugetlb_lock);
2374 list_add(&page->lru, &h->hugepage_activelist);
2375 /* Fall through */
2376 }
2377 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2378 /* If allocation is not consuming a reservation, also store the
2379 * hugetlb_cgroup pointer on the page.
2380 */
2381 if (deferred_reserve) {
2382 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2383 h_cg, page);
2384 }
2385
2386 spin_unlock(&hugetlb_lock);
2387
2388 set_page_private(page, (unsigned long)spool);
2389
2390 map_commit = vma_commit_reservation(h, vma, addr);
2391 if (unlikely(map_chg > map_commit)) {
2392 /*
2393 * The page was added to the reservation map between
2394 * vma_needs_reservation and vma_commit_reservation.
2395 * This indicates a race with hugetlb_reserve_pages.
2396 * Adjust for the subpool count incremented above AND
2397 * in hugetlb_reserve_pages for the same page. Also,
2398 * the reservation count added in hugetlb_reserve_pages
2399 * no longer applies.
2400 */
2401 long rsv_adjust;
2402
2403 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2404 hugetlb_acct_memory(h, -rsv_adjust);
2405 if (deferred_reserve)
2406 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2407 pages_per_huge_page(h), page);
2408 }
2409 return page;
2410
2411out_uncharge_cgroup:
2412 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2413out_uncharge_cgroup_reservation:
2414 if (deferred_reserve)
2415 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2416 h_cg);
2417out_subpool_put:
2418 if (map_chg || avoid_reserve)
2419 hugepage_subpool_put_pages(spool, 1);
2420 vma_end_reservation(h, vma, addr);
2421 return ERR_PTR(-ENOSPC);
2422}
2423
2424int alloc_bootmem_huge_page(struct hstate *h)
2425 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2426int __alloc_bootmem_huge_page(struct hstate *h)
2427{
2428 struct huge_bootmem_page *m;
2429 int nr_nodes, node;
2430
2431 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2432 void *addr;
2433
2434 addr = memblock_alloc_try_nid_raw(
2435 huge_page_size(h), huge_page_size(h),
2436 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2437 if (addr) {
2438 /*
2439 * Use the beginning of the huge page to store the
2440 * huge_bootmem_page struct (until gather_bootmem
2441 * puts them into the mem_map).
2442 */
2443 m = addr;
2444 goto found;
2445 }
2446 }
2447 return 0;
2448
2449found:
2450 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2451 /* Put them into a private list first because mem_map is not up yet */
2452 INIT_LIST_HEAD(&m->list);
2453 list_add(&m->list, &huge_boot_pages);
2454 m->hstate = h;
2455 return 1;
2456}
2457
2458static void __init prep_compound_huge_page(struct page *page,
2459 unsigned int order)
2460{
2461 if (unlikely(order > (MAX_ORDER - 1)))
2462 prep_compound_gigantic_page(page, order);
2463 else
2464 prep_compound_page(page, order);
2465}
2466
2467/* Put bootmem huge pages into the standard lists after mem_map is up */
2468static void __init gather_bootmem_prealloc(void)
2469{
2470 struct huge_bootmem_page *m;
2471
2472 list_for_each_entry(m, &huge_boot_pages, list) {
2473 struct page *page = virt_to_page(m);
2474 struct hstate *h = m->hstate;
2475
2476 WARN_ON(page_count(page) != 1);
2477 prep_compound_huge_page(page, h->order);
2478 WARN_ON(PageReserved(page));
2479 prep_new_huge_page(h, page, page_to_nid(page));
2480 put_page(page); /* free it into the hugepage allocator */
2481
2482 /*
2483 * If we had gigantic hugepages allocated at boot time, we need
2484 * to restore the 'stolen' pages to totalram_pages in order to
2485 * fix confusing memory reports from free(1) and another
2486 * side-effects, like CommitLimit going negative.
2487 */
2488 if (hstate_is_gigantic(h))
2489 adjust_managed_page_count(page, 1 << h->order);
2490 cond_resched();
2491 }
2492}
2493
2494static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2495{
2496 unsigned long i;
2497 nodemask_t *node_alloc_noretry;
2498
2499 if (!hstate_is_gigantic(h)) {
2500 /*
2501 * Bit mask controlling how hard we retry per-node allocations.
2502 * Ignore errors as lower level routines can deal with
2503 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2504 * time, we are likely in bigger trouble.
2505 */
2506 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2507 GFP_KERNEL);
2508 } else {
2509 /* allocations done at boot time */
2510 node_alloc_noretry = NULL;
2511 }
2512
2513 /* bit mask controlling how hard we retry per-node allocations */
2514 if (node_alloc_noretry)
2515 nodes_clear(*node_alloc_noretry);
2516
2517 for (i = 0; i < h->max_huge_pages; ++i) {
2518 if (hstate_is_gigantic(h)) {
2519 if (hugetlb_cma_size) {
2520 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2521 break;
2522 }
2523 if (!alloc_bootmem_huge_page(h))
2524 break;
2525 } else if (!alloc_pool_huge_page(h,
2526 &node_states[N_MEMORY],
2527 node_alloc_noretry))
2528 break;
2529 cond_resched();
2530 }
2531 if (i < h->max_huge_pages) {
2532 char buf[32];
2533
2534 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2535 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2536 h->max_huge_pages, buf, i);
2537 h->max_huge_pages = i;
2538 }
2539
2540 kfree(node_alloc_noretry);
2541}
2542
2543static void __init hugetlb_init_hstates(void)
2544{
2545 struct hstate *h;
2546
2547 for_each_hstate(h) {
2548 if (minimum_order > huge_page_order(h))
2549 minimum_order = huge_page_order(h);
2550
2551 /* oversize hugepages were init'ed in early boot */
2552 if (!hstate_is_gigantic(h))
2553 hugetlb_hstate_alloc_pages(h);
2554 }
2555 VM_BUG_ON(minimum_order == UINT_MAX);
2556}
2557
2558static void __init report_hugepages(void)
2559{
2560 struct hstate *h;
2561
2562 for_each_hstate(h) {
2563 char buf[32];
2564
2565 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2566 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2567 buf, h->free_huge_pages);
2568 }
2569}
2570
2571#ifdef CONFIG_HIGHMEM
2572static void try_to_free_low(struct hstate *h, unsigned long count,
2573 nodemask_t *nodes_allowed)
2574{
2575 int i;
2576
2577 if (hstate_is_gigantic(h))
2578 return;
2579
2580 for_each_node_mask(i, *nodes_allowed) {
2581 struct page *page, *next;
2582 struct list_head *freel = &h->hugepage_freelists[i];
2583 list_for_each_entry_safe(page, next, freel, lru) {
2584 if (count >= h->nr_huge_pages)
2585 return;
2586 if (PageHighMem(page))
2587 continue;
2588 list_del(&page->lru);
2589 update_and_free_page(h, page);
2590 h->free_huge_pages--;
2591 h->free_huge_pages_node[page_to_nid(page)]--;
2592 }
2593 }
2594}
2595#else
2596static inline void try_to_free_low(struct hstate *h, unsigned long count,
2597 nodemask_t *nodes_allowed)
2598{
2599}
2600#endif
2601
2602/*
2603 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2604 * balanced by operating on them in a round-robin fashion.
2605 * Returns 1 if an adjustment was made.
2606 */
2607static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2608 int delta)
2609{
2610 int nr_nodes, node;
2611
2612 VM_BUG_ON(delta != -1 && delta != 1);
2613
2614 if (delta < 0) {
2615 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2616 if (h->surplus_huge_pages_node[node])
2617 goto found;
2618 }
2619 } else {
2620 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2621 if (h->surplus_huge_pages_node[node] <
2622 h->nr_huge_pages_node[node])
2623 goto found;
2624 }
2625 }
2626 return 0;
2627
2628found:
2629 h->surplus_huge_pages += delta;
2630 h->surplus_huge_pages_node[node] += delta;
2631 return 1;
2632}
2633
2634#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2635static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2636 nodemask_t *nodes_allowed)
2637{
2638 unsigned long min_count, ret;
2639 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2640
2641 /*
2642 * Bit mask controlling how hard we retry per-node allocations.
2643 * If we can not allocate the bit mask, do not attempt to allocate
2644 * the requested huge pages.
2645 */
2646 if (node_alloc_noretry)
2647 nodes_clear(*node_alloc_noretry);
2648 else
2649 return -ENOMEM;
2650
2651 spin_lock(&hugetlb_lock);
2652
2653 /*
2654 * Check for a node specific request.
2655 * Changing node specific huge page count may require a corresponding
2656 * change to the global count. In any case, the passed node mask
2657 * (nodes_allowed) will restrict alloc/free to the specified node.
2658 */
2659 if (nid != NUMA_NO_NODE) {
2660 unsigned long old_count = count;
2661
2662 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2663 /*
2664 * User may have specified a large count value which caused the
2665 * above calculation to overflow. In this case, they wanted
2666 * to allocate as many huge pages as possible. Set count to
2667 * largest possible value to align with their intention.
2668 */
2669 if (count < old_count)
2670 count = ULONG_MAX;
2671 }
2672
2673 /*
2674 * Gigantic pages runtime allocation depend on the capability for large
2675 * page range allocation.
2676 * If the system does not provide this feature, return an error when
2677 * the user tries to allocate gigantic pages but let the user free the
2678 * boottime allocated gigantic pages.
2679 */
2680 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2681 if (count > persistent_huge_pages(h)) {
2682 spin_unlock(&hugetlb_lock);
2683 NODEMASK_FREE(node_alloc_noretry);
2684 return -EINVAL;
2685 }
2686 /* Fall through to decrease pool */
2687 }
2688
2689 /*
2690 * Increase the pool size
2691 * First take pages out of surplus state. Then make up the
2692 * remaining difference by allocating fresh huge pages.
2693 *
2694 * We might race with alloc_surplus_huge_page() here and be unable
2695 * to convert a surplus huge page to a normal huge page. That is
2696 * not critical, though, it just means the overall size of the
2697 * pool might be one hugepage larger than it needs to be, but
2698 * within all the constraints specified by the sysctls.
2699 */
2700 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2701 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2702 break;
2703 }
2704
2705 while (count > persistent_huge_pages(h)) {
2706 /*
2707 * If this allocation races such that we no longer need the
2708 * page, free_huge_page will handle it by freeing the page
2709 * and reducing the surplus.
2710 */
2711 spin_unlock(&hugetlb_lock);
2712
2713 /* yield cpu to avoid soft lockup */
2714 cond_resched();
2715
2716 ret = alloc_pool_huge_page(h, nodes_allowed,
2717 node_alloc_noretry);
2718 spin_lock(&hugetlb_lock);
2719 if (!ret)
2720 goto out;
2721
2722 /* Bail for signals. Probably ctrl-c from user */
2723 if (signal_pending(current))
2724 goto out;
2725 }
2726
2727 /*
2728 * Decrease the pool size
2729 * First return free pages to the buddy allocator (being careful
2730 * to keep enough around to satisfy reservations). Then place
2731 * pages into surplus state as needed so the pool will shrink
2732 * to the desired size as pages become free.
2733 *
2734 * By placing pages into the surplus state independent of the
2735 * overcommit value, we are allowing the surplus pool size to
2736 * exceed overcommit. There are few sane options here. Since
2737 * alloc_surplus_huge_page() is checking the global counter,
2738 * though, we'll note that we're not allowed to exceed surplus
2739 * and won't grow the pool anywhere else. Not until one of the
2740 * sysctls are changed, or the surplus pages go out of use.
2741 */
2742 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2743 min_count = max(count, min_count);
2744 try_to_free_low(h, min_count, nodes_allowed);
2745 while (min_count < persistent_huge_pages(h)) {
2746 if (!free_pool_huge_page(h, nodes_allowed, 0))
2747 break;
2748 cond_resched_lock(&hugetlb_lock);
2749 }
2750 while (count < persistent_huge_pages(h)) {
2751 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2752 break;
2753 }
2754out:
2755 h->max_huge_pages = persistent_huge_pages(h);
2756 spin_unlock(&hugetlb_lock);
2757
2758 NODEMASK_FREE(node_alloc_noretry);
2759
2760 return 0;
2761}
2762
2763#define HSTATE_ATTR_RO(_name) \
2764 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2765
2766#define HSTATE_ATTR(_name) \
2767 static struct kobj_attribute _name##_attr = \
2768 __ATTR(_name, 0644, _name##_show, _name##_store)
2769
2770static struct kobject *hugepages_kobj;
2771static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2772
2773static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2774
2775static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2776{
2777 int i;
2778
2779 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2780 if (hstate_kobjs[i] == kobj) {
2781 if (nidp)
2782 *nidp = NUMA_NO_NODE;
2783 return &hstates[i];
2784 }
2785
2786 return kobj_to_node_hstate(kobj, nidp);
2787}
2788
2789static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2790 struct kobj_attribute *attr, char *buf)
2791{
2792 struct hstate *h;
2793 unsigned long nr_huge_pages;
2794 int nid;
2795
2796 h = kobj_to_hstate(kobj, &nid);
2797 if (nid == NUMA_NO_NODE)
2798 nr_huge_pages = h->nr_huge_pages;
2799 else
2800 nr_huge_pages = h->nr_huge_pages_node[nid];
2801
2802 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2803}
2804
2805static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2806 struct hstate *h, int nid,
2807 unsigned long count, size_t len)
2808{
2809 int err;
2810 nodemask_t nodes_allowed, *n_mask;
2811
2812 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2813 return -EINVAL;
2814
2815 if (nid == NUMA_NO_NODE) {
2816 /*
2817 * global hstate attribute
2818 */
2819 if (!(obey_mempolicy &&
2820 init_nodemask_of_mempolicy(&nodes_allowed)))
2821 n_mask = &node_states[N_MEMORY];
2822 else
2823 n_mask = &nodes_allowed;
2824 } else {
2825 /*
2826 * Node specific request. count adjustment happens in
2827 * set_max_huge_pages() after acquiring hugetlb_lock.
2828 */
2829 init_nodemask_of_node(&nodes_allowed, nid);
2830 n_mask = &nodes_allowed;
2831 }
2832
2833 err = set_max_huge_pages(h, count, nid, n_mask);
2834
2835 return err ? err : len;
2836}
2837
2838static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2839 struct kobject *kobj, const char *buf,
2840 size_t len)
2841{
2842 struct hstate *h;
2843 unsigned long count;
2844 int nid;
2845 int err;
2846
2847 err = kstrtoul(buf, 10, &count);
2848 if (err)
2849 return err;
2850
2851 h = kobj_to_hstate(kobj, &nid);
2852 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2853}
2854
2855static ssize_t nr_hugepages_show(struct kobject *kobj,
2856 struct kobj_attribute *attr, char *buf)
2857{
2858 return nr_hugepages_show_common(kobj, attr, buf);
2859}
2860
2861static ssize_t nr_hugepages_store(struct kobject *kobj,
2862 struct kobj_attribute *attr, const char *buf, size_t len)
2863{
2864 return nr_hugepages_store_common(false, kobj, buf, len);
2865}
2866HSTATE_ATTR(nr_hugepages);
2867
2868#ifdef CONFIG_NUMA
2869
2870/*
2871 * hstate attribute for optionally mempolicy-based constraint on persistent
2872 * huge page alloc/free.
2873 */
2874static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2875 struct kobj_attribute *attr,
2876 char *buf)
2877{
2878 return nr_hugepages_show_common(kobj, attr, buf);
2879}
2880
2881static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2882 struct kobj_attribute *attr, const char *buf, size_t len)
2883{
2884 return nr_hugepages_store_common(true, kobj, buf, len);
2885}
2886HSTATE_ATTR(nr_hugepages_mempolicy);
2887#endif
2888
2889
2890static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2891 struct kobj_attribute *attr, char *buf)
2892{
2893 struct hstate *h = kobj_to_hstate(kobj, NULL);
2894 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2895}
2896
2897static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2898 struct kobj_attribute *attr, const char *buf, size_t count)
2899{
2900 int err;
2901 unsigned long input;
2902 struct hstate *h = kobj_to_hstate(kobj, NULL);
2903
2904 if (hstate_is_gigantic(h))
2905 return -EINVAL;
2906
2907 err = kstrtoul(buf, 10, &input);
2908 if (err)
2909 return err;
2910
2911 spin_lock(&hugetlb_lock);
2912 h->nr_overcommit_huge_pages = input;
2913 spin_unlock(&hugetlb_lock);
2914
2915 return count;
2916}
2917HSTATE_ATTR(nr_overcommit_hugepages);
2918
2919static ssize_t free_hugepages_show(struct kobject *kobj,
2920 struct kobj_attribute *attr, char *buf)
2921{
2922 struct hstate *h;
2923 unsigned long free_huge_pages;
2924 int nid;
2925
2926 h = kobj_to_hstate(kobj, &nid);
2927 if (nid == NUMA_NO_NODE)
2928 free_huge_pages = h->free_huge_pages;
2929 else
2930 free_huge_pages = h->free_huge_pages_node[nid];
2931
2932 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2933}
2934HSTATE_ATTR_RO(free_hugepages);
2935
2936static ssize_t resv_hugepages_show(struct kobject *kobj,
2937 struct kobj_attribute *attr, char *buf)
2938{
2939 struct hstate *h = kobj_to_hstate(kobj, NULL);
2940 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2941}
2942HSTATE_ATTR_RO(resv_hugepages);
2943
2944static ssize_t surplus_hugepages_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946{
2947 struct hstate *h;
2948 unsigned long surplus_huge_pages;
2949 int nid;
2950
2951 h = kobj_to_hstate(kobj, &nid);
2952 if (nid == NUMA_NO_NODE)
2953 surplus_huge_pages = h->surplus_huge_pages;
2954 else
2955 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2956
2957 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2958}
2959HSTATE_ATTR_RO(surplus_hugepages);
2960
2961static struct attribute *hstate_attrs[] = {
2962 &nr_hugepages_attr.attr,
2963 &nr_overcommit_hugepages_attr.attr,
2964 &free_hugepages_attr.attr,
2965 &resv_hugepages_attr.attr,
2966 &surplus_hugepages_attr.attr,
2967#ifdef CONFIG_NUMA
2968 &nr_hugepages_mempolicy_attr.attr,
2969#endif
2970 NULL,
2971};
2972
2973static const struct attribute_group hstate_attr_group = {
2974 .attrs = hstate_attrs,
2975};
2976
2977static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2978 struct kobject **hstate_kobjs,
2979 const struct attribute_group *hstate_attr_group)
2980{
2981 int retval;
2982 int hi = hstate_index(h);
2983
2984 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2985 if (!hstate_kobjs[hi])
2986 return -ENOMEM;
2987
2988 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2989 if (retval)
2990 kobject_put(hstate_kobjs[hi]);
2991
2992 return retval;
2993}
2994
2995static void __init hugetlb_sysfs_init(void)
2996{
2997 struct hstate *h;
2998 int err;
2999
3000 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3001 if (!hugepages_kobj)
3002 return;
3003
3004 for_each_hstate(h) {
3005 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3006 hstate_kobjs, &hstate_attr_group);
3007 if (err)
3008 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3009 }
3010}
3011
3012#ifdef CONFIG_NUMA
3013
3014/*
3015 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3016 * with node devices in node_devices[] using a parallel array. The array
3017 * index of a node device or _hstate == node id.
3018 * This is here to avoid any static dependency of the node device driver, in
3019 * the base kernel, on the hugetlb module.
3020 */
3021struct node_hstate {
3022 struct kobject *hugepages_kobj;
3023 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3024};
3025static struct node_hstate node_hstates[MAX_NUMNODES];
3026
3027/*
3028 * A subset of global hstate attributes for node devices
3029 */
3030static struct attribute *per_node_hstate_attrs[] = {
3031 &nr_hugepages_attr.attr,
3032 &free_hugepages_attr.attr,
3033 &surplus_hugepages_attr.attr,
3034 NULL,
3035};
3036
3037static const struct attribute_group per_node_hstate_attr_group = {
3038 .attrs = per_node_hstate_attrs,
3039};
3040
3041/*
3042 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3043 * Returns node id via non-NULL nidp.
3044 */
3045static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3046{
3047 int nid;
3048
3049 for (nid = 0; nid < nr_node_ids; nid++) {
3050 struct node_hstate *nhs = &node_hstates[nid];
3051 int i;
3052 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3053 if (nhs->hstate_kobjs[i] == kobj) {
3054 if (nidp)
3055 *nidp = nid;
3056 return &hstates[i];
3057 }
3058 }
3059
3060 BUG();
3061 return NULL;
3062}
3063
3064/*
3065 * Unregister hstate attributes from a single node device.
3066 * No-op if no hstate attributes attached.
3067 */
3068static void hugetlb_unregister_node(struct node *node)
3069{
3070 struct hstate *h;
3071 struct node_hstate *nhs = &node_hstates[node->dev.id];
3072
3073 if (!nhs->hugepages_kobj)
3074 return; /* no hstate attributes */
3075
3076 for_each_hstate(h) {
3077 int idx = hstate_index(h);
3078 if (nhs->hstate_kobjs[idx]) {
3079 kobject_put(nhs->hstate_kobjs[idx]);
3080 nhs->hstate_kobjs[idx] = NULL;
3081 }
3082 }
3083
3084 kobject_put(nhs->hugepages_kobj);
3085 nhs->hugepages_kobj = NULL;
3086}
3087
3088
3089/*
3090 * Register hstate attributes for a single node device.
3091 * No-op if attributes already registered.
3092 */
3093static void hugetlb_register_node(struct node *node)
3094{
3095 struct hstate *h;
3096 struct node_hstate *nhs = &node_hstates[node->dev.id];
3097 int err;
3098
3099 if (nhs->hugepages_kobj)
3100 return; /* already allocated */
3101
3102 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3103 &node->dev.kobj);
3104 if (!nhs->hugepages_kobj)
3105 return;
3106
3107 for_each_hstate(h) {
3108 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3109 nhs->hstate_kobjs,
3110 &per_node_hstate_attr_group);
3111 if (err) {
3112 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3113 h->name, node->dev.id);
3114 hugetlb_unregister_node(node);
3115 break;
3116 }
3117 }
3118}
3119
3120/*
3121 * hugetlb init time: register hstate attributes for all registered node
3122 * devices of nodes that have memory. All on-line nodes should have
3123 * registered their associated device by this time.
3124 */
3125static void __init hugetlb_register_all_nodes(void)
3126{
3127 int nid;
3128
3129 for_each_node_state(nid, N_MEMORY) {
3130 struct node *node = node_devices[nid];
3131 if (node->dev.id == nid)
3132 hugetlb_register_node(node);
3133 }
3134
3135 /*
3136 * Let the node device driver know we're here so it can
3137 * [un]register hstate attributes on node hotplug.
3138 */
3139 register_hugetlbfs_with_node(hugetlb_register_node,
3140 hugetlb_unregister_node);
3141}
3142#else /* !CONFIG_NUMA */
3143
3144static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3145{
3146 BUG();
3147 if (nidp)
3148 *nidp = -1;
3149 return NULL;
3150}
3151
3152static void hugetlb_register_all_nodes(void) { }
3153
3154#endif
3155
3156static int __init hugetlb_init(void)
3157{
3158 int i;
3159
3160 if (!hugepages_supported()) {
3161 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3162 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3163 return 0;
3164 }
3165
3166 /*
3167 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3168 * architectures depend on setup being done here.
3169 */
3170 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3171 if (!parsed_default_hugepagesz) {
3172 /*
3173 * If we did not parse a default huge page size, set
3174 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3175 * number of huge pages for this default size was implicitly
3176 * specified, set that here as well.
3177 * Note that the implicit setting will overwrite an explicit
3178 * setting. A warning will be printed in this case.
3179 */
3180 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3181 if (default_hstate_max_huge_pages) {
3182 if (default_hstate.max_huge_pages) {
3183 char buf[32];
3184
3185 string_get_size(huge_page_size(&default_hstate),
3186 1, STRING_UNITS_2, buf, 32);
3187 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3188 default_hstate.max_huge_pages, buf);
3189 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3190 default_hstate_max_huge_pages);
3191 }
3192 default_hstate.max_huge_pages =
3193 default_hstate_max_huge_pages;
3194 }
3195 }
3196
3197 hugetlb_cma_check();
3198 hugetlb_init_hstates();
3199 gather_bootmem_prealloc();
3200 report_hugepages();
3201
3202 hugetlb_sysfs_init();
3203 hugetlb_register_all_nodes();
3204 hugetlb_cgroup_file_init();
3205
3206#ifdef CONFIG_SMP
3207 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3208#else
3209 num_fault_mutexes = 1;
3210#endif
3211 hugetlb_fault_mutex_table =
3212 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3213 GFP_KERNEL);
3214 BUG_ON(!hugetlb_fault_mutex_table);
3215
3216 for (i = 0; i < num_fault_mutexes; i++)
3217 mutex_init(&hugetlb_fault_mutex_table[i]);
3218 return 0;
3219}
3220subsys_initcall(hugetlb_init);
3221
3222/* Overwritten by architectures with more huge page sizes */
3223bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3224{
3225 return size == HPAGE_SIZE;
3226}
3227
3228void __init hugetlb_add_hstate(unsigned int order)
3229{
3230 struct hstate *h;
3231 unsigned long i;
3232
3233 if (size_to_hstate(PAGE_SIZE << order)) {
3234 return;
3235 }
3236 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3237 BUG_ON(order == 0);
3238 h = &hstates[hugetlb_max_hstate++];
3239 h->order = order;
3240 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3241 for (i = 0; i < MAX_NUMNODES; ++i)
3242 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3243 INIT_LIST_HEAD(&h->hugepage_activelist);
3244 h->next_nid_to_alloc = first_memory_node;
3245 h->next_nid_to_free = first_memory_node;
3246 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3247 huge_page_size(h)/1024);
3248
3249 parsed_hstate = h;
3250}
3251
3252/*
3253 * hugepages command line processing
3254 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3255 * specification. If not, ignore the hugepages value. hugepages can also
3256 * be the first huge page command line option in which case it implicitly
3257 * specifies the number of huge pages for the default size.
3258 */
3259static int __init hugepages_setup(char *s)
3260{
3261 unsigned long *mhp;
3262 static unsigned long *last_mhp;
3263
3264 if (!parsed_valid_hugepagesz) {
3265 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3266 parsed_valid_hugepagesz = true;
3267 return 0;
3268 }
3269
3270 /*
3271 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3272 * yet, so this hugepages= parameter goes to the "default hstate".
3273 * Otherwise, it goes with the previously parsed hugepagesz or
3274 * default_hugepagesz.
3275 */
3276 else if (!hugetlb_max_hstate)
3277 mhp = &default_hstate_max_huge_pages;
3278 else
3279 mhp = &parsed_hstate->max_huge_pages;
3280
3281 if (mhp == last_mhp) {
3282 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3283 return 0;
3284 }
3285
3286 if (sscanf(s, "%lu", mhp) <= 0)
3287 *mhp = 0;
3288
3289 /*
3290 * Global state is always initialized later in hugetlb_init.
3291 * But we need to allocate >= MAX_ORDER hstates here early to still
3292 * use the bootmem allocator.
3293 */
3294 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3295 hugetlb_hstate_alloc_pages(parsed_hstate);
3296
3297 last_mhp = mhp;
3298
3299 return 1;
3300}
3301__setup("hugepages=", hugepages_setup);
3302
3303/*
3304 * hugepagesz command line processing
3305 * A specific huge page size can only be specified once with hugepagesz.
3306 * hugepagesz is followed by hugepages on the command line. The global
3307 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3308 * hugepagesz argument was valid.
3309 */
3310static int __init hugepagesz_setup(char *s)
3311{
3312 unsigned long size;
3313 struct hstate *h;
3314
3315 parsed_valid_hugepagesz = false;
3316 size = (unsigned long)memparse(s, NULL);
3317
3318 if (!arch_hugetlb_valid_size(size)) {
3319 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3320 return 0;
3321 }
3322
3323 h = size_to_hstate(size);
3324 if (h) {
3325 /*
3326 * hstate for this size already exists. This is normally
3327 * an error, but is allowed if the existing hstate is the
3328 * default hstate. More specifically, it is only allowed if
3329 * the number of huge pages for the default hstate was not
3330 * previously specified.
3331 */
3332 if (!parsed_default_hugepagesz || h != &default_hstate ||
3333 default_hstate.max_huge_pages) {
3334 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3335 return 0;
3336 }
3337
3338 /*
3339 * No need to call hugetlb_add_hstate() as hstate already
3340 * exists. But, do set parsed_hstate so that a following
3341 * hugepages= parameter will be applied to this hstate.
3342 */
3343 parsed_hstate = h;
3344 parsed_valid_hugepagesz = true;
3345 return 1;
3346 }
3347
3348 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3349 parsed_valid_hugepagesz = true;
3350 return 1;
3351}
3352__setup("hugepagesz=", hugepagesz_setup);
3353
3354/*
3355 * default_hugepagesz command line input
3356 * Only one instance of default_hugepagesz allowed on command line.
3357 */
3358static int __init default_hugepagesz_setup(char *s)
3359{
3360 unsigned long size;
3361
3362 parsed_valid_hugepagesz = false;
3363 if (parsed_default_hugepagesz) {
3364 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3365 return 0;
3366 }
3367
3368 size = (unsigned long)memparse(s, NULL);
3369
3370 if (!arch_hugetlb_valid_size(size)) {
3371 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3372 return 0;
3373 }
3374
3375 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3376 parsed_valid_hugepagesz = true;
3377 parsed_default_hugepagesz = true;
3378 default_hstate_idx = hstate_index(size_to_hstate(size));
3379
3380 /*
3381 * The number of default huge pages (for this size) could have been
3382 * specified as the first hugetlb parameter: hugepages=X. If so,
3383 * then default_hstate_max_huge_pages is set. If the default huge
3384 * page size is gigantic (>= MAX_ORDER), then the pages must be
3385 * allocated here from bootmem allocator.
3386 */
3387 if (default_hstate_max_huge_pages) {
3388 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3389 if (hstate_is_gigantic(&default_hstate))
3390 hugetlb_hstate_alloc_pages(&default_hstate);
3391 default_hstate_max_huge_pages = 0;
3392 }
3393
3394 return 1;
3395}
3396__setup("default_hugepagesz=", default_hugepagesz_setup);
3397
3398static unsigned int allowed_mems_nr(struct hstate *h)
3399{
3400 int node;
3401 unsigned int nr = 0;
3402 nodemask_t *mpol_allowed;
3403 unsigned int *array = h->free_huge_pages_node;
3404 gfp_t gfp_mask = htlb_alloc_mask(h);
3405
3406 mpol_allowed = policy_nodemask_current(gfp_mask);
3407
3408 for_each_node_mask(node, cpuset_current_mems_allowed) {
3409 if (!mpol_allowed ||
3410 (mpol_allowed && node_isset(node, *mpol_allowed)))
3411 nr += array[node];
3412 }
3413
3414 return nr;
3415}
3416
3417#ifdef CONFIG_SYSCTL
3418static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3419 void *buffer, size_t *length,
3420 loff_t *ppos, unsigned long *out)
3421{
3422 struct ctl_table dup_table;
3423
3424 /*
3425 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3426 * can duplicate the @table and alter the duplicate of it.
3427 */
3428 dup_table = *table;
3429 dup_table.data = out;
3430
3431 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3432}
3433
3434static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3435 struct ctl_table *table, int write,
3436 void *buffer, size_t *length, loff_t *ppos)
3437{
3438 struct hstate *h = &default_hstate;
3439 unsigned long tmp = h->max_huge_pages;
3440 int ret;
3441
3442 if (!hugepages_supported())
3443 return -EOPNOTSUPP;
3444
3445 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3446 &tmp);
3447 if (ret)
3448 goto out;
3449
3450 if (write)
3451 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3452 NUMA_NO_NODE, tmp, *length);
3453out:
3454 return ret;
3455}
3456
3457int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3458 void *buffer, size_t *length, loff_t *ppos)
3459{
3460
3461 return hugetlb_sysctl_handler_common(false, table, write,
3462 buffer, length, ppos);
3463}
3464
3465#ifdef CONFIG_NUMA
3466int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3467 void *buffer, size_t *length, loff_t *ppos)
3468{
3469 return hugetlb_sysctl_handler_common(true, table, write,
3470 buffer, length, ppos);
3471}
3472#endif /* CONFIG_NUMA */
3473
3474int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3475 void *buffer, size_t *length, loff_t *ppos)
3476{
3477 struct hstate *h = &default_hstate;
3478 unsigned long tmp;
3479 int ret;
3480
3481 if (!hugepages_supported())
3482 return -EOPNOTSUPP;
3483
3484 tmp = h->nr_overcommit_huge_pages;
3485
3486 if (write && hstate_is_gigantic(h))
3487 return -EINVAL;
3488
3489 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3490 &tmp);
3491 if (ret)
3492 goto out;
3493
3494 if (write) {
3495 spin_lock(&hugetlb_lock);
3496 h->nr_overcommit_huge_pages = tmp;
3497 spin_unlock(&hugetlb_lock);
3498 }
3499out:
3500 return ret;
3501}
3502
3503#endif /* CONFIG_SYSCTL */
3504
3505void hugetlb_report_meminfo(struct seq_file *m)
3506{
3507 struct hstate *h;
3508 unsigned long total = 0;
3509
3510 if (!hugepages_supported())
3511 return;
3512
3513 for_each_hstate(h) {
3514 unsigned long count = h->nr_huge_pages;
3515
3516 total += (PAGE_SIZE << huge_page_order(h)) * count;
3517
3518 if (h == &default_hstate)
3519 seq_printf(m,
3520 "HugePages_Total: %5lu\n"
3521 "HugePages_Free: %5lu\n"
3522 "HugePages_Rsvd: %5lu\n"
3523 "HugePages_Surp: %5lu\n"
3524 "Hugepagesize: %8lu kB\n",
3525 count,
3526 h->free_huge_pages,
3527 h->resv_huge_pages,
3528 h->surplus_huge_pages,
3529 (PAGE_SIZE << huge_page_order(h)) / 1024);
3530 }
3531
3532 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3533}
3534
3535int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3536{
3537 struct hstate *h = &default_hstate;
3538
3539 if (!hugepages_supported())
3540 return 0;
3541
3542 return sysfs_emit_at(buf, len,
3543 "Node %d HugePages_Total: %5u\n"
3544 "Node %d HugePages_Free: %5u\n"
3545 "Node %d HugePages_Surp: %5u\n",
3546 nid, h->nr_huge_pages_node[nid],
3547 nid, h->free_huge_pages_node[nid],
3548 nid, h->surplus_huge_pages_node[nid]);
3549}
3550
3551void hugetlb_show_meminfo(void)
3552{
3553 struct hstate *h;
3554 int nid;
3555
3556 if (!hugepages_supported())
3557 return;
3558
3559 for_each_node_state(nid, N_MEMORY)
3560 for_each_hstate(h)
3561 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3562 nid,
3563 h->nr_huge_pages_node[nid],
3564 h->free_huge_pages_node[nid],
3565 h->surplus_huge_pages_node[nid],
3566 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3567}
3568
3569void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3570{
3571 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3572 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3573}
3574
3575/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3576unsigned long hugetlb_total_pages(void)
3577{
3578 struct hstate *h;
3579 unsigned long nr_total_pages = 0;
3580
3581 for_each_hstate(h)
3582 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3583 return nr_total_pages;
3584}
3585
3586static int hugetlb_acct_memory(struct hstate *h, long delta)
3587{
3588 int ret = -ENOMEM;
3589
3590 spin_lock(&hugetlb_lock);
3591 /*
3592 * When cpuset is configured, it breaks the strict hugetlb page
3593 * reservation as the accounting is done on a global variable. Such
3594 * reservation is completely rubbish in the presence of cpuset because
3595 * the reservation is not checked against page availability for the
3596 * current cpuset. Application can still potentially OOM'ed by kernel
3597 * with lack of free htlb page in cpuset that the task is in.
3598 * Attempt to enforce strict accounting with cpuset is almost
3599 * impossible (or too ugly) because cpuset is too fluid that
3600 * task or memory node can be dynamically moved between cpusets.
3601 *
3602 * The change of semantics for shared hugetlb mapping with cpuset is
3603 * undesirable. However, in order to preserve some of the semantics,
3604 * we fall back to check against current free page availability as
3605 * a best attempt and hopefully to minimize the impact of changing
3606 * semantics that cpuset has.
3607 *
3608 * Apart from cpuset, we also have memory policy mechanism that
3609 * also determines from which node the kernel will allocate memory
3610 * in a NUMA system. So similar to cpuset, we also should consider
3611 * the memory policy of the current task. Similar to the description
3612 * above.
3613 */
3614 if (delta > 0) {
3615 if (gather_surplus_pages(h, delta) < 0)
3616 goto out;
3617
3618 if (delta > allowed_mems_nr(h)) {
3619 return_unused_surplus_pages(h, delta);
3620 goto out;
3621 }
3622 }
3623
3624 ret = 0;
3625 if (delta < 0)
3626 return_unused_surplus_pages(h, (unsigned long) -delta);
3627
3628out:
3629 spin_unlock(&hugetlb_lock);
3630 return ret;
3631}
3632
3633static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3634{
3635 struct resv_map *resv = vma_resv_map(vma);
3636
3637 /*
3638 * This new VMA should share its siblings reservation map if present.
3639 * The VMA will only ever have a valid reservation map pointer where
3640 * it is being copied for another still existing VMA. As that VMA
3641 * has a reference to the reservation map it cannot disappear until
3642 * after this open call completes. It is therefore safe to take a
3643 * new reference here without additional locking.
3644 */
3645 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3646 kref_get(&resv->refs);
3647}
3648
3649static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3650{
3651 struct hstate *h = hstate_vma(vma);
3652 struct resv_map *resv = vma_resv_map(vma);
3653 struct hugepage_subpool *spool = subpool_vma(vma);
3654 unsigned long reserve, start, end;
3655 long gbl_reserve;
3656
3657 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3658 return;
3659
3660 start = vma_hugecache_offset(h, vma, vma->vm_start);
3661 end = vma_hugecache_offset(h, vma, vma->vm_end);
3662
3663 reserve = (end - start) - region_count(resv, start, end);
3664 hugetlb_cgroup_uncharge_counter(resv, start, end);
3665 if (reserve) {
3666 /*
3667 * Decrement reserve counts. The global reserve count may be
3668 * adjusted if the subpool has a minimum size.
3669 */
3670 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3671 hugetlb_acct_memory(h, -gbl_reserve);
3672 }
3673
3674 kref_put(&resv->refs, resv_map_release);
3675}
3676
3677static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3678{
3679 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3680 return -EINVAL;
3681 return 0;
3682}
3683
3684static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3685{
3686 struct hstate *hstate = hstate_vma(vma);
3687
3688 return 1UL << huge_page_shift(hstate);
3689}
3690
3691/*
3692 * We cannot handle pagefaults against hugetlb pages at all. They cause
3693 * handle_mm_fault() to try to instantiate regular-sized pages in the
3694 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3695 * this far.
3696 */
3697static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3698{
3699 BUG();
3700 return 0;
3701}
3702
3703/*
3704 * When a new function is introduced to vm_operations_struct and added
3705 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3706 * This is because under System V memory model, mappings created via
3707 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3708 * their original vm_ops are overwritten with shm_vm_ops.
3709 */
3710const struct vm_operations_struct hugetlb_vm_ops = {
3711 .fault = hugetlb_vm_op_fault,
3712 .open = hugetlb_vm_op_open,
3713 .close = hugetlb_vm_op_close,
3714 .may_split = hugetlb_vm_op_split,
3715 .pagesize = hugetlb_vm_op_pagesize,
3716};
3717
3718static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3719 int writable)
3720{
3721 pte_t entry;
3722
3723 if (writable) {
3724 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3725 vma->vm_page_prot)));
3726 } else {
3727 entry = huge_pte_wrprotect(mk_huge_pte(page,
3728 vma->vm_page_prot));
3729 }
3730 entry = pte_mkyoung(entry);
3731 entry = pte_mkhuge(entry);
3732 entry = arch_make_huge_pte(entry, vma, page, writable);
3733
3734 return entry;
3735}
3736
3737static void set_huge_ptep_writable(struct vm_area_struct *vma,
3738 unsigned long address, pte_t *ptep)
3739{
3740 pte_t entry;
3741
3742 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3743 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3744 update_mmu_cache(vma, address, ptep);
3745}
3746
3747bool is_hugetlb_entry_migration(pte_t pte)
3748{
3749 swp_entry_t swp;
3750
3751 if (huge_pte_none(pte) || pte_present(pte))
3752 return false;
3753 swp = pte_to_swp_entry(pte);
3754 if (is_migration_entry(swp))
3755 return true;
3756 else
3757 return false;
3758}
3759
3760static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3761{
3762 swp_entry_t swp;
3763
3764 if (huge_pte_none(pte) || pte_present(pte))
3765 return false;
3766 swp = pte_to_swp_entry(pte);
3767 if (is_hwpoison_entry(swp))
3768 return true;
3769 else
3770 return false;
3771}
3772
3773int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3774 struct vm_area_struct *vma)
3775{
3776 pte_t *src_pte, *dst_pte, entry, dst_entry;
3777 struct page *ptepage;
3778 unsigned long addr;
3779 int cow;
3780 struct hstate *h = hstate_vma(vma);
3781 unsigned long sz = huge_page_size(h);
3782 struct address_space *mapping = vma->vm_file->f_mapping;
3783 struct mmu_notifier_range range;
3784 int ret = 0;
3785
3786 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3787
3788 if (cow) {
3789 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3790 vma->vm_start,
3791 vma->vm_end);
3792 mmu_notifier_invalidate_range_start(&range);
3793 } else {
3794 /*
3795 * For shared mappings i_mmap_rwsem must be held to call
3796 * huge_pte_alloc, otherwise the returned ptep could go
3797 * away if part of a shared pmd and another thread calls
3798 * huge_pmd_unshare.
3799 */
3800 i_mmap_lock_read(mapping);
3801 }
3802
3803 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3804 spinlock_t *src_ptl, *dst_ptl;
3805 src_pte = huge_pte_offset(src, addr, sz);
3806 if (!src_pte)
3807 continue;
3808 dst_pte = huge_pte_alloc(dst, addr, sz);
3809 if (!dst_pte) {
3810 ret = -ENOMEM;
3811 break;
3812 }
3813
3814 /*
3815 * If the pagetables are shared don't copy or take references.
3816 * dst_pte == src_pte is the common case of src/dest sharing.
3817 *
3818 * However, src could have 'unshared' and dst shares with
3819 * another vma. If dst_pte !none, this implies sharing.
3820 * Check here before taking page table lock, and once again
3821 * after taking the lock below.
3822 */
3823 dst_entry = huge_ptep_get(dst_pte);
3824 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3825 continue;
3826
3827 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3828 src_ptl = huge_pte_lockptr(h, src, src_pte);
3829 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3830 entry = huge_ptep_get(src_pte);
3831 dst_entry = huge_ptep_get(dst_pte);
3832 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3833 /*
3834 * Skip if src entry none. Also, skip in the
3835 * unlikely case dst entry !none as this implies
3836 * sharing with another vma.
3837 */
3838 ;
3839 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3840 is_hugetlb_entry_hwpoisoned(entry))) {
3841 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3842
3843 if (is_write_migration_entry(swp_entry) && cow) {
3844 /*
3845 * COW mappings require pages in both
3846 * parent and child to be set to read.
3847 */
3848 make_migration_entry_read(&swp_entry);
3849 entry = swp_entry_to_pte(swp_entry);
3850 set_huge_swap_pte_at(src, addr, src_pte,
3851 entry, sz);
3852 }
3853 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3854 } else {
3855 if (cow) {
3856 /*
3857 * No need to notify as we are downgrading page
3858 * table protection not changing it to point
3859 * to a new page.
3860 *
3861 * See Documentation/vm/mmu_notifier.rst
3862 */
3863 huge_ptep_set_wrprotect(src, addr, src_pte);
3864 }
3865 entry = huge_ptep_get(src_pte);
3866 ptepage = pte_page(entry);
3867 get_page(ptepage);
3868 page_dup_rmap(ptepage, true);
3869 set_huge_pte_at(dst, addr, dst_pte, entry);
3870 hugetlb_count_add(pages_per_huge_page(h), dst);
3871 }
3872 spin_unlock(src_ptl);
3873 spin_unlock(dst_ptl);
3874 }
3875
3876 if (cow)
3877 mmu_notifier_invalidate_range_end(&range);
3878 else
3879 i_mmap_unlock_read(mapping);
3880
3881 return ret;
3882}
3883
3884void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3885 unsigned long start, unsigned long end,
3886 struct page *ref_page)
3887{
3888 struct mm_struct *mm = vma->vm_mm;
3889 unsigned long address;
3890 pte_t *ptep;
3891 pte_t pte;
3892 spinlock_t *ptl;
3893 struct page *page;
3894 struct hstate *h = hstate_vma(vma);
3895 unsigned long sz = huge_page_size(h);
3896 struct mmu_notifier_range range;
3897
3898 WARN_ON(!is_vm_hugetlb_page(vma));
3899 BUG_ON(start & ~huge_page_mask(h));
3900 BUG_ON(end & ~huge_page_mask(h));
3901
3902 /*
3903 * This is a hugetlb vma, all the pte entries should point
3904 * to huge page.
3905 */
3906 tlb_change_page_size(tlb, sz);
3907 tlb_start_vma(tlb, vma);
3908
3909 /*
3910 * If sharing possible, alert mmu notifiers of worst case.
3911 */
3912 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3913 end);
3914 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3915 mmu_notifier_invalidate_range_start(&range);
3916 address = start;
3917 for (; address < end; address += sz) {
3918 ptep = huge_pte_offset(mm, address, sz);
3919 if (!ptep)
3920 continue;
3921
3922 ptl = huge_pte_lock(h, mm, ptep);
3923 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3924 spin_unlock(ptl);
3925 /*
3926 * We just unmapped a page of PMDs by clearing a PUD.
3927 * The caller's TLB flush range should cover this area.
3928 */
3929 continue;
3930 }
3931
3932 pte = huge_ptep_get(ptep);
3933 if (huge_pte_none(pte)) {
3934 spin_unlock(ptl);
3935 continue;
3936 }
3937
3938 /*
3939 * Migrating hugepage or HWPoisoned hugepage is already
3940 * unmapped and its refcount is dropped, so just clear pte here.
3941 */
3942 if (unlikely(!pte_present(pte))) {
3943 huge_pte_clear(mm, address, ptep, sz);
3944 spin_unlock(ptl);
3945 continue;
3946 }
3947
3948 page = pte_page(pte);
3949 /*
3950 * If a reference page is supplied, it is because a specific
3951 * page is being unmapped, not a range. Ensure the page we
3952 * are about to unmap is the actual page of interest.
3953 */
3954 if (ref_page) {
3955 if (page != ref_page) {
3956 spin_unlock(ptl);
3957 continue;
3958 }
3959 /*
3960 * Mark the VMA as having unmapped its page so that
3961 * future faults in this VMA will fail rather than
3962 * looking like data was lost
3963 */
3964 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3965 }
3966
3967 pte = huge_ptep_get_and_clear(mm, address, ptep);
3968 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3969 if (huge_pte_dirty(pte))
3970 set_page_dirty(page);
3971
3972 hugetlb_count_sub(pages_per_huge_page(h), mm);
3973 page_remove_rmap(page, true);
3974
3975 spin_unlock(ptl);
3976 tlb_remove_page_size(tlb, page, huge_page_size(h));
3977 /*
3978 * Bail out after unmapping reference page if supplied
3979 */
3980 if (ref_page)
3981 break;
3982 }
3983 mmu_notifier_invalidate_range_end(&range);
3984 tlb_end_vma(tlb, vma);
3985}
3986
3987void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3988 struct vm_area_struct *vma, unsigned long start,
3989 unsigned long end, struct page *ref_page)
3990{
3991 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3992
3993 /*
3994 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3995 * test will fail on a vma being torn down, and not grab a page table
3996 * on its way out. We're lucky that the flag has such an appropriate
3997 * name, and can in fact be safely cleared here. We could clear it
3998 * before the __unmap_hugepage_range above, but all that's necessary
3999 * is to clear it before releasing the i_mmap_rwsem. This works
4000 * because in the context this is called, the VMA is about to be
4001 * destroyed and the i_mmap_rwsem is held.
4002 */
4003 vma->vm_flags &= ~VM_MAYSHARE;
4004}
4005
4006void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4007 unsigned long end, struct page *ref_page)
4008{
4009 struct mm_struct *mm;
4010 struct mmu_gather tlb;
4011 unsigned long tlb_start = start;
4012 unsigned long tlb_end = end;
4013
4014 /*
4015 * If shared PMDs were possibly used within this vma range, adjust
4016 * start/end for worst case tlb flushing.
4017 * Note that we can not be sure if PMDs are shared until we try to
4018 * unmap pages. However, we want to make sure TLB flushing covers
4019 * the largest possible range.
4020 */
4021 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4022
4023 mm = vma->vm_mm;
4024
4025 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4026 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4027 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4028}
4029
4030/*
4031 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4032 * mappping it owns the reserve page for. The intention is to unmap the page
4033 * from other VMAs and let the children be SIGKILLed if they are faulting the
4034 * same region.
4035 */
4036static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4037 struct page *page, unsigned long address)
4038{
4039 struct hstate *h = hstate_vma(vma);
4040 struct vm_area_struct *iter_vma;
4041 struct address_space *mapping;
4042 pgoff_t pgoff;
4043
4044 /*
4045 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4046 * from page cache lookup which is in HPAGE_SIZE units.
4047 */
4048 address = address & huge_page_mask(h);
4049 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4050 vma->vm_pgoff;
4051 mapping = vma->vm_file->f_mapping;
4052
4053 /*
4054 * Take the mapping lock for the duration of the table walk. As
4055 * this mapping should be shared between all the VMAs,
4056 * __unmap_hugepage_range() is called as the lock is already held
4057 */
4058 i_mmap_lock_write(mapping);
4059 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4060 /* Do not unmap the current VMA */
4061 if (iter_vma == vma)
4062 continue;
4063
4064 /*
4065 * Shared VMAs have their own reserves and do not affect
4066 * MAP_PRIVATE accounting but it is possible that a shared
4067 * VMA is using the same page so check and skip such VMAs.
4068 */
4069 if (iter_vma->vm_flags & VM_MAYSHARE)
4070 continue;
4071
4072 /*
4073 * Unmap the page from other VMAs without their own reserves.
4074 * They get marked to be SIGKILLed if they fault in these
4075 * areas. This is because a future no-page fault on this VMA
4076 * could insert a zeroed page instead of the data existing
4077 * from the time of fork. This would look like data corruption
4078 */
4079 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4080 unmap_hugepage_range(iter_vma, address,
4081 address + huge_page_size(h), page);
4082 }
4083 i_mmap_unlock_write(mapping);
4084}
4085
4086/*
4087 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4088 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4089 * cannot race with other handlers or page migration.
4090 * Keep the pte_same checks anyway to make transition from the mutex easier.
4091 */
4092static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4093 unsigned long address, pte_t *ptep,
4094 struct page *pagecache_page, spinlock_t *ptl)
4095{
4096 pte_t pte;
4097 struct hstate *h = hstate_vma(vma);
4098 struct page *old_page, *new_page;
4099 int outside_reserve = 0;
4100 vm_fault_t ret = 0;
4101 unsigned long haddr = address & huge_page_mask(h);
4102 struct mmu_notifier_range range;
4103
4104 pte = huge_ptep_get(ptep);
4105 old_page = pte_page(pte);
4106
4107retry_avoidcopy:
4108 /* If no-one else is actually using this page, avoid the copy
4109 * and just make the page writable */
4110 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4111 page_move_anon_rmap(old_page, vma);
4112 set_huge_ptep_writable(vma, haddr, ptep);
4113 return 0;
4114 }
4115
4116 /*
4117 * If the process that created a MAP_PRIVATE mapping is about to
4118 * perform a COW due to a shared page count, attempt to satisfy
4119 * the allocation without using the existing reserves. The pagecache
4120 * page is used to determine if the reserve at this address was
4121 * consumed or not. If reserves were used, a partial faulted mapping
4122 * at the time of fork() could consume its reserves on COW instead
4123 * of the full address range.
4124 */
4125 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4126 old_page != pagecache_page)
4127 outside_reserve = 1;
4128
4129 get_page(old_page);
4130
4131 /*
4132 * Drop page table lock as buddy allocator may be called. It will
4133 * be acquired again before returning to the caller, as expected.
4134 */
4135 spin_unlock(ptl);
4136 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4137
4138 if (IS_ERR(new_page)) {
4139 /*
4140 * If a process owning a MAP_PRIVATE mapping fails to COW,
4141 * it is due to references held by a child and an insufficient
4142 * huge page pool. To guarantee the original mappers
4143 * reliability, unmap the page from child processes. The child
4144 * may get SIGKILLed if it later faults.
4145 */
4146 if (outside_reserve) {
4147 struct address_space *mapping = vma->vm_file->f_mapping;
4148 pgoff_t idx;
4149 u32 hash;
4150
4151 put_page(old_page);
4152 BUG_ON(huge_pte_none(pte));
4153 /*
4154 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4155 * unmapping. unmapping needs to hold i_mmap_rwsem
4156 * in write mode. Dropping i_mmap_rwsem in read mode
4157 * here is OK as COW mappings do not interact with
4158 * PMD sharing.
4159 *
4160 * Reacquire both after unmap operation.
4161 */
4162 idx = vma_hugecache_offset(h, vma, haddr);
4163 hash = hugetlb_fault_mutex_hash(mapping, idx);
4164 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4165 i_mmap_unlock_read(mapping);
4166
4167 unmap_ref_private(mm, vma, old_page, haddr);
4168
4169 i_mmap_lock_read(mapping);
4170 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4171 spin_lock(ptl);
4172 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4173 if (likely(ptep &&
4174 pte_same(huge_ptep_get(ptep), pte)))
4175 goto retry_avoidcopy;
4176 /*
4177 * race occurs while re-acquiring page table
4178 * lock, and our job is done.
4179 */
4180 return 0;
4181 }
4182
4183 ret = vmf_error(PTR_ERR(new_page));
4184 goto out_release_old;
4185 }
4186
4187 /*
4188 * When the original hugepage is shared one, it does not have
4189 * anon_vma prepared.
4190 */
4191 if (unlikely(anon_vma_prepare(vma))) {
4192 ret = VM_FAULT_OOM;
4193 goto out_release_all;
4194 }
4195
4196 copy_user_huge_page(new_page, old_page, address, vma,
4197 pages_per_huge_page(h));
4198 __SetPageUptodate(new_page);
4199
4200 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4201 haddr + huge_page_size(h));
4202 mmu_notifier_invalidate_range_start(&range);
4203
4204 /*
4205 * Retake the page table lock to check for racing updates
4206 * before the page tables are altered
4207 */
4208 spin_lock(ptl);
4209 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4210 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4211 ClearPagePrivate(new_page);
4212
4213 /* Break COW */
4214 huge_ptep_clear_flush(vma, haddr, ptep);
4215 mmu_notifier_invalidate_range(mm, range.start, range.end);
4216 set_huge_pte_at(mm, haddr, ptep,
4217 make_huge_pte(vma, new_page, 1));
4218 page_remove_rmap(old_page, true);
4219 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4220 set_page_huge_active(new_page);
4221 /* Make the old page be freed below */
4222 new_page = old_page;
4223 }
4224 spin_unlock(ptl);
4225 mmu_notifier_invalidate_range_end(&range);
4226out_release_all:
4227 restore_reserve_on_error(h, vma, haddr, new_page);
4228 put_page(new_page);
4229out_release_old:
4230 put_page(old_page);
4231
4232 spin_lock(ptl); /* Caller expects lock to be held */
4233 return ret;
4234}
4235
4236/* Return the pagecache page at a given address within a VMA */
4237static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4238 struct vm_area_struct *vma, unsigned long address)
4239{
4240 struct address_space *mapping;
4241 pgoff_t idx;
4242
4243 mapping = vma->vm_file->f_mapping;
4244 idx = vma_hugecache_offset(h, vma, address);
4245
4246 return find_lock_page(mapping, idx);
4247}
4248
4249/*
4250 * Return whether there is a pagecache page to back given address within VMA.
4251 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4252 */
4253static bool hugetlbfs_pagecache_present(struct hstate *h,
4254 struct vm_area_struct *vma, unsigned long address)
4255{
4256 struct address_space *mapping;
4257 pgoff_t idx;
4258 struct page *page;
4259
4260 mapping = vma->vm_file->f_mapping;
4261 idx = vma_hugecache_offset(h, vma, address);
4262
4263 page = find_get_page(mapping, idx);
4264 if (page)
4265 put_page(page);
4266 return page != NULL;
4267}
4268
4269int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4270 pgoff_t idx)
4271{
4272 struct inode *inode = mapping->host;
4273 struct hstate *h = hstate_inode(inode);
4274 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4275
4276 if (err)
4277 return err;
4278 ClearPagePrivate(page);
4279
4280 /*
4281 * set page dirty so that it will not be removed from cache/file
4282 * by non-hugetlbfs specific code paths.
4283 */
4284 set_page_dirty(page);
4285
4286 spin_lock(&inode->i_lock);
4287 inode->i_blocks += blocks_per_huge_page(h);
4288 spin_unlock(&inode->i_lock);
4289 return 0;
4290}
4291
4292static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4293 struct vm_area_struct *vma,
4294 struct address_space *mapping, pgoff_t idx,
4295 unsigned long address, pte_t *ptep, unsigned int flags)
4296{
4297 struct hstate *h = hstate_vma(vma);
4298 vm_fault_t ret = VM_FAULT_SIGBUS;
4299 int anon_rmap = 0;
4300 unsigned long size;
4301 struct page *page;
4302 pte_t new_pte;
4303 spinlock_t *ptl;
4304 unsigned long haddr = address & huge_page_mask(h);
4305 bool new_page = false;
4306
4307 /*
4308 * Currently, we are forced to kill the process in the event the
4309 * original mapper has unmapped pages from the child due to a failed
4310 * COW. Warn that such a situation has occurred as it may not be obvious
4311 */
4312 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4313 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4314 current->pid);
4315 return ret;
4316 }
4317
4318 /*
4319 * We can not race with truncation due to holding i_mmap_rwsem.
4320 * i_size is modified when holding i_mmap_rwsem, so check here
4321 * once for faults beyond end of file.
4322 */
4323 size = i_size_read(mapping->host) >> huge_page_shift(h);
4324 if (idx >= size)
4325 goto out;
4326
4327retry:
4328 page = find_lock_page(mapping, idx);
4329 if (!page) {
4330 /*
4331 * Check for page in userfault range
4332 */
4333 if (userfaultfd_missing(vma)) {
4334 u32 hash;
4335 struct vm_fault vmf = {
4336 .vma = vma,
4337 .address = haddr,
4338 .flags = flags,
4339 /*
4340 * Hard to debug if it ends up being
4341 * used by a callee that assumes
4342 * something about the other
4343 * uninitialized fields... same as in
4344 * memory.c
4345 */
4346 };
4347
4348 /*
4349 * hugetlb_fault_mutex and i_mmap_rwsem must be
4350 * dropped before handling userfault. Reacquire
4351 * after handling fault to make calling code simpler.
4352 */
4353 hash = hugetlb_fault_mutex_hash(mapping, idx);
4354 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355 i_mmap_unlock_read(mapping);
4356 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4357 i_mmap_lock_read(mapping);
4358 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4359 goto out;
4360 }
4361
4362 page = alloc_huge_page(vma, haddr, 0);
4363 if (IS_ERR(page)) {
4364 /*
4365 * Returning error will result in faulting task being
4366 * sent SIGBUS. The hugetlb fault mutex prevents two
4367 * tasks from racing to fault in the same page which
4368 * could result in false unable to allocate errors.
4369 * Page migration does not take the fault mutex, but
4370 * does a clear then write of pte's under page table
4371 * lock. Page fault code could race with migration,
4372 * notice the clear pte and try to allocate a page
4373 * here. Before returning error, get ptl and make
4374 * sure there really is no pte entry.
4375 */
4376 ptl = huge_pte_lock(h, mm, ptep);
4377 if (!huge_pte_none(huge_ptep_get(ptep))) {
4378 ret = 0;
4379 spin_unlock(ptl);
4380 goto out;
4381 }
4382 spin_unlock(ptl);
4383 ret = vmf_error(PTR_ERR(page));
4384 goto out;
4385 }
4386 clear_huge_page(page, address, pages_per_huge_page(h));
4387 __SetPageUptodate(page);
4388 new_page = true;
4389
4390 if (vma->vm_flags & VM_MAYSHARE) {
4391 int err = huge_add_to_page_cache(page, mapping, idx);
4392 if (err) {
4393 put_page(page);
4394 if (err == -EEXIST)
4395 goto retry;
4396 goto out;
4397 }
4398 } else {
4399 lock_page(page);
4400 if (unlikely(anon_vma_prepare(vma))) {
4401 ret = VM_FAULT_OOM;
4402 goto backout_unlocked;
4403 }
4404 anon_rmap = 1;
4405 }
4406 } else {
4407 /*
4408 * If memory error occurs between mmap() and fault, some process
4409 * don't have hwpoisoned swap entry for errored virtual address.
4410 * So we need to block hugepage fault by PG_hwpoison bit check.
4411 */
4412 if (unlikely(PageHWPoison(page))) {
4413 ret = VM_FAULT_HWPOISON_LARGE |
4414 VM_FAULT_SET_HINDEX(hstate_index(h));
4415 goto backout_unlocked;
4416 }
4417 }
4418
4419 /*
4420 * If we are going to COW a private mapping later, we examine the
4421 * pending reservations for this page now. This will ensure that
4422 * any allocations necessary to record that reservation occur outside
4423 * the spinlock.
4424 */
4425 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4426 if (vma_needs_reservation(h, vma, haddr) < 0) {
4427 ret = VM_FAULT_OOM;
4428 goto backout_unlocked;
4429 }
4430 /* Just decrements count, does not deallocate */
4431 vma_end_reservation(h, vma, haddr);
4432 }
4433
4434 ptl = huge_pte_lock(h, mm, ptep);
4435 ret = 0;
4436 if (!huge_pte_none(huge_ptep_get(ptep)))
4437 goto backout;
4438
4439 if (anon_rmap) {
4440 ClearPagePrivate(page);
4441 hugepage_add_new_anon_rmap(page, vma, haddr);
4442 } else
4443 page_dup_rmap(page, true);
4444 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4445 && (vma->vm_flags & VM_SHARED)));
4446 set_huge_pte_at(mm, haddr, ptep, new_pte);
4447
4448 hugetlb_count_add(pages_per_huge_page(h), mm);
4449 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4450 /* Optimization, do the COW without a second fault */
4451 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4452 }
4453
4454 spin_unlock(ptl);
4455
4456 /*
4457 * Only make newly allocated pages active. Existing pages found
4458 * in the pagecache could be !page_huge_active() if they have been
4459 * isolated for migration.
4460 */
4461 if (new_page)
4462 set_page_huge_active(page);
4463
4464 unlock_page(page);
4465out:
4466 return ret;
4467
4468backout:
4469 spin_unlock(ptl);
4470backout_unlocked:
4471 unlock_page(page);
4472 restore_reserve_on_error(h, vma, haddr, page);
4473 put_page(page);
4474 goto out;
4475}
4476
4477#ifdef CONFIG_SMP
4478u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4479{
4480 unsigned long key[2];
4481 u32 hash;
4482
4483 key[0] = (unsigned long) mapping;
4484 key[1] = idx;
4485
4486 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4487
4488 return hash & (num_fault_mutexes - 1);
4489}
4490#else
4491/*
4492 * For uniprocesor systems we always use a single mutex, so just
4493 * return 0 and avoid the hashing overhead.
4494 */
4495u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4496{
4497 return 0;
4498}
4499#endif
4500
4501vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4502 unsigned long address, unsigned int flags)
4503{
4504 pte_t *ptep, entry;
4505 spinlock_t *ptl;
4506 vm_fault_t ret;
4507 u32 hash;
4508 pgoff_t idx;
4509 struct page *page = NULL;
4510 struct page *pagecache_page = NULL;
4511 struct hstate *h = hstate_vma(vma);
4512 struct address_space *mapping;
4513 int need_wait_lock = 0;
4514 unsigned long haddr = address & huge_page_mask(h);
4515
4516 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4517 if (ptep) {
4518 /*
4519 * Since we hold no locks, ptep could be stale. That is
4520 * OK as we are only making decisions based on content and
4521 * not actually modifying content here.
4522 */
4523 entry = huge_ptep_get(ptep);
4524 if (unlikely(is_hugetlb_entry_migration(entry))) {
4525 migration_entry_wait_huge(vma, mm, ptep);
4526 return 0;
4527 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4528 return VM_FAULT_HWPOISON_LARGE |
4529 VM_FAULT_SET_HINDEX(hstate_index(h));
4530 }
4531
4532 /*
4533 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4534 * until finished with ptep. This serves two purposes:
4535 * 1) It prevents huge_pmd_unshare from being called elsewhere
4536 * and making the ptep no longer valid.
4537 * 2) It synchronizes us with i_size modifications during truncation.
4538 *
4539 * ptep could have already be assigned via huge_pte_offset. That
4540 * is OK, as huge_pte_alloc will return the same value unless
4541 * something has changed.
4542 */
4543 mapping = vma->vm_file->f_mapping;
4544 i_mmap_lock_read(mapping);
4545 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4546 if (!ptep) {
4547 i_mmap_unlock_read(mapping);
4548 return VM_FAULT_OOM;
4549 }
4550
4551 /*
4552 * Serialize hugepage allocation and instantiation, so that we don't
4553 * get spurious allocation failures if two CPUs race to instantiate
4554 * the same page in the page cache.
4555 */
4556 idx = vma_hugecache_offset(h, vma, haddr);
4557 hash = hugetlb_fault_mutex_hash(mapping, idx);
4558 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4559
4560 entry = huge_ptep_get(ptep);
4561 if (huge_pte_none(entry)) {
4562 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4563 goto out_mutex;
4564 }
4565
4566 ret = 0;
4567
4568 /*
4569 * entry could be a migration/hwpoison entry at this point, so this
4570 * check prevents the kernel from going below assuming that we have
4571 * an active hugepage in pagecache. This goto expects the 2nd page
4572 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4573 * properly handle it.
4574 */
4575 if (!pte_present(entry))
4576 goto out_mutex;
4577
4578 /*
4579 * If we are going to COW the mapping later, we examine the pending
4580 * reservations for this page now. This will ensure that any
4581 * allocations necessary to record that reservation occur outside the
4582 * spinlock. For private mappings, we also lookup the pagecache
4583 * page now as it is used to determine if a reservation has been
4584 * consumed.
4585 */
4586 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4587 if (vma_needs_reservation(h, vma, haddr) < 0) {
4588 ret = VM_FAULT_OOM;
4589 goto out_mutex;
4590 }
4591 /* Just decrements count, does not deallocate */
4592 vma_end_reservation(h, vma, haddr);
4593
4594 if (!(vma->vm_flags & VM_MAYSHARE))
4595 pagecache_page = hugetlbfs_pagecache_page(h,
4596 vma, haddr);
4597 }
4598
4599 ptl = huge_pte_lock(h, mm, ptep);
4600
4601 /* Check for a racing update before calling hugetlb_cow */
4602 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4603 goto out_ptl;
4604
4605 /*
4606 * hugetlb_cow() requires page locks of pte_page(entry) and
4607 * pagecache_page, so here we need take the former one
4608 * when page != pagecache_page or !pagecache_page.
4609 */
4610 page = pte_page(entry);
4611 if (page != pagecache_page)
4612 if (!trylock_page(page)) {
4613 need_wait_lock = 1;
4614 goto out_ptl;
4615 }
4616
4617 get_page(page);
4618
4619 if (flags & FAULT_FLAG_WRITE) {
4620 if (!huge_pte_write(entry)) {
4621 ret = hugetlb_cow(mm, vma, address, ptep,
4622 pagecache_page, ptl);
4623 goto out_put_page;
4624 }
4625 entry = huge_pte_mkdirty(entry);
4626 }
4627 entry = pte_mkyoung(entry);
4628 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4629 flags & FAULT_FLAG_WRITE))
4630 update_mmu_cache(vma, haddr, ptep);
4631out_put_page:
4632 if (page != pagecache_page)
4633 unlock_page(page);
4634 put_page(page);
4635out_ptl:
4636 spin_unlock(ptl);
4637
4638 if (pagecache_page) {
4639 unlock_page(pagecache_page);
4640 put_page(pagecache_page);
4641 }
4642out_mutex:
4643 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4644 i_mmap_unlock_read(mapping);
4645 /*
4646 * Generally it's safe to hold refcount during waiting page lock. But
4647 * here we just wait to defer the next page fault to avoid busy loop and
4648 * the page is not used after unlocked before returning from the current
4649 * page fault. So we are safe from accessing freed page, even if we wait
4650 * here without taking refcount.
4651 */
4652 if (need_wait_lock)
4653 wait_on_page_locked(page);
4654 return ret;
4655}
4656
4657/*
4658 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4659 * modifications for huge pages.
4660 */
4661int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4662 pte_t *dst_pte,
4663 struct vm_area_struct *dst_vma,
4664 unsigned long dst_addr,
4665 unsigned long src_addr,
4666 struct page **pagep)
4667{
4668 struct address_space *mapping;
4669 pgoff_t idx;
4670 unsigned long size;
4671 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4672 struct hstate *h = hstate_vma(dst_vma);
4673 pte_t _dst_pte;
4674 spinlock_t *ptl;
4675 int ret;
4676 struct page *page;
4677
4678 if (!*pagep) {
4679 ret = -ENOMEM;
4680 page = alloc_huge_page(dst_vma, dst_addr, 0);
4681 if (IS_ERR(page))
4682 goto out;
4683
4684 ret = copy_huge_page_from_user(page,
4685 (const void __user *) src_addr,
4686 pages_per_huge_page(h), false);
4687
4688 /* fallback to copy_from_user outside mmap_lock */
4689 if (unlikely(ret)) {
4690 ret = -ENOENT;
4691 *pagep = page;
4692 /* don't free the page */
4693 goto out;
4694 }
4695 } else {
4696 page = *pagep;
4697 *pagep = NULL;
4698 }
4699
4700 /*
4701 * The memory barrier inside __SetPageUptodate makes sure that
4702 * preceding stores to the page contents become visible before
4703 * the set_pte_at() write.
4704 */
4705 __SetPageUptodate(page);
4706
4707 mapping = dst_vma->vm_file->f_mapping;
4708 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4709
4710 /*
4711 * If shared, add to page cache
4712 */
4713 if (vm_shared) {
4714 size = i_size_read(mapping->host) >> huge_page_shift(h);
4715 ret = -EFAULT;
4716 if (idx >= size)
4717 goto out_release_nounlock;
4718
4719 /*
4720 * Serialization between remove_inode_hugepages() and
4721 * huge_add_to_page_cache() below happens through the
4722 * hugetlb_fault_mutex_table that here must be hold by
4723 * the caller.
4724 */
4725 ret = huge_add_to_page_cache(page, mapping, idx);
4726 if (ret)
4727 goto out_release_nounlock;
4728 }
4729
4730 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4731 spin_lock(ptl);
4732
4733 /*
4734 * Recheck the i_size after holding PT lock to make sure not
4735 * to leave any page mapped (as page_mapped()) beyond the end
4736 * of the i_size (remove_inode_hugepages() is strict about
4737 * enforcing that). If we bail out here, we'll also leave a
4738 * page in the radix tree in the vm_shared case beyond the end
4739 * of the i_size, but remove_inode_hugepages() will take care
4740 * of it as soon as we drop the hugetlb_fault_mutex_table.
4741 */
4742 size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 ret = -EFAULT;
4744 if (idx >= size)
4745 goto out_release_unlock;
4746
4747 ret = -EEXIST;
4748 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4749 goto out_release_unlock;
4750
4751 if (vm_shared) {
4752 page_dup_rmap(page, true);
4753 } else {
4754 ClearPagePrivate(page);
4755 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4756 }
4757
4758 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4759 if (dst_vma->vm_flags & VM_WRITE)
4760 _dst_pte = huge_pte_mkdirty(_dst_pte);
4761 _dst_pte = pte_mkyoung(_dst_pte);
4762
4763 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4764
4765 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4766 dst_vma->vm_flags & VM_WRITE);
4767 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4768
4769 /* No need to invalidate - it was non-present before */
4770 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4771
4772 spin_unlock(ptl);
4773 set_page_huge_active(page);
4774 if (vm_shared)
4775 unlock_page(page);
4776 ret = 0;
4777out:
4778 return ret;
4779out_release_unlock:
4780 spin_unlock(ptl);
4781 if (vm_shared)
4782 unlock_page(page);
4783out_release_nounlock:
4784 put_page(page);
4785 goto out;
4786}
4787
4788long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4789 struct page **pages, struct vm_area_struct **vmas,
4790 unsigned long *position, unsigned long *nr_pages,
4791 long i, unsigned int flags, int *locked)
4792{
4793 unsigned long pfn_offset;
4794 unsigned long vaddr = *position;
4795 unsigned long remainder = *nr_pages;
4796 struct hstate *h = hstate_vma(vma);
4797 int err = -EFAULT;
4798
4799 while (vaddr < vma->vm_end && remainder) {
4800 pte_t *pte;
4801 spinlock_t *ptl = NULL;
4802 int absent;
4803 struct page *page;
4804
4805 /*
4806 * If we have a pending SIGKILL, don't keep faulting pages and
4807 * potentially allocating memory.
4808 */
4809 if (fatal_signal_pending(current)) {
4810 remainder = 0;
4811 break;
4812 }
4813
4814 /*
4815 * Some archs (sparc64, sh*) have multiple pte_ts to
4816 * each hugepage. We have to make sure we get the
4817 * first, for the page indexing below to work.
4818 *
4819 * Note that page table lock is not held when pte is null.
4820 */
4821 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4822 huge_page_size(h));
4823 if (pte)
4824 ptl = huge_pte_lock(h, mm, pte);
4825 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4826
4827 /*
4828 * When coredumping, it suits get_dump_page if we just return
4829 * an error where there's an empty slot with no huge pagecache
4830 * to back it. This way, we avoid allocating a hugepage, and
4831 * the sparse dumpfile avoids allocating disk blocks, but its
4832 * huge holes still show up with zeroes where they need to be.
4833 */
4834 if (absent && (flags & FOLL_DUMP) &&
4835 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4836 if (pte)
4837 spin_unlock(ptl);
4838 remainder = 0;
4839 break;
4840 }
4841
4842 /*
4843 * We need call hugetlb_fault for both hugepages under migration
4844 * (in which case hugetlb_fault waits for the migration,) and
4845 * hwpoisoned hugepages (in which case we need to prevent the
4846 * caller from accessing to them.) In order to do this, we use
4847 * here is_swap_pte instead of is_hugetlb_entry_migration and
4848 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4849 * both cases, and because we can't follow correct pages
4850 * directly from any kind of swap entries.
4851 */
4852 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4853 ((flags & FOLL_WRITE) &&
4854 !huge_pte_write(huge_ptep_get(pte)))) {
4855 vm_fault_t ret;
4856 unsigned int fault_flags = 0;
4857
4858 if (pte)
4859 spin_unlock(ptl);
4860 if (flags & FOLL_WRITE)
4861 fault_flags |= FAULT_FLAG_WRITE;
4862 if (locked)
4863 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4864 FAULT_FLAG_KILLABLE;
4865 if (flags & FOLL_NOWAIT)
4866 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4867 FAULT_FLAG_RETRY_NOWAIT;
4868 if (flags & FOLL_TRIED) {
4869 /*
4870 * Note: FAULT_FLAG_ALLOW_RETRY and
4871 * FAULT_FLAG_TRIED can co-exist
4872 */
4873 fault_flags |= FAULT_FLAG_TRIED;
4874 }
4875 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4876 if (ret & VM_FAULT_ERROR) {
4877 err = vm_fault_to_errno(ret, flags);
4878 remainder = 0;
4879 break;
4880 }
4881 if (ret & VM_FAULT_RETRY) {
4882 if (locked &&
4883 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4884 *locked = 0;
4885 *nr_pages = 0;
4886 /*
4887 * VM_FAULT_RETRY must not return an
4888 * error, it will return zero
4889 * instead.
4890 *
4891 * No need to update "position" as the
4892 * caller will not check it after
4893 * *nr_pages is set to 0.
4894 */
4895 return i;
4896 }
4897 continue;
4898 }
4899
4900 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4901 page = pte_page(huge_ptep_get(pte));
4902
4903 /*
4904 * If subpage information not requested, update counters
4905 * and skip the same_page loop below.
4906 */
4907 if (!pages && !vmas && !pfn_offset &&
4908 (vaddr + huge_page_size(h) < vma->vm_end) &&
4909 (remainder >= pages_per_huge_page(h))) {
4910 vaddr += huge_page_size(h);
4911 remainder -= pages_per_huge_page(h);
4912 i += pages_per_huge_page(h);
4913 spin_unlock(ptl);
4914 continue;
4915 }
4916
4917same_page:
4918 if (pages) {
4919 pages[i] = mem_map_offset(page, pfn_offset);
4920 /*
4921 * try_grab_page() should always succeed here, because:
4922 * a) we hold the ptl lock, and b) we've just checked
4923 * that the huge page is present in the page tables. If
4924 * the huge page is present, then the tail pages must
4925 * also be present. The ptl prevents the head page and
4926 * tail pages from being rearranged in any way. So this
4927 * page must be available at this point, unless the page
4928 * refcount overflowed:
4929 */
4930 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4931 spin_unlock(ptl);
4932 remainder = 0;
4933 err = -ENOMEM;
4934 break;
4935 }
4936 }
4937
4938 if (vmas)
4939 vmas[i] = vma;
4940
4941 vaddr += PAGE_SIZE;
4942 ++pfn_offset;
4943 --remainder;
4944 ++i;
4945 if (vaddr < vma->vm_end && remainder &&
4946 pfn_offset < pages_per_huge_page(h)) {
4947 /*
4948 * We use pfn_offset to avoid touching the pageframes
4949 * of this compound page.
4950 */
4951 goto same_page;
4952 }
4953 spin_unlock(ptl);
4954 }
4955 *nr_pages = remainder;
4956 /*
4957 * setting position is actually required only if remainder is
4958 * not zero but it's faster not to add a "if (remainder)"
4959 * branch.
4960 */
4961 *position = vaddr;
4962
4963 return i ? i : err;
4964}
4965
4966#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4967/*
4968 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4969 * implement this.
4970 */
4971#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4972#endif
4973
4974unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4975 unsigned long address, unsigned long end, pgprot_t newprot)
4976{
4977 struct mm_struct *mm = vma->vm_mm;
4978 unsigned long start = address;
4979 pte_t *ptep;
4980 pte_t pte;
4981 struct hstate *h = hstate_vma(vma);
4982 unsigned long pages = 0;
4983 bool shared_pmd = false;
4984 struct mmu_notifier_range range;
4985
4986 /*
4987 * In the case of shared PMDs, the area to flush could be beyond
4988 * start/end. Set range.start/range.end to cover the maximum possible
4989 * range if PMD sharing is possible.
4990 */
4991 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4992 0, vma, mm, start, end);
4993 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4994
4995 BUG_ON(address >= end);
4996 flush_cache_range(vma, range.start, range.end);
4997
4998 mmu_notifier_invalidate_range_start(&range);
4999 i_mmap_lock_write(vma->vm_file->f_mapping);
5000 for (; address < end; address += huge_page_size(h)) {
5001 spinlock_t *ptl;
5002 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5003 if (!ptep)
5004 continue;
5005 ptl = huge_pte_lock(h, mm, ptep);
5006 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5007 pages++;
5008 spin_unlock(ptl);
5009 shared_pmd = true;
5010 continue;
5011 }
5012 pte = huge_ptep_get(ptep);
5013 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5014 spin_unlock(ptl);
5015 continue;
5016 }
5017 if (unlikely(is_hugetlb_entry_migration(pte))) {
5018 swp_entry_t entry = pte_to_swp_entry(pte);
5019
5020 if (is_write_migration_entry(entry)) {
5021 pte_t newpte;
5022
5023 make_migration_entry_read(&entry);
5024 newpte = swp_entry_to_pte(entry);
5025 set_huge_swap_pte_at(mm, address, ptep,
5026 newpte, huge_page_size(h));
5027 pages++;
5028 }
5029 spin_unlock(ptl);
5030 continue;
5031 }
5032 if (!huge_pte_none(pte)) {
5033 pte_t old_pte;
5034
5035 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5036 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5037 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5038 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5039 pages++;
5040 }
5041 spin_unlock(ptl);
5042 }
5043 /*
5044 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5045 * may have cleared our pud entry and done put_page on the page table:
5046 * once we release i_mmap_rwsem, another task can do the final put_page
5047 * and that page table be reused and filled with junk. If we actually
5048 * did unshare a page of pmds, flush the range corresponding to the pud.
5049 */
5050 if (shared_pmd)
5051 flush_hugetlb_tlb_range(vma, range.start, range.end);
5052 else
5053 flush_hugetlb_tlb_range(vma, start, end);
5054 /*
5055 * No need to call mmu_notifier_invalidate_range() we are downgrading
5056 * page table protection not changing it to point to a new page.
5057 *
5058 * See Documentation/vm/mmu_notifier.rst
5059 */
5060 i_mmap_unlock_write(vma->vm_file->f_mapping);
5061 mmu_notifier_invalidate_range_end(&range);
5062
5063 return pages << h->order;
5064}
5065
5066int hugetlb_reserve_pages(struct inode *inode,
5067 long from, long to,
5068 struct vm_area_struct *vma,
5069 vm_flags_t vm_flags)
5070{
5071 long ret, chg, add = -1;
5072 struct hstate *h = hstate_inode(inode);
5073 struct hugepage_subpool *spool = subpool_inode(inode);
5074 struct resv_map *resv_map;
5075 struct hugetlb_cgroup *h_cg = NULL;
5076 long gbl_reserve, regions_needed = 0;
5077
5078 /* This should never happen */
5079 if (from > to) {
5080 VM_WARN(1, "%s called with a negative range\n", __func__);
5081 return -EINVAL;
5082 }
5083
5084 /*
5085 * Only apply hugepage reservation if asked. At fault time, an
5086 * attempt will be made for VM_NORESERVE to allocate a page
5087 * without using reserves
5088 */
5089 if (vm_flags & VM_NORESERVE)
5090 return 0;
5091
5092 /*
5093 * Shared mappings base their reservation on the number of pages that
5094 * are already allocated on behalf of the file. Private mappings need
5095 * to reserve the full area even if read-only as mprotect() may be
5096 * called to make the mapping read-write. Assume !vma is a shm mapping
5097 */
5098 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5099 /*
5100 * resv_map can not be NULL as hugetlb_reserve_pages is only
5101 * called for inodes for which resv_maps were created (see
5102 * hugetlbfs_get_inode).
5103 */
5104 resv_map = inode_resv_map(inode);
5105
5106 chg = region_chg(resv_map, from, to, &regions_needed);
5107
5108 } else {
5109 /* Private mapping. */
5110 resv_map = resv_map_alloc();
5111 if (!resv_map)
5112 return -ENOMEM;
5113
5114 chg = to - from;
5115
5116 set_vma_resv_map(vma, resv_map);
5117 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5118 }
5119
5120 if (chg < 0) {
5121 ret = chg;
5122 goto out_err;
5123 }
5124
5125 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5126 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5127
5128 if (ret < 0) {
5129 ret = -ENOMEM;
5130 goto out_err;
5131 }
5132
5133 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5134 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5135 * of the resv_map.
5136 */
5137 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5138 }
5139
5140 /*
5141 * There must be enough pages in the subpool for the mapping. If
5142 * the subpool has a minimum size, there may be some global
5143 * reservations already in place (gbl_reserve).
5144 */
5145 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5146 if (gbl_reserve < 0) {
5147 ret = -ENOSPC;
5148 goto out_uncharge_cgroup;
5149 }
5150
5151 /*
5152 * Check enough hugepages are available for the reservation.
5153 * Hand the pages back to the subpool if there are not
5154 */
5155 ret = hugetlb_acct_memory(h, gbl_reserve);
5156 if (ret < 0) {
5157 goto out_put_pages;
5158 }
5159
5160 /*
5161 * Account for the reservations made. Shared mappings record regions
5162 * that have reservations as they are shared by multiple VMAs.
5163 * When the last VMA disappears, the region map says how much
5164 * the reservation was and the page cache tells how much of
5165 * the reservation was consumed. Private mappings are per-VMA and
5166 * only the consumed reservations are tracked. When the VMA
5167 * disappears, the original reservation is the VMA size and the
5168 * consumed reservations are stored in the map. Hence, nothing
5169 * else has to be done for private mappings here
5170 */
5171 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5172 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5173
5174 if (unlikely(add < 0)) {
5175 hugetlb_acct_memory(h, -gbl_reserve);
5176 ret = add;
5177 goto out_put_pages;
5178 } else if (unlikely(chg > add)) {
5179 /*
5180 * pages in this range were added to the reserve
5181 * map between region_chg and region_add. This
5182 * indicates a race with alloc_huge_page. Adjust
5183 * the subpool and reserve counts modified above
5184 * based on the difference.
5185 */
5186 long rsv_adjust;
5187
5188 hugetlb_cgroup_uncharge_cgroup_rsvd(
5189 hstate_index(h),
5190 (chg - add) * pages_per_huge_page(h), h_cg);
5191
5192 rsv_adjust = hugepage_subpool_put_pages(spool,
5193 chg - add);
5194 hugetlb_acct_memory(h, -rsv_adjust);
5195 }
5196 }
5197 return 0;
5198out_put_pages:
5199 /* put back original number of pages, chg */
5200 (void)hugepage_subpool_put_pages(spool, chg);
5201out_uncharge_cgroup:
5202 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5203 chg * pages_per_huge_page(h), h_cg);
5204out_err:
5205 if (!vma || vma->vm_flags & VM_MAYSHARE)
5206 /* Only call region_abort if the region_chg succeeded but the
5207 * region_add failed or didn't run.
5208 */
5209 if (chg >= 0 && add < 0)
5210 region_abort(resv_map, from, to, regions_needed);
5211 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5212 kref_put(&resv_map->refs, resv_map_release);
5213 return ret;
5214}
5215
5216long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5217 long freed)
5218{
5219 struct hstate *h = hstate_inode(inode);
5220 struct resv_map *resv_map = inode_resv_map(inode);
5221 long chg = 0;
5222 struct hugepage_subpool *spool = subpool_inode(inode);
5223 long gbl_reserve;
5224
5225 /*
5226 * Since this routine can be called in the evict inode path for all
5227 * hugetlbfs inodes, resv_map could be NULL.
5228 */
5229 if (resv_map) {
5230 chg = region_del(resv_map, start, end);
5231 /*
5232 * region_del() can fail in the rare case where a region
5233 * must be split and another region descriptor can not be
5234 * allocated. If end == LONG_MAX, it will not fail.
5235 */
5236 if (chg < 0)
5237 return chg;
5238 }
5239
5240 spin_lock(&inode->i_lock);
5241 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5242 spin_unlock(&inode->i_lock);
5243
5244 /*
5245 * If the subpool has a minimum size, the number of global
5246 * reservations to be released may be adjusted.
5247 */
5248 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5249 hugetlb_acct_memory(h, -gbl_reserve);
5250
5251 return 0;
5252}
5253
5254#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5255static unsigned long page_table_shareable(struct vm_area_struct *svma,
5256 struct vm_area_struct *vma,
5257 unsigned long addr, pgoff_t idx)
5258{
5259 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5260 svma->vm_start;
5261 unsigned long sbase = saddr & PUD_MASK;
5262 unsigned long s_end = sbase + PUD_SIZE;
5263
5264 /* Allow segments to share if only one is marked locked */
5265 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5266 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5267
5268 /*
5269 * match the virtual addresses, permission and the alignment of the
5270 * page table page.
5271 */
5272 if (pmd_index(addr) != pmd_index(saddr) ||
5273 vm_flags != svm_flags ||
5274 sbase < svma->vm_start || svma->vm_end < s_end)
5275 return 0;
5276
5277 return saddr;
5278}
5279
5280static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5281{
5282 unsigned long base = addr & PUD_MASK;
5283 unsigned long end = base + PUD_SIZE;
5284
5285 /*
5286 * check on proper vm_flags and page table alignment
5287 */
5288 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5289 return true;
5290 return false;
5291}
5292
5293/*
5294 * Determine if start,end range within vma could be mapped by shared pmd.
5295 * If yes, adjust start and end to cover range associated with possible
5296 * shared pmd mappings.
5297 */
5298void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5299 unsigned long *start, unsigned long *end)
5300{
5301 unsigned long a_start, a_end;
5302
5303 if (!(vma->vm_flags & VM_MAYSHARE))
5304 return;
5305
5306 /* Extend the range to be PUD aligned for a worst case scenario */
5307 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5308 a_end = ALIGN(*end, PUD_SIZE);
5309
5310 /*
5311 * Intersect the range with the vma range, since pmd sharing won't be
5312 * across vma after all
5313 */
5314 *start = max(vma->vm_start, a_start);
5315 *end = min(vma->vm_end, a_end);
5316}
5317
5318/*
5319 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5320 * and returns the corresponding pte. While this is not necessary for the
5321 * !shared pmd case because we can allocate the pmd later as well, it makes the
5322 * code much cleaner.
5323 *
5324 * This routine must be called with i_mmap_rwsem held in at least read mode if
5325 * sharing is possible. For hugetlbfs, this prevents removal of any page
5326 * table entries associated with the address space. This is important as we
5327 * are setting up sharing based on existing page table entries (mappings).
5328 *
5329 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5330 * huge_pte_alloc know that sharing is not possible and do not take
5331 * i_mmap_rwsem as a performance optimization. This is handled by the
5332 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5333 * only required for subsequent processing.
5334 */
5335pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5336{
5337 struct vm_area_struct *vma = find_vma(mm, addr);
5338 struct address_space *mapping = vma->vm_file->f_mapping;
5339 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5340 vma->vm_pgoff;
5341 struct vm_area_struct *svma;
5342 unsigned long saddr;
5343 pte_t *spte = NULL;
5344 pte_t *pte;
5345 spinlock_t *ptl;
5346
5347 if (!vma_shareable(vma, addr))
5348 return (pte_t *)pmd_alloc(mm, pud, addr);
5349
5350 i_mmap_assert_locked(mapping);
5351 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5352 if (svma == vma)
5353 continue;
5354
5355 saddr = page_table_shareable(svma, vma, addr, idx);
5356 if (saddr) {
5357 spte = huge_pte_offset(svma->vm_mm, saddr,
5358 vma_mmu_pagesize(svma));
5359 if (spte) {
5360 get_page(virt_to_page(spte));
5361 break;
5362 }
5363 }
5364 }
5365
5366 if (!spte)
5367 goto out;
5368
5369 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5370 if (pud_none(*pud)) {
5371 pud_populate(mm, pud,
5372 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5373 mm_inc_nr_pmds(mm);
5374 } else {
5375 put_page(virt_to_page(spte));
5376 }
5377 spin_unlock(ptl);
5378out:
5379 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5380 return pte;
5381}
5382
5383/*
5384 * unmap huge page backed by shared pte.
5385 *
5386 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5387 * indicated by page_count > 1, unmap is achieved by clearing pud and
5388 * decrementing the ref count. If count == 1, the pte page is not shared.
5389 *
5390 * Called with page table lock held and i_mmap_rwsem held in write mode.
5391 *
5392 * returns: 1 successfully unmapped a shared pte page
5393 * 0 the underlying pte page is not shared, or it is the last user
5394 */
5395int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5396 unsigned long *addr, pte_t *ptep)
5397{
5398 pgd_t *pgd = pgd_offset(mm, *addr);
5399 p4d_t *p4d = p4d_offset(pgd, *addr);
5400 pud_t *pud = pud_offset(p4d, *addr);
5401
5402 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5403 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5404 if (page_count(virt_to_page(ptep)) == 1)
5405 return 0;
5406
5407 pud_clear(pud);
5408 put_page(virt_to_page(ptep));
5409 mm_dec_nr_pmds(mm);
5410 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5411 return 1;
5412}
5413#define want_pmd_share() (1)
5414#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5415pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5416{
5417 return NULL;
5418}
5419
5420int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5421 unsigned long *addr, pte_t *ptep)
5422{
5423 return 0;
5424}
5425
5426void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5427 unsigned long *start, unsigned long *end)
5428{
5429}
5430#define want_pmd_share() (0)
5431#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5432
5433#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5434pte_t *huge_pte_alloc(struct mm_struct *mm,
5435 unsigned long addr, unsigned long sz)
5436{
5437 pgd_t *pgd;
5438 p4d_t *p4d;
5439 pud_t *pud;
5440 pte_t *pte = NULL;
5441
5442 pgd = pgd_offset(mm, addr);
5443 p4d = p4d_alloc(mm, pgd, addr);
5444 if (!p4d)
5445 return NULL;
5446 pud = pud_alloc(mm, p4d, addr);
5447 if (pud) {
5448 if (sz == PUD_SIZE) {
5449 pte = (pte_t *)pud;
5450 } else {
5451 BUG_ON(sz != PMD_SIZE);
5452 if (want_pmd_share() && pud_none(*pud))
5453 pte = huge_pmd_share(mm, addr, pud);
5454 else
5455 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5456 }
5457 }
5458 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5459
5460 return pte;
5461}
5462
5463/*
5464 * huge_pte_offset() - Walk the page table to resolve the hugepage
5465 * entry at address @addr
5466 *
5467 * Return: Pointer to page table entry (PUD or PMD) for
5468 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5469 * size @sz doesn't match the hugepage size at this level of the page
5470 * table.
5471 */
5472pte_t *huge_pte_offset(struct mm_struct *mm,
5473 unsigned long addr, unsigned long sz)
5474{
5475 pgd_t *pgd;
5476 p4d_t *p4d;
5477 pud_t *pud;
5478 pmd_t *pmd;
5479
5480 pgd = pgd_offset(mm, addr);
5481 if (!pgd_present(*pgd))
5482 return NULL;
5483 p4d = p4d_offset(pgd, addr);
5484 if (!p4d_present(*p4d))
5485 return NULL;
5486
5487 pud = pud_offset(p4d, addr);
5488 if (sz == PUD_SIZE)
5489 /* must be pud huge, non-present or none */
5490 return (pte_t *)pud;
5491 if (!pud_present(*pud))
5492 return NULL;
5493 /* must have a valid entry and size to go further */
5494
5495 pmd = pmd_offset(pud, addr);
5496 /* must be pmd huge, non-present or none */
5497 return (pte_t *)pmd;
5498}
5499
5500#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5501
5502/*
5503 * These functions are overwritable if your architecture needs its own
5504 * behavior.
5505 */
5506struct page * __weak
5507follow_huge_addr(struct mm_struct *mm, unsigned long address,
5508 int write)
5509{
5510 return ERR_PTR(-EINVAL);
5511}
5512
5513struct page * __weak
5514follow_huge_pd(struct vm_area_struct *vma,
5515 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5516{
5517 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5518 return NULL;
5519}
5520
5521struct page * __weak
5522follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5523 pmd_t *pmd, int flags)
5524{
5525 struct page *page = NULL;
5526 spinlock_t *ptl;
5527 pte_t pte;
5528
5529 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5530 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5531 (FOLL_PIN | FOLL_GET)))
5532 return NULL;
5533
5534retry:
5535 ptl = pmd_lockptr(mm, pmd);
5536 spin_lock(ptl);
5537 /*
5538 * make sure that the address range covered by this pmd is not
5539 * unmapped from other threads.
5540 */
5541 if (!pmd_huge(*pmd))
5542 goto out;
5543 pte = huge_ptep_get((pte_t *)pmd);
5544 if (pte_present(pte)) {
5545 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5546 /*
5547 * try_grab_page() should always succeed here, because: a) we
5548 * hold the pmd (ptl) lock, and b) we've just checked that the
5549 * huge pmd (head) page is present in the page tables. The ptl
5550 * prevents the head page and tail pages from being rearranged
5551 * in any way. So this page must be available at this point,
5552 * unless the page refcount overflowed:
5553 */
5554 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5555 page = NULL;
5556 goto out;
5557 }
5558 } else {
5559 if (is_hugetlb_entry_migration(pte)) {
5560 spin_unlock(ptl);
5561 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5562 goto retry;
5563 }
5564 /*
5565 * hwpoisoned entry is treated as no_page_table in
5566 * follow_page_mask().
5567 */
5568 }
5569out:
5570 spin_unlock(ptl);
5571 return page;
5572}
5573
5574struct page * __weak
5575follow_huge_pud(struct mm_struct *mm, unsigned long address,
5576 pud_t *pud, int flags)
5577{
5578 if (flags & (FOLL_GET | FOLL_PIN))
5579 return NULL;
5580
5581 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5582}
5583
5584struct page * __weak
5585follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5586{
5587 if (flags & (FOLL_GET | FOLL_PIN))
5588 return NULL;
5589
5590 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5591}
5592
5593bool isolate_huge_page(struct page *page, struct list_head *list)
5594{
5595 bool ret = true;
5596
5597 VM_BUG_ON_PAGE(!PageHead(page), page);
5598 spin_lock(&hugetlb_lock);
5599 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5600 ret = false;
5601 goto unlock;
5602 }
5603 clear_page_huge_active(page);
5604 list_move_tail(&page->lru, list);
5605unlock:
5606 spin_unlock(&hugetlb_lock);
5607 return ret;
5608}
5609
5610void putback_active_hugepage(struct page *page)
5611{
5612 VM_BUG_ON_PAGE(!PageHead(page), page);
5613 spin_lock(&hugetlb_lock);
5614 set_page_huge_active(page);
5615 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5616 spin_unlock(&hugetlb_lock);
5617 put_page(page);
5618}
5619
5620void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5621{
5622 struct hstate *h = page_hstate(oldpage);
5623
5624 hugetlb_cgroup_migrate(oldpage, newpage);
5625 set_page_owner_migrate_reason(newpage, reason);
5626
5627 /*
5628 * transfer temporary state of the new huge page. This is
5629 * reverse to other transitions because the newpage is going to
5630 * be final while the old one will be freed so it takes over
5631 * the temporary status.
5632 *
5633 * Also note that we have to transfer the per-node surplus state
5634 * here as well otherwise the global surplus count will not match
5635 * the per-node's.
5636 */
5637 if (PageHugeTemporary(newpage)) {
5638 int old_nid = page_to_nid(oldpage);
5639 int new_nid = page_to_nid(newpage);
5640
5641 SetPageHugeTemporary(oldpage);
5642 ClearPageHugeTemporary(newpage);
5643
5644 spin_lock(&hugetlb_lock);
5645 if (h->surplus_huge_pages_node[old_nid]) {
5646 h->surplus_huge_pages_node[old_nid]--;
5647 h->surplus_huge_pages_node[new_nid]++;
5648 }
5649 spin_unlock(&hugetlb_lock);
5650 }
5651}
5652
5653#ifdef CONFIG_CMA
5654static bool cma_reserve_called __initdata;
5655
5656static int __init cmdline_parse_hugetlb_cma(char *p)
5657{
5658 hugetlb_cma_size = memparse(p, &p);
5659 return 0;
5660}
5661
5662early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5663
5664void __init hugetlb_cma_reserve(int order)
5665{
5666 unsigned long size, reserved, per_node;
5667 int nid;
5668
5669 cma_reserve_called = true;
5670
5671 if (!hugetlb_cma_size)
5672 return;
5673
5674 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5675 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5676 (PAGE_SIZE << order) / SZ_1M);
5677 return;
5678 }
5679
5680 /*
5681 * If 3 GB area is requested on a machine with 4 numa nodes,
5682 * let's allocate 1 GB on first three nodes and ignore the last one.
5683 */
5684 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5685 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5686 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5687
5688 reserved = 0;
5689 for_each_node_state(nid, N_ONLINE) {
5690 int res;
5691 char name[CMA_MAX_NAME];
5692
5693 size = min(per_node, hugetlb_cma_size - reserved);
5694 size = round_up(size, PAGE_SIZE << order);
5695
5696 snprintf(name, sizeof(name), "hugetlb%d", nid);
5697 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5698 0, false, name,
5699 &hugetlb_cma[nid], nid);
5700 if (res) {
5701 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5702 res, nid);
5703 continue;
5704 }
5705
5706 reserved += size;
5707 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5708 size / SZ_1M, nid);
5709
5710 if (reserved >= hugetlb_cma_size)
5711 break;
5712 }
5713}
5714
5715void __init hugetlb_cma_check(void)
5716{
5717 if (!hugetlb_cma_size || cma_reserve_called)
5718 return;
5719
5720 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5721}
5722
5723#endif /* CONFIG_CMA */