]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/hugetlb.c
hugetlb: update_and_free_page(): don't clear PG_reserved bit
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39unsigned long hugepages_treat_as_movable;
40
41int hugetlb_max_hstate __read_mostly;
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44
45__initdata LIST_HEAD(huge_boot_pages);
46
47/* for command line parsing */
48static struct hstate * __initdata parsed_hstate;
49static unsigned long __initdata default_hstate_max_huge_pages;
50static unsigned long __initdata default_hstate_size;
51
52/*
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
55 */
56DEFINE_SPINLOCK(hugetlb_lock);
57
58/*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62static int num_fault_mutexes;
63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66{
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75}
76
77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78{
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91}
92
93void hugepage_put_subpool(struct hugepage_subpool *spool)
94{
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99}
100
101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103{
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118}
119
120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122{
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131}
132
133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134{
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136}
137
138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139{
140 return subpool_inode(file_inode(vma->vm_file));
141}
142
143/*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
146 *
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
149 */
150struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154};
155
156static long region_add(struct resv_map *resv, long f, long t)
157{
158 struct list_head *head = &resv->regions;
159 struct file_region *rg, *nrg, *trg;
160
161 spin_lock(&resv->lock);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
191 spin_unlock(&resv->lock);
192 return 0;
193}
194
195static long region_chg(struct resv_map *resv, long f, long t)
196{
197 struct list_head *head = &resv->regions;
198 struct file_region *rg, *nrg = NULL;
199 long chg = 0;
200
201retry:
202 spin_lock(&resv->lock);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
223
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
239 goto out;
240
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
250
251out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256out_nrg:
257 spin_unlock(&resv->lock);
258 return chg;
259}
260
261static long region_truncate(struct resv_map *resv, long end)
262{
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *trg;
265 long chg = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
273 goto out;
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
290
291out:
292 spin_unlock(&resv->lock);
293 return chg;
294}
295
296static long region_count(struct resv_map *resv, long f, long t)
297{
298 struct list_head *head = &resv->regions;
299 struct file_region *rg;
300 long chg = 0;
301
302 spin_lock(&resv->lock);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
305 long seg_from;
306 long seg_to;
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
318 spin_unlock(&resv->lock);
319
320 return chg;
321}
322
323/*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
327static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
329{
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
332}
333
334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336{
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338}
339
340/*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345{
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
353 return 1UL << huge_page_shift(hstate);
354}
355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357/*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363#ifndef vma_mmu_pagesize
364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365{
366 return vma_kernel_pagesize(vma);
367}
368#endif
369
370/*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375#define HPAGE_RESV_OWNER (1UL << 0)
376#define HPAGE_RESV_UNMAPPED (1UL << 1)
377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379/*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
397 */
398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399{
400 return (unsigned long)vma->vm_private_data;
401}
402
403static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405{
406 vma->vm_private_data = (void *)value;
407}
408
409struct resv_map *resv_map_alloc(void)
410{
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
416 spin_lock_init(&resv_map->lock);
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420}
421
422void resv_map_release(struct kref *ref)
423{
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map, 0);
428 kfree(resv_map);
429}
430
431static inline struct resv_map *inode_resv_map(struct inode *inode)
432{
433 return inode->i_mapping->private_data;
434}
435
436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437{
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
448 }
449}
450
451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452{
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
458}
459
460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461{
462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466}
467
468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469{
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472 return (get_vma_private_data(vma) & flag) != 0;
473}
474
475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477{
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 if (!(vma->vm_flags & VM_MAYSHARE))
480 vma->vm_private_data = (void *)0;
481}
482
483/* Returns true if the VMA has associated reserve pages */
484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485{
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
501
502 /* Shared mappings always use reserves */
503 if (vma->vm_flags & VM_MAYSHARE)
504 return 1;
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
512
513 return 0;
514}
515
516static void enqueue_huge_page(struct hstate *h, struct page *page)
517{
518 int nid = page_to_nid(page);
519 list_move(&page->lru, &h->hugepage_freelists[nid]);
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
522}
523
524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525{
526 struct page *page;
527
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
536 return NULL;
537 list_move(&page->lru, &h->hugepage_activelist);
538 set_page_refcounted(page);
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542}
543
544/* Movability of hugepages depends on migration support. */
545static inline gfp_t htlb_alloc_mask(struct hstate *h)
546{
547 if (hugepages_treat_as_movable || hugepage_migration_support(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551}
552
553static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
555 unsigned long address, int avoid_reserve,
556 long chg)
557{
558 struct page *page = NULL;
559 struct mempolicy *mpol;
560 nodemask_t *nodemask;
561 struct zonelist *zonelist;
562 struct zone *zone;
563 struct zoneref *z;
564 unsigned int cpuset_mems_cookie;
565
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
571 if (!vma_has_reserves(vma, chg) &&
572 h->free_huge_pages - h->resv_huge_pages == 0)
573 goto err;
574
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 goto err;
578
579retry_cpuset:
580 cpuset_mems_cookie = read_mems_allowed_begin();
581 zonelist = huge_zonelist(vma, address,
582 htlb_alloc_mask(h), &mpol, &nodemask);
583
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
594 SetPagePrivate(page);
595 h->resv_huge_pages--;
596 break;
597 }
598 }
599 }
600
601 mpol_cond_put(mpol);
602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 goto retry_cpuset;
604 return page;
605
606err:
607 return NULL;
608}
609
610static void update_and_free_page(struct hstate *h, struct page *page)
611{
612 int i;
613
614 VM_BUG_ON(hstate_is_gigantic(h));
615
616 h->nr_huge_pages--;
617 h->nr_huge_pages_node[page_to_nid(page)]--;
618 for (i = 0; i < pages_per_huge_page(h); i++) {
619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_dirty |
621 1 << PG_active | 1 << PG_private |
622 1 << PG_writeback);
623 }
624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625 set_compound_page_dtor(page, NULL);
626 set_page_refcounted(page);
627 arch_release_hugepage(page);
628 __free_pages(page, huge_page_order(h));
629}
630
631struct hstate *size_to_hstate(unsigned long size)
632{
633 struct hstate *h;
634
635 for_each_hstate(h) {
636 if (huge_page_size(h) == size)
637 return h;
638 }
639 return NULL;
640}
641
642static void free_huge_page(struct page *page)
643{
644 /*
645 * Can't pass hstate in here because it is called from the
646 * compound page destructor.
647 */
648 struct hstate *h = page_hstate(page);
649 int nid = page_to_nid(page);
650 struct hugepage_subpool *spool =
651 (struct hugepage_subpool *)page_private(page);
652 bool restore_reserve;
653
654 set_page_private(page, 0);
655 page->mapping = NULL;
656 BUG_ON(page_count(page));
657 BUG_ON(page_mapcount(page));
658 restore_reserve = PagePrivate(page);
659 ClearPagePrivate(page);
660
661 spin_lock(&hugetlb_lock);
662 hugetlb_cgroup_uncharge_page(hstate_index(h),
663 pages_per_huge_page(h), page);
664 if (restore_reserve)
665 h->resv_huge_pages++;
666
667 if (h->surplus_huge_pages_node[nid] && !hstate_is_gigantic(h)) {
668 /* remove the page from active list */
669 list_del(&page->lru);
670 update_and_free_page(h, page);
671 h->surplus_huge_pages--;
672 h->surplus_huge_pages_node[nid]--;
673 } else {
674 arch_clear_hugepage_flags(page);
675 enqueue_huge_page(h, page);
676 }
677 spin_unlock(&hugetlb_lock);
678 hugepage_subpool_put_pages(spool, 1);
679}
680
681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682{
683 INIT_LIST_HEAD(&page->lru);
684 set_compound_page_dtor(page, free_huge_page);
685 spin_lock(&hugetlb_lock);
686 set_hugetlb_cgroup(page, NULL);
687 h->nr_huge_pages++;
688 h->nr_huge_pages_node[nid]++;
689 spin_unlock(&hugetlb_lock);
690 put_page(page); /* free it into the hugepage allocator */
691}
692
693static void prep_compound_gigantic_page(struct page *page, unsigned long order)
694{
695 int i;
696 int nr_pages = 1 << order;
697 struct page *p = page + 1;
698
699 /* we rely on prep_new_huge_page to set the destructor */
700 set_compound_order(page, order);
701 __SetPageHead(page);
702 __ClearPageReserved(page);
703 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
704 __SetPageTail(p);
705 /*
706 * For gigantic hugepages allocated through bootmem at
707 * boot, it's safer to be consistent with the not-gigantic
708 * hugepages and clear the PG_reserved bit from all tail pages
709 * too. Otherwse drivers using get_user_pages() to access tail
710 * pages may get the reference counting wrong if they see
711 * PG_reserved set on a tail page (despite the head page not
712 * having PG_reserved set). Enforcing this consistency between
713 * head and tail pages allows drivers to optimize away a check
714 * on the head page when they need know if put_page() is needed
715 * after get_user_pages().
716 */
717 __ClearPageReserved(p);
718 set_page_count(p, 0);
719 p->first_page = page;
720 }
721}
722
723/*
724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725 * transparent huge pages. See the PageTransHuge() documentation for more
726 * details.
727 */
728int PageHuge(struct page *page)
729{
730 if (!PageCompound(page))
731 return 0;
732
733 page = compound_head(page);
734 return get_compound_page_dtor(page) == free_huge_page;
735}
736EXPORT_SYMBOL_GPL(PageHuge);
737
738/*
739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740 * normal or transparent huge pages.
741 */
742int PageHeadHuge(struct page *page_head)
743{
744 if (!PageHead(page_head))
745 return 0;
746
747 return get_compound_page_dtor(page_head) == free_huge_page;
748}
749
750pgoff_t __basepage_index(struct page *page)
751{
752 struct page *page_head = compound_head(page);
753 pgoff_t index = page_index(page_head);
754 unsigned long compound_idx;
755
756 if (!PageHuge(page_head))
757 return page_index(page);
758
759 if (compound_order(page_head) >= MAX_ORDER)
760 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
761 else
762 compound_idx = page - page_head;
763
764 return (index << compound_order(page_head)) + compound_idx;
765}
766
767static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
768{
769 struct page *page;
770
771 if (hstate_is_gigantic(h))
772 return NULL;
773
774 page = alloc_pages_exact_node(nid,
775 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
776 __GFP_REPEAT|__GFP_NOWARN,
777 huge_page_order(h));
778 if (page) {
779 if (arch_prepare_hugepage(page)) {
780 __free_pages(page, huge_page_order(h));
781 return NULL;
782 }
783 prep_new_huge_page(h, page, nid);
784 }
785
786 return page;
787}
788
789/*
790 * common helper functions for hstate_next_node_to_{alloc|free}.
791 * We may have allocated or freed a huge page based on a different
792 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793 * be outside of *nodes_allowed. Ensure that we use an allowed
794 * node for alloc or free.
795 */
796static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
797{
798 nid = next_node(nid, *nodes_allowed);
799 if (nid == MAX_NUMNODES)
800 nid = first_node(*nodes_allowed);
801 VM_BUG_ON(nid >= MAX_NUMNODES);
802
803 return nid;
804}
805
806static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
807{
808 if (!node_isset(nid, *nodes_allowed))
809 nid = next_node_allowed(nid, nodes_allowed);
810 return nid;
811}
812
813/*
814 * returns the previously saved node ["this node"] from which to
815 * allocate a persistent huge page for the pool and advance the
816 * next node from which to allocate, handling wrap at end of node
817 * mask.
818 */
819static int hstate_next_node_to_alloc(struct hstate *h,
820 nodemask_t *nodes_allowed)
821{
822 int nid;
823
824 VM_BUG_ON(!nodes_allowed);
825
826 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
827 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
828
829 return nid;
830}
831
832/*
833 * helper for free_pool_huge_page() - return the previously saved
834 * node ["this node"] from which to free a huge page. Advance the
835 * next node id whether or not we find a free huge page to free so
836 * that the next attempt to free addresses the next node.
837 */
838static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
839{
840 int nid;
841
842 VM_BUG_ON(!nodes_allowed);
843
844 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
845 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
846
847 return nid;
848}
849
850#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
851 for (nr_nodes = nodes_weight(*mask); \
852 nr_nodes > 0 && \
853 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
854 nr_nodes--)
855
856#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
858 nr_nodes > 0 && \
859 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
860 nr_nodes--)
861
862static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863{
864 struct page *page;
865 int nr_nodes, node;
866 int ret = 0;
867
868 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869 page = alloc_fresh_huge_page_node(h, node);
870 if (page) {
871 ret = 1;
872 break;
873 }
874 }
875
876 if (ret)
877 count_vm_event(HTLB_BUDDY_PGALLOC);
878 else
879 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881 return ret;
882}
883
884/*
885 * Free huge page from pool from next node to free.
886 * Attempt to keep persistent huge pages more or less
887 * balanced over allowed nodes.
888 * Called with hugetlb_lock locked.
889 */
890static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891 bool acct_surplus)
892{
893 int nr_nodes, node;
894 int ret = 0;
895
896 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897 /*
898 * If we're returning unused surplus pages, only examine
899 * nodes with surplus pages.
900 */
901 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902 !list_empty(&h->hugepage_freelists[node])) {
903 struct page *page =
904 list_entry(h->hugepage_freelists[node].next,
905 struct page, lru);
906 list_del(&page->lru);
907 h->free_huge_pages--;
908 h->free_huge_pages_node[node]--;
909 if (acct_surplus) {
910 h->surplus_huge_pages--;
911 h->surplus_huge_pages_node[node]--;
912 }
913 update_and_free_page(h, page);
914 ret = 1;
915 break;
916 }
917 }
918
919 return ret;
920}
921
922/*
923 * Dissolve a given free hugepage into free buddy pages. This function does
924 * nothing for in-use (including surplus) hugepages.
925 */
926static void dissolve_free_huge_page(struct page *page)
927{
928 spin_lock(&hugetlb_lock);
929 if (PageHuge(page) && !page_count(page)) {
930 struct hstate *h = page_hstate(page);
931 int nid = page_to_nid(page);
932 list_del(&page->lru);
933 h->free_huge_pages--;
934 h->free_huge_pages_node[nid]--;
935 update_and_free_page(h, page);
936 }
937 spin_unlock(&hugetlb_lock);
938}
939
940/*
941 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942 * make specified memory blocks removable from the system.
943 * Note that start_pfn should aligned with (minimum) hugepage size.
944 */
945void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946{
947 unsigned int order = 8 * sizeof(void *);
948 unsigned long pfn;
949 struct hstate *h;
950
951 /* Set scan step to minimum hugepage size */
952 for_each_hstate(h)
953 if (order > huge_page_order(h))
954 order = huge_page_order(h);
955 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957 dissolve_free_huge_page(pfn_to_page(pfn));
958}
959
960static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961{
962 struct page *page;
963 unsigned int r_nid;
964
965 if (hstate_is_gigantic(h))
966 return NULL;
967
968 /*
969 * Assume we will successfully allocate the surplus page to
970 * prevent racing processes from causing the surplus to exceed
971 * overcommit
972 *
973 * This however introduces a different race, where a process B
974 * tries to grow the static hugepage pool while alloc_pages() is
975 * called by process A. B will only examine the per-node
976 * counters in determining if surplus huge pages can be
977 * converted to normal huge pages in adjust_pool_surplus(). A
978 * won't be able to increment the per-node counter, until the
979 * lock is dropped by B, but B doesn't drop hugetlb_lock until
980 * no more huge pages can be converted from surplus to normal
981 * state (and doesn't try to convert again). Thus, we have a
982 * case where a surplus huge page exists, the pool is grown, and
983 * the surplus huge page still exists after, even though it
984 * should just have been converted to a normal huge page. This
985 * does not leak memory, though, as the hugepage will be freed
986 * once it is out of use. It also does not allow the counters to
987 * go out of whack in adjust_pool_surplus() as we don't modify
988 * the node values until we've gotten the hugepage and only the
989 * per-node value is checked there.
990 */
991 spin_lock(&hugetlb_lock);
992 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993 spin_unlock(&hugetlb_lock);
994 return NULL;
995 } else {
996 h->nr_huge_pages++;
997 h->surplus_huge_pages++;
998 }
999 spin_unlock(&hugetlb_lock);
1000
1001 if (nid == NUMA_NO_NODE)
1002 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003 __GFP_REPEAT|__GFP_NOWARN,
1004 huge_page_order(h));
1005 else
1006 page = alloc_pages_exact_node(nid,
1007 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009
1010 if (page && arch_prepare_hugepage(page)) {
1011 __free_pages(page, huge_page_order(h));
1012 page = NULL;
1013 }
1014
1015 spin_lock(&hugetlb_lock);
1016 if (page) {
1017 INIT_LIST_HEAD(&page->lru);
1018 r_nid = page_to_nid(page);
1019 set_compound_page_dtor(page, free_huge_page);
1020 set_hugetlb_cgroup(page, NULL);
1021 /*
1022 * We incremented the global counters already
1023 */
1024 h->nr_huge_pages_node[r_nid]++;
1025 h->surplus_huge_pages_node[r_nid]++;
1026 __count_vm_event(HTLB_BUDDY_PGALLOC);
1027 } else {
1028 h->nr_huge_pages--;
1029 h->surplus_huge_pages--;
1030 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031 }
1032 spin_unlock(&hugetlb_lock);
1033
1034 return page;
1035}
1036
1037/*
1038 * This allocation function is useful in the context where vma is irrelevant.
1039 * E.g. soft-offlining uses this function because it only cares physical
1040 * address of error page.
1041 */
1042struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043{
1044 struct page *page = NULL;
1045
1046 spin_lock(&hugetlb_lock);
1047 if (h->free_huge_pages - h->resv_huge_pages > 0)
1048 page = dequeue_huge_page_node(h, nid);
1049 spin_unlock(&hugetlb_lock);
1050
1051 if (!page)
1052 page = alloc_buddy_huge_page(h, nid);
1053
1054 return page;
1055}
1056
1057/*
1058 * Increase the hugetlb pool such that it can accommodate a reservation
1059 * of size 'delta'.
1060 */
1061static int gather_surplus_pages(struct hstate *h, int delta)
1062{
1063 struct list_head surplus_list;
1064 struct page *page, *tmp;
1065 int ret, i;
1066 int needed, allocated;
1067 bool alloc_ok = true;
1068
1069 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070 if (needed <= 0) {
1071 h->resv_huge_pages += delta;
1072 return 0;
1073 }
1074
1075 allocated = 0;
1076 INIT_LIST_HEAD(&surplus_list);
1077
1078 ret = -ENOMEM;
1079retry:
1080 spin_unlock(&hugetlb_lock);
1081 for (i = 0; i < needed; i++) {
1082 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083 if (!page) {
1084 alloc_ok = false;
1085 break;
1086 }
1087 list_add(&page->lru, &surplus_list);
1088 }
1089 allocated += i;
1090
1091 /*
1092 * After retaking hugetlb_lock, we need to recalculate 'needed'
1093 * because either resv_huge_pages or free_huge_pages may have changed.
1094 */
1095 spin_lock(&hugetlb_lock);
1096 needed = (h->resv_huge_pages + delta) -
1097 (h->free_huge_pages + allocated);
1098 if (needed > 0) {
1099 if (alloc_ok)
1100 goto retry;
1101 /*
1102 * We were not able to allocate enough pages to
1103 * satisfy the entire reservation so we free what
1104 * we've allocated so far.
1105 */
1106 goto free;
1107 }
1108 /*
1109 * The surplus_list now contains _at_least_ the number of extra pages
1110 * needed to accommodate the reservation. Add the appropriate number
1111 * of pages to the hugetlb pool and free the extras back to the buddy
1112 * allocator. Commit the entire reservation here to prevent another
1113 * process from stealing the pages as they are added to the pool but
1114 * before they are reserved.
1115 */
1116 needed += allocated;
1117 h->resv_huge_pages += delta;
1118 ret = 0;
1119
1120 /* Free the needed pages to the hugetlb pool */
1121 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122 if ((--needed) < 0)
1123 break;
1124 /*
1125 * This page is now managed by the hugetlb allocator and has
1126 * no users -- drop the buddy allocator's reference.
1127 */
1128 put_page_testzero(page);
1129 VM_BUG_ON_PAGE(page_count(page), page);
1130 enqueue_huge_page(h, page);
1131 }
1132free:
1133 spin_unlock(&hugetlb_lock);
1134
1135 /* Free unnecessary surplus pages to the buddy allocator */
1136 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137 put_page(page);
1138 spin_lock(&hugetlb_lock);
1139
1140 return ret;
1141}
1142
1143/*
1144 * When releasing a hugetlb pool reservation, any surplus pages that were
1145 * allocated to satisfy the reservation must be explicitly freed if they were
1146 * never used.
1147 * Called with hugetlb_lock held.
1148 */
1149static void return_unused_surplus_pages(struct hstate *h,
1150 unsigned long unused_resv_pages)
1151{
1152 unsigned long nr_pages;
1153
1154 /* Uncommit the reservation */
1155 h->resv_huge_pages -= unused_resv_pages;
1156
1157 /* Cannot return gigantic pages currently */
1158 if (hstate_is_gigantic(h))
1159 return;
1160
1161 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162
1163 /*
1164 * We want to release as many surplus pages as possible, spread
1165 * evenly across all nodes with memory. Iterate across these nodes
1166 * until we can no longer free unreserved surplus pages. This occurs
1167 * when the nodes with surplus pages have no free pages.
1168 * free_pool_huge_page() will balance the the freed pages across the
1169 * on-line nodes with memory and will handle the hstate accounting.
1170 */
1171 while (nr_pages--) {
1172 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173 break;
1174 cond_resched_lock(&hugetlb_lock);
1175 }
1176}
1177
1178/*
1179 * Determine if the huge page at addr within the vma has an associated
1180 * reservation. Where it does not we will need to logically increase
1181 * reservation and actually increase subpool usage before an allocation
1182 * can occur. Where any new reservation would be required the
1183 * reservation change is prepared, but not committed. Once the page
1184 * has been allocated from the subpool and instantiated the change should
1185 * be committed via vma_commit_reservation. No action is required on
1186 * failure.
1187 */
1188static long vma_needs_reservation(struct hstate *h,
1189 struct vm_area_struct *vma, unsigned long addr)
1190{
1191 struct resv_map *resv;
1192 pgoff_t idx;
1193 long chg;
1194
1195 resv = vma_resv_map(vma);
1196 if (!resv)
1197 return 1;
1198
1199 idx = vma_hugecache_offset(h, vma, addr);
1200 chg = region_chg(resv, idx, idx + 1);
1201
1202 if (vma->vm_flags & VM_MAYSHARE)
1203 return chg;
1204 else
1205 return chg < 0 ? chg : 0;
1206}
1207static void vma_commit_reservation(struct hstate *h,
1208 struct vm_area_struct *vma, unsigned long addr)
1209{
1210 struct resv_map *resv;
1211 pgoff_t idx;
1212
1213 resv = vma_resv_map(vma);
1214 if (!resv)
1215 return;
1216
1217 idx = vma_hugecache_offset(h, vma, addr);
1218 region_add(resv, idx, idx + 1);
1219}
1220
1221static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222 unsigned long addr, int avoid_reserve)
1223{
1224 struct hugepage_subpool *spool = subpool_vma(vma);
1225 struct hstate *h = hstate_vma(vma);
1226 struct page *page;
1227 long chg;
1228 int ret, idx;
1229 struct hugetlb_cgroup *h_cg;
1230
1231 idx = hstate_index(h);
1232 /*
1233 * Processes that did not create the mapping will have no
1234 * reserves and will not have accounted against subpool
1235 * limit. Check that the subpool limit can be made before
1236 * satisfying the allocation MAP_NORESERVE mappings may also
1237 * need pages and subpool limit allocated allocated if no reserve
1238 * mapping overlaps.
1239 */
1240 chg = vma_needs_reservation(h, vma, addr);
1241 if (chg < 0)
1242 return ERR_PTR(-ENOMEM);
1243 if (chg || avoid_reserve)
1244 if (hugepage_subpool_get_pages(spool, 1))
1245 return ERR_PTR(-ENOSPC);
1246
1247 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248 if (ret) {
1249 if (chg || avoid_reserve)
1250 hugepage_subpool_put_pages(spool, 1);
1251 return ERR_PTR(-ENOSPC);
1252 }
1253 spin_lock(&hugetlb_lock);
1254 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255 if (!page) {
1256 spin_unlock(&hugetlb_lock);
1257 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1258 if (!page) {
1259 hugetlb_cgroup_uncharge_cgroup(idx,
1260 pages_per_huge_page(h),
1261 h_cg);
1262 if (chg || avoid_reserve)
1263 hugepage_subpool_put_pages(spool, 1);
1264 return ERR_PTR(-ENOSPC);
1265 }
1266 spin_lock(&hugetlb_lock);
1267 list_move(&page->lru, &h->hugepage_activelist);
1268 /* Fall through */
1269 }
1270 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271 spin_unlock(&hugetlb_lock);
1272
1273 set_page_private(page, (unsigned long)spool);
1274
1275 vma_commit_reservation(h, vma, addr);
1276 return page;
1277}
1278
1279/*
1280 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282 * where no ERR_VALUE is expected to be returned.
1283 */
1284struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285 unsigned long addr, int avoid_reserve)
1286{
1287 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288 if (IS_ERR(page))
1289 page = NULL;
1290 return page;
1291}
1292
1293int __weak alloc_bootmem_huge_page(struct hstate *h)
1294{
1295 struct huge_bootmem_page *m;
1296 int nr_nodes, node;
1297
1298 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299 void *addr;
1300
1301 addr = memblock_virt_alloc_try_nid_nopanic(
1302 huge_page_size(h), huge_page_size(h),
1303 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304 if (addr) {
1305 /*
1306 * Use the beginning of the huge page to store the
1307 * huge_bootmem_page struct (until gather_bootmem
1308 * puts them into the mem_map).
1309 */
1310 m = addr;
1311 goto found;
1312 }
1313 }
1314 return 0;
1315
1316found:
1317 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318 /* Put them into a private list first because mem_map is not up yet */
1319 list_add(&m->list, &huge_boot_pages);
1320 m->hstate = h;
1321 return 1;
1322}
1323
1324static void __init prep_compound_huge_page(struct page *page, int order)
1325{
1326 if (unlikely(order > (MAX_ORDER - 1)))
1327 prep_compound_gigantic_page(page, order);
1328 else
1329 prep_compound_page(page, order);
1330}
1331
1332/* Put bootmem huge pages into the standard lists after mem_map is up */
1333static void __init gather_bootmem_prealloc(void)
1334{
1335 struct huge_bootmem_page *m;
1336
1337 list_for_each_entry(m, &huge_boot_pages, list) {
1338 struct hstate *h = m->hstate;
1339 struct page *page;
1340
1341#ifdef CONFIG_HIGHMEM
1342 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343 memblock_free_late(__pa(m),
1344 sizeof(struct huge_bootmem_page));
1345#else
1346 page = virt_to_page(m);
1347#endif
1348 WARN_ON(page_count(page) != 1);
1349 prep_compound_huge_page(page, h->order);
1350 WARN_ON(PageReserved(page));
1351 prep_new_huge_page(h, page, page_to_nid(page));
1352 /*
1353 * If we had gigantic hugepages allocated at boot time, we need
1354 * to restore the 'stolen' pages to totalram_pages in order to
1355 * fix confusing memory reports from free(1) and another
1356 * side-effects, like CommitLimit going negative.
1357 */
1358 if (hstate_is_gigantic(h))
1359 adjust_managed_page_count(page, 1 << h->order);
1360 }
1361}
1362
1363static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1364{
1365 unsigned long i;
1366
1367 for (i = 0; i < h->max_huge_pages; ++i) {
1368 if (hstate_is_gigantic(h)) {
1369 if (!alloc_bootmem_huge_page(h))
1370 break;
1371 } else if (!alloc_fresh_huge_page(h,
1372 &node_states[N_MEMORY]))
1373 break;
1374 }
1375 h->max_huge_pages = i;
1376}
1377
1378static void __init hugetlb_init_hstates(void)
1379{
1380 struct hstate *h;
1381
1382 for_each_hstate(h) {
1383 /* oversize hugepages were init'ed in early boot */
1384 if (!hstate_is_gigantic(h))
1385 hugetlb_hstate_alloc_pages(h);
1386 }
1387}
1388
1389static char * __init memfmt(char *buf, unsigned long n)
1390{
1391 if (n >= (1UL << 30))
1392 sprintf(buf, "%lu GB", n >> 30);
1393 else if (n >= (1UL << 20))
1394 sprintf(buf, "%lu MB", n >> 20);
1395 else
1396 sprintf(buf, "%lu KB", n >> 10);
1397 return buf;
1398}
1399
1400static void __init report_hugepages(void)
1401{
1402 struct hstate *h;
1403
1404 for_each_hstate(h) {
1405 char buf[32];
1406 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1407 memfmt(buf, huge_page_size(h)),
1408 h->free_huge_pages);
1409 }
1410}
1411
1412#ifdef CONFIG_HIGHMEM
1413static void try_to_free_low(struct hstate *h, unsigned long count,
1414 nodemask_t *nodes_allowed)
1415{
1416 int i;
1417
1418 if (hstate_is_gigantic(h))
1419 return;
1420
1421 for_each_node_mask(i, *nodes_allowed) {
1422 struct page *page, *next;
1423 struct list_head *freel = &h->hugepage_freelists[i];
1424 list_for_each_entry_safe(page, next, freel, lru) {
1425 if (count >= h->nr_huge_pages)
1426 return;
1427 if (PageHighMem(page))
1428 continue;
1429 list_del(&page->lru);
1430 update_and_free_page(h, page);
1431 h->free_huge_pages--;
1432 h->free_huge_pages_node[page_to_nid(page)]--;
1433 }
1434 }
1435}
1436#else
1437static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438 nodemask_t *nodes_allowed)
1439{
1440}
1441#endif
1442
1443/*
1444 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1445 * balanced by operating on them in a round-robin fashion.
1446 * Returns 1 if an adjustment was made.
1447 */
1448static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449 int delta)
1450{
1451 int nr_nodes, node;
1452
1453 VM_BUG_ON(delta != -1 && delta != 1);
1454
1455 if (delta < 0) {
1456 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457 if (h->surplus_huge_pages_node[node])
1458 goto found;
1459 }
1460 } else {
1461 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462 if (h->surplus_huge_pages_node[node] <
1463 h->nr_huge_pages_node[node])
1464 goto found;
1465 }
1466 }
1467 return 0;
1468
1469found:
1470 h->surplus_huge_pages += delta;
1471 h->surplus_huge_pages_node[node] += delta;
1472 return 1;
1473}
1474
1475#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477 nodemask_t *nodes_allowed)
1478{
1479 unsigned long min_count, ret;
1480
1481 if (hstate_is_gigantic(h))
1482 return h->max_huge_pages;
1483
1484 /*
1485 * Increase the pool size
1486 * First take pages out of surplus state. Then make up the
1487 * remaining difference by allocating fresh huge pages.
1488 *
1489 * We might race with alloc_buddy_huge_page() here and be unable
1490 * to convert a surplus huge page to a normal huge page. That is
1491 * not critical, though, it just means the overall size of the
1492 * pool might be one hugepage larger than it needs to be, but
1493 * within all the constraints specified by the sysctls.
1494 */
1495 spin_lock(&hugetlb_lock);
1496 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498 break;
1499 }
1500
1501 while (count > persistent_huge_pages(h)) {
1502 /*
1503 * If this allocation races such that we no longer need the
1504 * page, free_huge_page will handle it by freeing the page
1505 * and reducing the surplus.
1506 */
1507 spin_unlock(&hugetlb_lock);
1508 ret = alloc_fresh_huge_page(h, nodes_allowed);
1509 spin_lock(&hugetlb_lock);
1510 if (!ret)
1511 goto out;
1512
1513 /* Bail for signals. Probably ctrl-c from user */
1514 if (signal_pending(current))
1515 goto out;
1516 }
1517
1518 /*
1519 * Decrease the pool size
1520 * First return free pages to the buddy allocator (being careful
1521 * to keep enough around to satisfy reservations). Then place
1522 * pages into surplus state as needed so the pool will shrink
1523 * to the desired size as pages become free.
1524 *
1525 * By placing pages into the surplus state independent of the
1526 * overcommit value, we are allowing the surplus pool size to
1527 * exceed overcommit. There are few sane options here. Since
1528 * alloc_buddy_huge_page() is checking the global counter,
1529 * though, we'll note that we're not allowed to exceed surplus
1530 * and won't grow the pool anywhere else. Not until one of the
1531 * sysctls are changed, or the surplus pages go out of use.
1532 */
1533 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534 min_count = max(count, min_count);
1535 try_to_free_low(h, min_count, nodes_allowed);
1536 while (min_count < persistent_huge_pages(h)) {
1537 if (!free_pool_huge_page(h, nodes_allowed, 0))
1538 break;
1539 cond_resched_lock(&hugetlb_lock);
1540 }
1541 while (count < persistent_huge_pages(h)) {
1542 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1543 break;
1544 }
1545out:
1546 ret = persistent_huge_pages(h);
1547 spin_unlock(&hugetlb_lock);
1548 return ret;
1549}
1550
1551#define HSTATE_ATTR_RO(_name) \
1552 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1553
1554#define HSTATE_ATTR(_name) \
1555 static struct kobj_attribute _name##_attr = \
1556 __ATTR(_name, 0644, _name##_show, _name##_store)
1557
1558static struct kobject *hugepages_kobj;
1559static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1560
1561static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1562
1563static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1564{
1565 int i;
1566
1567 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1568 if (hstate_kobjs[i] == kobj) {
1569 if (nidp)
1570 *nidp = NUMA_NO_NODE;
1571 return &hstates[i];
1572 }
1573
1574 return kobj_to_node_hstate(kobj, nidp);
1575}
1576
1577static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1578 struct kobj_attribute *attr, char *buf)
1579{
1580 struct hstate *h;
1581 unsigned long nr_huge_pages;
1582 int nid;
1583
1584 h = kobj_to_hstate(kobj, &nid);
1585 if (nid == NUMA_NO_NODE)
1586 nr_huge_pages = h->nr_huge_pages;
1587 else
1588 nr_huge_pages = h->nr_huge_pages_node[nid];
1589
1590 return sprintf(buf, "%lu\n", nr_huge_pages);
1591}
1592
1593static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1594 struct kobject *kobj, struct kobj_attribute *attr,
1595 const char *buf, size_t len)
1596{
1597 int err;
1598 int nid;
1599 unsigned long count;
1600 struct hstate *h;
1601 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1602
1603 err = kstrtoul(buf, 10, &count);
1604 if (err)
1605 goto out;
1606
1607 h = kobj_to_hstate(kobj, &nid);
1608 if (hstate_is_gigantic(h)) {
1609 err = -EINVAL;
1610 goto out;
1611 }
1612
1613 if (nid == NUMA_NO_NODE) {
1614 /*
1615 * global hstate attribute
1616 */
1617 if (!(obey_mempolicy &&
1618 init_nodemask_of_mempolicy(nodes_allowed))) {
1619 NODEMASK_FREE(nodes_allowed);
1620 nodes_allowed = &node_states[N_MEMORY];
1621 }
1622 } else if (nodes_allowed) {
1623 /*
1624 * per node hstate attribute: adjust count to global,
1625 * but restrict alloc/free to the specified node.
1626 */
1627 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1628 init_nodemask_of_node(nodes_allowed, nid);
1629 } else
1630 nodes_allowed = &node_states[N_MEMORY];
1631
1632 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1633
1634 if (nodes_allowed != &node_states[N_MEMORY])
1635 NODEMASK_FREE(nodes_allowed);
1636
1637 return len;
1638out:
1639 NODEMASK_FREE(nodes_allowed);
1640 return err;
1641}
1642
1643static ssize_t nr_hugepages_show(struct kobject *kobj,
1644 struct kobj_attribute *attr, char *buf)
1645{
1646 return nr_hugepages_show_common(kobj, attr, buf);
1647}
1648
1649static ssize_t nr_hugepages_store(struct kobject *kobj,
1650 struct kobj_attribute *attr, const char *buf, size_t len)
1651{
1652 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1653}
1654HSTATE_ATTR(nr_hugepages);
1655
1656#ifdef CONFIG_NUMA
1657
1658/*
1659 * hstate attribute for optionally mempolicy-based constraint on persistent
1660 * huge page alloc/free.
1661 */
1662static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1663 struct kobj_attribute *attr, char *buf)
1664{
1665 return nr_hugepages_show_common(kobj, attr, buf);
1666}
1667
1668static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1669 struct kobj_attribute *attr, const char *buf, size_t len)
1670{
1671 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1672}
1673HSTATE_ATTR(nr_hugepages_mempolicy);
1674#endif
1675
1676
1677static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1678 struct kobj_attribute *attr, char *buf)
1679{
1680 struct hstate *h = kobj_to_hstate(kobj, NULL);
1681 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1682}
1683
1684static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1685 struct kobj_attribute *attr, const char *buf, size_t count)
1686{
1687 int err;
1688 unsigned long input;
1689 struct hstate *h = kobj_to_hstate(kobj, NULL);
1690
1691 if (hstate_is_gigantic(h))
1692 return -EINVAL;
1693
1694 err = kstrtoul(buf, 10, &input);
1695 if (err)
1696 return err;
1697
1698 spin_lock(&hugetlb_lock);
1699 h->nr_overcommit_huge_pages = input;
1700 spin_unlock(&hugetlb_lock);
1701
1702 return count;
1703}
1704HSTATE_ATTR(nr_overcommit_hugepages);
1705
1706static ssize_t free_hugepages_show(struct kobject *kobj,
1707 struct kobj_attribute *attr, char *buf)
1708{
1709 struct hstate *h;
1710 unsigned long free_huge_pages;
1711 int nid;
1712
1713 h = kobj_to_hstate(kobj, &nid);
1714 if (nid == NUMA_NO_NODE)
1715 free_huge_pages = h->free_huge_pages;
1716 else
1717 free_huge_pages = h->free_huge_pages_node[nid];
1718
1719 return sprintf(buf, "%lu\n", free_huge_pages);
1720}
1721HSTATE_ATTR_RO(free_hugepages);
1722
1723static ssize_t resv_hugepages_show(struct kobject *kobj,
1724 struct kobj_attribute *attr, char *buf)
1725{
1726 struct hstate *h = kobj_to_hstate(kobj, NULL);
1727 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1728}
1729HSTATE_ATTR_RO(resv_hugepages);
1730
1731static ssize_t surplus_hugepages_show(struct kobject *kobj,
1732 struct kobj_attribute *attr, char *buf)
1733{
1734 struct hstate *h;
1735 unsigned long surplus_huge_pages;
1736 int nid;
1737
1738 h = kobj_to_hstate(kobj, &nid);
1739 if (nid == NUMA_NO_NODE)
1740 surplus_huge_pages = h->surplus_huge_pages;
1741 else
1742 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1743
1744 return sprintf(buf, "%lu\n", surplus_huge_pages);
1745}
1746HSTATE_ATTR_RO(surplus_hugepages);
1747
1748static struct attribute *hstate_attrs[] = {
1749 &nr_hugepages_attr.attr,
1750 &nr_overcommit_hugepages_attr.attr,
1751 &free_hugepages_attr.attr,
1752 &resv_hugepages_attr.attr,
1753 &surplus_hugepages_attr.attr,
1754#ifdef CONFIG_NUMA
1755 &nr_hugepages_mempolicy_attr.attr,
1756#endif
1757 NULL,
1758};
1759
1760static struct attribute_group hstate_attr_group = {
1761 .attrs = hstate_attrs,
1762};
1763
1764static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1765 struct kobject **hstate_kobjs,
1766 struct attribute_group *hstate_attr_group)
1767{
1768 int retval;
1769 int hi = hstate_index(h);
1770
1771 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1772 if (!hstate_kobjs[hi])
1773 return -ENOMEM;
1774
1775 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1776 if (retval)
1777 kobject_put(hstate_kobjs[hi]);
1778
1779 return retval;
1780}
1781
1782static void __init hugetlb_sysfs_init(void)
1783{
1784 struct hstate *h;
1785 int err;
1786
1787 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1788 if (!hugepages_kobj)
1789 return;
1790
1791 for_each_hstate(h) {
1792 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1793 hstate_kobjs, &hstate_attr_group);
1794 if (err)
1795 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1796 }
1797}
1798
1799#ifdef CONFIG_NUMA
1800
1801/*
1802 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1803 * with node devices in node_devices[] using a parallel array. The array
1804 * index of a node device or _hstate == node id.
1805 * This is here to avoid any static dependency of the node device driver, in
1806 * the base kernel, on the hugetlb module.
1807 */
1808struct node_hstate {
1809 struct kobject *hugepages_kobj;
1810 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1811};
1812struct node_hstate node_hstates[MAX_NUMNODES];
1813
1814/*
1815 * A subset of global hstate attributes for node devices
1816 */
1817static struct attribute *per_node_hstate_attrs[] = {
1818 &nr_hugepages_attr.attr,
1819 &free_hugepages_attr.attr,
1820 &surplus_hugepages_attr.attr,
1821 NULL,
1822};
1823
1824static struct attribute_group per_node_hstate_attr_group = {
1825 .attrs = per_node_hstate_attrs,
1826};
1827
1828/*
1829 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1830 * Returns node id via non-NULL nidp.
1831 */
1832static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1833{
1834 int nid;
1835
1836 for (nid = 0; nid < nr_node_ids; nid++) {
1837 struct node_hstate *nhs = &node_hstates[nid];
1838 int i;
1839 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1840 if (nhs->hstate_kobjs[i] == kobj) {
1841 if (nidp)
1842 *nidp = nid;
1843 return &hstates[i];
1844 }
1845 }
1846
1847 BUG();
1848 return NULL;
1849}
1850
1851/*
1852 * Unregister hstate attributes from a single node device.
1853 * No-op if no hstate attributes attached.
1854 */
1855static void hugetlb_unregister_node(struct node *node)
1856{
1857 struct hstate *h;
1858 struct node_hstate *nhs = &node_hstates[node->dev.id];
1859
1860 if (!nhs->hugepages_kobj)
1861 return; /* no hstate attributes */
1862
1863 for_each_hstate(h) {
1864 int idx = hstate_index(h);
1865 if (nhs->hstate_kobjs[idx]) {
1866 kobject_put(nhs->hstate_kobjs[idx]);
1867 nhs->hstate_kobjs[idx] = NULL;
1868 }
1869 }
1870
1871 kobject_put(nhs->hugepages_kobj);
1872 nhs->hugepages_kobj = NULL;
1873}
1874
1875/*
1876 * hugetlb module exit: unregister hstate attributes from node devices
1877 * that have them.
1878 */
1879static void hugetlb_unregister_all_nodes(void)
1880{
1881 int nid;
1882
1883 /*
1884 * disable node device registrations.
1885 */
1886 register_hugetlbfs_with_node(NULL, NULL);
1887
1888 /*
1889 * remove hstate attributes from any nodes that have them.
1890 */
1891 for (nid = 0; nid < nr_node_ids; nid++)
1892 hugetlb_unregister_node(node_devices[nid]);
1893}
1894
1895/*
1896 * Register hstate attributes for a single node device.
1897 * No-op if attributes already registered.
1898 */
1899static void hugetlb_register_node(struct node *node)
1900{
1901 struct hstate *h;
1902 struct node_hstate *nhs = &node_hstates[node->dev.id];
1903 int err;
1904
1905 if (nhs->hugepages_kobj)
1906 return; /* already allocated */
1907
1908 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1909 &node->dev.kobj);
1910 if (!nhs->hugepages_kobj)
1911 return;
1912
1913 for_each_hstate(h) {
1914 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1915 nhs->hstate_kobjs,
1916 &per_node_hstate_attr_group);
1917 if (err) {
1918 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1919 h->name, node->dev.id);
1920 hugetlb_unregister_node(node);
1921 break;
1922 }
1923 }
1924}
1925
1926/*
1927 * hugetlb init time: register hstate attributes for all registered node
1928 * devices of nodes that have memory. All on-line nodes should have
1929 * registered their associated device by this time.
1930 */
1931static void hugetlb_register_all_nodes(void)
1932{
1933 int nid;
1934
1935 for_each_node_state(nid, N_MEMORY) {
1936 struct node *node = node_devices[nid];
1937 if (node->dev.id == nid)
1938 hugetlb_register_node(node);
1939 }
1940
1941 /*
1942 * Let the node device driver know we're here so it can
1943 * [un]register hstate attributes on node hotplug.
1944 */
1945 register_hugetlbfs_with_node(hugetlb_register_node,
1946 hugetlb_unregister_node);
1947}
1948#else /* !CONFIG_NUMA */
1949
1950static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1951{
1952 BUG();
1953 if (nidp)
1954 *nidp = -1;
1955 return NULL;
1956}
1957
1958static void hugetlb_unregister_all_nodes(void) { }
1959
1960static void hugetlb_register_all_nodes(void) { }
1961
1962#endif
1963
1964static void __exit hugetlb_exit(void)
1965{
1966 struct hstate *h;
1967
1968 hugetlb_unregister_all_nodes();
1969
1970 for_each_hstate(h) {
1971 kobject_put(hstate_kobjs[hstate_index(h)]);
1972 }
1973
1974 kobject_put(hugepages_kobj);
1975 kfree(htlb_fault_mutex_table);
1976}
1977module_exit(hugetlb_exit);
1978
1979static int __init hugetlb_init(void)
1980{
1981 int i;
1982
1983 if (!hugepages_supported())
1984 return 0;
1985
1986 if (!size_to_hstate(default_hstate_size)) {
1987 default_hstate_size = HPAGE_SIZE;
1988 if (!size_to_hstate(default_hstate_size))
1989 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1990 }
1991 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1992 if (default_hstate_max_huge_pages)
1993 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1994
1995 hugetlb_init_hstates();
1996 gather_bootmem_prealloc();
1997 report_hugepages();
1998
1999 hugetlb_sysfs_init();
2000 hugetlb_register_all_nodes();
2001 hugetlb_cgroup_file_init();
2002
2003#ifdef CONFIG_SMP
2004 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2005#else
2006 num_fault_mutexes = 1;
2007#endif
2008 htlb_fault_mutex_table =
2009 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2010 BUG_ON(!htlb_fault_mutex_table);
2011
2012 for (i = 0; i < num_fault_mutexes; i++)
2013 mutex_init(&htlb_fault_mutex_table[i]);
2014 return 0;
2015}
2016module_init(hugetlb_init);
2017
2018/* Should be called on processing a hugepagesz=... option */
2019void __init hugetlb_add_hstate(unsigned order)
2020{
2021 struct hstate *h;
2022 unsigned long i;
2023
2024 if (size_to_hstate(PAGE_SIZE << order)) {
2025 pr_warning("hugepagesz= specified twice, ignoring\n");
2026 return;
2027 }
2028 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2029 BUG_ON(order == 0);
2030 h = &hstates[hugetlb_max_hstate++];
2031 h->order = order;
2032 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2033 h->nr_huge_pages = 0;
2034 h->free_huge_pages = 0;
2035 for (i = 0; i < MAX_NUMNODES; ++i)
2036 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2037 INIT_LIST_HEAD(&h->hugepage_activelist);
2038 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2039 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2040 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2041 huge_page_size(h)/1024);
2042
2043 parsed_hstate = h;
2044}
2045
2046static int __init hugetlb_nrpages_setup(char *s)
2047{
2048 unsigned long *mhp;
2049 static unsigned long *last_mhp;
2050
2051 /*
2052 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2053 * so this hugepages= parameter goes to the "default hstate".
2054 */
2055 if (!hugetlb_max_hstate)
2056 mhp = &default_hstate_max_huge_pages;
2057 else
2058 mhp = &parsed_hstate->max_huge_pages;
2059
2060 if (mhp == last_mhp) {
2061 pr_warning("hugepages= specified twice without "
2062 "interleaving hugepagesz=, ignoring\n");
2063 return 1;
2064 }
2065
2066 if (sscanf(s, "%lu", mhp) <= 0)
2067 *mhp = 0;
2068
2069 /*
2070 * Global state is always initialized later in hugetlb_init.
2071 * But we need to allocate >= MAX_ORDER hstates here early to still
2072 * use the bootmem allocator.
2073 */
2074 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2075 hugetlb_hstate_alloc_pages(parsed_hstate);
2076
2077 last_mhp = mhp;
2078
2079 return 1;
2080}
2081__setup("hugepages=", hugetlb_nrpages_setup);
2082
2083static int __init hugetlb_default_setup(char *s)
2084{
2085 default_hstate_size = memparse(s, &s);
2086 return 1;
2087}
2088__setup("default_hugepagesz=", hugetlb_default_setup);
2089
2090static unsigned int cpuset_mems_nr(unsigned int *array)
2091{
2092 int node;
2093 unsigned int nr = 0;
2094
2095 for_each_node_mask(node, cpuset_current_mems_allowed)
2096 nr += array[node];
2097
2098 return nr;
2099}
2100
2101#ifdef CONFIG_SYSCTL
2102static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2103 struct ctl_table *table, int write,
2104 void __user *buffer, size_t *length, loff_t *ppos)
2105{
2106 struct hstate *h = &default_hstate;
2107 unsigned long tmp;
2108 int ret;
2109
2110 if (!hugepages_supported())
2111 return -ENOTSUPP;
2112
2113 tmp = h->max_huge_pages;
2114
2115 if (write && hstate_is_gigantic(h))
2116 return -EINVAL;
2117
2118 table->data = &tmp;
2119 table->maxlen = sizeof(unsigned long);
2120 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2121 if (ret)
2122 goto out;
2123
2124 if (write) {
2125 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2126 GFP_KERNEL | __GFP_NORETRY);
2127 if (!(obey_mempolicy &&
2128 init_nodemask_of_mempolicy(nodes_allowed))) {
2129 NODEMASK_FREE(nodes_allowed);
2130 nodes_allowed = &node_states[N_MEMORY];
2131 }
2132 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2133
2134 if (nodes_allowed != &node_states[N_MEMORY])
2135 NODEMASK_FREE(nodes_allowed);
2136 }
2137out:
2138 return ret;
2139}
2140
2141int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2142 void __user *buffer, size_t *length, loff_t *ppos)
2143{
2144
2145 return hugetlb_sysctl_handler_common(false, table, write,
2146 buffer, length, ppos);
2147}
2148
2149#ifdef CONFIG_NUMA
2150int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2151 void __user *buffer, size_t *length, loff_t *ppos)
2152{
2153 return hugetlb_sysctl_handler_common(true, table, write,
2154 buffer, length, ppos);
2155}
2156#endif /* CONFIG_NUMA */
2157
2158int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2159 void __user *buffer,
2160 size_t *length, loff_t *ppos)
2161{
2162 struct hstate *h = &default_hstate;
2163 unsigned long tmp;
2164 int ret;
2165
2166 if (!hugepages_supported())
2167 return -ENOTSUPP;
2168
2169 tmp = h->nr_overcommit_huge_pages;
2170
2171 if (write && hstate_is_gigantic(h))
2172 return -EINVAL;
2173
2174 table->data = &tmp;
2175 table->maxlen = sizeof(unsigned long);
2176 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2177 if (ret)
2178 goto out;
2179
2180 if (write) {
2181 spin_lock(&hugetlb_lock);
2182 h->nr_overcommit_huge_pages = tmp;
2183 spin_unlock(&hugetlb_lock);
2184 }
2185out:
2186 return ret;
2187}
2188
2189#endif /* CONFIG_SYSCTL */
2190
2191void hugetlb_report_meminfo(struct seq_file *m)
2192{
2193 struct hstate *h = &default_hstate;
2194 if (!hugepages_supported())
2195 return;
2196 seq_printf(m,
2197 "HugePages_Total: %5lu\n"
2198 "HugePages_Free: %5lu\n"
2199 "HugePages_Rsvd: %5lu\n"
2200 "HugePages_Surp: %5lu\n"
2201 "Hugepagesize: %8lu kB\n",
2202 h->nr_huge_pages,
2203 h->free_huge_pages,
2204 h->resv_huge_pages,
2205 h->surplus_huge_pages,
2206 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2207}
2208
2209int hugetlb_report_node_meminfo(int nid, char *buf)
2210{
2211 struct hstate *h = &default_hstate;
2212 if (!hugepages_supported())
2213 return 0;
2214 return sprintf(buf,
2215 "Node %d HugePages_Total: %5u\n"
2216 "Node %d HugePages_Free: %5u\n"
2217 "Node %d HugePages_Surp: %5u\n",
2218 nid, h->nr_huge_pages_node[nid],
2219 nid, h->free_huge_pages_node[nid],
2220 nid, h->surplus_huge_pages_node[nid]);
2221}
2222
2223void hugetlb_show_meminfo(void)
2224{
2225 struct hstate *h;
2226 int nid;
2227
2228 if (!hugepages_supported())
2229 return;
2230
2231 for_each_node_state(nid, N_MEMORY)
2232 for_each_hstate(h)
2233 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2234 nid,
2235 h->nr_huge_pages_node[nid],
2236 h->free_huge_pages_node[nid],
2237 h->surplus_huge_pages_node[nid],
2238 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2239}
2240
2241/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2242unsigned long hugetlb_total_pages(void)
2243{
2244 struct hstate *h;
2245 unsigned long nr_total_pages = 0;
2246
2247 for_each_hstate(h)
2248 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2249 return nr_total_pages;
2250}
2251
2252static int hugetlb_acct_memory(struct hstate *h, long delta)
2253{
2254 int ret = -ENOMEM;
2255
2256 spin_lock(&hugetlb_lock);
2257 /*
2258 * When cpuset is configured, it breaks the strict hugetlb page
2259 * reservation as the accounting is done on a global variable. Such
2260 * reservation is completely rubbish in the presence of cpuset because
2261 * the reservation is not checked against page availability for the
2262 * current cpuset. Application can still potentially OOM'ed by kernel
2263 * with lack of free htlb page in cpuset that the task is in.
2264 * Attempt to enforce strict accounting with cpuset is almost
2265 * impossible (or too ugly) because cpuset is too fluid that
2266 * task or memory node can be dynamically moved between cpusets.
2267 *
2268 * The change of semantics for shared hugetlb mapping with cpuset is
2269 * undesirable. However, in order to preserve some of the semantics,
2270 * we fall back to check against current free page availability as
2271 * a best attempt and hopefully to minimize the impact of changing
2272 * semantics that cpuset has.
2273 */
2274 if (delta > 0) {
2275 if (gather_surplus_pages(h, delta) < 0)
2276 goto out;
2277
2278 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2279 return_unused_surplus_pages(h, delta);
2280 goto out;
2281 }
2282 }
2283
2284 ret = 0;
2285 if (delta < 0)
2286 return_unused_surplus_pages(h, (unsigned long) -delta);
2287
2288out:
2289 spin_unlock(&hugetlb_lock);
2290 return ret;
2291}
2292
2293static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2294{
2295 struct resv_map *resv = vma_resv_map(vma);
2296
2297 /*
2298 * This new VMA should share its siblings reservation map if present.
2299 * The VMA will only ever have a valid reservation map pointer where
2300 * it is being copied for another still existing VMA. As that VMA
2301 * has a reference to the reservation map it cannot disappear until
2302 * after this open call completes. It is therefore safe to take a
2303 * new reference here without additional locking.
2304 */
2305 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306 kref_get(&resv->refs);
2307}
2308
2309static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2310{
2311 struct hstate *h = hstate_vma(vma);
2312 struct resv_map *resv = vma_resv_map(vma);
2313 struct hugepage_subpool *spool = subpool_vma(vma);
2314 unsigned long reserve, start, end;
2315
2316 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2317 return;
2318
2319 start = vma_hugecache_offset(h, vma, vma->vm_start);
2320 end = vma_hugecache_offset(h, vma, vma->vm_end);
2321
2322 reserve = (end - start) - region_count(resv, start, end);
2323
2324 kref_put(&resv->refs, resv_map_release);
2325
2326 if (reserve) {
2327 hugetlb_acct_memory(h, -reserve);
2328 hugepage_subpool_put_pages(spool, reserve);
2329 }
2330}
2331
2332/*
2333 * We cannot handle pagefaults against hugetlb pages at all. They cause
2334 * handle_mm_fault() to try to instantiate regular-sized pages in the
2335 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2336 * this far.
2337 */
2338static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2339{
2340 BUG();
2341 return 0;
2342}
2343
2344const struct vm_operations_struct hugetlb_vm_ops = {
2345 .fault = hugetlb_vm_op_fault,
2346 .open = hugetlb_vm_op_open,
2347 .close = hugetlb_vm_op_close,
2348};
2349
2350static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2351 int writable)
2352{
2353 pte_t entry;
2354
2355 if (writable) {
2356 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2357 vma->vm_page_prot)));
2358 } else {
2359 entry = huge_pte_wrprotect(mk_huge_pte(page,
2360 vma->vm_page_prot));
2361 }
2362 entry = pte_mkyoung(entry);
2363 entry = pte_mkhuge(entry);
2364 entry = arch_make_huge_pte(entry, vma, page, writable);
2365
2366 return entry;
2367}
2368
2369static void set_huge_ptep_writable(struct vm_area_struct *vma,
2370 unsigned long address, pte_t *ptep)
2371{
2372 pte_t entry;
2373
2374 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2375 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2376 update_mmu_cache(vma, address, ptep);
2377}
2378
2379
2380int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2381 struct vm_area_struct *vma)
2382{
2383 pte_t *src_pte, *dst_pte, entry;
2384 struct page *ptepage;
2385 unsigned long addr;
2386 int cow;
2387 struct hstate *h = hstate_vma(vma);
2388 unsigned long sz = huge_page_size(h);
2389 unsigned long mmun_start; /* For mmu_notifiers */
2390 unsigned long mmun_end; /* For mmu_notifiers */
2391 int ret = 0;
2392
2393 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2394
2395 mmun_start = vma->vm_start;
2396 mmun_end = vma->vm_end;
2397 if (cow)
2398 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2399
2400 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2401 spinlock_t *src_ptl, *dst_ptl;
2402 src_pte = huge_pte_offset(src, addr);
2403 if (!src_pte)
2404 continue;
2405 dst_pte = huge_pte_alloc(dst, addr, sz);
2406 if (!dst_pte) {
2407 ret = -ENOMEM;
2408 break;
2409 }
2410
2411 /* If the pagetables are shared don't copy or take references */
2412 if (dst_pte == src_pte)
2413 continue;
2414
2415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2416 src_ptl = huge_pte_lockptr(h, src, src_pte);
2417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2418 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2419 if (cow)
2420 huge_ptep_set_wrprotect(src, addr, src_pte);
2421 entry = huge_ptep_get(src_pte);
2422 ptepage = pte_page(entry);
2423 get_page(ptepage);
2424 page_dup_rmap(ptepage);
2425 set_huge_pte_at(dst, addr, dst_pte, entry);
2426 }
2427 spin_unlock(src_ptl);
2428 spin_unlock(dst_ptl);
2429 }
2430
2431 if (cow)
2432 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2433
2434 return ret;
2435}
2436
2437static int is_hugetlb_entry_migration(pte_t pte)
2438{
2439 swp_entry_t swp;
2440
2441 if (huge_pte_none(pte) || pte_present(pte))
2442 return 0;
2443 swp = pte_to_swp_entry(pte);
2444 if (non_swap_entry(swp) && is_migration_entry(swp))
2445 return 1;
2446 else
2447 return 0;
2448}
2449
2450static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2451{
2452 swp_entry_t swp;
2453
2454 if (huge_pte_none(pte) || pte_present(pte))
2455 return 0;
2456 swp = pte_to_swp_entry(pte);
2457 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2458 return 1;
2459 else
2460 return 0;
2461}
2462
2463void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2464 unsigned long start, unsigned long end,
2465 struct page *ref_page)
2466{
2467 int force_flush = 0;
2468 struct mm_struct *mm = vma->vm_mm;
2469 unsigned long address;
2470 pte_t *ptep;
2471 pte_t pte;
2472 spinlock_t *ptl;
2473 struct page *page;
2474 struct hstate *h = hstate_vma(vma);
2475 unsigned long sz = huge_page_size(h);
2476 const unsigned long mmun_start = start; /* For mmu_notifiers */
2477 const unsigned long mmun_end = end; /* For mmu_notifiers */
2478
2479 WARN_ON(!is_vm_hugetlb_page(vma));
2480 BUG_ON(start & ~huge_page_mask(h));
2481 BUG_ON(end & ~huge_page_mask(h));
2482
2483 tlb_start_vma(tlb, vma);
2484 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2485again:
2486 for (address = start; address < end; address += sz) {
2487 ptep = huge_pte_offset(mm, address);
2488 if (!ptep)
2489 continue;
2490
2491 ptl = huge_pte_lock(h, mm, ptep);
2492 if (huge_pmd_unshare(mm, &address, ptep))
2493 goto unlock;
2494
2495 pte = huge_ptep_get(ptep);
2496 if (huge_pte_none(pte))
2497 goto unlock;
2498
2499 /*
2500 * HWPoisoned hugepage is already unmapped and dropped reference
2501 */
2502 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2503 huge_pte_clear(mm, address, ptep);
2504 goto unlock;
2505 }
2506
2507 page = pte_page(pte);
2508 /*
2509 * If a reference page is supplied, it is because a specific
2510 * page is being unmapped, not a range. Ensure the page we
2511 * are about to unmap is the actual page of interest.
2512 */
2513 if (ref_page) {
2514 if (page != ref_page)
2515 goto unlock;
2516
2517 /*
2518 * Mark the VMA as having unmapped its page so that
2519 * future faults in this VMA will fail rather than
2520 * looking like data was lost
2521 */
2522 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2523 }
2524
2525 pte = huge_ptep_get_and_clear(mm, address, ptep);
2526 tlb_remove_tlb_entry(tlb, ptep, address);
2527 if (huge_pte_dirty(pte))
2528 set_page_dirty(page);
2529
2530 page_remove_rmap(page);
2531 force_flush = !__tlb_remove_page(tlb, page);
2532 if (force_flush) {
2533 spin_unlock(ptl);
2534 break;
2535 }
2536 /* Bail out after unmapping reference page if supplied */
2537 if (ref_page) {
2538 spin_unlock(ptl);
2539 break;
2540 }
2541unlock:
2542 spin_unlock(ptl);
2543 }
2544 /*
2545 * mmu_gather ran out of room to batch pages, we break out of
2546 * the PTE lock to avoid doing the potential expensive TLB invalidate
2547 * and page-free while holding it.
2548 */
2549 if (force_flush) {
2550 force_flush = 0;
2551 tlb_flush_mmu(tlb);
2552 if (address < end && !ref_page)
2553 goto again;
2554 }
2555 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2556 tlb_end_vma(tlb, vma);
2557}
2558
2559void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2560 struct vm_area_struct *vma, unsigned long start,
2561 unsigned long end, struct page *ref_page)
2562{
2563 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2564
2565 /*
2566 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2567 * test will fail on a vma being torn down, and not grab a page table
2568 * on its way out. We're lucky that the flag has such an appropriate
2569 * name, and can in fact be safely cleared here. We could clear it
2570 * before the __unmap_hugepage_range above, but all that's necessary
2571 * is to clear it before releasing the i_mmap_mutex. This works
2572 * because in the context this is called, the VMA is about to be
2573 * destroyed and the i_mmap_mutex is held.
2574 */
2575 vma->vm_flags &= ~VM_MAYSHARE;
2576}
2577
2578void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2579 unsigned long end, struct page *ref_page)
2580{
2581 struct mm_struct *mm;
2582 struct mmu_gather tlb;
2583
2584 mm = vma->vm_mm;
2585
2586 tlb_gather_mmu(&tlb, mm, start, end);
2587 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2588 tlb_finish_mmu(&tlb, start, end);
2589}
2590
2591/*
2592 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2593 * mappping it owns the reserve page for. The intention is to unmap the page
2594 * from other VMAs and let the children be SIGKILLed if they are faulting the
2595 * same region.
2596 */
2597static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2598 struct page *page, unsigned long address)
2599{
2600 struct hstate *h = hstate_vma(vma);
2601 struct vm_area_struct *iter_vma;
2602 struct address_space *mapping;
2603 pgoff_t pgoff;
2604
2605 /*
2606 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2607 * from page cache lookup which is in HPAGE_SIZE units.
2608 */
2609 address = address & huge_page_mask(h);
2610 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2611 vma->vm_pgoff;
2612 mapping = file_inode(vma->vm_file)->i_mapping;
2613
2614 /*
2615 * Take the mapping lock for the duration of the table walk. As
2616 * this mapping should be shared between all the VMAs,
2617 * __unmap_hugepage_range() is called as the lock is already held
2618 */
2619 mutex_lock(&mapping->i_mmap_mutex);
2620 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2621 /* Do not unmap the current VMA */
2622 if (iter_vma == vma)
2623 continue;
2624
2625 /*
2626 * Unmap the page from other VMAs without their own reserves.
2627 * They get marked to be SIGKILLed if they fault in these
2628 * areas. This is because a future no-page fault on this VMA
2629 * could insert a zeroed page instead of the data existing
2630 * from the time of fork. This would look like data corruption
2631 */
2632 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2633 unmap_hugepage_range(iter_vma, address,
2634 address + huge_page_size(h), page);
2635 }
2636 mutex_unlock(&mapping->i_mmap_mutex);
2637
2638 return 1;
2639}
2640
2641/*
2642 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2643 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2644 * cannot race with other handlers or page migration.
2645 * Keep the pte_same checks anyway to make transition from the mutex easier.
2646 */
2647static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2648 unsigned long address, pte_t *ptep, pte_t pte,
2649 struct page *pagecache_page, spinlock_t *ptl)
2650{
2651 struct hstate *h = hstate_vma(vma);
2652 struct page *old_page, *new_page;
2653 int outside_reserve = 0;
2654 unsigned long mmun_start; /* For mmu_notifiers */
2655 unsigned long mmun_end; /* For mmu_notifiers */
2656
2657 old_page = pte_page(pte);
2658
2659retry_avoidcopy:
2660 /* If no-one else is actually using this page, avoid the copy
2661 * and just make the page writable */
2662 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2663 page_move_anon_rmap(old_page, vma, address);
2664 set_huge_ptep_writable(vma, address, ptep);
2665 return 0;
2666 }
2667
2668 /*
2669 * If the process that created a MAP_PRIVATE mapping is about to
2670 * perform a COW due to a shared page count, attempt to satisfy
2671 * the allocation without using the existing reserves. The pagecache
2672 * page is used to determine if the reserve at this address was
2673 * consumed or not. If reserves were used, a partial faulted mapping
2674 * at the time of fork() could consume its reserves on COW instead
2675 * of the full address range.
2676 */
2677 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2678 old_page != pagecache_page)
2679 outside_reserve = 1;
2680
2681 page_cache_get(old_page);
2682
2683 /* Drop page table lock as buddy allocator may be called */
2684 spin_unlock(ptl);
2685 new_page = alloc_huge_page(vma, address, outside_reserve);
2686
2687 if (IS_ERR(new_page)) {
2688 long err = PTR_ERR(new_page);
2689 page_cache_release(old_page);
2690
2691 /*
2692 * If a process owning a MAP_PRIVATE mapping fails to COW,
2693 * it is due to references held by a child and an insufficient
2694 * huge page pool. To guarantee the original mappers
2695 * reliability, unmap the page from child processes. The child
2696 * may get SIGKILLed if it later faults.
2697 */
2698 if (outside_reserve) {
2699 BUG_ON(huge_pte_none(pte));
2700 if (unmap_ref_private(mm, vma, old_page, address)) {
2701 BUG_ON(huge_pte_none(pte));
2702 spin_lock(ptl);
2703 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2704 if (likely(ptep &&
2705 pte_same(huge_ptep_get(ptep), pte)))
2706 goto retry_avoidcopy;
2707 /*
2708 * race occurs while re-acquiring page table
2709 * lock, and our job is done.
2710 */
2711 return 0;
2712 }
2713 WARN_ON_ONCE(1);
2714 }
2715
2716 /* Caller expects lock to be held */
2717 spin_lock(ptl);
2718 if (err == -ENOMEM)
2719 return VM_FAULT_OOM;
2720 else
2721 return VM_FAULT_SIGBUS;
2722 }
2723
2724 /*
2725 * When the original hugepage is shared one, it does not have
2726 * anon_vma prepared.
2727 */
2728 if (unlikely(anon_vma_prepare(vma))) {
2729 page_cache_release(new_page);
2730 page_cache_release(old_page);
2731 /* Caller expects lock to be held */
2732 spin_lock(ptl);
2733 return VM_FAULT_OOM;
2734 }
2735
2736 copy_user_huge_page(new_page, old_page, address, vma,
2737 pages_per_huge_page(h));
2738 __SetPageUptodate(new_page);
2739
2740 mmun_start = address & huge_page_mask(h);
2741 mmun_end = mmun_start + huge_page_size(h);
2742 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2743 /*
2744 * Retake the page table lock to check for racing updates
2745 * before the page tables are altered
2746 */
2747 spin_lock(ptl);
2748 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2749 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2750 ClearPagePrivate(new_page);
2751
2752 /* Break COW */
2753 huge_ptep_clear_flush(vma, address, ptep);
2754 set_huge_pte_at(mm, address, ptep,
2755 make_huge_pte(vma, new_page, 1));
2756 page_remove_rmap(old_page);
2757 hugepage_add_new_anon_rmap(new_page, vma, address);
2758 /* Make the old page be freed below */
2759 new_page = old_page;
2760 }
2761 spin_unlock(ptl);
2762 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2763 page_cache_release(new_page);
2764 page_cache_release(old_page);
2765
2766 /* Caller expects lock to be held */
2767 spin_lock(ptl);
2768 return 0;
2769}
2770
2771/* Return the pagecache page at a given address within a VMA */
2772static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2773 struct vm_area_struct *vma, unsigned long address)
2774{
2775 struct address_space *mapping;
2776 pgoff_t idx;
2777
2778 mapping = vma->vm_file->f_mapping;
2779 idx = vma_hugecache_offset(h, vma, address);
2780
2781 return find_lock_page(mapping, idx);
2782}
2783
2784/*
2785 * Return whether there is a pagecache page to back given address within VMA.
2786 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2787 */
2788static bool hugetlbfs_pagecache_present(struct hstate *h,
2789 struct vm_area_struct *vma, unsigned long address)
2790{
2791 struct address_space *mapping;
2792 pgoff_t idx;
2793 struct page *page;
2794
2795 mapping = vma->vm_file->f_mapping;
2796 idx = vma_hugecache_offset(h, vma, address);
2797
2798 page = find_get_page(mapping, idx);
2799 if (page)
2800 put_page(page);
2801 return page != NULL;
2802}
2803
2804static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2805 struct address_space *mapping, pgoff_t idx,
2806 unsigned long address, pte_t *ptep, unsigned int flags)
2807{
2808 struct hstate *h = hstate_vma(vma);
2809 int ret = VM_FAULT_SIGBUS;
2810 int anon_rmap = 0;
2811 unsigned long size;
2812 struct page *page;
2813 pte_t new_pte;
2814 spinlock_t *ptl;
2815
2816 /*
2817 * Currently, we are forced to kill the process in the event the
2818 * original mapper has unmapped pages from the child due to a failed
2819 * COW. Warn that such a situation has occurred as it may not be obvious
2820 */
2821 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2822 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2823 current->pid);
2824 return ret;
2825 }
2826
2827 /*
2828 * Use page lock to guard against racing truncation
2829 * before we get page_table_lock.
2830 */
2831retry:
2832 page = find_lock_page(mapping, idx);
2833 if (!page) {
2834 size = i_size_read(mapping->host) >> huge_page_shift(h);
2835 if (idx >= size)
2836 goto out;
2837 page = alloc_huge_page(vma, address, 0);
2838 if (IS_ERR(page)) {
2839 ret = PTR_ERR(page);
2840 if (ret == -ENOMEM)
2841 ret = VM_FAULT_OOM;
2842 else
2843 ret = VM_FAULT_SIGBUS;
2844 goto out;
2845 }
2846 clear_huge_page(page, address, pages_per_huge_page(h));
2847 __SetPageUptodate(page);
2848
2849 if (vma->vm_flags & VM_MAYSHARE) {
2850 int err;
2851 struct inode *inode = mapping->host;
2852
2853 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2854 if (err) {
2855 put_page(page);
2856 if (err == -EEXIST)
2857 goto retry;
2858 goto out;
2859 }
2860 ClearPagePrivate(page);
2861
2862 spin_lock(&inode->i_lock);
2863 inode->i_blocks += blocks_per_huge_page(h);
2864 spin_unlock(&inode->i_lock);
2865 } else {
2866 lock_page(page);
2867 if (unlikely(anon_vma_prepare(vma))) {
2868 ret = VM_FAULT_OOM;
2869 goto backout_unlocked;
2870 }
2871 anon_rmap = 1;
2872 }
2873 } else {
2874 /*
2875 * If memory error occurs between mmap() and fault, some process
2876 * don't have hwpoisoned swap entry for errored virtual address.
2877 * So we need to block hugepage fault by PG_hwpoison bit check.
2878 */
2879 if (unlikely(PageHWPoison(page))) {
2880 ret = VM_FAULT_HWPOISON |
2881 VM_FAULT_SET_HINDEX(hstate_index(h));
2882 goto backout_unlocked;
2883 }
2884 }
2885
2886 /*
2887 * If we are going to COW a private mapping later, we examine the
2888 * pending reservations for this page now. This will ensure that
2889 * any allocations necessary to record that reservation occur outside
2890 * the spinlock.
2891 */
2892 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2893 if (vma_needs_reservation(h, vma, address) < 0) {
2894 ret = VM_FAULT_OOM;
2895 goto backout_unlocked;
2896 }
2897
2898 ptl = huge_pte_lockptr(h, mm, ptep);
2899 spin_lock(ptl);
2900 size = i_size_read(mapping->host) >> huge_page_shift(h);
2901 if (idx >= size)
2902 goto backout;
2903
2904 ret = 0;
2905 if (!huge_pte_none(huge_ptep_get(ptep)))
2906 goto backout;
2907
2908 if (anon_rmap) {
2909 ClearPagePrivate(page);
2910 hugepage_add_new_anon_rmap(page, vma, address);
2911 } else
2912 page_dup_rmap(page);
2913 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2914 && (vma->vm_flags & VM_SHARED)));
2915 set_huge_pte_at(mm, address, ptep, new_pte);
2916
2917 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2918 /* Optimization, do the COW without a second fault */
2919 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2920 }
2921
2922 spin_unlock(ptl);
2923 unlock_page(page);
2924out:
2925 return ret;
2926
2927backout:
2928 spin_unlock(ptl);
2929backout_unlocked:
2930 unlock_page(page);
2931 put_page(page);
2932 goto out;
2933}
2934
2935#ifdef CONFIG_SMP
2936static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2937 struct vm_area_struct *vma,
2938 struct address_space *mapping,
2939 pgoff_t idx, unsigned long address)
2940{
2941 unsigned long key[2];
2942 u32 hash;
2943
2944 if (vma->vm_flags & VM_SHARED) {
2945 key[0] = (unsigned long) mapping;
2946 key[1] = idx;
2947 } else {
2948 key[0] = (unsigned long) mm;
2949 key[1] = address >> huge_page_shift(h);
2950 }
2951
2952 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2953
2954 return hash & (num_fault_mutexes - 1);
2955}
2956#else
2957/*
2958 * For uniprocesor systems we always use a single mutex, so just
2959 * return 0 and avoid the hashing overhead.
2960 */
2961static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2962 struct vm_area_struct *vma,
2963 struct address_space *mapping,
2964 pgoff_t idx, unsigned long address)
2965{
2966 return 0;
2967}
2968#endif
2969
2970int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2971 unsigned long address, unsigned int flags)
2972{
2973 pte_t *ptep, entry;
2974 spinlock_t *ptl;
2975 int ret;
2976 u32 hash;
2977 pgoff_t idx;
2978 struct page *page = NULL;
2979 struct page *pagecache_page = NULL;
2980 struct hstate *h = hstate_vma(vma);
2981 struct address_space *mapping;
2982
2983 address &= huge_page_mask(h);
2984
2985 ptep = huge_pte_offset(mm, address);
2986 if (ptep) {
2987 entry = huge_ptep_get(ptep);
2988 if (unlikely(is_hugetlb_entry_migration(entry))) {
2989 migration_entry_wait_huge(vma, mm, ptep);
2990 return 0;
2991 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2992 return VM_FAULT_HWPOISON_LARGE |
2993 VM_FAULT_SET_HINDEX(hstate_index(h));
2994 }
2995
2996 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2997 if (!ptep)
2998 return VM_FAULT_OOM;
2999
3000 mapping = vma->vm_file->f_mapping;
3001 idx = vma_hugecache_offset(h, vma, address);
3002
3003 /*
3004 * Serialize hugepage allocation and instantiation, so that we don't
3005 * get spurious allocation failures if two CPUs race to instantiate
3006 * the same page in the page cache.
3007 */
3008 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3009 mutex_lock(&htlb_fault_mutex_table[hash]);
3010
3011 entry = huge_ptep_get(ptep);
3012 if (huge_pte_none(entry)) {
3013 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3014 goto out_mutex;
3015 }
3016
3017 ret = 0;
3018
3019 /*
3020 * If we are going to COW the mapping later, we examine the pending
3021 * reservations for this page now. This will ensure that any
3022 * allocations necessary to record that reservation occur outside the
3023 * spinlock. For private mappings, we also lookup the pagecache
3024 * page now as it is used to determine if a reservation has been
3025 * consumed.
3026 */
3027 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3028 if (vma_needs_reservation(h, vma, address) < 0) {
3029 ret = VM_FAULT_OOM;
3030 goto out_mutex;
3031 }
3032
3033 if (!(vma->vm_flags & VM_MAYSHARE))
3034 pagecache_page = hugetlbfs_pagecache_page(h,
3035 vma, address);
3036 }
3037
3038 /*
3039 * hugetlb_cow() requires page locks of pte_page(entry) and
3040 * pagecache_page, so here we need take the former one
3041 * when page != pagecache_page or !pagecache_page.
3042 * Note that locking order is always pagecache_page -> page,
3043 * so no worry about deadlock.
3044 */
3045 page = pte_page(entry);
3046 get_page(page);
3047 if (page != pagecache_page)
3048 lock_page(page);
3049
3050 ptl = huge_pte_lockptr(h, mm, ptep);
3051 spin_lock(ptl);
3052 /* Check for a racing update before calling hugetlb_cow */
3053 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3054 goto out_ptl;
3055
3056
3057 if (flags & FAULT_FLAG_WRITE) {
3058 if (!huge_pte_write(entry)) {
3059 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3060 pagecache_page, ptl);
3061 goto out_ptl;
3062 }
3063 entry = huge_pte_mkdirty(entry);
3064 }
3065 entry = pte_mkyoung(entry);
3066 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3067 flags & FAULT_FLAG_WRITE))
3068 update_mmu_cache(vma, address, ptep);
3069
3070out_ptl:
3071 spin_unlock(ptl);
3072
3073 if (pagecache_page) {
3074 unlock_page(pagecache_page);
3075 put_page(pagecache_page);
3076 }
3077 if (page != pagecache_page)
3078 unlock_page(page);
3079 put_page(page);
3080
3081out_mutex:
3082 mutex_unlock(&htlb_fault_mutex_table[hash]);
3083 return ret;
3084}
3085
3086long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3087 struct page **pages, struct vm_area_struct **vmas,
3088 unsigned long *position, unsigned long *nr_pages,
3089 long i, unsigned int flags)
3090{
3091 unsigned long pfn_offset;
3092 unsigned long vaddr = *position;
3093 unsigned long remainder = *nr_pages;
3094 struct hstate *h = hstate_vma(vma);
3095
3096 while (vaddr < vma->vm_end && remainder) {
3097 pte_t *pte;
3098 spinlock_t *ptl = NULL;
3099 int absent;
3100 struct page *page;
3101
3102 /*
3103 * Some archs (sparc64, sh*) have multiple pte_ts to
3104 * each hugepage. We have to make sure we get the
3105 * first, for the page indexing below to work.
3106 *
3107 * Note that page table lock is not held when pte is null.
3108 */
3109 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3110 if (pte)
3111 ptl = huge_pte_lock(h, mm, pte);
3112 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3113
3114 /*
3115 * When coredumping, it suits get_dump_page if we just return
3116 * an error where there's an empty slot with no huge pagecache
3117 * to back it. This way, we avoid allocating a hugepage, and
3118 * the sparse dumpfile avoids allocating disk blocks, but its
3119 * huge holes still show up with zeroes where they need to be.
3120 */
3121 if (absent && (flags & FOLL_DUMP) &&
3122 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3123 if (pte)
3124 spin_unlock(ptl);
3125 remainder = 0;
3126 break;
3127 }
3128
3129 /*
3130 * We need call hugetlb_fault for both hugepages under migration
3131 * (in which case hugetlb_fault waits for the migration,) and
3132 * hwpoisoned hugepages (in which case we need to prevent the
3133 * caller from accessing to them.) In order to do this, we use
3134 * here is_swap_pte instead of is_hugetlb_entry_migration and
3135 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3136 * both cases, and because we can't follow correct pages
3137 * directly from any kind of swap entries.
3138 */
3139 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3140 ((flags & FOLL_WRITE) &&
3141 !huge_pte_write(huge_ptep_get(pte)))) {
3142 int ret;
3143
3144 if (pte)
3145 spin_unlock(ptl);
3146 ret = hugetlb_fault(mm, vma, vaddr,
3147 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3148 if (!(ret & VM_FAULT_ERROR))
3149 continue;
3150
3151 remainder = 0;
3152 break;
3153 }
3154
3155 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3156 page = pte_page(huge_ptep_get(pte));
3157same_page:
3158 if (pages) {
3159 pages[i] = mem_map_offset(page, pfn_offset);
3160 get_page_foll(pages[i]);
3161 }
3162
3163 if (vmas)
3164 vmas[i] = vma;
3165
3166 vaddr += PAGE_SIZE;
3167 ++pfn_offset;
3168 --remainder;
3169 ++i;
3170 if (vaddr < vma->vm_end && remainder &&
3171 pfn_offset < pages_per_huge_page(h)) {
3172 /*
3173 * We use pfn_offset to avoid touching the pageframes
3174 * of this compound page.
3175 */
3176 goto same_page;
3177 }
3178 spin_unlock(ptl);
3179 }
3180 *nr_pages = remainder;
3181 *position = vaddr;
3182
3183 return i ? i : -EFAULT;
3184}
3185
3186unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3187 unsigned long address, unsigned long end, pgprot_t newprot)
3188{
3189 struct mm_struct *mm = vma->vm_mm;
3190 unsigned long start = address;
3191 pte_t *ptep;
3192 pte_t pte;
3193 struct hstate *h = hstate_vma(vma);
3194 unsigned long pages = 0;
3195
3196 BUG_ON(address >= end);
3197 flush_cache_range(vma, address, end);
3198
3199 mmu_notifier_invalidate_range_start(mm, start, end);
3200 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3201 for (; address < end; address += huge_page_size(h)) {
3202 spinlock_t *ptl;
3203 ptep = huge_pte_offset(mm, address);
3204 if (!ptep)
3205 continue;
3206 ptl = huge_pte_lock(h, mm, ptep);
3207 if (huge_pmd_unshare(mm, &address, ptep)) {
3208 pages++;
3209 spin_unlock(ptl);
3210 continue;
3211 }
3212 if (!huge_pte_none(huge_ptep_get(ptep))) {
3213 pte = huge_ptep_get_and_clear(mm, address, ptep);
3214 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3215 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3216 set_huge_pte_at(mm, address, ptep, pte);
3217 pages++;
3218 }
3219 spin_unlock(ptl);
3220 }
3221 /*
3222 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3223 * may have cleared our pud entry and done put_page on the page table:
3224 * once we release i_mmap_mutex, another task can do the final put_page
3225 * and that page table be reused and filled with junk.
3226 */
3227 flush_tlb_range(vma, start, end);
3228 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3229 mmu_notifier_invalidate_range_end(mm, start, end);
3230
3231 return pages << h->order;
3232}
3233
3234int hugetlb_reserve_pages(struct inode *inode,
3235 long from, long to,
3236 struct vm_area_struct *vma,
3237 vm_flags_t vm_flags)
3238{
3239 long ret, chg;
3240 struct hstate *h = hstate_inode(inode);
3241 struct hugepage_subpool *spool = subpool_inode(inode);
3242 struct resv_map *resv_map;
3243
3244 /*
3245 * Only apply hugepage reservation if asked. At fault time, an
3246 * attempt will be made for VM_NORESERVE to allocate a page
3247 * without using reserves
3248 */
3249 if (vm_flags & VM_NORESERVE)
3250 return 0;
3251
3252 /*
3253 * Shared mappings base their reservation on the number of pages that
3254 * are already allocated on behalf of the file. Private mappings need
3255 * to reserve the full area even if read-only as mprotect() may be
3256 * called to make the mapping read-write. Assume !vma is a shm mapping
3257 */
3258 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3259 resv_map = inode_resv_map(inode);
3260
3261 chg = region_chg(resv_map, from, to);
3262
3263 } else {
3264 resv_map = resv_map_alloc();
3265 if (!resv_map)
3266 return -ENOMEM;
3267
3268 chg = to - from;
3269
3270 set_vma_resv_map(vma, resv_map);
3271 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3272 }
3273
3274 if (chg < 0) {
3275 ret = chg;
3276 goto out_err;
3277 }
3278
3279 /* There must be enough pages in the subpool for the mapping */
3280 if (hugepage_subpool_get_pages(spool, chg)) {
3281 ret = -ENOSPC;
3282 goto out_err;
3283 }
3284
3285 /*
3286 * Check enough hugepages are available for the reservation.
3287 * Hand the pages back to the subpool if there are not
3288 */
3289 ret = hugetlb_acct_memory(h, chg);
3290 if (ret < 0) {
3291 hugepage_subpool_put_pages(spool, chg);
3292 goto out_err;
3293 }
3294
3295 /*
3296 * Account for the reservations made. Shared mappings record regions
3297 * that have reservations as they are shared by multiple VMAs.
3298 * When the last VMA disappears, the region map says how much
3299 * the reservation was and the page cache tells how much of
3300 * the reservation was consumed. Private mappings are per-VMA and
3301 * only the consumed reservations are tracked. When the VMA
3302 * disappears, the original reservation is the VMA size and the
3303 * consumed reservations are stored in the map. Hence, nothing
3304 * else has to be done for private mappings here
3305 */
3306 if (!vma || vma->vm_flags & VM_MAYSHARE)
3307 region_add(resv_map, from, to);
3308 return 0;
3309out_err:
3310 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3311 kref_put(&resv_map->refs, resv_map_release);
3312 return ret;
3313}
3314
3315void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3316{
3317 struct hstate *h = hstate_inode(inode);
3318 struct resv_map *resv_map = inode_resv_map(inode);
3319 long chg = 0;
3320 struct hugepage_subpool *spool = subpool_inode(inode);
3321
3322 if (resv_map)
3323 chg = region_truncate(resv_map, offset);
3324 spin_lock(&inode->i_lock);
3325 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3326 spin_unlock(&inode->i_lock);
3327
3328 hugepage_subpool_put_pages(spool, (chg - freed));
3329 hugetlb_acct_memory(h, -(chg - freed));
3330}
3331
3332#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3333static unsigned long page_table_shareable(struct vm_area_struct *svma,
3334 struct vm_area_struct *vma,
3335 unsigned long addr, pgoff_t idx)
3336{
3337 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3338 svma->vm_start;
3339 unsigned long sbase = saddr & PUD_MASK;
3340 unsigned long s_end = sbase + PUD_SIZE;
3341
3342 /* Allow segments to share if only one is marked locked */
3343 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3344 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3345
3346 /*
3347 * match the virtual addresses, permission and the alignment of the
3348 * page table page.
3349 */
3350 if (pmd_index(addr) != pmd_index(saddr) ||
3351 vm_flags != svm_flags ||
3352 sbase < svma->vm_start || svma->vm_end < s_end)
3353 return 0;
3354
3355 return saddr;
3356}
3357
3358static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3359{
3360 unsigned long base = addr & PUD_MASK;
3361 unsigned long end = base + PUD_SIZE;
3362
3363 /*
3364 * check on proper vm_flags and page table alignment
3365 */
3366 if (vma->vm_flags & VM_MAYSHARE &&
3367 vma->vm_start <= base && end <= vma->vm_end)
3368 return 1;
3369 return 0;
3370}
3371
3372/*
3373 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3374 * and returns the corresponding pte. While this is not necessary for the
3375 * !shared pmd case because we can allocate the pmd later as well, it makes the
3376 * code much cleaner. pmd allocation is essential for the shared case because
3377 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3378 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3379 * bad pmd for sharing.
3380 */
3381pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3382{
3383 struct vm_area_struct *vma = find_vma(mm, addr);
3384 struct address_space *mapping = vma->vm_file->f_mapping;
3385 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3386 vma->vm_pgoff;
3387 struct vm_area_struct *svma;
3388 unsigned long saddr;
3389 pte_t *spte = NULL;
3390 pte_t *pte;
3391 spinlock_t *ptl;
3392
3393 if (!vma_shareable(vma, addr))
3394 return (pte_t *)pmd_alloc(mm, pud, addr);
3395
3396 mutex_lock(&mapping->i_mmap_mutex);
3397 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3398 if (svma == vma)
3399 continue;
3400
3401 saddr = page_table_shareable(svma, vma, addr, idx);
3402 if (saddr) {
3403 spte = huge_pte_offset(svma->vm_mm, saddr);
3404 if (spte) {
3405 get_page(virt_to_page(spte));
3406 break;
3407 }
3408 }
3409 }
3410
3411 if (!spte)
3412 goto out;
3413
3414 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3415 spin_lock(ptl);
3416 if (pud_none(*pud))
3417 pud_populate(mm, pud,
3418 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3419 else
3420 put_page(virt_to_page(spte));
3421 spin_unlock(ptl);
3422out:
3423 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3424 mutex_unlock(&mapping->i_mmap_mutex);
3425 return pte;
3426}
3427
3428/*
3429 * unmap huge page backed by shared pte.
3430 *
3431 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3432 * indicated by page_count > 1, unmap is achieved by clearing pud and
3433 * decrementing the ref count. If count == 1, the pte page is not shared.
3434 *
3435 * called with page table lock held.
3436 *
3437 * returns: 1 successfully unmapped a shared pte page
3438 * 0 the underlying pte page is not shared, or it is the last user
3439 */
3440int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3441{
3442 pgd_t *pgd = pgd_offset(mm, *addr);
3443 pud_t *pud = pud_offset(pgd, *addr);
3444
3445 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3446 if (page_count(virt_to_page(ptep)) == 1)
3447 return 0;
3448
3449 pud_clear(pud);
3450 put_page(virt_to_page(ptep));
3451 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3452 return 1;
3453}
3454#define want_pmd_share() (1)
3455#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3456pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3457{
3458 return NULL;
3459}
3460#define want_pmd_share() (0)
3461#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3462
3463#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3464pte_t *huge_pte_alloc(struct mm_struct *mm,
3465 unsigned long addr, unsigned long sz)
3466{
3467 pgd_t *pgd;
3468 pud_t *pud;
3469 pte_t *pte = NULL;
3470
3471 pgd = pgd_offset(mm, addr);
3472 pud = pud_alloc(mm, pgd, addr);
3473 if (pud) {
3474 if (sz == PUD_SIZE) {
3475 pte = (pte_t *)pud;
3476 } else {
3477 BUG_ON(sz != PMD_SIZE);
3478 if (want_pmd_share() && pud_none(*pud))
3479 pte = huge_pmd_share(mm, addr, pud);
3480 else
3481 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3482 }
3483 }
3484 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3485
3486 return pte;
3487}
3488
3489pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3490{
3491 pgd_t *pgd;
3492 pud_t *pud;
3493 pmd_t *pmd = NULL;
3494
3495 pgd = pgd_offset(mm, addr);
3496 if (pgd_present(*pgd)) {
3497 pud = pud_offset(pgd, addr);
3498 if (pud_present(*pud)) {
3499 if (pud_huge(*pud))
3500 return (pte_t *)pud;
3501 pmd = pmd_offset(pud, addr);
3502 }
3503 }
3504 return (pte_t *) pmd;
3505}
3506
3507struct page *
3508follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3509 pmd_t *pmd, int write)
3510{
3511 struct page *page;
3512
3513 page = pte_page(*(pte_t *)pmd);
3514 if (page)
3515 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3516 return page;
3517}
3518
3519struct page *
3520follow_huge_pud(struct mm_struct *mm, unsigned long address,
3521 pud_t *pud, int write)
3522{
3523 struct page *page;
3524
3525 page = pte_page(*(pte_t *)pud);
3526 if (page)
3527 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3528 return page;
3529}
3530
3531#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3532
3533/* Can be overriden by architectures */
3534struct page * __weak
3535follow_huge_pud(struct mm_struct *mm, unsigned long address,
3536 pud_t *pud, int write)
3537{
3538 BUG();
3539 return NULL;
3540}
3541
3542#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3543
3544#ifdef CONFIG_MEMORY_FAILURE
3545
3546/* Should be called in hugetlb_lock */
3547static int is_hugepage_on_freelist(struct page *hpage)
3548{
3549 struct page *page;
3550 struct page *tmp;
3551 struct hstate *h = page_hstate(hpage);
3552 int nid = page_to_nid(hpage);
3553
3554 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3555 if (page == hpage)
3556 return 1;
3557 return 0;
3558}
3559
3560/*
3561 * This function is called from memory failure code.
3562 * Assume the caller holds page lock of the head page.
3563 */
3564int dequeue_hwpoisoned_huge_page(struct page *hpage)
3565{
3566 struct hstate *h = page_hstate(hpage);
3567 int nid = page_to_nid(hpage);
3568 int ret = -EBUSY;
3569
3570 spin_lock(&hugetlb_lock);
3571 if (is_hugepage_on_freelist(hpage)) {
3572 /*
3573 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3574 * but dangling hpage->lru can trigger list-debug warnings
3575 * (this happens when we call unpoison_memory() on it),
3576 * so let it point to itself with list_del_init().
3577 */
3578 list_del_init(&hpage->lru);
3579 set_page_refcounted(hpage);
3580 h->free_huge_pages--;
3581 h->free_huge_pages_node[nid]--;
3582 ret = 0;
3583 }
3584 spin_unlock(&hugetlb_lock);
3585 return ret;
3586}
3587#endif
3588
3589bool isolate_huge_page(struct page *page, struct list_head *list)
3590{
3591 VM_BUG_ON_PAGE(!PageHead(page), page);
3592 if (!get_page_unless_zero(page))
3593 return false;
3594 spin_lock(&hugetlb_lock);
3595 list_move_tail(&page->lru, list);
3596 spin_unlock(&hugetlb_lock);
3597 return true;
3598}
3599
3600void putback_active_hugepage(struct page *page)
3601{
3602 VM_BUG_ON_PAGE(!PageHead(page), page);
3603 spin_lock(&hugetlb_lock);
3604 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3605 spin_unlock(&hugetlb_lock);
3606 put_page(page);
3607}
3608
3609bool is_hugepage_active(struct page *page)
3610{
3611 VM_BUG_ON_PAGE(!PageHuge(page), page);
3612 /*
3613 * This function can be called for a tail page because the caller,
3614 * scan_movable_pages, scans through a given pfn-range which typically
3615 * covers one memory block. In systems using gigantic hugepage (1GB
3616 * for x86_64,) a hugepage is larger than a memory block, and we don't
3617 * support migrating such large hugepages for now, so return false
3618 * when called for tail pages.
3619 */
3620 if (PageTail(page))
3621 return false;
3622 /*
3623 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3624 * so we should return false for them.
3625 */
3626 if (unlikely(PageHWPoison(page)))
3627 return false;
3628 return page_count(page) > 0;
3629}