]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - mm/hugetlb.c
hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/mm.h>
8#include <linux/seq_file.h>
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
11#include <linux/mmu_notifier.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/compiler.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/memblock.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/mmdebug.h>
22#include <linux/sched/signal.h>
23#include <linux/rmap.h>
24#include <linux/string_helpers.h>
25#include <linux/swap.h>
26#include <linux/swapops.h>
27#include <linux/jhash.h>
28#include <linux/numa.h>
29
30#include <asm/page.h>
31#include <asm/pgtable.h>
32#include <asm/tlb.h>
33
34#include <linux/io.h>
35#include <linux/hugetlb.h>
36#include <linux/hugetlb_cgroup.h>
37#include <linux/node.h>
38#include <linux/userfaultfd_k.h>
39#include <linux/page_owner.h>
40#include "internal.h"
41
42int hugetlb_max_hstate __read_mostly;
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51__initdata LIST_HEAD(huge_boot_pages);
52
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
56static unsigned long __initdata default_hstate_size;
57static bool __initdata parsed_valid_hugepagesz = true;
58
59/*
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
62 */
63DEFINE_SPINLOCK(hugetlb_lock);
64
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
88 kfree(spool);
89 }
90}
91
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
94{
95 struct hugepage_subpool *spool;
96
97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 long delta)
134{
135 long ret = delta;
136
137 if (!spool)
138 return ret;
139
140 spin_lock(&spool->lock);
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
149 }
150
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
168 return ret;
169}
170
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 long delta)
179{
180 long ret = delta;
181
182 if (!spool)
183 return delta;
184
185 spin_lock(&spool->lock);
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
206 unlock_or_release_subpool(spool);
207
208 return ret;
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
218 return subpool_inode(file_inode(vma->vm_file));
219}
220
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
224 *
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
246/*
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
259 */
260static long region_add(struct resv_map *resv, long f, long t)
261{
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *nrg, *trg;
264 long add = 0;
265
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
321
322 add += (nrg->from - f); /* Added to beginning of region */
323 nrg->from = f;
324 add += t - nrg->to; /* Added to end of region */
325 nrg->to = t;
326
327out_locked:
328 resv->adds_in_progress--;
329 spin_unlock(&resv->lock);
330 VM_BUG_ON(add < 0);
331 return add;
332}
333
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
355 */
356static long region_chg(struct resv_map *resv, long f, long t)
357{
358 struct list_head *head = &resv->regions;
359 struct file_region *rg, *nrg = NULL;
360 long chg = 0;
361
362retry:
363 spin_lock(&resv->lock);
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 if (!trg) {
381 kfree(nrg);
382 return -ENOMEM;
383 }
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
400 if (!nrg) {
401 resv->adds_in_progress--;
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
412
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
428 goto out;
429
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
447 return chg;
448}
449
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
469/*
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
482 */
483static long region_del(struct resv_map *resv, long f, long t)
484{
485 struct list_head *head = &resv->regions;
486 struct file_region *rg, *trg;
487 struct file_region *nrg = NULL;
488 long del = 0;
489
490retry:
491 spin_lock(&resv->lock);
492 list_for_each_entry_safe(rg, trg, head, link) {
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 continue;
502
503 if (rg->from >= t)
504 break;
505
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
519
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
540 break;
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
557 }
558
559 spin_unlock(&resv->lock);
560 kfree(nrg);
561 return del;
562}
563
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
573void hugetlb_fix_reserve_counts(struct inode *inode)
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 if (rsv_adjust) {
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
590static long region_count(struct resv_map *resv, long f, long t)
591{
592 struct list_head *head = &resv->regions;
593 struct file_region *rg;
594 long chg = 0;
595
596 spin_lock(&resv->lock);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
599 long seg_from;
600 long seg_to;
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
612 spin_unlock(&resv->lock);
613
614 return chg;
615}
616
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
623{
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
626}
627
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
633EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
641 if (vma->vm_ops && vma->vm_ops->pagesize)
642 return vma->vm_ops->pagesize(vma);
643 return PAGE_SIZE;
644}
645EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647/*
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
652 */
653__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654{
655 return vma_kernel_pagesize(vma);
656}
657
658/*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663#define HPAGE_RESV_OWNER (1UL << 0)
664#define HPAGE_RESV_UNMAPPED (1UL << 1)
665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667/*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
685 */
686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687{
688 return (unsigned long)vma->vm_private_data;
689}
690
691static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693{
694 vma->vm_private_data = (void *)value;
695}
696
697struct resv_map *resv_map_alloc(void)
698{
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
705 return NULL;
706 }
707
708 kref_init(&resv_map->refs);
709 spin_lock_init(&resv_map->lock);
710 INIT_LIST_HEAD(&resv_map->regions);
711
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
718 return resv_map;
719}
720
721void resv_map_release(struct kref *ref)
722{
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
726
727 /* Clear out any active regions before we release the map. */
728 region_del(resv_map, 0, LONG_MAX);
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
738 kfree(resv_map);
739}
740
741static inline struct resv_map *inode_resv_map(struct inode *inode)
742{
743 return inode->i_mapping->private_data;
744}
745
746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747{
748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749 if (vma->vm_flags & VM_MAYSHARE) {
750 struct address_space *mapping = vma->vm_file->f_mapping;
751 struct inode *inode = mapping->host;
752
753 return inode_resv_map(inode);
754
755 } else {
756 return (struct resv_map *)(get_vma_private_data(vma) &
757 ~HPAGE_RESV_MASK);
758 }
759}
760
761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762{
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766 set_vma_private_data(vma, (get_vma_private_data(vma) &
767 HPAGE_RESV_MASK) | (unsigned long)map);
768}
769
770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771{
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776}
777
778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779{
780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782 return (get_vma_private_data(vma) & flag) != 0;
783}
784
785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787{
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 if (!(vma->vm_flags & VM_MAYSHARE))
790 vma->vm_private_data = (void *)0;
791}
792
793/* Returns true if the VMA has associated reserve pages */
794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795{
796 if (vma->vm_flags & VM_NORESERVE) {
797 /*
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
805 */
806 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807 return true;
808 else
809 return false;
810 }
811
812 /* Shared mappings always use reserves */
813 if (vma->vm_flags & VM_MAYSHARE) {
814 /*
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
820 */
821 if (chg)
822 return false;
823 else
824 return true;
825 }
826
827 /*
828 * Only the process that called mmap() has reserves for
829 * private mappings.
830 */
831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 /*
833 * Like the shared case above, a hole punch or truncate
834 * could have been performed on the private mapping.
835 * Examine the value of chg to determine if reserves
836 * actually exist or were previously consumed.
837 * Very Subtle - The value of chg comes from a previous
838 * call to vma_needs_reserves(). The reserve map for
839 * private mappings has different (opposite) semantics
840 * than that of shared mappings. vma_needs_reserves()
841 * has already taken this difference in semantics into
842 * account. Therefore, the meaning of chg is the same
843 * as in the shared case above. Code could easily be
844 * combined, but keeping it separate draws attention to
845 * subtle differences.
846 */
847 if (chg)
848 return false;
849 else
850 return true;
851 }
852
853 return false;
854}
855
856static void enqueue_huge_page(struct hstate *h, struct page *page)
857{
858 int nid = page_to_nid(page);
859 list_move(&page->lru, &h->hugepage_freelists[nid]);
860 h->free_huge_pages++;
861 h->free_huge_pages_node[nid]++;
862}
863
864static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865{
866 struct page *page;
867
868 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869 if (!PageHWPoison(page))
870 break;
871 /*
872 * if 'non-isolated free hugepage' not found on the list,
873 * the allocation fails.
874 */
875 if (&h->hugepage_freelists[nid] == &page->lru)
876 return NULL;
877 list_move(&page->lru, &h->hugepage_activelist);
878 set_page_refcounted(page);
879 h->free_huge_pages--;
880 h->free_huge_pages_node[nid]--;
881 return page;
882}
883
884static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885 nodemask_t *nmask)
886{
887 unsigned int cpuset_mems_cookie;
888 struct zonelist *zonelist;
889 struct zone *zone;
890 struct zoneref *z;
891 int node = NUMA_NO_NODE;
892
893 zonelist = node_zonelist(nid, gfp_mask);
894
895retry_cpuset:
896 cpuset_mems_cookie = read_mems_allowed_begin();
897 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898 struct page *page;
899
900 if (!cpuset_zone_allowed(zone, gfp_mask))
901 continue;
902 /*
903 * no need to ask again on the same node. Pool is node rather than
904 * zone aware
905 */
906 if (zone_to_nid(zone) == node)
907 continue;
908 node = zone_to_nid(zone);
909
910 page = dequeue_huge_page_node_exact(h, node);
911 if (page)
912 return page;
913 }
914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916
917 return NULL;
918}
919
920/* Movability of hugepages depends on migration support. */
921static inline gfp_t htlb_alloc_mask(struct hstate *h)
922{
923 if (hugepage_movable_supported(h))
924 return GFP_HIGHUSER_MOVABLE;
925 else
926 return GFP_HIGHUSER;
927}
928
929static struct page *dequeue_huge_page_vma(struct hstate *h,
930 struct vm_area_struct *vma,
931 unsigned long address, int avoid_reserve,
932 long chg)
933{
934 struct page *page;
935 struct mempolicy *mpol;
936 gfp_t gfp_mask;
937 nodemask_t *nodemask;
938 int nid;
939
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
945 if (!vma_has_reserves(vma, chg) &&
946 h->free_huge_pages - h->resv_huge_pages == 0)
947 goto err;
948
949 /* If reserves cannot be used, ensure enough pages are in the pool */
950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951 goto err;
952
953 gfp_mask = htlb_alloc_mask(h);
954 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957 SetPagePrivate(page);
958 h->resv_huge_pages--;
959 }
960
961 mpol_cond_put(mpol);
962 return page;
963
964err:
965 return NULL;
966}
967
968/*
969 * common helper functions for hstate_next_node_to_{alloc|free}.
970 * We may have allocated or freed a huge page based on a different
971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972 * be outside of *nodes_allowed. Ensure that we use an allowed
973 * node for alloc or free.
974 */
975static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976{
977 nid = next_node_in(nid, *nodes_allowed);
978 VM_BUG_ON(nid >= MAX_NUMNODES);
979
980 return nid;
981}
982
983static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984{
985 if (!node_isset(nid, *nodes_allowed))
986 nid = next_node_allowed(nid, nodes_allowed);
987 return nid;
988}
989
990/*
991 * returns the previously saved node ["this node"] from which to
992 * allocate a persistent huge page for the pool and advance the
993 * next node from which to allocate, handling wrap at end of node
994 * mask.
995 */
996static int hstate_next_node_to_alloc(struct hstate *h,
997 nodemask_t *nodes_allowed)
998{
999 int nid;
1000
1001 VM_BUG_ON(!nodes_allowed);
1002
1003 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006 return nid;
1007}
1008
1009/*
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page. Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1014 */
1015static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016{
1017 int nid;
1018
1019 VM_BUG_ON(!nodes_allowed);
1020
1021 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024 return nid;
1025}
1026
1027#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1028 for (nr_nodes = nodes_weight(*mask); \
1029 nr_nodes > 0 && \
1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1031 nr_nodes--)
1032
1033#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040static void destroy_compound_gigantic_page(struct page *page,
1041 unsigned int order)
1042{
1043 int i;
1044 int nr_pages = 1 << order;
1045 struct page *p = page + 1;
1046
1047 atomic_set(compound_mapcount_ptr(page), 0);
1048 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049 clear_compound_head(p);
1050 set_page_refcounted(p);
1051 }
1052
1053 set_compound_order(page, 0);
1054 __ClearPageHead(page);
1055}
1056
1057static void free_gigantic_page(struct page *page, unsigned int order)
1058{
1059 free_contig_range(page_to_pfn(page), 1 << order);
1060}
1061
1062#ifdef CONFIG_CONTIG_ALLOC
1063static int __alloc_gigantic_page(unsigned long start_pfn,
1064 unsigned long nr_pages, gfp_t gfp_mask)
1065{
1066 unsigned long end_pfn = start_pfn + nr_pages;
1067 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1068 gfp_mask);
1069}
1070
1071static bool pfn_range_valid_gigantic(struct zone *z,
1072 unsigned long start_pfn, unsigned long nr_pages)
1073{
1074 unsigned long i, end_pfn = start_pfn + nr_pages;
1075 struct page *page;
1076
1077 for (i = start_pfn; i < end_pfn; i++) {
1078 if (!pfn_valid(i))
1079 return false;
1080
1081 page = pfn_to_page(i);
1082
1083 if (page_zone(page) != z)
1084 return false;
1085
1086 if (PageReserved(page))
1087 return false;
1088
1089 if (page_count(page) > 0)
1090 return false;
1091
1092 if (PageHuge(page))
1093 return false;
1094 }
1095
1096 return true;
1097}
1098
1099static bool zone_spans_last_pfn(const struct zone *zone,
1100 unsigned long start_pfn, unsigned long nr_pages)
1101{
1102 unsigned long last_pfn = start_pfn + nr_pages - 1;
1103 return zone_spans_pfn(zone, last_pfn);
1104}
1105
1106static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1107 int nid, nodemask_t *nodemask)
1108{
1109 unsigned int order = huge_page_order(h);
1110 unsigned long nr_pages = 1 << order;
1111 unsigned long ret, pfn, flags;
1112 struct zonelist *zonelist;
1113 struct zone *zone;
1114 struct zoneref *z;
1115
1116 zonelist = node_zonelist(nid, gfp_mask);
1117 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1118 spin_lock_irqsave(&zone->lock, flags);
1119
1120 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1121 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1122 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1123 /*
1124 * We release the zone lock here because
1125 * alloc_contig_range() will also lock the zone
1126 * at some point. If there's an allocation
1127 * spinning on this lock, it may win the race
1128 * and cause alloc_contig_range() to fail...
1129 */
1130 spin_unlock_irqrestore(&zone->lock, flags);
1131 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1132 if (!ret)
1133 return pfn_to_page(pfn);
1134 spin_lock_irqsave(&zone->lock, flags);
1135 }
1136 pfn += nr_pages;
1137 }
1138
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 }
1141
1142 return NULL;
1143}
1144
1145static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1146static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1147#else /* !CONFIG_CONTIG_ALLOC */
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask)
1150{
1151 return NULL;
1152}
1153#endif /* CONFIG_CONTIG_ALLOC */
1154
1155#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
1161static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164#endif
1165
1166static void update_and_free_page(struct hstate *h, struct page *page)
1167{
1168 int i;
1169
1170 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1171 return;
1172
1173 h->nr_huge_pages--;
1174 h->nr_huge_pages_node[page_to_nid(page)]--;
1175 for (i = 0; i < pages_per_huge_page(h); i++) {
1176 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177 1 << PG_referenced | 1 << PG_dirty |
1178 1 << PG_active | 1 << PG_private |
1179 1 << PG_writeback);
1180 }
1181 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183 set_page_refcounted(page);
1184 if (hstate_is_gigantic(h)) {
1185 destroy_compound_gigantic_page(page, huge_page_order(h));
1186 free_gigantic_page(page, huge_page_order(h));
1187 } else {
1188 __free_pages(page, huge_page_order(h));
1189 }
1190}
1191
1192struct hstate *size_to_hstate(unsigned long size)
1193{
1194 struct hstate *h;
1195
1196 for_each_hstate(h) {
1197 if (huge_page_size(h) == size)
1198 return h;
1199 }
1200 return NULL;
1201}
1202
1203/*
1204 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205 * to hstate->hugepage_activelist.)
1206 *
1207 * This function can be called for tail pages, but never returns true for them.
1208 */
1209bool page_huge_active(struct page *page)
1210{
1211 VM_BUG_ON_PAGE(!PageHuge(page), page);
1212 return PageHead(page) && PagePrivate(&page[1]);
1213}
1214
1215/* never called for tail page */
1216static void set_page_huge_active(struct page *page)
1217{
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 SetPagePrivate(&page[1]);
1220}
1221
1222static void clear_page_huge_active(struct page *page)
1223{
1224 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225 ClearPagePrivate(&page[1]);
1226}
1227
1228/*
1229 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1230 * code
1231 */
1232static inline bool PageHugeTemporary(struct page *page)
1233{
1234 if (!PageHuge(page))
1235 return false;
1236
1237 return (unsigned long)page[2].mapping == -1U;
1238}
1239
1240static inline void SetPageHugeTemporary(struct page *page)
1241{
1242 page[2].mapping = (void *)-1U;
1243}
1244
1245static inline void ClearPageHugeTemporary(struct page *page)
1246{
1247 page[2].mapping = NULL;
1248}
1249
1250void free_huge_page(struct page *page)
1251{
1252 /*
1253 * Can't pass hstate in here because it is called from the
1254 * compound page destructor.
1255 */
1256 struct hstate *h = page_hstate(page);
1257 int nid = page_to_nid(page);
1258 struct hugepage_subpool *spool =
1259 (struct hugepage_subpool *)page_private(page);
1260 bool restore_reserve;
1261
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
1265 set_page_private(page, 0);
1266 page->mapping = NULL;
1267 restore_reserve = PagePrivate(page);
1268 ClearPagePrivate(page);
1269
1270 /*
1271 * A return code of zero implies that the subpool will be under its
1272 * minimum size if the reservation is not restored after page is free.
1273 * Therefore, force restore_reserve operation.
1274 */
1275 if (hugepage_subpool_put_pages(spool, 1) == 0)
1276 restore_reserve = true;
1277
1278 spin_lock(&hugetlb_lock);
1279 clear_page_huge_active(page);
1280 hugetlb_cgroup_uncharge_page(hstate_index(h),
1281 pages_per_huge_page(h), page);
1282 if (restore_reserve)
1283 h->resv_huge_pages++;
1284
1285 if (PageHugeTemporary(page)) {
1286 list_del(&page->lru);
1287 ClearPageHugeTemporary(page);
1288 update_and_free_page(h, page);
1289 } else if (h->surplus_huge_pages_node[nid]) {
1290 /* remove the page from active list */
1291 list_del(&page->lru);
1292 update_and_free_page(h, page);
1293 h->surplus_huge_pages--;
1294 h->surplus_huge_pages_node[nid]--;
1295 } else {
1296 arch_clear_hugepage_flags(page);
1297 enqueue_huge_page(h, page);
1298 }
1299 spin_unlock(&hugetlb_lock);
1300}
1301
1302static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1303{
1304 INIT_LIST_HEAD(&page->lru);
1305 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1306 spin_lock(&hugetlb_lock);
1307 set_hugetlb_cgroup(page, NULL);
1308 h->nr_huge_pages++;
1309 h->nr_huge_pages_node[nid]++;
1310 spin_unlock(&hugetlb_lock);
1311}
1312
1313static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1314{
1315 int i;
1316 int nr_pages = 1 << order;
1317 struct page *p = page + 1;
1318
1319 /* we rely on prep_new_huge_page to set the destructor */
1320 set_compound_order(page, order);
1321 __ClearPageReserved(page);
1322 __SetPageHead(page);
1323 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1324 /*
1325 * For gigantic hugepages allocated through bootmem at
1326 * boot, it's safer to be consistent with the not-gigantic
1327 * hugepages and clear the PG_reserved bit from all tail pages
1328 * too. Otherwse drivers using get_user_pages() to access tail
1329 * pages may get the reference counting wrong if they see
1330 * PG_reserved set on a tail page (despite the head page not
1331 * having PG_reserved set). Enforcing this consistency between
1332 * head and tail pages allows drivers to optimize away a check
1333 * on the head page when they need know if put_page() is needed
1334 * after get_user_pages().
1335 */
1336 __ClearPageReserved(p);
1337 set_page_count(p, 0);
1338 set_compound_head(p, page);
1339 }
1340 atomic_set(compound_mapcount_ptr(page), -1);
1341}
1342
1343/*
1344 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1345 * transparent huge pages. See the PageTransHuge() documentation for more
1346 * details.
1347 */
1348int PageHuge(struct page *page)
1349{
1350 if (!PageCompound(page))
1351 return 0;
1352
1353 page = compound_head(page);
1354 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1355}
1356EXPORT_SYMBOL_GPL(PageHuge);
1357
1358/*
1359 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1360 * normal or transparent huge pages.
1361 */
1362int PageHeadHuge(struct page *page_head)
1363{
1364 if (!PageHead(page_head))
1365 return 0;
1366
1367 return get_compound_page_dtor(page_head) == free_huge_page;
1368}
1369
1370pgoff_t __basepage_index(struct page *page)
1371{
1372 struct page *page_head = compound_head(page);
1373 pgoff_t index = page_index(page_head);
1374 unsigned long compound_idx;
1375
1376 if (!PageHuge(page_head))
1377 return page_index(page);
1378
1379 if (compound_order(page_head) >= MAX_ORDER)
1380 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1381 else
1382 compound_idx = page - page_head;
1383
1384 return (index << compound_order(page_head)) + compound_idx;
1385}
1386
1387static struct page *alloc_buddy_huge_page(struct hstate *h,
1388 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1389{
1390 int order = huge_page_order(h);
1391 struct page *page;
1392
1393 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1394 if (nid == NUMA_NO_NODE)
1395 nid = numa_mem_id();
1396 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1397 if (page)
1398 __count_vm_event(HTLB_BUDDY_PGALLOC);
1399 else
1400 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1401
1402 return page;
1403}
1404
1405/*
1406 * Common helper to allocate a fresh hugetlb page. All specific allocators
1407 * should use this function to get new hugetlb pages
1408 */
1409static struct page *alloc_fresh_huge_page(struct hstate *h,
1410 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1411{
1412 struct page *page;
1413
1414 if (hstate_is_gigantic(h))
1415 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1416 else
1417 page = alloc_buddy_huge_page(h, gfp_mask,
1418 nid, nmask);
1419 if (!page)
1420 return NULL;
1421
1422 if (hstate_is_gigantic(h))
1423 prep_compound_gigantic_page(page, huge_page_order(h));
1424 prep_new_huge_page(h, page, page_to_nid(page));
1425
1426 return page;
1427}
1428
1429/*
1430 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1431 * manner.
1432 */
1433static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1434{
1435 struct page *page;
1436 int nr_nodes, node;
1437 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1438
1439 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1440 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1441 if (page)
1442 break;
1443 }
1444
1445 if (!page)
1446 return 0;
1447
1448 put_page(page); /* free it into the hugepage allocator */
1449
1450 return 1;
1451}
1452
1453/*
1454 * Free huge page from pool from next node to free.
1455 * Attempt to keep persistent huge pages more or less
1456 * balanced over allowed nodes.
1457 * Called with hugetlb_lock locked.
1458 */
1459static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1460 bool acct_surplus)
1461{
1462 int nr_nodes, node;
1463 int ret = 0;
1464
1465 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1466 /*
1467 * If we're returning unused surplus pages, only examine
1468 * nodes with surplus pages.
1469 */
1470 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1471 !list_empty(&h->hugepage_freelists[node])) {
1472 struct page *page =
1473 list_entry(h->hugepage_freelists[node].next,
1474 struct page, lru);
1475 list_del(&page->lru);
1476 h->free_huge_pages--;
1477 h->free_huge_pages_node[node]--;
1478 if (acct_surplus) {
1479 h->surplus_huge_pages--;
1480 h->surplus_huge_pages_node[node]--;
1481 }
1482 update_and_free_page(h, page);
1483 ret = 1;
1484 break;
1485 }
1486 }
1487
1488 return ret;
1489}
1490
1491/*
1492 * Dissolve a given free hugepage into free buddy pages. This function does
1493 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1494 * dissolution fails because a give page is not a free hugepage, or because
1495 * free hugepages are fully reserved.
1496 */
1497int dissolve_free_huge_page(struct page *page)
1498{
1499 int rc = -EBUSY;
1500
1501 spin_lock(&hugetlb_lock);
1502 if (PageHuge(page) && !page_count(page)) {
1503 struct page *head = compound_head(page);
1504 struct hstate *h = page_hstate(head);
1505 int nid = page_to_nid(head);
1506 if (h->free_huge_pages - h->resv_huge_pages == 0)
1507 goto out;
1508 /*
1509 * Move PageHWPoison flag from head page to the raw error page,
1510 * which makes any subpages rather than the error page reusable.
1511 */
1512 if (PageHWPoison(head) && page != head) {
1513 SetPageHWPoison(page);
1514 ClearPageHWPoison(head);
1515 }
1516 list_del(&head->lru);
1517 h->free_huge_pages--;
1518 h->free_huge_pages_node[nid]--;
1519 h->max_huge_pages--;
1520 update_and_free_page(h, head);
1521 rc = 0;
1522 }
1523out:
1524 spin_unlock(&hugetlb_lock);
1525 return rc;
1526}
1527
1528/*
1529 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1530 * make specified memory blocks removable from the system.
1531 * Note that this will dissolve a free gigantic hugepage completely, if any
1532 * part of it lies within the given range.
1533 * Also note that if dissolve_free_huge_page() returns with an error, all
1534 * free hugepages that were dissolved before that error are lost.
1535 */
1536int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537{
1538 unsigned long pfn;
1539 struct page *page;
1540 int rc = 0;
1541
1542 if (!hugepages_supported())
1543 return rc;
1544
1545 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1546 page = pfn_to_page(pfn);
1547 if (PageHuge(page) && !page_count(page)) {
1548 rc = dissolve_free_huge_page(page);
1549 if (rc)
1550 break;
1551 }
1552 }
1553
1554 return rc;
1555}
1556
1557/*
1558 * Allocates a fresh surplus page from the page allocator.
1559 */
1560static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1561 int nid, nodemask_t *nmask)
1562{
1563 struct page *page = NULL;
1564
1565 if (hstate_is_gigantic(h))
1566 return NULL;
1567
1568 spin_lock(&hugetlb_lock);
1569 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1570 goto out_unlock;
1571 spin_unlock(&hugetlb_lock);
1572
1573 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1574 if (!page)
1575 return NULL;
1576
1577 spin_lock(&hugetlb_lock);
1578 /*
1579 * We could have raced with the pool size change.
1580 * Double check that and simply deallocate the new page
1581 * if we would end up overcommiting the surpluses. Abuse
1582 * temporary page to workaround the nasty free_huge_page
1583 * codeflow
1584 */
1585 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1586 SetPageHugeTemporary(page);
1587 spin_unlock(&hugetlb_lock);
1588 put_page(page);
1589 return NULL;
1590 } else {
1591 h->surplus_huge_pages++;
1592 h->surplus_huge_pages_node[page_to_nid(page)]++;
1593 }
1594
1595out_unlock:
1596 spin_unlock(&hugetlb_lock);
1597
1598 return page;
1599}
1600
1601struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1602 int nid, nodemask_t *nmask)
1603{
1604 struct page *page;
1605
1606 if (hstate_is_gigantic(h))
1607 return NULL;
1608
1609 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1610 if (!page)
1611 return NULL;
1612
1613 /*
1614 * We do not account these pages as surplus because they are only
1615 * temporary and will be released properly on the last reference
1616 */
1617 SetPageHugeTemporary(page);
1618
1619 return page;
1620}
1621
1622/*
1623 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1624 */
1625static
1626struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1627 struct vm_area_struct *vma, unsigned long addr)
1628{
1629 struct page *page;
1630 struct mempolicy *mpol;
1631 gfp_t gfp_mask = htlb_alloc_mask(h);
1632 int nid;
1633 nodemask_t *nodemask;
1634
1635 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1636 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1637 mpol_cond_put(mpol);
1638
1639 return page;
1640}
1641
1642/* page migration callback function */
1643struct page *alloc_huge_page_node(struct hstate *h, int nid)
1644{
1645 gfp_t gfp_mask = htlb_alloc_mask(h);
1646 struct page *page = NULL;
1647
1648 if (nid != NUMA_NO_NODE)
1649 gfp_mask |= __GFP_THISNODE;
1650
1651 spin_lock(&hugetlb_lock);
1652 if (h->free_huge_pages - h->resv_huge_pages > 0)
1653 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1654 spin_unlock(&hugetlb_lock);
1655
1656 if (!page)
1657 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1658
1659 return page;
1660}
1661
1662/* page migration callback function */
1663struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1664 nodemask_t *nmask)
1665{
1666 gfp_t gfp_mask = htlb_alloc_mask(h);
1667
1668 spin_lock(&hugetlb_lock);
1669 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1670 struct page *page;
1671
1672 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1673 if (page) {
1674 spin_unlock(&hugetlb_lock);
1675 return page;
1676 }
1677 }
1678 spin_unlock(&hugetlb_lock);
1679
1680 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1681}
1682
1683/* mempolicy aware migration callback */
1684struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1685 unsigned long address)
1686{
1687 struct mempolicy *mpol;
1688 nodemask_t *nodemask;
1689 struct page *page;
1690 gfp_t gfp_mask;
1691 int node;
1692
1693 gfp_mask = htlb_alloc_mask(h);
1694 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1695 page = alloc_huge_page_nodemask(h, node, nodemask);
1696 mpol_cond_put(mpol);
1697
1698 return page;
1699}
1700
1701/*
1702 * Increase the hugetlb pool such that it can accommodate a reservation
1703 * of size 'delta'.
1704 */
1705static int gather_surplus_pages(struct hstate *h, int delta)
1706{
1707 struct list_head surplus_list;
1708 struct page *page, *tmp;
1709 int ret, i;
1710 int needed, allocated;
1711 bool alloc_ok = true;
1712
1713 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1714 if (needed <= 0) {
1715 h->resv_huge_pages += delta;
1716 return 0;
1717 }
1718
1719 allocated = 0;
1720 INIT_LIST_HEAD(&surplus_list);
1721
1722 ret = -ENOMEM;
1723retry:
1724 spin_unlock(&hugetlb_lock);
1725 for (i = 0; i < needed; i++) {
1726 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1727 NUMA_NO_NODE, NULL);
1728 if (!page) {
1729 alloc_ok = false;
1730 break;
1731 }
1732 list_add(&page->lru, &surplus_list);
1733 cond_resched();
1734 }
1735 allocated += i;
1736
1737 /*
1738 * After retaking hugetlb_lock, we need to recalculate 'needed'
1739 * because either resv_huge_pages or free_huge_pages may have changed.
1740 */
1741 spin_lock(&hugetlb_lock);
1742 needed = (h->resv_huge_pages + delta) -
1743 (h->free_huge_pages + allocated);
1744 if (needed > 0) {
1745 if (alloc_ok)
1746 goto retry;
1747 /*
1748 * We were not able to allocate enough pages to
1749 * satisfy the entire reservation so we free what
1750 * we've allocated so far.
1751 */
1752 goto free;
1753 }
1754 /*
1755 * The surplus_list now contains _at_least_ the number of extra pages
1756 * needed to accommodate the reservation. Add the appropriate number
1757 * of pages to the hugetlb pool and free the extras back to the buddy
1758 * allocator. Commit the entire reservation here to prevent another
1759 * process from stealing the pages as they are added to the pool but
1760 * before they are reserved.
1761 */
1762 needed += allocated;
1763 h->resv_huge_pages += delta;
1764 ret = 0;
1765
1766 /* Free the needed pages to the hugetlb pool */
1767 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1768 if ((--needed) < 0)
1769 break;
1770 /*
1771 * This page is now managed by the hugetlb allocator and has
1772 * no users -- drop the buddy allocator's reference.
1773 */
1774 put_page_testzero(page);
1775 VM_BUG_ON_PAGE(page_count(page), page);
1776 enqueue_huge_page(h, page);
1777 }
1778free:
1779 spin_unlock(&hugetlb_lock);
1780
1781 /* Free unnecessary surplus pages to the buddy allocator */
1782 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1783 put_page(page);
1784 spin_lock(&hugetlb_lock);
1785
1786 return ret;
1787}
1788
1789/*
1790 * This routine has two main purposes:
1791 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1792 * in unused_resv_pages. This corresponds to the prior adjustments made
1793 * to the associated reservation map.
1794 * 2) Free any unused surplus pages that may have been allocated to satisfy
1795 * the reservation. As many as unused_resv_pages may be freed.
1796 *
1797 * Called with hugetlb_lock held. However, the lock could be dropped (and
1798 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1799 * we must make sure nobody else can claim pages we are in the process of
1800 * freeing. Do this by ensuring resv_huge_page always is greater than the
1801 * number of huge pages we plan to free when dropping the lock.
1802 */
1803static void return_unused_surplus_pages(struct hstate *h,
1804 unsigned long unused_resv_pages)
1805{
1806 unsigned long nr_pages;
1807
1808 /* Cannot return gigantic pages currently */
1809 if (hstate_is_gigantic(h))
1810 goto out;
1811
1812 /*
1813 * Part (or even all) of the reservation could have been backed
1814 * by pre-allocated pages. Only free surplus pages.
1815 */
1816 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1817
1818 /*
1819 * We want to release as many surplus pages as possible, spread
1820 * evenly across all nodes with memory. Iterate across these nodes
1821 * until we can no longer free unreserved surplus pages. This occurs
1822 * when the nodes with surplus pages have no free pages.
1823 * free_pool_huge_page() will balance the the freed pages across the
1824 * on-line nodes with memory and will handle the hstate accounting.
1825 *
1826 * Note that we decrement resv_huge_pages as we free the pages. If
1827 * we drop the lock, resv_huge_pages will still be sufficiently large
1828 * to cover subsequent pages we may free.
1829 */
1830 while (nr_pages--) {
1831 h->resv_huge_pages--;
1832 unused_resv_pages--;
1833 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1834 goto out;
1835 cond_resched_lock(&hugetlb_lock);
1836 }
1837
1838out:
1839 /* Fully uncommit the reservation */
1840 h->resv_huge_pages -= unused_resv_pages;
1841}
1842
1843
1844/*
1845 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1846 * are used by the huge page allocation routines to manage reservations.
1847 *
1848 * vma_needs_reservation is called to determine if the huge page at addr
1849 * within the vma has an associated reservation. If a reservation is
1850 * needed, the value 1 is returned. The caller is then responsible for
1851 * managing the global reservation and subpool usage counts. After
1852 * the huge page has been allocated, vma_commit_reservation is called
1853 * to add the page to the reservation map. If the page allocation fails,
1854 * the reservation must be ended instead of committed. vma_end_reservation
1855 * is called in such cases.
1856 *
1857 * In the normal case, vma_commit_reservation returns the same value
1858 * as the preceding vma_needs_reservation call. The only time this
1859 * is not the case is if a reserve map was changed between calls. It
1860 * is the responsibility of the caller to notice the difference and
1861 * take appropriate action.
1862 *
1863 * vma_add_reservation is used in error paths where a reservation must
1864 * be restored when a newly allocated huge page must be freed. It is
1865 * to be called after calling vma_needs_reservation to determine if a
1866 * reservation exists.
1867 */
1868enum vma_resv_mode {
1869 VMA_NEEDS_RESV,
1870 VMA_COMMIT_RESV,
1871 VMA_END_RESV,
1872 VMA_ADD_RESV,
1873};
1874static long __vma_reservation_common(struct hstate *h,
1875 struct vm_area_struct *vma, unsigned long addr,
1876 enum vma_resv_mode mode)
1877{
1878 struct resv_map *resv;
1879 pgoff_t idx;
1880 long ret;
1881
1882 resv = vma_resv_map(vma);
1883 if (!resv)
1884 return 1;
1885
1886 idx = vma_hugecache_offset(h, vma, addr);
1887 switch (mode) {
1888 case VMA_NEEDS_RESV:
1889 ret = region_chg(resv, idx, idx + 1);
1890 break;
1891 case VMA_COMMIT_RESV:
1892 ret = region_add(resv, idx, idx + 1);
1893 break;
1894 case VMA_END_RESV:
1895 region_abort(resv, idx, idx + 1);
1896 ret = 0;
1897 break;
1898 case VMA_ADD_RESV:
1899 if (vma->vm_flags & VM_MAYSHARE)
1900 ret = region_add(resv, idx, idx + 1);
1901 else {
1902 region_abort(resv, idx, idx + 1);
1903 ret = region_del(resv, idx, idx + 1);
1904 }
1905 break;
1906 default:
1907 BUG();
1908 }
1909
1910 if (vma->vm_flags & VM_MAYSHARE)
1911 return ret;
1912 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1913 /*
1914 * In most cases, reserves always exist for private mappings.
1915 * However, a file associated with mapping could have been
1916 * hole punched or truncated after reserves were consumed.
1917 * As subsequent fault on such a range will not use reserves.
1918 * Subtle - The reserve map for private mappings has the
1919 * opposite meaning than that of shared mappings. If NO
1920 * entry is in the reserve map, it means a reservation exists.
1921 * If an entry exists in the reserve map, it means the
1922 * reservation has already been consumed. As a result, the
1923 * return value of this routine is the opposite of the
1924 * value returned from reserve map manipulation routines above.
1925 */
1926 if (ret)
1927 return 0;
1928 else
1929 return 1;
1930 }
1931 else
1932 return ret < 0 ? ret : 0;
1933}
1934
1935static long vma_needs_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
1938 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1939}
1940
1941static long vma_commit_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943{
1944 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1945}
1946
1947static void vma_end_reservation(struct hstate *h,
1948 struct vm_area_struct *vma, unsigned long addr)
1949{
1950 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1951}
1952
1953static long vma_add_reservation(struct hstate *h,
1954 struct vm_area_struct *vma, unsigned long addr)
1955{
1956 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1957}
1958
1959/*
1960 * This routine is called to restore a reservation on error paths. In the
1961 * specific error paths, a huge page was allocated (via alloc_huge_page)
1962 * and is about to be freed. If a reservation for the page existed,
1963 * alloc_huge_page would have consumed the reservation and set PagePrivate
1964 * in the newly allocated page. When the page is freed via free_huge_page,
1965 * the global reservation count will be incremented if PagePrivate is set.
1966 * However, free_huge_page can not adjust the reserve map. Adjust the
1967 * reserve map here to be consistent with global reserve count adjustments
1968 * to be made by free_huge_page.
1969 */
1970static void restore_reserve_on_error(struct hstate *h,
1971 struct vm_area_struct *vma, unsigned long address,
1972 struct page *page)
1973{
1974 if (unlikely(PagePrivate(page))) {
1975 long rc = vma_needs_reservation(h, vma, address);
1976
1977 if (unlikely(rc < 0)) {
1978 /*
1979 * Rare out of memory condition in reserve map
1980 * manipulation. Clear PagePrivate so that
1981 * global reserve count will not be incremented
1982 * by free_huge_page. This will make it appear
1983 * as though the reservation for this page was
1984 * consumed. This may prevent the task from
1985 * faulting in the page at a later time. This
1986 * is better than inconsistent global huge page
1987 * accounting of reserve counts.
1988 */
1989 ClearPagePrivate(page);
1990 } else if (rc) {
1991 rc = vma_add_reservation(h, vma, address);
1992 if (unlikely(rc < 0))
1993 /*
1994 * See above comment about rare out of
1995 * memory condition.
1996 */
1997 ClearPagePrivate(page);
1998 } else
1999 vma_end_reservation(h, vma, address);
2000 }
2001}
2002
2003struct page *alloc_huge_page(struct vm_area_struct *vma,
2004 unsigned long addr, int avoid_reserve)
2005{
2006 struct hugepage_subpool *spool = subpool_vma(vma);
2007 struct hstate *h = hstate_vma(vma);
2008 struct page *page;
2009 long map_chg, map_commit;
2010 long gbl_chg;
2011 int ret, idx;
2012 struct hugetlb_cgroup *h_cg;
2013
2014 idx = hstate_index(h);
2015 /*
2016 * Examine the region/reserve map to determine if the process
2017 * has a reservation for the page to be allocated. A return
2018 * code of zero indicates a reservation exists (no change).
2019 */
2020 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2021 if (map_chg < 0)
2022 return ERR_PTR(-ENOMEM);
2023
2024 /*
2025 * Processes that did not create the mapping will have no
2026 * reserves as indicated by the region/reserve map. Check
2027 * that the allocation will not exceed the subpool limit.
2028 * Allocations for MAP_NORESERVE mappings also need to be
2029 * checked against any subpool limit.
2030 */
2031 if (map_chg || avoid_reserve) {
2032 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2033 if (gbl_chg < 0) {
2034 vma_end_reservation(h, vma, addr);
2035 return ERR_PTR(-ENOSPC);
2036 }
2037
2038 /*
2039 * Even though there was no reservation in the region/reserve
2040 * map, there could be reservations associated with the
2041 * subpool that can be used. This would be indicated if the
2042 * return value of hugepage_subpool_get_pages() is zero.
2043 * However, if avoid_reserve is specified we still avoid even
2044 * the subpool reservations.
2045 */
2046 if (avoid_reserve)
2047 gbl_chg = 1;
2048 }
2049
2050 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2051 if (ret)
2052 goto out_subpool_put;
2053
2054 spin_lock(&hugetlb_lock);
2055 /*
2056 * glb_chg is passed to indicate whether or not a page must be taken
2057 * from the global free pool (global change). gbl_chg == 0 indicates
2058 * a reservation exists for the allocation.
2059 */
2060 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2061 if (!page) {
2062 spin_unlock(&hugetlb_lock);
2063 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2064 if (!page)
2065 goto out_uncharge_cgroup;
2066 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2067 SetPagePrivate(page);
2068 h->resv_huge_pages--;
2069 }
2070 spin_lock(&hugetlb_lock);
2071 list_move(&page->lru, &h->hugepage_activelist);
2072 /* Fall through */
2073 }
2074 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2075 spin_unlock(&hugetlb_lock);
2076
2077 set_page_private(page, (unsigned long)spool);
2078
2079 map_commit = vma_commit_reservation(h, vma, addr);
2080 if (unlikely(map_chg > map_commit)) {
2081 /*
2082 * The page was added to the reservation map between
2083 * vma_needs_reservation and vma_commit_reservation.
2084 * This indicates a race with hugetlb_reserve_pages.
2085 * Adjust for the subpool count incremented above AND
2086 * in hugetlb_reserve_pages for the same page. Also,
2087 * the reservation count added in hugetlb_reserve_pages
2088 * no longer applies.
2089 */
2090 long rsv_adjust;
2091
2092 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2093 hugetlb_acct_memory(h, -rsv_adjust);
2094 }
2095 return page;
2096
2097out_uncharge_cgroup:
2098 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2099out_subpool_put:
2100 if (map_chg || avoid_reserve)
2101 hugepage_subpool_put_pages(spool, 1);
2102 vma_end_reservation(h, vma, addr);
2103 return ERR_PTR(-ENOSPC);
2104}
2105
2106int alloc_bootmem_huge_page(struct hstate *h)
2107 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2108int __alloc_bootmem_huge_page(struct hstate *h)
2109{
2110 struct huge_bootmem_page *m;
2111 int nr_nodes, node;
2112
2113 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114 void *addr;
2115
2116 addr = memblock_alloc_try_nid_raw(
2117 huge_page_size(h), huge_page_size(h),
2118 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2119 if (addr) {
2120 /*
2121 * Use the beginning of the huge page to store the
2122 * huge_bootmem_page struct (until gather_bootmem
2123 * puts them into the mem_map).
2124 */
2125 m = addr;
2126 goto found;
2127 }
2128 }
2129 return 0;
2130
2131found:
2132 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133 /* Put them into a private list first because mem_map is not up yet */
2134 INIT_LIST_HEAD(&m->list);
2135 list_add(&m->list, &huge_boot_pages);
2136 m->hstate = h;
2137 return 1;
2138}
2139
2140static void __init prep_compound_huge_page(struct page *page,
2141 unsigned int order)
2142{
2143 if (unlikely(order > (MAX_ORDER - 1)))
2144 prep_compound_gigantic_page(page, order);
2145 else
2146 prep_compound_page(page, order);
2147}
2148
2149/* Put bootmem huge pages into the standard lists after mem_map is up */
2150static void __init gather_bootmem_prealloc(void)
2151{
2152 struct huge_bootmem_page *m;
2153
2154 list_for_each_entry(m, &huge_boot_pages, list) {
2155 struct page *page = virt_to_page(m);
2156 struct hstate *h = m->hstate;
2157
2158 WARN_ON(page_count(page) != 1);
2159 prep_compound_huge_page(page, h->order);
2160 WARN_ON(PageReserved(page));
2161 prep_new_huge_page(h, page, page_to_nid(page));
2162 put_page(page); /* free it into the hugepage allocator */
2163
2164 /*
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2169 */
2170 if (hstate_is_gigantic(h))
2171 adjust_managed_page_count(page, 1 << h->order);
2172 cond_resched();
2173 }
2174}
2175
2176static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177{
2178 unsigned long i;
2179
2180 for (i = 0; i < h->max_huge_pages; ++i) {
2181 if (hstate_is_gigantic(h)) {
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
2184 } else if (!alloc_pool_huge_page(h,
2185 &node_states[N_MEMORY]))
2186 break;
2187 cond_resched();
2188 }
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2191
2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2196 }
2197}
2198
2199static void __init hugetlb_init_hstates(void)
2200{
2201 struct hstate *h;
2202
2203 for_each_hstate(h) {
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2206
2207 /* oversize hugepages were init'ed in early boot */
2208 if (!hstate_is_gigantic(h))
2209 hugetlb_hstate_alloc_pages(h);
2210 }
2211 VM_BUG_ON(minimum_order == UINT_MAX);
2212}
2213
2214static void __init report_hugepages(void)
2215{
2216 struct hstate *h;
2217
2218 for_each_hstate(h) {
2219 char buf[32];
2220
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223 buf, h->free_huge_pages);
2224 }
2225}
2226
2227#ifdef CONFIG_HIGHMEM
2228static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
2230{
2231 int i;
2232
2233 if (hstate_is_gigantic(h))
2234 return;
2235
2236 for_each_node_mask(i, *nodes_allowed) {
2237 struct page *page, *next;
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
2241 return;
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
2245 update_and_free_page(h, page);
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
2248 }
2249 }
2250}
2251#else
2252static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
2254{
2255}
2256#endif
2257
2258/*
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2262 */
2263static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
2265{
2266 int nr_nodes, node;
2267
2268 VM_BUG_ON(delta != -1 && delta != 1);
2269
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
2274 }
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
2280 }
2281 }
2282 return 0;
2283
2284found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
2288}
2289
2290#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2292 nodemask_t *nodes_allowed)
2293{
2294 unsigned long min_count, ret;
2295
2296 spin_lock(&hugetlb_lock);
2297
2298 /*
2299 * Check for a node specific request.
2300 * Changing node specific huge page count may require a corresponding
2301 * change to the global count. In any case, the passed node mask
2302 * (nodes_allowed) will restrict alloc/free to the specified node.
2303 */
2304 if (nid != NUMA_NO_NODE) {
2305 unsigned long old_count = count;
2306
2307 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2308 /*
2309 * User may have specified a large count value which caused the
2310 * above calculation to overflow. In this case, they wanted
2311 * to allocate as many huge pages as possible. Set count to
2312 * largest possible value to align with their intention.
2313 */
2314 if (count < old_count)
2315 count = ULONG_MAX;
2316 }
2317
2318 /*
2319 * Gigantic pages runtime allocation depend on the capability for large
2320 * page range allocation.
2321 * If the system does not provide this feature, return an error when
2322 * the user tries to allocate gigantic pages but let the user free the
2323 * boottime allocated gigantic pages.
2324 */
2325 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2326 if (count > persistent_huge_pages(h)) {
2327 spin_unlock(&hugetlb_lock);
2328 return -EINVAL;
2329 }
2330 /* Fall through to decrease pool */
2331 }
2332
2333 /*
2334 * Increase the pool size
2335 * First take pages out of surplus state. Then make up the
2336 * remaining difference by allocating fresh huge pages.
2337 *
2338 * We might race with alloc_surplus_huge_page() here and be unable
2339 * to convert a surplus huge page to a normal huge page. That is
2340 * not critical, though, it just means the overall size of the
2341 * pool might be one hugepage larger than it needs to be, but
2342 * within all the constraints specified by the sysctls.
2343 */
2344 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2345 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2346 break;
2347 }
2348
2349 while (count > persistent_huge_pages(h)) {
2350 /*
2351 * If this allocation races such that we no longer need the
2352 * page, free_huge_page will handle it by freeing the page
2353 * and reducing the surplus.
2354 */
2355 spin_unlock(&hugetlb_lock);
2356
2357 /* yield cpu to avoid soft lockup */
2358 cond_resched();
2359
2360 ret = alloc_pool_huge_page(h, nodes_allowed);
2361 spin_lock(&hugetlb_lock);
2362 if (!ret)
2363 goto out;
2364
2365 /* Bail for signals. Probably ctrl-c from user */
2366 if (signal_pending(current))
2367 goto out;
2368 }
2369
2370 /*
2371 * Decrease the pool size
2372 * First return free pages to the buddy allocator (being careful
2373 * to keep enough around to satisfy reservations). Then place
2374 * pages into surplus state as needed so the pool will shrink
2375 * to the desired size as pages become free.
2376 *
2377 * By placing pages into the surplus state independent of the
2378 * overcommit value, we are allowing the surplus pool size to
2379 * exceed overcommit. There are few sane options here. Since
2380 * alloc_surplus_huge_page() is checking the global counter,
2381 * though, we'll note that we're not allowed to exceed surplus
2382 * and won't grow the pool anywhere else. Not until one of the
2383 * sysctls are changed, or the surplus pages go out of use.
2384 */
2385 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2386 min_count = max(count, min_count);
2387 try_to_free_low(h, min_count, nodes_allowed);
2388 while (min_count < persistent_huge_pages(h)) {
2389 if (!free_pool_huge_page(h, nodes_allowed, 0))
2390 break;
2391 cond_resched_lock(&hugetlb_lock);
2392 }
2393 while (count < persistent_huge_pages(h)) {
2394 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2395 break;
2396 }
2397out:
2398 h->max_huge_pages = persistent_huge_pages(h);
2399 spin_unlock(&hugetlb_lock);
2400
2401 return 0;
2402}
2403
2404#define HSTATE_ATTR_RO(_name) \
2405 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2406
2407#define HSTATE_ATTR(_name) \
2408 static struct kobj_attribute _name##_attr = \
2409 __ATTR(_name, 0644, _name##_show, _name##_store)
2410
2411static struct kobject *hugepages_kobj;
2412static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2413
2414static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2415
2416static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2417{
2418 int i;
2419
2420 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2421 if (hstate_kobjs[i] == kobj) {
2422 if (nidp)
2423 *nidp = NUMA_NO_NODE;
2424 return &hstates[i];
2425 }
2426
2427 return kobj_to_node_hstate(kobj, nidp);
2428}
2429
2430static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2431 struct kobj_attribute *attr, char *buf)
2432{
2433 struct hstate *h;
2434 unsigned long nr_huge_pages;
2435 int nid;
2436
2437 h = kobj_to_hstate(kobj, &nid);
2438 if (nid == NUMA_NO_NODE)
2439 nr_huge_pages = h->nr_huge_pages;
2440 else
2441 nr_huge_pages = h->nr_huge_pages_node[nid];
2442
2443 return sprintf(buf, "%lu\n", nr_huge_pages);
2444}
2445
2446static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2447 struct hstate *h, int nid,
2448 unsigned long count, size_t len)
2449{
2450 int err;
2451 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2452
2453 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) {
2454 err = -EINVAL;
2455 goto out;
2456 }
2457
2458 if (nid == NUMA_NO_NODE) {
2459 /*
2460 * global hstate attribute
2461 */
2462 if (!(obey_mempolicy &&
2463 init_nodemask_of_mempolicy(nodes_allowed))) {
2464 NODEMASK_FREE(nodes_allowed);
2465 nodes_allowed = &node_states[N_MEMORY];
2466 }
2467 } else if (nodes_allowed) {
2468 /*
2469 * Node specific request. count adjustment happens in
2470 * set_max_huge_pages() after acquiring hugetlb_lock.
2471 */
2472 init_nodemask_of_node(nodes_allowed, nid);
2473 } else {
2474 /*
2475 * Node specific request, but we could not allocate the few
2476 * words required for a node mask. We are unlikely to hit
2477 * this condition. Since we can not pass down the appropriate
2478 * node mask, just return ENOMEM.
2479 */
2480 err = -ENOMEM;
2481 goto out;
2482 }
2483
2484 err = set_max_huge_pages(h, count, nid, nodes_allowed);
2485
2486out:
2487 if (nodes_allowed != &node_states[N_MEMORY])
2488 NODEMASK_FREE(nodes_allowed);
2489
2490 return err ? err : len;
2491}
2492
2493static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2494 struct kobject *kobj, const char *buf,
2495 size_t len)
2496{
2497 struct hstate *h;
2498 unsigned long count;
2499 int nid;
2500 int err;
2501
2502 err = kstrtoul(buf, 10, &count);
2503 if (err)
2504 return err;
2505
2506 h = kobj_to_hstate(kobj, &nid);
2507 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2508}
2509
2510static ssize_t nr_hugepages_show(struct kobject *kobj,
2511 struct kobj_attribute *attr, char *buf)
2512{
2513 return nr_hugepages_show_common(kobj, attr, buf);
2514}
2515
2516static ssize_t nr_hugepages_store(struct kobject *kobj,
2517 struct kobj_attribute *attr, const char *buf, size_t len)
2518{
2519 return nr_hugepages_store_common(false, kobj, buf, len);
2520}
2521HSTATE_ATTR(nr_hugepages);
2522
2523#ifdef CONFIG_NUMA
2524
2525/*
2526 * hstate attribute for optionally mempolicy-based constraint on persistent
2527 * huge page alloc/free.
2528 */
2529static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531{
2532 return nr_hugepages_show_common(kobj, attr, buf);
2533}
2534
2535static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2536 struct kobj_attribute *attr, const char *buf, size_t len)
2537{
2538 return nr_hugepages_store_common(true, kobj, buf, len);
2539}
2540HSTATE_ATTR(nr_hugepages_mempolicy);
2541#endif
2542
2543
2544static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2546{
2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
2548 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2549}
2550
2551static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2552 struct kobj_attribute *attr, const char *buf, size_t count)
2553{
2554 int err;
2555 unsigned long input;
2556 struct hstate *h = kobj_to_hstate(kobj, NULL);
2557
2558 if (hstate_is_gigantic(h))
2559 return -EINVAL;
2560
2561 err = kstrtoul(buf, 10, &input);
2562 if (err)
2563 return err;
2564
2565 spin_lock(&hugetlb_lock);
2566 h->nr_overcommit_huge_pages = input;
2567 spin_unlock(&hugetlb_lock);
2568
2569 return count;
2570}
2571HSTATE_ATTR(nr_overcommit_hugepages);
2572
2573static ssize_t free_hugepages_show(struct kobject *kobj,
2574 struct kobj_attribute *attr, char *buf)
2575{
2576 struct hstate *h;
2577 unsigned long free_huge_pages;
2578 int nid;
2579
2580 h = kobj_to_hstate(kobj, &nid);
2581 if (nid == NUMA_NO_NODE)
2582 free_huge_pages = h->free_huge_pages;
2583 else
2584 free_huge_pages = h->free_huge_pages_node[nid];
2585
2586 return sprintf(buf, "%lu\n", free_huge_pages);
2587}
2588HSTATE_ATTR_RO(free_hugepages);
2589
2590static ssize_t resv_hugepages_show(struct kobject *kobj,
2591 struct kobj_attribute *attr, char *buf)
2592{
2593 struct hstate *h = kobj_to_hstate(kobj, NULL);
2594 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2595}
2596HSTATE_ATTR_RO(resv_hugepages);
2597
2598static ssize_t surplus_hugepages_show(struct kobject *kobj,
2599 struct kobj_attribute *attr, char *buf)
2600{
2601 struct hstate *h;
2602 unsigned long surplus_huge_pages;
2603 int nid;
2604
2605 h = kobj_to_hstate(kobj, &nid);
2606 if (nid == NUMA_NO_NODE)
2607 surplus_huge_pages = h->surplus_huge_pages;
2608 else
2609 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2610
2611 return sprintf(buf, "%lu\n", surplus_huge_pages);
2612}
2613HSTATE_ATTR_RO(surplus_hugepages);
2614
2615static struct attribute *hstate_attrs[] = {
2616 &nr_hugepages_attr.attr,
2617 &nr_overcommit_hugepages_attr.attr,
2618 &free_hugepages_attr.attr,
2619 &resv_hugepages_attr.attr,
2620 &surplus_hugepages_attr.attr,
2621#ifdef CONFIG_NUMA
2622 &nr_hugepages_mempolicy_attr.attr,
2623#endif
2624 NULL,
2625};
2626
2627static const struct attribute_group hstate_attr_group = {
2628 .attrs = hstate_attrs,
2629};
2630
2631static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2632 struct kobject **hstate_kobjs,
2633 const struct attribute_group *hstate_attr_group)
2634{
2635 int retval;
2636 int hi = hstate_index(h);
2637
2638 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2639 if (!hstate_kobjs[hi])
2640 return -ENOMEM;
2641
2642 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2643 if (retval)
2644 kobject_put(hstate_kobjs[hi]);
2645
2646 return retval;
2647}
2648
2649static void __init hugetlb_sysfs_init(void)
2650{
2651 struct hstate *h;
2652 int err;
2653
2654 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2655 if (!hugepages_kobj)
2656 return;
2657
2658 for_each_hstate(h) {
2659 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2660 hstate_kobjs, &hstate_attr_group);
2661 if (err)
2662 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2663 }
2664}
2665
2666#ifdef CONFIG_NUMA
2667
2668/*
2669 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2670 * with node devices in node_devices[] using a parallel array. The array
2671 * index of a node device or _hstate == node id.
2672 * This is here to avoid any static dependency of the node device driver, in
2673 * the base kernel, on the hugetlb module.
2674 */
2675struct node_hstate {
2676 struct kobject *hugepages_kobj;
2677 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2678};
2679static struct node_hstate node_hstates[MAX_NUMNODES];
2680
2681/*
2682 * A subset of global hstate attributes for node devices
2683 */
2684static struct attribute *per_node_hstate_attrs[] = {
2685 &nr_hugepages_attr.attr,
2686 &free_hugepages_attr.attr,
2687 &surplus_hugepages_attr.attr,
2688 NULL,
2689};
2690
2691static const struct attribute_group per_node_hstate_attr_group = {
2692 .attrs = per_node_hstate_attrs,
2693};
2694
2695/*
2696 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2697 * Returns node id via non-NULL nidp.
2698 */
2699static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2700{
2701 int nid;
2702
2703 for (nid = 0; nid < nr_node_ids; nid++) {
2704 struct node_hstate *nhs = &node_hstates[nid];
2705 int i;
2706 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2707 if (nhs->hstate_kobjs[i] == kobj) {
2708 if (nidp)
2709 *nidp = nid;
2710 return &hstates[i];
2711 }
2712 }
2713
2714 BUG();
2715 return NULL;
2716}
2717
2718/*
2719 * Unregister hstate attributes from a single node device.
2720 * No-op if no hstate attributes attached.
2721 */
2722static void hugetlb_unregister_node(struct node *node)
2723{
2724 struct hstate *h;
2725 struct node_hstate *nhs = &node_hstates[node->dev.id];
2726
2727 if (!nhs->hugepages_kobj)
2728 return; /* no hstate attributes */
2729
2730 for_each_hstate(h) {
2731 int idx = hstate_index(h);
2732 if (nhs->hstate_kobjs[idx]) {
2733 kobject_put(nhs->hstate_kobjs[idx]);
2734 nhs->hstate_kobjs[idx] = NULL;
2735 }
2736 }
2737
2738 kobject_put(nhs->hugepages_kobj);
2739 nhs->hugepages_kobj = NULL;
2740}
2741
2742
2743/*
2744 * Register hstate attributes for a single node device.
2745 * No-op if attributes already registered.
2746 */
2747static void hugetlb_register_node(struct node *node)
2748{
2749 struct hstate *h;
2750 struct node_hstate *nhs = &node_hstates[node->dev.id];
2751 int err;
2752
2753 if (nhs->hugepages_kobj)
2754 return; /* already allocated */
2755
2756 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2757 &node->dev.kobj);
2758 if (!nhs->hugepages_kobj)
2759 return;
2760
2761 for_each_hstate(h) {
2762 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2763 nhs->hstate_kobjs,
2764 &per_node_hstate_attr_group);
2765 if (err) {
2766 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2767 h->name, node->dev.id);
2768 hugetlb_unregister_node(node);
2769 break;
2770 }
2771 }
2772}
2773
2774/*
2775 * hugetlb init time: register hstate attributes for all registered node
2776 * devices of nodes that have memory. All on-line nodes should have
2777 * registered their associated device by this time.
2778 */
2779static void __init hugetlb_register_all_nodes(void)
2780{
2781 int nid;
2782
2783 for_each_node_state(nid, N_MEMORY) {
2784 struct node *node = node_devices[nid];
2785 if (node->dev.id == nid)
2786 hugetlb_register_node(node);
2787 }
2788
2789 /*
2790 * Let the node device driver know we're here so it can
2791 * [un]register hstate attributes on node hotplug.
2792 */
2793 register_hugetlbfs_with_node(hugetlb_register_node,
2794 hugetlb_unregister_node);
2795}
2796#else /* !CONFIG_NUMA */
2797
2798static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2799{
2800 BUG();
2801 if (nidp)
2802 *nidp = -1;
2803 return NULL;
2804}
2805
2806static void hugetlb_register_all_nodes(void) { }
2807
2808#endif
2809
2810static int __init hugetlb_init(void)
2811{
2812 int i;
2813
2814 if (!hugepages_supported())
2815 return 0;
2816
2817 if (!size_to_hstate(default_hstate_size)) {
2818 if (default_hstate_size != 0) {
2819 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2820 default_hstate_size, HPAGE_SIZE);
2821 }
2822
2823 default_hstate_size = HPAGE_SIZE;
2824 if (!size_to_hstate(default_hstate_size))
2825 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2826 }
2827 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2828 if (default_hstate_max_huge_pages) {
2829 if (!default_hstate.max_huge_pages)
2830 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2831 }
2832
2833 hugetlb_init_hstates();
2834 gather_bootmem_prealloc();
2835 report_hugepages();
2836
2837 hugetlb_sysfs_init();
2838 hugetlb_register_all_nodes();
2839 hugetlb_cgroup_file_init();
2840
2841#ifdef CONFIG_SMP
2842 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2843#else
2844 num_fault_mutexes = 1;
2845#endif
2846 hugetlb_fault_mutex_table =
2847 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2848 GFP_KERNEL);
2849 BUG_ON(!hugetlb_fault_mutex_table);
2850
2851 for (i = 0; i < num_fault_mutexes; i++)
2852 mutex_init(&hugetlb_fault_mutex_table[i]);
2853 return 0;
2854}
2855subsys_initcall(hugetlb_init);
2856
2857/* Should be called on processing a hugepagesz=... option */
2858void __init hugetlb_bad_size(void)
2859{
2860 parsed_valid_hugepagesz = false;
2861}
2862
2863void __init hugetlb_add_hstate(unsigned int order)
2864{
2865 struct hstate *h;
2866 unsigned long i;
2867
2868 if (size_to_hstate(PAGE_SIZE << order)) {
2869 pr_warn("hugepagesz= specified twice, ignoring\n");
2870 return;
2871 }
2872 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2873 BUG_ON(order == 0);
2874 h = &hstates[hugetlb_max_hstate++];
2875 h->order = order;
2876 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2877 h->nr_huge_pages = 0;
2878 h->free_huge_pages = 0;
2879 for (i = 0; i < MAX_NUMNODES; ++i)
2880 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2881 INIT_LIST_HEAD(&h->hugepage_activelist);
2882 h->next_nid_to_alloc = first_memory_node;
2883 h->next_nid_to_free = first_memory_node;
2884 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2885 huge_page_size(h)/1024);
2886
2887 parsed_hstate = h;
2888}
2889
2890static int __init hugetlb_nrpages_setup(char *s)
2891{
2892 unsigned long *mhp;
2893 static unsigned long *last_mhp;
2894
2895 if (!parsed_valid_hugepagesz) {
2896 pr_warn("hugepages = %s preceded by "
2897 "an unsupported hugepagesz, ignoring\n", s);
2898 parsed_valid_hugepagesz = true;
2899 return 1;
2900 }
2901 /*
2902 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2903 * so this hugepages= parameter goes to the "default hstate".
2904 */
2905 else if (!hugetlb_max_hstate)
2906 mhp = &default_hstate_max_huge_pages;
2907 else
2908 mhp = &parsed_hstate->max_huge_pages;
2909
2910 if (mhp == last_mhp) {
2911 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2912 return 1;
2913 }
2914
2915 if (sscanf(s, "%lu", mhp) <= 0)
2916 *mhp = 0;
2917
2918 /*
2919 * Global state is always initialized later in hugetlb_init.
2920 * But we need to allocate >= MAX_ORDER hstates here early to still
2921 * use the bootmem allocator.
2922 */
2923 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2924 hugetlb_hstate_alloc_pages(parsed_hstate);
2925
2926 last_mhp = mhp;
2927
2928 return 1;
2929}
2930__setup("hugepages=", hugetlb_nrpages_setup);
2931
2932static int __init hugetlb_default_setup(char *s)
2933{
2934 default_hstate_size = memparse(s, &s);
2935 return 1;
2936}
2937__setup("default_hugepagesz=", hugetlb_default_setup);
2938
2939static unsigned int cpuset_mems_nr(unsigned int *array)
2940{
2941 int node;
2942 unsigned int nr = 0;
2943
2944 for_each_node_mask(node, cpuset_current_mems_allowed)
2945 nr += array[node];
2946
2947 return nr;
2948}
2949
2950#ifdef CONFIG_SYSCTL
2951static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2952 struct ctl_table *table, int write,
2953 void __user *buffer, size_t *length, loff_t *ppos)
2954{
2955 struct hstate *h = &default_hstate;
2956 unsigned long tmp = h->max_huge_pages;
2957 int ret;
2958
2959 if (!hugepages_supported())
2960 return -EOPNOTSUPP;
2961
2962 table->data = &tmp;
2963 table->maxlen = sizeof(unsigned long);
2964 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2965 if (ret)
2966 goto out;
2967
2968 if (write)
2969 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2970 NUMA_NO_NODE, tmp, *length);
2971out:
2972 return ret;
2973}
2974
2975int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2976 void __user *buffer, size_t *length, loff_t *ppos)
2977{
2978
2979 return hugetlb_sysctl_handler_common(false, table, write,
2980 buffer, length, ppos);
2981}
2982
2983#ifdef CONFIG_NUMA
2984int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2985 void __user *buffer, size_t *length, loff_t *ppos)
2986{
2987 return hugetlb_sysctl_handler_common(true, table, write,
2988 buffer, length, ppos);
2989}
2990#endif /* CONFIG_NUMA */
2991
2992int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2993 void __user *buffer,
2994 size_t *length, loff_t *ppos)
2995{
2996 struct hstate *h = &default_hstate;
2997 unsigned long tmp;
2998 int ret;
2999
3000 if (!hugepages_supported())
3001 return -EOPNOTSUPP;
3002
3003 tmp = h->nr_overcommit_huge_pages;
3004
3005 if (write && hstate_is_gigantic(h))
3006 return -EINVAL;
3007
3008 table->data = &tmp;
3009 table->maxlen = sizeof(unsigned long);
3010 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3011 if (ret)
3012 goto out;
3013
3014 if (write) {
3015 spin_lock(&hugetlb_lock);
3016 h->nr_overcommit_huge_pages = tmp;
3017 spin_unlock(&hugetlb_lock);
3018 }
3019out:
3020 return ret;
3021}
3022
3023#endif /* CONFIG_SYSCTL */
3024
3025void hugetlb_report_meminfo(struct seq_file *m)
3026{
3027 struct hstate *h;
3028 unsigned long total = 0;
3029
3030 if (!hugepages_supported())
3031 return;
3032
3033 for_each_hstate(h) {
3034 unsigned long count = h->nr_huge_pages;
3035
3036 total += (PAGE_SIZE << huge_page_order(h)) * count;
3037
3038 if (h == &default_hstate)
3039 seq_printf(m,
3040 "HugePages_Total: %5lu\n"
3041 "HugePages_Free: %5lu\n"
3042 "HugePages_Rsvd: %5lu\n"
3043 "HugePages_Surp: %5lu\n"
3044 "Hugepagesize: %8lu kB\n",
3045 count,
3046 h->free_huge_pages,
3047 h->resv_huge_pages,
3048 h->surplus_huge_pages,
3049 (PAGE_SIZE << huge_page_order(h)) / 1024);
3050 }
3051
3052 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3053}
3054
3055int hugetlb_report_node_meminfo(int nid, char *buf)
3056{
3057 struct hstate *h = &default_hstate;
3058 if (!hugepages_supported())
3059 return 0;
3060 return sprintf(buf,
3061 "Node %d HugePages_Total: %5u\n"
3062 "Node %d HugePages_Free: %5u\n"
3063 "Node %d HugePages_Surp: %5u\n",
3064 nid, h->nr_huge_pages_node[nid],
3065 nid, h->free_huge_pages_node[nid],
3066 nid, h->surplus_huge_pages_node[nid]);
3067}
3068
3069void hugetlb_show_meminfo(void)
3070{
3071 struct hstate *h;
3072 int nid;
3073
3074 if (!hugepages_supported())
3075 return;
3076
3077 for_each_node_state(nid, N_MEMORY)
3078 for_each_hstate(h)
3079 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3080 nid,
3081 h->nr_huge_pages_node[nid],
3082 h->free_huge_pages_node[nid],
3083 h->surplus_huge_pages_node[nid],
3084 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3085}
3086
3087void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3088{
3089 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3090 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3091}
3092
3093/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3094unsigned long hugetlb_total_pages(void)
3095{
3096 struct hstate *h;
3097 unsigned long nr_total_pages = 0;
3098
3099 for_each_hstate(h)
3100 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3101 return nr_total_pages;
3102}
3103
3104static int hugetlb_acct_memory(struct hstate *h, long delta)
3105{
3106 int ret = -ENOMEM;
3107
3108 spin_lock(&hugetlb_lock);
3109 /*
3110 * When cpuset is configured, it breaks the strict hugetlb page
3111 * reservation as the accounting is done on a global variable. Such
3112 * reservation is completely rubbish in the presence of cpuset because
3113 * the reservation is not checked against page availability for the
3114 * current cpuset. Application can still potentially OOM'ed by kernel
3115 * with lack of free htlb page in cpuset that the task is in.
3116 * Attempt to enforce strict accounting with cpuset is almost
3117 * impossible (or too ugly) because cpuset is too fluid that
3118 * task or memory node can be dynamically moved between cpusets.
3119 *
3120 * The change of semantics for shared hugetlb mapping with cpuset is
3121 * undesirable. However, in order to preserve some of the semantics,
3122 * we fall back to check against current free page availability as
3123 * a best attempt and hopefully to minimize the impact of changing
3124 * semantics that cpuset has.
3125 */
3126 if (delta > 0) {
3127 if (gather_surplus_pages(h, delta) < 0)
3128 goto out;
3129
3130 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3131 return_unused_surplus_pages(h, delta);
3132 goto out;
3133 }
3134 }
3135
3136 ret = 0;
3137 if (delta < 0)
3138 return_unused_surplus_pages(h, (unsigned long) -delta);
3139
3140out:
3141 spin_unlock(&hugetlb_lock);
3142 return ret;
3143}
3144
3145static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3146{
3147 struct resv_map *resv = vma_resv_map(vma);
3148
3149 /*
3150 * This new VMA should share its siblings reservation map if present.
3151 * The VMA will only ever have a valid reservation map pointer where
3152 * it is being copied for another still existing VMA. As that VMA
3153 * has a reference to the reservation map it cannot disappear until
3154 * after this open call completes. It is therefore safe to take a
3155 * new reference here without additional locking.
3156 */
3157 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3158 kref_get(&resv->refs);
3159}
3160
3161static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3162{
3163 struct hstate *h = hstate_vma(vma);
3164 struct resv_map *resv = vma_resv_map(vma);
3165 struct hugepage_subpool *spool = subpool_vma(vma);
3166 unsigned long reserve, start, end;
3167 long gbl_reserve;
3168
3169 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3170 return;
3171
3172 start = vma_hugecache_offset(h, vma, vma->vm_start);
3173 end = vma_hugecache_offset(h, vma, vma->vm_end);
3174
3175 reserve = (end - start) - region_count(resv, start, end);
3176
3177 kref_put(&resv->refs, resv_map_release);
3178
3179 if (reserve) {
3180 /*
3181 * Decrement reserve counts. The global reserve count may be
3182 * adjusted if the subpool has a minimum size.
3183 */
3184 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3185 hugetlb_acct_memory(h, -gbl_reserve);
3186 }
3187}
3188
3189static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3190{
3191 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3192 return -EINVAL;
3193 return 0;
3194}
3195
3196static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3197{
3198 struct hstate *hstate = hstate_vma(vma);
3199
3200 return 1UL << huge_page_shift(hstate);
3201}
3202
3203/*
3204 * We cannot handle pagefaults against hugetlb pages at all. They cause
3205 * handle_mm_fault() to try to instantiate regular-sized pages in the
3206 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3207 * this far.
3208 */
3209static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3210{
3211 BUG();
3212 return 0;
3213}
3214
3215/*
3216 * When a new function is introduced to vm_operations_struct and added
3217 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3218 * This is because under System V memory model, mappings created via
3219 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3220 * their original vm_ops are overwritten with shm_vm_ops.
3221 */
3222const struct vm_operations_struct hugetlb_vm_ops = {
3223 .fault = hugetlb_vm_op_fault,
3224 .open = hugetlb_vm_op_open,
3225 .close = hugetlb_vm_op_close,
3226 .split = hugetlb_vm_op_split,
3227 .pagesize = hugetlb_vm_op_pagesize,
3228};
3229
3230static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3231 int writable)
3232{
3233 pte_t entry;
3234
3235 if (writable) {
3236 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3237 vma->vm_page_prot)));
3238 } else {
3239 entry = huge_pte_wrprotect(mk_huge_pte(page,
3240 vma->vm_page_prot));
3241 }
3242 entry = pte_mkyoung(entry);
3243 entry = pte_mkhuge(entry);
3244 entry = arch_make_huge_pte(entry, vma, page, writable);
3245
3246 return entry;
3247}
3248
3249static void set_huge_ptep_writable(struct vm_area_struct *vma,
3250 unsigned long address, pte_t *ptep)
3251{
3252 pte_t entry;
3253
3254 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3255 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3256 update_mmu_cache(vma, address, ptep);
3257}
3258
3259bool is_hugetlb_entry_migration(pte_t pte)
3260{
3261 swp_entry_t swp;
3262
3263 if (huge_pte_none(pte) || pte_present(pte))
3264 return false;
3265 swp = pte_to_swp_entry(pte);
3266 if (non_swap_entry(swp) && is_migration_entry(swp))
3267 return true;
3268 else
3269 return false;
3270}
3271
3272static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3273{
3274 swp_entry_t swp;
3275
3276 if (huge_pte_none(pte) || pte_present(pte))
3277 return 0;
3278 swp = pte_to_swp_entry(pte);
3279 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3280 return 1;
3281 else
3282 return 0;
3283}
3284
3285int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3286 struct vm_area_struct *vma)
3287{
3288 pte_t *src_pte, *dst_pte, entry, dst_entry;
3289 struct page *ptepage;
3290 unsigned long addr;
3291 int cow;
3292 struct hstate *h = hstate_vma(vma);
3293 unsigned long sz = huge_page_size(h);
3294 struct mmu_notifier_range range;
3295 int ret = 0;
3296
3297 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3298
3299 if (cow) {
3300 mmu_notifier_range_init(&range, src, vma->vm_start,
3301 vma->vm_end);
3302 mmu_notifier_invalidate_range_start(&range);
3303 }
3304
3305 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3306 spinlock_t *src_ptl, *dst_ptl;
3307 src_pte = huge_pte_offset(src, addr, sz);
3308 if (!src_pte)
3309 continue;
3310 dst_pte = huge_pte_alloc(dst, addr, sz);
3311 if (!dst_pte) {
3312 ret = -ENOMEM;
3313 break;
3314 }
3315
3316 /*
3317 * If the pagetables are shared don't copy or take references.
3318 * dst_pte == src_pte is the common case of src/dest sharing.
3319 *
3320 * However, src could have 'unshared' and dst shares with
3321 * another vma. If dst_pte !none, this implies sharing.
3322 * Check here before taking page table lock, and once again
3323 * after taking the lock below.
3324 */
3325 dst_entry = huge_ptep_get(dst_pte);
3326 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3327 continue;
3328
3329 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3330 src_ptl = huge_pte_lockptr(h, src, src_pte);
3331 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3332 entry = huge_ptep_get(src_pte);
3333 dst_entry = huge_ptep_get(dst_pte);
3334 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3335 /*
3336 * Skip if src entry none. Also, skip in the
3337 * unlikely case dst entry !none as this implies
3338 * sharing with another vma.
3339 */
3340 ;
3341 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3342 is_hugetlb_entry_hwpoisoned(entry))) {
3343 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3344
3345 if (is_write_migration_entry(swp_entry) && cow) {
3346 /*
3347 * COW mappings require pages in both
3348 * parent and child to be set to read.
3349 */
3350 make_migration_entry_read(&swp_entry);
3351 entry = swp_entry_to_pte(swp_entry);
3352 set_huge_swap_pte_at(src, addr, src_pte,
3353 entry, sz);
3354 }
3355 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3356 } else {
3357 if (cow) {
3358 /*
3359 * No need to notify as we are downgrading page
3360 * table protection not changing it to point
3361 * to a new page.
3362 *
3363 * See Documentation/vm/mmu_notifier.rst
3364 */
3365 huge_ptep_set_wrprotect(src, addr, src_pte);
3366 }
3367 entry = huge_ptep_get(src_pte);
3368 ptepage = pte_page(entry);
3369 get_page(ptepage);
3370 page_dup_rmap(ptepage, true);
3371 set_huge_pte_at(dst, addr, dst_pte, entry);
3372 hugetlb_count_add(pages_per_huge_page(h), dst);
3373 }
3374 spin_unlock(src_ptl);
3375 spin_unlock(dst_ptl);
3376 }
3377
3378 if (cow)
3379 mmu_notifier_invalidate_range_end(&range);
3380
3381 return ret;
3382}
3383
3384void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3385 unsigned long start, unsigned long end,
3386 struct page *ref_page)
3387{
3388 struct mm_struct *mm = vma->vm_mm;
3389 unsigned long address;
3390 pte_t *ptep;
3391 pte_t pte;
3392 spinlock_t *ptl;
3393 struct page *page;
3394 struct hstate *h = hstate_vma(vma);
3395 unsigned long sz = huge_page_size(h);
3396 struct mmu_notifier_range range;
3397
3398 WARN_ON(!is_vm_hugetlb_page(vma));
3399 BUG_ON(start & ~huge_page_mask(h));
3400 BUG_ON(end & ~huge_page_mask(h));
3401
3402 /*
3403 * This is a hugetlb vma, all the pte entries should point
3404 * to huge page.
3405 */
3406 tlb_change_page_size(tlb, sz);
3407 tlb_start_vma(tlb, vma);
3408
3409 /*
3410 * If sharing possible, alert mmu notifiers of worst case.
3411 */
3412 mmu_notifier_range_init(&range, mm, start, end);
3413 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3414 mmu_notifier_invalidate_range_start(&range);
3415 address = start;
3416 for (; address < end; address += sz) {
3417 ptep = huge_pte_offset(mm, address, sz);
3418 if (!ptep)
3419 continue;
3420
3421 ptl = huge_pte_lock(h, mm, ptep);
3422 if (huge_pmd_unshare(mm, &address, ptep)) {
3423 spin_unlock(ptl);
3424 /*
3425 * We just unmapped a page of PMDs by clearing a PUD.
3426 * The caller's TLB flush range should cover this area.
3427 */
3428 continue;
3429 }
3430
3431 pte = huge_ptep_get(ptep);
3432 if (huge_pte_none(pte)) {
3433 spin_unlock(ptl);
3434 continue;
3435 }
3436
3437 /*
3438 * Migrating hugepage or HWPoisoned hugepage is already
3439 * unmapped and its refcount is dropped, so just clear pte here.
3440 */
3441 if (unlikely(!pte_present(pte))) {
3442 huge_pte_clear(mm, address, ptep, sz);
3443 spin_unlock(ptl);
3444 continue;
3445 }
3446
3447 page = pte_page(pte);
3448 /*
3449 * If a reference page is supplied, it is because a specific
3450 * page is being unmapped, not a range. Ensure the page we
3451 * are about to unmap is the actual page of interest.
3452 */
3453 if (ref_page) {
3454 if (page != ref_page) {
3455 spin_unlock(ptl);
3456 continue;
3457 }
3458 /*
3459 * Mark the VMA as having unmapped its page so that
3460 * future faults in this VMA will fail rather than
3461 * looking like data was lost
3462 */
3463 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3464 }
3465
3466 pte = huge_ptep_get_and_clear(mm, address, ptep);
3467 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3468 if (huge_pte_dirty(pte))
3469 set_page_dirty(page);
3470
3471 hugetlb_count_sub(pages_per_huge_page(h), mm);
3472 page_remove_rmap(page, true);
3473
3474 spin_unlock(ptl);
3475 tlb_remove_page_size(tlb, page, huge_page_size(h));
3476 /*
3477 * Bail out after unmapping reference page if supplied
3478 */
3479 if (ref_page)
3480 break;
3481 }
3482 mmu_notifier_invalidate_range_end(&range);
3483 tlb_end_vma(tlb, vma);
3484}
3485
3486void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3487 struct vm_area_struct *vma, unsigned long start,
3488 unsigned long end, struct page *ref_page)
3489{
3490 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3491
3492 /*
3493 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3494 * test will fail on a vma being torn down, and not grab a page table
3495 * on its way out. We're lucky that the flag has such an appropriate
3496 * name, and can in fact be safely cleared here. We could clear it
3497 * before the __unmap_hugepage_range above, but all that's necessary
3498 * is to clear it before releasing the i_mmap_rwsem. This works
3499 * because in the context this is called, the VMA is about to be
3500 * destroyed and the i_mmap_rwsem is held.
3501 */
3502 vma->vm_flags &= ~VM_MAYSHARE;
3503}
3504
3505void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3506 unsigned long end, struct page *ref_page)
3507{
3508 struct mm_struct *mm;
3509 struct mmu_gather tlb;
3510 unsigned long tlb_start = start;
3511 unsigned long tlb_end = end;
3512
3513 /*
3514 * If shared PMDs were possibly used within this vma range, adjust
3515 * start/end for worst case tlb flushing.
3516 * Note that we can not be sure if PMDs are shared until we try to
3517 * unmap pages. However, we want to make sure TLB flushing covers
3518 * the largest possible range.
3519 */
3520 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3521
3522 mm = vma->vm_mm;
3523
3524 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3525 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3526 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3527}
3528
3529/*
3530 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3531 * mappping it owns the reserve page for. The intention is to unmap the page
3532 * from other VMAs and let the children be SIGKILLed if they are faulting the
3533 * same region.
3534 */
3535static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3536 struct page *page, unsigned long address)
3537{
3538 struct hstate *h = hstate_vma(vma);
3539 struct vm_area_struct *iter_vma;
3540 struct address_space *mapping;
3541 pgoff_t pgoff;
3542
3543 /*
3544 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3545 * from page cache lookup which is in HPAGE_SIZE units.
3546 */
3547 address = address & huge_page_mask(h);
3548 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3549 vma->vm_pgoff;
3550 mapping = vma->vm_file->f_mapping;
3551
3552 /*
3553 * Take the mapping lock for the duration of the table walk. As
3554 * this mapping should be shared between all the VMAs,
3555 * __unmap_hugepage_range() is called as the lock is already held
3556 */
3557 i_mmap_lock_write(mapping);
3558 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3559 /* Do not unmap the current VMA */
3560 if (iter_vma == vma)
3561 continue;
3562
3563 /*
3564 * Shared VMAs have their own reserves and do not affect
3565 * MAP_PRIVATE accounting but it is possible that a shared
3566 * VMA is using the same page so check and skip such VMAs.
3567 */
3568 if (iter_vma->vm_flags & VM_MAYSHARE)
3569 continue;
3570
3571 /*
3572 * Unmap the page from other VMAs without their own reserves.
3573 * They get marked to be SIGKILLed if they fault in these
3574 * areas. This is because a future no-page fault on this VMA
3575 * could insert a zeroed page instead of the data existing
3576 * from the time of fork. This would look like data corruption
3577 */
3578 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3579 unmap_hugepage_range(iter_vma, address,
3580 address + huge_page_size(h), page);
3581 }
3582 i_mmap_unlock_write(mapping);
3583}
3584
3585/*
3586 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3587 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3588 * cannot race with other handlers or page migration.
3589 * Keep the pte_same checks anyway to make transition from the mutex easier.
3590 */
3591static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3592 unsigned long address, pte_t *ptep,
3593 struct page *pagecache_page, spinlock_t *ptl)
3594{
3595 pte_t pte;
3596 struct hstate *h = hstate_vma(vma);
3597 struct page *old_page, *new_page;
3598 int outside_reserve = 0;
3599 vm_fault_t ret = 0;
3600 unsigned long haddr = address & huge_page_mask(h);
3601 struct mmu_notifier_range range;
3602
3603 pte = huge_ptep_get(ptep);
3604 old_page = pte_page(pte);
3605
3606retry_avoidcopy:
3607 /* If no-one else is actually using this page, avoid the copy
3608 * and just make the page writable */
3609 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3610 page_move_anon_rmap(old_page, vma);
3611 set_huge_ptep_writable(vma, haddr, ptep);
3612 return 0;
3613 }
3614
3615 /*
3616 * If the process that created a MAP_PRIVATE mapping is about to
3617 * perform a COW due to a shared page count, attempt to satisfy
3618 * the allocation without using the existing reserves. The pagecache
3619 * page is used to determine if the reserve at this address was
3620 * consumed or not. If reserves were used, a partial faulted mapping
3621 * at the time of fork() could consume its reserves on COW instead
3622 * of the full address range.
3623 */
3624 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3625 old_page != pagecache_page)
3626 outside_reserve = 1;
3627
3628 get_page(old_page);
3629
3630 /*
3631 * Drop page table lock as buddy allocator may be called. It will
3632 * be acquired again before returning to the caller, as expected.
3633 */
3634 spin_unlock(ptl);
3635 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3636
3637 if (IS_ERR(new_page)) {
3638 /*
3639 * If a process owning a MAP_PRIVATE mapping fails to COW,
3640 * it is due to references held by a child and an insufficient
3641 * huge page pool. To guarantee the original mappers
3642 * reliability, unmap the page from child processes. The child
3643 * may get SIGKILLed if it later faults.
3644 */
3645 if (outside_reserve) {
3646 put_page(old_page);
3647 BUG_ON(huge_pte_none(pte));
3648 unmap_ref_private(mm, vma, old_page, haddr);
3649 BUG_ON(huge_pte_none(pte));
3650 spin_lock(ptl);
3651 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3652 if (likely(ptep &&
3653 pte_same(huge_ptep_get(ptep), pte)))
3654 goto retry_avoidcopy;
3655 /*
3656 * race occurs while re-acquiring page table
3657 * lock, and our job is done.
3658 */
3659 return 0;
3660 }
3661
3662 ret = vmf_error(PTR_ERR(new_page));
3663 goto out_release_old;
3664 }
3665
3666 /*
3667 * When the original hugepage is shared one, it does not have
3668 * anon_vma prepared.
3669 */
3670 if (unlikely(anon_vma_prepare(vma))) {
3671 ret = VM_FAULT_OOM;
3672 goto out_release_all;
3673 }
3674
3675 copy_user_huge_page(new_page, old_page, address, vma,
3676 pages_per_huge_page(h));
3677 __SetPageUptodate(new_page);
3678
3679 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3680 mmu_notifier_invalidate_range_start(&range);
3681
3682 /*
3683 * Retake the page table lock to check for racing updates
3684 * before the page tables are altered
3685 */
3686 spin_lock(ptl);
3687 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3688 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3689 ClearPagePrivate(new_page);
3690
3691 /* Break COW */
3692 huge_ptep_clear_flush(vma, haddr, ptep);
3693 mmu_notifier_invalidate_range(mm, range.start, range.end);
3694 set_huge_pte_at(mm, haddr, ptep,
3695 make_huge_pte(vma, new_page, 1));
3696 page_remove_rmap(old_page, true);
3697 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3698 set_page_huge_active(new_page);
3699 /* Make the old page be freed below */
3700 new_page = old_page;
3701 }
3702 spin_unlock(ptl);
3703 mmu_notifier_invalidate_range_end(&range);
3704out_release_all:
3705 restore_reserve_on_error(h, vma, haddr, new_page);
3706 put_page(new_page);
3707out_release_old:
3708 put_page(old_page);
3709
3710 spin_lock(ptl); /* Caller expects lock to be held */
3711 return ret;
3712}
3713
3714/* Return the pagecache page at a given address within a VMA */
3715static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3716 struct vm_area_struct *vma, unsigned long address)
3717{
3718 struct address_space *mapping;
3719 pgoff_t idx;
3720
3721 mapping = vma->vm_file->f_mapping;
3722 idx = vma_hugecache_offset(h, vma, address);
3723
3724 return find_lock_page(mapping, idx);
3725}
3726
3727/*
3728 * Return whether there is a pagecache page to back given address within VMA.
3729 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3730 */
3731static bool hugetlbfs_pagecache_present(struct hstate *h,
3732 struct vm_area_struct *vma, unsigned long address)
3733{
3734 struct address_space *mapping;
3735 pgoff_t idx;
3736 struct page *page;
3737
3738 mapping = vma->vm_file->f_mapping;
3739 idx = vma_hugecache_offset(h, vma, address);
3740
3741 page = find_get_page(mapping, idx);
3742 if (page)
3743 put_page(page);
3744 return page != NULL;
3745}
3746
3747int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3748 pgoff_t idx)
3749{
3750 struct inode *inode = mapping->host;
3751 struct hstate *h = hstate_inode(inode);
3752 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3753
3754 if (err)
3755 return err;
3756 ClearPagePrivate(page);
3757
3758 /*
3759 * set page dirty so that it will not be removed from cache/file
3760 * by non-hugetlbfs specific code paths.
3761 */
3762 set_page_dirty(page);
3763
3764 spin_lock(&inode->i_lock);
3765 inode->i_blocks += blocks_per_huge_page(h);
3766 spin_unlock(&inode->i_lock);
3767 return 0;
3768}
3769
3770static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3771 struct vm_area_struct *vma,
3772 struct address_space *mapping, pgoff_t idx,
3773 unsigned long address, pte_t *ptep, unsigned int flags)
3774{
3775 struct hstate *h = hstate_vma(vma);
3776 vm_fault_t ret = VM_FAULT_SIGBUS;
3777 int anon_rmap = 0;
3778 unsigned long size;
3779 struct page *page;
3780 pte_t new_pte;
3781 spinlock_t *ptl;
3782 unsigned long haddr = address & huge_page_mask(h);
3783 bool new_page = false;
3784
3785 /*
3786 * Currently, we are forced to kill the process in the event the
3787 * original mapper has unmapped pages from the child due to a failed
3788 * COW. Warn that such a situation has occurred as it may not be obvious
3789 */
3790 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3791 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3792 current->pid);
3793 return ret;
3794 }
3795
3796 /*
3797 * Use page lock to guard against racing truncation
3798 * before we get page_table_lock.
3799 */
3800retry:
3801 page = find_lock_page(mapping, idx);
3802 if (!page) {
3803 size = i_size_read(mapping->host) >> huge_page_shift(h);
3804 if (idx >= size)
3805 goto out;
3806
3807 /*
3808 * Check for page in userfault range
3809 */
3810 if (userfaultfd_missing(vma)) {
3811 u32 hash;
3812 struct vm_fault vmf = {
3813 .vma = vma,
3814 .address = haddr,
3815 .flags = flags,
3816 /*
3817 * Hard to debug if it ends up being
3818 * used by a callee that assumes
3819 * something about the other
3820 * uninitialized fields... same as in
3821 * memory.c
3822 */
3823 };
3824
3825 /*
3826 * hugetlb_fault_mutex must be dropped before
3827 * handling userfault. Reacquire after handling
3828 * fault to make calling code simpler.
3829 */
3830 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3831 idx, haddr);
3832 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3833 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3834 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3835 goto out;
3836 }
3837
3838 page = alloc_huge_page(vma, haddr, 0);
3839 if (IS_ERR(page)) {
3840 ret = vmf_error(PTR_ERR(page));
3841 goto out;
3842 }
3843 clear_huge_page(page, address, pages_per_huge_page(h));
3844 __SetPageUptodate(page);
3845 new_page = true;
3846
3847 if (vma->vm_flags & VM_MAYSHARE) {
3848 int err = huge_add_to_page_cache(page, mapping, idx);
3849 if (err) {
3850 put_page(page);
3851 if (err == -EEXIST)
3852 goto retry;
3853 goto out;
3854 }
3855 } else {
3856 lock_page(page);
3857 if (unlikely(anon_vma_prepare(vma))) {
3858 ret = VM_FAULT_OOM;
3859 goto backout_unlocked;
3860 }
3861 anon_rmap = 1;
3862 }
3863 } else {
3864 /*
3865 * If memory error occurs between mmap() and fault, some process
3866 * don't have hwpoisoned swap entry for errored virtual address.
3867 * So we need to block hugepage fault by PG_hwpoison bit check.
3868 */
3869 if (unlikely(PageHWPoison(page))) {
3870 ret = VM_FAULT_HWPOISON |
3871 VM_FAULT_SET_HINDEX(hstate_index(h));
3872 goto backout_unlocked;
3873 }
3874 }
3875
3876 /*
3877 * If we are going to COW a private mapping later, we examine the
3878 * pending reservations for this page now. This will ensure that
3879 * any allocations necessary to record that reservation occur outside
3880 * the spinlock.
3881 */
3882 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3883 if (vma_needs_reservation(h, vma, haddr) < 0) {
3884 ret = VM_FAULT_OOM;
3885 goto backout_unlocked;
3886 }
3887 /* Just decrements count, does not deallocate */
3888 vma_end_reservation(h, vma, haddr);
3889 }
3890
3891 ptl = huge_pte_lock(h, mm, ptep);
3892 size = i_size_read(mapping->host) >> huge_page_shift(h);
3893 if (idx >= size)
3894 goto backout;
3895
3896 ret = 0;
3897 if (!huge_pte_none(huge_ptep_get(ptep)))
3898 goto backout;
3899
3900 if (anon_rmap) {
3901 ClearPagePrivate(page);
3902 hugepage_add_new_anon_rmap(page, vma, haddr);
3903 } else
3904 page_dup_rmap(page, true);
3905 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3906 && (vma->vm_flags & VM_SHARED)));
3907 set_huge_pte_at(mm, haddr, ptep, new_pte);
3908
3909 hugetlb_count_add(pages_per_huge_page(h), mm);
3910 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3911 /* Optimization, do the COW without a second fault */
3912 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3913 }
3914
3915 spin_unlock(ptl);
3916
3917 /*
3918 * Only make newly allocated pages active. Existing pages found
3919 * in the pagecache could be !page_huge_active() if they have been
3920 * isolated for migration.
3921 */
3922 if (new_page)
3923 set_page_huge_active(page);
3924
3925 unlock_page(page);
3926out:
3927 return ret;
3928
3929backout:
3930 spin_unlock(ptl);
3931backout_unlocked:
3932 unlock_page(page);
3933 restore_reserve_on_error(h, vma, haddr, page);
3934 put_page(page);
3935 goto out;
3936}
3937
3938#ifdef CONFIG_SMP
3939u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3940 struct vm_area_struct *vma,
3941 struct address_space *mapping,
3942 pgoff_t idx, unsigned long address)
3943{
3944 unsigned long key[2];
3945 u32 hash;
3946
3947 if (vma->vm_flags & VM_SHARED) {
3948 key[0] = (unsigned long) mapping;
3949 key[1] = idx;
3950 } else {
3951 key[0] = (unsigned long) mm;
3952 key[1] = address >> huge_page_shift(h);
3953 }
3954
3955 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3956
3957 return hash & (num_fault_mutexes - 1);
3958}
3959#else
3960/*
3961 * For uniprocesor systems we always use a single mutex, so just
3962 * return 0 and avoid the hashing overhead.
3963 */
3964u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3965 struct vm_area_struct *vma,
3966 struct address_space *mapping,
3967 pgoff_t idx, unsigned long address)
3968{
3969 return 0;
3970}
3971#endif
3972
3973vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3974 unsigned long address, unsigned int flags)
3975{
3976 pte_t *ptep, entry;
3977 spinlock_t *ptl;
3978 vm_fault_t ret;
3979 u32 hash;
3980 pgoff_t idx;
3981 struct page *page = NULL;
3982 struct page *pagecache_page = NULL;
3983 struct hstate *h = hstate_vma(vma);
3984 struct address_space *mapping;
3985 int need_wait_lock = 0;
3986 unsigned long haddr = address & huge_page_mask(h);
3987
3988 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3989 if (ptep) {
3990 entry = huge_ptep_get(ptep);
3991 if (unlikely(is_hugetlb_entry_migration(entry))) {
3992 migration_entry_wait_huge(vma, mm, ptep);
3993 return 0;
3994 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3995 return VM_FAULT_HWPOISON_LARGE |
3996 VM_FAULT_SET_HINDEX(hstate_index(h));
3997 } else {
3998 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3999 if (!ptep)
4000 return VM_FAULT_OOM;
4001 }
4002
4003 mapping = vma->vm_file->f_mapping;
4004 idx = vma_hugecache_offset(h, vma, haddr);
4005
4006 /*
4007 * Serialize hugepage allocation and instantiation, so that we don't
4008 * get spurious allocation failures if two CPUs race to instantiate
4009 * the same page in the page cache.
4010 */
4011 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
4012 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4013
4014 entry = huge_ptep_get(ptep);
4015 if (huge_pte_none(entry)) {
4016 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4017 goto out_mutex;
4018 }
4019
4020 ret = 0;
4021
4022 /*
4023 * entry could be a migration/hwpoison entry at this point, so this
4024 * check prevents the kernel from going below assuming that we have
4025 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4026 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4027 * handle it.
4028 */
4029 if (!pte_present(entry))
4030 goto out_mutex;
4031
4032 /*
4033 * If we are going to COW the mapping later, we examine the pending
4034 * reservations for this page now. This will ensure that any
4035 * allocations necessary to record that reservation occur outside the
4036 * spinlock. For private mappings, we also lookup the pagecache
4037 * page now as it is used to determine if a reservation has been
4038 * consumed.
4039 */
4040 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4041 if (vma_needs_reservation(h, vma, haddr) < 0) {
4042 ret = VM_FAULT_OOM;
4043 goto out_mutex;
4044 }
4045 /* Just decrements count, does not deallocate */
4046 vma_end_reservation(h, vma, haddr);
4047
4048 if (!(vma->vm_flags & VM_MAYSHARE))
4049 pagecache_page = hugetlbfs_pagecache_page(h,
4050 vma, haddr);
4051 }
4052
4053 ptl = huge_pte_lock(h, mm, ptep);
4054
4055 /* Check for a racing update before calling hugetlb_cow */
4056 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4057 goto out_ptl;
4058
4059 /*
4060 * hugetlb_cow() requires page locks of pte_page(entry) and
4061 * pagecache_page, so here we need take the former one
4062 * when page != pagecache_page or !pagecache_page.
4063 */
4064 page = pte_page(entry);
4065 if (page != pagecache_page)
4066 if (!trylock_page(page)) {
4067 need_wait_lock = 1;
4068 goto out_ptl;
4069 }
4070
4071 get_page(page);
4072
4073 if (flags & FAULT_FLAG_WRITE) {
4074 if (!huge_pte_write(entry)) {
4075 ret = hugetlb_cow(mm, vma, address, ptep,
4076 pagecache_page, ptl);
4077 goto out_put_page;
4078 }
4079 entry = huge_pte_mkdirty(entry);
4080 }
4081 entry = pte_mkyoung(entry);
4082 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4083 flags & FAULT_FLAG_WRITE))
4084 update_mmu_cache(vma, haddr, ptep);
4085out_put_page:
4086 if (page != pagecache_page)
4087 unlock_page(page);
4088 put_page(page);
4089out_ptl:
4090 spin_unlock(ptl);
4091
4092 if (pagecache_page) {
4093 unlock_page(pagecache_page);
4094 put_page(pagecache_page);
4095 }
4096out_mutex:
4097 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4098 /*
4099 * Generally it's safe to hold refcount during waiting page lock. But
4100 * here we just wait to defer the next page fault to avoid busy loop and
4101 * the page is not used after unlocked before returning from the current
4102 * page fault. So we are safe from accessing freed page, even if we wait
4103 * here without taking refcount.
4104 */
4105 if (need_wait_lock)
4106 wait_on_page_locked(page);
4107 return ret;
4108}
4109
4110/*
4111 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4112 * modifications for huge pages.
4113 */
4114int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4115 pte_t *dst_pte,
4116 struct vm_area_struct *dst_vma,
4117 unsigned long dst_addr,
4118 unsigned long src_addr,
4119 struct page **pagep)
4120{
4121 struct address_space *mapping;
4122 pgoff_t idx;
4123 unsigned long size;
4124 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4125 struct hstate *h = hstate_vma(dst_vma);
4126 pte_t _dst_pte;
4127 spinlock_t *ptl;
4128 int ret;
4129 struct page *page;
4130
4131 if (!*pagep) {
4132 ret = -ENOMEM;
4133 page = alloc_huge_page(dst_vma, dst_addr, 0);
4134 if (IS_ERR(page))
4135 goto out;
4136
4137 ret = copy_huge_page_from_user(page,
4138 (const void __user *) src_addr,
4139 pages_per_huge_page(h), false);
4140
4141 /* fallback to copy_from_user outside mmap_sem */
4142 if (unlikely(ret)) {
4143 ret = -ENOENT;
4144 *pagep = page;
4145 /* don't free the page */
4146 goto out;
4147 }
4148 } else {
4149 page = *pagep;
4150 *pagep = NULL;
4151 }
4152
4153 /*
4154 * The memory barrier inside __SetPageUptodate makes sure that
4155 * preceding stores to the page contents become visible before
4156 * the set_pte_at() write.
4157 */
4158 __SetPageUptodate(page);
4159
4160 mapping = dst_vma->vm_file->f_mapping;
4161 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4162
4163 /*
4164 * If shared, add to page cache
4165 */
4166 if (vm_shared) {
4167 size = i_size_read(mapping->host) >> huge_page_shift(h);
4168 ret = -EFAULT;
4169 if (idx >= size)
4170 goto out_release_nounlock;
4171
4172 /*
4173 * Serialization between remove_inode_hugepages() and
4174 * huge_add_to_page_cache() below happens through the
4175 * hugetlb_fault_mutex_table that here must be hold by
4176 * the caller.
4177 */
4178 ret = huge_add_to_page_cache(page, mapping, idx);
4179 if (ret)
4180 goto out_release_nounlock;
4181 }
4182
4183 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4184 spin_lock(ptl);
4185
4186 /*
4187 * Recheck the i_size after holding PT lock to make sure not
4188 * to leave any page mapped (as page_mapped()) beyond the end
4189 * of the i_size (remove_inode_hugepages() is strict about
4190 * enforcing that). If we bail out here, we'll also leave a
4191 * page in the radix tree in the vm_shared case beyond the end
4192 * of the i_size, but remove_inode_hugepages() will take care
4193 * of it as soon as we drop the hugetlb_fault_mutex_table.
4194 */
4195 size = i_size_read(mapping->host) >> huge_page_shift(h);
4196 ret = -EFAULT;
4197 if (idx >= size)
4198 goto out_release_unlock;
4199
4200 ret = -EEXIST;
4201 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4202 goto out_release_unlock;
4203
4204 if (vm_shared) {
4205 page_dup_rmap(page, true);
4206 } else {
4207 ClearPagePrivate(page);
4208 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4209 }
4210
4211 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4212 if (dst_vma->vm_flags & VM_WRITE)
4213 _dst_pte = huge_pte_mkdirty(_dst_pte);
4214 _dst_pte = pte_mkyoung(_dst_pte);
4215
4216 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4217
4218 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4219 dst_vma->vm_flags & VM_WRITE);
4220 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4221
4222 /* No need to invalidate - it was non-present before */
4223 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4224
4225 spin_unlock(ptl);
4226 set_page_huge_active(page);
4227 if (vm_shared)
4228 unlock_page(page);
4229 ret = 0;
4230out:
4231 return ret;
4232out_release_unlock:
4233 spin_unlock(ptl);
4234 if (vm_shared)
4235 unlock_page(page);
4236out_release_nounlock:
4237 put_page(page);
4238 goto out;
4239}
4240
4241long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4242 struct page **pages, struct vm_area_struct **vmas,
4243 unsigned long *position, unsigned long *nr_pages,
4244 long i, unsigned int flags, int *nonblocking)
4245{
4246 unsigned long pfn_offset;
4247 unsigned long vaddr = *position;
4248 unsigned long remainder = *nr_pages;
4249 struct hstate *h = hstate_vma(vma);
4250 int err = -EFAULT;
4251
4252 while (vaddr < vma->vm_end && remainder) {
4253 pte_t *pte;
4254 spinlock_t *ptl = NULL;
4255 int absent;
4256 struct page *page;
4257
4258 /*
4259 * If we have a pending SIGKILL, don't keep faulting pages and
4260 * potentially allocating memory.
4261 */
4262 if (fatal_signal_pending(current)) {
4263 remainder = 0;
4264 break;
4265 }
4266
4267 /*
4268 * Some archs (sparc64, sh*) have multiple pte_ts to
4269 * each hugepage. We have to make sure we get the
4270 * first, for the page indexing below to work.
4271 *
4272 * Note that page table lock is not held when pte is null.
4273 */
4274 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4275 huge_page_size(h));
4276 if (pte)
4277 ptl = huge_pte_lock(h, mm, pte);
4278 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4279
4280 /*
4281 * When coredumping, it suits get_dump_page if we just return
4282 * an error where there's an empty slot with no huge pagecache
4283 * to back it. This way, we avoid allocating a hugepage, and
4284 * the sparse dumpfile avoids allocating disk blocks, but its
4285 * huge holes still show up with zeroes where they need to be.
4286 */
4287 if (absent && (flags & FOLL_DUMP) &&
4288 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4289 if (pte)
4290 spin_unlock(ptl);
4291 remainder = 0;
4292 break;
4293 }
4294
4295 /*
4296 * We need call hugetlb_fault for both hugepages under migration
4297 * (in which case hugetlb_fault waits for the migration,) and
4298 * hwpoisoned hugepages (in which case we need to prevent the
4299 * caller from accessing to them.) In order to do this, we use
4300 * here is_swap_pte instead of is_hugetlb_entry_migration and
4301 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4302 * both cases, and because we can't follow correct pages
4303 * directly from any kind of swap entries.
4304 */
4305 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4306 ((flags & FOLL_WRITE) &&
4307 !huge_pte_write(huge_ptep_get(pte)))) {
4308 vm_fault_t ret;
4309 unsigned int fault_flags = 0;
4310
4311 if (pte)
4312 spin_unlock(ptl);
4313 if (flags & FOLL_WRITE)
4314 fault_flags |= FAULT_FLAG_WRITE;
4315 if (nonblocking)
4316 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4317 if (flags & FOLL_NOWAIT)
4318 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4319 FAULT_FLAG_RETRY_NOWAIT;
4320 if (flags & FOLL_TRIED) {
4321 VM_WARN_ON_ONCE(fault_flags &
4322 FAULT_FLAG_ALLOW_RETRY);
4323 fault_flags |= FAULT_FLAG_TRIED;
4324 }
4325 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4326 if (ret & VM_FAULT_ERROR) {
4327 err = vm_fault_to_errno(ret, flags);
4328 remainder = 0;
4329 break;
4330 }
4331 if (ret & VM_FAULT_RETRY) {
4332 if (nonblocking &&
4333 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4334 *nonblocking = 0;
4335 *nr_pages = 0;
4336 /*
4337 * VM_FAULT_RETRY must not return an
4338 * error, it will return zero
4339 * instead.
4340 *
4341 * No need to update "position" as the
4342 * caller will not check it after
4343 * *nr_pages is set to 0.
4344 */
4345 return i;
4346 }
4347 continue;
4348 }
4349
4350 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4351 page = pte_page(huge_ptep_get(pte));
4352
4353 /*
4354 * Instead of doing 'try_get_page()' below in the same_page
4355 * loop, just check the count once here.
4356 */
4357 if (unlikely(page_count(page) <= 0)) {
4358 if (pages) {
4359 spin_unlock(ptl);
4360 remainder = 0;
4361 err = -ENOMEM;
4362 break;
4363 }
4364 }
4365same_page:
4366 if (pages) {
4367 pages[i] = mem_map_offset(page, pfn_offset);
4368 get_page(pages[i]);
4369 }
4370
4371 if (vmas)
4372 vmas[i] = vma;
4373
4374 vaddr += PAGE_SIZE;
4375 ++pfn_offset;
4376 --remainder;
4377 ++i;
4378 if (vaddr < vma->vm_end && remainder &&
4379 pfn_offset < pages_per_huge_page(h)) {
4380 /*
4381 * We use pfn_offset to avoid touching the pageframes
4382 * of this compound page.
4383 */
4384 goto same_page;
4385 }
4386 spin_unlock(ptl);
4387 }
4388 *nr_pages = remainder;
4389 /*
4390 * setting position is actually required only if remainder is
4391 * not zero but it's faster not to add a "if (remainder)"
4392 * branch.
4393 */
4394 *position = vaddr;
4395
4396 return i ? i : err;
4397}
4398
4399#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4400/*
4401 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4402 * implement this.
4403 */
4404#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4405#endif
4406
4407unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4408 unsigned long address, unsigned long end, pgprot_t newprot)
4409{
4410 struct mm_struct *mm = vma->vm_mm;
4411 unsigned long start = address;
4412 pte_t *ptep;
4413 pte_t pte;
4414 struct hstate *h = hstate_vma(vma);
4415 unsigned long pages = 0;
4416 bool shared_pmd = false;
4417 struct mmu_notifier_range range;
4418
4419 /*
4420 * In the case of shared PMDs, the area to flush could be beyond
4421 * start/end. Set range.start/range.end to cover the maximum possible
4422 * range if PMD sharing is possible.
4423 */
4424 mmu_notifier_range_init(&range, mm, start, end);
4425 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4426
4427 BUG_ON(address >= end);
4428 flush_cache_range(vma, range.start, range.end);
4429
4430 mmu_notifier_invalidate_range_start(&range);
4431 i_mmap_lock_write(vma->vm_file->f_mapping);
4432 for (; address < end; address += huge_page_size(h)) {
4433 spinlock_t *ptl;
4434 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4435 if (!ptep)
4436 continue;
4437 ptl = huge_pte_lock(h, mm, ptep);
4438 if (huge_pmd_unshare(mm, &address, ptep)) {
4439 pages++;
4440 spin_unlock(ptl);
4441 shared_pmd = true;
4442 continue;
4443 }
4444 pte = huge_ptep_get(ptep);
4445 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4446 spin_unlock(ptl);
4447 continue;
4448 }
4449 if (unlikely(is_hugetlb_entry_migration(pte))) {
4450 swp_entry_t entry = pte_to_swp_entry(pte);
4451
4452 if (is_write_migration_entry(entry)) {
4453 pte_t newpte;
4454
4455 make_migration_entry_read(&entry);
4456 newpte = swp_entry_to_pte(entry);
4457 set_huge_swap_pte_at(mm, address, ptep,
4458 newpte, huge_page_size(h));
4459 pages++;
4460 }
4461 spin_unlock(ptl);
4462 continue;
4463 }
4464 if (!huge_pte_none(pte)) {
4465 pte_t old_pte;
4466
4467 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4468 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4469 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4470 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4471 pages++;
4472 }
4473 spin_unlock(ptl);
4474 }
4475 /*
4476 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4477 * may have cleared our pud entry and done put_page on the page table:
4478 * once we release i_mmap_rwsem, another task can do the final put_page
4479 * and that page table be reused and filled with junk. If we actually
4480 * did unshare a page of pmds, flush the range corresponding to the pud.
4481 */
4482 if (shared_pmd)
4483 flush_hugetlb_tlb_range(vma, range.start, range.end);
4484 else
4485 flush_hugetlb_tlb_range(vma, start, end);
4486 /*
4487 * No need to call mmu_notifier_invalidate_range() we are downgrading
4488 * page table protection not changing it to point to a new page.
4489 *
4490 * See Documentation/vm/mmu_notifier.rst
4491 */
4492 i_mmap_unlock_write(vma->vm_file->f_mapping);
4493 mmu_notifier_invalidate_range_end(&range);
4494
4495 return pages << h->order;
4496}
4497
4498int hugetlb_reserve_pages(struct inode *inode,
4499 long from, long to,
4500 struct vm_area_struct *vma,
4501 vm_flags_t vm_flags)
4502{
4503 long ret, chg;
4504 struct hstate *h = hstate_inode(inode);
4505 struct hugepage_subpool *spool = subpool_inode(inode);
4506 struct resv_map *resv_map;
4507 long gbl_reserve;
4508
4509 /* This should never happen */
4510 if (from > to) {
4511 VM_WARN(1, "%s called with a negative range\n", __func__);
4512 return -EINVAL;
4513 }
4514
4515 /*
4516 * Only apply hugepage reservation if asked. At fault time, an
4517 * attempt will be made for VM_NORESERVE to allocate a page
4518 * without using reserves
4519 */
4520 if (vm_flags & VM_NORESERVE)
4521 return 0;
4522
4523 /*
4524 * Shared mappings base their reservation on the number of pages that
4525 * are already allocated on behalf of the file. Private mappings need
4526 * to reserve the full area even if read-only as mprotect() may be
4527 * called to make the mapping read-write. Assume !vma is a shm mapping
4528 */
4529 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4530 resv_map = inode_resv_map(inode);
4531
4532 chg = region_chg(resv_map, from, to);
4533
4534 } else {
4535 resv_map = resv_map_alloc();
4536 if (!resv_map)
4537 return -ENOMEM;
4538
4539 chg = to - from;
4540
4541 set_vma_resv_map(vma, resv_map);
4542 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4543 }
4544
4545 if (chg < 0) {
4546 ret = chg;
4547 goto out_err;
4548 }
4549
4550 /*
4551 * There must be enough pages in the subpool for the mapping. If
4552 * the subpool has a minimum size, there may be some global
4553 * reservations already in place (gbl_reserve).
4554 */
4555 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4556 if (gbl_reserve < 0) {
4557 ret = -ENOSPC;
4558 goto out_err;
4559 }
4560
4561 /*
4562 * Check enough hugepages are available for the reservation.
4563 * Hand the pages back to the subpool if there are not
4564 */
4565 ret = hugetlb_acct_memory(h, gbl_reserve);
4566 if (ret < 0) {
4567 /* put back original number of pages, chg */
4568 (void)hugepage_subpool_put_pages(spool, chg);
4569 goto out_err;
4570 }
4571
4572 /*
4573 * Account for the reservations made. Shared mappings record regions
4574 * that have reservations as they are shared by multiple VMAs.
4575 * When the last VMA disappears, the region map says how much
4576 * the reservation was and the page cache tells how much of
4577 * the reservation was consumed. Private mappings are per-VMA and
4578 * only the consumed reservations are tracked. When the VMA
4579 * disappears, the original reservation is the VMA size and the
4580 * consumed reservations are stored in the map. Hence, nothing
4581 * else has to be done for private mappings here
4582 */
4583 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4584 long add = region_add(resv_map, from, to);
4585
4586 if (unlikely(chg > add)) {
4587 /*
4588 * pages in this range were added to the reserve
4589 * map between region_chg and region_add. This
4590 * indicates a race with alloc_huge_page. Adjust
4591 * the subpool and reserve counts modified above
4592 * based on the difference.
4593 */
4594 long rsv_adjust;
4595
4596 rsv_adjust = hugepage_subpool_put_pages(spool,
4597 chg - add);
4598 hugetlb_acct_memory(h, -rsv_adjust);
4599 }
4600 }
4601 return 0;
4602out_err:
4603 if (!vma || vma->vm_flags & VM_MAYSHARE)
4604 /* Don't call region_abort if region_chg failed */
4605 if (chg >= 0)
4606 region_abort(resv_map, from, to);
4607 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4608 kref_put(&resv_map->refs, resv_map_release);
4609 return ret;
4610}
4611
4612long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4613 long freed)
4614{
4615 struct hstate *h = hstate_inode(inode);
4616 struct resv_map *resv_map = inode_resv_map(inode);
4617 long chg = 0;
4618 struct hugepage_subpool *spool = subpool_inode(inode);
4619 long gbl_reserve;
4620
4621 if (resv_map) {
4622 chg = region_del(resv_map, start, end);
4623 /*
4624 * region_del() can fail in the rare case where a region
4625 * must be split and another region descriptor can not be
4626 * allocated. If end == LONG_MAX, it will not fail.
4627 */
4628 if (chg < 0)
4629 return chg;
4630 }
4631
4632 spin_lock(&inode->i_lock);
4633 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4634 spin_unlock(&inode->i_lock);
4635
4636 /*
4637 * If the subpool has a minimum size, the number of global
4638 * reservations to be released may be adjusted.
4639 */
4640 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4641 hugetlb_acct_memory(h, -gbl_reserve);
4642
4643 return 0;
4644}
4645
4646#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4647static unsigned long page_table_shareable(struct vm_area_struct *svma,
4648 struct vm_area_struct *vma,
4649 unsigned long addr, pgoff_t idx)
4650{
4651 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4652 svma->vm_start;
4653 unsigned long sbase = saddr & PUD_MASK;
4654 unsigned long s_end = sbase + PUD_SIZE;
4655
4656 /* Allow segments to share if only one is marked locked */
4657 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4658 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4659
4660 /*
4661 * match the virtual addresses, permission and the alignment of the
4662 * page table page.
4663 */
4664 if (pmd_index(addr) != pmd_index(saddr) ||
4665 vm_flags != svm_flags ||
4666 sbase < svma->vm_start || svma->vm_end < s_end)
4667 return 0;
4668
4669 return saddr;
4670}
4671
4672static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4673{
4674 unsigned long base = addr & PUD_MASK;
4675 unsigned long end = base + PUD_SIZE;
4676
4677 /*
4678 * check on proper vm_flags and page table alignment
4679 */
4680 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4681 return true;
4682 return false;
4683}
4684
4685/*
4686 * Determine if start,end range within vma could be mapped by shared pmd.
4687 * If yes, adjust start and end to cover range associated with possible
4688 * shared pmd mappings.
4689 */
4690void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4691 unsigned long *start, unsigned long *end)
4692{
4693 unsigned long check_addr = *start;
4694
4695 if (!(vma->vm_flags & VM_MAYSHARE))
4696 return;
4697
4698 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4699 unsigned long a_start = check_addr & PUD_MASK;
4700 unsigned long a_end = a_start + PUD_SIZE;
4701
4702 /*
4703 * If sharing is possible, adjust start/end if necessary.
4704 */
4705 if (range_in_vma(vma, a_start, a_end)) {
4706 if (a_start < *start)
4707 *start = a_start;
4708 if (a_end > *end)
4709 *end = a_end;
4710 }
4711 }
4712}
4713
4714/*
4715 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4716 * and returns the corresponding pte. While this is not necessary for the
4717 * !shared pmd case because we can allocate the pmd later as well, it makes the
4718 * code much cleaner. pmd allocation is essential for the shared case because
4719 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4720 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4721 * bad pmd for sharing.
4722 */
4723pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4724{
4725 struct vm_area_struct *vma = find_vma(mm, addr);
4726 struct address_space *mapping = vma->vm_file->f_mapping;
4727 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4728 vma->vm_pgoff;
4729 struct vm_area_struct *svma;
4730 unsigned long saddr;
4731 pte_t *spte = NULL;
4732 pte_t *pte;
4733 spinlock_t *ptl;
4734
4735 if (!vma_shareable(vma, addr))
4736 return (pte_t *)pmd_alloc(mm, pud, addr);
4737
4738 i_mmap_lock_write(mapping);
4739 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4740 if (svma == vma)
4741 continue;
4742
4743 saddr = page_table_shareable(svma, vma, addr, idx);
4744 if (saddr) {
4745 spte = huge_pte_offset(svma->vm_mm, saddr,
4746 vma_mmu_pagesize(svma));
4747 if (spte) {
4748 get_page(virt_to_page(spte));
4749 break;
4750 }
4751 }
4752 }
4753
4754 if (!spte)
4755 goto out;
4756
4757 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4758 if (pud_none(*pud)) {
4759 pud_populate(mm, pud,
4760 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4761 mm_inc_nr_pmds(mm);
4762 } else {
4763 put_page(virt_to_page(spte));
4764 }
4765 spin_unlock(ptl);
4766out:
4767 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4768 i_mmap_unlock_write(mapping);
4769 return pte;
4770}
4771
4772/*
4773 * unmap huge page backed by shared pte.
4774 *
4775 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4776 * indicated by page_count > 1, unmap is achieved by clearing pud and
4777 * decrementing the ref count. If count == 1, the pte page is not shared.
4778 *
4779 * called with page table lock held.
4780 *
4781 * returns: 1 successfully unmapped a shared pte page
4782 * 0 the underlying pte page is not shared, or it is the last user
4783 */
4784int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4785{
4786 pgd_t *pgd = pgd_offset(mm, *addr);
4787 p4d_t *p4d = p4d_offset(pgd, *addr);
4788 pud_t *pud = pud_offset(p4d, *addr);
4789
4790 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4791 if (page_count(virt_to_page(ptep)) == 1)
4792 return 0;
4793
4794 pud_clear(pud);
4795 put_page(virt_to_page(ptep));
4796 mm_dec_nr_pmds(mm);
4797 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4798 return 1;
4799}
4800#define want_pmd_share() (1)
4801#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4802pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4803{
4804 return NULL;
4805}
4806
4807int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4808{
4809 return 0;
4810}
4811
4812void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4813 unsigned long *start, unsigned long *end)
4814{
4815}
4816#define want_pmd_share() (0)
4817#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4818
4819#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4820pte_t *huge_pte_alloc(struct mm_struct *mm,
4821 unsigned long addr, unsigned long sz)
4822{
4823 pgd_t *pgd;
4824 p4d_t *p4d;
4825 pud_t *pud;
4826 pte_t *pte = NULL;
4827
4828 pgd = pgd_offset(mm, addr);
4829 p4d = p4d_alloc(mm, pgd, addr);
4830 if (!p4d)
4831 return NULL;
4832 pud = pud_alloc(mm, p4d, addr);
4833 if (pud) {
4834 if (sz == PUD_SIZE) {
4835 pte = (pte_t *)pud;
4836 } else {
4837 BUG_ON(sz != PMD_SIZE);
4838 if (want_pmd_share() && pud_none(*pud))
4839 pte = huge_pmd_share(mm, addr, pud);
4840 else
4841 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4842 }
4843 }
4844 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4845
4846 return pte;
4847}
4848
4849/*
4850 * huge_pte_offset() - Walk the page table to resolve the hugepage
4851 * entry at address @addr
4852 *
4853 * Return: Pointer to page table or swap entry (PUD or PMD) for
4854 * address @addr, or NULL if a p*d_none() entry is encountered and the
4855 * size @sz doesn't match the hugepage size at this level of the page
4856 * table.
4857 */
4858pte_t *huge_pte_offset(struct mm_struct *mm,
4859 unsigned long addr, unsigned long sz)
4860{
4861 pgd_t *pgd;
4862 p4d_t *p4d;
4863 pud_t *pud;
4864 pmd_t *pmd;
4865
4866 pgd = pgd_offset(mm, addr);
4867 if (!pgd_present(*pgd))
4868 return NULL;
4869 p4d = p4d_offset(pgd, addr);
4870 if (!p4d_present(*p4d))
4871 return NULL;
4872
4873 pud = pud_offset(p4d, addr);
4874 if (sz != PUD_SIZE && pud_none(*pud))
4875 return NULL;
4876 /* hugepage or swap? */
4877 if (pud_huge(*pud) || !pud_present(*pud))
4878 return (pte_t *)pud;
4879
4880 pmd = pmd_offset(pud, addr);
4881 if (sz != PMD_SIZE && pmd_none(*pmd))
4882 return NULL;
4883 /* hugepage or swap? */
4884 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4885 return (pte_t *)pmd;
4886
4887 return NULL;
4888}
4889
4890#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4891
4892/*
4893 * These functions are overwritable if your architecture needs its own
4894 * behavior.
4895 */
4896struct page * __weak
4897follow_huge_addr(struct mm_struct *mm, unsigned long address,
4898 int write)
4899{
4900 return ERR_PTR(-EINVAL);
4901}
4902
4903struct page * __weak
4904follow_huge_pd(struct vm_area_struct *vma,
4905 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4906{
4907 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4908 return NULL;
4909}
4910
4911struct page * __weak
4912follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4913 pmd_t *pmd, int flags)
4914{
4915 struct page *page = NULL;
4916 spinlock_t *ptl;
4917 pte_t pte;
4918retry:
4919 ptl = pmd_lockptr(mm, pmd);
4920 spin_lock(ptl);
4921 /*
4922 * make sure that the address range covered by this pmd is not
4923 * unmapped from other threads.
4924 */
4925 if (!pmd_huge(*pmd))
4926 goto out;
4927 pte = huge_ptep_get((pte_t *)pmd);
4928 if (pte_present(pte)) {
4929 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4930 if (flags & FOLL_GET)
4931 get_page(page);
4932 } else {
4933 if (is_hugetlb_entry_migration(pte)) {
4934 spin_unlock(ptl);
4935 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4936 goto retry;
4937 }
4938 /*
4939 * hwpoisoned entry is treated as no_page_table in
4940 * follow_page_mask().
4941 */
4942 }
4943out:
4944 spin_unlock(ptl);
4945 return page;
4946}
4947
4948struct page * __weak
4949follow_huge_pud(struct mm_struct *mm, unsigned long address,
4950 pud_t *pud, int flags)
4951{
4952 if (flags & FOLL_GET)
4953 return NULL;
4954
4955 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4956}
4957
4958struct page * __weak
4959follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4960{
4961 if (flags & FOLL_GET)
4962 return NULL;
4963
4964 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4965}
4966
4967bool isolate_huge_page(struct page *page, struct list_head *list)
4968{
4969 bool ret = true;
4970
4971 VM_BUG_ON_PAGE(!PageHead(page), page);
4972 spin_lock(&hugetlb_lock);
4973 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4974 ret = false;
4975 goto unlock;
4976 }
4977 clear_page_huge_active(page);
4978 list_move_tail(&page->lru, list);
4979unlock:
4980 spin_unlock(&hugetlb_lock);
4981 return ret;
4982}
4983
4984void putback_active_hugepage(struct page *page)
4985{
4986 VM_BUG_ON_PAGE(!PageHead(page), page);
4987 spin_lock(&hugetlb_lock);
4988 set_page_huge_active(page);
4989 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4990 spin_unlock(&hugetlb_lock);
4991 put_page(page);
4992}
4993
4994void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4995{
4996 struct hstate *h = page_hstate(oldpage);
4997
4998 hugetlb_cgroup_migrate(oldpage, newpage);
4999 set_page_owner_migrate_reason(newpage, reason);
5000
5001 /*
5002 * transfer temporary state of the new huge page. This is
5003 * reverse to other transitions because the newpage is going to
5004 * be final while the old one will be freed so it takes over
5005 * the temporary status.
5006 *
5007 * Also note that we have to transfer the per-node surplus state
5008 * here as well otherwise the global surplus count will not match
5009 * the per-node's.
5010 */
5011 if (PageHugeTemporary(newpage)) {
5012 int old_nid = page_to_nid(oldpage);
5013 int new_nid = page_to_nid(newpage);
5014
5015 SetPageHugeTemporary(oldpage);
5016 ClearPageHugeTemporary(newpage);
5017
5018 spin_lock(&hugetlb_lock);
5019 if (h->surplus_huge_pages_node[old_nid]) {
5020 h->surplus_huge_pages_node[old_nid]--;
5021 h->surplus_huge_pages_node[new_nid]++;
5022 }
5023 spin_unlock(&hugetlb_lock);
5024 }
5025}