]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - mm/memcontrol.c
memcg: prevent endless loop when charging huge pages to near-limit group
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES 5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account (0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
300
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328};
329
330/* only for here (for easy reading.) */
331#define PCGF_CACHE (1UL << PCG_CACHE)
332#define PCGF_USED (1UL << PCG_USED)
333#define PCGF_LOCK (1UL << PCG_LOCK)
334/* Not used, but added here for completeness */
335#define PCGF_ACCT (1UL << PCG_ACCT)
336
337/* for encoding cft->private value on file */
338#define _MEM (0)
339#define _MEMSWAP (1)
340#define _OOM_TYPE (2)
341#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val) ((val) & 0xffff)
344/* Used for OOM nofiier */
345#define OOM_CONTROL (0)
346
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360static void drain_all_stock_async(void);
361
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370 return &mem->css;
371}
372
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
406{
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444}
445
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450{
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
454}
455
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
469 */
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
485 */
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
488 }
489 }
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505}
506
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
517
518retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534done:
535 return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547}
548
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570{
571 int cpu;
572 s64 val = 0;
573
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577#ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581#endif
582 put_online_cpus();
583 return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593}
594
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597{
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600}
601
602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
604{
605 preempt_disable();
606
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620 preempt_enable();
621}
622
623static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624 enum lru_list idx)
625{
626 int nid, zid;
627 struct mem_cgroup_per_zone *mz;
628 u64 total = 0;
629
630 for_each_online_node(nid)
631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 total += MEM_CGROUP_ZSTAT(mz, idx);
634 }
635 return total;
636}
637
638static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639{
640 s64 val;
641
642 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644 return !(val & ((1 << event_mask_shift) - 1));
645}
646
647/*
648 * Check events in order.
649 *
650 */
651static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652{
653 /* threshold event is triggered in finer grain than soft limit */
654 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 mem_cgroup_threshold(mem);
656 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 mem_cgroup_update_tree(mem, page);
658 }
659}
660
661static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662{
663 return container_of(cgroup_subsys_state(cont,
664 mem_cgroup_subsys_id), struct mem_cgroup,
665 css);
666}
667
668struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669{
670 /*
671 * mm_update_next_owner() may clear mm->owner to NULL
672 * if it races with swapoff, page migration, etc.
673 * So this can be called with p == NULL.
674 */
675 if (unlikely(!p))
676 return NULL;
677
678 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 struct mem_cgroup, css);
680}
681
682static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683{
684 struct mem_cgroup *mem = NULL;
685
686 if (!mm)
687 return NULL;
688 /*
689 * Because we have no locks, mm->owner's may be being moved to other
690 * cgroup. We use css_tryget() here even if this looks
691 * pessimistic (rather than adding locks here).
692 */
693 rcu_read_lock();
694 do {
695 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!mem))
697 break;
698 } while (!css_tryget(&mem->css));
699 rcu_read_unlock();
700 return mem;
701}
702
703/* The caller has to guarantee "mem" exists before calling this */
704static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705{
706 struct cgroup_subsys_state *css;
707 int found;
708
709 if (!mem) /* ROOT cgroup has the smallest ID */
710 return root_mem_cgroup; /*css_put/get against root is ignored*/
711 if (!mem->use_hierarchy) {
712 if (css_tryget(&mem->css))
713 return mem;
714 return NULL;
715 }
716 rcu_read_lock();
717 /*
718 * searching a memory cgroup which has the smallest ID under given
719 * ROOT cgroup. (ID >= 1)
720 */
721 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 if (css && css_tryget(css))
723 mem = container_of(css, struct mem_cgroup, css);
724 else
725 mem = NULL;
726 rcu_read_unlock();
727 return mem;
728}
729
730static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 struct mem_cgroup *root,
732 bool cond)
733{
734 int nextid = css_id(&iter->css) + 1;
735 int found;
736 int hierarchy_used;
737 struct cgroup_subsys_state *css;
738
739 hierarchy_used = iter->use_hierarchy;
740
741 css_put(&iter->css);
742 /* If no ROOT, walk all, ignore hierarchy */
743 if (!cond || (root && !hierarchy_used))
744 return NULL;
745
746 if (!root)
747 root = root_mem_cgroup;
748
749 do {
750 iter = NULL;
751 rcu_read_lock();
752
753 css = css_get_next(&mem_cgroup_subsys, nextid,
754 &root->css, &found);
755 if (css && css_tryget(css))
756 iter = container_of(css, struct mem_cgroup, css);
757 rcu_read_unlock();
758 /* If css is NULL, no more cgroups will be found */
759 nextid = found + 1;
760 } while (css && !iter);
761
762 return iter;
763}
764/*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770 for (iter = mem_cgroup_start_loop(root);\
771 iter != NULL;\
772 iter = mem_cgroup_get_next(iter, root, cond))
773
774#define for_each_mem_cgroup_tree(iter, root) \
775 for_each_mem_cgroup_tree_cond(iter, root, true)
776
777#define for_each_mem_cgroup_all(iter) \
778 for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782{
783 return (mem == root_mem_cgroup);
784}
785
786/*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
799
800void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801{
802 struct page_cgroup *pc;
803 struct mem_cgroup_per_zone *mz;
804
805 if (mem_cgroup_disabled())
806 return;
807 pc = lookup_page_cgroup(page);
808 /* can happen while we handle swapcache. */
809 if (!TestClearPageCgroupAcctLRU(pc))
810 return;
811 VM_BUG_ON(!pc->mem_cgroup);
812 /*
813 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 * removed from global LRU.
815 */
816 mz = page_cgroup_zoneinfo(pc);
817 /* huge page split is done under lru_lock. so, we have no races. */
818 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 if (mem_cgroup_is_root(pc->mem_cgroup))
820 return;
821 VM_BUG_ON(list_empty(&pc->lru));
822 list_del_init(&pc->lru);
823}
824
825void mem_cgroup_del_lru(struct page *page)
826{
827 mem_cgroup_del_lru_list(page, page_lru(page));
828}
829
830void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831{
832 struct mem_cgroup_per_zone *mz;
833 struct page_cgroup *pc;
834
835 if (mem_cgroup_disabled())
836 return;
837
838 pc = lookup_page_cgroup(page);
839 /* unused or root page is not rotated. */
840 if (!PageCgroupUsed(pc))
841 return;
842 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843 smp_rmb();
844 if (mem_cgroup_is_root(pc->mem_cgroup))
845 return;
846 mz = page_cgroup_zoneinfo(pc);
847 list_move(&pc->lru, &mz->lists[lru]);
848}
849
850void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851{
852 struct page_cgroup *pc;
853 struct mem_cgroup_per_zone *mz;
854
855 if (mem_cgroup_disabled())
856 return;
857 pc = lookup_page_cgroup(page);
858 VM_BUG_ON(PageCgroupAcctLRU(pc));
859 if (!PageCgroupUsed(pc))
860 return;
861 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862 smp_rmb();
863 mz = page_cgroup_zoneinfo(pc);
864 /* huge page split is done under lru_lock. so, we have no races. */
865 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866 SetPageCgroupAcctLRU(pc);
867 if (mem_cgroup_is_root(pc->mem_cgroup))
868 return;
869 list_add(&pc->lru, &mz->lists[lru]);
870}
871
872/*
873 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874 * lru because the page may.be reused after it's fully uncharged (because of
875 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876 * it again. This function is only used to charge SwapCache. It's done under
877 * lock_page and expected that zone->lru_lock is never held.
878 */
879static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880{
881 unsigned long flags;
882 struct zone *zone = page_zone(page);
883 struct page_cgroup *pc = lookup_page_cgroup(page);
884
885 spin_lock_irqsave(&zone->lru_lock, flags);
886 /*
887 * Forget old LRU when this page_cgroup is *not* used. This Used bit
888 * is guarded by lock_page() because the page is SwapCache.
889 */
890 if (!PageCgroupUsed(pc))
891 mem_cgroup_del_lru_list(page, page_lru(page));
892 spin_unlock_irqrestore(&zone->lru_lock, flags);
893}
894
895static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896{
897 unsigned long flags;
898 struct zone *zone = page_zone(page);
899 struct page_cgroup *pc = lookup_page_cgroup(page);
900
901 spin_lock_irqsave(&zone->lru_lock, flags);
902 /* link when the page is linked to LRU but page_cgroup isn't */
903 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904 mem_cgroup_add_lru_list(page, page_lru(page));
905 spin_unlock_irqrestore(&zone->lru_lock, flags);
906}
907
908
909void mem_cgroup_move_lists(struct page *page,
910 enum lru_list from, enum lru_list to)
911{
912 if (mem_cgroup_disabled())
913 return;
914 mem_cgroup_del_lru_list(page, from);
915 mem_cgroup_add_lru_list(page, to);
916}
917
918int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919{
920 int ret;
921 struct mem_cgroup *curr = NULL;
922 struct task_struct *p;
923
924 p = find_lock_task_mm(task);
925 if (!p)
926 return 0;
927 curr = try_get_mem_cgroup_from_mm(p->mm);
928 task_unlock(p);
929 if (!curr)
930 return 0;
931 /*
932 * We should check use_hierarchy of "mem" not "curr". Because checking
933 * use_hierarchy of "curr" here make this function true if hierarchy is
934 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935 * hierarchy(even if use_hierarchy is disabled in "mem").
936 */
937 if (mem->use_hierarchy)
938 ret = css_is_ancestor(&curr->css, &mem->css);
939 else
940 ret = (curr == mem);
941 css_put(&curr->css);
942 return ret;
943}
944
945static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946{
947 unsigned long active;
948 unsigned long inactive;
949 unsigned long gb;
950 unsigned long inactive_ratio;
951
952 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955 gb = (inactive + active) >> (30 - PAGE_SHIFT);
956 if (gb)
957 inactive_ratio = int_sqrt(10 * gb);
958 else
959 inactive_ratio = 1;
960
961 if (present_pages) {
962 present_pages[0] = inactive;
963 present_pages[1] = active;
964 }
965
966 return inactive_ratio;
967}
968
969int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970{
971 unsigned long active;
972 unsigned long inactive;
973 unsigned long present_pages[2];
974 unsigned long inactive_ratio;
975
976 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978 inactive = present_pages[0];
979 active = present_pages[1];
980
981 if (inactive * inactive_ratio < active)
982 return 1;
983
984 return 0;
985}
986
987int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988{
989 unsigned long active;
990 unsigned long inactive;
991
992 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995 return (active > inactive);
996}
997
998unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999 struct zone *zone,
1000 enum lru_list lru)
1001{
1002 int nid = zone_to_nid(zone);
1003 int zid = zone_idx(zone);
1004 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006 return MEM_CGROUP_ZSTAT(mz, lru);
1007}
1008
1009struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010 struct zone *zone)
1011{
1012 int nid = zone_to_nid(zone);
1013 int zid = zone_idx(zone);
1014 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016 return &mz->reclaim_stat;
1017}
1018
1019struct zone_reclaim_stat *
1020mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021{
1022 struct page_cgroup *pc;
1023 struct mem_cgroup_per_zone *mz;
1024
1025 if (mem_cgroup_disabled())
1026 return NULL;
1027
1028 pc = lookup_page_cgroup(page);
1029 if (!PageCgroupUsed(pc))
1030 return NULL;
1031 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032 smp_rmb();
1033 mz = page_cgroup_zoneinfo(pc);
1034 if (!mz)
1035 return NULL;
1036
1037 return &mz->reclaim_stat;
1038}
1039
1040unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041 struct list_head *dst,
1042 unsigned long *scanned, int order,
1043 int mode, struct zone *z,
1044 struct mem_cgroup *mem_cont,
1045 int active, int file)
1046{
1047 unsigned long nr_taken = 0;
1048 struct page *page;
1049 unsigned long scan;
1050 LIST_HEAD(pc_list);
1051 struct list_head *src;
1052 struct page_cgroup *pc, *tmp;
1053 int nid = zone_to_nid(z);
1054 int zid = zone_idx(z);
1055 struct mem_cgroup_per_zone *mz;
1056 int lru = LRU_FILE * file + active;
1057 int ret;
1058
1059 BUG_ON(!mem_cont);
1060 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061 src = &mz->lists[lru];
1062
1063 scan = 0;
1064 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065 if (scan >= nr_to_scan)
1066 break;
1067
1068 page = pc->page;
1069 if (unlikely(!PageCgroupUsed(pc)))
1070 continue;
1071 if (unlikely(!PageLRU(page)))
1072 continue;
1073
1074 scan++;
1075 ret = __isolate_lru_page(page, mode, file);
1076 switch (ret) {
1077 case 0:
1078 list_move(&page->lru, dst);
1079 mem_cgroup_del_lru(page);
1080 nr_taken += hpage_nr_pages(page);
1081 break;
1082 case -EBUSY:
1083 /* we don't affect global LRU but rotate in our LRU */
1084 mem_cgroup_rotate_lru_list(page, page_lru(page));
1085 break;
1086 default:
1087 break;
1088 }
1089 }
1090
1091 *scanned = scan;
1092
1093 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094 0, 0, 0, mode);
1095
1096 return nr_taken;
1097}
1098
1099#define mem_cgroup_from_res_counter(counter, member) \
1100 container_of(counter, struct mem_cgroup, member)
1101
1102static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103{
1104 if (do_swap_account) {
1105 if (res_counter_check_under_limit(&mem->res) &&
1106 res_counter_check_under_limit(&mem->memsw))
1107 return true;
1108 } else
1109 if (res_counter_check_under_limit(&mem->res))
1110 return true;
1111 return false;
1112}
1113
1114/**
1115 * mem_cgroup_check_margin - check if the memory cgroup allows charging
1116 * @mem: memory cgroup to check
1117 * @bytes: the number of bytes the caller intends to charge
1118 *
1119 * Returns a boolean value on whether @mem can be charged @bytes or
1120 * whether this would exceed the limit.
1121 */
1122static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1123{
1124 if (!res_counter_check_margin(&mem->res, bytes))
1125 return false;
1126 if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1127 return false;
1128 return true;
1129}
1130
1131static unsigned int get_swappiness(struct mem_cgroup *memcg)
1132{
1133 struct cgroup *cgrp = memcg->css.cgroup;
1134 unsigned int swappiness;
1135
1136 /* root ? */
1137 if (cgrp->parent == NULL)
1138 return vm_swappiness;
1139
1140 spin_lock(&memcg->reclaim_param_lock);
1141 swappiness = memcg->swappiness;
1142 spin_unlock(&memcg->reclaim_param_lock);
1143
1144 return swappiness;
1145}
1146
1147static void mem_cgroup_start_move(struct mem_cgroup *mem)
1148{
1149 int cpu;
1150
1151 get_online_cpus();
1152 spin_lock(&mem->pcp_counter_lock);
1153 for_each_online_cpu(cpu)
1154 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1155 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1156 spin_unlock(&mem->pcp_counter_lock);
1157 put_online_cpus();
1158
1159 synchronize_rcu();
1160}
1161
1162static void mem_cgroup_end_move(struct mem_cgroup *mem)
1163{
1164 int cpu;
1165
1166 if (!mem)
1167 return;
1168 get_online_cpus();
1169 spin_lock(&mem->pcp_counter_lock);
1170 for_each_online_cpu(cpu)
1171 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1172 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1173 spin_unlock(&mem->pcp_counter_lock);
1174 put_online_cpus();
1175}
1176/*
1177 * 2 routines for checking "mem" is under move_account() or not.
1178 *
1179 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1180 * for avoiding race in accounting. If true,
1181 * pc->mem_cgroup may be overwritten.
1182 *
1183 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1184 * under hierarchy of moving cgroups. This is for
1185 * waiting at hith-memory prressure caused by "move".
1186 */
1187
1188static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1189{
1190 VM_BUG_ON(!rcu_read_lock_held());
1191 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1192}
1193
1194static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1195{
1196 struct mem_cgroup *from;
1197 struct mem_cgroup *to;
1198 bool ret = false;
1199 /*
1200 * Unlike task_move routines, we access mc.to, mc.from not under
1201 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1202 */
1203 spin_lock(&mc.lock);
1204 from = mc.from;
1205 to = mc.to;
1206 if (!from)
1207 goto unlock;
1208 if (from == mem || to == mem
1209 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1210 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1211 ret = true;
1212unlock:
1213 spin_unlock(&mc.lock);
1214 return ret;
1215}
1216
1217static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1218{
1219 if (mc.moving_task && current != mc.moving_task) {
1220 if (mem_cgroup_under_move(mem)) {
1221 DEFINE_WAIT(wait);
1222 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1223 /* moving charge context might have finished. */
1224 if (mc.moving_task)
1225 schedule();
1226 finish_wait(&mc.waitq, &wait);
1227 return true;
1228 }
1229 }
1230 return false;
1231}
1232
1233/**
1234 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1235 * @memcg: The memory cgroup that went over limit
1236 * @p: Task that is going to be killed
1237 *
1238 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1239 * enabled
1240 */
1241void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1242{
1243 struct cgroup *task_cgrp;
1244 struct cgroup *mem_cgrp;
1245 /*
1246 * Need a buffer in BSS, can't rely on allocations. The code relies
1247 * on the assumption that OOM is serialized for memory controller.
1248 * If this assumption is broken, revisit this code.
1249 */
1250 static char memcg_name[PATH_MAX];
1251 int ret;
1252
1253 if (!memcg || !p)
1254 return;
1255
1256
1257 rcu_read_lock();
1258
1259 mem_cgrp = memcg->css.cgroup;
1260 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1261
1262 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1263 if (ret < 0) {
1264 /*
1265 * Unfortunately, we are unable to convert to a useful name
1266 * But we'll still print out the usage information
1267 */
1268 rcu_read_unlock();
1269 goto done;
1270 }
1271 rcu_read_unlock();
1272
1273 printk(KERN_INFO "Task in %s killed", memcg_name);
1274
1275 rcu_read_lock();
1276 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1277 if (ret < 0) {
1278 rcu_read_unlock();
1279 goto done;
1280 }
1281 rcu_read_unlock();
1282
1283 /*
1284 * Continues from above, so we don't need an KERN_ level
1285 */
1286 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1287done:
1288
1289 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1290 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1291 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1292 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1293 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1294 "failcnt %llu\n",
1295 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1296 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1297 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1298}
1299
1300/*
1301 * This function returns the number of memcg under hierarchy tree. Returns
1302 * 1(self count) if no children.
1303 */
1304static int mem_cgroup_count_children(struct mem_cgroup *mem)
1305{
1306 int num = 0;
1307 struct mem_cgroup *iter;
1308
1309 for_each_mem_cgroup_tree(iter, mem)
1310 num++;
1311 return num;
1312}
1313
1314/*
1315 * Return the memory (and swap, if configured) limit for a memcg.
1316 */
1317u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1318{
1319 u64 limit;
1320 u64 memsw;
1321
1322 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1323 limit += total_swap_pages << PAGE_SHIFT;
1324
1325 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1326 /*
1327 * If memsw is finite and limits the amount of swap space available
1328 * to this memcg, return that limit.
1329 */
1330 return min(limit, memsw);
1331}
1332
1333/*
1334 * Visit the first child (need not be the first child as per the ordering
1335 * of the cgroup list, since we track last_scanned_child) of @mem and use
1336 * that to reclaim free pages from.
1337 */
1338static struct mem_cgroup *
1339mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1340{
1341 struct mem_cgroup *ret = NULL;
1342 struct cgroup_subsys_state *css;
1343 int nextid, found;
1344
1345 if (!root_mem->use_hierarchy) {
1346 css_get(&root_mem->css);
1347 ret = root_mem;
1348 }
1349
1350 while (!ret) {
1351 rcu_read_lock();
1352 nextid = root_mem->last_scanned_child + 1;
1353 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1354 &found);
1355 if (css && css_tryget(css))
1356 ret = container_of(css, struct mem_cgroup, css);
1357
1358 rcu_read_unlock();
1359 /* Updates scanning parameter */
1360 spin_lock(&root_mem->reclaim_param_lock);
1361 if (!css) {
1362 /* this means start scan from ID:1 */
1363 root_mem->last_scanned_child = 0;
1364 } else
1365 root_mem->last_scanned_child = found;
1366 spin_unlock(&root_mem->reclaim_param_lock);
1367 }
1368
1369 return ret;
1370}
1371
1372/*
1373 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1374 * we reclaimed from, so that we don't end up penalizing one child extensively
1375 * based on its position in the children list.
1376 *
1377 * root_mem is the original ancestor that we've been reclaim from.
1378 *
1379 * We give up and return to the caller when we visit root_mem twice.
1380 * (other groups can be removed while we're walking....)
1381 *
1382 * If shrink==true, for avoiding to free too much, this returns immedieately.
1383 */
1384static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1385 struct zone *zone,
1386 gfp_t gfp_mask,
1387 unsigned long reclaim_options)
1388{
1389 struct mem_cgroup *victim;
1390 int ret, total = 0;
1391 int loop = 0;
1392 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1393 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1394 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1395 unsigned long excess = mem_cgroup_get_excess(root_mem);
1396
1397 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1398 if (root_mem->memsw_is_minimum)
1399 noswap = true;
1400
1401 while (1) {
1402 victim = mem_cgroup_select_victim(root_mem);
1403 if (victim == root_mem) {
1404 loop++;
1405 if (loop >= 1)
1406 drain_all_stock_async();
1407 if (loop >= 2) {
1408 /*
1409 * If we have not been able to reclaim
1410 * anything, it might because there are
1411 * no reclaimable pages under this hierarchy
1412 */
1413 if (!check_soft || !total) {
1414 css_put(&victim->css);
1415 break;
1416 }
1417 /*
1418 * We want to do more targetted reclaim.
1419 * excess >> 2 is not to excessive so as to
1420 * reclaim too much, nor too less that we keep
1421 * coming back to reclaim from this cgroup
1422 */
1423 if (total >= (excess >> 2) ||
1424 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1425 css_put(&victim->css);
1426 break;
1427 }
1428 }
1429 }
1430 if (!mem_cgroup_local_usage(victim)) {
1431 /* this cgroup's local usage == 0 */
1432 css_put(&victim->css);
1433 continue;
1434 }
1435 /* we use swappiness of local cgroup */
1436 if (check_soft)
1437 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1438 noswap, get_swappiness(victim), zone);
1439 else
1440 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1441 noswap, get_swappiness(victim));
1442 css_put(&victim->css);
1443 /*
1444 * At shrinking usage, we can't check we should stop here or
1445 * reclaim more. It's depends on callers. last_scanned_child
1446 * will work enough for keeping fairness under tree.
1447 */
1448 if (shrink)
1449 return ret;
1450 total += ret;
1451 if (check_soft) {
1452 if (res_counter_check_under_soft_limit(&root_mem->res))
1453 return total;
1454 } else if (mem_cgroup_check_under_limit(root_mem))
1455 return 1 + total;
1456 }
1457 return total;
1458}
1459
1460/*
1461 * Check OOM-Killer is already running under our hierarchy.
1462 * If someone is running, return false.
1463 */
1464static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1465{
1466 int x, lock_count = 0;
1467 struct mem_cgroup *iter;
1468
1469 for_each_mem_cgroup_tree(iter, mem) {
1470 x = atomic_inc_return(&iter->oom_lock);
1471 lock_count = max(x, lock_count);
1472 }
1473
1474 if (lock_count == 1)
1475 return true;
1476 return false;
1477}
1478
1479static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1480{
1481 struct mem_cgroup *iter;
1482
1483 /*
1484 * When a new child is created while the hierarchy is under oom,
1485 * mem_cgroup_oom_lock() may not be called. We have to use
1486 * atomic_add_unless() here.
1487 */
1488 for_each_mem_cgroup_tree(iter, mem)
1489 atomic_add_unless(&iter->oom_lock, -1, 0);
1490 return 0;
1491}
1492
1493
1494static DEFINE_MUTEX(memcg_oom_mutex);
1495static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1496
1497struct oom_wait_info {
1498 struct mem_cgroup *mem;
1499 wait_queue_t wait;
1500};
1501
1502static int memcg_oom_wake_function(wait_queue_t *wait,
1503 unsigned mode, int sync, void *arg)
1504{
1505 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1506 struct oom_wait_info *oom_wait_info;
1507
1508 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1509
1510 if (oom_wait_info->mem == wake_mem)
1511 goto wakeup;
1512 /* if no hierarchy, no match */
1513 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1514 return 0;
1515 /*
1516 * Both of oom_wait_info->mem and wake_mem are stable under us.
1517 * Then we can use css_is_ancestor without taking care of RCU.
1518 */
1519 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1520 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1521 return 0;
1522
1523wakeup:
1524 return autoremove_wake_function(wait, mode, sync, arg);
1525}
1526
1527static void memcg_wakeup_oom(struct mem_cgroup *mem)
1528{
1529 /* for filtering, pass "mem" as argument. */
1530 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1531}
1532
1533static void memcg_oom_recover(struct mem_cgroup *mem)
1534{
1535 if (mem && atomic_read(&mem->oom_lock))
1536 memcg_wakeup_oom(mem);
1537}
1538
1539/*
1540 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1541 */
1542bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1543{
1544 struct oom_wait_info owait;
1545 bool locked, need_to_kill;
1546
1547 owait.mem = mem;
1548 owait.wait.flags = 0;
1549 owait.wait.func = memcg_oom_wake_function;
1550 owait.wait.private = current;
1551 INIT_LIST_HEAD(&owait.wait.task_list);
1552 need_to_kill = true;
1553 /* At first, try to OOM lock hierarchy under mem.*/
1554 mutex_lock(&memcg_oom_mutex);
1555 locked = mem_cgroup_oom_lock(mem);
1556 /*
1557 * Even if signal_pending(), we can't quit charge() loop without
1558 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1559 * under OOM is always welcomed, use TASK_KILLABLE here.
1560 */
1561 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1562 if (!locked || mem->oom_kill_disable)
1563 need_to_kill = false;
1564 if (locked)
1565 mem_cgroup_oom_notify(mem);
1566 mutex_unlock(&memcg_oom_mutex);
1567
1568 if (need_to_kill) {
1569 finish_wait(&memcg_oom_waitq, &owait.wait);
1570 mem_cgroup_out_of_memory(mem, mask);
1571 } else {
1572 schedule();
1573 finish_wait(&memcg_oom_waitq, &owait.wait);
1574 }
1575 mutex_lock(&memcg_oom_mutex);
1576 mem_cgroup_oom_unlock(mem);
1577 memcg_wakeup_oom(mem);
1578 mutex_unlock(&memcg_oom_mutex);
1579
1580 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1581 return false;
1582 /* Give chance to dying process */
1583 schedule_timeout(1);
1584 return true;
1585}
1586
1587/*
1588 * Currently used to update mapped file statistics, but the routine can be
1589 * generalized to update other statistics as well.
1590 *
1591 * Notes: Race condition
1592 *
1593 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1594 * it tends to be costly. But considering some conditions, we doesn't need
1595 * to do so _always_.
1596 *
1597 * Considering "charge", lock_page_cgroup() is not required because all
1598 * file-stat operations happen after a page is attached to radix-tree. There
1599 * are no race with "charge".
1600 *
1601 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1602 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1603 * if there are race with "uncharge". Statistics itself is properly handled
1604 * by flags.
1605 *
1606 * Considering "move", this is an only case we see a race. To make the race
1607 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1608 * possibility of race condition. If there is, we take a lock.
1609 */
1610
1611void mem_cgroup_update_page_stat(struct page *page,
1612 enum mem_cgroup_page_stat_item idx, int val)
1613{
1614 struct mem_cgroup *mem;
1615 struct page_cgroup *pc = lookup_page_cgroup(page);
1616 bool need_unlock = false;
1617 unsigned long uninitialized_var(flags);
1618
1619 if (unlikely(!pc))
1620 return;
1621
1622 rcu_read_lock();
1623 mem = pc->mem_cgroup;
1624 if (unlikely(!mem || !PageCgroupUsed(pc)))
1625 goto out;
1626 /* pc->mem_cgroup is unstable ? */
1627 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1628 /* take a lock against to access pc->mem_cgroup */
1629 move_lock_page_cgroup(pc, &flags);
1630 need_unlock = true;
1631 mem = pc->mem_cgroup;
1632 if (!mem || !PageCgroupUsed(pc))
1633 goto out;
1634 }
1635
1636 switch (idx) {
1637 case MEMCG_NR_FILE_MAPPED:
1638 if (val > 0)
1639 SetPageCgroupFileMapped(pc);
1640 else if (!page_mapped(page))
1641 ClearPageCgroupFileMapped(pc);
1642 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1643 break;
1644 default:
1645 BUG();
1646 }
1647
1648 this_cpu_add(mem->stat->count[idx], val);
1649
1650out:
1651 if (unlikely(need_unlock))
1652 move_unlock_page_cgroup(pc, &flags);
1653 rcu_read_unlock();
1654 return;
1655}
1656EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1657
1658/*
1659 * size of first charge trial. "32" comes from vmscan.c's magic value.
1660 * TODO: maybe necessary to use big numbers in big irons.
1661 */
1662#define CHARGE_SIZE (32 * PAGE_SIZE)
1663struct memcg_stock_pcp {
1664 struct mem_cgroup *cached; /* this never be root cgroup */
1665 int charge;
1666 struct work_struct work;
1667};
1668static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1669static atomic_t memcg_drain_count;
1670
1671/*
1672 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1673 * from local stock and true is returned. If the stock is 0 or charges from a
1674 * cgroup which is not current target, returns false. This stock will be
1675 * refilled.
1676 */
1677static bool consume_stock(struct mem_cgroup *mem)
1678{
1679 struct memcg_stock_pcp *stock;
1680 bool ret = true;
1681
1682 stock = &get_cpu_var(memcg_stock);
1683 if (mem == stock->cached && stock->charge)
1684 stock->charge -= PAGE_SIZE;
1685 else /* need to call res_counter_charge */
1686 ret = false;
1687 put_cpu_var(memcg_stock);
1688 return ret;
1689}
1690
1691/*
1692 * Returns stocks cached in percpu to res_counter and reset cached information.
1693 */
1694static void drain_stock(struct memcg_stock_pcp *stock)
1695{
1696 struct mem_cgroup *old = stock->cached;
1697
1698 if (stock->charge) {
1699 res_counter_uncharge(&old->res, stock->charge);
1700 if (do_swap_account)
1701 res_counter_uncharge(&old->memsw, stock->charge);
1702 }
1703 stock->cached = NULL;
1704 stock->charge = 0;
1705}
1706
1707/*
1708 * This must be called under preempt disabled or must be called by
1709 * a thread which is pinned to local cpu.
1710 */
1711static void drain_local_stock(struct work_struct *dummy)
1712{
1713 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1714 drain_stock(stock);
1715}
1716
1717/*
1718 * Cache charges(val) which is from res_counter, to local per_cpu area.
1719 * This will be consumed by consume_stock() function, later.
1720 */
1721static void refill_stock(struct mem_cgroup *mem, int val)
1722{
1723 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1724
1725 if (stock->cached != mem) { /* reset if necessary */
1726 drain_stock(stock);
1727 stock->cached = mem;
1728 }
1729 stock->charge += val;
1730 put_cpu_var(memcg_stock);
1731}
1732
1733/*
1734 * Tries to drain stocked charges in other cpus. This function is asynchronous
1735 * and just put a work per cpu for draining localy on each cpu. Caller can
1736 * expects some charges will be back to res_counter later but cannot wait for
1737 * it.
1738 */
1739static void drain_all_stock_async(void)
1740{
1741 int cpu;
1742 /* This function is for scheduling "drain" in asynchronous way.
1743 * The result of "drain" is not directly handled by callers. Then,
1744 * if someone is calling drain, we don't have to call drain more.
1745 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1746 * there is a race. We just do loose check here.
1747 */
1748 if (atomic_read(&memcg_drain_count))
1749 return;
1750 /* Notify other cpus that system-wide "drain" is running */
1751 atomic_inc(&memcg_drain_count);
1752 get_online_cpus();
1753 for_each_online_cpu(cpu) {
1754 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1755 schedule_work_on(cpu, &stock->work);
1756 }
1757 put_online_cpus();
1758 atomic_dec(&memcg_drain_count);
1759 /* We don't wait for flush_work */
1760}
1761
1762/* This is a synchronous drain interface. */
1763static void drain_all_stock_sync(void)
1764{
1765 /* called when force_empty is called */
1766 atomic_inc(&memcg_drain_count);
1767 schedule_on_each_cpu(drain_local_stock);
1768 atomic_dec(&memcg_drain_count);
1769}
1770
1771/*
1772 * This function drains percpu counter value from DEAD cpu and
1773 * move it to local cpu. Note that this function can be preempted.
1774 */
1775static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1776{
1777 int i;
1778
1779 spin_lock(&mem->pcp_counter_lock);
1780 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1781 s64 x = per_cpu(mem->stat->count[i], cpu);
1782
1783 per_cpu(mem->stat->count[i], cpu) = 0;
1784 mem->nocpu_base.count[i] += x;
1785 }
1786 /* need to clear ON_MOVE value, works as a kind of lock. */
1787 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1788 spin_unlock(&mem->pcp_counter_lock);
1789}
1790
1791static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1792{
1793 int idx = MEM_CGROUP_ON_MOVE;
1794
1795 spin_lock(&mem->pcp_counter_lock);
1796 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1797 spin_unlock(&mem->pcp_counter_lock);
1798}
1799
1800static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1801 unsigned long action,
1802 void *hcpu)
1803{
1804 int cpu = (unsigned long)hcpu;
1805 struct memcg_stock_pcp *stock;
1806 struct mem_cgroup *iter;
1807
1808 if ((action == CPU_ONLINE)) {
1809 for_each_mem_cgroup_all(iter)
1810 synchronize_mem_cgroup_on_move(iter, cpu);
1811 return NOTIFY_OK;
1812 }
1813
1814 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1815 return NOTIFY_OK;
1816
1817 for_each_mem_cgroup_all(iter)
1818 mem_cgroup_drain_pcp_counter(iter, cpu);
1819
1820 stock = &per_cpu(memcg_stock, cpu);
1821 drain_stock(stock);
1822 return NOTIFY_OK;
1823}
1824
1825
1826/* See __mem_cgroup_try_charge() for details */
1827enum {
1828 CHARGE_OK, /* success */
1829 CHARGE_RETRY, /* need to retry but retry is not bad */
1830 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1831 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1832 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1833};
1834
1835static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1836 int csize, bool oom_check)
1837{
1838 struct mem_cgroup *mem_over_limit;
1839 struct res_counter *fail_res;
1840 unsigned long flags = 0;
1841 int ret;
1842
1843 ret = res_counter_charge(&mem->res, csize, &fail_res);
1844
1845 if (likely(!ret)) {
1846 if (!do_swap_account)
1847 return CHARGE_OK;
1848 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1849 if (likely(!ret))
1850 return CHARGE_OK;
1851
1852 res_counter_uncharge(&mem->res, csize);
1853 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1854 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1855 } else
1856 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1857 /*
1858 * csize can be either a huge page (HPAGE_SIZE), a batch of
1859 * regular pages (CHARGE_SIZE), or a single regular page
1860 * (PAGE_SIZE).
1861 *
1862 * Never reclaim on behalf of optional batching, retry with a
1863 * single page instead.
1864 */
1865 if (csize == CHARGE_SIZE)
1866 return CHARGE_RETRY;
1867
1868 if (!(gfp_mask & __GFP_WAIT))
1869 return CHARGE_WOULDBLOCK;
1870
1871 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1872 gfp_mask, flags);
1873 if (mem_cgroup_check_margin(mem_over_limit, csize))
1874 return CHARGE_RETRY;
1875 /*
1876 * Even though the limit is exceeded at this point, reclaim
1877 * may have been able to free some pages. Retry the charge
1878 * before killing the task.
1879 *
1880 * Only for regular pages, though: huge pages are rather
1881 * unlikely to succeed so close to the limit, and we fall back
1882 * to regular pages anyway in case of failure.
1883 */
1884 if (csize == PAGE_SIZE && ret)
1885 return CHARGE_RETRY;
1886
1887 /*
1888 * At task move, charge accounts can be doubly counted. So, it's
1889 * better to wait until the end of task_move if something is going on.
1890 */
1891 if (mem_cgroup_wait_acct_move(mem_over_limit))
1892 return CHARGE_RETRY;
1893
1894 /* If we don't need to call oom-killer at el, return immediately */
1895 if (!oom_check)
1896 return CHARGE_NOMEM;
1897 /* check OOM */
1898 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1899 return CHARGE_OOM_DIE;
1900
1901 return CHARGE_RETRY;
1902}
1903
1904/*
1905 * Unlike exported interface, "oom" parameter is added. if oom==true,
1906 * oom-killer can be invoked.
1907 */
1908static int __mem_cgroup_try_charge(struct mm_struct *mm,
1909 gfp_t gfp_mask,
1910 struct mem_cgroup **memcg, bool oom,
1911 int page_size)
1912{
1913 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1914 struct mem_cgroup *mem = NULL;
1915 int ret;
1916 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1917
1918 /*
1919 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1920 * in system level. So, allow to go ahead dying process in addition to
1921 * MEMDIE process.
1922 */
1923 if (unlikely(test_thread_flag(TIF_MEMDIE)
1924 || fatal_signal_pending(current)))
1925 goto bypass;
1926
1927 /*
1928 * We always charge the cgroup the mm_struct belongs to.
1929 * The mm_struct's mem_cgroup changes on task migration if the
1930 * thread group leader migrates. It's possible that mm is not
1931 * set, if so charge the init_mm (happens for pagecache usage).
1932 */
1933 if (!*memcg && !mm)
1934 goto bypass;
1935again:
1936 if (*memcg) { /* css should be a valid one */
1937 mem = *memcg;
1938 VM_BUG_ON(css_is_removed(&mem->css));
1939 if (mem_cgroup_is_root(mem))
1940 goto done;
1941 if (page_size == PAGE_SIZE && consume_stock(mem))
1942 goto done;
1943 css_get(&mem->css);
1944 } else {
1945 struct task_struct *p;
1946
1947 rcu_read_lock();
1948 p = rcu_dereference(mm->owner);
1949 /*
1950 * Because we don't have task_lock(), "p" can exit.
1951 * In that case, "mem" can point to root or p can be NULL with
1952 * race with swapoff. Then, we have small risk of mis-accouning.
1953 * But such kind of mis-account by race always happens because
1954 * we don't have cgroup_mutex(). It's overkill and we allo that
1955 * small race, here.
1956 * (*) swapoff at el will charge against mm-struct not against
1957 * task-struct. So, mm->owner can be NULL.
1958 */
1959 mem = mem_cgroup_from_task(p);
1960 if (!mem || mem_cgroup_is_root(mem)) {
1961 rcu_read_unlock();
1962 goto done;
1963 }
1964 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1965 /*
1966 * It seems dagerous to access memcg without css_get().
1967 * But considering how consume_stok works, it's not
1968 * necessary. If consume_stock success, some charges
1969 * from this memcg are cached on this cpu. So, we
1970 * don't need to call css_get()/css_tryget() before
1971 * calling consume_stock().
1972 */
1973 rcu_read_unlock();
1974 goto done;
1975 }
1976 /* after here, we may be blocked. we need to get refcnt */
1977 if (!css_tryget(&mem->css)) {
1978 rcu_read_unlock();
1979 goto again;
1980 }
1981 rcu_read_unlock();
1982 }
1983
1984 do {
1985 bool oom_check;
1986
1987 /* If killed, bypass charge */
1988 if (fatal_signal_pending(current)) {
1989 css_put(&mem->css);
1990 goto bypass;
1991 }
1992
1993 oom_check = false;
1994 if (oom && !nr_oom_retries) {
1995 oom_check = true;
1996 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1997 }
1998
1999 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2000
2001 switch (ret) {
2002 case CHARGE_OK:
2003 break;
2004 case CHARGE_RETRY: /* not in OOM situation but retry */
2005 csize = page_size;
2006 css_put(&mem->css);
2007 mem = NULL;
2008 goto again;
2009 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2010 css_put(&mem->css);
2011 goto nomem;
2012 case CHARGE_NOMEM: /* OOM routine works */
2013 if (!oom) {
2014 css_put(&mem->css);
2015 goto nomem;
2016 }
2017 /* If oom, we never return -ENOMEM */
2018 nr_oom_retries--;
2019 break;
2020 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2021 css_put(&mem->css);
2022 goto bypass;
2023 }
2024 } while (ret != CHARGE_OK);
2025
2026 if (csize > page_size)
2027 refill_stock(mem, csize - page_size);
2028 css_put(&mem->css);
2029done:
2030 *memcg = mem;
2031 return 0;
2032nomem:
2033 *memcg = NULL;
2034 return -ENOMEM;
2035bypass:
2036 *memcg = NULL;
2037 return 0;
2038}
2039
2040/*
2041 * Somemtimes we have to undo a charge we got by try_charge().
2042 * This function is for that and do uncharge, put css's refcnt.
2043 * gotten by try_charge().
2044 */
2045static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2046 unsigned long count)
2047{
2048 if (!mem_cgroup_is_root(mem)) {
2049 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2050 if (do_swap_account)
2051 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2052 }
2053}
2054
2055static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2056 int page_size)
2057{
2058 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2059}
2060
2061/*
2062 * A helper function to get mem_cgroup from ID. must be called under
2063 * rcu_read_lock(). The caller must check css_is_removed() or some if
2064 * it's concern. (dropping refcnt from swap can be called against removed
2065 * memcg.)
2066 */
2067static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2068{
2069 struct cgroup_subsys_state *css;
2070
2071 /* ID 0 is unused ID */
2072 if (!id)
2073 return NULL;
2074 css = css_lookup(&mem_cgroup_subsys, id);
2075 if (!css)
2076 return NULL;
2077 return container_of(css, struct mem_cgroup, css);
2078}
2079
2080struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2081{
2082 struct mem_cgroup *mem = NULL;
2083 struct page_cgroup *pc;
2084 unsigned short id;
2085 swp_entry_t ent;
2086
2087 VM_BUG_ON(!PageLocked(page));
2088
2089 pc = lookup_page_cgroup(page);
2090 lock_page_cgroup(pc);
2091 if (PageCgroupUsed(pc)) {
2092 mem = pc->mem_cgroup;
2093 if (mem && !css_tryget(&mem->css))
2094 mem = NULL;
2095 } else if (PageSwapCache(page)) {
2096 ent.val = page_private(page);
2097 id = lookup_swap_cgroup(ent);
2098 rcu_read_lock();
2099 mem = mem_cgroup_lookup(id);
2100 if (mem && !css_tryget(&mem->css))
2101 mem = NULL;
2102 rcu_read_unlock();
2103 }
2104 unlock_page_cgroup(pc);
2105 return mem;
2106}
2107
2108static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2109 struct page_cgroup *pc,
2110 enum charge_type ctype,
2111 int page_size)
2112{
2113 int nr_pages = page_size >> PAGE_SHIFT;
2114
2115 /* try_charge() can return NULL to *memcg, taking care of it. */
2116 if (!mem)
2117 return;
2118
2119 lock_page_cgroup(pc);
2120 if (unlikely(PageCgroupUsed(pc))) {
2121 unlock_page_cgroup(pc);
2122 mem_cgroup_cancel_charge(mem, page_size);
2123 return;
2124 }
2125 /*
2126 * we don't need page_cgroup_lock about tail pages, becase they are not
2127 * accessed by any other context at this point.
2128 */
2129 pc->mem_cgroup = mem;
2130 /*
2131 * We access a page_cgroup asynchronously without lock_page_cgroup().
2132 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2133 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2134 * before USED bit, we need memory barrier here.
2135 * See mem_cgroup_add_lru_list(), etc.
2136 */
2137 smp_wmb();
2138 switch (ctype) {
2139 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2140 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2141 SetPageCgroupCache(pc);
2142 SetPageCgroupUsed(pc);
2143 break;
2144 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2145 ClearPageCgroupCache(pc);
2146 SetPageCgroupUsed(pc);
2147 break;
2148 default:
2149 break;
2150 }
2151
2152 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2153 unlock_page_cgroup(pc);
2154 /*
2155 * "charge_statistics" updated event counter. Then, check it.
2156 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2157 * if they exceeds softlimit.
2158 */
2159 memcg_check_events(mem, pc->page);
2160}
2161
2162#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2163
2164#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2165 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2166/*
2167 * Because tail pages are not marked as "used", set it. We're under
2168 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2169 */
2170void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2171{
2172 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2173 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2174 unsigned long flags;
2175
2176 if (mem_cgroup_disabled())
2177 return;
2178 /*
2179 * We have no races with charge/uncharge but will have races with
2180 * page state accounting.
2181 */
2182 move_lock_page_cgroup(head_pc, &flags);
2183
2184 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2185 smp_wmb(); /* see __commit_charge() */
2186 if (PageCgroupAcctLRU(head_pc)) {
2187 enum lru_list lru;
2188 struct mem_cgroup_per_zone *mz;
2189
2190 /*
2191 * LRU flags cannot be copied because we need to add tail
2192 *.page to LRU by generic call and our hook will be called.
2193 * We hold lru_lock, then, reduce counter directly.
2194 */
2195 lru = page_lru(head);
2196 mz = page_cgroup_zoneinfo(head_pc);
2197 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2198 }
2199 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2200 move_unlock_page_cgroup(head_pc, &flags);
2201}
2202#endif
2203
2204/**
2205 * __mem_cgroup_move_account - move account of the page
2206 * @pc: page_cgroup of the page.
2207 * @from: mem_cgroup which the page is moved from.
2208 * @to: mem_cgroup which the page is moved to. @from != @to.
2209 * @uncharge: whether we should call uncharge and css_put against @from.
2210 *
2211 * The caller must confirm following.
2212 * - page is not on LRU (isolate_page() is useful.)
2213 * - the pc is locked, used, and ->mem_cgroup points to @from.
2214 *
2215 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2216 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2217 * true, this function does "uncharge" from old cgroup, but it doesn't if
2218 * @uncharge is false, so a caller should do "uncharge".
2219 */
2220
2221static void __mem_cgroup_move_account(struct page_cgroup *pc,
2222 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2223 int charge_size)
2224{
2225 int nr_pages = charge_size >> PAGE_SHIFT;
2226
2227 VM_BUG_ON(from == to);
2228 VM_BUG_ON(PageLRU(pc->page));
2229 VM_BUG_ON(!page_is_cgroup_locked(pc));
2230 VM_BUG_ON(!PageCgroupUsed(pc));
2231 VM_BUG_ON(pc->mem_cgroup != from);
2232
2233 if (PageCgroupFileMapped(pc)) {
2234 /* Update mapped_file data for mem_cgroup */
2235 preempt_disable();
2236 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2237 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2238 preempt_enable();
2239 }
2240 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2241 if (uncharge)
2242 /* This is not "cancel", but cancel_charge does all we need. */
2243 mem_cgroup_cancel_charge(from, charge_size);
2244
2245 /* caller should have done css_get */
2246 pc->mem_cgroup = to;
2247 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2248 /*
2249 * We charges against "to" which may not have any tasks. Then, "to"
2250 * can be under rmdir(). But in current implementation, caller of
2251 * this function is just force_empty() and move charge, so it's
2252 * garanteed that "to" is never removed. So, we don't check rmdir
2253 * status here.
2254 */
2255}
2256
2257/*
2258 * check whether the @pc is valid for moving account and call
2259 * __mem_cgroup_move_account()
2260 */
2261static int mem_cgroup_move_account(struct page_cgroup *pc,
2262 struct mem_cgroup *from, struct mem_cgroup *to,
2263 bool uncharge, int charge_size)
2264{
2265 int ret = -EINVAL;
2266 unsigned long flags;
2267 /*
2268 * The page is isolated from LRU. So, collapse function
2269 * will not handle this page. But page splitting can happen.
2270 * Do this check under compound_page_lock(). The caller should
2271 * hold it.
2272 */
2273 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2274 return -EBUSY;
2275
2276 lock_page_cgroup(pc);
2277 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2278 move_lock_page_cgroup(pc, &flags);
2279 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2280 move_unlock_page_cgroup(pc, &flags);
2281 ret = 0;
2282 }
2283 unlock_page_cgroup(pc);
2284 /*
2285 * check events
2286 */
2287 memcg_check_events(to, pc->page);
2288 memcg_check_events(from, pc->page);
2289 return ret;
2290}
2291
2292/*
2293 * move charges to its parent.
2294 */
2295
2296static int mem_cgroup_move_parent(struct page_cgroup *pc,
2297 struct mem_cgroup *child,
2298 gfp_t gfp_mask)
2299{
2300 struct page *page = pc->page;
2301 struct cgroup *cg = child->css.cgroup;
2302 struct cgroup *pcg = cg->parent;
2303 struct mem_cgroup *parent;
2304 int page_size = PAGE_SIZE;
2305 unsigned long flags;
2306 int ret;
2307
2308 /* Is ROOT ? */
2309 if (!pcg)
2310 return -EINVAL;
2311
2312 ret = -EBUSY;
2313 if (!get_page_unless_zero(page))
2314 goto out;
2315 if (isolate_lru_page(page))
2316 goto put;
2317
2318 if (PageTransHuge(page))
2319 page_size = HPAGE_SIZE;
2320
2321 parent = mem_cgroup_from_cont(pcg);
2322 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2323 &parent, false, page_size);
2324 if (ret || !parent)
2325 goto put_back;
2326
2327 if (page_size > PAGE_SIZE)
2328 flags = compound_lock_irqsave(page);
2329
2330 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2331 if (ret)
2332 mem_cgroup_cancel_charge(parent, page_size);
2333
2334 if (page_size > PAGE_SIZE)
2335 compound_unlock_irqrestore(page, flags);
2336put_back:
2337 putback_lru_page(page);
2338put:
2339 put_page(page);
2340out:
2341 return ret;
2342}
2343
2344/*
2345 * Charge the memory controller for page usage.
2346 * Return
2347 * 0 if the charge was successful
2348 * < 0 if the cgroup is over its limit
2349 */
2350static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2351 gfp_t gfp_mask, enum charge_type ctype)
2352{
2353 struct mem_cgroup *mem = NULL;
2354 struct page_cgroup *pc;
2355 int ret;
2356 int page_size = PAGE_SIZE;
2357
2358 if (PageTransHuge(page)) {
2359 page_size <<= compound_order(page);
2360 VM_BUG_ON(!PageTransHuge(page));
2361 }
2362
2363 pc = lookup_page_cgroup(page);
2364 /* can happen at boot */
2365 if (unlikely(!pc))
2366 return 0;
2367 prefetchw(pc);
2368
2369 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2370 if (ret || !mem)
2371 return ret;
2372
2373 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2374 return 0;
2375}
2376
2377int mem_cgroup_newpage_charge(struct page *page,
2378 struct mm_struct *mm, gfp_t gfp_mask)
2379{
2380 if (mem_cgroup_disabled())
2381 return 0;
2382 /*
2383 * If already mapped, we don't have to account.
2384 * If page cache, page->mapping has address_space.
2385 * But page->mapping may have out-of-use anon_vma pointer,
2386 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2387 * is NULL.
2388 */
2389 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2390 return 0;
2391 if (unlikely(!mm))
2392 mm = &init_mm;
2393 return mem_cgroup_charge_common(page, mm, gfp_mask,
2394 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2395}
2396
2397static void
2398__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2399 enum charge_type ctype);
2400
2401int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2402 gfp_t gfp_mask)
2403{
2404 int ret;
2405
2406 if (mem_cgroup_disabled())
2407 return 0;
2408 if (PageCompound(page))
2409 return 0;
2410 /*
2411 * Corner case handling. This is called from add_to_page_cache()
2412 * in usual. But some FS (shmem) precharges this page before calling it
2413 * and call add_to_page_cache() with GFP_NOWAIT.
2414 *
2415 * For GFP_NOWAIT case, the page may be pre-charged before calling
2416 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2417 * charge twice. (It works but has to pay a bit larger cost.)
2418 * And when the page is SwapCache, it should take swap information
2419 * into account. This is under lock_page() now.
2420 */
2421 if (!(gfp_mask & __GFP_WAIT)) {
2422 struct page_cgroup *pc;
2423
2424 pc = lookup_page_cgroup(page);
2425 if (!pc)
2426 return 0;
2427 lock_page_cgroup(pc);
2428 if (PageCgroupUsed(pc)) {
2429 unlock_page_cgroup(pc);
2430 return 0;
2431 }
2432 unlock_page_cgroup(pc);
2433 }
2434
2435 if (unlikely(!mm))
2436 mm = &init_mm;
2437
2438 if (page_is_file_cache(page))
2439 return mem_cgroup_charge_common(page, mm, gfp_mask,
2440 MEM_CGROUP_CHARGE_TYPE_CACHE);
2441
2442 /* shmem */
2443 if (PageSwapCache(page)) {
2444 struct mem_cgroup *mem = NULL;
2445
2446 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2447 if (!ret)
2448 __mem_cgroup_commit_charge_swapin(page, mem,
2449 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2450 } else
2451 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2452 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2453
2454 return ret;
2455}
2456
2457/*
2458 * While swap-in, try_charge -> commit or cancel, the page is locked.
2459 * And when try_charge() successfully returns, one refcnt to memcg without
2460 * struct page_cgroup is acquired. This refcnt will be consumed by
2461 * "commit()" or removed by "cancel()"
2462 */
2463int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2464 struct page *page,
2465 gfp_t mask, struct mem_cgroup **ptr)
2466{
2467 struct mem_cgroup *mem;
2468 int ret;
2469
2470 if (mem_cgroup_disabled())
2471 return 0;
2472
2473 if (!do_swap_account)
2474 goto charge_cur_mm;
2475 /*
2476 * A racing thread's fault, or swapoff, may have already updated
2477 * the pte, and even removed page from swap cache: in those cases
2478 * do_swap_page()'s pte_same() test will fail; but there's also a
2479 * KSM case which does need to charge the page.
2480 */
2481 if (!PageSwapCache(page))
2482 goto charge_cur_mm;
2483 mem = try_get_mem_cgroup_from_page(page);
2484 if (!mem)
2485 goto charge_cur_mm;
2486 *ptr = mem;
2487 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2488 css_put(&mem->css);
2489 return ret;
2490charge_cur_mm:
2491 if (unlikely(!mm))
2492 mm = &init_mm;
2493 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2494}
2495
2496static void
2497__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2498 enum charge_type ctype)
2499{
2500 struct page_cgroup *pc;
2501
2502 if (mem_cgroup_disabled())
2503 return;
2504 if (!ptr)
2505 return;
2506 cgroup_exclude_rmdir(&ptr->css);
2507 pc = lookup_page_cgroup(page);
2508 mem_cgroup_lru_del_before_commit_swapcache(page);
2509 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2510 mem_cgroup_lru_add_after_commit_swapcache(page);
2511 /*
2512 * Now swap is on-memory. This means this page may be
2513 * counted both as mem and swap....double count.
2514 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2515 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2516 * may call delete_from_swap_cache() before reach here.
2517 */
2518 if (do_swap_account && PageSwapCache(page)) {
2519 swp_entry_t ent = {.val = page_private(page)};
2520 unsigned short id;
2521 struct mem_cgroup *memcg;
2522
2523 id = swap_cgroup_record(ent, 0);
2524 rcu_read_lock();
2525 memcg = mem_cgroup_lookup(id);
2526 if (memcg) {
2527 /*
2528 * This recorded memcg can be obsolete one. So, avoid
2529 * calling css_tryget
2530 */
2531 if (!mem_cgroup_is_root(memcg))
2532 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2533 mem_cgroup_swap_statistics(memcg, false);
2534 mem_cgroup_put(memcg);
2535 }
2536 rcu_read_unlock();
2537 }
2538 /*
2539 * At swapin, we may charge account against cgroup which has no tasks.
2540 * So, rmdir()->pre_destroy() can be called while we do this charge.
2541 * In that case, we need to call pre_destroy() again. check it here.
2542 */
2543 cgroup_release_and_wakeup_rmdir(&ptr->css);
2544}
2545
2546void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2547{
2548 __mem_cgroup_commit_charge_swapin(page, ptr,
2549 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2550}
2551
2552void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2553{
2554 if (mem_cgroup_disabled())
2555 return;
2556 if (!mem)
2557 return;
2558 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2559}
2560
2561static void
2562__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2563 int page_size)
2564{
2565 struct memcg_batch_info *batch = NULL;
2566 bool uncharge_memsw = true;
2567 /* If swapout, usage of swap doesn't decrease */
2568 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2569 uncharge_memsw = false;
2570
2571 batch = &current->memcg_batch;
2572 /*
2573 * In usual, we do css_get() when we remember memcg pointer.
2574 * But in this case, we keep res->usage until end of a series of
2575 * uncharges. Then, it's ok to ignore memcg's refcnt.
2576 */
2577 if (!batch->memcg)
2578 batch->memcg = mem;
2579 /*
2580 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2581 * In those cases, all pages freed continously can be expected to be in
2582 * the same cgroup and we have chance to coalesce uncharges.
2583 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2584 * because we want to do uncharge as soon as possible.
2585 */
2586
2587 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2588 goto direct_uncharge;
2589
2590 if (page_size != PAGE_SIZE)
2591 goto direct_uncharge;
2592
2593 /*
2594 * In typical case, batch->memcg == mem. This means we can
2595 * merge a series of uncharges to an uncharge of res_counter.
2596 * If not, we uncharge res_counter ony by one.
2597 */
2598 if (batch->memcg != mem)
2599 goto direct_uncharge;
2600 /* remember freed charge and uncharge it later */
2601 batch->bytes += PAGE_SIZE;
2602 if (uncharge_memsw)
2603 batch->memsw_bytes += PAGE_SIZE;
2604 return;
2605direct_uncharge:
2606 res_counter_uncharge(&mem->res, page_size);
2607 if (uncharge_memsw)
2608 res_counter_uncharge(&mem->memsw, page_size);
2609 if (unlikely(batch->memcg != mem))
2610 memcg_oom_recover(mem);
2611 return;
2612}
2613
2614/*
2615 * uncharge if !page_mapped(page)
2616 */
2617static struct mem_cgroup *
2618__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2619{
2620 int count;
2621 struct page_cgroup *pc;
2622 struct mem_cgroup *mem = NULL;
2623 int page_size = PAGE_SIZE;
2624
2625 if (mem_cgroup_disabled())
2626 return NULL;
2627
2628 if (PageSwapCache(page))
2629 return NULL;
2630
2631 if (PageTransHuge(page)) {
2632 page_size <<= compound_order(page);
2633 VM_BUG_ON(!PageTransHuge(page));
2634 }
2635
2636 count = page_size >> PAGE_SHIFT;
2637 /*
2638 * Check if our page_cgroup is valid
2639 */
2640 pc = lookup_page_cgroup(page);
2641 if (unlikely(!pc || !PageCgroupUsed(pc)))
2642 return NULL;
2643
2644 lock_page_cgroup(pc);
2645
2646 mem = pc->mem_cgroup;
2647
2648 if (!PageCgroupUsed(pc))
2649 goto unlock_out;
2650
2651 switch (ctype) {
2652 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2653 case MEM_CGROUP_CHARGE_TYPE_DROP:
2654 /* See mem_cgroup_prepare_migration() */
2655 if (page_mapped(page) || PageCgroupMigration(pc))
2656 goto unlock_out;
2657 break;
2658 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2659 if (!PageAnon(page)) { /* Shared memory */
2660 if (page->mapping && !page_is_file_cache(page))
2661 goto unlock_out;
2662 } else if (page_mapped(page)) /* Anon */
2663 goto unlock_out;
2664 break;
2665 default:
2666 break;
2667 }
2668
2669 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2670
2671 ClearPageCgroupUsed(pc);
2672 /*
2673 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2674 * freed from LRU. This is safe because uncharged page is expected not
2675 * to be reused (freed soon). Exception is SwapCache, it's handled by
2676 * special functions.
2677 */
2678
2679 unlock_page_cgroup(pc);
2680 /*
2681 * even after unlock, we have mem->res.usage here and this memcg
2682 * will never be freed.
2683 */
2684 memcg_check_events(mem, page);
2685 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2686 mem_cgroup_swap_statistics(mem, true);
2687 mem_cgroup_get(mem);
2688 }
2689 if (!mem_cgroup_is_root(mem))
2690 __do_uncharge(mem, ctype, page_size);
2691
2692 return mem;
2693
2694unlock_out:
2695 unlock_page_cgroup(pc);
2696 return NULL;
2697}
2698
2699void mem_cgroup_uncharge_page(struct page *page)
2700{
2701 /* early check. */
2702 if (page_mapped(page))
2703 return;
2704 if (page->mapping && !PageAnon(page))
2705 return;
2706 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2707}
2708
2709void mem_cgroup_uncharge_cache_page(struct page *page)
2710{
2711 VM_BUG_ON(page_mapped(page));
2712 VM_BUG_ON(page->mapping);
2713 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2714}
2715
2716/*
2717 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2718 * In that cases, pages are freed continuously and we can expect pages
2719 * are in the same memcg. All these calls itself limits the number of
2720 * pages freed at once, then uncharge_start/end() is called properly.
2721 * This may be called prural(2) times in a context,
2722 */
2723
2724void mem_cgroup_uncharge_start(void)
2725{
2726 current->memcg_batch.do_batch++;
2727 /* We can do nest. */
2728 if (current->memcg_batch.do_batch == 1) {
2729 current->memcg_batch.memcg = NULL;
2730 current->memcg_batch.bytes = 0;
2731 current->memcg_batch.memsw_bytes = 0;
2732 }
2733}
2734
2735void mem_cgroup_uncharge_end(void)
2736{
2737 struct memcg_batch_info *batch = &current->memcg_batch;
2738
2739 if (!batch->do_batch)
2740 return;
2741
2742 batch->do_batch--;
2743 if (batch->do_batch) /* If stacked, do nothing. */
2744 return;
2745
2746 if (!batch->memcg)
2747 return;
2748 /*
2749 * This "batch->memcg" is valid without any css_get/put etc...
2750 * bacause we hide charges behind us.
2751 */
2752 if (batch->bytes)
2753 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2754 if (batch->memsw_bytes)
2755 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2756 memcg_oom_recover(batch->memcg);
2757 /* forget this pointer (for sanity check) */
2758 batch->memcg = NULL;
2759}
2760
2761#ifdef CONFIG_SWAP
2762/*
2763 * called after __delete_from_swap_cache() and drop "page" account.
2764 * memcg information is recorded to swap_cgroup of "ent"
2765 */
2766void
2767mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2768{
2769 struct mem_cgroup *memcg;
2770 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2771
2772 if (!swapout) /* this was a swap cache but the swap is unused ! */
2773 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2774
2775 memcg = __mem_cgroup_uncharge_common(page, ctype);
2776
2777 /*
2778 * record memcg information, if swapout && memcg != NULL,
2779 * mem_cgroup_get() was called in uncharge().
2780 */
2781 if (do_swap_account && swapout && memcg)
2782 swap_cgroup_record(ent, css_id(&memcg->css));
2783}
2784#endif
2785
2786#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2787/*
2788 * called from swap_entry_free(). remove record in swap_cgroup and
2789 * uncharge "memsw" account.
2790 */
2791void mem_cgroup_uncharge_swap(swp_entry_t ent)
2792{
2793 struct mem_cgroup *memcg;
2794 unsigned short id;
2795
2796 if (!do_swap_account)
2797 return;
2798
2799 id = swap_cgroup_record(ent, 0);
2800 rcu_read_lock();
2801 memcg = mem_cgroup_lookup(id);
2802 if (memcg) {
2803 /*
2804 * We uncharge this because swap is freed.
2805 * This memcg can be obsolete one. We avoid calling css_tryget
2806 */
2807 if (!mem_cgroup_is_root(memcg))
2808 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2809 mem_cgroup_swap_statistics(memcg, false);
2810 mem_cgroup_put(memcg);
2811 }
2812 rcu_read_unlock();
2813}
2814
2815/**
2816 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2817 * @entry: swap entry to be moved
2818 * @from: mem_cgroup which the entry is moved from
2819 * @to: mem_cgroup which the entry is moved to
2820 * @need_fixup: whether we should fixup res_counters and refcounts.
2821 *
2822 * It succeeds only when the swap_cgroup's record for this entry is the same
2823 * as the mem_cgroup's id of @from.
2824 *
2825 * Returns 0 on success, -EINVAL on failure.
2826 *
2827 * The caller must have charged to @to, IOW, called res_counter_charge() about
2828 * both res and memsw, and called css_get().
2829 */
2830static int mem_cgroup_move_swap_account(swp_entry_t entry,
2831 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2832{
2833 unsigned short old_id, new_id;
2834
2835 old_id = css_id(&from->css);
2836 new_id = css_id(&to->css);
2837
2838 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2839 mem_cgroup_swap_statistics(from, false);
2840 mem_cgroup_swap_statistics(to, true);
2841 /*
2842 * This function is only called from task migration context now.
2843 * It postpones res_counter and refcount handling till the end
2844 * of task migration(mem_cgroup_clear_mc()) for performance
2845 * improvement. But we cannot postpone mem_cgroup_get(to)
2846 * because if the process that has been moved to @to does
2847 * swap-in, the refcount of @to might be decreased to 0.
2848 */
2849 mem_cgroup_get(to);
2850 if (need_fixup) {
2851 if (!mem_cgroup_is_root(from))
2852 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2853 mem_cgroup_put(from);
2854 /*
2855 * we charged both to->res and to->memsw, so we should
2856 * uncharge to->res.
2857 */
2858 if (!mem_cgroup_is_root(to))
2859 res_counter_uncharge(&to->res, PAGE_SIZE);
2860 }
2861 return 0;
2862 }
2863 return -EINVAL;
2864}
2865#else
2866static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2867 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2868{
2869 return -EINVAL;
2870}
2871#endif
2872
2873/*
2874 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2875 * page belongs to.
2876 */
2877int mem_cgroup_prepare_migration(struct page *page,
2878 struct page *newpage, struct mem_cgroup **ptr)
2879{
2880 struct page_cgroup *pc;
2881 struct mem_cgroup *mem = NULL;
2882 enum charge_type ctype;
2883 int ret = 0;
2884
2885 VM_BUG_ON(PageTransHuge(page));
2886 if (mem_cgroup_disabled())
2887 return 0;
2888
2889 pc = lookup_page_cgroup(page);
2890 lock_page_cgroup(pc);
2891 if (PageCgroupUsed(pc)) {
2892 mem = pc->mem_cgroup;
2893 css_get(&mem->css);
2894 /*
2895 * At migrating an anonymous page, its mapcount goes down
2896 * to 0 and uncharge() will be called. But, even if it's fully
2897 * unmapped, migration may fail and this page has to be
2898 * charged again. We set MIGRATION flag here and delay uncharge
2899 * until end_migration() is called
2900 *
2901 * Corner Case Thinking
2902 * A)
2903 * When the old page was mapped as Anon and it's unmap-and-freed
2904 * while migration was ongoing.
2905 * If unmap finds the old page, uncharge() of it will be delayed
2906 * until end_migration(). If unmap finds a new page, it's
2907 * uncharged when it make mapcount to be 1->0. If unmap code
2908 * finds swap_migration_entry, the new page will not be mapped
2909 * and end_migration() will find it(mapcount==0).
2910 *
2911 * B)
2912 * When the old page was mapped but migraion fails, the kernel
2913 * remaps it. A charge for it is kept by MIGRATION flag even
2914 * if mapcount goes down to 0. We can do remap successfully
2915 * without charging it again.
2916 *
2917 * C)
2918 * The "old" page is under lock_page() until the end of
2919 * migration, so, the old page itself will not be swapped-out.
2920 * If the new page is swapped out before end_migraton, our
2921 * hook to usual swap-out path will catch the event.
2922 */
2923 if (PageAnon(page))
2924 SetPageCgroupMigration(pc);
2925 }
2926 unlock_page_cgroup(pc);
2927 /*
2928 * If the page is not charged at this point,
2929 * we return here.
2930 */
2931 if (!mem)
2932 return 0;
2933
2934 *ptr = mem;
2935 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2936 css_put(&mem->css);/* drop extra refcnt */
2937 if (ret || *ptr == NULL) {
2938 if (PageAnon(page)) {
2939 lock_page_cgroup(pc);
2940 ClearPageCgroupMigration(pc);
2941 unlock_page_cgroup(pc);
2942 /*
2943 * The old page may be fully unmapped while we kept it.
2944 */
2945 mem_cgroup_uncharge_page(page);
2946 }
2947 return -ENOMEM;
2948 }
2949 /*
2950 * We charge new page before it's used/mapped. So, even if unlock_page()
2951 * is called before end_migration, we can catch all events on this new
2952 * page. In the case new page is migrated but not remapped, new page's
2953 * mapcount will be finally 0 and we call uncharge in end_migration().
2954 */
2955 pc = lookup_page_cgroup(newpage);
2956 if (PageAnon(page))
2957 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2958 else if (page_is_file_cache(page))
2959 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2960 else
2961 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2962 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2963 return ret;
2964}
2965
2966/* remove redundant charge if migration failed*/
2967void mem_cgroup_end_migration(struct mem_cgroup *mem,
2968 struct page *oldpage, struct page *newpage, bool migration_ok)
2969{
2970 struct page *used, *unused;
2971 struct page_cgroup *pc;
2972
2973 if (!mem)
2974 return;
2975 /* blocks rmdir() */
2976 cgroup_exclude_rmdir(&mem->css);
2977 if (!migration_ok) {
2978 used = oldpage;
2979 unused = newpage;
2980 } else {
2981 used = newpage;
2982 unused = oldpage;
2983 }
2984 /*
2985 * We disallowed uncharge of pages under migration because mapcount
2986 * of the page goes down to zero, temporarly.
2987 * Clear the flag and check the page should be charged.
2988 */
2989 pc = lookup_page_cgroup(oldpage);
2990 lock_page_cgroup(pc);
2991 ClearPageCgroupMigration(pc);
2992 unlock_page_cgroup(pc);
2993
2994 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2995
2996 /*
2997 * If a page is a file cache, radix-tree replacement is very atomic
2998 * and we can skip this check. When it was an Anon page, its mapcount
2999 * goes down to 0. But because we added MIGRATION flage, it's not
3000 * uncharged yet. There are several case but page->mapcount check
3001 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3002 * check. (see prepare_charge() also)
3003 */
3004 if (PageAnon(used))
3005 mem_cgroup_uncharge_page(used);
3006 /*
3007 * At migration, we may charge account against cgroup which has no
3008 * tasks.
3009 * So, rmdir()->pre_destroy() can be called while we do this charge.
3010 * In that case, we need to call pre_destroy() again. check it here.
3011 */
3012 cgroup_release_and_wakeup_rmdir(&mem->css);
3013}
3014
3015/*
3016 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3017 * Calling hierarchical_reclaim is not enough because we should update
3018 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3019 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3020 * not from the memcg which this page would be charged to.
3021 * try_charge_swapin does all of these works properly.
3022 */
3023int mem_cgroup_shmem_charge_fallback(struct page *page,
3024 struct mm_struct *mm,
3025 gfp_t gfp_mask)
3026{
3027 struct mem_cgroup *mem = NULL;
3028 int ret;
3029
3030 if (mem_cgroup_disabled())
3031 return 0;
3032
3033 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3034 if (!ret)
3035 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3036
3037 return ret;
3038}
3039
3040static DEFINE_MUTEX(set_limit_mutex);
3041
3042static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3043 unsigned long long val)
3044{
3045 int retry_count;
3046 u64 memswlimit, memlimit;
3047 int ret = 0;
3048 int children = mem_cgroup_count_children(memcg);
3049 u64 curusage, oldusage;
3050 int enlarge;
3051
3052 /*
3053 * For keeping hierarchical_reclaim simple, how long we should retry
3054 * is depends on callers. We set our retry-count to be function
3055 * of # of children which we should visit in this loop.
3056 */
3057 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3058
3059 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3060
3061 enlarge = 0;
3062 while (retry_count) {
3063 if (signal_pending(current)) {
3064 ret = -EINTR;
3065 break;
3066 }
3067 /*
3068 * Rather than hide all in some function, I do this in
3069 * open coded manner. You see what this really does.
3070 * We have to guarantee mem->res.limit < mem->memsw.limit.
3071 */
3072 mutex_lock(&set_limit_mutex);
3073 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3074 if (memswlimit < val) {
3075 ret = -EINVAL;
3076 mutex_unlock(&set_limit_mutex);
3077 break;
3078 }
3079
3080 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3081 if (memlimit < val)
3082 enlarge = 1;
3083
3084 ret = res_counter_set_limit(&memcg->res, val);
3085 if (!ret) {
3086 if (memswlimit == val)
3087 memcg->memsw_is_minimum = true;
3088 else
3089 memcg->memsw_is_minimum = false;
3090 }
3091 mutex_unlock(&set_limit_mutex);
3092
3093 if (!ret)
3094 break;
3095
3096 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3097 MEM_CGROUP_RECLAIM_SHRINK);
3098 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3099 /* Usage is reduced ? */
3100 if (curusage >= oldusage)
3101 retry_count--;
3102 else
3103 oldusage = curusage;
3104 }
3105 if (!ret && enlarge)
3106 memcg_oom_recover(memcg);
3107
3108 return ret;
3109}
3110
3111static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3112 unsigned long long val)
3113{
3114 int retry_count;
3115 u64 memlimit, memswlimit, oldusage, curusage;
3116 int children = mem_cgroup_count_children(memcg);
3117 int ret = -EBUSY;
3118 int enlarge = 0;
3119
3120 /* see mem_cgroup_resize_res_limit */
3121 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3122 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3123 while (retry_count) {
3124 if (signal_pending(current)) {
3125 ret = -EINTR;
3126 break;
3127 }
3128 /*
3129 * Rather than hide all in some function, I do this in
3130 * open coded manner. You see what this really does.
3131 * We have to guarantee mem->res.limit < mem->memsw.limit.
3132 */
3133 mutex_lock(&set_limit_mutex);
3134 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3135 if (memlimit > val) {
3136 ret = -EINVAL;
3137 mutex_unlock(&set_limit_mutex);
3138 break;
3139 }
3140 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3141 if (memswlimit < val)
3142 enlarge = 1;
3143 ret = res_counter_set_limit(&memcg->memsw, val);
3144 if (!ret) {
3145 if (memlimit == val)
3146 memcg->memsw_is_minimum = true;
3147 else
3148 memcg->memsw_is_minimum = false;
3149 }
3150 mutex_unlock(&set_limit_mutex);
3151
3152 if (!ret)
3153 break;
3154
3155 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3156 MEM_CGROUP_RECLAIM_NOSWAP |
3157 MEM_CGROUP_RECLAIM_SHRINK);
3158 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3159 /* Usage is reduced ? */
3160 if (curusage >= oldusage)
3161 retry_count--;
3162 else
3163 oldusage = curusage;
3164 }
3165 if (!ret && enlarge)
3166 memcg_oom_recover(memcg);
3167 return ret;
3168}
3169
3170unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3171 gfp_t gfp_mask)
3172{
3173 unsigned long nr_reclaimed = 0;
3174 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3175 unsigned long reclaimed;
3176 int loop = 0;
3177 struct mem_cgroup_tree_per_zone *mctz;
3178 unsigned long long excess;
3179
3180 if (order > 0)
3181 return 0;
3182
3183 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3184 /*
3185 * This loop can run a while, specially if mem_cgroup's continuously
3186 * keep exceeding their soft limit and putting the system under
3187 * pressure
3188 */
3189 do {
3190 if (next_mz)
3191 mz = next_mz;
3192 else
3193 mz = mem_cgroup_largest_soft_limit_node(mctz);
3194 if (!mz)
3195 break;
3196
3197 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3198 gfp_mask,
3199 MEM_CGROUP_RECLAIM_SOFT);
3200 nr_reclaimed += reclaimed;
3201 spin_lock(&mctz->lock);
3202
3203 /*
3204 * If we failed to reclaim anything from this memory cgroup
3205 * it is time to move on to the next cgroup
3206 */
3207 next_mz = NULL;
3208 if (!reclaimed) {
3209 do {
3210 /*
3211 * Loop until we find yet another one.
3212 *
3213 * By the time we get the soft_limit lock
3214 * again, someone might have aded the
3215 * group back on the RB tree. Iterate to
3216 * make sure we get a different mem.
3217 * mem_cgroup_largest_soft_limit_node returns
3218 * NULL if no other cgroup is present on
3219 * the tree
3220 */
3221 next_mz =
3222 __mem_cgroup_largest_soft_limit_node(mctz);
3223 if (next_mz == mz) {
3224 css_put(&next_mz->mem->css);
3225 next_mz = NULL;
3226 } else /* next_mz == NULL or other memcg */
3227 break;
3228 } while (1);
3229 }
3230 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3231 excess = res_counter_soft_limit_excess(&mz->mem->res);
3232 /*
3233 * One school of thought says that we should not add
3234 * back the node to the tree if reclaim returns 0.
3235 * But our reclaim could return 0, simply because due
3236 * to priority we are exposing a smaller subset of
3237 * memory to reclaim from. Consider this as a longer
3238 * term TODO.
3239 */
3240 /* If excess == 0, no tree ops */
3241 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3242 spin_unlock(&mctz->lock);
3243 css_put(&mz->mem->css);
3244 loop++;
3245 /*
3246 * Could not reclaim anything and there are no more
3247 * mem cgroups to try or we seem to be looping without
3248 * reclaiming anything.
3249 */
3250 if (!nr_reclaimed &&
3251 (next_mz == NULL ||
3252 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3253 break;
3254 } while (!nr_reclaimed);
3255 if (next_mz)
3256 css_put(&next_mz->mem->css);
3257 return nr_reclaimed;
3258}
3259
3260/*
3261 * This routine traverse page_cgroup in given list and drop them all.
3262 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3263 */
3264static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3265 int node, int zid, enum lru_list lru)
3266{
3267 struct zone *zone;
3268 struct mem_cgroup_per_zone *mz;
3269 struct page_cgroup *pc, *busy;
3270 unsigned long flags, loop;
3271 struct list_head *list;
3272 int ret = 0;
3273
3274 zone = &NODE_DATA(node)->node_zones[zid];
3275 mz = mem_cgroup_zoneinfo(mem, node, zid);
3276 list = &mz->lists[lru];
3277
3278 loop = MEM_CGROUP_ZSTAT(mz, lru);
3279 /* give some margin against EBUSY etc...*/
3280 loop += 256;
3281 busy = NULL;
3282 while (loop--) {
3283 ret = 0;
3284 spin_lock_irqsave(&zone->lru_lock, flags);
3285 if (list_empty(list)) {
3286 spin_unlock_irqrestore(&zone->lru_lock, flags);
3287 break;
3288 }
3289 pc = list_entry(list->prev, struct page_cgroup, lru);
3290 if (busy == pc) {
3291 list_move(&pc->lru, list);
3292 busy = NULL;
3293 spin_unlock_irqrestore(&zone->lru_lock, flags);
3294 continue;
3295 }
3296 spin_unlock_irqrestore(&zone->lru_lock, flags);
3297
3298 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3299 if (ret == -ENOMEM)
3300 break;
3301
3302 if (ret == -EBUSY || ret == -EINVAL) {
3303 /* found lock contention or "pc" is obsolete. */
3304 busy = pc;
3305 cond_resched();
3306 } else
3307 busy = NULL;
3308 }
3309
3310 if (!ret && !list_empty(list))
3311 return -EBUSY;
3312 return ret;
3313}
3314
3315/*
3316 * make mem_cgroup's charge to be 0 if there is no task.
3317 * This enables deleting this mem_cgroup.
3318 */
3319static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3320{
3321 int ret;
3322 int node, zid, shrink;
3323 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3324 struct cgroup *cgrp = mem->css.cgroup;
3325
3326 css_get(&mem->css);
3327
3328 shrink = 0;
3329 /* should free all ? */
3330 if (free_all)
3331 goto try_to_free;
3332move_account:
3333 do {
3334 ret = -EBUSY;
3335 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3336 goto out;
3337 ret = -EINTR;
3338 if (signal_pending(current))
3339 goto out;
3340 /* This is for making all *used* pages to be on LRU. */
3341 lru_add_drain_all();
3342 drain_all_stock_sync();
3343 ret = 0;
3344 mem_cgroup_start_move(mem);
3345 for_each_node_state(node, N_HIGH_MEMORY) {
3346 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3347 enum lru_list l;
3348 for_each_lru(l) {
3349 ret = mem_cgroup_force_empty_list(mem,
3350 node, zid, l);
3351 if (ret)
3352 break;
3353 }
3354 }
3355 if (ret)
3356 break;
3357 }
3358 mem_cgroup_end_move(mem);
3359 memcg_oom_recover(mem);
3360 /* it seems parent cgroup doesn't have enough mem */
3361 if (ret == -ENOMEM)
3362 goto try_to_free;
3363 cond_resched();
3364 /* "ret" should also be checked to ensure all lists are empty. */
3365 } while (mem->res.usage > 0 || ret);
3366out:
3367 css_put(&mem->css);
3368 return ret;
3369
3370try_to_free:
3371 /* returns EBUSY if there is a task or if we come here twice. */
3372 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3373 ret = -EBUSY;
3374 goto out;
3375 }
3376 /* we call try-to-free pages for make this cgroup empty */
3377 lru_add_drain_all();
3378 /* try to free all pages in this cgroup */
3379 shrink = 1;
3380 while (nr_retries && mem->res.usage > 0) {
3381 int progress;
3382
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 goto out;
3386 }
3387 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3388 false, get_swappiness(mem));
3389 if (!progress) {
3390 nr_retries--;
3391 /* maybe some writeback is necessary */
3392 congestion_wait(BLK_RW_ASYNC, HZ/10);
3393 }
3394
3395 }
3396 lru_add_drain();
3397 /* try move_account...there may be some *locked* pages. */
3398 goto move_account;
3399}
3400
3401int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3402{
3403 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3404}
3405
3406
3407static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3408{
3409 return mem_cgroup_from_cont(cont)->use_hierarchy;
3410}
3411
3412static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3413 u64 val)
3414{
3415 int retval = 0;
3416 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3417 struct cgroup *parent = cont->parent;
3418 struct mem_cgroup *parent_mem = NULL;
3419
3420 if (parent)
3421 parent_mem = mem_cgroup_from_cont(parent);
3422
3423 cgroup_lock();
3424 /*
3425 * If parent's use_hierarchy is set, we can't make any modifications
3426 * in the child subtrees. If it is unset, then the change can
3427 * occur, provided the current cgroup has no children.
3428 *
3429 * For the root cgroup, parent_mem is NULL, we allow value to be
3430 * set if there are no children.
3431 */
3432 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3433 (val == 1 || val == 0)) {
3434 if (list_empty(&cont->children))
3435 mem->use_hierarchy = val;
3436 else
3437 retval = -EBUSY;
3438 } else
3439 retval = -EINVAL;
3440 cgroup_unlock();
3441
3442 return retval;
3443}
3444
3445
3446static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3447 enum mem_cgroup_stat_index idx)
3448{
3449 struct mem_cgroup *iter;
3450 s64 val = 0;
3451
3452 /* each per cpu's value can be minus.Then, use s64 */
3453 for_each_mem_cgroup_tree(iter, mem)
3454 val += mem_cgroup_read_stat(iter, idx);
3455
3456 if (val < 0) /* race ? */
3457 val = 0;
3458 return val;
3459}
3460
3461static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3462{
3463 u64 val;
3464
3465 if (!mem_cgroup_is_root(mem)) {
3466 if (!swap)
3467 return res_counter_read_u64(&mem->res, RES_USAGE);
3468 else
3469 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3470 }
3471
3472 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3473 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3474
3475 if (swap)
3476 val += mem_cgroup_get_recursive_idx_stat(mem,
3477 MEM_CGROUP_STAT_SWAPOUT);
3478
3479 return val << PAGE_SHIFT;
3480}
3481
3482static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3483{
3484 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3485 u64 val;
3486 int type, name;
3487
3488 type = MEMFILE_TYPE(cft->private);
3489 name = MEMFILE_ATTR(cft->private);
3490 switch (type) {
3491 case _MEM:
3492 if (name == RES_USAGE)
3493 val = mem_cgroup_usage(mem, false);
3494 else
3495 val = res_counter_read_u64(&mem->res, name);
3496 break;
3497 case _MEMSWAP:
3498 if (name == RES_USAGE)
3499 val = mem_cgroup_usage(mem, true);
3500 else
3501 val = res_counter_read_u64(&mem->memsw, name);
3502 break;
3503 default:
3504 BUG();
3505 break;
3506 }
3507 return val;
3508}
3509/*
3510 * The user of this function is...
3511 * RES_LIMIT.
3512 */
3513static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3514 const char *buffer)
3515{
3516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3517 int type, name;
3518 unsigned long long val;
3519 int ret;
3520
3521 type = MEMFILE_TYPE(cft->private);
3522 name = MEMFILE_ATTR(cft->private);
3523 switch (name) {
3524 case RES_LIMIT:
3525 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3526 ret = -EINVAL;
3527 break;
3528 }
3529 /* This function does all necessary parse...reuse it */
3530 ret = res_counter_memparse_write_strategy(buffer, &val);
3531 if (ret)
3532 break;
3533 if (type == _MEM)
3534 ret = mem_cgroup_resize_limit(memcg, val);
3535 else
3536 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3537 break;
3538 case RES_SOFT_LIMIT:
3539 ret = res_counter_memparse_write_strategy(buffer, &val);
3540 if (ret)
3541 break;
3542 /*
3543 * For memsw, soft limits are hard to implement in terms
3544 * of semantics, for now, we support soft limits for
3545 * control without swap
3546 */
3547 if (type == _MEM)
3548 ret = res_counter_set_soft_limit(&memcg->res, val);
3549 else
3550 ret = -EINVAL;
3551 break;
3552 default:
3553 ret = -EINVAL; /* should be BUG() ? */
3554 break;
3555 }
3556 return ret;
3557}
3558
3559static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3560 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3561{
3562 struct cgroup *cgroup;
3563 unsigned long long min_limit, min_memsw_limit, tmp;
3564
3565 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3566 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3567 cgroup = memcg->css.cgroup;
3568 if (!memcg->use_hierarchy)
3569 goto out;
3570
3571 while (cgroup->parent) {
3572 cgroup = cgroup->parent;
3573 memcg = mem_cgroup_from_cont(cgroup);
3574 if (!memcg->use_hierarchy)
3575 break;
3576 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3577 min_limit = min(min_limit, tmp);
3578 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3579 min_memsw_limit = min(min_memsw_limit, tmp);
3580 }
3581out:
3582 *mem_limit = min_limit;
3583 *memsw_limit = min_memsw_limit;
3584 return;
3585}
3586
3587static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3588{
3589 struct mem_cgroup *mem;
3590 int type, name;
3591
3592 mem = mem_cgroup_from_cont(cont);
3593 type = MEMFILE_TYPE(event);
3594 name = MEMFILE_ATTR(event);
3595 switch (name) {
3596 case RES_MAX_USAGE:
3597 if (type == _MEM)
3598 res_counter_reset_max(&mem->res);
3599 else
3600 res_counter_reset_max(&mem->memsw);
3601 break;
3602 case RES_FAILCNT:
3603 if (type == _MEM)
3604 res_counter_reset_failcnt(&mem->res);
3605 else
3606 res_counter_reset_failcnt(&mem->memsw);
3607 break;
3608 }
3609
3610 return 0;
3611}
3612
3613static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3614 struct cftype *cft)
3615{
3616 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3617}
3618
3619#ifdef CONFIG_MMU
3620static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3621 struct cftype *cft, u64 val)
3622{
3623 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3624
3625 if (val >= (1 << NR_MOVE_TYPE))
3626 return -EINVAL;
3627 /*
3628 * We check this value several times in both in can_attach() and
3629 * attach(), so we need cgroup lock to prevent this value from being
3630 * inconsistent.
3631 */
3632 cgroup_lock();
3633 mem->move_charge_at_immigrate = val;
3634 cgroup_unlock();
3635
3636 return 0;
3637}
3638#else
3639static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3640 struct cftype *cft, u64 val)
3641{
3642 return -ENOSYS;
3643}
3644#endif
3645
3646
3647/* For read statistics */
3648enum {
3649 MCS_CACHE,
3650 MCS_RSS,
3651 MCS_FILE_MAPPED,
3652 MCS_PGPGIN,
3653 MCS_PGPGOUT,
3654 MCS_SWAP,
3655 MCS_INACTIVE_ANON,
3656 MCS_ACTIVE_ANON,
3657 MCS_INACTIVE_FILE,
3658 MCS_ACTIVE_FILE,
3659 MCS_UNEVICTABLE,
3660 NR_MCS_STAT,
3661};
3662
3663struct mcs_total_stat {
3664 s64 stat[NR_MCS_STAT];
3665};
3666
3667struct {
3668 char *local_name;
3669 char *total_name;
3670} memcg_stat_strings[NR_MCS_STAT] = {
3671 {"cache", "total_cache"},
3672 {"rss", "total_rss"},
3673 {"mapped_file", "total_mapped_file"},
3674 {"pgpgin", "total_pgpgin"},
3675 {"pgpgout", "total_pgpgout"},
3676 {"swap", "total_swap"},
3677 {"inactive_anon", "total_inactive_anon"},
3678 {"active_anon", "total_active_anon"},
3679 {"inactive_file", "total_inactive_file"},
3680 {"active_file", "total_active_file"},
3681 {"unevictable", "total_unevictable"}
3682};
3683
3684
3685static void
3686mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3687{
3688 s64 val;
3689
3690 /* per cpu stat */
3691 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3692 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3693 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3694 s->stat[MCS_RSS] += val * PAGE_SIZE;
3695 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3696 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3697 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3698 s->stat[MCS_PGPGIN] += val;
3699 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3700 s->stat[MCS_PGPGOUT] += val;
3701 if (do_swap_account) {
3702 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3703 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3704 }
3705
3706 /* per zone stat */
3707 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3708 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3709 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3710 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3711 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3712 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3713 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3714 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3715 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3716 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3717}
3718
3719static void
3720mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3721{
3722 struct mem_cgroup *iter;
3723
3724 for_each_mem_cgroup_tree(iter, mem)
3725 mem_cgroup_get_local_stat(iter, s);
3726}
3727
3728static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3729 struct cgroup_map_cb *cb)
3730{
3731 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3732 struct mcs_total_stat mystat;
3733 int i;
3734
3735 memset(&mystat, 0, sizeof(mystat));
3736 mem_cgroup_get_local_stat(mem_cont, &mystat);
3737
3738 for (i = 0; i < NR_MCS_STAT; i++) {
3739 if (i == MCS_SWAP && !do_swap_account)
3740 continue;
3741 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3742 }
3743
3744 /* Hierarchical information */
3745 {
3746 unsigned long long limit, memsw_limit;
3747 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3748 cb->fill(cb, "hierarchical_memory_limit", limit);
3749 if (do_swap_account)
3750 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3751 }
3752
3753 memset(&mystat, 0, sizeof(mystat));
3754 mem_cgroup_get_total_stat(mem_cont, &mystat);
3755 for (i = 0; i < NR_MCS_STAT; i++) {
3756 if (i == MCS_SWAP && !do_swap_account)
3757 continue;
3758 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3759 }
3760
3761#ifdef CONFIG_DEBUG_VM
3762 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3763
3764 {
3765 int nid, zid;
3766 struct mem_cgroup_per_zone *mz;
3767 unsigned long recent_rotated[2] = {0, 0};
3768 unsigned long recent_scanned[2] = {0, 0};
3769
3770 for_each_online_node(nid)
3771 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3772 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3773
3774 recent_rotated[0] +=
3775 mz->reclaim_stat.recent_rotated[0];
3776 recent_rotated[1] +=
3777 mz->reclaim_stat.recent_rotated[1];
3778 recent_scanned[0] +=
3779 mz->reclaim_stat.recent_scanned[0];
3780 recent_scanned[1] +=
3781 mz->reclaim_stat.recent_scanned[1];
3782 }
3783 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3784 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3785 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3786 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3787 }
3788#endif
3789
3790 return 0;
3791}
3792
3793static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3794{
3795 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3796
3797 return get_swappiness(memcg);
3798}
3799
3800static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3801 u64 val)
3802{
3803 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3804 struct mem_cgroup *parent;
3805
3806 if (val > 100)
3807 return -EINVAL;
3808
3809 if (cgrp->parent == NULL)
3810 return -EINVAL;
3811
3812 parent = mem_cgroup_from_cont(cgrp->parent);
3813
3814 cgroup_lock();
3815
3816 /* If under hierarchy, only empty-root can set this value */
3817 if ((parent->use_hierarchy) ||
3818 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3819 cgroup_unlock();
3820 return -EINVAL;
3821 }
3822
3823 spin_lock(&memcg->reclaim_param_lock);
3824 memcg->swappiness = val;
3825 spin_unlock(&memcg->reclaim_param_lock);
3826
3827 cgroup_unlock();
3828
3829 return 0;
3830}
3831
3832static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3833{
3834 struct mem_cgroup_threshold_ary *t;
3835 u64 usage;
3836 int i;
3837
3838 rcu_read_lock();
3839 if (!swap)
3840 t = rcu_dereference(memcg->thresholds.primary);
3841 else
3842 t = rcu_dereference(memcg->memsw_thresholds.primary);
3843
3844 if (!t)
3845 goto unlock;
3846
3847 usage = mem_cgroup_usage(memcg, swap);
3848
3849 /*
3850 * current_threshold points to threshold just below usage.
3851 * If it's not true, a threshold was crossed after last
3852 * call of __mem_cgroup_threshold().
3853 */
3854 i = t->current_threshold;
3855
3856 /*
3857 * Iterate backward over array of thresholds starting from
3858 * current_threshold and check if a threshold is crossed.
3859 * If none of thresholds below usage is crossed, we read
3860 * only one element of the array here.
3861 */
3862 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3863 eventfd_signal(t->entries[i].eventfd, 1);
3864
3865 /* i = current_threshold + 1 */
3866 i++;
3867
3868 /*
3869 * Iterate forward over array of thresholds starting from
3870 * current_threshold+1 and check if a threshold is crossed.
3871 * If none of thresholds above usage is crossed, we read
3872 * only one element of the array here.
3873 */
3874 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3875 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877 /* Update current_threshold */
3878 t->current_threshold = i - 1;
3879unlock:
3880 rcu_read_unlock();
3881}
3882
3883static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3884{
3885 while (memcg) {
3886 __mem_cgroup_threshold(memcg, false);
3887 if (do_swap_account)
3888 __mem_cgroup_threshold(memcg, true);
3889
3890 memcg = parent_mem_cgroup(memcg);
3891 }
3892}
3893
3894static int compare_thresholds(const void *a, const void *b)
3895{
3896 const struct mem_cgroup_threshold *_a = a;
3897 const struct mem_cgroup_threshold *_b = b;
3898
3899 return _a->threshold - _b->threshold;
3900}
3901
3902static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3903{
3904 struct mem_cgroup_eventfd_list *ev;
3905
3906 list_for_each_entry(ev, &mem->oom_notify, list)
3907 eventfd_signal(ev->eventfd, 1);
3908 return 0;
3909}
3910
3911static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3912{
3913 struct mem_cgroup *iter;
3914
3915 for_each_mem_cgroup_tree(iter, mem)
3916 mem_cgroup_oom_notify_cb(iter);
3917}
3918
3919static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3920 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3921{
3922 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3923 struct mem_cgroup_thresholds *thresholds;
3924 struct mem_cgroup_threshold_ary *new;
3925 int type = MEMFILE_TYPE(cft->private);
3926 u64 threshold, usage;
3927 int i, size, ret;
3928
3929 ret = res_counter_memparse_write_strategy(args, &threshold);
3930 if (ret)
3931 return ret;
3932
3933 mutex_lock(&memcg->thresholds_lock);
3934
3935 if (type == _MEM)
3936 thresholds = &memcg->thresholds;
3937 else if (type == _MEMSWAP)
3938 thresholds = &memcg->memsw_thresholds;
3939 else
3940 BUG();
3941
3942 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3943
3944 /* Check if a threshold crossed before adding a new one */
3945 if (thresholds->primary)
3946 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3947
3948 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3949
3950 /* Allocate memory for new array of thresholds */
3951 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3952 GFP_KERNEL);
3953 if (!new) {
3954 ret = -ENOMEM;
3955 goto unlock;
3956 }
3957 new->size = size;
3958
3959 /* Copy thresholds (if any) to new array */
3960 if (thresholds->primary) {
3961 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3962 sizeof(struct mem_cgroup_threshold));
3963 }
3964
3965 /* Add new threshold */
3966 new->entries[size - 1].eventfd = eventfd;
3967 new->entries[size - 1].threshold = threshold;
3968
3969 /* Sort thresholds. Registering of new threshold isn't time-critical */
3970 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3971 compare_thresholds, NULL);
3972
3973 /* Find current threshold */
3974 new->current_threshold = -1;
3975 for (i = 0; i < size; i++) {
3976 if (new->entries[i].threshold < usage) {
3977 /*
3978 * new->current_threshold will not be used until
3979 * rcu_assign_pointer(), so it's safe to increment
3980 * it here.
3981 */
3982 ++new->current_threshold;
3983 }
3984 }
3985
3986 /* Free old spare buffer and save old primary buffer as spare */
3987 kfree(thresholds->spare);
3988 thresholds->spare = thresholds->primary;
3989
3990 rcu_assign_pointer(thresholds->primary, new);
3991
3992 /* To be sure that nobody uses thresholds */
3993 synchronize_rcu();
3994
3995unlock:
3996 mutex_unlock(&memcg->thresholds_lock);
3997
3998 return ret;
3999}
4000
4001static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4002 struct cftype *cft, struct eventfd_ctx *eventfd)
4003{
4004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4005 struct mem_cgroup_thresholds *thresholds;
4006 struct mem_cgroup_threshold_ary *new;
4007 int type = MEMFILE_TYPE(cft->private);
4008 u64 usage;
4009 int i, j, size;
4010
4011 mutex_lock(&memcg->thresholds_lock);
4012 if (type == _MEM)
4013 thresholds = &memcg->thresholds;
4014 else if (type == _MEMSWAP)
4015 thresholds = &memcg->memsw_thresholds;
4016 else
4017 BUG();
4018
4019 /*
4020 * Something went wrong if we trying to unregister a threshold
4021 * if we don't have thresholds
4022 */
4023 BUG_ON(!thresholds);
4024
4025 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4026
4027 /* Check if a threshold crossed before removing */
4028 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4029
4030 /* Calculate new number of threshold */
4031 size = 0;
4032 for (i = 0; i < thresholds->primary->size; i++) {
4033 if (thresholds->primary->entries[i].eventfd != eventfd)
4034 size++;
4035 }
4036
4037 new = thresholds->spare;
4038
4039 /* Set thresholds array to NULL if we don't have thresholds */
4040 if (!size) {
4041 kfree(new);
4042 new = NULL;
4043 goto swap_buffers;
4044 }
4045
4046 new->size = size;
4047
4048 /* Copy thresholds and find current threshold */
4049 new->current_threshold = -1;
4050 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4051 if (thresholds->primary->entries[i].eventfd == eventfd)
4052 continue;
4053
4054 new->entries[j] = thresholds->primary->entries[i];
4055 if (new->entries[j].threshold < usage) {
4056 /*
4057 * new->current_threshold will not be used
4058 * until rcu_assign_pointer(), so it's safe to increment
4059 * it here.
4060 */
4061 ++new->current_threshold;
4062 }
4063 j++;
4064 }
4065
4066swap_buffers:
4067 /* Swap primary and spare array */
4068 thresholds->spare = thresholds->primary;
4069 rcu_assign_pointer(thresholds->primary, new);
4070
4071 /* To be sure that nobody uses thresholds */
4072 synchronize_rcu();
4073
4074 mutex_unlock(&memcg->thresholds_lock);
4075}
4076
4077static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4078 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4079{
4080 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4081 struct mem_cgroup_eventfd_list *event;
4082 int type = MEMFILE_TYPE(cft->private);
4083
4084 BUG_ON(type != _OOM_TYPE);
4085 event = kmalloc(sizeof(*event), GFP_KERNEL);
4086 if (!event)
4087 return -ENOMEM;
4088
4089 mutex_lock(&memcg_oom_mutex);
4090
4091 event->eventfd = eventfd;
4092 list_add(&event->list, &memcg->oom_notify);
4093
4094 /* already in OOM ? */
4095 if (atomic_read(&memcg->oom_lock))
4096 eventfd_signal(eventfd, 1);
4097 mutex_unlock(&memcg_oom_mutex);
4098
4099 return 0;
4100}
4101
4102static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4103 struct cftype *cft, struct eventfd_ctx *eventfd)
4104{
4105 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4106 struct mem_cgroup_eventfd_list *ev, *tmp;
4107 int type = MEMFILE_TYPE(cft->private);
4108
4109 BUG_ON(type != _OOM_TYPE);
4110
4111 mutex_lock(&memcg_oom_mutex);
4112
4113 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4114 if (ev->eventfd == eventfd) {
4115 list_del(&ev->list);
4116 kfree(ev);
4117 }
4118 }
4119
4120 mutex_unlock(&memcg_oom_mutex);
4121}
4122
4123static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4124 struct cftype *cft, struct cgroup_map_cb *cb)
4125{
4126 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4127
4128 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4129
4130 if (atomic_read(&mem->oom_lock))
4131 cb->fill(cb, "under_oom", 1);
4132 else
4133 cb->fill(cb, "under_oom", 0);
4134 return 0;
4135}
4136
4137static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4138 struct cftype *cft, u64 val)
4139{
4140 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4141 struct mem_cgroup *parent;
4142
4143 /* cannot set to root cgroup and only 0 and 1 are allowed */
4144 if (!cgrp->parent || !((val == 0) || (val == 1)))
4145 return -EINVAL;
4146
4147 parent = mem_cgroup_from_cont(cgrp->parent);
4148
4149 cgroup_lock();
4150 /* oom-kill-disable is a flag for subhierarchy. */
4151 if ((parent->use_hierarchy) ||
4152 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4153 cgroup_unlock();
4154 return -EINVAL;
4155 }
4156 mem->oom_kill_disable = val;
4157 if (!val)
4158 memcg_oom_recover(mem);
4159 cgroup_unlock();
4160 return 0;
4161}
4162
4163static struct cftype mem_cgroup_files[] = {
4164 {
4165 .name = "usage_in_bytes",
4166 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4167 .read_u64 = mem_cgroup_read,
4168 .register_event = mem_cgroup_usage_register_event,
4169 .unregister_event = mem_cgroup_usage_unregister_event,
4170 },
4171 {
4172 .name = "max_usage_in_bytes",
4173 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4174 .trigger = mem_cgroup_reset,
4175 .read_u64 = mem_cgroup_read,
4176 },
4177 {
4178 .name = "limit_in_bytes",
4179 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4180 .write_string = mem_cgroup_write,
4181 .read_u64 = mem_cgroup_read,
4182 },
4183 {
4184 .name = "soft_limit_in_bytes",
4185 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4186 .write_string = mem_cgroup_write,
4187 .read_u64 = mem_cgroup_read,
4188 },
4189 {
4190 .name = "failcnt",
4191 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4192 .trigger = mem_cgroup_reset,
4193 .read_u64 = mem_cgroup_read,
4194 },
4195 {
4196 .name = "stat",
4197 .read_map = mem_control_stat_show,
4198 },
4199 {
4200 .name = "force_empty",
4201 .trigger = mem_cgroup_force_empty_write,
4202 },
4203 {
4204 .name = "use_hierarchy",
4205 .write_u64 = mem_cgroup_hierarchy_write,
4206 .read_u64 = mem_cgroup_hierarchy_read,
4207 },
4208 {
4209 .name = "swappiness",
4210 .read_u64 = mem_cgroup_swappiness_read,
4211 .write_u64 = mem_cgroup_swappiness_write,
4212 },
4213 {
4214 .name = "move_charge_at_immigrate",
4215 .read_u64 = mem_cgroup_move_charge_read,
4216 .write_u64 = mem_cgroup_move_charge_write,
4217 },
4218 {
4219 .name = "oom_control",
4220 .read_map = mem_cgroup_oom_control_read,
4221 .write_u64 = mem_cgroup_oom_control_write,
4222 .register_event = mem_cgroup_oom_register_event,
4223 .unregister_event = mem_cgroup_oom_unregister_event,
4224 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4225 },
4226};
4227
4228#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4229static struct cftype memsw_cgroup_files[] = {
4230 {
4231 .name = "memsw.usage_in_bytes",
4232 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4233 .read_u64 = mem_cgroup_read,
4234 .register_event = mem_cgroup_usage_register_event,
4235 .unregister_event = mem_cgroup_usage_unregister_event,
4236 },
4237 {
4238 .name = "memsw.max_usage_in_bytes",
4239 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4240 .trigger = mem_cgroup_reset,
4241 .read_u64 = mem_cgroup_read,
4242 },
4243 {
4244 .name = "memsw.limit_in_bytes",
4245 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4246 .write_string = mem_cgroup_write,
4247 .read_u64 = mem_cgroup_read,
4248 },
4249 {
4250 .name = "memsw.failcnt",
4251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4252 .trigger = mem_cgroup_reset,
4253 .read_u64 = mem_cgroup_read,
4254 },
4255};
4256
4257static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4258{
4259 if (!do_swap_account)
4260 return 0;
4261 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4262 ARRAY_SIZE(memsw_cgroup_files));
4263};
4264#else
4265static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4266{
4267 return 0;
4268}
4269#endif
4270
4271static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4272{
4273 struct mem_cgroup_per_node *pn;
4274 struct mem_cgroup_per_zone *mz;
4275 enum lru_list l;
4276 int zone, tmp = node;
4277 /*
4278 * This routine is called against possible nodes.
4279 * But it's BUG to call kmalloc() against offline node.
4280 *
4281 * TODO: this routine can waste much memory for nodes which will
4282 * never be onlined. It's better to use memory hotplug callback
4283 * function.
4284 */
4285 if (!node_state(node, N_NORMAL_MEMORY))
4286 tmp = -1;
4287 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4288 if (!pn)
4289 return 1;
4290
4291 mem->info.nodeinfo[node] = pn;
4292 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4293 mz = &pn->zoneinfo[zone];
4294 for_each_lru(l)
4295 INIT_LIST_HEAD(&mz->lists[l]);
4296 mz->usage_in_excess = 0;
4297 mz->on_tree = false;
4298 mz->mem = mem;
4299 }
4300 return 0;
4301}
4302
4303static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4304{
4305 kfree(mem->info.nodeinfo[node]);
4306}
4307
4308static struct mem_cgroup *mem_cgroup_alloc(void)
4309{
4310 struct mem_cgroup *mem;
4311 int size = sizeof(struct mem_cgroup);
4312
4313 /* Can be very big if MAX_NUMNODES is very big */
4314 if (size < PAGE_SIZE)
4315 mem = kzalloc(size, GFP_KERNEL);
4316 else
4317 mem = vzalloc(size);
4318
4319 if (!mem)
4320 return NULL;
4321
4322 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4323 if (!mem->stat)
4324 goto out_free;
4325 spin_lock_init(&mem->pcp_counter_lock);
4326 return mem;
4327
4328out_free:
4329 if (size < PAGE_SIZE)
4330 kfree(mem);
4331 else
4332 vfree(mem);
4333 return NULL;
4334}
4335
4336/*
4337 * At destroying mem_cgroup, references from swap_cgroup can remain.
4338 * (scanning all at force_empty is too costly...)
4339 *
4340 * Instead of clearing all references at force_empty, we remember
4341 * the number of reference from swap_cgroup and free mem_cgroup when
4342 * it goes down to 0.
4343 *
4344 * Removal of cgroup itself succeeds regardless of refs from swap.
4345 */
4346
4347static void __mem_cgroup_free(struct mem_cgroup *mem)
4348{
4349 int node;
4350
4351 mem_cgroup_remove_from_trees(mem);
4352 free_css_id(&mem_cgroup_subsys, &mem->css);
4353
4354 for_each_node_state(node, N_POSSIBLE)
4355 free_mem_cgroup_per_zone_info(mem, node);
4356
4357 free_percpu(mem->stat);
4358 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4359 kfree(mem);
4360 else
4361 vfree(mem);
4362}
4363
4364static void mem_cgroup_get(struct mem_cgroup *mem)
4365{
4366 atomic_inc(&mem->refcnt);
4367}
4368
4369static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4370{
4371 if (atomic_sub_and_test(count, &mem->refcnt)) {
4372 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4373 __mem_cgroup_free(mem);
4374 if (parent)
4375 mem_cgroup_put(parent);
4376 }
4377}
4378
4379static void mem_cgroup_put(struct mem_cgroup *mem)
4380{
4381 __mem_cgroup_put(mem, 1);
4382}
4383
4384/*
4385 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4386 */
4387static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4388{
4389 if (!mem->res.parent)
4390 return NULL;
4391 return mem_cgroup_from_res_counter(mem->res.parent, res);
4392}
4393
4394#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4395static void __init enable_swap_cgroup(void)
4396{
4397 if (!mem_cgroup_disabled() && really_do_swap_account)
4398 do_swap_account = 1;
4399}
4400#else
4401static void __init enable_swap_cgroup(void)
4402{
4403}
4404#endif
4405
4406static int mem_cgroup_soft_limit_tree_init(void)
4407{
4408 struct mem_cgroup_tree_per_node *rtpn;
4409 struct mem_cgroup_tree_per_zone *rtpz;
4410 int tmp, node, zone;
4411
4412 for_each_node_state(node, N_POSSIBLE) {
4413 tmp = node;
4414 if (!node_state(node, N_NORMAL_MEMORY))
4415 tmp = -1;
4416 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4417 if (!rtpn)
4418 return 1;
4419
4420 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4421
4422 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4423 rtpz = &rtpn->rb_tree_per_zone[zone];
4424 rtpz->rb_root = RB_ROOT;
4425 spin_lock_init(&rtpz->lock);
4426 }
4427 }
4428 return 0;
4429}
4430
4431static struct cgroup_subsys_state * __ref
4432mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4433{
4434 struct mem_cgroup *mem, *parent;
4435 long error = -ENOMEM;
4436 int node;
4437
4438 mem = mem_cgroup_alloc();
4439 if (!mem)
4440 return ERR_PTR(error);
4441
4442 for_each_node_state(node, N_POSSIBLE)
4443 if (alloc_mem_cgroup_per_zone_info(mem, node))
4444 goto free_out;
4445
4446 /* root ? */
4447 if (cont->parent == NULL) {
4448 int cpu;
4449 enable_swap_cgroup();
4450 parent = NULL;
4451 root_mem_cgroup = mem;
4452 if (mem_cgroup_soft_limit_tree_init())
4453 goto free_out;
4454 for_each_possible_cpu(cpu) {
4455 struct memcg_stock_pcp *stock =
4456 &per_cpu(memcg_stock, cpu);
4457 INIT_WORK(&stock->work, drain_local_stock);
4458 }
4459 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4460 } else {
4461 parent = mem_cgroup_from_cont(cont->parent);
4462 mem->use_hierarchy = parent->use_hierarchy;
4463 mem->oom_kill_disable = parent->oom_kill_disable;
4464 }
4465
4466 if (parent && parent->use_hierarchy) {
4467 res_counter_init(&mem->res, &parent->res);
4468 res_counter_init(&mem->memsw, &parent->memsw);
4469 /*
4470 * We increment refcnt of the parent to ensure that we can
4471 * safely access it on res_counter_charge/uncharge.
4472 * This refcnt will be decremented when freeing this
4473 * mem_cgroup(see mem_cgroup_put).
4474 */
4475 mem_cgroup_get(parent);
4476 } else {
4477 res_counter_init(&mem->res, NULL);
4478 res_counter_init(&mem->memsw, NULL);
4479 }
4480 mem->last_scanned_child = 0;
4481 spin_lock_init(&mem->reclaim_param_lock);
4482 INIT_LIST_HEAD(&mem->oom_notify);
4483
4484 if (parent)
4485 mem->swappiness = get_swappiness(parent);
4486 atomic_set(&mem->refcnt, 1);
4487 mem->move_charge_at_immigrate = 0;
4488 mutex_init(&mem->thresholds_lock);
4489 return &mem->css;
4490free_out:
4491 __mem_cgroup_free(mem);
4492 root_mem_cgroup = NULL;
4493 return ERR_PTR(error);
4494}
4495
4496static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4497 struct cgroup *cont)
4498{
4499 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4500
4501 return mem_cgroup_force_empty(mem, false);
4502}
4503
4504static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4505 struct cgroup *cont)
4506{
4507 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4508
4509 mem_cgroup_put(mem);
4510}
4511
4512static int mem_cgroup_populate(struct cgroup_subsys *ss,
4513 struct cgroup *cont)
4514{
4515 int ret;
4516
4517 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4518 ARRAY_SIZE(mem_cgroup_files));
4519
4520 if (!ret)
4521 ret = register_memsw_files(cont, ss);
4522 return ret;
4523}
4524
4525#ifdef CONFIG_MMU
4526/* Handlers for move charge at task migration. */
4527#define PRECHARGE_COUNT_AT_ONCE 256
4528static int mem_cgroup_do_precharge(unsigned long count)
4529{
4530 int ret = 0;
4531 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4532 struct mem_cgroup *mem = mc.to;
4533
4534 if (mem_cgroup_is_root(mem)) {
4535 mc.precharge += count;
4536 /* we don't need css_get for root */
4537 return ret;
4538 }
4539 /* try to charge at once */
4540 if (count > 1) {
4541 struct res_counter *dummy;
4542 /*
4543 * "mem" cannot be under rmdir() because we've already checked
4544 * by cgroup_lock_live_cgroup() that it is not removed and we
4545 * are still under the same cgroup_mutex. So we can postpone
4546 * css_get().
4547 */
4548 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4549 goto one_by_one;
4550 if (do_swap_account && res_counter_charge(&mem->memsw,
4551 PAGE_SIZE * count, &dummy)) {
4552 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4553 goto one_by_one;
4554 }
4555 mc.precharge += count;
4556 return ret;
4557 }
4558one_by_one:
4559 /* fall back to one by one charge */
4560 while (count--) {
4561 if (signal_pending(current)) {
4562 ret = -EINTR;
4563 break;
4564 }
4565 if (!batch_count--) {
4566 batch_count = PRECHARGE_COUNT_AT_ONCE;
4567 cond_resched();
4568 }
4569 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4570 PAGE_SIZE);
4571 if (ret || !mem)
4572 /* mem_cgroup_clear_mc() will do uncharge later */
4573 return -ENOMEM;
4574 mc.precharge++;
4575 }
4576 return ret;
4577}
4578
4579/**
4580 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4581 * @vma: the vma the pte to be checked belongs
4582 * @addr: the address corresponding to the pte to be checked
4583 * @ptent: the pte to be checked
4584 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4585 *
4586 * Returns
4587 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4588 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4589 * move charge. if @target is not NULL, the page is stored in target->page
4590 * with extra refcnt got(Callers should handle it).
4591 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4592 * target for charge migration. if @target is not NULL, the entry is stored
4593 * in target->ent.
4594 *
4595 * Called with pte lock held.
4596 */
4597union mc_target {
4598 struct page *page;
4599 swp_entry_t ent;
4600};
4601
4602enum mc_target_type {
4603 MC_TARGET_NONE, /* not used */
4604 MC_TARGET_PAGE,
4605 MC_TARGET_SWAP,
4606};
4607
4608static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4609 unsigned long addr, pte_t ptent)
4610{
4611 struct page *page = vm_normal_page(vma, addr, ptent);
4612
4613 if (!page || !page_mapped(page))
4614 return NULL;
4615 if (PageAnon(page)) {
4616 /* we don't move shared anon */
4617 if (!move_anon() || page_mapcount(page) > 2)
4618 return NULL;
4619 } else if (!move_file())
4620 /* we ignore mapcount for file pages */
4621 return NULL;
4622 if (!get_page_unless_zero(page))
4623 return NULL;
4624
4625 return page;
4626}
4627
4628static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4629 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4630{
4631 int usage_count;
4632 struct page *page = NULL;
4633 swp_entry_t ent = pte_to_swp_entry(ptent);
4634
4635 if (!move_anon() || non_swap_entry(ent))
4636 return NULL;
4637 usage_count = mem_cgroup_count_swap_user(ent, &page);
4638 if (usage_count > 1) { /* we don't move shared anon */
4639 if (page)
4640 put_page(page);
4641 return NULL;
4642 }
4643 if (do_swap_account)
4644 entry->val = ent.val;
4645
4646 return page;
4647}
4648
4649static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4650 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4651{
4652 struct page *page = NULL;
4653 struct inode *inode;
4654 struct address_space *mapping;
4655 pgoff_t pgoff;
4656
4657 if (!vma->vm_file) /* anonymous vma */
4658 return NULL;
4659 if (!move_file())
4660 return NULL;
4661
4662 inode = vma->vm_file->f_path.dentry->d_inode;
4663 mapping = vma->vm_file->f_mapping;
4664 if (pte_none(ptent))
4665 pgoff = linear_page_index(vma, addr);
4666 else /* pte_file(ptent) is true */
4667 pgoff = pte_to_pgoff(ptent);
4668
4669 /* page is moved even if it's not RSS of this task(page-faulted). */
4670 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4671 page = find_get_page(mapping, pgoff);
4672 } else { /* shmem/tmpfs file. we should take account of swap too. */
4673 swp_entry_t ent;
4674 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4675 if (do_swap_account)
4676 entry->val = ent.val;
4677 }
4678
4679 return page;
4680}
4681
4682static int is_target_pte_for_mc(struct vm_area_struct *vma,
4683 unsigned long addr, pte_t ptent, union mc_target *target)
4684{
4685 struct page *page = NULL;
4686 struct page_cgroup *pc;
4687 int ret = 0;
4688 swp_entry_t ent = { .val = 0 };
4689
4690 if (pte_present(ptent))
4691 page = mc_handle_present_pte(vma, addr, ptent);
4692 else if (is_swap_pte(ptent))
4693 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4694 else if (pte_none(ptent) || pte_file(ptent))
4695 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4696
4697 if (!page && !ent.val)
4698 return 0;
4699 if (page) {
4700 pc = lookup_page_cgroup(page);
4701 /*
4702 * Do only loose check w/o page_cgroup lock.
4703 * mem_cgroup_move_account() checks the pc is valid or not under
4704 * the lock.
4705 */
4706 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4707 ret = MC_TARGET_PAGE;
4708 if (target)
4709 target->page = page;
4710 }
4711 if (!ret || !target)
4712 put_page(page);
4713 }
4714 /* There is a swap entry and a page doesn't exist or isn't charged */
4715 if (ent.val && !ret &&
4716 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4717 ret = MC_TARGET_SWAP;
4718 if (target)
4719 target->ent = ent;
4720 }
4721 return ret;
4722}
4723
4724static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
4727{
4728 struct vm_area_struct *vma = walk->private;
4729 pte_t *pte;
4730 spinlock_t *ptl;
4731
4732 VM_BUG_ON(pmd_trans_huge(*pmd));
4733 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4734 for (; addr != end; pte++, addr += PAGE_SIZE)
4735 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4736 mc.precharge++; /* increment precharge temporarily */
4737 pte_unmap_unlock(pte - 1, ptl);
4738 cond_resched();
4739
4740 return 0;
4741}
4742
4743static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4744{
4745 unsigned long precharge;
4746 struct vm_area_struct *vma;
4747
4748 down_read(&mm->mmap_sem);
4749 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4750 struct mm_walk mem_cgroup_count_precharge_walk = {
4751 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4752 .mm = mm,
4753 .private = vma,
4754 };
4755 if (is_vm_hugetlb_page(vma))
4756 continue;
4757 walk_page_range(vma->vm_start, vma->vm_end,
4758 &mem_cgroup_count_precharge_walk);
4759 }
4760 up_read(&mm->mmap_sem);
4761
4762 precharge = mc.precharge;
4763 mc.precharge = 0;
4764
4765 return precharge;
4766}
4767
4768static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4769{
4770 unsigned long precharge = mem_cgroup_count_precharge(mm);
4771
4772 VM_BUG_ON(mc.moving_task);
4773 mc.moving_task = current;
4774 return mem_cgroup_do_precharge(precharge);
4775}
4776
4777/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4778static void __mem_cgroup_clear_mc(void)
4779{
4780 struct mem_cgroup *from = mc.from;
4781 struct mem_cgroup *to = mc.to;
4782
4783 /* we must uncharge all the leftover precharges from mc.to */
4784 if (mc.precharge) {
4785 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4786 mc.precharge = 0;
4787 }
4788 /*
4789 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4790 * we must uncharge here.
4791 */
4792 if (mc.moved_charge) {
4793 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4794 mc.moved_charge = 0;
4795 }
4796 /* we must fixup refcnts and charges */
4797 if (mc.moved_swap) {
4798 /* uncharge swap account from the old cgroup */
4799 if (!mem_cgroup_is_root(mc.from))
4800 res_counter_uncharge(&mc.from->memsw,
4801 PAGE_SIZE * mc.moved_swap);
4802 __mem_cgroup_put(mc.from, mc.moved_swap);
4803
4804 if (!mem_cgroup_is_root(mc.to)) {
4805 /*
4806 * we charged both to->res and to->memsw, so we should
4807 * uncharge to->res.
4808 */
4809 res_counter_uncharge(&mc.to->res,
4810 PAGE_SIZE * mc.moved_swap);
4811 }
4812 /* we've already done mem_cgroup_get(mc.to) */
4813 mc.moved_swap = 0;
4814 }
4815 memcg_oom_recover(from);
4816 memcg_oom_recover(to);
4817 wake_up_all(&mc.waitq);
4818}
4819
4820static void mem_cgroup_clear_mc(void)
4821{
4822 struct mem_cgroup *from = mc.from;
4823
4824 /*
4825 * we must clear moving_task before waking up waiters at the end of
4826 * task migration.
4827 */
4828 mc.moving_task = NULL;
4829 __mem_cgroup_clear_mc();
4830 spin_lock(&mc.lock);
4831 mc.from = NULL;
4832 mc.to = NULL;
4833 spin_unlock(&mc.lock);
4834 mem_cgroup_end_move(from);
4835}
4836
4837static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4838 struct cgroup *cgroup,
4839 struct task_struct *p,
4840 bool threadgroup)
4841{
4842 int ret = 0;
4843 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4844
4845 if (mem->move_charge_at_immigrate) {
4846 struct mm_struct *mm;
4847 struct mem_cgroup *from = mem_cgroup_from_task(p);
4848
4849 VM_BUG_ON(from == mem);
4850
4851 mm = get_task_mm(p);
4852 if (!mm)
4853 return 0;
4854 /* We move charges only when we move a owner of the mm */
4855 if (mm->owner == p) {
4856 VM_BUG_ON(mc.from);
4857 VM_BUG_ON(mc.to);
4858 VM_BUG_ON(mc.precharge);
4859 VM_BUG_ON(mc.moved_charge);
4860 VM_BUG_ON(mc.moved_swap);
4861 mem_cgroup_start_move(from);
4862 spin_lock(&mc.lock);
4863 mc.from = from;
4864 mc.to = mem;
4865 spin_unlock(&mc.lock);
4866 /* We set mc.moving_task later */
4867
4868 ret = mem_cgroup_precharge_mc(mm);
4869 if (ret)
4870 mem_cgroup_clear_mc();
4871 }
4872 mmput(mm);
4873 }
4874 return ret;
4875}
4876
4877static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4878 struct cgroup *cgroup,
4879 struct task_struct *p,
4880 bool threadgroup)
4881{
4882 mem_cgroup_clear_mc();
4883}
4884
4885static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4886 unsigned long addr, unsigned long end,
4887 struct mm_walk *walk)
4888{
4889 int ret = 0;
4890 struct vm_area_struct *vma = walk->private;
4891 pte_t *pte;
4892 spinlock_t *ptl;
4893
4894retry:
4895 VM_BUG_ON(pmd_trans_huge(*pmd));
4896 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4897 for (; addr != end; addr += PAGE_SIZE) {
4898 pte_t ptent = *(pte++);
4899 union mc_target target;
4900 int type;
4901 struct page *page;
4902 struct page_cgroup *pc;
4903 swp_entry_t ent;
4904
4905 if (!mc.precharge)
4906 break;
4907
4908 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4909 switch (type) {
4910 case MC_TARGET_PAGE:
4911 page = target.page;
4912 if (isolate_lru_page(page))
4913 goto put;
4914 pc = lookup_page_cgroup(page);
4915 if (!mem_cgroup_move_account(pc,
4916 mc.from, mc.to, false, PAGE_SIZE)) {
4917 mc.precharge--;
4918 /* we uncharge from mc.from later. */
4919 mc.moved_charge++;
4920 }
4921 putback_lru_page(page);
4922put: /* is_target_pte_for_mc() gets the page */
4923 put_page(page);
4924 break;
4925 case MC_TARGET_SWAP:
4926 ent = target.ent;
4927 if (!mem_cgroup_move_swap_account(ent,
4928 mc.from, mc.to, false)) {
4929 mc.precharge--;
4930 /* we fixup refcnts and charges later. */
4931 mc.moved_swap++;
4932 }
4933 break;
4934 default:
4935 break;
4936 }
4937 }
4938 pte_unmap_unlock(pte - 1, ptl);
4939 cond_resched();
4940
4941 if (addr != end) {
4942 /*
4943 * We have consumed all precharges we got in can_attach().
4944 * We try charge one by one, but don't do any additional
4945 * charges to mc.to if we have failed in charge once in attach()
4946 * phase.
4947 */
4948 ret = mem_cgroup_do_precharge(1);
4949 if (!ret)
4950 goto retry;
4951 }
4952
4953 return ret;
4954}
4955
4956static void mem_cgroup_move_charge(struct mm_struct *mm)
4957{
4958 struct vm_area_struct *vma;
4959
4960 lru_add_drain_all();
4961retry:
4962 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4963 /*
4964 * Someone who are holding the mmap_sem might be waiting in
4965 * waitq. So we cancel all extra charges, wake up all waiters,
4966 * and retry. Because we cancel precharges, we might not be able
4967 * to move enough charges, but moving charge is a best-effort
4968 * feature anyway, so it wouldn't be a big problem.
4969 */
4970 __mem_cgroup_clear_mc();
4971 cond_resched();
4972 goto retry;
4973 }
4974 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4975 int ret;
4976 struct mm_walk mem_cgroup_move_charge_walk = {
4977 .pmd_entry = mem_cgroup_move_charge_pte_range,
4978 .mm = mm,
4979 .private = vma,
4980 };
4981 if (is_vm_hugetlb_page(vma))
4982 continue;
4983 ret = walk_page_range(vma->vm_start, vma->vm_end,
4984 &mem_cgroup_move_charge_walk);
4985 if (ret)
4986 /*
4987 * means we have consumed all precharges and failed in
4988 * doing additional charge. Just abandon here.
4989 */
4990 break;
4991 }
4992 up_read(&mm->mmap_sem);
4993}
4994
4995static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4996 struct cgroup *cont,
4997 struct cgroup *old_cont,
4998 struct task_struct *p,
4999 bool threadgroup)
5000{
5001 struct mm_struct *mm;
5002
5003 if (!mc.to)
5004 /* no need to move charge */
5005 return;
5006
5007 mm = get_task_mm(p);
5008 if (mm) {
5009 mem_cgroup_move_charge(mm);
5010 mmput(mm);
5011 }
5012 mem_cgroup_clear_mc();
5013}
5014#else /* !CONFIG_MMU */
5015static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5016 struct cgroup *cgroup,
5017 struct task_struct *p,
5018 bool threadgroup)
5019{
5020 return 0;
5021}
5022static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5023 struct cgroup *cgroup,
5024 struct task_struct *p,
5025 bool threadgroup)
5026{
5027}
5028static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5029 struct cgroup *cont,
5030 struct cgroup *old_cont,
5031 struct task_struct *p,
5032 bool threadgroup)
5033{
5034}
5035#endif
5036
5037struct cgroup_subsys mem_cgroup_subsys = {
5038 .name = "memory",
5039 .subsys_id = mem_cgroup_subsys_id,
5040 .create = mem_cgroup_create,
5041 .pre_destroy = mem_cgroup_pre_destroy,
5042 .destroy = mem_cgroup_destroy,
5043 .populate = mem_cgroup_populate,
5044 .can_attach = mem_cgroup_can_attach,
5045 .cancel_attach = mem_cgroup_cancel_attach,
5046 .attach = mem_cgroup_move_task,
5047 .early_init = 0,
5048 .use_id = 1,
5049};
5050
5051#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5052static int __init enable_swap_account(char *s)
5053{
5054 /* consider enabled if no parameter or 1 is given */
5055 if (!(*s) || !strcmp(s, "=1"))
5056 really_do_swap_account = 1;
5057 else if (!strcmp(s, "=0"))
5058 really_do_swap_account = 0;
5059 return 1;
5060}
5061__setup("swapaccount", enable_swap_account);
5062
5063static int __init disable_swap_account(char *s)
5064{
5065 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5066 enable_swap_account("=0");
5067 return 1;
5068}
5069__setup("noswapaccount", disable_swap_account);
5070#endif