]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/memcontrol.c
mm/hugetlb.c: delete duplicated words
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
28#include <linux/pagewalk.h>
29#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vm_event_item.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
60#include <linux/psi.h>
61#include <linux/seq_buf.h>
62#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68
69#include <trace/events/vmscan.h>
70
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
73
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76/* Socket memory accounting disabled? */
77static bool cgroup_memory_nosocket;
78
79/* Kernel memory accounting disabled? */
80static bool cgroup_memory_nokmem;
81
82/* Whether the swap controller is active */
83#ifdef CONFIG_MEMCG_SWAP
84bool cgroup_memory_noswap __read_mostly;
85#else
86#define cgroup_memory_noswap 1
87#endif
88
89#ifdef CONFIG_CGROUP_WRITEBACK
90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91#endif
92
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97}
98
99#define THRESHOLDS_EVENTS_TARGET 128
100#define SOFTLIMIT_EVENTS_TARGET 1024
101
102/*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
107struct mem_cgroup_tree_per_node {
108 struct rb_root rb_root;
109 struct rb_node *rb_rightmost;
110 spinlock_t lock;
111};
112
113struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115};
116
117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119/* for OOM */
120struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123};
124
125/*
126 * cgroup_event represents events which userspace want to receive.
127 */
128struct mem_cgroup_event {
129 /*
130 * memcg which the event belongs to.
131 */
132 struct mem_cgroup *memcg;
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
146 int (*register_event)(struct mem_cgroup *memcg,
147 struct eventfd_ctx *eventfd, const char *args);
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
153 void (*unregister_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd);
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_entry_t wait;
162 struct work_struct remove;
163};
164
165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168/* Stuffs for move charges at task migration. */
169/*
170 * Types of charges to be moved.
171 */
172#define MOVE_ANON 0x1U
173#define MOVE_FILE 0x2U
174#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
175
176/* "mc" and its members are protected by cgroup_mutex */
177static struct move_charge_struct {
178 spinlock_t lock; /* for from, to */
179 struct mm_struct *mm;
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
182 unsigned long flags;
183 unsigned long precharge;
184 unsigned long moved_charge;
185 unsigned long moved_swap;
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188} mc = {
189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191};
192
193/*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
197#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
198#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200enum charge_type {
201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202 MEM_CGROUP_CHARGE_TYPE_ANON,
203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
205 NR_CHARGE_TYPE,
206};
207
208/* for encoding cft->private value on file */
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
213 _KMEM,
214 _TCP,
215};
216
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219#define MEMFILE_ATTR(val) ((val) & 0xffff)
220/* Used for OOM nofiier */
221#define OOM_CONTROL (0)
222
223/*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228#define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233#define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
238static inline bool should_force_charge(void)
239{
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242}
243
244/* Some nice accessors for the vmpressure. */
245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246{
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250}
251
252struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253{
254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255}
256
257#ifdef CONFIG_MEMCG_KMEM
258extern spinlock_t css_set_lock;
259
260static void obj_cgroup_release(struct percpu_ref *ref)
261{
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263 struct mem_cgroup *memcg;
264 unsigned int nr_bytes;
265 unsigned int nr_pages;
266 unsigned long flags;
267
268 /*
269 * At this point all allocated objects are freed, and
270 * objcg->nr_charged_bytes can't have an arbitrary byte value.
271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272 *
273 * The following sequence can lead to it:
274 * 1) CPU0: objcg == stock->cached_objcg
275 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276 * PAGE_SIZE bytes are charged
277 * 3) CPU1: a process from another memcg is allocating something,
278 * the stock if flushed,
279 * objcg->nr_charged_bytes = PAGE_SIZE - 92
280 * 5) CPU0: we do release this object,
281 * 92 bytes are added to stock->nr_bytes
282 * 6) CPU0: stock is flushed,
283 * 92 bytes are added to objcg->nr_charged_bytes
284 *
285 * In the result, nr_charged_bytes == PAGE_SIZE.
286 * This page will be uncharged in obj_cgroup_release().
287 */
288 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290 nr_pages = nr_bytes >> PAGE_SHIFT;
291
292 spin_lock_irqsave(&css_set_lock, flags);
293 memcg = obj_cgroup_memcg(objcg);
294 if (nr_pages)
295 __memcg_kmem_uncharge(memcg, nr_pages);
296 list_del(&objcg->list);
297 mem_cgroup_put(memcg);
298 spin_unlock_irqrestore(&css_set_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302}
303
304static struct obj_cgroup *obj_cgroup_alloc(void)
305{
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321}
322
323static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325{
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&css_set_lock);
331
332 /* Move active objcg to the parent's list */
333 xchg(&objcg->memcg, parent);
334 css_get(&parent->css);
335 list_add(&objcg->list, &parent->objcg_list);
336
337 /* Move already reparented objcgs to the parent's list */
338 list_for_each_entry(iter, &memcg->objcg_list, list) {
339 css_get(&parent->css);
340 xchg(&iter->memcg, parent);
341 css_put(&memcg->css);
342 }
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402static int memcg_shrinker_map_size;
403static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406{
407 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408}
409
410static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411 int size, int old_size)
412{
413 struct memcg_shrinker_map *new, *old;
414 int nid;
415
416 lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418 for_each_node(nid) {
419 old = rcu_dereference_protected(
420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421 /* Not yet online memcg */
422 if (!old)
423 return 0;
424
425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 if (!new)
427 return -ENOMEM;
428
429 /* Set all old bits, clear all new bits */
430 memset(new->map, (int)0xff, old_size);
431 memset((void *)new->map + old_size, 0, size - old_size);
432
433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435 }
436
437 return 0;
438}
439
440static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441{
442 struct mem_cgroup_per_node *pn;
443 struct memcg_shrinker_map *map;
444 int nid;
445
446 if (mem_cgroup_is_root(memcg))
447 return;
448
449 for_each_node(nid) {
450 pn = mem_cgroup_nodeinfo(memcg, nid);
451 map = rcu_dereference_protected(pn->shrinker_map, true);
452 if (map)
453 kvfree(map);
454 rcu_assign_pointer(pn->shrinker_map, NULL);
455 }
456}
457
458static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459{
460 struct memcg_shrinker_map *map;
461 int nid, size, ret = 0;
462
463 if (mem_cgroup_is_root(memcg))
464 return 0;
465
466 mutex_lock(&memcg_shrinker_map_mutex);
467 size = memcg_shrinker_map_size;
468 for_each_node(nid) {
469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 if (!map) {
471 memcg_free_shrinker_maps(memcg);
472 ret = -ENOMEM;
473 break;
474 }
475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476 }
477 mutex_unlock(&memcg_shrinker_map_mutex);
478
479 return ret;
480}
481
482int memcg_expand_shrinker_maps(int new_id)
483{
484 int size, old_size, ret = 0;
485 struct mem_cgroup *memcg;
486
487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488 old_size = memcg_shrinker_map_size;
489 if (size <= old_size)
490 return 0;
491
492 mutex_lock(&memcg_shrinker_map_mutex);
493 if (!root_mem_cgroup)
494 goto unlock;
495
496 for_each_mem_cgroup(memcg) {
497 if (mem_cgroup_is_root(memcg))
498 continue;
499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 if (ret) {
501 mem_cgroup_iter_break(NULL, memcg);
502 goto unlock;
503 }
504 }
505unlock:
506 if (!ret)
507 memcg_shrinker_map_size = size;
508 mutex_unlock(&memcg_shrinker_map_mutex);
509 return ret;
510}
511
512void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513{
514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515 struct memcg_shrinker_map *map;
516
517 rcu_read_lock();
518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 /* Pairs with smp mb in shrink_slab() */
520 smp_mb__before_atomic();
521 set_bit(shrinker_id, map->map);
522 rcu_read_unlock();
523 }
524}
525
526/**
527 * mem_cgroup_css_from_page - css of the memcg associated with a page
528 * @page: page of interest
529 *
530 * If memcg is bound to the default hierarchy, css of the memcg associated
531 * with @page is returned. The returned css remains associated with @page
532 * until it is released.
533 *
534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 * is returned.
536 */
537struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538{
539 struct mem_cgroup *memcg;
540
541 memcg = page->mem_cgroup;
542
543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 memcg = root_mem_cgroup;
545
546 return &memcg->css;
547}
548
549/**
550 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * @page: the page
552 *
553 * Look up the closest online ancestor of the memory cgroup @page is charged to
554 * and return its inode number or 0 if @page is not charged to any cgroup. It
555 * is safe to call this function without holding a reference to @page.
556 *
557 * Note, this function is inherently racy, because there is nothing to prevent
558 * the cgroup inode from getting torn down and potentially reallocated a moment
559 * after page_cgroup_ino() returns, so it only should be used by callers that
560 * do not care (such as procfs interfaces).
561 */
562ino_t page_cgroup_ino(struct page *page)
563{
564 struct mem_cgroup *memcg;
565 unsigned long ino = 0;
566
567 rcu_read_lock();
568 memcg = page->mem_cgroup;
569
570 /*
571 * The lowest bit set means that memcg isn't a valid
572 * memcg pointer, but a obj_cgroups pointer.
573 * In this case the page is shared and doesn't belong
574 * to any specific memory cgroup.
575 */
576 if ((unsigned long) memcg & 0x1UL)
577 memcg = NULL;
578
579 while (memcg && !(memcg->css.flags & CSS_ONLINE))
580 memcg = parent_mem_cgroup(memcg);
581 if (memcg)
582 ino = cgroup_ino(memcg->css.cgroup);
583 rcu_read_unlock();
584 return ino;
585}
586
587static struct mem_cgroup_per_node *
588mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589{
590 int nid = page_to_nid(page);
591
592 return memcg->nodeinfo[nid];
593}
594
595static struct mem_cgroup_tree_per_node *
596soft_limit_tree_node(int nid)
597{
598 return soft_limit_tree.rb_tree_per_node[nid];
599}
600
601static struct mem_cgroup_tree_per_node *
602soft_limit_tree_from_page(struct page *page)
603{
604 int nid = page_to_nid(page);
605
606 return soft_limit_tree.rb_tree_per_node[nid];
607}
608
609static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610 struct mem_cgroup_tree_per_node *mctz,
611 unsigned long new_usage_in_excess)
612{
613 struct rb_node **p = &mctz->rb_root.rb_node;
614 struct rb_node *parent = NULL;
615 struct mem_cgroup_per_node *mz_node;
616 bool rightmost = true;
617
618 if (mz->on_tree)
619 return;
620
621 mz->usage_in_excess = new_usage_in_excess;
622 if (!mz->usage_in_excess)
623 return;
624 while (*p) {
625 parent = *p;
626 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627 tree_node);
628 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629 p = &(*p)->rb_left;
630 rightmost = false;
631 }
632
633 /*
634 * We can't avoid mem cgroups that are over their soft
635 * limit by the same amount
636 */
637 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638 p = &(*p)->rb_right;
639 }
640
641 if (rightmost)
642 mctz->rb_rightmost = &mz->tree_node;
643
644 rb_link_node(&mz->tree_node, parent, p);
645 rb_insert_color(&mz->tree_node, &mctz->rb_root);
646 mz->on_tree = true;
647}
648
649static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 struct mem_cgroup_tree_per_node *mctz)
651{
652 if (!mz->on_tree)
653 return;
654
655 if (&mz->tree_node == mctz->rb_rightmost)
656 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658 rb_erase(&mz->tree_node, &mctz->rb_root);
659 mz->on_tree = false;
660}
661
662static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663 struct mem_cgroup_tree_per_node *mctz)
664{
665 unsigned long flags;
666
667 spin_lock_irqsave(&mctz->lock, flags);
668 __mem_cgroup_remove_exceeded(mz, mctz);
669 spin_unlock_irqrestore(&mctz->lock, flags);
670}
671
672static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673{
674 unsigned long nr_pages = page_counter_read(&memcg->memory);
675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 unsigned long excess = 0;
677
678 if (nr_pages > soft_limit)
679 excess = nr_pages - soft_limit;
680
681 return excess;
682}
683
684static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685{
686 unsigned long excess;
687 struct mem_cgroup_per_node *mz;
688 struct mem_cgroup_tree_per_node *mctz;
689
690 mctz = soft_limit_tree_from_page(page);
691 if (!mctz)
692 return;
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_nodeinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719}
720
721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722{
723 struct mem_cgroup_tree_per_node *mctz;
724 struct mem_cgroup_per_node *mz;
725 int nid;
726
727 for_each_node(nid) {
728 mz = mem_cgroup_nodeinfo(memcg, nid);
729 mctz = soft_limit_tree_node(nid);
730 if (mctz)
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733}
734
735static struct mem_cgroup_per_node *
736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737{
738 struct mem_cgroup_per_node *mz;
739
740retry:
741 mz = NULL;
742 if (!mctz->rb_rightmost)
743 goto done; /* Nothing to reclaim from */
744
745 mz = rb_entry(mctz->rb_rightmost,
746 struct mem_cgroup_per_node, tree_node);
747 /*
748 * Remove the node now but someone else can add it back,
749 * we will to add it back at the end of reclaim to its correct
750 * position in the tree.
751 */
752 __mem_cgroup_remove_exceeded(mz, mctz);
753 if (!soft_limit_excess(mz->memcg) ||
754 !css_tryget(&mz->memcg->css))
755 goto retry;
756done:
757 return mz;
758}
759
760static struct mem_cgroup_per_node *
761mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762{
763 struct mem_cgroup_per_node *mz;
764
765 spin_lock_irq(&mctz->lock);
766 mz = __mem_cgroup_largest_soft_limit_node(mctz);
767 spin_unlock_irq(&mctz->lock);
768 return mz;
769}
770
771/**
772 * __mod_memcg_state - update cgroup memory statistics
773 * @memcg: the memory cgroup
774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775 * @val: delta to add to the counter, can be negative
776 */
777void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778{
779 long x, threshold = MEMCG_CHARGE_BATCH;
780
781 if (mem_cgroup_disabled())
782 return;
783
784 if (memcg_stat_item_in_bytes(idx))
785 threshold <<= PAGE_SHIFT;
786
787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788 if (unlikely(abs(x) > threshold)) {
789 struct mem_cgroup *mi;
790
791 /*
792 * Batch local counters to keep them in sync with
793 * the hierarchical ones.
794 */
795 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797 atomic_long_add(x, &mi->vmstats[idx]);
798 x = 0;
799 }
800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801}
802
803static struct mem_cgroup_per_node *
804parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805{
806 struct mem_cgroup *parent;
807
808 parent = parent_mem_cgroup(pn->memcg);
809 if (!parent)
810 return NULL;
811 return mem_cgroup_nodeinfo(parent, nid);
812}
813
814void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815 int val)
816{
817 struct mem_cgroup_per_node *pn;
818 struct mem_cgroup *memcg;
819 long x, threshold = MEMCG_CHARGE_BATCH;
820
821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822 memcg = pn->memcg;
823
824 /* Update memcg */
825 __mod_memcg_state(memcg, idx, val);
826
827 /* Update lruvec */
828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830 if (vmstat_item_in_bytes(idx))
831 threshold <<= PAGE_SHIFT;
832
833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834 if (unlikely(abs(x) > threshold)) {
835 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 struct mem_cgroup_per_node *pi;
837
838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839 atomic_long_add(x, &pi->lruvec_stat[idx]);
840 x = 0;
841 }
842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843}
844
845/**
846 * __mod_lruvec_state - update lruvec memory statistics
847 * @lruvec: the lruvec
848 * @idx: the stat item
849 * @val: delta to add to the counter, can be negative
850 *
851 * The lruvec is the intersection of the NUMA node and a cgroup. This
852 * function updates the all three counters that are affected by a
853 * change of state at this level: per-node, per-cgroup, per-lruvec.
854 */
855void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856 int val)
857{
858 /* Update node */
859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861 /* Update memcg and lruvec */
862 if (!mem_cgroup_disabled())
863 __mod_memcg_lruvec_state(lruvec, idx, val);
864}
865
866void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867{
868 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 struct mem_cgroup *memcg;
870 struct lruvec *lruvec;
871
872 rcu_read_lock();
873 memcg = mem_cgroup_from_obj(p);
874
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg || memcg == root_mem_cgroup) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883}
884
885void mod_memcg_obj_state(void *p, int idx, int val)
886{
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894}
895
896/**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904{
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924}
925
926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927{
928 return atomic_long_read(&memcg->vmevents[event]);
929}
930
931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932{
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939}
940
941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944{
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954}
955
956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958{
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979}
980
981/*
982 * Check events in order.
983 *
984 */
985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986{
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998}
999
1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001{
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011}
1012EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023{
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072/**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076{
1077 if (unlikely(current->active_memcg)) {
1078 struct mem_cgroup *memcg;
1079
1080 rcu_read_lock();
1081 /* current->active_memcg must hold a ref. */
1082 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083 memcg = root_mem_cgroup;
1084 else
1085 memcg = current->active_memcg;
1086 rcu_read_unlock();
1087 return memcg;
1088 }
1089 return get_mem_cgroup_from_mm(current->mm);
1090}
1091
1092/**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110 struct mem_cgroup *prev,
1111 struct mem_cgroup_reclaim_cookie *reclaim)
1112{
1113 struct mem_cgroup_reclaim_iter *iter;
1114 struct cgroup_subsys_state *css = NULL;
1115 struct mem_cgroup *memcg = NULL;
1116 struct mem_cgroup *pos = NULL;
1117
1118 if (mem_cgroup_disabled())
1119 return NULL;
1120
1121 if (!root)
1122 root = root_mem_cgroup;
1123
1124 if (prev && !reclaim)
1125 pos = prev;
1126
1127 if (!root->use_hierarchy && root != root_mem_cgroup) {
1128 if (prev)
1129 goto out;
1130 return root;
1131 }
1132
1133 rcu_read_lock();
1134
1135 if (reclaim) {
1136 struct mem_cgroup_per_node *mz;
1137
1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139 iter = &mz->iter;
1140
1141 if (prev && reclaim->generation != iter->generation)
1142 goto out_unlock;
1143
1144 while (1) {
1145 pos = READ_ONCE(iter->position);
1146 if (!pos || css_tryget(&pos->css))
1147 break;
1148 /*
1149 * css reference reached zero, so iter->position will
1150 * be cleared by ->css_released. However, we should not
1151 * rely on this happening soon, because ->css_released
1152 * is called from a work queue, and by busy-waiting we
1153 * might block it. So we clear iter->position right
1154 * away.
1155 */
1156 (void)cmpxchg(&iter->position, pos, NULL);
1157 }
1158 }
1159
1160 if (pos)
1161 css = &pos->css;
1162
1163 for (;;) {
1164 css = css_next_descendant_pre(css, &root->css);
1165 if (!css) {
1166 /*
1167 * Reclaimers share the hierarchy walk, and a
1168 * new one might jump in right at the end of
1169 * the hierarchy - make sure they see at least
1170 * one group and restart from the beginning.
1171 */
1172 if (!prev)
1173 continue;
1174 break;
1175 }
1176
1177 /*
1178 * Verify the css and acquire a reference. The root
1179 * is provided by the caller, so we know it's alive
1180 * and kicking, and don't take an extra reference.
1181 */
1182 memcg = mem_cgroup_from_css(css);
1183
1184 if (css == &root->css)
1185 break;
1186
1187 if (css_tryget(css))
1188 break;
1189
1190 memcg = NULL;
1191 }
1192
1193 if (reclaim) {
1194 /*
1195 * The position could have already been updated by a competing
1196 * thread, so check that the value hasn't changed since we read
1197 * it to avoid reclaiming from the same cgroup twice.
1198 */
1199 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201 if (pos)
1202 css_put(&pos->css);
1203
1204 if (!memcg)
1205 iter->generation++;
1206 else if (!prev)
1207 reclaim->generation = iter->generation;
1208 }
1209
1210out_unlock:
1211 rcu_read_unlock();
1212out:
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235{
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
1305/**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
1312 */
1313struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314{
1315 struct mem_cgroup_per_node *mz;
1316 struct mem_cgroup *memcg;
1317 struct lruvec *lruvec;
1318
1319 if (mem_cgroup_disabled()) {
1320 lruvec = &pgdat->__lruvec;
1321 goto out;
1322 }
1323
1324 memcg = page->mem_cgroup;
1325 /*
1326 * Swapcache readahead pages are added to the LRU - and
1327 * possibly migrated - before they are charged.
1328 */
1329 if (!memcg)
1330 memcg = root_mem_cgroup;
1331
1332 mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 lruvec = &mz->lruvec;
1334out:
1335 /*
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1339 */
1340 if (unlikely(lruvec->pgdat != pgdat))
1341 lruvec->pgdat = pgdat;
1342 return lruvec;
1343}
1344
1345/**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357 int zid, int nr_pages)
1358{
1359 struct mem_cgroup_per_node *mz;
1360 unsigned long *lru_size;
1361 long size;
1362
1363 if (mem_cgroup_disabled())
1364 return;
1365
1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367 lru_size = &mz->lru_zone_size[zid][lru];
1368
1369 if (nr_pages < 0)
1370 *lru_size += nr_pages;
1371
1372 size = *lru_size;
1373 if (WARN_ONCE(size < 0,
1374 "%s(%p, %d, %d): lru_size %ld\n",
1375 __func__, lruvec, lru, nr_pages, size)) {
1376 VM_BUG_ON(1);
1377 *lru_size = 0;
1378 }
1379
1380 if (nr_pages > 0)
1381 *lru_size += nr_pages;
1382}
1383
1384/**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392{
1393 unsigned long margin = 0;
1394 unsigned long count;
1395 unsigned long limit;
1396
1397 count = page_counter_read(&memcg->memory);
1398 limit = READ_ONCE(memcg->memory.max);
1399 if (count < limit)
1400 margin = limit - count;
1401
1402 if (do_memsw_account()) {
1403 count = page_counter_read(&memcg->memsw);
1404 limit = READ_ONCE(memcg->memsw.max);
1405 if (count < limit)
1406 margin = min(margin, limit - count);
1407 else
1408 margin = 0;
1409 }
1410
1411 return margin;
1412}
1413
1414/*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
1420 */
1421static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422{
1423 struct mem_cgroup *from;
1424 struct mem_cgroup *to;
1425 bool ret = false;
1426 /*
1427 * Unlike task_move routines, we access mc.to, mc.from not under
1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429 */
1430 spin_lock(&mc.lock);
1431 from = mc.from;
1432 to = mc.to;
1433 if (!from)
1434 goto unlock;
1435
1436 ret = mem_cgroup_is_descendant(from, memcg) ||
1437 mem_cgroup_is_descendant(to, memcg);
1438unlock:
1439 spin_unlock(&mc.lock);
1440 return ret;
1441}
1442
1443static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444{
1445 if (mc.moving_task && current != mc.moving_task) {
1446 if (mem_cgroup_under_move(memcg)) {
1447 DEFINE_WAIT(wait);
1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449 /* moving charge context might have finished. */
1450 if (mc.moving_task)
1451 schedule();
1452 finish_wait(&mc.waitq, &wait);
1453 return true;
1454 }
1455 }
1456 return false;
1457}
1458
1459static char *memory_stat_format(struct mem_cgroup *memcg)
1460{
1461 struct seq_buf s;
1462 int i;
1463
1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465 if (!s.buffer)
1466 return NULL;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478
1479 seq_buf_printf(&s, "anon %llu\n",
1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 PAGE_SIZE);
1482 seq_buf_printf(&s, "file %llu\n",
1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 PAGE_SIZE);
1485 seq_buf_printf(&s, "kernel_stack %llu\n",
1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1024);
1488 seq_buf_printf(&s, "slab %llu\n",
1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 seq_buf_printf(&s, "percpu %llu\n",
1492 (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493 seq_buf_printf(&s, "sock %llu\n",
1494 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495 PAGE_SIZE);
1496
1497 seq_buf_printf(&s, "shmem %llu\n",
1498 (u64)memcg_page_state(memcg, NR_SHMEM) *
1499 PAGE_SIZE);
1500 seq_buf_printf(&s, "file_mapped %llu\n",
1501 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502 PAGE_SIZE);
1503 seq_buf_printf(&s, "file_dirty %llu\n",
1504 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505 PAGE_SIZE);
1506 seq_buf_printf(&s, "file_writeback %llu\n",
1507 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508 PAGE_SIZE);
1509
1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511 seq_buf_printf(&s, "anon_thp %llu\n",
1512 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513 HPAGE_PMD_SIZE);
1514#endif
1515
1516 for (i = 0; i < NR_LRU_LISTS; i++)
1517 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519 PAGE_SIZE);
1520
1521 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526 /* Accumulated memory events */
1527
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529 memcg_events(memcg, PGFAULT));
1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531 memcg_events(memcg, PGMAJFAULT));
1532
1533 seq_buf_printf(&s, "workingset_refault_anon %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
1535 seq_buf_printf(&s, "workingset_refault_file %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
1537 seq_buf_printf(&s, "workingset_activate_anon %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
1539 seq_buf_printf(&s, "workingset_activate_file %lu\n",
1540 memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541 seq_buf_printf(&s, "workingset_restore %lu\n",
1542 memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1543 seq_buf_printf(&s, "workingset_restore %lu\n",
1544 memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1546 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1547
1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1549 memcg_events(memcg, PGREFILL));
1550 seq_buf_printf(&s, "pgscan %lu\n",
1551 memcg_events(memcg, PGSCAN_KSWAPD) +
1552 memcg_events(memcg, PGSCAN_DIRECT));
1553 seq_buf_printf(&s, "pgsteal %lu\n",
1554 memcg_events(memcg, PGSTEAL_KSWAPD) +
1555 memcg_events(memcg, PGSTEAL_DIRECT));
1556 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1557 memcg_events(memcg, PGACTIVATE));
1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1559 memcg_events(memcg, PGDEACTIVATE));
1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1561 memcg_events(memcg, PGLAZYFREE));
1562 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1563 memcg_events(memcg, PGLAZYFREED));
1564
1565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567 memcg_events(memcg, THP_FAULT_ALLOC));
1568 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1570#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1571
1572 /* The above should easily fit into one page */
1573 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1574
1575 return s.buffer;
1576}
1577
1578#define K(x) ((x) << (PAGE_SHIFT-10))
1579/**
1580 * mem_cgroup_print_oom_context: Print OOM information relevant to
1581 * memory controller.
1582 * @memcg: The memory cgroup that went over limit
1583 * @p: Task that is going to be killed
1584 *
1585 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1586 * enabled
1587 */
1588void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589{
1590 rcu_read_lock();
1591
1592 if (memcg) {
1593 pr_cont(",oom_memcg=");
1594 pr_cont_cgroup_path(memcg->css.cgroup);
1595 } else
1596 pr_cont(",global_oom");
1597 if (p) {
1598 pr_cont(",task_memcg=");
1599 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1600 }
1601 rcu_read_unlock();
1602}
1603
1604/**
1605 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1606 * memory controller.
1607 * @memcg: The memory cgroup that went over limit
1608 */
1609void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1610{
1611 char *buf;
1612
1613 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1614 K((u64)page_counter_read(&memcg->memory)),
1615 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1617 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1618 K((u64)page_counter_read(&memcg->swap)),
1619 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620 else {
1621 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1622 K((u64)page_counter_read(&memcg->memsw)),
1623 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1624 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1625 K((u64)page_counter_read(&memcg->kmem)),
1626 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627 }
1628
1629 pr_info("Memory cgroup stats for ");
1630 pr_cont_cgroup_path(memcg->css.cgroup);
1631 pr_cont(":");
1632 buf = memory_stat_format(memcg);
1633 if (!buf)
1634 return;
1635 pr_info("%s", buf);
1636 kfree(buf);
1637}
1638
1639/*
1640 * Return the memory (and swap, if configured) limit for a memcg.
1641 */
1642unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1643{
1644 unsigned long max;
1645
1646 max = READ_ONCE(memcg->memory.max);
1647 if (mem_cgroup_swappiness(memcg)) {
1648 unsigned long memsw_max;
1649 unsigned long swap_max;
1650
1651 memsw_max = memcg->memsw.max;
1652 swap_max = READ_ONCE(memcg->swap.max);
1653 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1654 max = min(max + swap_max, memsw_max);
1655 }
1656 return max;
1657}
1658
1659unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1660{
1661 return page_counter_read(&memcg->memory);
1662}
1663
1664static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665 int order)
1666{
1667 struct oom_control oc = {
1668 .zonelist = NULL,
1669 .nodemask = NULL,
1670 .memcg = memcg,
1671 .gfp_mask = gfp_mask,
1672 .order = order,
1673 };
1674 bool ret = true;
1675
1676 if (mutex_lock_killable(&oom_lock))
1677 return true;
1678
1679 if (mem_cgroup_margin(memcg) >= (1 << order))
1680 goto unlock;
1681
1682 /*
1683 * A few threads which were not waiting at mutex_lock_killable() can
1684 * fail to bail out. Therefore, check again after holding oom_lock.
1685 */
1686 ret = should_force_charge() || out_of_memory(&oc);
1687
1688unlock:
1689 mutex_unlock(&oom_lock);
1690 return ret;
1691}
1692
1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694 pg_data_t *pgdat,
1695 gfp_t gfp_mask,
1696 unsigned long *total_scanned)
1697{
1698 struct mem_cgroup *victim = NULL;
1699 int total = 0;
1700 int loop = 0;
1701 unsigned long excess;
1702 unsigned long nr_scanned;
1703 struct mem_cgroup_reclaim_cookie reclaim = {
1704 .pgdat = pgdat,
1705 };
1706
1707 excess = soft_limit_excess(root_memcg);
1708
1709 while (1) {
1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711 if (!victim) {
1712 loop++;
1713 if (loop >= 2) {
1714 /*
1715 * If we have not been able to reclaim
1716 * anything, it might because there are
1717 * no reclaimable pages under this hierarchy
1718 */
1719 if (!total)
1720 break;
1721 /*
1722 * We want to do more targeted reclaim.
1723 * excess >> 2 is not to excessive so as to
1724 * reclaim too much, nor too less that we keep
1725 * coming back to reclaim from this cgroup
1726 */
1727 if (total >= (excess >> 2) ||
1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729 break;
1730 }
1731 continue;
1732 }
1733 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734 pgdat, &nr_scanned);
1735 *total_scanned += nr_scanned;
1736 if (!soft_limit_excess(root_memcg))
1737 break;
1738 }
1739 mem_cgroup_iter_break(root_memcg, victim);
1740 return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745 .name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757 struct mem_cgroup *iter, *failed = NULL;
1758
1759 spin_lock(&memcg_oom_lock);
1760
1761 for_each_mem_cgroup_tree(iter, memcg) {
1762 if (iter->oom_lock) {
1763 /*
1764 * this subtree of our hierarchy is already locked
1765 * so we cannot give a lock.
1766 */
1767 failed = iter;
1768 mem_cgroup_iter_break(memcg, iter);
1769 break;
1770 } else
1771 iter->oom_lock = true;
1772 }
1773
1774 if (failed) {
1775 /*
1776 * OK, we failed to lock the whole subtree so we have
1777 * to clean up what we set up to the failing subtree
1778 */
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter == failed) {
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
1783 }
1784 iter->oom_lock = false;
1785 }
1786 } else
1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789 spin_unlock(&memcg_oom_lock);
1790
1791 return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795{
1796 struct mem_cgroup *iter;
1797
1798 spin_lock(&memcg_oom_lock);
1799 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800 for_each_mem_cgroup_tree(iter, memcg)
1801 iter->oom_lock = false;
1802 spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807 struct mem_cgroup *iter;
1808
1809 spin_lock(&memcg_oom_lock);
1810 for_each_mem_cgroup_tree(iter, memcg)
1811 iter->under_oom++;
1812 spin_unlock(&memcg_oom_lock);
1813}
1814
1815static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816{
1817 struct mem_cgroup *iter;
1818
1819 /*
1820 * When a new child is created while the hierarchy is under oom,
1821 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1822 */
1823 spin_lock(&memcg_oom_lock);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 if (iter->under_oom > 0)
1826 iter->under_oom--;
1827 spin_unlock(&memcg_oom_lock);
1828}
1829
1830static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832struct oom_wait_info {
1833 struct mem_cgroup *memcg;
1834 wait_queue_entry_t wait;
1835};
1836
1837static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1838 unsigned mode, int sync, void *arg)
1839{
1840 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841 struct mem_cgroup *oom_wait_memcg;
1842 struct oom_wait_info *oom_wait_info;
1843
1844 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845 oom_wait_memcg = oom_wait_info->memcg;
1846
1847 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1849 return 0;
1850 return autoremove_wake_function(wait, mode, sync, arg);
1851}
1852
1853static void memcg_oom_recover(struct mem_cgroup *memcg)
1854{
1855 /*
1856 * For the following lockless ->under_oom test, the only required
1857 * guarantee is that it must see the state asserted by an OOM when
1858 * this function is called as a result of userland actions
1859 * triggered by the notification of the OOM. This is trivially
1860 * achieved by invoking mem_cgroup_mark_under_oom() before
1861 * triggering notification.
1862 */
1863 if (memcg && memcg->under_oom)
1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865}
1866
1867enum oom_status {
1868 OOM_SUCCESS,
1869 OOM_FAILED,
1870 OOM_ASYNC,
1871 OOM_SKIPPED
1872};
1873
1874static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875{
1876 enum oom_status ret;
1877 bool locked;
1878
1879 if (order > PAGE_ALLOC_COSTLY_ORDER)
1880 return OOM_SKIPPED;
1881
1882 memcg_memory_event(memcg, MEMCG_OOM);
1883
1884 /*
1885 * We are in the middle of the charge context here, so we
1886 * don't want to block when potentially sitting on a callstack
1887 * that holds all kinds of filesystem and mm locks.
1888 *
1889 * cgroup1 allows disabling the OOM killer and waiting for outside
1890 * handling until the charge can succeed; remember the context and put
1891 * the task to sleep at the end of the page fault when all locks are
1892 * released.
1893 *
1894 * On the other hand, in-kernel OOM killer allows for an async victim
1895 * memory reclaim (oom_reaper) and that means that we are not solely
1896 * relying on the oom victim to make a forward progress and we can
1897 * invoke the oom killer here.
1898 *
1899 * Please note that mem_cgroup_out_of_memory might fail to find a
1900 * victim and then we have to bail out from the charge path.
1901 */
1902 if (memcg->oom_kill_disable) {
1903 if (!current->in_user_fault)
1904 return OOM_SKIPPED;
1905 css_get(&memcg->css);
1906 current->memcg_in_oom = memcg;
1907 current->memcg_oom_gfp_mask = mask;
1908 current->memcg_oom_order = order;
1909
1910 return OOM_ASYNC;
1911 }
1912
1913 mem_cgroup_mark_under_oom(memcg);
1914
1915 locked = mem_cgroup_oom_trylock(memcg);
1916
1917 if (locked)
1918 mem_cgroup_oom_notify(memcg);
1919
1920 mem_cgroup_unmark_under_oom(memcg);
1921 if (mem_cgroup_out_of_memory(memcg, mask, order))
1922 ret = OOM_SUCCESS;
1923 else
1924 ret = OOM_FAILED;
1925
1926 if (locked)
1927 mem_cgroup_oom_unlock(memcg);
1928
1929 return ret;
1930}
1931
1932/**
1933 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934 * @handle: actually kill/wait or just clean up the OOM state
1935 *
1936 * This has to be called at the end of a page fault if the memcg OOM
1937 * handler was enabled.
1938 *
1939 * Memcg supports userspace OOM handling where failed allocations must
1940 * sleep on a waitqueue until the userspace task resolves the
1941 * situation. Sleeping directly in the charge context with all kinds
1942 * of locks held is not a good idea, instead we remember an OOM state
1943 * in the task and mem_cgroup_oom_synchronize() has to be called at
1944 * the end of the page fault to complete the OOM handling.
1945 *
1946 * Returns %true if an ongoing memcg OOM situation was detected and
1947 * completed, %false otherwise.
1948 */
1949bool mem_cgroup_oom_synchronize(bool handle)
1950{
1951 struct mem_cgroup *memcg = current->memcg_in_oom;
1952 struct oom_wait_info owait;
1953 bool locked;
1954
1955 /* OOM is global, do not handle */
1956 if (!memcg)
1957 return false;
1958
1959 if (!handle)
1960 goto cleanup;
1961
1962 owait.memcg = memcg;
1963 owait.wait.flags = 0;
1964 owait.wait.func = memcg_oom_wake_function;
1965 owait.wait.private = current;
1966 INIT_LIST_HEAD(&owait.wait.entry);
1967
1968 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969 mem_cgroup_mark_under_oom(memcg);
1970
1971 locked = mem_cgroup_oom_trylock(memcg);
1972
1973 if (locked)
1974 mem_cgroup_oom_notify(memcg);
1975
1976 if (locked && !memcg->oom_kill_disable) {
1977 mem_cgroup_unmark_under_oom(memcg);
1978 finish_wait(&memcg_oom_waitq, &owait.wait);
1979 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1980 current->memcg_oom_order);
1981 } else {
1982 schedule();
1983 mem_cgroup_unmark_under_oom(memcg);
1984 finish_wait(&memcg_oom_waitq, &owait.wait);
1985 }
1986
1987 if (locked) {
1988 mem_cgroup_oom_unlock(memcg);
1989 /*
1990 * There is no guarantee that an OOM-lock contender
1991 * sees the wakeups triggered by the OOM kill
1992 * uncharges. Wake any sleepers explicitely.
1993 */
1994 memcg_oom_recover(memcg);
1995 }
1996cleanup:
1997 current->memcg_in_oom = NULL;
1998 css_put(&memcg->css);
1999 return true;
2000}
2001
2002/**
2003 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2004 * @victim: task to be killed by the OOM killer
2005 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2006 *
2007 * Returns a pointer to a memory cgroup, which has to be cleaned up
2008 * by killing all belonging OOM-killable tasks.
2009 *
2010 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2011 */
2012struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2013 struct mem_cgroup *oom_domain)
2014{
2015 struct mem_cgroup *oom_group = NULL;
2016 struct mem_cgroup *memcg;
2017
2018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2019 return NULL;
2020
2021 if (!oom_domain)
2022 oom_domain = root_mem_cgroup;
2023
2024 rcu_read_lock();
2025
2026 memcg = mem_cgroup_from_task(victim);
2027 if (memcg == root_mem_cgroup)
2028 goto out;
2029
2030 /*
2031 * If the victim task has been asynchronously moved to a different
2032 * memory cgroup, we might end up killing tasks outside oom_domain.
2033 * In this case it's better to ignore memory.group.oom.
2034 */
2035 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2036 goto out;
2037
2038 /*
2039 * Traverse the memory cgroup hierarchy from the victim task's
2040 * cgroup up to the OOMing cgroup (or root) to find the
2041 * highest-level memory cgroup with oom.group set.
2042 */
2043 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2044 if (memcg->oom_group)
2045 oom_group = memcg;
2046
2047 if (memcg == oom_domain)
2048 break;
2049 }
2050
2051 if (oom_group)
2052 css_get(&oom_group->css);
2053out:
2054 rcu_read_unlock();
2055
2056 return oom_group;
2057}
2058
2059void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2060{
2061 pr_info("Tasks in ");
2062 pr_cont_cgroup_path(memcg->css.cgroup);
2063 pr_cont(" are going to be killed due to memory.oom.group set\n");
2064}
2065
2066/**
2067 * lock_page_memcg - lock a page->mem_cgroup binding
2068 * @page: the page
2069 *
2070 * This function protects unlocked LRU pages from being moved to
2071 * another cgroup.
2072 *
2073 * It ensures lifetime of the returned memcg. Caller is responsible
2074 * for the lifetime of the page; __unlock_page_memcg() is available
2075 * when @page might get freed inside the locked section.
2076 */
2077struct mem_cgroup *lock_page_memcg(struct page *page)
2078{
2079 struct page *head = compound_head(page); /* rmap on tail pages */
2080 struct mem_cgroup *memcg;
2081 unsigned long flags;
2082
2083 /*
2084 * The RCU lock is held throughout the transaction. The fast
2085 * path can get away without acquiring the memcg->move_lock
2086 * because page moving starts with an RCU grace period.
2087 *
2088 * The RCU lock also protects the memcg from being freed when
2089 * the page state that is going to change is the only thing
2090 * preventing the page itself from being freed. E.g. writeback
2091 * doesn't hold a page reference and relies on PG_writeback to
2092 * keep off truncation, migration and so forth.
2093 */
2094 rcu_read_lock();
2095
2096 if (mem_cgroup_disabled())
2097 return NULL;
2098again:
2099 memcg = head->mem_cgroup;
2100 if (unlikely(!memcg))
2101 return NULL;
2102
2103 if (atomic_read(&memcg->moving_account) <= 0)
2104 return memcg;
2105
2106 spin_lock_irqsave(&memcg->move_lock, flags);
2107 if (memcg != head->mem_cgroup) {
2108 spin_unlock_irqrestore(&memcg->move_lock, flags);
2109 goto again;
2110 }
2111
2112 /*
2113 * When charge migration first begins, we can have locked and
2114 * unlocked page stat updates happening concurrently. Track
2115 * the task who has the lock for unlock_page_memcg().
2116 */
2117 memcg->move_lock_task = current;
2118 memcg->move_lock_flags = flags;
2119
2120 return memcg;
2121}
2122EXPORT_SYMBOL(lock_page_memcg);
2123
2124/**
2125 * __unlock_page_memcg - unlock and unpin a memcg
2126 * @memcg: the memcg
2127 *
2128 * Unlock and unpin a memcg returned by lock_page_memcg().
2129 */
2130void __unlock_page_memcg(struct mem_cgroup *memcg)
2131{
2132 if (memcg && memcg->move_lock_task == current) {
2133 unsigned long flags = memcg->move_lock_flags;
2134
2135 memcg->move_lock_task = NULL;
2136 memcg->move_lock_flags = 0;
2137
2138 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 }
2140
2141 rcu_read_unlock();
2142}
2143
2144/**
2145 * unlock_page_memcg - unlock a page->mem_cgroup binding
2146 * @page: the page
2147 */
2148void unlock_page_memcg(struct page *page)
2149{
2150 struct page *head = compound_head(page);
2151
2152 __unlock_page_memcg(head->mem_cgroup);
2153}
2154EXPORT_SYMBOL(unlock_page_memcg);
2155
2156struct memcg_stock_pcp {
2157 struct mem_cgroup *cached; /* this never be root cgroup */
2158 unsigned int nr_pages;
2159
2160#ifdef CONFIG_MEMCG_KMEM
2161 struct obj_cgroup *cached_objcg;
2162 unsigned int nr_bytes;
2163#endif
2164
2165 struct work_struct work;
2166 unsigned long flags;
2167#define FLUSHING_CACHED_CHARGE 0
2168};
2169static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170static DEFINE_MUTEX(percpu_charge_mutex);
2171
2172#ifdef CONFIG_MEMCG_KMEM
2173static void drain_obj_stock(struct memcg_stock_pcp *stock);
2174static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175 struct mem_cgroup *root_memcg);
2176
2177#else
2178static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2179{
2180}
2181static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2182 struct mem_cgroup *root_memcg)
2183{
2184 return false;
2185}
2186#endif
2187
2188/**
2189 * consume_stock: Try to consume stocked charge on this cpu.
2190 * @memcg: memcg to consume from.
2191 * @nr_pages: how many pages to charge.
2192 *
2193 * The charges will only happen if @memcg matches the current cpu's memcg
2194 * stock, and at least @nr_pages are available in that stock. Failure to
2195 * service an allocation will refill the stock.
2196 *
2197 * returns true if successful, false otherwise.
2198 */
2199static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200{
2201 struct memcg_stock_pcp *stock;
2202 unsigned long flags;
2203 bool ret = false;
2204
2205 if (nr_pages > MEMCG_CHARGE_BATCH)
2206 return ret;
2207
2208 local_irq_save(flags);
2209
2210 stock = this_cpu_ptr(&memcg_stock);
2211 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212 stock->nr_pages -= nr_pages;
2213 ret = true;
2214 }
2215
2216 local_irq_restore(flags);
2217
2218 return ret;
2219}
2220
2221/*
2222 * Returns stocks cached in percpu and reset cached information.
2223 */
2224static void drain_stock(struct memcg_stock_pcp *stock)
2225{
2226 struct mem_cgroup *old = stock->cached;
2227
2228 if (!old)
2229 return;
2230
2231 if (stock->nr_pages) {
2232 page_counter_uncharge(&old->memory, stock->nr_pages);
2233 if (do_memsw_account())
2234 page_counter_uncharge(&old->memsw, stock->nr_pages);
2235 stock->nr_pages = 0;
2236 }
2237
2238 css_put(&old->css);
2239 stock->cached = NULL;
2240}
2241
2242static void drain_local_stock(struct work_struct *dummy)
2243{
2244 struct memcg_stock_pcp *stock;
2245 unsigned long flags;
2246
2247 /*
2248 * The only protection from memory hotplug vs. drain_stock races is
2249 * that we always operate on local CPU stock here with IRQ disabled
2250 */
2251 local_irq_save(flags);
2252
2253 stock = this_cpu_ptr(&memcg_stock);
2254 drain_obj_stock(stock);
2255 drain_stock(stock);
2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257
2258 local_irq_restore(flags);
2259}
2260
2261/*
2262 * Cache charges(val) to local per_cpu area.
2263 * This will be consumed by consume_stock() function, later.
2264 */
2265static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266{
2267 struct memcg_stock_pcp *stock;
2268 unsigned long flags;
2269
2270 local_irq_save(flags);
2271
2272 stock = this_cpu_ptr(&memcg_stock);
2273 if (stock->cached != memcg) { /* reset if necessary */
2274 drain_stock(stock);
2275 css_get(&memcg->css);
2276 stock->cached = memcg;
2277 }
2278 stock->nr_pages += nr_pages;
2279
2280 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281 drain_stock(stock);
2282
2283 local_irq_restore(flags);
2284}
2285
2286/*
2287 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288 * of the hierarchy under it.
2289 */
2290static void drain_all_stock(struct mem_cgroup *root_memcg)
2291{
2292 int cpu, curcpu;
2293
2294 /* If someone's already draining, avoid adding running more workers. */
2295 if (!mutex_trylock(&percpu_charge_mutex))
2296 return;
2297 /*
2298 * Notify other cpus that system-wide "drain" is running
2299 * We do not care about races with the cpu hotplug because cpu down
2300 * as well as workers from this path always operate on the local
2301 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2302 */
2303 curcpu = get_cpu();
2304 for_each_online_cpu(cpu) {
2305 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306 struct mem_cgroup *memcg;
2307 bool flush = false;
2308
2309 rcu_read_lock();
2310 memcg = stock->cached;
2311 if (memcg && stock->nr_pages &&
2312 mem_cgroup_is_descendant(memcg, root_memcg))
2313 flush = true;
2314 if (obj_stock_flush_required(stock, root_memcg))
2315 flush = true;
2316 rcu_read_unlock();
2317
2318 if (flush &&
2319 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320 if (cpu == curcpu)
2321 drain_local_stock(&stock->work);
2322 else
2323 schedule_work_on(cpu, &stock->work);
2324 }
2325 }
2326 put_cpu();
2327 mutex_unlock(&percpu_charge_mutex);
2328}
2329
2330static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331{
2332 struct memcg_stock_pcp *stock;
2333 struct mem_cgroup *memcg, *mi;
2334
2335 stock = &per_cpu(memcg_stock, cpu);
2336 drain_stock(stock);
2337
2338 for_each_mem_cgroup(memcg) {
2339 int i;
2340
2341 for (i = 0; i < MEMCG_NR_STAT; i++) {
2342 int nid;
2343 long x;
2344
2345 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346 if (x)
2347 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2348 atomic_long_add(x, &memcg->vmstats[i]);
2349
2350 if (i >= NR_VM_NODE_STAT_ITEMS)
2351 continue;
2352
2353 for_each_node(nid) {
2354 struct mem_cgroup_per_node *pn;
2355
2356 pn = mem_cgroup_nodeinfo(memcg, nid);
2357 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358 if (x)
2359 do {
2360 atomic_long_add(x, &pn->lruvec_stat[i]);
2361 } while ((pn = parent_nodeinfo(pn, nid)));
2362 }
2363 }
2364
2365 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366 long x;
2367
2368 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369 if (x)
2370 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2371 atomic_long_add(x, &memcg->vmevents[i]);
2372 }
2373 }
2374
2375 return 0;
2376}
2377
2378static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379 unsigned int nr_pages,
2380 gfp_t gfp_mask)
2381{
2382 unsigned long nr_reclaimed = 0;
2383
2384 do {
2385 unsigned long pflags;
2386
2387 if (page_counter_read(&memcg->memory) <=
2388 READ_ONCE(memcg->memory.high))
2389 continue;
2390
2391 memcg_memory_event(memcg, MEMCG_HIGH);
2392
2393 psi_memstall_enter(&pflags);
2394 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395 gfp_mask, true);
2396 psi_memstall_leave(&pflags);
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
2399
2400 return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466 u64 overage;
2467
2468 if (usage <= high)
2469 return 0;
2470
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
2476
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
2488 READ_ONCE(memcg->memory.high));
2489 max_overage = max(overage, max_overage);
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
2493 return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
2522 if (!max_overage)
2523 return 0;
2524
2525 /*
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
2556 unsigned long nr_reclaimed;
2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 int nr_retries = MAX_RECLAIM_RETRIES;
2559 struct mem_cgroup *memcg;
2560 bool in_retry = false;
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
2566 current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
2588
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
2629}
2630
2631static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
2633{
2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *mem_over_limit;
2637 struct page_counter *counter;
2638 enum oom_status oom_status;
2639 unsigned long nr_reclaimed;
2640 bool may_swap = true;
2641 bool drained = false;
2642 unsigned long pflags;
2643
2644 if (mem_cgroup_is_root(memcg))
2645 return 0;
2646retry:
2647 if (consume_stock(memcg, nr_pages))
2648 return 0;
2649
2650 if (!do_memsw_account() ||
2651 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653 goto done_restock;
2654 if (do_memsw_account())
2655 page_counter_uncharge(&memcg->memsw, batch);
2656 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657 } else {
2658 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659 may_swap = false;
2660 }
2661
2662 if (batch > nr_pages) {
2663 batch = nr_pages;
2664 goto retry;
2665 }
2666
2667 /*
2668 * Memcg doesn't have a dedicated reserve for atomic
2669 * allocations. But like the global atomic pool, we need to
2670 * put the burden of reclaim on regular allocation requests
2671 * and let these go through as privileged allocations.
2672 */
2673 if (gfp_mask & __GFP_ATOMIC)
2674 goto force;
2675
2676 /*
2677 * Unlike in global OOM situations, memcg is not in a physical
2678 * memory shortage. Allow dying and OOM-killed tasks to
2679 * bypass the last charges so that they can exit quickly and
2680 * free their memory.
2681 */
2682 if (unlikely(should_force_charge()))
2683 goto force;
2684
2685 /*
2686 * Prevent unbounded recursion when reclaim operations need to
2687 * allocate memory. This might exceed the limits temporarily,
2688 * but we prefer facilitating memory reclaim and getting back
2689 * under the limit over triggering OOM kills in these cases.
2690 */
2691 if (unlikely(current->flags & PF_MEMALLOC))
2692 goto force;
2693
2694 if (unlikely(task_in_memcg_oom(current)))
2695 goto nomem;
2696
2697 if (!gfpflags_allow_blocking(gfp_mask))
2698 goto nomem;
2699
2700 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701
2702 psi_memstall_enter(&pflags);
2703 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704 gfp_mask, may_swap);
2705 psi_memstall_leave(&pflags);
2706
2707 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708 goto retry;
2709
2710 if (!drained) {
2711 drain_all_stock(mem_over_limit);
2712 drained = true;
2713 goto retry;
2714 }
2715
2716 if (gfp_mask & __GFP_NORETRY)
2717 goto nomem;
2718 /*
2719 * Even though the limit is exceeded at this point, reclaim
2720 * may have been able to free some pages. Retry the charge
2721 * before killing the task.
2722 *
2723 * Only for regular pages, though: huge pages are rather
2724 * unlikely to succeed so close to the limit, and we fall back
2725 * to regular pages anyway in case of failure.
2726 */
2727 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728 goto retry;
2729 /*
2730 * At task move, charge accounts can be doubly counted. So, it's
2731 * better to wait until the end of task_move if something is going on.
2732 */
2733 if (mem_cgroup_wait_acct_move(mem_over_limit))
2734 goto retry;
2735
2736 if (nr_retries--)
2737 goto retry;
2738
2739 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740 goto nomem;
2741
2742 if (gfp_mask & __GFP_NOFAIL)
2743 goto force;
2744
2745 if (fatal_signal_pending(current))
2746 goto force;
2747
2748 /*
2749 * keep retrying as long as the memcg oom killer is able to make
2750 * a forward progress or bypass the charge if the oom killer
2751 * couldn't make any progress.
2752 */
2753 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754 get_order(nr_pages * PAGE_SIZE));
2755 switch (oom_status) {
2756 case OOM_SUCCESS:
2757 nr_retries = MAX_RECLAIM_RETRIES;
2758 goto retry;
2759 case OOM_FAILED:
2760 goto force;
2761 default:
2762 goto nomem;
2763 }
2764nomem:
2765 if (!(gfp_mask & __GFP_NOFAIL))
2766 return -ENOMEM;
2767force:
2768 /*
2769 * The allocation either can't fail or will lead to more memory
2770 * being freed very soon. Allow memory usage go over the limit
2771 * temporarily by force charging it.
2772 */
2773 page_counter_charge(&memcg->memory, nr_pages);
2774 if (do_memsw_account())
2775 page_counter_charge(&memcg->memsw, nr_pages);
2776
2777 return 0;
2778
2779done_restock:
2780 if (batch > nr_pages)
2781 refill_stock(memcg, batch - nr_pages);
2782
2783 /*
2784 * If the hierarchy is above the normal consumption range, schedule
2785 * reclaim on returning to userland. We can perform reclaim here
2786 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2788 * not recorded as it most likely matches current's and won't
2789 * change in the meantime. As high limit is checked again before
2790 * reclaim, the cost of mismatch is negligible.
2791 */
2792 do {
2793 bool mem_high, swap_high;
2794
2795 mem_high = page_counter_read(&memcg->memory) >
2796 READ_ONCE(memcg->memory.high);
2797 swap_high = page_counter_read(&memcg->swap) >
2798 READ_ONCE(memcg->swap.high);
2799
2800 /* Don't bother a random interrupted task */
2801 if (in_interrupt()) {
2802 if (mem_high) {
2803 schedule_work(&memcg->high_work);
2804 break;
2805 }
2806 continue;
2807 }
2808
2809 if (mem_high || swap_high) {
2810 /*
2811 * The allocating tasks in this cgroup will need to do
2812 * reclaim or be throttled to prevent further growth
2813 * of the memory or swap footprints.
2814 *
2815 * Target some best-effort fairness between the tasks,
2816 * and distribute reclaim work and delay penalties
2817 * based on how much each task is actually allocating.
2818 */
2819 current->memcg_nr_pages_over_high += batch;
2820 set_notify_resume(current);
2821 break;
2822 }
2823 } while ((memcg = parent_mem_cgroup(memcg)));
2824
2825 return 0;
2826}
2827
2828#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2830{
2831 if (mem_cgroup_is_root(memcg))
2832 return;
2833
2834 page_counter_uncharge(&memcg->memory, nr_pages);
2835 if (do_memsw_account())
2836 page_counter_uncharge(&memcg->memsw, nr_pages);
2837}
2838#endif
2839
2840static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841{
2842 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2843 /*
2844 * Any of the following ensures page->mem_cgroup stability:
2845 *
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
2850 */
2851 page->mem_cgroup = memcg;
2852}
2853
2854#ifdef CONFIG_MEMCG_KMEM
2855int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2856 gfp_t gfp)
2857{
2858 unsigned int objects = objs_per_slab_page(s, page);
2859 void *vec;
2860
2861 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2862 page_to_nid(page));
2863 if (!vec)
2864 return -ENOMEM;
2865
2866 if (cmpxchg(&page->obj_cgroups, NULL,
2867 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2868 kfree(vec);
2869 else
2870 kmemleak_not_leak(vec);
2871
2872 return 0;
2873}
2874
2875/*
2876 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2877 *
2878 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2879 * cgroup_mutex, etc.
2880 */
2881struct mem_cgroup *mem_cgroup_from_obj(void *p)
2882{
2883 struct page *page;
2884
2885 if (mem_cgroup_disabled())
2886 return NULL;
2887
2888 page = virt_to_head_page(p);
2889
2890 /*
2891 * Slab objects are accounted individually, not per-page.
2892 * Memcg membership data for each individual object is saved in
2893 * the page->obj_cgroups.
2894 */
2895 if (page_has_obj_cgroups(page)) {
2896 struct obj_cgroup *objcg;
2897 unsigned int off;
2898
2899 off = obj_to_index(page->slab_cache, page, p);
2900 objcg = page_obj_cgroups(page)[off];
2901 if (objcg)
2902 return obj_cgroup_memcg(objcg);
2903
2904 return NULL;
2905 }
2906
2907 /* All other pages use page->mem_cgroup */
2908 return page->mem_cgroup;
2909}
2910
2911__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912{
2913 struct obj_cgroup *objcg = NULL;
2914 struct mem_cgroup *memcg;
2915
2916 if (unlikely(!current->mm && !current->active_memcg))
2917 return NULL;
2918
2919 rcu_read_lock();
2920 if (unlikely(current->active_memcg))
2921 memcg = rcu_dereference(current->active_memcg);
2922 else
2923 memcg = mem_cgroup_from_task(current);
2924
2925 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2926 objcg = rcu_dereference(memcg->objcg);
2927 if (objcg && obj_cgroup_tryget(objcg))
2928 break;
2929 }
2930 rcu_read_unlock();
2931
2932 return objcg;
2933}
2934
2935static int memcg_alloc_cache_id(void)
2936{
2937 int id, size;
2938 int err;
2939
2940 id = ida_simple_get(&memcg_cache_ida,
2941 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2942 if (id < 0)
2943 return id;
2944
2945 if (id < memcg_nr_cache_ids)
2946 return id;
2947
2948 /*
2949 * There's no space for the new id in memcg_caches arrays,
2950 * so we have to grow them.
2951 */
2952 down_write(&memcg_cache_ids_sem);
2953
2954 size = 2 * (id + 1);
2955 if (size < MEMCG_CACHES_MIN_SIZE)
2956 size = MEMCG_CACHES_MIN_SIZE;
2957 else if (size > MEMCG_CACHES_MAX_SIZE)
2958 size = MEMCG_CACHES_MAX_SIZE;
2959
2960 err = memcg_update_all_list_lrus(size);
2961 if (!err)
2962 memcg_nr_cache_ids = size;
2963
2964 up_write(&memcg_cache_ids_sem);
2965
2966 if (err) {
2967 ida_simple_remove(&memcg_cache_ida, id);
2968 return err;
2969 }
2970 return id;
2971}
2972
2973static void memcg_free_cache_id(int id)
2974{
2975 ida_simple_remove(&memcg_cache_ida, id);
2976}
2977
2978/**
2979 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2980 * @memcg: memory cgroup to charge
2981 * @gfp: reclaim mode
2982 * @nr_pages: number of pages to charge
2983 *
2984 * Returns 0 on success, an error code on failure.
2985 */
2986int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2987 unsigned int nr_pages)
2988{
2989 struct page_counter *counter;
2990 int ret;
2991
2992 ret = try_charge(memcg, gfp, nr_pages);
2993 if (ret)
2994 return ret;
2995
2996 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2997 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2998
2999 /*
3000 * Enforce __GFP_NOFAIL allocation because callers are not
3001 * prepared to see failures and likely do not have any failure
3002 * handling code.
3003 */
3004 if (gfp & __GFP_NOFAIL) {
3005 page_counter_charge(&memcg->kmem, nr_pages);
3006 return 0;
3007 }
3008 cancel_charge(memcg, nr_pages);
3009 return -ENOMEM;
3010 }
3011 return 0;
3012}
3013
3014/**
3015 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3016 * @memcg: memcg to uncharge
3017 * @nr_pages: number of pages to uncharge
3018 */
3019void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3020{
3021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022 page_counter_uncharge(&memcg->kmem, nr_pages);
3023
3024 page_counter_uncharge(&memcg->memory, nr_pages);
3025 if (do_memsw_account())
3026 page_counter_uncharge(&memcg->memsw, nr_pages);
3027}
3028
3029/**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038{
3039 struct mem_cgroup *memcg;
3040 int ret = 0;
3041
3042 if (memcg_kmem_bypass())
3043 return 0;
3044
3045 memcg = get_mem_cgroup_from_current();
3046 if (!mem_cgroup_is_root(memcg)) {
3047 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3048 if (!ret) {
3049 page->mem_cgroup = memcg;
3050 __SetPageKmemcg(page);
3051 return 0;
3052 }
3053 }
3054 css_put(&memcg->css);
3055 return ret;
3056}
3057
3058/**
3059 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 * @page: page to uncharge
3061 * @order: allocation order
3062 */
3063void __memcg_kmem_uncharge_page(struct page *page, int order)
3064{
3065 struct mem_cgroup *memcg = page->mem_cgroup;
3066 unsigned int nr_pages = 1 << order;
3067
3068 if (!memcg)
3069 return;
3070
3071 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3072 __memcg_kmem_uncharge(memcg, nr_pages);
3073 page->mem_cgroup = NULL;
3074 css_put(&memcg->css);
3075
3076 /* slab pages do not have PageKmemcg flag set */
3077 if (PageKmemcg(page))
3078 __ClearPageKmemcg(page);
3079}
3080
3081static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3082{
3083 struct memcg_stock_pcp *stock;
3084 unsigned long flags;
3085 bool ret = false;
3086
3087 local_irq_save(flags);
3088
3089 stock = this_cpu_ptr(&memcg_stock);
3090 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3091 stock->nr_bytes -= nr_bytes;
3092 ret = true;
3093 }
3094
3095 local_irq_restore(flags);
3096
3097 return ret;
3098}
3099
3100static void drain_obj_stock(struct memcg_stock_pcp *stock)
3101{
3102 struct obj_cgroup *old = stock->cached_objcg;
3103
3104 if (!old)
3105 return;
3106
3107 if (stock->nr_bytes) {
3108 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3109 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3110
3111 if (nr_pages) {
3112 rcu_read_lock();
3113 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3114 rcu_read_unlock();
3115 }
3116
3117 /*
3118 * The leftover is flushed to the centralized per-memcg value.
3119 * On the next attempt to refill obj stock it will be moved
3120 * to a per-cpu stock (probably, on an other CPU), see
3121 * refill_obj_stock().
3122 *
3123 * How often it's flushed is a trade-off between the memory
3124 * limit enforcement accuracy and potential CPU contention,
3125 * so it might be changed in the future.
3126 */
3127 atomic_add(nr_bytes, &old->nr_charged_bytes);
3128 stock->nr_bytes = 0;
3129 }
3130
3131 obj_cgroup_put(old);
3132 stock->cached_objcg = NULL;
3133}
3134
3135static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3136 struct mem_cgroup *root_memcg)
3137{
3138 struct mem_cgroup *memcg;
3139
3140 if (stock->cached_objcg) {
3141 memcg = obj_cgroup_memcg(stock->cached_objcg);
3142 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3143 return true;
3144 }
3145
3146 return false;
3147}
3148
3149static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3150{
3151 struct memcg_stock_pcp *stock;
3152 unsigned long flags;
3153
3154 local_irq_save(flags);
3155
3156 stock = this_cpu_ptr(&memcg_stock);
3157 if (stock->cached_objcg != objcg) { /* reset if necessary */
3158 drain_obj_stock(stock);
3159 obj_cgroup_get(objcg);
3160 stock->cached_objcg = objcg;
3161 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3162 }
3163 stock->nr_bytes += nr_bytes;
3164
3165 if (stock->nr_bytes > PAGE_SIZE)
3166 drain_obj_stock(stock);
3167
3168 local_irq_restore(flags);
3169}
3170
3171int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3172{
3173 struct mem_cgroup *memcg;
3174 unsigned int nr_pages, nr_bytes;
3175 int ret;
3176
3177 if (consume_obj_stock(objcg, size))
3178 return 0;
3179
3180 /*
3181 * In theory, memcg->nr_charged_bytes can have enough
3182 * pre-charged bytes to satisfy the allocation. However,
3183 * flushing memcg->nr_charged_bytes requires two atomic
3184 * operations, and memcg->nr_charged_bytes can't be big,
3185 * so it's better to ignore it and try grab some new pages.
3186 * memcg->nr_charged_bytes will be flushed in
3187 * refill_obj_stock(), called from this function or
3188 * independently later.
3189 */
3190 rcu_read_lock();
3191 memcg = obj_cgroup_memcg(objcg);
3192 css_get(&memcg->css);
3193 rcu_read_unlock();
3194
3195 nr_pages = size >> PAGE_SHIFT;
3196 nr_bytes = size & (PAGE_SIZE - 1);
3197
3198 if (nr_bytes)
3199 nr_pages += 1;
3200
3201 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3202 if (!ret && nr_bytes)
3203 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3204
3205 css_put(&memcg->css);
3206 return ret;
3207}
3208
3209void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3210{
3211 refill_obj_stock(objcg, size);
3212}
3213
3214#endif /* CONFIG_MEMCG_KMEM */
3215
3216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3217
3218/*
3219 * Because tail pages are not marked as "used", set it. We're under
3220 * pgdat->lru_lock and migration entries setup in all page mappings.
3221 */
3222void mem_cgroup_split_huge_fixup(struct page *head)
3223{
3224 struct mem_cgroup *memcg = head->mem_cgroup;
3225 int i;
3226
3227 if (mem_cgroup_disabled())
3228 return;
3229
3230 for (i = 1; i < HPAGE_PMD_NR; i++) {
3231 css_get(&memcg->css);
3232 head[i].mem_cgroup = memcg;
3233 }
3234}
3235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3236
3237#ifdef CONFIG_MEMCG_SWAP
3238/**
3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240 * @entry: swap entry to be moved
3241 * @from: mem_cgroup which the entry is moved from
3242 * @to: mem_cgroup which the entry is moved to
3243 *
3244 * It succeeds only when the swap_cgroup's record for this entry is the same
3245 * as the mem_cgroup's id of @from.
3246 *
3247 * Returns 0 on success, -EINVAL on failure.
3248 *
3249 * The caller must have charged to @to, IOW, called page_counter_charge() about
3250 * both res and memsw, and called css_get().
3251 */
3252static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253 struct mem_cgroup *from, struct mem_cgroup *to)
3254{
3255 unsigned short old_id, new_id;
3256
3257 old_id = mem_cgroup_id(from);
3258 new_id = mem_cgroup_id(to);
3259
3260 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261 mod_memcg_state(from, MEMCG_SWAP, -1);
3262 mod_memcg_state(to, MEMCG_SWAP, 1);
3263 return 0;
3264 }
3265 return -EINVAL;
3266}
3267#else
3268static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3269 struct mem_cgroup *from, struct mem_cgroup *to)
3270{
3271 return -EINVAL;
3272}
3273#endif
3274
3275static DEFINE_MUTEX(memcg_max_mutex);
3276
3277static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3278 unsigned long max, bool memsw)
3279{
3280 bool enlarge = false;
3281 bool drained = false;
3282 int ret;
3283 bool limits_invariant;
3284 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3285
3286 do {
3287 if (signal_pending(current)) {
3288 ret = -EINTR;
3289 break;
3290 }
3291
3292 mutex_lock(&memcg_max_mutex);
3293 /*
3294 * Make sure that the new limit (memsw or memory limit) doesn't
3295 * break our basic invariant rule memory.max <= memsw.max.
3296 */
3297 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3298 max <= memcg->memsw.max;
3299 if (!limits_invariant) {
3300 mutex_unlock(&memcg_max_mutex);
3301 ret = -EINVAL;
3302 break;
3303 }
3304 if (max > counter->max)
3305 enlarge = true;
3306 ret = page_counter_set_max(counter, max);
3307 mutex_unlock(&memcg_max_mutex);
3308
3309 if (!ret)
3310 break;
3311
3312 if (!drained) {
3313 drain_all_stock(memcg);
3314 drained = true;
3315 continue;
3316 }
3317
3318 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3319 GFP_KERNEL, !memsw)) {
3320 ret = -EBUSY;
3321 break;
3322 }
3323 } while (true);
3324
3325 if (!ret && enlarge)
3326 memcg_oom_recover(memcg);
3327
3328 return ret;
3329}
3330
3331unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3332 gfp_t gfp_mask,
3333 unsigned long *total_scanned)
3334{
3335 unsigned long nr_reclaimed = 0;
3336 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3337 unsigned long reclaimed;
3338 int loop = 0;
3339 struct mem_cgroup_tree_per_node *mctz;
3340 unsigned long excess;
3341 unsigned long nr_scanned;
3342
3343 if (order > 0)
3344 return 0;
3345
3346 mctz = soft_limit_tree_node(pgdat->node_id);
3347
3348 /*
3349 * Do not even bother to check the largest node if the root
3350 * is empty. Do it lockless to prevent lock bouncing. Races
3351 * are acceptable as soft limit is best effort anyway.
3352 */
3353 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3354 return 0;
3355
3356 /*
3357 * This loop can run a while, specially if mem_cgroup's continuously
3358 * keep exceeding their soft limit and putting the system under
3359 * pressure
3360 */
3361 do {
3362 if (next_mz)
3363 mz = next_mz;
3364 else
3365 mz = mem_cgroup_largest_soft_limit_node(mctz);
3366 if (!mz)
3367 break;
3368
3369 nr_scanned = 0;
3370 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3371 gfp_mask, &nr_scanned);
3372 nr_reclaimed += reclaimed;
3373 *total_scanned += nr_scanned;
3374 spin_lock_irq(&mctz->lock);
3375 __mem_cgroup_remove_exceeded(mz, mctz);
3376
3377 /*
3378 * If we failed to reclaim anything from this memory cgroup
3379 * it is time to move on to the next cgroup
3380 */
3381 next_mz = NULL;
3382 if (!reclaimed)
3383 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3384
3385 excess = soft_limit_excess(mz->memcg);
3386 /*
3387 * One school of thought says that we should not add
3388 * back the node to the tree if reclaim returns 0.
3389 * But our reclaim could return 0, simply because due
3390 * to priority we are exposing a smaller subset of
3391 * memory to reclaim from. Consider this as a longer
3392 * term TODO.
3393 */
3394 /* If excess == 0, no tree ops */
3395 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3396 spin_unlock_irq(&mctz->lock);
3397 css_put(&mz->memcg->css);
3398 loop++;
3399 /*
3400 * Could not reclaim anything and there are no more
3401 * mem cgroups to try or we seem to be looping without
3402 * reclaiming anything.
3403 */
3404 if (!nr_reclaimed &&
3405 (next_mz == NULL ||
3406 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3407 break;
3408 } while (!nr_reclaimed);
3409 if (next_mz)
3410 css_put(&next_mz->memcg->css);
3411 return nr_reclaimed;
3412}
3413
3414/*
3415 * Test whether @memcg has children, dead or alive. Note that this
3416 * function doesn't care whether @memcg has use_hierarchy enabled and
3417 * returns %true if there are child csses according to the cgroup
3418 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3419 */
3420static inline bool memcg_has_children(struct mem_cgroup *memcg)
3421{
3422 bool ret;
3423
3424 rcu_read_lock();
3425 ret = css_next_child(NULL, &memcg->css);
3426 rcu_read_unlock();
3427 return ret;
3428}
3429
3430/*
3431 * Reclaims as many pages from the given memcg as possible.
3432 *
3433 * Caller is responsible for holding css reference for memcg.
3434 */
3435static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3436{
3437 int nr_retries = MAX_RECLAIM_RETRIES;
3438
3439 /* we call try-to-free pages for make this cgroup empty */
3440 lru_add_drain_all();
3441
3442 drain_all_stock(memcg);
3443
3444 /* try to free all pages in this cgroup */
3445 while (nr_retries && page_counter_read(&memcg->memory)) {
3446 int progress;
3447
3448 if (signal_pending(current))
3449 return -EINTR;
3450
3451 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3452 GFP_KERNEL, true);
3453 if (!progress) {
3454 nr_retries--;
3455 /* maybe some writeback is necessary */
3456 congestion_wait(BLK_RW_ASYNC, HZ/10);
3457 }
3458
3459 }
3460
3461 return 0;
3462}
3463
3464static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3465 char *buf, size_t nbytes,
3466 loff_t off)
3467{
3468 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3469
3470 if (mem_cgroup_is_root(memcg))
3471 return -EINVAL;
3472 return mem_cgroup_force_empty(memcg) ?: nbytes;
3473}
3474
3475static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3476 struct cftype *cft)
3477{
3478 return mem_cgroup_from_css(css)->use_hierarchy;
3479}
3480
3481static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3482 struct cftype *cft, u64 val)
3483{
3484 int retval = 0;
3485 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3486 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3487
3488 if (memcg->use_hierarchy == val)
3489 return 0;
3490
3491 /*
3492 * If parent's use_hierarchy is set, we can't make any modifications
3493 * in the child subtrees. If it is unset, then the change can
3494 * occur, provided the current cgroup has no children.
3495 *
3496 * For the root cgroup, parent_mem is NULL, we allow value to be
3497 * set if there are no children.
3498 */
3499 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3500 (val == 1 || val == 0)) {
3501 if (!memcg_has_children(memcg))
3502 memcg->use_hierarchy = val;
3503 else
3504 retval = -EBUSY;
3505 } else
3506 retval = -EINVAL;
3507
3508 return retval;
3509}
3510
3511static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512{
3513 unsigned long val;
3514
3515 if (mem_cgroup_is_root(memcg)) {
3516 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517 memcg_page_state(memcg, NR_ANON_MAPPED);
3518 if (swap)
3519 val += memcg_page_state(memcg, MEMCG_SWAP);
3520 } else {
3521 if (!swap)
3522 val = page_counter_read(&memcg->memory);
3523 else
3524 val = page_counter_read(&memcg->memsw);
3525 }
3526 return val;
3527}
3528
3529enum {
3530 RES_USAGE,
3531 RES_LIMIT,
3532 RES_MAX_USAGE,
3533 RES_FAILCNT,
3534 RES_SOFT_LIMIT,
3535};
3536
3537static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538 struct cftype *cft)
3539{
3540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541 struct page_counter *counter;
3542
3543 switch (MEMFILE_TYPE(cft->private)) {
3544 case _MEM:
3545 counter = &memcg->memory;
3546 break;
3547 case _MEMSWAP:
3548 counter = &memcg->memsw;
3549 break;
3550 case _KMEM:
3551 counter = &memcg->kmem;
3552 break;
3553 case _TCP:
3554 counter = &memcg->tcpmem;
3555 break;
3556 default:
3557 BUG();
3558 }
3559
3560 switch (MEMFILE_ATTR(cft->private)) {
3561 case RES_USAGE:
3562 if (counter == &memcg->memory)
3563 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564 if (counter == &memcg->memsw)
3565 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566 return (u64)page_counter_read(counter) * PAGE_SIZE;
3567 case RES_LIMIT:
3568 return (u64)counter->max * PAGE_SIZE;
3569 case RES_MAX_USAGE:
3570 return (u64)counter->watermark * PAGE_SIZE;
3571 case RES_FAILCNT:
3572 return counter->failcnt;
3573 case RES_SOFT_LIMIT:
3574 return (u64)memcg->soft_limit * PAGE_SIZE;
3575 default:
3576 BUG();
3577 }
3578}
3579
3580static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3581{
3582 unsigned long stat[MEMCG_NR_STAT] = {0};
3583 struct mem_cgroup *mi;
3584 int node, cpu, i;
3585
3586 for_each_online_cpu(cpu)
3587 for (i = 0; i < MEMCG_NR_STAT; i++)
3588 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3589
3590 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3591 for (i = 0; i < MEMCG_NR_STAT; i++)
3592 atomic_long_add(stat[i], &mi->vmstats[i]);
3593
3594 for_each_node(node) {
3595 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3596 struct mem_cgroup_per_node *pi;
3597
3598 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3599 stat[i] = 0;
3600
3601 for_each_online_cpu(cpu)
3602 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3603 stat[i] += per_cpu(
3604 pn->lruvec_stat_cpu->count[i], cpu);
3605
3606 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3607 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3609 }
3610}
3611
3612static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3613{
3614 unsigned long events[NR_VM_EVENT_ITEMS];
3615 struct mem_cgroup *mi;
3616 int cpu, i;
3617
3618 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3619 events[i] = 0;
3620
3621 for_each_online_cpu(cpu)
3622 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3623 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3624 cpu);
3625
3626 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628 atomic_long_add(events[i], &mi->vmevents[i]);
3629}
3630
3631#ifdef CONFIG_MEMCG_KMEM
3632static int memcg_online_kmem(struct mem_cgroup *memcg)
3633{
3634 struct obj_cgroup *objcg;
3635 int memcg_id;
3636
3637 if (cgroup_memory_nokmem)
3638 return 0;
3639
3640 BUG_ON(memcg->kmemcg_id >= 0);
3641 BUG_ON(memcg->kmem_state);
3642
3643 memcg_id = memcg_alloc_cache_id();
3644 if (memcg_id < 0)
3645 return memcg_id;
3646
3647 objcg = obj_cgroup_alloc();
3648 if (!objcg) {
3649 memcg_free_cache_id(memcg_id);
3650 return -ENOMEM;
3651 }
3652 objcg->memcg = memcg;
3653 rcu_assign_pointer(memcg->objcg, objcg);
3654
3655 static_branch_enable(&memcg_kmem_enabled_key);
3656
3657 /*
3658 * A memory cgroup is considered kmem-online as soon as it gets
3659 * kmemcg_id. Setting the id after enabling static branching will
3660 * guarantee no one starts accounting before all call sites are
3661 * patched.
3662 */
3663 memcg->kmemcg_id = memcg_id;
3664 memcg->kmem_state = KMEM_ONLINE;
3665
3666 return 0;
3667}
3668
3669static void memcg_offline_kmem(struct mem_cgroup *memcg)
3670{
3671 struct cgroup_subsys_state *css;
3672 struct mem_cgroup *parent, *child;
3673 int kmemcg_id;
3674
3675 if (memcg->kmem_state != KMEM_ONLINE)
3676 return;
3677
3678 memcg->kmem_state = KMEM_ALLOCATED;
3679
3680 parent = parent_mem_cgroup(memcg);
3681 if (!parent)
3682 parent = root_mem_cgroup;
3683
3684 memcg_reparent_objcgs(memcg, parent);
3685
3686 kmemcg_id = memcg->kmemcg_id;
3687 BUG_ON(kmemcg_id < 0);
3688
3689 /*
3690 * Change kmemcg_id of this cgroup and all its descendants to the
3691 * parent's id, and then move all entries from this cgroup's list_lrus
3692 * to ones of the parent. After we have finished, all list_lrus
3693 * corresponding to this cgroup are guaranteed to remain empty. The
3694 * ordering is imposed by list_lru_node->lock taken by
3695 * memcg_drain_all_list_lrus().
3696 */
3697 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698 css_for_each_descendant_pre(css, &memcg->css) {
3699 child = mem_cgroup_from_css(css);
3700 BUG_ON(child->kmemcg_id != kmemcg_id);
3701 child->kmemcg_id = parent->kmemcg_id;
3702 if (!memcg->use_hierarchy)
3703 break;
3704 }
3705 rcu_read_unlock();
3706
3707 memcg_drain_all_list_lrus(kmemcg_id, parent);
3708
3709 memcg_free_cache_id(kmemcg_id);
3710}
3711
3712static void memcg_free_kmem(struct mem_cgroup *memcg)
3713{
3714 /* css_alloc() failed, offlining didn't happen */
3715 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3716 memcg_offline_kmem(memcg);
3717}
3718#else
3719static int memcg_online_kmem(struct mem_cgroup *memcg)
3720{
3721 return 0;
3722}
3723static void memcg_offline_kmem(struct mem_cgroup *memcg)
3724{
3725}
3726static void memcg_free_kmem(struct mem_cgroup *memcg)
3727{
3728}
3729#endif /* CONFIG_MEMCG_KMEM */
3730
3731static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3732 unsigned long max)
3733{
3734 int ret;
3735
3736 mutex_lock(&memcg_max_mutex);
3737 ret = page_counter_set_max(&memcg->kmem, max);
3738 mutex_unlock(&memcg_max_mutex);
3739 return ret;
3740}
3741
3742static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3743{
3744 int ret;
3745
3746 mutex_lock(&memcg_max_mutex);
3747
3748 ret = page_counter_set_max(&memcg->tcpmem, max);
3749 if (ret)
3750 goto out;
3751
3752 if (!memcg->tcpmem_active) {
3753 /*
3754 * The active flag needs to be written after the static_key
3755 * update. This is what guarantees that the socket activation
3756 * function is the last one to run. See mem_cgroup_sk_alloc()
3757 * for details, and note that we don't mark any socket as
3758 * belonging to this memcg until that flag is up.
3759 *
3760 * We need to do this, because static_keys will span multiple
3761 * sites, but we can't control their order. If we mark a socket
3762 * as accounted, but the accounting functions are not patched in
3763 * yet, we'll lose accounting.
3764 *
3765 * We never race with the readers in mem_cgroup_sk_alloc(),
3766 * because when this value change, the code to process it is not
3767 * patched in yet.
3768 */
3769 static_branch_inc(&memcg_sockets_enabled_key);
3770 memcg->tcpmem_active = true;
3771 }
3772out:
3773 mutex_unlock(&memcg_max_mutex);
3774 return ret;
3775}
3776
3777/*
3778 * The user of this function is...
3779 * RES_LIMIT.
3780 */
3781static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3782 char *buf, size_t nbytes, loff_t off)
3783{
3784 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3785 unsigned long nr_pages;
3786 int ret;
3787
3788 buf = strstrip(buf);
3789 ret = page_counter_memparse(buf, "-1", &nr_pages);
3790 if (ret)
3791 return ret;
3792
3793 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3794 case RES_LIMIT:
3795 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3796 ret = -EINVAL;
3797 break;
3798 }
3799 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3800 case _MEM:
3801 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3802 break;
3803 case _MEMSWAP:
3804 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3805 break;
3806 case _KMEM:
3807 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3808 "Please report your usecase to linux-mm@kvack.org if you "
3809 "depend on this functionality.\n");
3810 ret = memcg_update_kmem_max(memcg, nr_pages);
3811 break;
3812 case _TCP:
3813 ret = memcg_update_tcp_max(memcg, nr_pages);
3814 break;
3815 }
3816 break;
3817 case RES_SOFT_LIMIT:
3818 memcg->soft_limit = nr_pages;
3819 ret = 0;
3820 break;
3821 }
3822 return ret ?: nbytes;
3823}
3824
3825static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3826 size_t nbytes, loff_t off)
3827{
3828 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829 struct page_counter *counter;
3830
3831 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3832 case _MEM:
3833 counter = &memcg->memory;
3834 break;
3835 case _MEMSWAP:
3836 counter = &memcg->memsw;
3837 break;
3838 case _KMEM:
3839 counter = &memcg->kmem;
3840 break;
3841 case _TCP:
3842 counter = &memcg->tcpmem;
3843 break;
3844 default:
3845 BUG();
3846 }
3847
3848 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3849 case RES_MAX_USAGE:
3850 page_counter_reset_watermark(counter);
3851 break;
3852 case RES_FAILCNT:
3853 counter->failcnt = 0;
3854 break;
3855 default:
3856 BUG();
3857 }
3858
3859 return nbytes;
3860}
3861
3862static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3863 struct cftype *cft)
3864{
3865 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3866}
3867
3868#ifdef CONFIG_MMU
3869static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3870 struct cftype *cft, u64 val)
3871{
3872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3873
3874 if (val & ~MOVE_MASK)
3875 return -EINVAL;
3876
3877 /*
3878 * No kind of locking is needed in here, because ->can_attach() will
3879 * check this value once in the beginning of the process, and then carry
3880 * on with stale data. This means that changes to this value will only
3881 * affect task migrations starting after the change.
3882 */
3883 memcg->move_charge_at_immigrate = val;
3884 return 0;
3885}
3886#else
3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888 struct cftype *cft, u64 val)
3889{
3890 return -ENOSYS;
3891}
3892#endif
3893
3894#ifdef CONFIG_NUMA
3895
3896#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3897#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3898#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3899
3900static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3901 int nid, unsigned int lru_mask, bool tree)
3902{
3903 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3904 unsigned long nr = 0;
3905 enum lru_list lru;
3906
3907 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3908
3909 for_each_lru(lru) {
3910 if (!(BIT(lru) & lru_mask))
3911 continue;
3912 if (tree)
3913 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3914 else
3915 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3916 }
3917 return nr;
3918}
3919
3920static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3921 unsigned int lru_mask,
3922 bool tree)
3923{
3924 unsigned long nr = 0;
3925 enum lru_list lru;
3926
3927 for_each_lru(lru) {
3928 if (!(BIT(lru) & lru_mask))
3929 continue;
3930 if (tree)
3931 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3932 else
3933 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3934 }
3935 return nr;
3936}
3937
3938static int memcg_numa_stat_show(struct seq_file *m, void *v)
3939{
3940 struct numa_stat {
3941 const char *name;
3942 unsigned int lru_mask;
3943 };
3944
3945 static const struct numa_stat stats[] = {
3946 { "total", LRU_ALL },
3947 { "file", LRU_ALL_FILE },
3948 { "anon", LRU_ALL_ANON },
3949 { "unevictable", BIT(LRU_UNEVICTABLE) },
3950 };
3951 const struct numa_stat *stat;
3952 int nid;
3953 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3954
3955 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956 seq_printf(m, "%s=%lu", stat->name,
3957 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3958 false));
3959 for_each_node_state(nid, N_MEMORY)
3960 seq_printf(m, " N%d=%lu", nid,
3961 mem_cgroup_node_nr_lru_pages(memcg, nid,
3962 stat->lru_mask, false));
3963 seq_putc(m, '\n');
3964 }
3965
3966 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967
3968 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3969 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3970 true));
3971 for_each_node_state(nid, N_MEMORY)
3972 seq_printf(m, " N%d=%lu", nid,
3973 mem_cgroup_node_nr_lru_pages(memcg, nid,
3974 stat->lru_mask, true));
3975 seq_putc(m, '\n');
3976 }
3977
3978 return 0;
3979}
3980#endif /* CONFIG_NUMA */
3981
3982static const unsigned int memcg1_stats[] = {
3983 NR_FILE_PAGES,
3984 NR_ANON_MAPPED,
3985#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986 NR_ANON_THPS,
3987#endif
3988 NR_SHMEM,
3989 NR_FILE_MAPPED,
3990 NR_FILE_DIRTY,
3991 NR_WRITEBACK,
3992 MEMCG_SWAP,
3993};
3994
3995static const char *const memcg1_stat_names[] = {
3996 "cache",
3997 "rss",
3998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 "rss_huge",
4000#endif
4001 "shmem",
4002 "mapped_file",
4003 "dirty",
4004 "writeback",
4005 "swap",
4006};
4007
4008/* Universal VM events cgroup1 shows, original sort order */
4009static const unsigned int memcg1_events[] = {
4010 PGPGIN,
4011 PGPGOUT,
4012 PGFAULT,
4013 PGMAJFAULT,
4014};
4015
4016static int memcg_stat_show(struct seq_file *m, void *v)
4017{
4018 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019 unsigned long memory, memsw;
4020 struct mem_cgroup *mi;
4021 unsigned int i;
4022
4023 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4024
4025 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4026 unsigned long nr;
4027
4028 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4029 continue;
4030 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032 if (memcg1_stats[i] == NR_ANON_THPS)
4033 nr *= HPAGE_PMD_NR;
4034#endif
4035 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4036 }
4037
4038 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4039 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4040 memcg_events_local(memcg, memcg1_events[i]));
4041
4042 for (i = 0; i < NR_LRU_LISTS; i++)
4043 seq_printf(m, "%s %lu\n", lru_list_name(i),
4044 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4045 PAGE_SIZE);
4046
4047 /* Hierarchical information */
4048 memory = memsw = PAGE_COUNTER_MAX;
4049 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4050 memory = min(memory, READ_ONCE(mi->memory.max));
4051 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4052 }
4053 seq_printf(m, "hierarchical_memory_limit %llu\n",
4054 (u64)memory * PAGE_SIZE);
4055 if (do_memsw_account())
4056 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4057 (u64)memsw * PAGE_SIZE);
4058
4059 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4060 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4061 continue;
4062 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4064 PAGE_SIZE);
4065 }
4066
4067 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068 seq_printf(m, "total_%s %llu\n",
4069 vm_event_name(memcg1_events[i]),
4070 (u64)memcg_events(memcg, memcg1_events[i]));
4071
4072 for (i = 0; i < NR_LRU_LISTS; i++)
4073 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4075 PAGE_SIZE);
4076
4077#ifdef CONFIG_DEBUG_VM
4078 {
4079 pg_data_t *pgdat;
4080 struct mem_cgroup_per_node *mz;
4081 unsigned long anon_cost = 0;
4082 unsigned long file_cost = 0;
4083
4084 for_each_online_pgdat(pgdat) {
4085 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4086
4087 anon_cost += mz->lruvec.anon_cost;
4088 file_cost += mz->lruvec.file_cost;
4089 }
4090 seq_printf(m, "anon_cost %lu\n", anon_cost);
4091 seq_printf(m, "file_cost %lu\n", file_cost);
4092 }
4093#endif
4094
4095 return 0;
4096}
4097
4098static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4099 struct cftype *cft)
4100{
4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103 return mem_cgroup_swappiness(memcg);
4104}
4105
4106static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4107 struct cftype *cft, u64 val)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 if (val > 100)
4112 return -EINVAL;
4113
4114 if (css->parent)
4115 memcg->swappiness = val;
4116 else
4117 vm_swappiness = val;
4118
4119 return 0;
4120}
4121
4122static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4123{
4124 struct mem_cgroup_threshold_ary *t;
4125 unsigned long usage;
4126 int i;
4127
4128 rcu_read_lock();
4129 if (!swap)
4130 t = rcu_dereference(memcg->thresholds.primary);
4131 else
4132 t = rcu_dereference(memcg->memsw_thresholds.primary);
4133
4134 if (!t)
4135 goto unlock;
4136
4137 usage = mem_cgroup_usage(memcg, swap);
4138
4139 /*
4140 * current_threshold points to threshold just below or equal to usage.
4141 * If it's not true, a threshold was crossed after last
4142 * call of __mem_cgroup_threshold().
4143 */
4144 i = t->current_threshold;
4145
4146 /*
4147 * Iterate backward over array of thresholds starting from
4148 * current_threshold and check if a threshold is crossed.
4149 * If none of thresholds below usage is crossed, we read
4150 * only one element of the array here.
4151 */
4152 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4153 eventfd_signal(t->entries[i].eventfd, 1);
4154
4155 /* i = current_threshold + 1 */
4156 i++;
4157
4158 /*
4159 * Iterate forward over array of thresholds starting from
4160 * current_threshold+1 and check if a threshold is crossed.
4161 * If none of thresholds above usage is crossed, we read
4162 * only one element of the array here.
4163 */
4164 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4165 eventfd_signal(t->entries[i].eventfd, 1);
4166
4167 /* Update current_threshold */
4168 t->current_threshold = i - 1;
4169unlock:
4170 rcu_read_unlock();
4171}
4172
4173static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4174{
4175 while (memcg) {
4176 __mem_cgroup_threshold(memcg, false);
4177 if (do_memsw_account())
4178 __mem_cgroup_threshold(memcg, true);
4179
4180 memcg = parent_mem_cgroup(memcg);
4181 }
4182}
4183
4184static int compare_thresholds(const void *a, const void *b)
4185{
4186 const struct mem_cgroup_threshold *_a = a;
4187 const struct mem_cgroup_threshold *_b = b;
4188
4189 if (_a->threshold > _b->threshold)
4190 return 1;
4191
4192 if (_a->threshold < _b->threshold)
4193 return -1;
4194
4195 return 0;
4196}
4197
4198static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4199{
4200 struct mem_cgroup_eventfd_list *ev;
4201
4202 spin_lock(&memcg_oom_lock);
4203
4204 list_for_each_entry(ev, &memcg->oom_notify, list)
4205 eventfd_signal(ev->eventfd, 1);
4206
4207 spin_unlock(&memcg_oom_lock);
4208 return 0;
4209}
4210
4211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4212{
4213 struct mem_cgroup *iter;
4214
4215 for_each_mem_cgroup_tree(iter, memcg)
4216 mem_cgroup_oom_notify_cb(iter);
4217}
4218
4219static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4220 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221{
4222 struct mem_cgroup_thresholds *thresholds;
4223 struct mem_cgroup_threshold_ary *new;
4224 unsigned long threshold;
4225 unsigned long usage;
4226 int i, size, ret;
4227
4228 ret = page_counter_memparse(args, "-1", &threshold);
4229 if (ret)
4230 return ret;
4231
4232 mutex_lock(&memcg->thresholds_lock);
4233
4234 if (type == _MEM) {
4235 thresholds = &memcg->thresholds;
4236 usage = mem_cgroup_usage(memcg, false);
4237 } else if (type == _MEMSWAP) {
4238 thresholds = &memcg->memsw_thresholds;
4239 usage = mem_cgroup_usage(memcg, true);
4240 } else
4241 BUG();
4242
4243 /* Check if a threshold crossed before adding a new one */
4244 if (thresholds->primary)
4245 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246
4247 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248
4249 /* Allocate memory for new array of thresholds */
4250 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251 if (!new) {
4252 ret = -ENOMEM;
4253 goto unlock;
4254 }
4255 new->size = size;
4256
4257 /* Copy thresholds (if any) to new array */
4258 if (thresholds->primary) {
4259 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4260 sizeof(struct mem_cgroup_threshold));
4261 }
4262
4263 /* Add new threshold */
4264 new->entries[size - 1].eventfd = eventfd;
4265 new->entries[size - 1].threshold = threshold;
4266
4267 /* Sort thresholds. Registering of new threshold isn't time-critical */
4268 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4269 compare_thresholds, NULL);
4270
4271 /* Find current threshold */
4272 new->current_threshold = -1;
4273 for (i = 0; i < size; i++) {
4274 if (new->entries[i].threshold <= usage) {
4275 /*
4276 * new->current_threshold will not be used until
4277 * rcu_assign_pointer(), so it's safe to increment
4278 * it here.
4279 */
4280 ++new->current_threshold;
4281 } else
4282 break;
4283 }
4284
4285 /* Free old spare buffer and save old primary buffer as spare */
4286 kfree(thresholds->spare);
4287 thresholds->spare = thresholds->primary;
4288
4289 rcu_assign_pointer(thresholds->primary, new);
4290
4291 /* To be sure that nobody uses thresholds */
4292 synchronize_rcu();
4293
4294unlock:
4295 mutex_unlock(&memcg->thresholds_lock);
4296
4297 return ret;
4298}
4299
4300static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301 struct eventfd_ctx *eventfd, const char *args)
4302{
4303 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4304}
4305
4306static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4307 struct eventfd_ctx *eventfd, const char *args)
4308{
4309 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4310}
4311
4312static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313 struct eventfd_ctx *eventfd, enum res_type type)
4314{
4315 struct mem_cgroup_thresholds *thresholds;
4316 struct mem_cgroup_threshold_ary *new;
4317 unsigned long usage;
4318 int i, j, size, entries;
4319
4320 mutex_lock(&memcg->thresholds_lock);
4321
4322 if (type == _MEM) {
4323 thresholds = &memcg->thresholds;
4324 usage = mem_cgroup_usage(memcg, false);
4325 } else if (type == _MEMSWAP) {
4326 thresholds = &memcg->memsw_thresholds;
4327 usage = mem_cgroup_usage(memcg, true);
4328 } else
4329 BUG();
4330
4331 if (!thresholds->primary)
4332 goto unlock;
4333
4334 /* Check if a threshold crossed before removing */
4335 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4336
4337 /* Calculate new number of threshold */
4338 size = entries = 0;
4339 for (i = 0; i < thresholds->primary->size; i++) {
4340 if (thresholds->primary->entries[i].eventfd != eventfd)
4341 size++;
4342 else
4343 entries++;
4344 }
4345
4346 new = thresholds->spare;
4347
4348 /* If no items related to eventfd have been cleared, nothing to do */
4349 if (!entries)
4350 goto unlock;
4351
4352 /* Set thresholds array to NULL if we don't have thresholds */
4353 if (!size) {
4354 kfree(new);
4355 new = NULL;
4356 goto swap_buffers;
4357 }
4358
4359 new->size = size;
4360
4361 /* Copy thresholds and find current threshold */
4362 new->current_threshold = -1;
4363 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4364 if (thresholds->primary->entries[i].eventfd == eventfd)
4365 continue;
4366
4367 new->entries[j] = thresholds->primary->entries[i];
4368 if (new->entries[j].threshold <= usage) {
4369 /*
4370 * new->current_threshold will not be used
4371 * until rcu_assign_pointer(), so it's safe to increment
4372 * it here.
4373 */
4374 ++new->current_threshold;
4375 }
4376 j++;
4377 }
4378
4379swap_buffers:
4380 /* Swap primary and spare array */
4381 thresholds->spare = thresholds->primary;
4382
4383 rcu_assign_pointer(thresholds->primary, new);
4384
4385 /* To be sure that nobody uses thresholds */
4386 synchronize_rcu();
4387
4388 /* If all events are unregistered, free the spare array */
4389 if (!new) {
4390 kfree(thresholds->spare);
4391 thresholds->spare = NULL;
4392 }
4393unlock:
4394 mutex_unlock(&memcg->thresholds_lock);
4395}
4396
4397static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398 struct eventfd_ctx *eventfd)
4399{
4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4401}
4402
4403static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404 struct eventfd_ctx *eventfd)
4405{
4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4407}
4408
4409static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4410 struct eventfd_ctx *eventfd, const char *args)
4411{
4412 struct mem_cgroup_eventfd_list *event;
4413
4414 event = kmalloc(sizeof(*event), GFP_KERNEL);
4415 if (!event)
4416 return -ENOMEM;
4417
4418 spin_lock(&memcg_oom_lock);
4419
4420 event->eventfd = eventfd;
4421 list_add(&event->list, &memcg->oom_notify);
4422
4423 /* already in OOM ? */
4424 if (memcg->under_oom)
4425 eventfd_signal(eventfd, 1);
4426 spin_unlock(&memcg_oom_lock);
4427
4428 return 0;
4429}
4430
4431static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4432 struct eventfd_ctx *eventfd)
4433{
4434 struct mem_cgroup_eventfd_list *ev, *tmp;
4435
4436 spin_lock(&memcg_oom_lock);
4437
4438 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4439 if (ev->eventfd == eventfd) {
4440 list_del(&ev->list);
4441 kfree(ev);
4442 }
4443 }
4444
4445 spin_unlock(&memcg_oom_lock);
4446}
4447
4448static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449{
4450 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4451
4452 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4454 seq_printf(sf, "oom_kill %lu\n",
4455 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4456 return 0;
4457}
4458
4459static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460 struct cftype *cft, u64 val)
4461{
4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463
4464 /* cannot set to root cgroup and only 0 and 1 are allowed */
4465 if (!css->parent || !((val == 0) || (val == 1)))
4466 return -EINVAL;
4467
4468 memcg->oom_kill_disable = val;
4469 if (!val)
4470 memcg_oom_recover(memcg);
4471
4472 return 0;
4473}
4474
4475#ifdef CONFIG_CGROUP_WRITEBACK
4476
4477#include <trace/events/writeback.h>
4478
4479static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4480{
4481 return wb_domain_init(&memcg->cgwb_domain, gfp);
4482}
4483
4484static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4485{
4486 wb_domain_exit(&memcg->cgwb_domain);
4487}
4488
4489static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4490{
4491 wb_domain_size_changed(&memcg->cgwb_domain);
4492}
4493
4494struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4495{
4496 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4497
4498 if (!memcg->css.parent)
4499 return NULL;
4500
4501 return &memcg->cgwb_domain;
4502}
4503
4504/*
4505 * idx can be of type enum memcg_stat_item or node_stat_item.
4506 * Keep in sync with memcg_exact_page().
4507 */
4508static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4509{
4510 long x = atomic_long_read(&memcg->vmstats[idx]);
4511 int cpu;
4512
4513 for_each_online_cpu(cpu)
4514 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4515 if (x < 0)
4516 x = 0;
4517 return x;
4518}
4519
4520/**
4521 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4522 * @wb: bdi_writeback in question
4523 * @pfilepages: out parameter for number of file pages
4524 * @pheadroom: out parameter for number of allocatable pages according to memcg
4525 * @pdirty: out parameter for number of dirty pages
4526 * @pwriteback: out parameter for number of pages under writeback
4527 *
4528 * Determine the numbers of file, headroom, dirty, and writeback pages in
4529 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4530 * is a bit more involved.
4531 *
4532 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4533 * headroom is calculated as the lowest headroom of itself and the
4534 * ancestors. Note that this doesn't consider the actual amount of
4535 * available memory in the system. The caller should further cap
4536 * *@pheadroom accordingly.
4537 */
4538void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4539 unsigned long *pheadroom, unsigned long *pdirty,
4540 unsigned long *pwriteback)
4541{
4542 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4543 struct mem_cgroup *parent;
4544
4545 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4546
4547 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4548 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4549 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4550 *pheadroom = PAGE_COUNTER_MAX;
4551
4552 while ((parent = parent_mem_cgroup(memcg))) {
4553 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4554 READ_ONCE(memcg->memory.high));
4555 unsigned long used = page_counter_read(&memcg->memory);
4556
4557 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4558 memcg = parent;
4559 }
4560}
4561
4562/*
4563 * Foreign dirty flushing
4564 *
4565 * There's an inherent mismatch between memcg and writeback. The former
4566 * trackes ownership per-page while the latter per-inode. This was a
4567 * deliberate design decision because honoring per-page ownership in the
4568 * writeback path is complicated, may lead to higher CPU and IO overheads
4569 * and deemed unnecessary given that write-sharing an inode across
4570 * different cgroups isn't a common use-case.
4571 *
4572 * Combined with inode majority-writer ownership switching, this works well
4573 * enough in most cases but there are some pathological cases. For
4574 * example, let's say there are two cgroups A and B which keep writing to
4575 * different but confined parts of the same inode. B owns the inode and
4576 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4577 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4578 * triggering background writeback. A will be slowed down without a way to
4579 * make writeback of the dirty pages happen.
4580 *
4581 * Conditions like the above can lead to a cgroup getting repatedly and
4582 * severely throttled after making some progress after each
4583 * dirty_expire_interval while the underyling IO device is almost
4584 * completely idle.
4585 *
4586 * Solving this problem completely requires matching the ownership tracking
4587 * granularities between memcg and writeback in either direction. However,
4588 * the more egregious behaviors can be avoided by simply remembering the
4589 * most recent foreign dirtying events and initiating remote flushes on
4590 * them when local writeback isn't enough to keep the memory clean enough.
4591 *
4592 * The following two functions implement such mechanism. When a foreign
4593 * page - a page whose memcg and writeback ownerships don't match - is
4594 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4595 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4596 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4597 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4598 * foreign bdi_writebacks which haven't expired. Both the numbers of
4599 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4600 * limited to MEMCG_CGWB_FRN_CNT.
4601 *
4602 * The mechanism only remembers IDs and doesn't hold any object references.
4603 * As being wrong occasionally doesn't matter, updates and accesses to the
4604 * records are lockless and racy.
4605 */
4606void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4607 struct bdi_writeback *wb)
4608{
4609 struct mem_cgroup *memcg = page->mem_cgroup;
4610 struct memcg_cgwb_frn *frn;
4611 u64 now = get_jiffies_64();
4612 u64 oldest_at = now;
4613 int oldest = -1;
4614 int i;
4615
4616 trace_track_foreign_dirty(page, wb);
4617
4618 /*
4619 * Pick the slot to use. If there is already a slot for @wb, keep
4620 * using it. If not replace the oldest one which isn't being
4621 * written out.
4622 */
4623 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4624 frn = &memcg->cgwb_frn[i];
4625 if (frn->bdi_id == wb->bdi->id &&
4626 frn->memcg_id == wb->memcg_css->id)
4627 break;
4628 if (time_before64(frn->at, oldest_at) &&
4629 atomic_read(&frn->done.cnt) == 1) {
4630 oldest = i;
4631 oldest_at = frn->at;
4632 }
4633 }
4634
4635 if (i < MEMCG_CGWB_FRN_CNT) {
4636 /*
4637 * Re-using an existing one. Update timestamp lazily to
4638 * avoid making the cacheline hot. We want them to be
4639 * reasonably up-to-date and significantly shorter than
4640 * dirty_expire_interval as that's what expires the record.
4641 * Use the shorter of 1s and dirty_expire_interval / 8.
4642 */
4643 unsigned long update_intv =
4644 min_t(unsigned long, HZ,
4645 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4646
4647 if (time_before64(frn->at, now - update_intv))
4648 frn->at = now;
4649 } else if (oldest >= 0) {
4650 /* replace the oldest free one */
4651 frn = &memcg->cgwb_frn[oldest];
4652 frn->bdi_id = wb->bdi->id;
4653 frn->memcg_id = wb->memcg_css->id;
4654 frn->at = now;
4655 }
4656}
4657
4658/* issue foreign writeback flushes for recorded foreign dirtying events */
4659void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4660{
4661 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4662 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4663 u64 now = jiffies_64;
4664 int i;
4665
4666 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4667 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4668
4669 /*
4670 * If the record is older than dirty_expire_interval,
4671 * writeback on it has already started. No need to kick it
4672 * off again. Also, don't start a new one if there's
4673 * already one in flight.
4674 */
4675 if (time_after64(frn->at, now - intv) &&
4676 atomic_read(&frn->done.cnt) == 1) {
4677 frn->at = 0;
4678 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4679 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4680 WB_REASON_FOREIGN_FLUSH,
4681 &frn->done);
4682 }
4683 }
4684}
4685
4686#else /* CONFIG_CGROUP_WRITEBACK */
4687
4688static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4689{
4690 return 0;
4691}
4692
4693static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4694{
4695}
4696
4697static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4698{
4699}
4700
4701#endif /* CONFIG_CGROUP_WRITEBACK */
4702
4703/*
4704 * DO NOT USE IN NEW FILES.
4705 *
4706 * "cgroup.event_control" implementation.
4707 *
4708 * This is way over-engineered. It tries to support fully configurable
4709 * events for each user. Such level of flexibility is completely
4710 * unnecessary especially in the light of the planned unified hierarchy.
4711 *
4712 * Please deprecate this and replace with something simpler if at all
4713 * possible.
4714 */
4715
4716/*
4717 * Unregister event and free resources.
4718 *
4719 * Gets called from workqueue.
4720 */
4721static void memcg_event_remove(struct work_struct *work)
4722{
4723 struct mem_cgroup_event *event =
4724 container_of(work, struct mem_cgroup_event, remove);
4725 struct mem_cgroup *memcg = event->memcg;
4726
4727 remove_wait_queue(event->wqh, &event->wait);
4728
4729 event->unregister_event(memcg, event->eventfd);
4730
4731 /* Notify userspace the event is going away. */
4732 eventfd_signal(event->eventfd, 1);
4733
4734 eventfd_ctx_put(event->eventfd);
4735 kfree(event);
4736 css_put(&memcg->css);
4737}
4738
4739/*
4740 * Gets called on EPOLLHUP on eventfd when user closes it.
4741 *
4742 * Called with wqh->lock held and interrupts disabled.
4743 */
4744static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4745 int sync, void *key)
4746{
4747 struct mem_cgroup_event *event =
4748 container_of(wait, struct mem_cgroup_event, wait);
4749 struct mem_cgroup *memcg = event->memcg;
4750 __poll_t flags = key_to_poll(key);
4751
4752 if (flags & EPOLLHUP) {
4753 /*
4754 * If the event has been detached at cgroup removal, we
4755 * can simply return knowing the other side will cleanup
4756 * for us.
4757 *
4758 * We can't race against event freeing since the other
4759 * side will require wqh->lock via remove_wait_queue(),
4760 * which we hold.
4761 */
4762 spin_lock(&memcg->event_list_lock);
4763 if (!list_empty(&event->list)) {
4764 list_del_init(&event->list);
4765 /*
4766 * We are in atomic context, but cgroup_event_remove()
4767 * may sleep, so we have to call it in workqueue.
4768 */
4769 schedule_work(&event->remove);
4770 }
4771 spin_unlock(&memcg->event_list_lock);
4772 }
4773
4774 return 0;
4775}
4776
4777static void memcg_event_ptable_queue_proc(struct file *file,
4778 wait_queue_head_t *wqh, poll_table *pt)
4779{
4780 struct mem_cgroup_event *event =
4781 container_of(pt, struct mem_cgroup_event, pt);
4782
4783 event->wqh = wqh;
4784 add_wait_queue(wqh, &event->wait);
4785}
4786
4787/*
4788 * DO NOT USE IN NEW FILES.
4789 *
4790 * Parse input and register new cgroup event handler.
4791 *
4792 * Input must be in format '<event_fd> <control_fd> <args>'.
4793 * Interpretation of args is defined by control file implementation.
4794 */
4795static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4796 char *buf, size_t nbytes, loff_t off)
4797{
4798 struct cgroup_subsys_state *css = of_css(of);
4799 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800 struct mem_cgroup_event *event;
4801 struct cgroup_subsys_state *cfile_css;
4802 unsigned int efd, cfd;
4803 struct fd efile;
4804 struct fd cfile;
4805 const char *name;
4806 char *endp;
4807 int ret;
4808
4809 buf = strstrip(buf);
4810
4811 efd = simple_strtoul(buf, &endp, 10);
4812 if (*endp != ' ')
4813 return -EINVAL;
4814 buf = endp + 1;
4815
4816 cfd = simple_strtoul(buf, &endp, 10);
4817 if ((*endp != ' ') && (*endp != '\0'))
4818 return -EINVAL;
4819 buf = endp + 1;
4820
4821 event = kzalloc(sizeof(*event), GFP_KERNEL);
4822 if (!event)
4823 return -ENOMEM;
4824
4825 event->memcg = memcg;
4826 INIT_LIST_HEAD(&event->list);
4827 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4828 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4829 INIT_WORK(&event->remove, memcg_event_remove);
4830
4831 efile = fdget(efd);
4832 if (!efile.file) {
4833 ret = -EBADF;
4834 goto out_kfree;
4835 }
4836
4837 event->eventfd = eventfd_ctx_fileget(efile.file);
4838 if (IS_ERR(event->eventfd)) {
4839 ret = PTR_ERR(event->eventfd);
4840 goto out_put_efile;
4841 }
4842
4843 cfile = fdget(cfd);
4844 if (!cfile.file) {
4845 ret = -EBADF;
4846 goto out_put_eventfd;
4847 }
4848
4849 /* the process need read permission on control file */
4850 /* AV: shouldn't we check that it's been opened for read instead? */
4851 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4852 if (ret < 0)
4853 goto out_put_cfile;
4854
4855 /*
4856 * Determine the event callbacks and set them in @event. This used
4857 * to be done via struct cftype but cgroup core no longer knows
4858 * about these events. The following is crude but the whole thing
4859 * is for compatibility anyway.
4860 *
4861 * DO NOT ADD NEW FILES.
4862 */
4863 name = cfile.file->f_path.dentry->d_name.name;
4864
4865 if (!strcmp(name, "memory.usage_in_bytes")) {
4866 event->register_event = mem_cgroup_usage_register_event;
4867 event->unregister_event = mem_cgroup_usage_unregister_event;
4868 } else if (!strcmp(name, "memory.oom_control")) {
4869 event->register_event = mem_cgroup_oom_register_event;
4870 event->unregister_event = mem_cgroup_oom_unregister_event;
4871 } else if (!strcmp(name, "memory.pressure_level")) {
4872 event->register_event = vmpressure_register_event;
4873 event->unregister_event = vmpressure_unregister_event;
4874 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4875 event->register_event = memsw_cgroup_usage_register_event;
4876 event->unregister_event = memsw_cgroup_usage_unregister_event;
4877 } else {
4878 ret = -EINVAL;
4879 goto out_put_cfile;
4880 }
4881
4882 /*
4883 * Verify @cfile should belong to @css. Also, remaining events are
4884 * automatically removed on cgroup destruction but the removal is
4885 * asynchronous, so take an extra ref on @css.
4886 */
4887 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4888 &memory_cgrp_subsys);
4889 ret = -EINVAL;
4890 if (IS_ERR(cfile_css))
4891 goto out_put_cfile;
4892 if (cfile_css != css) {
4893 css_put(cfile_css);
4894 goto out_put_cfile;
4895 }
4896
4897 ret = event->register_event(memcg, event->eventfd, buf);
4898 if (ret)
4899 goto out_put_css;
4900
4901 vfs_poll(efile.file, &event->pt);
4902
4903 spin_lock(&memcg->event_list_lock);
4904 list_add(&event->list, &memcg->event_list);
4905 spin_unlock(&memcg->event_list_lock);
4906
4907 fdput(cfile);
4908 fdput(efile);
4909
4910 return nbytes;
4911
4912out_put_css:
4913 css_put(css);
4914out_put_cfile:
4915 fdput(cfile);
4916out_put_eventfd:
4917 eventfd_ctx_put(event->eventfd);
4918out_put_efile:
4919 fdput(efile);
4920out_kfree:
4921 kfree(event);
4922
4923 return ret;
4924}
4925
4926static struct cftype mem_cgroup_legacy_files[] = {
4927 {
4928 .name = "usage_in_bytes",
4929 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4930 .read_u64 = mem_cgroup_read_u64,
4931 },
4932 {
4933 .name = "max_usage_in_bytes",
4934 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4935 .write = mem_cgroup_reset,
4936 .read_u64 = mem_cgroup_read_u64,
4937 },
4938 {
4939 .name = "limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4941 .write = mem_cgroup_write,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944 {
4945 .name = "soft_limit_in_bytes",
4946 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4947 .write = mem_cgroup_write,
4948 .read_u64 = mem_cgroup_read_u64,
4949 },
4950 {
4951 .name = "failcnt",
4952 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4953 .write = mem_cgroup_reset,
4954 .read_u64 = mem_cgroup_read_u64,
4955 },
4956 {
4957 .name = "stat",
4958 .seq_show = memcg_stat_show,
4959 },
4960 {
4961 .name = "force_empty",
4962 .write = mem_cgroup_force_empty_write,
4963 },
4964 {
4965 .name = "use_hierarchy",
4966 .write_u64 = mem_cgroup_hierarchy_write,
4967 .read_u64 = mem_cgroup_hierarchy_read,
4968 },
4969 {
4970 .name = "cgroup.event_control", /* XXX: for compat */
4971 .write = memcg_write_event_control,
4972 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4973 },
4974 {
4975 .name = "swappiness",
4976 .read_u64 = mem_cgroup_swappiness_read,
4977 .write_u64 = mem_cgroup_swappiness_write,
4978 },
4979 {
4980 .name = "move_charge_at_immigrate",
4981 .read_u64 = mem_cgroup_move_charge_read,
4982 .write_u64 = mem_cgroup_move_charge_write,
4983 },
4984 {
4985 .name = "oom_control",
4986 .seq_show = mem_cgroup_oom_control_read,
4987 .write_u64 = mem_cgroup_oom_control_write,
4988 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4989 },
4990 {
4991 .name = "pressure_level",
4992 },
4993#ifdef CONFIG_NUMA
4994 {
4995 .name = "numa_stat",
4996 .seq_show = memcg_numa_stat_show,
4997 },
4998#endif
4999 {
5000 .name = "kmem.limit_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5002 .write = mem_cgroup_write,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005 {
5006 .name = "kmem.usage_in_bytes",
5007 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5008 .read_u64 = mem_cgroup_read_u64,
5009 },
5010 {
5011 .name = "kmem.failcnt",
5012 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5013 .write = mem_cgroup_reset,
5014 .read_u64 = mem_cgroup_read_u64,
5015 },
5016 {
5017 .name = "kmem.max_usage_in_bytes",
5018 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5019 .write = mem_cgroup_reset,
5020 .read_u64 = mem_cgroup_read_u64,
5021 },
5022#if defined(CONFIG_MEMCG_KMEM) && \
5023 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5024 {
5025 .name = "kmem.slabinfo",
5026 .seq_show = memcg_slab_show,
5027 },
5028#endif
5029 {
5030 .name = "kmem.tcp.limit_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5032 .write = mem_cgroup_write,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 {
5036 .name = "kmem.tcp.usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5038 .read_u64 = mem_cgroup_read_u64,
5039 },
5040 {
5041 .name = "kmem.tcp.failcnt",
5042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5043 .write = mem_cgroup_reset,
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
5046 {
5047 .name = "kmem.tcp.max_usage_in_bytes",
5048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5049 .write = mem_cgroup_reset,
5050 .read_u64 = mem_cgroup_read_u64,
5051 },
5052 { }, /* terminate */
5053};
5054
5055/*
5056 * Private memory cgroup IDR
5057 *
5058 * Swap-out records and page cache shadow entries need to store memcg
5059 * references in constrained space, so we maintain an ID space that is
5060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5061 * memory-controlled cgroups to 64k.
5062 *
5063 * However, there usually are many references to the offline CSS after
5064 * the cgroup has been destroyed, such as page cache or reclaimable
5065 * slab objects, that don't need to hang on to the ID. We want to keep
5066 * those dead CSS from occupying IDs, or we might quickly exhaust the
5067 * relatively small ID space and prevent the creation of new cgroups
5068 * even when there are much fewer than 64k cgroups - possibly none.
5069 *
5070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5071 * be freed and recycled when it's no longer needed, which is usually
5072 * when the CSS is offlined.
5073 *
5074 * The only exception to that are records of swapped out tmpfs/shmem
5075 * pages that need to be attributed to live ancestors on swapin. But
5076 * those references are manageable from userspace.
5077 */
5078
5079static DEFINE_IDR(mem_cgroup_idr);
5080
5081static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5082{
5083 if (memcg->id.id > 0) {
5084 idr_remove(&mem_cgroup_idr, memcg->id.id);
5085 memcg->id.id = 0;
5086 }
5087}
5088
5089static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5090 unsigned int n)
5091{
5092 refcount_add(n, &memcg->id.ref);
5093}
5094
5095static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5096{
5097 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5098 mem_cgroup_id_remove(memcg);
5099
5100 /* Memcg ID pins CSS */
5101 css_put(&memcg->css);
5102 }
5103}
5104
5105static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5106{
5107 mem_cgroup_id_put_many(memcg, 1);
5108}
5109
5110/**
5111 * mem_cgroup_from_id - look up a memcg from a memcg id
5112 * @id: the memcg id to look up
5113 *
5114 * Caller must hold rcu_read_lock().
5115 */
5116struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5117{
5118 WARN_ON_ONCE(!rcu_read_lock_held());
5119 return idr_find(&mem_cgroup_idr, id);
5120}
5121
5122static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5123{
5124 struct mem_cgroup_per_node *pn;
5125 int tmp = node;
5126 /*
5127 * This routine is called against possible nodes.
5128 * But it's BUG to call kmalloc() against offline node.
5129 *
5130 * TODO: this routine can waste much memory for nodes which will
5131 * never be onlined. It's better to use memory hotplug callback
5132 * function.
5133 */
5134 if (!node_state(node, N_NORMAL_MEMORY))
5135 tmp = -1;
5136 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5137 if (!pn)
5138 return 1;
5139
5140 /* We charge the parent cgroup, never the current task */
5141 WARN_ON_ONCE(!current->active_memcg);
5142
5143 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5144 GFP_KERNEL_ACCOUNT);
5145 if (!pn->lruvec_stat_local) {
5146 kfree(pn);
5147 return 1;
5148 }
5149
5150 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5151 GFP_KERNEL_ACCOUNT);
5152 if (!pn->lruvec_stat_cpu) {
5153 free_percpu(pn->lruvec_stat_local);
5154 kfree(pn);
5155 return 1;
5156 }
5157
5158 lruvec_init(&pn->lruvec);
5159 pn->usage_in_excess = 0;
5160 pn->on_tree = false;
5161 pn->memcg = memcg;
5162
5163 memcg->nodeinfo[node] = pn;
5164 return 0;
5165}
5166
5167static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5168{
5169 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5170
5171 if (!pn)
5172 return;
5173
5174 free_percpu(pn->lruvec_stat_cpu);
5175 free_percpu(pn->lruvec_stat_local);
5176 kfree(pn);
5177}
5178
5179static void __mem_cgroup_free(struct mem_cgroup *memcg)
5180{
5181 int node;
5182
5183 for_each_node(node)
5184 free_mem_cgroup_per_node_info(memcg, node);
5185 free_percpu(memcg->vmstats_percpu);
5186 free_percpu(memcg->vmstats_local);
5187 kfree(memcg);
5188}
5189
5190static void mem_cgroup_free(struct mem_cgroup *memcg)
5191{
5192 memcg_wb_domain_exit(memcg);
5193 /*
5194 * Flush percpu vmstats and vmevents to guarantee the value correctness
5195 * on parent's and all ancestor levels.
5196 */
5197 memcg_flush_percpu_vmstats(memcg);
5198 memcg_flush_percpu_vmevents(memcg);
5199 __mem_cgroup_free(memcg);
5200}
5201
5202static struct mem_cgroup *mem_cgroup_alloc(void)
5203{
5204 struct mem_cgroup *memcg;
5205 unsigned int size;
5206 int node;
5207 int __maybe_unused i;
5208 long error = -ENOMEM;
5209
5210 size = sizeof(struct mem_cgroup);
5211 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5212
5213 memcg = kzalloc(size, GFP_KERNEL);
5214 if (!memcg)
5215 return ERR_PTR(error);
5216
5217 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5218 1, MEM_CGROUP_ID_MAX,
5219 GFP_KERNEL);
5220 if (memcg->id.id < 0) {
5221 error = memcg->id.id;
5222 goto fail;
5223 }
5224
5225 /* We charge the parent cgroup, never the current task */
5226 WARN_ON_ONCE(!current->active_memcg);
5227
5228 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5229 GFP_KERNEL_ACCOUNT);
5230 if (!memcg->vmstats_local)
5231 goto fail;
5232
5233 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5234 GFP_KERNEL_ACCOUNT);
5235 if (!memcg->vmstats_percpu)
5236 goto fail;
5237
5238 for_each_node(node)
5239 if (alloc_mem_cgroup_per_node_info(memcg, node))
5240 goto fail;
5241
5242 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5243 goto fail;
5244
5245 INIT_WORK(&memcg->high_work, high_work_func);
5246 INIT_LIST_HEAD(&memcg->oom_notify);
5247 mutex_init(&memcg->thresholds_lock);
5248 spin_lock_init(&memcg->move_lock);
5249 vmpressure_init(&memcg->vmpressure);
5250 INIT_LIST_HEAD(&memcg->event_list);
5251 spin_lock_init(&memcg->event_list_lock);
5252 memcg->socket_pressure = jiffies;
5253#ifdef CONFIG_MEMCG_KMEM
5254 memcg->kmemcg_id = -1;
5255 INIT_LIST_HEAD(&memcg->objcg_list);
5256#endif
5257#ifdef CONFIG_CGROUP_WRITEBACK
5258 INIT_LIST_HEAD(&memcg->cgwb_list);
5259 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5260 memcg->cgwb_frn[i].done =
5261 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5262#endif
5263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5264 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5265 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5266 memcg->deferred_split_queue.split_queue_len = 0;
5267#endif
5268 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5269 return memcg;
5270fail:
5271 mem_cgroup_id_remove(memcg);
5272 __mem_cgroup_free(memcg);
5273 return ERR_PTR(error);
5274}
5275
5276static struct cgroup_subsys_state * __ref
5277mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5278{
5279 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5280 struct mem_cgroup *memcg;
5281 long error = -ENOMEM;
5282
5283 memalloc_use_memcg(parent);
5284 memcg = mem_cgroup_alloc();
5285 memalloc_unuse_memcg();
5286 if (IS_ERR(memcg))
5287 return ERR_CAST(memcg);
5288
5289 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5290 memcg->soft_limit = PAGE_COUNTER_MAX;
5291 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5292 if (parent) {
5293 memcg->swappiness = mem_cgroup_swappiness(parent);
5294 memcg->oom_kill_disable = parent->oom_kill_disable;
5295 }
5296 if (parent && parent->use_hierarchy) {
5297 memcg->use_hierarchy = true;
5298 page_counter_init(&memcg->memory, &parent->memory);
5299 page_counter_init(&memcg->swap, &parent->swap);
5300 page_counter_init(&memcg->memsw, &parent->memsw);
5301 page_counter_init(&memcg->kmem, &parent->kmem);
5302 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5303 } else {
5304 page_counter_init(&memcg->memory, NULL);
5305 page_counter_init(&memcg->swap, NULL);
5306 page_counter_init(&memcg->memsw, NULL);
5307 page_counter_init(&memcg->kmem, NULL);
5308 page_counter_init(&memcg->tcpmem, NULL);
5309 /*
5310 * Deeper hierachy with use_hierarchy == false doesn't make
5311 * much sense so let cgroup subsystem know about this
5312 * unfortunate state in our controller.
5313 */
5314 if (parent != root_mem_cgroup)
5315 memory_cgrp_subsys.broken_hierarchy = true;
5316 }
5317
5318 /* The following stuff does not apply to the root */
5319 if (!parent) {
5320 root_mem_cgroup = memcg;
5321 return &memcg->css;
5322 }
5323
5324 error = memcg_online_kmem(memcg);
5325 if (error)
5326 goto fail;
5327
5328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5329 static_branch_inc(&memcg_sockets_enabled_key);
5330
5331 return &memcg->css;
5332fail:
5333 mem_cgroup_id_remove(memcg);
5334 mem_cgroup_free(memcg);
5335 return ERR_PTR(error);
5336}
5337
5338static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5339{
5340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341
5342 /*
5343 * A memcg must be visible for memcg_expand_shrinker_maps()
5344 * by the time the maps are allocated. So, we allocate maps
5345 * here, when for_each_mem_cgroup() can't skip it.
5346 */
5347 if (memcg_alloc_shrinker_maps(memcg)) {
5348 mem_cgroup_id_remove(memcg);
5349 return -ENOMEM;
5350 }
5351
5352 /* Online state pins memcg ID, memcg ID pins CSS */
5353 refcount_set(&memcg->id.ref, 1);
5354 css_get(css);
5355 return 0;
5356}
5357
5358static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5359{
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361 struct mem_cgroup_event *event, *tmp;
5362
5363 /*
5364 * Unregister events and notify userspace.
5365 * Notify userspace about cgroup removing only after rmdir of cgroup
5366 * directory to avoid race between userspace and kernelspace.
5367 */
5368 spin_lock(&memcg->event_list_lock);
5369 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5370 list_del_init(&event->list);
5371 schedule_work(&event->remove);
5372 }
5373 spin_unlock(&memcg->event_list_lock);
5374
5375 page_counter_set_min(&memcg->memory, 0);
5376 page_counter_set_low(&memcg->memory, 0);
5377
5378 memcg_offline_kmem(memcg);
5379 wb_memcg_offline(memcg);
5380
5381 drain_all_stock(memcg);
5382
5383 mem_cgroup_id_put(memcg);
5384}
5385
5386static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5387{
5388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5389
5390 invalidate_reclaim_iterators(memcg);
5391}
5392
5393static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5394{
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396 int __maybe_unused i;
5397
5398#ifdef CONFIG_CGROUP_WRITEBACK
5399 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5400 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5401#endif
5402 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5403 static_branch_dec(&memcg_sockets_enabled_key);
5404
5405 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5406 static_branch_dec(&memcg_sockets_enabled_key);
5407
5408 vmpressure_cleanup(&memcg->vmpressure);
5409 cancel_work_sync(&memcg->high_work);
5410 mem_cgroup_remove_from_trees(memcg);
5411 memcg_free_shrinker_maps(memcg);
5412 memcg_free_kmem(memcg);
5413 mem_cgroup_free(memcg);
5414}
5415
5416/**
5417 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5418 * @css: the target css
5419 *
5420 * Reset the states of the mem_cgroup associated with @css. This is
5421 * invoked when the userland requests disabling on the default hierarchy
5422 * but the memcg is pinned through dependency. The memcg should stop
5423 * applying policies and should revert to the vanilla state as it may be
5424 * made visible again.
5425 *
5426 * The current implementation only resets the essential configurations.
5427 * This needs to be expanded to cover all the visible parts.
5428 */
5429static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5430{
5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432
5433 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5434 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5435 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5436 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5437 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5438 page_counter_set_min(&memcg->memory, 0);
5439 page_counter_set_low(&memcg->memory, 0);
5440 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5441 memcg->soft_limit = PAGE_COUNTER_MAX;
5442 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5443 memcg_wb_domain_size_changed(memcg);
5444}
5445
5446#ifdef CONFIG_MMU
5447/* Handlers for move charge at task migration. */
5448static int mem_cgroup_do_precharge(unsigned long count)
5449{
5450 int ret;
5451
5452 /* Try a single bulk charge without reclaim first, kswapd may wake */
5453 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5454 if (!ret) {
5455 mc.precharge += count;
5456 return ret;
5457 }
5458
5459 /* Try charges one by one with reclaim, but do not retry */
5460 while (count--) {
5461 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5462 if (ret)
5463 return ret;
5464 mc.precharge++;
5465 cond_resched();
5466 }
5467 return 0;
5468}
5469
5470union mc_target {
5471 struct page *page;
5472 swp_entry_t ent;
5473};
5474
5475enum mc_target_type {
5476 MC_TARGET_NONE = 0,
5477 MC_TARGET_PAGE,
5478 MC_TARGET_SWAP,
5479 MC_TARGET_DEVICE,
5480};
5481
5482static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5483 unsigned long addr, pte_t ptent)
5484{
5485 struct page *page = vm_normal_page(vma, addr, ptent);
5486
5487 if (!page || !page_mapped(page))
5488 return NULL;
5489 if (PageAnon(page)) {
5490 if (!(mc.flags & MOVE_ANON))
5491 return NULL;
5492 } else {
5493 if (!(mc.flags & MOVE_FILE))
5494 return NULL;
5495 }
5496 if (!get_page_unless_zero(page))
5497 return NULL;
5498
5499 return page;
5500}
5501
5502#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5503static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5504 pte_t ptent, swp_entry_t *entry)
5505{
5506 struct page *page = NULL;
5507 swp_entry_t ent = pte_to_swp_entry(ptent);
5508
5509 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5510 return NULL;
5511
5512 /*
5513 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5514 * a device and because they are not accessible by CPU they are store
5515 * as special swap entry in the CPU page table.
5516 */
5517 if (is_device_private_entry(ent)) {
5518 page = device_private_entry_to_page(ent);
5519 /*
5520 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5521 * a refcount of 1 when free (unlike normal page)
5522 */
5523 if (!page_ref_add_unless(page, 1, 1))
5524 return NULL;
5525 return page;
5526 }
5527
5528 /*
5529 * Because lookup_swap_cache() updates some statistics counter,
5530 * we call find_get_page() with swapper_space directly.
5531 */
5532 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5533 entry->val = ent.val;
5534
5535 return page;
5536}
5537#else
5538static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5539 pte_t ptent, swp_entry_t *entry)
5540{
5541 return NULL;
5542}
5543#endif
5544
5545static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5546 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5547{
5548 struct page *page = NULL;
5549 struct address_space *mapping;
5550 pgoff_t pgoff;
5551
5552 if (!vma->vm_file) /* anonymous vma */
5553 return NULL;
5554 if (!(mc.flags & MOVE_FILE))
5555 return NULL;
5556
5557 mapping = vma->vm_file->f_mapping;
5558 pgoff = linear_page_index(vma, addr);
5559
5560 /* page is moved even if it's not RSS of this task(page-faulted). */
5561#ifdef CONFIG_SWAP
5562 /* shmem/tmpfs may report page out on swap: account for that too. */
5563 if (shmem_mapping(mapping)) {
5564 page = find_get_entry(mapping, pgoff);
5565 if (xa_is_value(page)) {
5566 swp_entry_t swp = radix_to_swp_entry(page);
5567 *entry = swp;
5568 page = find_get_page(swap_address_space(swp),
5569 swp_offset(swp));
5570 }
5571 } else
5572 page = find_get_page(mapping, pgoff);
5573#else
5574 page = find_get_page(mapping, pgoff);
5575#endif
5576 return page;
5577}
5578
5579/**
5580 * mem_cgroup_move_account - move account of the page
5581 * @page: the page
5582 * @compound: charge the page as compound or small page
5583 * @from: mem_cgroup which the page is moved from.
5584 * @to: mem_cgroup which the page is moved to. @from != @to.
5585 *
5586 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5587 *
5588 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5589 * from old cgroup.
5590 */
5591static int mem_cgroup_move_account(struct page *page,
5592 bool compound,
5593 struct mem_cgroup *from,
5594 struct mem_cgroup *to)
5595{
5596 struct lruvec *from_vec, *to_vec;
5597 struct pglist_data *pgdat;
5598 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5599 int ret;
5600
5601 VM_BUG_ON(from == to);
5602 VM_BUG_ON_PAGE(PageLRU(page), page);
5603 VM_BUG_ON(compound && !PageTransHuge(page));
5604
5605 /*
5606 * Prevent mem_cgroup_migrate() from looking at
5607 * page->mem_cgroup of its source page while we change it.
5608 */
5609 ret = -EBUSY;
5610 if (!trylock_page(page))
5611 goto out;
5612
5613 ret = -EINVAL;
5614 if (page->mem_cgroup != from)
5615 goto out_unlock;
5616
5617 pgdat = page_pgdat(page);
5618 from_vec = mem_cgroup_lruvec(from, pgdat);
5619 to_vec = mem_cgroup_lruvec(to, pgdat);
5620
5621 lock_page_memcg(page);
5622
5623 if (PageAnon(page)) {
5624 if (page_mapped(page)) {
5625 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5626 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5627 if (PageTransHuge(page)) {
5628 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5629 -nr_pages);
5630 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5631 nr_pages);
5632 }
5633
5634 }
5635 } else {
5636 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5637 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5638
5639 if (PageSwapBacked(page)) {
5640 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5641 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5642 }
5643
5644 if (page_mapped(page)) {
5645 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5647 }
5648
5649 if (PageDirty(page)) {
5650 struct address_space *mapping = page_mapping(page);
5651
5652 if (mapping_cap_account_dirty(mapping)) {
5653 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5654 -nr_pages);
5655 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5656 nr_pages);
5657 }
5658 }
5659 }
5660
5661 if (PageWriteback(page)) {
5662 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5663 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5664 }
5665
5666 /*
5667 * All state has been migrated, let's switch to the new memcg.
5668 *
5669 * It is safe to change page->mem_cgroup here because the page
5670 * is referenced, charged, isolated, and locked: we can't race
5671 * with (un)charging, migration, LRU putback, or anything else
5672 * that would rely on a stable page->mem_cgroup.
5673 *
5674 * Note that lock_page_memcg is a memcg lock, not a page lock,
5675 * to save space. As soon as we switch page->mem_cgroup to a
5676 * new memcg that isn't locked, the above state can change
5677 * concurrently again. Make sure we're truly done with it.
5678 */
5679 smp_mb();
5680
5681 css_get(&to->css);
5682 css_put(&from->css);
5683
5684 page->mem_cgroup = to;
5685
5686 __unlock_page_memcg(from);
5687
5688 ret = 0;
5689
5690 local_irq_disable();
5691 mem_cgroup_charge_statistics(to, page, nr_pages);
5692 memcg_check_events(to, page);
5693 mem_cgroup_charge_statistics(from, page, -nr_pages);
5694 memcg_check_events(from, page);
5695 local_irq_enable();
5696out_unlock:
5697 unlock_page(page);
5698out:
5699 return ret;
5700}
5701
5702/**
5703 * get_mctgt_type - get target type of moving charge
5704 * @vma: the vma the pte to be checked belongs
5705 * @addr: the address corresponding to the pte to be checked
5706 * @ptent: the pte to be checked
5707 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5708 *
5709 * Returns
5710 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5711 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5712 * move charge. if @target is not NULL, the page is stored in target->page
5713 * with extra refcnt got(Callers should handle it).
5714 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5715 * target for charge migration. if @target is not NULL, the entry is stored
5716 * in target->ent.
5717 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5718 * (so ZONE_DEVICE page and thus not on the lru).
5719 * For now we such page is charge like a regular page would be as for all
5720 * intent and purposes it is just special memory taking the place of a
5721 * regular page.
5722 *
5723 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5724 *
5725 * Called with pte lock held.
5726 */
5727
5728static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5729 unsigned long addr, pte_t ptent, union mc_target *target)
5730{
5731 struct page *page = NULL;
5732 enum mc_target_type ret = MC_TARGET_NONE;
5733 swp_entry_t ent = { .val = 0 };
5734
5735 if (pte_present(ptent))
5736 page = mc_handle_present_pte(vma, addr, ptent);
5737 else if (is_swap_pte(ptent))
5738 page = mc_handle_swap_pte(vma, ptent, &ent);
5739 else if (pte_none(ptent))
5740 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5741
5742 if (!page && !ent.val)
5743 return ret;
5744 if (page) {
5745 /*
5746 * Do only loose check w/o serialization.
5747 * mem_cgroup_move_account() checks the page is valid or
5748 * not under LRU exclusion.
5749 */
5750 if (page->mem_cgroup == mc.from) {
5751 ret = MC_TARGET_PAGE;
5752 if (is_device_private_page(page))
5753 ret = MC_TARGET_DEVICE;
5754 if (target)
5755 target->page = page;
5756 }
5757 if (!ret || !target)
5758 put_page(page);
5759 }
5760 /*
5761 * There is a swap entry and a page doesn't exist or isn't charged.
5762 * But we cannot move a tail-page in a THP.
5763 */
5764 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5765 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5766 ret = MC_TARGET_SWAP;
5767 if (target)
5768 target->ent = ent;
5769 }
5770 return ret;
5771}
5772
5773#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5774/*
5775 * We don't consider PMD mapped swapping or file mapped pages because THP does
5776 * not support them for now.
5777 * Caller should make sure that pmd_trans_huge(pmd) is true.
5778 */
5779static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5780 unsigned long addr, pmd_t pmd, union mc_target *target)
5781{
5782 struct page *page = NULL;
5783 enum mc_target_type ret = MC_TARGET_NONE;
5784
5785 if (unlikely(is_swap_pmd(pmd))) {
5786 VM_BUG_ON(thp_migration_supported() &&
5787 !is_pmd_migration_entry(pmd));
5788 return ret;
5789 }
5790 page = pmd_page(pmd);
5791 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5792 if (!(mc.flags & MOVE_ANON))
5793 return ret;
5794 if (page->mem_cgroup == mc.from) {
5795 ret = MC_TARGET_PAGE;
5796 if (target) {
5797 get_page(page);
5798 target->page = page;
5799 }
5800 }
5801 return ret;
5802}
5803#else
5804static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5805 unsigned long addr, pmd_t pmd, union mc_target *target)
5806{
5807 return MC_TARGET_NONE;
5808}
5809#endif
5810
5811static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5812 unsigned long addr, unsigned long end,
5813 struct mm_walk *walk)
5814{
5815 struct vm_area_struct *vma = walk->vma;
5816 pte_t *pte;
5817 spinlock_t *ptl;
5818
5819 ptl = pmd_trans_huge_lock(pmd, vma);
5820 if (ptl) {
5821 /*
5822 * Note their can not be MC_TARGET_DEVICE for now as we do not
5823 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5824 * this might change.
5825 */
5826 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5827 mc.precharge += HPAGE_PMD_NR;
5828 spin_unlock(ptl);
5829 return 0;
5830 }
5831
5832 if (pmd_trans_unstable(pmd))
5833 return 0;
5834 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5835 for (; addr != end; pte++, addr += PAGE_SIZE)
5836 if (get_mctgt_type(vma, addr, *pte, NULL))
5837 mc.precharge++; /* increment precharge temporarily */
5838 pte_unmap_unlock(pte - 1, ptl);
5839 cond_resched();
5840
5841 return 0;
5842}
5843
5844static const struct mm_walk_ops precharge_walk_ops = {
5845 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5846};
5847
5848static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5849{
5850 unsigned long precharge;
5851
5852 mmap_read_lock(mm);
5853 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5854 mmap_read_unlock(mm);
5855
5856 precharge = mc.precharge;
5857 mc.precharge = 0;
5858
5859 return precharge;
5860}
5861
5862static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5863{
5864 unsigned long precharge = mem_cgroup_count_precharge(mm);
5865
5866 VM_BUG_ON(mc.moving_task);
5867 mc.moving_task = current;
5868 return mem_cgroup_do_precharge(precharge);
5869}
5870
5871/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5872static void __mem_cgroup_clear_mc(void)
5873{
5874 struct mem_cgroup *from = mc.from;
5875 struct mem_cgroup *to = mc.to;
5876
5877 /* we must uncharge all the leftover precharges from mc.to */
5878 if (mc.precharge) {
5879 cancel_charge(mc.to, mc.precharge);
5880 mc.precharge = 0;
5881 }
5882 /*
5883 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5884 * we must uncharge here.
5885 */
5886 if (mc.moved_charge) {
5887 cancel_charge(mc.from, mc.moved_charge);
5888 mc.moved_charge = 0;
5889 }
5890 /* we must fixup refcnts and charges */
5891 if (mc.moved_swap) {
5892 /* uncharge swap account from the old cgroup */
5893 if (!mem_cgroup_is_root(mc.from))
5894 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5895
5896 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5897
5898 /*
5899 * we charged both to->memory and to->memsw, so we
5900 * should uncharge to->memory.
5901 */
5902 if (!mem_cgroup_is_root(mc.to))
5903 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5904
5905 mc.moved_swap = 0;
5906 }
5907 memcg_oom_recover(from);
5908 memcg_oom_recover(to);
5909 wake_up_all(&mc.waitq);
5910}
5911
5912static void mem_cgroup_clear_mc(void)
5913{
5914 struct mm_struct *mm = mc.mm;
5915
5916 /*
5917 * we must clear moving_task before waking up waiters at the end of
5918 * task migration.
5919 */
5920 mc.moving_task = NULL;
5921 __mem_cgroup_clear_mc();
5922 spin_lock(&mc.lock);
5923 mc.from = NULL;
5924 mc.to = NULL;
5925 mc.mm = NULL;
5926 spin_unlock(&mc.lock);
5927
5928 mmput(mm);
5929}
5930
5931static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5932{
5933 struct cgroup_subsys_state *css;
5934 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5935 struct mem_cgroup *from;
5936 struct task_struct *leader, *p;
5937 struct mm_struct *mm;
5938 unsigned long move_flags;
5939 int ret = 0;
5940
5941 /* charge immigration isn't supported on the default hierarchy */
5942 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5943 return 0;
5944
5945 /*
5946 * Multi-process migrations only happen on the default hierarchy
5947 * where charge immigration is not used. Perform charge
5948 * immigration if @tset contains a leader and whine if there are
5949 * multiple.
5950 */
5951 p = NULL;
5952 cgroup_taskset_for_each_leader(leader, css, tset) {
5953 WARN_ON_ONCE(p);
5954 p = leader;
5955 memcg = mem_cgroup_from_css(css);
5956 }
5957 if (!p)
5958 return 0;
5959
5960 /*
5961 * We are now commited to this value whatever it is. Changes in this
5962 * tunable will only affect upcoming migrations, not the current one.
5963 * So we need to save it, and keep it going.
5964 */
5965 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5966 if (!move_flags)
5967 return 0;
5968
5969 from = mem_cgroup_from_task(p);
5970
5971 VM_BUG_ON(from == memcg);
5972
5973 mm = get_task_mm(p);
5974 if (!mm)
5975 return 0;
5976 /* We move charges only when we move a owner of the mm */
5977 if (mm->owner == p) {
5978 VM_BUG_ON(mc.from);
5979 VM_BUG_ON(mc.to);
5980 VM_BUG_ON(mc.precharge);
5981 VM_BUG_ON(mc.moved_charge);
5982 VM_BUG_ON(mc.moved_swap);
5983
5984 spin_lock(&mc.lock);
5985 mc.mm = mm;
5986 mc.from = from;
5987 mc.to = memcg;
5988 mc.flags = move_flags;
5989 spin_unlock(&mc.lock);
5990 /* We set mc.moving_task later */
5991
5992 ret = mem_cgroup_precharge_mc(mm);
5993 if (ret)
5994 mem_cgroup_clear_mc();
5995 } else {
5996 mmput(mm);
5997 }
5998 return ret;
5999}
6000
6001static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6002{
6003 if (mc.to)
6004 mem_cgroup_clear_mc();
6005}
6006
6007static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6008 unsigned long addr, unsigned long end,
6009 struct mm_walk *walk)
6010{
6011 int ret = 0;
6012 struct vm_area_struct *vma = walk->vma;
6013 pte_t *pte;
6014 spinlock_t *ptl;
6015 enum mc_target_type target_type;
6016 union mc_target target;
6017 struct page *page;
6018
6019 ptl = pmd_trans_huge_lock(pmd, vma);
6020 if (ptl) {
6021 if (mc.precharge < HPAGE_PMD_NR) {
6022 spin_unlock(ptl);
6023 return 0;
6024 }
6025 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6026 if (target_type == MC_TARGET_PAGE) {
6027 page = target.page;
6028 if (!isolate_lru_page(page)) {
6029 if (!mem_cgroup_move_account(page, true,
6030 mc.from, mc.to)) {
6031 mc.precharge -= HPAGE_PMD_NR;
6032 mc.moved_charge += HPAGE_PMD_NR;
6033 }
6034 putback_lru_page(page);
6035 }
6036 put_page(page);
6037 } else if (target_type == MC_TARGET_DEVICE) {
6038 page = target.page;
6039 if (!mem_cgroup_move_account(page, true,
6040 mc.from, mc.to)) {
6041 mc.precharge -= HPAGE_PMD_NR;
6042 mc.moved_charge += HPAGE_PMD_NR;
6043 }
6044 put_page(page);
6045 }
6046 spin_unlock(ptl);
6047 return 0;
6048 }
6049
6050 if (pmd_trans_unstable(pmd))
6051 return 0;
6052retry:
6053 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6054 for (; addr != end; addr += PAGE_SIZE) {
6055 pte_t ptent = *(pte++);
6056 bool device = false;
6057 swp_entry_t ent;
6058
6059 if (!mc.precharge)
6060 break;
6061
6062 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6063 case MC_TARGET_DEVICE:
6064 device = true;
6065 fallthrough;
6066 case MC_TARGET_PAGE:
6067 page = target.page;
6068 /*
6069 * We can have a part of the split pmd here. Moving it
6070 * can be done but it would be too convoluted so simply
6071 * ignore such a partial THP and keep it in original
6072 * memcg. There should be somebody mapping the head.
6073 */
6074 if (PageTransCompound(page))
6075 goto put;
6076 if (!device && isolate_lru_page(page))
6077 goto put;
6078 if (!mem_cgroup_move_account(page, false,
6079 mc.from, mc.to)) {
6080 mc.precharge--;
6081 /* we uncharge from mc.from later. */
6082 mc.moved_charge++;
6083 }
6084 if (!device)
6085 putback_lru_page(page);
6086put: /* get_mctgt_type() gets the page */
6087 put_page(page);
6088 break;
6089 case MC_TARGET_SWAP:
6090 ent = target.ent;
6091 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6092 mc.precharge--;
6093 mem_cgroup_id_get_many(mc.to, 1);
6094 /* we fixup other refcnts and charges later. */
6095 mc.moved_swap++;
6096 }
6097 break;
6098 default:
6099 break;
6100 }
6101 }
6102 pte_unmap_unlock(pte - 1, ptl);
6103 cond_resched();
6104
6105 if (addr != end) {
6106 /*
6107 * We have consumed all precharges we got in can_attach().
6108 * We try charge one by one, but don't do any additional
6109 * charges to mc.to if we have failed in charge once in attach()
6110 * phase.
6111 */
6112 ret = mem_cgroup_do_precharge(1);
6113 if (!ret)
6114 goto retry;
6115 }
6116
6117 return ret;
6118}
6119
6120static const struct mm_walk_ops charge_walk_ops = {
6121 .pmd_entry = mem_cgroup_move_charge_pte_range,
6122};
6123
6124static void mem_cgroup_move_charge(void)
6125{
6126 lru_add_drain_all();
6127 /*
6128 * Signal lock_page_memcg() to take the memcg's move_lock
6129 * while we're moving its pages to another memcg. Then wait
6130 * for already started RCU-only updates to finish.
6131 */
6132 atomic_inc(&mc.from->moving_account);
6133 synchronize_rcu();
6134retry:
6135 if (unlikely(!mmap_read_trylock(mc.mm))) {
6136 /*
6137 * Someone who are holding the mmap_lock might be waiting in
6138 * waitq. So we cancel all extra charges, wake up all waiters,
6139 * and retry. Because we cancel precharges, we might not be able
6140 * to move enough charges, but moving charge is a best-effort
6141 * feature anyway, so it wouldn't be a big problem.
6142 */
6143 __mem_cgroup_clear_mc();
6144 cond_resched();
6145 goto retry;
6146 }
6147 /*
6148 * When we have consumed all precharges and failed in doing
6149 * additional charge, the page walk just aborts.
6150 */
6151 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6152 NULL);
6153
6154 mmap_read_unlock(mc.mm);
6155 atomic_dec(&mc.from->moving_account);
6156}
6157
6158static void mem_cgroup_move_task(void)
6159{
6160 if (mc.to) {
6161 mem_cgroup_move_charge();
6162 mem_cgroup_clear_mc();
6163 }
6164}
6165#else /* !CONFIG_MMU */
6166static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6167{
6168 return 0;
6169}
6170static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6171{
6172}
6173static void mem_cgroup_move_task(void)
6174{
6175}
6176#endif
6177
6178/*
6179 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6180 * to verify whether we're attached to the default hierarchy on each mount
6181 * attempt.
6182 */
6183static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6184{
6185 /*
6186 * use_hierarchy is forced on the default hierarchy. cgroup core
6187 * guarantees that @root doesn't have any children, so turning it
6188 * on for the root memcg is enough.
6189 */
6190 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6191 root_mem_cgroup->use_hierarchy = true;
6192 else
6193 root_mem_cgroup->use_hierarchy = false;
6194}
6195
6196static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6197{
6198 if (value == PAGE_COUNTER_MAX)
6199 seq_puts(m, "max\n");
6200 else
6201 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6202
6203 return 0;
6204}
6205
6206static u64 memory_current_read(struct cgroup_subsys_state *css,
6207 struct cftype *cft)
6208{
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6210
6211 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6212}
6213
6214static int memory_min_show(struct seq_file *m, void *v)
6215{
6216 return seq_puts_memcg_tunable(m,
6217 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6218}
6219
6220static ssize_t memory_min_write(struct kernfs_open_file *of,
6221 char *buf, size_t nbytes, loff_t off)
6222{
6223 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6224 unsigned long min;
6225 int err;
6226
6227 buf = strstrip(buf);
6228 err = page_counter_memparse(buf, "max", &min);
6229 if (err)
6230 return err;
6231
6232 page_counter_set_min(&memcg->memory, min);
6233
6234 return nbytes;
6235}
6236
6237static int memory_low_show(struct seq_file *m, void *v)
6238{
6239 return seq_puts_memcg_tunable(m,
6240 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6241}
6242
6243static ssize_t memory_low_write(struct kernfs_open_file *of,
6244 char *buf, size_t nbytes, loff_t off)
6245{
6246 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6247 unsigned long low;
6248 int err;
6249
6250 buf = strstrip(buf);
6251 err = page_counter_memparse(buf, "max", &low);
6252 if (err)
6253 return err;
6254
6255 page_counter_set_low(&memcg->memory, low);
6256
6257 return nbytes;
6258}
6259
6260static int memory_high_show(struct seq_file *m, void *v)
6261{
6262 return seq_puts_memcg_tunable(m,
6263 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6264}
6265
6266static ssize_t memory_high_write(struct kernfs_open_file *of,
6267 char *buf, size_t nbytes, loff_t off)
6268{
6269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6270 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6271 bool drained = false;
6272 unsigned long high;
6273 int err;
6274
6275 buf = strstrip(buf);
6276 err = page_counter_memparse(buf, "max", &high);
6277 if (err)
6278 return err;
6279
6280 for (;;) {
6281 unsigned long nr_pages = page_counter_read(&memcg->memory);
6282 unsigned long reclaimed;
6283
6284 if (nr_pages <= high)
6285 break;
6286
6287 if (signal_pending(current))
6288 break;
6289
6290 if (!drained) {
6291 drain_all_stock(memcg);
6292 drained = true;
6293 continue;
6294 }
6295
6296 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6297 GFP_KERNEL, true);
6298
6299 if (!reclaimed && !nr_retries--)
6300 break;
6301 }
6302
6303 page_counter_set_high(&memcg->memory, high);
6304
6305 memcg_wb_domain_size_changed(memcg);
6306
6307 return nbytes;
6308}
6309
6310static int memory_max_show(struct seq_file *m, void *v)
6311{
6312 return seq_puts_memcg_tunable(m,
6313 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6314}
6315
6316static ssize_t memory_max_write(struct kernfs_open_file *of,
6317 char *buf, size_t nbytes, loff_t off)
6318{
6319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6320 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6321 bool drained = false;
6322 unsigned long max;
6323 int err;
6324
6325 buf = strstrip(buf);
6326 err = page_counter_memparse(buf, "max", &max);
6327 if (err)
6328 return err;
6329
6330 xchg(&memcg->memory.max, max);
6331
6332 for (;;) {
6333 unsigned long nr_pages = page_counter_read(&memcg->memory);
6334
6335 if (nr_pages <= max)
6336 break;
6337
6338 if (signal_pending(current))
6339 break;
6340
6341 if (!drained) {
6342 drain_all_stock(memcg);
6343 drained = true;
6344 continue;
6345 }
6346
6347 if (nr_reclaims) {
6348 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6349 GFP_KERNEL, true))
6350 nr_reclaims--;
6351 continue;
6352 }
6353
6354 memcg_memory_event(memcg, MEMCG_OOM);
6355 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6356 break;
6357 }
6358
6359 memcg_wb_domain_size_changed(memcg);
6360 return nbytes;
6361}
6362
6363static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6364{
6365 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6366 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6367 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6368 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6369 seq_printf(m, "oom_kill %lu\n",
6370 atomic_long_read(&events[MEMCG_OOM_KILL]));
6371}
6372
6373static int memory_events_show(struct seq_file *m, void *v)
6374{
6375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377 __memory_events_show(m, memcg->memory_events);
6378 return 0;
6379}
6380
6381static int memory_events_local_show(struct seq_file *m, void *v)
6382{
6383 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384
6385 __memory_events_show(m, memcg->memory_events_local);
6386 return 0;
6387}
6388
6389static int memory_stat_show(struct seq_file *m, void *v)
6390{
6391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6392 char *buf;
6393
6394 buf = memory_stat_format(memcg);
6395 if (!buf)
6396 return -ENOMEM;
6397 seq_puts(m, buf);
6398 kfree(buf);
6399 return 0;
6400}
6401
6402static int memory_oom_group_show(struct seq_file *m, void *v)
6403{
6404 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6405
6406 seq_printf(m, "%d\n", memcg->oom_group);
6407
6408 return 0;
6409}
6410
6411static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6412 char *buf, size_t nbytes, loff_t off)
6413{
6414 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6415 int ret, oom_group;
6416
6417 buf = strstrip(buf);
6418 if (!buf)
6419 return -EINVAL;
6420
6421 ret = kstrtoint(buf, 0, &oom_group);
6422 if (ret)
6423 return ret;
6424
6425 if (oom_group != 0 && oom_group != 1)
6426 return -EINVAL;
6427
6428 memcg->oom_group = oom_group;
6429
6430 return nbytes;
6431}
6432
6433static struct cftype memory_files[] = {
6434 {
6435 .name = "current",
6436 .flags = CFTYPE_NOT_ON_ROOT,
6437 .read_u64 = memory_current_read,
6438 },
6439 {
6440 .name = "min",
6441 .flags = CFTYPE_NOT_ON_ROOT,
6442 .seq_show = memory_min_show,
6443 .write = memory_min_write,
6444 },
6445 {
6446 .name = "low",
6447 .flags = CFTYPE_NOT_ON_ROOT,
6448 .seq_show = memory_low_show,
6449 .write = memory_low_write,
6450 },
6451 {
6452 .name = "high",
6453 .flags = CFTYPE_NOT_ON_ROOT,
6454 .seq_show = memory_high_show,
6455 .write = memory_high_write,
6456 },
6457 {
6458 .name = "max",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .seq_show = memory_max_show,
6461 .write = memory_max_write,
6462 },
6463 {
6464 .name = "events",
6465 .flags = CFTYPE_NOT_ON_ROOT,
6466 .file_offset = offsetof(struct mem_cgroup, events_file),
6467 .seq_show = memory_events_show,
6468 },
6469 {
6470 .name = "events.local",
6471 .flags = CFTYPE_NOT_ON_ROOT,
6472 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6473 .seq_show = memory_events_local_show,
6474 },
6475 {
6476 .name = "stat",
6477 .seq_show = memory_stat_show,
6478 },
6479 {
6480 .name = "oom.group",
6481 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6482 .seq_show = memory_oom_group_show,
6483 .write = memory_oom_group_write,
6484 },
6485 { } /* terminate */
6486};
6487
6488struct cgroup_subsys memory_cgrp_subsys = {
6489 .css_alloc = mem_cgroup_css_alloc,
6490 .css_online = mem_cgroup_css_online,
6491 .css_offline = mem_cgroup_css_offline,
6492 .css_released = mem_cgroup_css_released,
6493 .css_free = mem_cgroup_css_free,
6494 .css_reset = mem_cgroup_css_reset,
6495 .can_attach = mem_cgroup_can_attach,
6496 .cancel_attach = mem_cgroup_cancel_attach,
6497 .post_attach = mem_cgroup_move_task,
6498 .bind = mem_cgroup_bind,
6499 .dfl_cftypes = memory_files,
6500 .legacy_cftypes = mem_cgroup_legacy_files,
6501 .early_init = 0,
6502};
6503
6504/*
6505 * This function calculates an individual cgroup's effective
6506 * protection which is derived from its own memory.min/low, its
6507 * parent's and siblings' settings, as well as the actual memory
6508 * distribution in the tree.
6509 *
6510 * The following rules apply to the effective protection values:
6511 *
6512 * 1. At the first level of reclaim, effective protection is equal to
6513 * the declared protection in memory.min and memory.low.
6514 *
6515 * 2. To enable safe delegation of the protection configuration, at
6516 * subsequent levels the effective protection is capped to the
6517 * parent's effective protection.
6518 *
6519 * 3. To make complex and dynamic subtrees easier to configure, the
6520 * user is allowed to overcommit the declared protection at a given
6521 * level. If that is the case, the parent's effective protection is
6522 * distributed to the children in proportion to how much protection
6523 * they have declared and how much of it they are utilizing.
6524 *
6525 * This makes distribution proportional, but also work-conserving:
6526 * if one cgroup claims much more protection than it uses memory,
6527 * the unused remainder is available to its siblings.
6528 *
6529 * 4. Conversely, when the declared protection is undercommitted at a
6530 * given level, the distribution of the larger parental protection
6531 * budget is NOT proportional. A cgroup's protection from a sibling
6532 * is capped to its own memory.min/low setting.
6533 *
6534 * 5. However, to allow protecting recursive subtrees from each other
6535 * without having to declare each individual cgroup's fixed share
6536 * of the ancestor's claim to protection, any unutilized -
6537 * "floating" - protection from up the tree is distributed in
6538 * proportion to each cgroup's *usage*. This makes the protection
6539 * neutral wrt sibling cgroups and lets them compete freely over
6540 * the shared parental protection budget, but it protects the
6541 * subtree as a whole from neighboring subtrees.
6542 *
6543 * Note that 4. and 5. are not in conflict: 4. is about protecting
6544 * against immediate siblings whereas 5. is about protecting against
6545 * neighboring subtrees.
6546 */
6547static unsigned long effective_protection(unsigned long usage,
6548 unsigned long parent_usage,
6549 unsigned long setting,
6550 unsigned long parent_effective,
6551 unsigned long siblings_protected)
6552{
6553 unsigned long protected;
6554 unsigned long ep;
6555
6556 protected = min(usage, setting);
6557 /*
6558 * If all cgroups at this level combined claim and use more
6559 * protection then what the parent affords them, distribute
6560 * shares in proportion to utilization.
6561 *
6562 * We are using actual utilization rather than the statically
6563 * claimed protection in order to be work-conserving: claimed
6564 * but unused protection is available to siblings that would
6565 * otherwise get a smaller chunk than what they claimed.
6566 */
6567 if (siblings_protected > parent_effective)
6568 return protected * parent_effective / siblings_protected;
6569
6570 /*
6571 * Ok, utilized protection of all children is within what the
6572 * parent affords them, so we know whatever this child claims
6573 * and utilizes is effectively protected.
6574 *
6575 * If there is unprotected usage beyond this value, reclaim
6576 * will apply pressure in proportion to that amount.
6577 *
6578 * If there is unutilized protection, the cgroup will be fully
6579 * shielded from reclaim, but we do return a smaller value for
6580 * protection than what the group could enjoy in theory. This
6581 * is okay. With the overcommit distribution above, effective
6582 * protection is always dependent on how memory is actually
6583 * consumed among the siblings anyway.
6584 */
6585 ep = protected;
6586
6587 /*
6588 * If the children aren't claiming (all of) the protection
6589 * afforded to them by the parent, distribute the remainder in
6590 * proportion to the (unprotected) memory of each cgroup. That
6591 * way, cgroups that aren't explicitly prioritized wrt each
6592 * other compete freely over the allowance, but they are
6593 * collectively protected from neighboring trees.
6594 *
6595 * We're using unprotected memory for the weight so that if
6596 * some cgroups DO claim explicit protection, we don't protect
6597 * the same bytes twice.
6598 *
6599 * Check both usage and parent_usage against the respective
6600 * protected values. One should imply the other, but they
6601 * aren't read atomically - make sure the division is sane.
6602 */
6603 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6604 return ep;
6605 if (parent_effective > siblings_protected &&
6606 parent_usage > siblings_protected &&
6607 usage > protected) {
6608 unsigned long unclaimed;
6609
6610 unclaimed = parent_effective - siblings_protected;
6611 unclaimed *= usage - protected;
6612 unclaimed /= parent_usage - siblings_protected;
6613
6614 ep += unclaimed;
6615 }
6616
6617 return ep;
6618}
6619
6620/**
6621 * mem_cgroup_protected - check if memory consumption is in the normal range
6622 * @root: the top ancestor of the sub-tree being checked
6623 * @memcg: the memory cgroup to check
6624 *
6625 * WARNING: This function is not stateless! It can only be used as part
6626 * of a top-down tree iteration, not for isolated queries.
6627 */
6628void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6629 struct mem_cgroup *memcg)
6630{
6631 unsigned long usage, parent_usage;
6632 struct mem_cgroup *parent;
6633
6634 if (mem_cgroup_disabled())
6635 return;
6636
6637 if (!root)
6638 root = root_mem_cgroup;
6639
6640 /*
6641 * Effective values of the reclaim targets are ignored so they
6642 * can be stale. Have a look at mem_cgroup_protection for more
6643 * details.
6644 * TODO: calculation should be more robust so that we do not need
6645 * that special casing.
6646 */
6647 if (memcg == root)
6648 return;
6649
6650 usage = page_counter_read(&memcg->memory);
6651 if (!usage)
6652 return;
6653
6654 parent = parent_mem_cgroup(memcg);
6655 /* No parent means a non-hierarchical mode on v1 memcg */
6656 if (!parent)
6657 return;
6658
6659 if (parent == root) {
6660 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6661 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6662 return;
6663 }
6664
6665 parent_usage = page_counter_read(&parent->memory);
6666
6667 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6668 READ_ONCE(memcg->memory.min),
6669 READ_ONCE(parent->memory.emin),
6670 atomic_long_read(&parent->memory.children_min_usage)));
6671
6672 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6673 READ_ONCE(memcg->memory.low),
6674 READ_ONCE(parent->memory.elow),
6675 atomic_long_read(&parent->memory.children_low_usage)));
6676}
6677
6678/**
6679 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6680 * @page: page to charge
6681 * @mm: mm context of the victim
6682 * @gfp_mask: reclaim mode
6683 *
6684 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6685 * pages according to @gfp_mask if necessary.
6686 *
6687 * Returns 0 on success. Otherwise, an error code is returned.
6688 */
6689int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6690{
6691 unsigned int nr_pages = hpage_nr_pages(page);
6692 struct mem_cgroup *memcg = NULL;
6693 int ret = 0;
6694
6695 if (mem_cgroup_disabled())
6696 goto out;
6697
6698 if (PageSwapCache(page)) {
6699 swp_entry_t ent = { .val = page_private(page), };
6700 unsigned short id;
6701
6702 /*
6703 * Every swap fault against a single page tries to charge the
6704 * page, bail as early as possible. shmem_unuse() encounters
6705 * already charged pages, too. page->mem_cgroup is protected
6706 * by the page lock, which serializes swap cache removal, which
6707 * in turn serializes uncharging.
6708 */
6709 VM_BUG_ON_PAGE(!PageLocked(page), page);
6710 if (compound_head(page)->mem_cgroup)
6711 goto out;
6712
6713 id = lookup_swap_cgroup_id(ent);
6714 rcu_read_lock();
6715 memcg = mem_cgroup_from_id(id);
6716 if (memcg && !css_tryget_online(&memcg->css))
6717 memcg = NULL;
6718 rcu_read_unlock();
6719 }
6720
6721 if (!memcg)
6722 memcg = get_mem_cgroup_from_mm(mm);
6723
6724 ret = try_charge(memcg, gfp_mask, nr_pages);
6725 if (ret)
6726 goto out_put;
6727
6728 css_get(&memcg->css);
6729 commit_charge(page, memcg);
6730
6731 local_irq_disable();
6732 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6733 memcg_check_events(memcg, page);
6734 local_irq_enable();
6735
6736 if (PageSwapCache(page)) {
6737 swp_entry_t entry = { .val = page_private(page) };
6738 /*
6739 * The swap entry might not get freed for a long time,
6740 * let's not wait for it. The page already received a
6741 * memory+swap charge, drop the swap entry duplicate.
6742 */
6743 mem_cgroup_uncharge_swap(entry, nr_pages);
6744 }
6745
6746out_put:
6747 css_put(&memcg->css);
6748out:
6749 return ret;
6750}
6751
6752struct uncharge_gather {
6753 struct mem_cgroup *memcg;
6754 unsigned long nr_pages;
6755 unsigned long pgpgout;
6756 unsigned long nr_kmem;
6757 struct page *dummy_page;
6758};
6759
6760static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6761{
6762 memset(ug, 0, sizeof(*ug));
6763}
6764
6765static void uncharge_batch(const struct uncharge_gather *ug)
6766{
6767 unsigned long flags;
6768
6769 if (!mem_cgroup_is_root(ug->memcg)) {
6770 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6771 if (do_memsw_account())
6772 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6774 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6775 memcg_oom_recover(ug->memcg);
6776 }
6777
6778 local_irq_save(flags);
6779 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6780 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6781 memcg_check_events(ug->memcg, ug->dummy_page);
6782 local_irq_restore(flags);
6783}
6784
6785static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6786{
6787 unsigned long nr_pages;
6788
6789 VM_BUG_ON_PAGE(PageLRU(page), page);
6790
6791 if (!page->mem_cgroup)
6792 return;
6793
6794 /*
6795 * Nobody should be changing or seriously looking at
6796 * page->mem_cgroup at this point, we have fully
6797 * exclusive access to the page.
6798 */
6799
6800 if (ug->memcg != page->mem_cgroup) {
6801 if (ug->memcg) {
6802 uncharge_batch(ug);
6803 uncharge_gather_clear(ug);
6804 }
6805 ug->memcg = page->mem_cgroup;
6806 }
6807
6808 nr_pages = compound_nr(page);
6809 ug->nr_pages += nr_pages;
6810
6811 if (!PageKmemcg(page)) {
6812 ug->pgpgout++;
6813 } else {
6814 ug->nr_kmem += nr_pages;
6815 __ClearPageKmemcg(page);
6816 }
6817
6818 ug->dummy_page = page;
6819 page->mem_cgroup = NULL;
6820 css_put(&ug->memcg->css);
6821}
6822
6823static void uncharge_list(struct list_head *page_list)
6824{
6825 struct uncharge_gather ug;
6826 struct list_head *next;
6827
6828 uncharge_gather_clear(&ug);
6829
6830 /*
6831 * Note that the list can be a single page->lru; hence the
6832 * do-while loop instead of a simple list_for_each_entry().
6833 */
6834 next = page_list->next;
6835 do {
6836 struct page *page;
6837
6838 page = list_entry(next, struct page, lru);
6839 next = page->lru.next;
6840
6841 uncharge_page(page, &ug);
6842 } while (next != page_list);
6843
6844 if (ug.memcg)
6845 uncharge_batch(&ug);
6846}
6847
6848/**
6849 * mem_cgroup_uncharge - uncharge a page
6850 * @page: page to uncharge
6851 *
6852 * Uncharge a page previously charged with mem_cgroup_charge().
6853 */
6854void mem_cgroup_uncharge(struct page *page)
6855{
6856 struct uncharge_gather ug;
6857
6858 if (mem_cgroup_disabled())
6859 return;
6860
6861 /* Don't touch page->lru of any random page, pre-check: */
6862 if (!page->mem_cgroup)
6863 return;
6864
6865 uncharge_gather_clear(&ug);
6866 uncharge_page(page, &ug);
6867 uncharge_batch(&ug);
6868}
6869
6870/**
6871 * mem_cgroup_uncharge_list - uncharge a list of page
6872 * @page_list: list of pages to uncharge
6873 *
6874 * Uncharge a list of pages previously charged with
6875 * mem_cgroup_charge().
6876 */
6877void mem_cgroup_uncharge_list(struct list_head *page_list)
6878{
6879 if (mem_cgroup_disabled())
6880 return;
6881
6882 if (!list_empty(page_list))
6883 uncharge_list(page_list);
6884}
6885
6886/**
6887 * mem_cgroup_migrate - charge a page's replacement
6888 * @oldpage: currently circulating page
6889 * @newpage: replacement page
6890 *
6891 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6892 * be uncharged upon free.
6893 *
6894 * Both pages must be locked, @newpage->mapping must be set up.
6895 */
6896void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6897{
6898 struct mem_cgroup *memcg;
6899 unsigned int nr_pages;
6900 unsigned long flags;
6901
6902 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6903 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6904 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6905 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6906 newpage);
6907
6908 if (mem_cgroup_disabled())
6909 return;
6910
6911 /* Page cache replacement: new page already charged? */
6912 if (newpage->mem_cgroup)
6913 return;
6914
6915 /* Swapcache readahead pages can get replaced before being charged */
6916 memcg = oldpage->mem_cgroup;
6917 if (!memcg)
6918 return;
6919
6920 /* Force-charge the new page. The old one will be freed soon */
6921 nr_pages = hpage_nr_pages(newpage);
6922
6923 page_counter_charge(&memcg->memory, nr_pages);
6924 if (do_memsw_account())
6925 page_counter_charge(&memcg->memsw, nr_pages);
6926
6927 css_get(&memcg->css);
6928 commit_charge(newpage, memcg);
6929
6930 local_irq_save(flags);
6931 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6932 memcg_check_events(memcg, newpage);
6933 local_irq_restore(flags);
6934}
6935
6936DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6937EXPORT_SYMBOL(memcg_sockets_enabled_key);
6938
6939void mem_cgroup_sk_alloc(struct sock *sk)
6940{
6941 struct mem_cgroup *memcg;
6942
6943 if (!mem_cgroup_sockets_enabled)
6944 return;
6945
6946 /* Do not associate the sock with unrelated interrupted task's memcg. */
6947 if (in_interrupt())
6948 return;
6949
6950 rcu_read_lock();
6951 memcg = mem_cgroup_from_task(current);
6952 if (memcg == root_mem_cgroup)
6953 goto out;
6954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6955 goto out;
6956 if (css_tryget(&memcg->css))
6957 sk->sk_memcg = memcg;
6958out:
6959 rcu_read_unlock();
6960}
6961
6962void mem_cgroup_sk_free(struct sock *sk)
6963{
6964 if (sk->sk_memcg)
6965 css_put(&sk->sk_memcg->css);
6966}
6967
6968/**
6969 * mem_cgroup_charge_skmem - charge socket memory
6970 * @memcg: memcg to charge
6971 * @nr_pages: number of pages to charge
6972 *
6973 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6974 * @memcg's configured limit, %false if the charge had to be forced.
6975 */
6976bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
6978 gfp_t gfp_mask = GFP_KERNEL;
6979
6980 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6981 struct page_counter *fail;
6982
6983 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6984 memcg->tcpmem_pressure = 0;
6985 return true;
6986 }
6987 page_counter_charge(&memcg->tcpmem, nr_pages);
6988 memcg->tcpmem_pressure = 1;
6989 return false;
6990 }
6991
6992 /* Don't block in the packet receive path */
6993 if (in_softirq())
6994 gfp_mask = GFP_NOWAIT;
6995
6996 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6997
6998 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6999 return true;
7000
7001 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7002 return false;
7003}
7004
7005/**
7006 * mem_cgroup_uncharge_skmem - uncharge socket memory
7007 * @memcg: memcg to uncharge
7008 * @nr_pages: number of pages to uncharge
7009 */
7010void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011{
7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7013 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7014 return;
7015 }
7016
7017 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7018
7019 refill_stock(memcg, nr_pages);
7020}
7021
7022static int __init cgroup_memory(char *s)
7023{
7024 char *token;
7025
7026 while ((token = strsep(&s, ",")) != NULL) {
7027 if (!*token)
7028 continue;
7029 if (!strcmp(token, "nosocket"))
7030 cgroup_memory_nosocket = true;
7031 if (!strcmp(token, "nokmem"))
7032 cgroup_memory_nokmem = true;
7033 }
7034 return 0;
7035}
7036__setup("cgroup.memory=", cgroup_memory);
7037
7038/*
7039 * subsys_initcall() for memory controller.
7040 *
7041 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7042 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7043 * basically everything that doesn't depend on a specific mem_cgroup structure
7044 * should be initialized from here.
7045 */
7046static int __init mem_cgroup_init(void)
7047{
7048 int cpu, node;
7049
7050 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7051 memcg_hotplug_cpu_dead);
7052
7053 for_each_possible_cpu(cpu)
7054 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7055 drain_local_stock);
7056
7057 for_each_node(node) {
7058 struct mem_cgroup_tree_per_node *rtpn;
7059
7060 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7061 node_online(node) ? node : NUMA_NO_NODE);
7062
7063 rtpn->rb_root = RB_ROOT;
7064 rtpn->rb_rightmost = NULL;
7065 spin_lock_init(&rtpn->lock);
7066 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7067 }
7068
7069 return 0;
7070}
7071subsys_initcall(mem_cgroup_init);
7072
7073#ifdef CONFIG_MEMCG_SWAP
7074static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7075{
7076 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7077 /*
7078 * The root cgroup cannot be destroyed, so it's refcount must
7079 * always be >= 1.
7080 */
7081 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7082 VM_BUG_ON(1);
7083 break;
7084 }
7085 memcg = parent_mem_cgroup(memcg);
7086 if (!memcg)
7087 memcg = root_mem_cgroup;
7088 }
7089 return memcg;
7090}
7091
7092/**
7093 * mem_cgroup_swapout - transfer a memsw charge to swap
7094 * @page: page whose memsw charge to transfer
7095 * @entry: swap entry to move the charge to
7096 *
7097 * Transfer the memsw charge of @page to @entry.
7098 */
7099void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7100{
7101 struct mem_cgroup *memcg, *swap_memcg;
7102 unsigned int nr_entries;
7103 unsigned short oldid;
7104
7105 VM_BUG_ON_PAGE(PageLRU(page), page);
7106 VM_BUG_ON_PAGE(page_count(page), page);
7107
7108 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7109 return;
7110
7111 memcg = page->mem_cgroup;
7112
7113 /* Readahead page, never charged */
7114 if (!memcg)
7115 return;
7116
7117 /*
7118 * In case the memcg owning these pages has been offlined and doesn't
7119 * have an ID allocated to it anymore, charge the closest online
7120 * ancestor for the swap instead and transfer the memory+swap charge.
7121 */
7122 swap_memcg = mem_cgroup_id_get_online(memcg);
7123 nr_entries = hpage_nr_pages(page);
7124 /* Get references for the tail pages, too */
7125 if (nr_entries > 1)
7126 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7127 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7128 nr_entries);
7129 VM_BUG_ON_PAGE(oldid, page);
7130 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7131
7132 page->mem_cgroup = NULL;
7133
7134 if (!mem_cgroup_is_root(memcg))
7135 page_counter_uncharge(&memcg->memory, nr_entries);
7136
7137 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7138 if (!mem_cgroup_is_root(swap_memcg))
7139 page_counter_charge(&swap_memcg->memsw, nr_entries);
7140 page_counter_uncharge(&memcg->memsw, nr_entries);
7141 }
7142
7143 /*
7144 * Interrupts should be disabled here because the caller holds the
7145 * i_pages lock which is taken with interrupts-off. It is
7146 * important here to have the interrupts disabled because it is the
7147 * only synchronisation we have for updating the per-CPU variables.
7148 */
7149 VM_BUG_ON(!irqs_disabled());
7150 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7151 memcg_check_events(memcg, page);
7152
7153 css_put(&memcg->css);
7154}
7155
7156/**
7157 * mem_cgroup_try_charge_swap - try charging swap space for a page
7158 * @page: page being added to swap
7159 * @entry: swap entry to charge
7160 *
7161 * Try to charge @page's memcg for the swap space at @entry.
7162 *
7163 * Returns 0 on success, -ENOMEM on failure.
7164 */
7165int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7166{
7167 unsigned int nr_pages = hpage_nr_pages(page);
7168 struct page_counter *counter;
7169 struct mem_cgroup *memcg;
7170 unsigned short oldid;
7171
7172 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7173 return 0;
7174
7175 memcg = page->mem_cgroup;
7176
7177 /* Readahead page, never charged */
7178 if (!memcg)
7179 return 0;
7180
7181 if (!entry.val) {
7182 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7183 return 0;
7184 }
7185
7186 memcg = mem_cgroup_id_get_online(memcg);
7187
7188 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7189 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7190 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7191 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192 mem_cgroup_id_put(memcg);
7193 return -ENOMEM;
7194 }
7195
7196 /* Get references for the tail pages, too */
7197 if (nr_pages > 1)
7198 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7199 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7200 VM_BUG_ON_PAGE(oldid, page);
7201 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7202
7203 return 0;
7204}
7205
7206/**
7207 * mem_cgroup_uncharge_swap - uncharge swap space
7208 * @entry: swap entry to uncharge
7209 * @nr_pages: the amount of swap space to uncharge
7210 */
7211void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7212{
7213 struct mem_cgroup *memcg;
7214 unsigned short id;
7215
7216 id = swap_cgroup_record(entry, 0, nr_pages);
7217 rcu_read_lock();
7218 memcg = mem_cgroup_from_id(id);
7219 if (memcg) {
7220 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7221 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7222 page_counter_uncharge(&memcg->swap, nr_pages);
7223 else
7224 page_counter_uncharge(&memcg->memsw, nr_pages);
7225 }
7226 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7227 mem_cgroup_id_put_many(memcg, nr_pages);
7228 }
7229 rcu_read_unlock();
7230}
7231
7232long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7233{
7234 long nr_swap_pages = get_nr_swap_pages();
7235
7236 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237 return nr_swap_pages;
7238 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7239 nr_swap_pages = min_t(long, nr_swap_pages,
7240 READ_ONCE(memcg->swap.max) -
7241 page_counter_read(&memcg->swap));
7242 return nr_swap_pages;
7243}
7244
7245bool mem_cgroup_swap_full(struct page *page)
7246{
7247 struct mem_cgroup *memcg;
7248
7249 VM_BUG_ON_PAGE(!PageLocked(page), page);
7250
7251 if (vm_swap_full())
7252 return true;
7253 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254 return false;
7255
7256 memcg = page->mem_cgroup;
7257 if (!memcg)
7258 return false;
7259
7260 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7261 unsigned long usage = page_counter_read(&memcg->swap);
7262
7263 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7264 usage * 2 >= READ_ONCE(memcg->swap.max))
7265 return true;
7266 }
7267
7268 return false;
7269}
7270
7271static int __init setup_swap_account(char *s)
7272{
7273 if (!strcmp(s, "1"))
7274 cgroup_memory_noswap = 0;
7275 else if (!strcmp(s, "0"))
7276 cgroup_memory_noswap = 1;
7277 return 1;
7278}
7279__setup("swapaccount=", setup_swap_account);
7280
7281static u64 swap_current_read(struct cgroup_subsys_state *css,
7282 struct cftype *cft)
7283{
7284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7285
7286 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7287}
7288
7289static int swap_high_show(struct seq_file *m, void *v)
7290{
7291 return seq_puts_memcg_tunable(m,
7292 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7293}
7294
7295static ssize_t swap_high_write(struct kernfs_open_file *of,
7296 char *buf, size_t nbytes, loff_t off)
7297{
7298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7299 unsigned long high;
7300 int err;
7301
7302 buf = strstrip(buf);
7303 err = page_counter_memparse(buf, "max", &high);
7304 if (err)
7305 return err;
7306
7307 page_counter_set_high(&memcg->swap, high);
7308
7309 return nbytes;
7310}
7311
7312static int swap_max_show(struct seq_file *m, void *v)
7313{
7314 return seq_puts_memcg_tunable(m,
7315 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7316}
7317
7318static ssize_t swap_max_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes, loff_t off)
7320{
7321 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322 unsigned long max;
7323 int err;
7324
7325 buf = strstrip(buf);
7326 err = page_counter_memparse(buf, "max", &max);
7327 if (err)
7328 return err;
7329
7330 xchg(&memcg->swap.max, max);
7331
7332 return nbytes;
7333}
7334
7335static int swap_events_show(struct seq_file *m, void *v)
7336{
7337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7338
7339 seq_printf(m, "high %lu\n",
7340 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7341 seq_printf(m, "max %lu\n",
7342 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7343 seq_printf(m, "fail %lu\n",
7344 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7345
7346 return 0;
7347}
7348
7349static struct cftype swap_files[] = {
7350 {
7351 .name = "swap.current",
7352 .flags = CFTYPE_NOT_ON_ROOT,
7353 .read_u64 = swap_current_read,
7354 },
7355 {
7356 .name = "swap.high",
7357 .flags = CFTYPE_NOT_ON_ROOT,
7358 .seq_show = swap_high_show,
7359 .write = swap_high_write,
7360 },
7361 {
7362 .name = "swap.max",
7363 .flags = CFTYPE_NOT_ON_ROOT,
7364 .seq_show = swap_max_show,
7365 .write = swap_max_write,
7366 },
7367 {
7368 .name = "swap.events",
7369 .flags = CFTYPE_NOT_ON_ROOT,
7370 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7371 .seq_show = swap_events_show,
7372 },
7373 { } /* terminate */
7374};
7375
7376static struct cftype memsw_files[] = {
7377 {
7378 .name = "memsw.usage_in_bytes",
7379 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7380 .read_u64 = mem_cgroup_read_u64,
7381 },
7382 {
7383 .name = "memsw.max_usage_in_bytes",
7384 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7385 .write = mem_cgroup_reset,
7386 .read_u64 = mem_cgroup_read_u64,
7387 },
7388 {
7389 .name = "memsw.limit_in_bytes",
7390 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7391 .write = mem_cgroup_write,
7392 .read_u64 = mem_cgroup_read_u64,
7393 },
7394 {
7395 .name = "memsw.failcnt",
7396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7397 .write = mem_cgroup_reset,
7398 .read_u64 = mem_cgroup_read_u64,
7399 },
7400 { }, /* terminate */
7401};
7402
7403/*
7404 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7405 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7406 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7407 * boot parameter. This may result in premature OOPS inside
7408 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7409 */
7410static int __init mem_cgroup_swap_init(void)
7411{
7412 /* No memory control -> no swap control */
7413 if (mem_cgroup_disabled())
7414 cgroup_memory_noswap = true;
7415
7416 if (cgroup_memory_noswap)
7417 return 0;
7418
7419 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7420 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7421
7422 return 0;
7423}
7424core_initcall(mem_cgroup_swap_init);
7425
7426#endif /* CONFIG_MEMCG_SWAP */