]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/memcontrol.c
memcg: remove memcg->reclaim_param_lock
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES 5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account (0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221 /*
222 * While reclaiming in a hierarchy, we cache the last child we
223 * reclaimed from.
224 */
225 int last_scanned_child;
226 /*
227 * Should the accounting and control be hierarchical, per subtree?
228 */
229 bool use_hierarchy;
230 atomic_t oom_lock;
231 atomic_t refcnt;
232
233 unsigned int swappiness;
234 /* OOM-Killer disable */
235 int oom_kill_disable;
236
237 /* set when res.limit == memsw.limit */
238 bool memsw_is_minimum;
239
240 /* protect arrays of thresholds */
241 struct mutex thresholds_lock;
242
243 /* thresholds for memory usage. RCU-protected */
244 struct mem_cgroup_thresholds thresholds;
245
246 /* thresholds for mem+swap usage. RCU-protected */
247 struct mem_cgroup_thresholds memsw_thresholds;
248
249 /* For oom notifier event fd */
250 struct list_head oom_notify;
251
252 /*
253 * Should we move charges of a task when a task is moved into this
254 * mem_cgroup ? And what type of charges should we move ?
255 */
256 unsigned long move_charge_at_immigrate;
257 /*
258 * percpu counter.
259 */
260 struct mem_cgroup_stat_cpu *stat;
261 /*
262 * used when a cpu is offlined or other synchronizations
263 * See mem_cgroup_read_stat().
264 */
265 struct mem_cgroup_stat_cpu nocpu_base;
266 spinlock_t pcp_counter_lock;
267};
268
269/* Stuffs for move charges at task migration. */
270/*
271 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
272 * left-shifted bitmap of these types.
273 */
274enum move_type {
275 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
276 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
277 NR_MOVE_TYPE,
278};
279
280/* "mc" and its members are protected by cgroup_mutex */
281static struct move_charge_struct {
282 spinlock_t lock; /* for from, to */
283 struct mem_cgroup *from;
284 struct mem_cgroup *to;
285 unsigned long precharge;
286 unsigned long moved_charge;
287 unsigned long moved_swap;
288 struct task_struct *moving_task; /* a task moving charges */
289 wait_queue_head_t waitq; /* a waitq for other context */
290} mc = {
291 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
292 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
293};
294
295static bool move_anon(void)
296{
297 return test_bit(MOVE_CHARGE_TYPE_ANON,
298 &mc.to->move_charge_at_immigrate);
299}
300
301static bool move_file(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_FILE,
304 &mc.to->move_charge_at_immigrate);
305}
306
307/*
308 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
309 * limit reclaim to prevent infinite loops, if they ever occur.
310 */
311#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
312#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
313
314enum charge_type {
315 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
316 MEM_CGROUP_CHARGE_TYPE_MAPPED,
317 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
318 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
319 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
320 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
321 NR_CHARGE_TYPE,
322};
323
324/* for encoding cft->private value on file */
325#define _MEM (0)
326#define _MEMSWAP (1)
327#define _OOM_TYPE (2)
328#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
329#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
330#define MEMFILE_ATTR(val) ((val) & 0xffff)
331/* Used for OOM nofiier */
332#define OOM_CONTROL (0)
333
334/*
335 * Reclaim flags for mem_cgroup_hierarchical_reclaim
336 */
337#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
338#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
339#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
340#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
341#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
342#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
343
344static void mem_cgroup_get(struct mem_cgroup *mem);
345static void mem_cgroup_put(struct mem_cgroup *mem);
346static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
347static void drain_all_stock_async(void);
348
349static struct mem_cgroup_per_zone *
350mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
351{
352 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
353}
354
355struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
356{
357 return &mem->css;
358}
359
360static struct mem_cgroup_per_zone *
361page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
362{
363 int nid = page_to_nid(page);
364 int zid = page_zonenum(page);
365
366 return mem_cgroup_zoneinfo(mem, nid, zid);
367}
368
369static struct mem_cgroup_tree_per_zone *
370soft_limit_tree_node_zone(int nid, int zid)
371{
372 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
373}
374
375static struct mem_cgroup_tree_per_zone *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379 int zid = page_zonenum(page);
380
381 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
382}
383
384static void
385__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
386 struct mem_cgroup_per_zone *mz,
387 struct mem_cgroup_tree_per_zone *mctz,
388 unsigned long long new_usage_in_excess)
389{
390 struct rb_node **p = &mctz->rb_root.rb_node;
391 struct rb_node *parent = NULL;
392 struct mem_cgroup_per_zone *mz_node;
393
394 if (mz->on_tree)
395 return;
396
397 mz->usage_in_excess = new_usage_in_excess;
398 if (!mz->usage_in_excess)
399 return;
400 while (*p) {
401 parent = *p;
402 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
403 tree_node);
404 if (mz->usage_in_excess < mz_node->usage_in_excess)
405 p = &(*p)->rb_left;
406 /*
407 * We can't avoid mem cgroups that are over their soft
408 * limit by the same amount
409 */
410 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
411 p = &(*p)->rb_right;
412 }
413 rb_link_node(&mz->tree_node, parent, p);
414 rb_insert_color(&mz->tree_node, &mctz->rb_root);
415 mz->on_tree = true;
416}
417
418static void
419__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
420 struct mem_cgroup_per_zone *mz,
421 struct mem_cgroup_tree_per_zone *mctz)
422{
423 if (!mz->on_tree)
424 return;
425 rb_erase(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = false;
427}
428
429static void
430mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
431 struct mem_cgroup_per_zone *mz,
432 struct mem_cgroup_tree_per_zone *mctz)
433{
434 spin_lock(&mctz->lock);
435 __mem_cgroup_remove_exceeded(mem, mz, mctz);
436 spin_unlock(&mctz->lock);
437}
438
439
440static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
441{
442 unsigned long long excess;
443 struct mem_cgroup_per_zone *mz;
444 struct mem_cgroup_tree_per_zone *mctz;
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
447 mctz = soft_limit_tree_from_page(page);
448
449 /*
450 * Necessary to update all ancestors when hierarchy is used.
451 * because their event counter is not touched.
452 */
453 for (; mem; mem = parent_mem_cgroup(mem)) {
454 mz = mem_cgroup_zoneinfo(mem, nid, zid);
455 excess = res_counter_soft_limit_excess(&mem->res);
456 /*
457 * We have to update the tree if mz is on RB-tree or
458 * mem is over its softlimit.
459 */
460 if (excess || mz->on_tree) {
461 spin_lock(&mctz->lock);
462 /* if on-tree, remove it */
463 if (mz->on_tree)
464 __mem_cgroup_remove_exceeded(mem, mz, mctz);
465 /*
466 * Insert again. mz->usage_in_excess will be updated.
467 * If excess is 0, no tree ops.
468 */
469 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
470 spin_unlock(&mctz->lock);
471 }
472 }
473}
474
475static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
476{
477 int node, zone;
478 struct mem_cgroup_per_zone *mz;
479 struct mem_cgroup_tree_per_zone *mctz;
480
481 for_each_node_state(node, N_POSSIBLE) {
482 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
483 mz = mem_cgroup_zoneinfo(mem, node, zone);
484 mctz = soft_limit_tree_node_zone(node, zone);
485 mem_cgroup_remove_exceeded(mem, mz, mctz);
486 }
487 }
488}
489
490static struct mem_cgroup_per_zone *
491__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
492{
493 struct rb_node *rightmost = NULL;
494 struct mem_cgroup_per_zone *mz;
495
496retry:
497 mz = NULL;
498 rightmost = rb_last(&mctz->rb_root);
499 if (!rightmost)
500 goto done; /* Nothing to reclaim from */
501
502 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
503 /*
504 * Remove the node now but someone else can add it back,
505 * we will to add it back at the end of reclaim to its correct
506 * position in the tree.
507 */
508 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
509 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
510 !css_tryget(&mz->mem->css))
511 goto retry;
512done:
513 return mz;
514}
515
516static struct mem_cgroup_per_zone *
517mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
518{
519 struct mem_cgroup_per_zone *mz;
520
521 spin_lock(&mctz->lock);
522 mz = __mem_cgroup_largest_soft_limit_node(mctz);
523 spin_unlock(&mctz->lock);
524 return mz;
525}
526
527/*
528 * Implementation Note: reading percpu statistics for memcg.
529 *
530 * Both of vmstat[] and percpu_counter has threshold and do periodic
531 * synchronization to implement "quick" read. There are trade-off between
532 * reading cost and precision of value. Then, we may have a chance to implement
533 * a periodic synchronizion of counter in memcg's counter.
534 *
535 * But this _read() function is used for user interface now. The user accounts
536 * memory usage by memory cgroup and he _always_ requires exact value because
537 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
538 * have to visit all online cpus and make sum. So, for now, unnecessary
539 * synchronization is not implemented. (just implemented for cpu hotplug)
540 *
541 * If there are kernel internal actions which can make use of some not-exact
542 * value, and reading all cpu value can be performance bottleneck in some
543 * common workload, threashold and synchonization as vmstat[] should be
544 * implemented.
545 */
546static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
547 enum mem_cgroup_stat_index idx)
548{
549 int cpu;
550 s64 val = 0;
551
552 get_online_cpus();
553 for_each_online_cpu(cpu)
554 val += per_cpu(mem->stat->count[idx], cpu);
555#ifdef CONFIG_HOTPLUG_CPU
556 spin_lock(&mem->pcp_counter_lock);
557 val += mem->nocpu_base.count[idx];
558 spin_unlock(&mem->pcp_counter_lock);
559#endif
560 put_online_cpus();
561 return val;
562}
563
564static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
565{
566 s64 ret;
567
568 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
569 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
570 return ret;
571}
572
573static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
574 bool charge)
575{
576 int val = (charge) ? 1 : -1;
577 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
578}
579
580static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
581 bool file, int nr_pages)
582{
583 preempt_disable();
584
585 if (file)
586 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
587 else
588 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
589
590 /* pagein of a big page is an event. So, ignore page size */
591 if (nr_pages > 0)
592 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
593 else {
594 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
595 nr_pages = -nr_pages; /* for event */
596 }
597
598 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
599
600 preempt_enable();
601}
602
603static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
604 enum lru_list idx)
605{
606 int nid, zid;
607 struct mem_cgroup_per_zone *mz;
608 u64 total = 0;
609
610 for_each_online_node(nid)
611 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
612 mz = mem_cgroup_zoneinfo(mem, nid, zid);
613 total += MEM_CGROUP_ZSTAT(mz, idx);
614 }
615 return total;
616}
617
618static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
619{
620 s64 val;
621
622 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
623
624 return !(val & ((1 << event_mask_shift) - 1));
625}
626
627/*
628 * Check events in order.
629 *
630 */
631static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
632{
633 /* threshold event is triggered in finer grain than soft limit */
634 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
635 mem_cgroup_threshold(mem);
636 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
637 mem_cgroup_update_tree(mem, page);
638 }
639}
640
641static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
642{
643 return container_of(cgroup_subsys_state(cont,
644 mem_cgroup_subsys_id), struct mem_cgroup,
645 css);
646}
647
648struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
649{
650 /*
651 * mm_update_next_owner() may clear mm->owner to NULL
652 * if it races with swapoff, page migration, etc.
653 * So this can be called with p == NULL.
654 */
655 if (unlikely(!p))
656 return NULL;
657
658 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
659 struct mem_cgroup, css);
660}
661
662static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
663{
664 struct mem_cgroup *mem = NULL;
665
666 if (!mm)
667 return NULL;
668 /*
669 * Because we have no locks, mm->owner's may be being moved to other
670 * cgroup. We use css_tryget() here even if this looks
671 * pessimistic (rather than adding locks here).
672 */
673 rcu_read_lock();
674 do {
675 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
676 if (unlikely(!mem))
677 break;
678 } while (!css_tryget(&mem->css));
679 rcu_read_unlock();
680 return mem;
681}
682
683/* The caller has to guarantee "mem" exists before calling this */
684static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
685{
686 struct cgroup_subsys_state *css;
687 int found;
688
689 if (!mem) /* ROOT cgroup has the smallest ID */
690 return root_mem_cgroup; /*css_put/get against root is ignored*/
691 if (!mem->use_hierarchy) {
692 if (css_tryget(&mem->css))
693 return mem;
694 return NULL;
695 }
696 rcu_read_lock();
697 /*
698 * searching a memory cgroup which has the smallest ID under given
699 * ROOT cgroup. (ID >= 1)
700 */
701 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
702 if (css && css_tryget(css))
703 mem = container_of(css, struct mem_cgroup, css);
704 else
705 mem = NULL;
706 rcu_read_unlock();
707 return mem;
708}
709
710static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
711 struct mem_cgroup *root,
712 bool cond)
713{
714 int nextid = css_id(&iter->css) + 1;
715 int found;
716 int hierarchy_used;
717 struct cgroup_subsys_state *css;
718
719 hierarchy_used = iter->use_hierarchy;
720
721 css_put(&iter->css);
722 /* If no ROOT, walk all, ignore hierarchy */
723 if (!cond || (root && !hierarchy_used))
724 return NULL;
725
726 if (!root)
727 root = root_mem_cgroup;
728
729 do {
730 iter = NULL;
731 rcu_read_lock();
732
733 css = css_get_next(&mem_cgroup_subsys, nextid,
734 &root->css, &found);
735 if (css && css_tryget(css))
736 iter = container_of(css, struct mem_cgroup, css);
737 rcu_read_unlock();
738 /* If css is NULL, no more cgroups will be found */
739 nextid = found + 1;
740 } while (css && !iter);
741
742 return iter;
743}
744/*
745 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
746 * be careful that "break" loop is not allowed. We have reference count.
747 * Instead of that modify "cond" to be false and "continue" to exit the loop.
748 */
749#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
750 for (iter = mem_cgroup_start_loop(root);\
751 iter != NULL;\
752 iter = mem_cgroup_get_next(iter, root, cond))
753
754#define for_each_mem_cgroup_tree(iter, root) \
755 for_each_mem_cgroup_tree_cond(iter, root, true)
756
757#define for_each_mem_cgroup_all(iter) \
758 for_each_mem_cgroup_tree_cond(iter, NULL, true)
759
760
761static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
762{
763 return (mem == root_mem_cgroup);
764}
765
766/*
767 * Following LRU functions are allowed to be used without PCG_LOCK.
768 * Operations are called by routine of global LRU independently from memcg.
769 * What we have to take care of here is validness of pc->mem_cgroup.
770 *
771 * Changes to pc->mem_cgroup happens when
772 * 1. charge
773 * 2. moving account
774 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
775 * It is added to LRU before charge.
776 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
777 * When moving account, the page is not on LRU. It's isolated.
778 */
779
780void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
781{
782 struct page_cgroup *pc;
783 struct mem_cgroup_per_zone *mz;
784
785 if (mem_cgroup_disabled())
786 return;
787 pc = lookup_page_cgroup(page);
788 /* can happen while we handle swapcache. */
789 if (!TestClearPageCgroupAcctLRU(pc))
790 return;
791 VM_BUG_ON(!pc->mem_cgroup);
792 /*
793 * We don't check PCG_USED bit. It's cleared when the "page" is finally
794 * removed from global LRU.
795 */
796 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
797 /* huge page split is done under lru_lock. so, we have no races. */
798 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
799 if (mem_cgroup_is_root(pc->mem_cgroup))
800 return;
801 VM_BUG_ON(list_empty(&pc->lru));
802 list_del_init(&pc->lru);
803}
804
805void mem_cgroup_del_lru(struct page *page)
806{
807 mem_cgroup_del_lru_list(page, page_lru(page));
808}
809
810/*
811 * Writeback is about to end against a page which has been marked for immediate
812 * reclaim. If it still appears to be reclaimable, move it to the tail of the
813 * inactive list.
814 */
815void mem_cgroup_rotate_reclaimable_page(struct page *page)
816{
817 struct mem_cgroup_per_zone *mz;
818 struct page_cgroup *pc;
819 enum lru_list lru = page_lru(page);
820
821 if (mem_cgroup_disabled())
822 return;
823
824 pc = lookup_page_cgroup(page);
825 /* unused or root page is not rotated. */
826 if (!PageCgroupUsed(pc))
827 return;
828 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
829 smp_rmb();
830 if (mem_cgroup_is_root(pc->mem_cgroup))
831 return;
832 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
833 list_move_tail(&pc->lru, &mz->lists[lru]);
834}
835
836void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
837{
838 struct mem_cgroup_per_zone *mz;
839 struct page_cgroup *pc;
840
841 if (mem_cgroup_disabled())
842 return;
843
844 pc = lookup_page_cgroup(page);
845 /* unused or root page is not rotated. */
846 if (!PageCgroupUsed(pc))
847 return;
848 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
849 smp_rmb();
850 if (mem_cgroup_is_root(pc->mem_cgroup))
851 return;
852 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
853 list_move(&pc->lru, &mz->lists[lru]);
854}
855
856void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
857{
858 struct page_cgroup *pc;
859 struct mem_cgroup_per_zone *mz;
860
861 if (mem_cgroup_disabled())
862 return;
863 pc = lookup_page_cgroup(page);
864 VM_BUG_ON(PageCgroupAcctLRU(pc));
865 if (!PageCgroupUsed(pc))
866 return;
867 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
868 smp_rmb();
869 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
870 /* huge page split is done under lru_lock. so, we have no races. */
871 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
872 SetPageCgroupAcctLRU(pc);
873 if (mem_cgroup_is_root(pc->mem_cgroup))
874 return;
875 list_add(&pc->lru, &mz->lists[lru]);
876}
877
878/*
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
884 */
885static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886{
887 unsigned long flags;
888 struct zone *zone = page_zone(page);
889 struct page_cgroup *pc = lookup_page_cgroup(page);
890
891 spin_lock_irqsave(&zone->lru_lock, flags);
892 /*
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
895 */
896 if (!PageCgroupUsed(pc))
897 mem_cgroup_del_lru_list(page, page_lru(page));
898 spin_unlock_irqrestore(&zone->lru_lock, flags);
899}
900
901static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902{
903 unsigned long flags;
904 struct zone *zone = page_zone(page);
905 struct page_cgroup *pc = lookup_page_cgroup(page);
906
907 spin_lock_irqsave(&zone->lru_lock, flags);
908 /* link when the page is linked to LRU but page_cgroup isn't */
909 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 mem_cgroup_add_lru_list(page, page_lru(page));
911 spin_unlock_irqrestore(&zone->lru_lock, flags);
912}
913
914
915void mem_cgroup_move_lists(struct page *page,
916 enum lru_list from, enum lru_list to)
917{
918 if (mem_cgroup_disabled())
919 return;
920 mem_cgroup_del_lru_list(page, from);
921 mem_cgroup_add_lru_list(page, to);
922}
923
924int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925{
926 int ret;
927 struct mem_cgroup *curr = NULL;
928 struct task_struct *p;
929
930 p = find_lock_task_mm(task);
931 if (!p)
932 return 0;
933 curr = try_get_mem_cgroup_from_mm(p->mm);
934 task_unlock(p);
935 if (!curr)
936 return 0;
937 /*
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
942 */
943 if (mem->use_hierarchy)
944 ret = css_is_ancestor(&curr->css, &mem->css);
945 else
946 ret = (curr == mem);
947 css_put(&curr->css);
948 return ret;
949}
950
951static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952{
953 unsigned long active;
954 unsigned long inactive;
955 unsigned long gb;
956 unsigned long inactive_ratio;
957
958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960
961 gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 if (gb)
963 inactive_ratio = int_sqrt(10 * gb);
964 else
965 inactive_ratio = 1;
966
967 if (present_pages) {
968 present_pages[0] = inactive;
969 present_pages[1] = active;
970 }
971
972 return inactive_ratio;
973}
974
975int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976{
977 unsigned long active;
978 unsigned long inactive;
979 unsigned long present_pages[2];
980 unsigned long inactive_ratio;
981
982 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984 inactive = present_pages[0];
985 active = present_pages[1];
986
987 if (inactive * inactive_ratio < active)
988 return 1;
989
990 return 0;
991}
992
993int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994{
995 unsigned long active;
996 unsigned long inactive;
997
998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001 return (active > inactive);
1002}
1003
1004unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 struct zone *zone,
1006 enum lru_list lru)
1007{
1008 int nid = zone_to_nid(zone);
1009 int zid = zone_idx(zone);
1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012 return MEM_CGROUP_ZSTAT(mz, lru);
1013}
1014
1015struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 struct zone *zone)
1017{
1018 int nid = zone_to_nid(zone);
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return &mz->reclaim_stat;
1023}
1024
1025struct zone_reclaim_stat *
1026mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027{
1028 struct page_cgroup *pc;
1029 struct mem_cgroup_per_zone *mz;
1030
1031 if (mem_cgroup_disabled())
1032 return NULL;
1033
1034 pc = lookup_page_cgroup(page);
1035 if (!PageCgroupUsed(pc))
1036 return NULL;
1037 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1038 smp_rmb();
1039 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1040 return &mz->reclaim_stat;
1041}
1042
1043unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1044 struct list_head *dst,
1045 unsigned long *scanned, int order,
1046 int mode, struct zone *z,
1047 struct mem_cgroup *mem_cont,
1048 int active, int file)
1049{
1050 unsigned long nr_taken = 0;
1051 struct page *page;
1052 unsigned long scan;
1053 LIST_HEAD(pc_list);
1054 struct list_head *src;
1055 struct page_cgroup *pc, *tmp;
1056 int nid = zone_to_nid(z);
1057 int zid = zone_idx(z);
1058 struct mem_cgroup_per_zone *mz;
1059 int lru = LRU_FILE * file + active;
1060 int ret;
1061
1062 BUG_ON(!mem_cont);
1063 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1064 src = &mz->lists[lru];
1065
1066 scan = 0;
1067 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1068 if (scan >= nr_to_scan)
1069 break;
1070
1071 if (unlikely(!PageCgroupUsed(pc)))
1072 continue;
1073
1074 page = lookup_cgroup_page(pc);
1075
1076 if (unlikely(!PageLRU(page)))
1077 continue;
1078
1079 scan++;
1080 ret = __isolate_lru_page(page, mode, file);
1081 switch (ret) {
1082 case 0:
1083 list_move(&page->lru, dst);
1084 mem_cgroup_del_lru(page);
1085 nr_taken += hpage_nr_pages(page);
1086 break;
1087 case -EBUSY:
1088 /* we don't affect global LRU but rotate in our LRU */
1089 mem_cgroup_rotate_lru_list(page, page_lru(page));
1090 break;
1091 default:
1092 break;
1093 }
1094 }
1095
1096 *scanned = scan;
1097
1098 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1099 0, 0, 0, mode);
1100
1101 return nr_taken;
1102}
1103
1104#define mem_cgroup_from_res_counter(counter, member) \
1105 container_of(counter, struct mem_cgroup, member)
1106
1107/**
1108 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1109 * @mem: the memory cgroup
1110 *
1111 * Returns the maximum amount of memory @mem can be charged with, in
1112 * bytes.
1113 */
1114static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1115{
1116 unsigned long long margin;
1117
1118 margin = res_counter_margin(&mem->res);
1119 if (do_swap_account)
1120 margin = min(margin, res_counter_margin(&mem->memsw));
1121 return margin;
1122}
1123
1124static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125{
1126 struct cgroup *cgrp = memcg->css.cgroup;
1127
1128 /* root ? */
1129 if (cgrp->parent == NULL)
1130 return vm_swappiness;
1131
1132 return memcg->swappiness;
1133}
1134
1135static void mem_cgroup_start_move(struct mem_cgroup *mem)
1136{
1137 int cpu;
1138
1139 get_online_cpus();
1140 spin_lock(&mem->pcp_counter_lock);
1141 for_each_online_cpu(cpu)
1142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1143 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1144 spin_unlock(&mem->pcp_counter_lock);
1145 put_online_cpus();
1146
1147 synchronize_rcu();
1148}
1149
1150static void mem_cgroup_end_move(struct mem_cgroup *mem)
1151{
1152 int cpu;
1153
1154 if (!mem)
1155 return;
1156 get_online_cpus();
1157 spin_lock(&mem->pcp_counter_lock);
1158 for_each_online_cpu(cpu)
1159 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1160 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1161 spin_unlock(&mem->pcp_counter_lock);
1162 put_online_cpus();
1163}
1164/*
1165 * 2 routines for checking "mem" is under move_account() or not.
1166 *
1167 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1168 * for avoiding race in accounting. If true,
1169 * pc->mem_cgroup may be overwritten.
1170 *
1171 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1172 * under hierarchy of moving cgroups. This is for
1173 * waiting at hith-memory prressure caused by "move".
1174 */
1175
1176static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1177{
1178 VM_BUG_ON(!rcu_read_lock_held());
1179 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1180}
1181
1182static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1183{
1184 struct mem_cgroup *from;
1185 struct mem_cgroup *to;
1186 bool ret = false;
1187 /*
1188 * Unlike task_move routines, we access mc.to, mc.from not under
1189 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1190 */
1191 spin_lock(&mc.lock);
1192 from = mc.from;
1193 to = mc.to;
1194 if (!from)
1195 goto unlock;
1196 if (from == mem || to == mem
1197 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1198 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1199 ret = true;
1200unlock:
1201 spin_unlock(&mc.lock);
1202 return ret;
1203}
1204
1205static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1206{
1207 if (mc.moving_task && current != mc.moving_task) {
1208 if (mem_cgroup_under_move(mem)) {
1209 DEFINE_WAIT(wait);
1210 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1211 /* moving charge context might have finished. */
1212 if (mc.moving_task)
1213 schedule();
1214 finish_wait(&mc.waitq, &wait);
1215 return true;
1216 }
1217 }
1218 return false;
1219}
1220
1221/**
1222 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1223 * @memcg: The memory cgroup that went over limit
1224 * @p: Task that is going to be killed
1225 *
1226 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1227 * enabled
1228 */
1229void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1230{
1231 struct cgroup *task_cgrp;
1232 struct cgroup *mem_cgrp;
1233 /*
1234 * Need a buffer in BSS, can't rely on allocations. The code relies
1235 * on the assumption that OOM is serialized for memory controller.
1236 * If this assumption is broken, revisit this code.
1237 */
1238 static char memcg_name[PATH_MAX];
1239 int ret;
1240
1241 if (!memcg || !p)
1242 return;
1243
1244
1245 rcu_read_lock();
1246
1247 mem_cgrp = memcg->css.cgroup;
1248 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1249
1250 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1251 if (ret < 0) {
1252 /*
1253 * Unfortunately, we are unable to convert to a useful name
1254 * But we'll still print out the usage information
1255 */
1256 rcu_read_unlock();
1257 goto done;
1258 }
1259 rcu_read_unlock();
1260
1261 printk(KERN_INFO "Task in %s killed", memcg_name);
1262
1263 rcu_read_lock();
1264 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1265 if (ret < 0) {
1266 rcu_read_unlock();
1267 goto done;
1268 }
1269 rcu_read_unlock();
1270
1271 /*
1272 * Continues from above, so we don't need an KERN_ level
1273 */
1274 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1275done:
1276
1277 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1278 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1279 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1280 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1281 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1282 "failcnt %llu\n",
1283 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1284 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1285 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1286}
1287
1288/*
1289 * This function returns the number of memcg under hierarchy tree. Returns
1290 * 1(self count) if no children.
1291 */
1292static int mem_cgroup_count_children(struct mem_cgroup *mem)
1293{
1294 int num = 0;
1295 struct mem_cgroup *iter;
1296
1297 for_each_mem_cgroup_tree(iter, mem)
1298 num++;
1299 return num;
1300}
1301
1302/*
1303 * Return the memory (and swap, if configured) limit for a memcg.
1304 */
1305u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1306{
1307 u64 limit;
1308 u64 memsw;
1309
1310 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1311 limit += total_swap_pages << PAGE_SHIFT;
1312
1313 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1314 /*
1315 * If memsw is finite and limits the amount of swap space available
1316 * to this memcg, return that limit.
1317 */
1318 return min(limit, memsw);
1319}
1320
1321/*
1322 * Visit the first child (need not be the first child as per the ordering
1323 * of the cgroup list, since we track last_scanned_child) of @mem and use
1324 * that to reclaim free pages from.
1325 */
1326static struct mem_cgroup *
1327mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1328{
1329 struct mem_cgroup *ret = NULL;
1330 struct cgroup_subsys_state *css;
1331 int nextid, found;
1332
1333 if (!root_mem->use_hierarchy) {
1334 css_get(&root_mem->css);
1335 ret = root_mem;
1336 }
1337
1338 while (!ret) {
1339 rcu_read_lock();
1340 nextid = root_mem->last_scanned_child + 1;
1341 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1342 &found);
1343 if (css && css_tryget(css))
1344 ret = container_of(css, struct mem_cgroup, css);
1345
1346 rcu_read_unlock();
1347 /* Updates scanning parameter */
1348 if (!css) {
1349 /* this means start scan from ID:1 */
1350 root_mem->last_scanned_child = 0;
1351 } else
1352 root_mem->last_scanned_child = found;
1353 }
1354
1355 return ret;
1356}
1357
1358/*
1359 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1360 * we reclaimed from, so that we don't end up penalizing one child extensively
1361 * based on its position in the children list.
1362 *
1363 * root_mem is the original ancestor that we've been reclaim from.
1364 *
1365 * We give up and return to the caller when we visit root_mem twice.
1366 * (other groups can be removed while we're walking....)
1367 *
1368 * If shrink==true, for avoiding to free too much, this returns immedieately.
1369 */
1370static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1371 struct zone *zone,
1372 gfp_t gfp_mask,
1373 unsigned long reclaim_options)
1374{
1375 struct mem_cgroup *victim;
1376 int ret, total = 0;
1377 int loop = 0;
1378 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1379 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1380 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1381 unsigned long excess;
1382
1383 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1384
1385 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1386 if (root_mem->memsw_is_minimum)
1387 noswap = true;
1388
1389 while (1) {
1390 victim = mem_cgroup_select_victim(root_mem);
1391 if (victim == root_mem) {
1392 loop++;
1393 if (loop >= 1)
1394 drain_all_stock_async();
1395 if (loop >= 2) {
1396 /*
1397 * If we have not been able to reclaim
1398 * anything, it might because there are
1399 * no reclaimable pages under this hierarchy
1400 */
1401 if (!check_soft || !total) {
1402 css_put(&victim->css);
1403 break;
1404 }
1405 /*
1406 * We want to do more targetted reclaim.
1407 * excess >> 2 is not to excessive so as to
1408 * reclaim too much, nor too less that we keep
1409 * coming back to reclaim from this cgroup
1410 */
1411 if (total >= (excess >> 2) ||
1412 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1413 css_put(&victim->css);
1414 break;
1415 }
1416 }
1417 }
1418 if (!mem_cgroup_local_usage(victim)) {
1419 /* this cgroup's local usage == 0 */
1420 css_put(&victim->css);
1421 continue;
1422 }
1423 /* we use swappiness of local cgroup */
1424 if (check_soft)
1425 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1426 noswap, get_swappiness(victim), zone);
1427 else
1428 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1429 noswap, get_swappiness(victim));
1430 css_put(&victim->css);
1431 /*
1432 * At shrinking usage, we can't check we should stop here or
1433 * reclaim more. It's depends on callers. last_scanned_child
1434 * will work enough for keeping fairness under tree.
1435 */
1436 if (shrink)
1437 return ret;
1438 total += ret;
1439 if (check_soft) {
1440 if (!res_counter_soft_limit_excess(&root_mem->res))
1441 return total;
1442 } else if (mem_cgroup_margin(root_mem))
1443 return 1 + total;
1444 }
1445 return total;
1446}
1447
1448/*
1449 * Check OOM-Killer is already running under our hierarchy.
1450 * If someone is running, return false.
1451 */
1452static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1453{
1454 int x, lock_count = 0;
1455 struct mem_cgroup *iter;
1456
1457 for_each_mem_cgroup_tree(iter, mem) {
1458 x = atomic_inc_return(&iter->oom_lock);
1459 lock_count = max(x, lock_count);
1460 }
1461
1462 if (lock_count == 1)
1463 return true;
1464 return false;
1465}
1466
1467static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1468{
1469 struct mem_cgroup *iter;
1470
1471 /*
1472 * When a new child is created while the hierarchy is under oom,
1473 * mem_cgroup_oom_lock() may not be called. We have to use
1474 * atomic_add_unless() here.
1475 */
1476 for_each_mem_cgroup_tree(iter, mem)
1477 atomic_add_unless(&iter->oom_lock, -1, 0);
1478 return 0;
1479}
1480
1481
1482static DEFINE_MUTEX(memcg_oom_mutex);
1483static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
1485struct oom_wait_info {
1486 struct mem_cgroup *mem;
1487 wait_queue_t wait;
1488};
1489
1490static int memcg_oom_wake_function(wait_queue_t *wait,
1491 unsigned mode, int sync, void *arg)
1492{
1493 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1494 struct oom_wait_info *oom_wait_info;
1495
1496 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1497
1498 if (oom_wait_info->mem == wake_mem)
1499 goto wakeup;
1500 /* if no hierarchy, no match */
1501 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1502 return 0;
1503 /*
1504 * Both of oom_wait_info->mem and wake_mem are stable under us.
1505 * Then we can use css_is_ancestor without taking care of RCU.
1506 */
1507 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1508 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1509 return 0;
1510
1511wakeup:
1512 return autoremove_wake_function(wait, mode, sync, arg);
1513}
1514
1515static void memcg_wakeup_oom(struct mem_cgroup *mem)
1516{
1517 /* for filtering, pass "mem" as argument. */
1518 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1519}
1520
1521static void memcg_oom_recover(struct mem_cgroup *mem)
1522{
1523 if (mem && atomic_read(&mem->oom_lock))
1524 memcg_wakeup_oom(mem);
1525}
1526
1527/*
1528 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1529 */
1530bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1531{
1532 struct oom_wait_info owait;
1533 bool locked, need_to_kill;
1534
1535 owait.mem = mem;
1536 owait.wait.flags = 0;
1537 owait.wait.func = memcg_oom_wake_function;
1538 owait.wait.private = current;
1539 INIT_LIST_HEAD(&owait.wait.task_list);
1540 need_to_kill = true;
1541 /* At first, try to OOM lock hierarchy under mem.*/
1542 mutex_lock(&memcg_oom_mutex);
1543 locked = mem_cgroup_oom_lock(mem);
1544 /*
1545 * Even if signal_pending(), we can't quit charge() loop without
1546 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1547 * under OOM is always welcomed, use TASK_KILLABLE here.
1548 */
1549 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1550 if (!locked || mem->oom_kill_disable)
1551 need_to_kill = false;
1552 if (locked)
1553 mem_cgroup_oom_notify(mem);
1554 mutex_unlock(&memcg_oom_mutex);
1555
1556 if (need_to_kill) {
1557 finish_wait(&memcg_oom_waitq, &owait.wait);
1558 mem_cgroup_out_of_memory(mem, mask);
1559 } else {
1560 schedule();
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
1562 }
1563 mutex_lock(&memcg_oom_mutex);
1564 mem_cgroup_oom_unlock(mem);
1565 memcg_wakeup_oom(mem);
1566 mutex_unlock(&memcg_oom_mutex);
1567
1568 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1569 return false;
1570 /* Give chance to dying process */
1571 schedule_timeout(1);
1572 return true;
1573}
1574
1575/*
1576 * Currently used to update mapped file statistics, but the routine can be
1577 * generalized to update other statistics as well.
1578 *
1579 * Notes: Race condition
1580 *
1581 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1582 * it tends to be costly. But considering some conditions, we doesn't need
1583 * to do so _always_.
1584 *
1585 * Considering "charge", lock_page_cgroup() is not required because all
1586 * file-stat operations happen after a page is attached to radix-tree. There
1587 * are no race with "charge".
1588 *
1589 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1590 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1591 * if there are race with "uncharge". Statistics itself is properly handled
1592 * by flags.
1593 *
1594 * Considering "move", this is an only case we see a race. To make the race
1595 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1596 * possibility of race condition. If there is, we take a lock.
1597 */
1598
1599void mem_cgroup_update_page_stat(struct page *page,
1600 enum mem_cgroup_page_stat_item idx, int val)
1601{
1602 struct mem_cgroup *mem;
1603 struct page_cgroup *pc = lookup_page_cgroup(page);
1604 bool need_unlock = false;
1605 unsigned long uninitialized_var(flags);
1606
1607 if (unlikely(!pc))
1608 return;
1609
1610 rcu_read_lock();
1611 mem = pc->mem_cgroup;
1612 if (unlikely(!mem || !PageCgroupUsed(pc)))
1613 goto out;
1614 /* pc->mem_cgroup is unstable ? */
1615 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1616 /* take a lock against to access pc->mem_cgroup */
1617 move_lock_page_cgroup(pc, &flags);
1618 need_unlock = true;
1619 mem = pc->mem_cgroup;
1620 if (!mem || !PageCgroupUsed(pc))
1621 goto out;
1622 }
1623
1624 switch (idx) {
1625 case MEMCG_NR_FILE_MAPPED:
1626 if (val > 0)
1627 SetPageCgroupFileMapped(pc);
1628 else if (!page_mapped(page))
1629 ClearPageCgroupFileMapped(pc);
1630 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1631 break;
1632 default:
1633 BUG();
1634 }
1635
1636 this_cpu_add(mem->stat->count[idx], val);
1637
1638out:
1639 if (unlikely(need_unlock))
1640 move_unlock_page_cgroup(pc, &flags);
1641 rcu_read_unlock();
1642 return;
1643}
1644EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1645
1646/*
1647 * size of first charge trial. "32" comes from vmscan.c's magic value.
1648 * TODO: maybe necessary to use big numbers in big irons.
1649 */
1650#define CHARGE_SIZE (32 * PAGE_SIZE)
1651struct memcg_stock_pcp {
1652 struct mem_cgroup *cached; /* this never be root cgroup */
1653 int charge;
1654 struct work_struct work;
1655};
1656static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1657static atomic_t memcg_drain_count;
1658
1659/*
1660 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1661 * from local stock and true is returned. If the stock is 0 or charges from a
1662 * cgroup which is not current target, returns false. This stock will be
1663 * refilled.
1664 */
1665static bool consume_stock(struct mem_cgroup *mem)
1666{
1667 struct memcg_stock_pcp *stock;
1668 bool ret = true;
1669
1670 stock = &get_cpu_var(memcg_stock);
1671 if (mem == stock->cached && stock->charge)
1672 stock->charge -= PAGE_SIZE;
1673 else /* need to call res_counter_charge */
1674 ret = false;
1675 put_cpu_var(memcg_stock);
1676 return ret;
1677}
1678
1679/*
1680 * Returns stocks cached in percpu to res_counter and reset cached information.
1681 */
1682static void drain_stock(struct memcg_stock_pcp *stock)
1683{
1684 struct mem_cgroup *old = stock->cached;
1685
1686 if (stock->charge) {
1687 res_counter_uncharge(&old->res, stock->charge);
1688 if (do_swap_account)
1689 res_counter_uncharge(&old->memsw, stock->charge);
1690 }
1691 stock->cached = NULL;
1692 stock->charge = 0;
1693}
1694
1695/*
1696 * This must be called under preempt disabled or must be called by
1697 * a thread which is pinned to local cpu.
1698 */
1699static void drain_local_stock(struct work_struct *dummy)
1700{
1701 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1702 drain_stock(stock);
1703}
1704
1705/*
1706 * Cache charges(val) which is from res_counter, to local per_cpu area.
1707 * This will be consumed by consume_stock() function, later.
1708 */
1709static void refill_stock(struct mem_cgroup *mem, int val)
1710{
1711 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1712
1713 if (stock->cached != mem) { /* reset if necessary */
1714 drain_stock(stock);
1715 stock->cached = mem;
1716 }
1717 stock->charge += val;
1718 put_cpu_var(memcg_stock);
1719}
1720
1721/*
1722 * Tries to drain stocked charges in other cpus. This function is asynchronous
1723 * and just put a work per cpu for draining localy on each cpu. Caller can
1724 * expects some charges will be back to res_counter later but cannot wait for
1725 * it.
1726 */
1727static void drain_all_stock_async(void)
1728{
1729 int cpu;
1730 /* This function is for scheduling "drain" in asynchronous way.
1731 * The result of "drain" is not directly handled by callers. Then,
1732 * if someone is calling drain, we don't have to call drain more.
1733 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1734 * there is a race. We just do loose check here.
1735 */
1736 if (atomic_read(&memcg_drain_count))
1737 return;
1738 /* Notify other cpus that system-wide "drain" is running */
1739 atomic_inc(&memcg_drain_count);
1740 get_online_cpus();
1741 for_each_online_cpu(cpu) {
1742 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1743 schedule_work_on(cpu, &stock->work);
1744 }
1745 put_online_cpus();
1746 atomic_dec(&memcg_drain_count);
1747 /* We don't wait for flush_work */
1748}
1749
1750/* This is a synchronous drain interface. */
1751static void drain_all_stock_sync(void)
1752{
1753 /* called when force_empty is called */
1754 atomic_inc(&memcg_drain_count);
1755 schedule_on_each_cpu(drain_local_stock);
1756 atomic_dec(&memcg_drain_count);
1757}
1758
1759/*
1760 * This function drains percpu counter value from DEAD cpu and
1761 * move it to local cpu. Note that this function can be preempted.
1762 */
1763static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1764{
1765 int i;
1766
1767 spin_lock(&mem->pcp_counter_lock);
1768 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1769 s64 x = per_cpu(mem->stat->count[i], cpu);
1770
1771 per_cpu(mem->stat->count[i], cpu) = 0;
1772 mem->nocpu_base.count[i] += x;
1773 }
1774 /* need to clear ON_MOVE value, works as a kind of lock. */
1775 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1776 spin_unlock(&mem->pcp_counter_lock);
1777}
1778
1779static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1780{
1781 int idx = MEM_CGROUP_ON_MOVE;
1782
1783 spin_lock(&mem->pcp_counter_lock);
1784 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1785 spin_unlock(&mem->pcp_counter_lock);
1786}
1787
1788static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1789 unsigned long action,
1790 void *hcpu)
1791{
1792 int cpu = (unsigned long)hcpu;
1793 struct memcg_stock_pcp *stock;
1794 struct mem_cgroup *iter;
1795
1796 if ((action == CPU_ONLINE)) {
1797 for_each_mem_cgroup_all(iter)
1798 synchronize_mem_cgroup_on_move(iter, cpu);
1799 return NOTIFY_OK;
1800 }
1801
1802 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1803 return NOTIFY_OK;
1804
1805 for_each_mem_cgroup_all(iter)
1806 mem_cgroup_drain_pcp_counter(iter, cpu);
1807
1808 stock = &per_cpu(memcg_stock, cpu);
1809 drain_stock(stock);
1810 return NOTIFY_OK;
1811}
1812
1813
1814/* See __mem_cgroup_try_charge() for details */
1815enum {
1816 CHARGE_OK, /* success */
1817 CHARGE_RETRY, /* need to retry but retry is not bad */
1818 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1819 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1820 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1821};
1822
1823static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1824 int csize, bool oom_check)
1825{
1826 struct mem_cgroup *mem_over_limit;
1827 struct res_counter *fail_res;
1828 unsigned long flags = 0;
1829 int ret;
1830
1831 ret = res_counter_charge(&mem->res, csize, &fail_res);
1832
1833 if (likely(!ret)) {
1834 if (!do_swap_account)
1835 return CHARGE_OK;
1836 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1837 if (likely(!ret))
1838 return CHARGE_OK;
1839
1840 res_counter_uncharge(&mem->res, csize);
1841 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1842 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1843 } else
1844 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1845 /*
1846 * csize can be either a huge page (HPAGE_SIZE), a batch of
1847 * regular pages (CHARGE_SIZE), or a single regular page
1848 * (PAGE_SIZE).
1849 *
1850 * Never reclaim on behalf of optional batching, retry with a
1851 * single page instead.
1852 */
1853 if (csize == CHARGE_SIZE)
1854 return CHARGE_RETRY;
1855
1856 if (!(gfp_mask & __GFP_WAIT))
1857 return CHARGE_WOULDBLOCK;
1858
1859 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1860 gfp_mask, flags);
1861 if (mem_cgroup_margin(mem_over_limit) >= csize)
1862 return CHARGE_RETRY;
1863 /*
1864 * Even though the limit is exceeded at this point, reclaim
1865 * may have been able to free some pages. Retry the charge
1866 * before killing the task.
1867 *
1868 * Only for regular pages, though: huge pages are rather
1869 * unlikely to succeed so close to the limit, and we fall back
1870 * to regular pages anyway in case of failure.
1871 */
1872 if (csize == PAGE_SIZE && ret)
1873 return CHARGE_RETRY;
1874
1875 /*
1876 * At task move, charge accounts can be doubly counted. So, it's
1877 * better to wait until the end of task_move if something is going on.
1878 */
1879 if (mem_cgroup_wait_acct_move(mem_over_limit))
1880 return CHARGE_RETRY;
1881
1882 /* If we don't need to call oom-killer at el, return immediately */
1883 if (!oom_check)
1884 return CHARGE_NOMEM;
1885 /* check OOM */
1886 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1887 return CHARGE_OOM_DIE;
1888
1889 return CHARGE_RETRY;
1890}
1891
1892/*
1893 * Unlike exported interface, "oom" parameter is added. if oom==true,
1894 * oom-killer can be invoked.
1895 */
1896static int __mem_cgroup_try_charge(struct mm_struct *mm,
1897 gfp_t gfp_mask,
1898 struct mem_cgroup **memcg, bool oom,
1899 int page_size)
1900{
1901 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1902 struct mem_cgroup *mem = NULL;
1903 int ret;
1904 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1905
1906 /*
1907 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1908 * in system level. So, allow to go ahead dying process in addition to
1909 * MEMDIE process.
1910 */
1911 if (unlikely(test_thread_flag(TIF_MEMDIE)
1912 || fatal_signal_pending(current)))
1913 goto bypass;
1914
1915 /*
1916 * We always charge the cgroup the mm_struct belongs to.
1917 * The mm_struct's mem_cgroup changes on task migration if the
1918 * thread group leader migrates. It's possible that mm is not
1919 * set, if so charge the init_mm (happens for pagecache usage).
1920 */
1921 if (!*memcg && !mm)
1922 goto bypass;
1923again:
1924 if (*memcg) { /* css should be a valid one */
1925 mem = *memcg;
1926 VM_BUG_ON(css_is_removed(&mem->css));
1927 if (mem_cgroup_is_root(mem))
1928 goto done;
1929 if (page_size == PAGE_SIZE && consume_stock(mem))
1930 goto done;
1931 css_get(&mem->css);
1932 } else {
1933 struct task_struct *p;
1934
1935 rcu_read_lock();
1936 p = rcu_dereference(mm->owner);
1937 /*
1938 * Because we don't have task_lock(), "p" can exit.
1939 * In that case, "mem" can point to root or p can be NULL with
1940 * race with swapoff. Then, we have small risk of mis-accouning.
1941 * But such kind of mis-account by race always happens because
1942 * we don't have cgroup_mutex(). It's overkill and we allo that
1943 * small race, here.
1944 * (*) swapoff at el will charge against mm-struct not against
1945 * task-struct. So, mm->owner can be NULL.
1946 */
1947 mem = mem_cgroup_from_task(p);
1948 if (!mem || mem_cgroup_is_root(mem)) {
1949 rcu_read_unlock();
1950 goto done;
1951 }
1952 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1953 /*
1954 * It seems dagerous to access memcg without css_get().
1955 * But considering how consume_stok works, it's not
1956 * necessary. If consume_stock success, some charges
1957 * from this memcg are cached on this cpu. So, we
1958 * don't need to call css_get()/css_tryget() before
1959 * calling consume_stock().
1960 */
1961 rcu_read_unlock();
1962 goto done;
1963 }
1964 /* after here, we may be blocked. we need to get refcnt */
1965 if (!css_tryget(&mem->css)) {
1966 rcu_read_unlock();
1967 goto again;
1968 }
1969 rcu_read_unlock();
1970 }
1971
1972 do {
1973 bool oom_check;
1974
1975 /* If killed, bypass charge */
1976 if (fatal_signal_pending(current)) {
1977 css_put(&mem->css);
1978 goto bypass;
1979 }
1980
1981 oom_check = false;
1982 if (oom && !nr_oom_retries) {
1983 oom_check = true;
1984 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1985 }
1986
1987 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1988
1989 switch (ret) {
1990 case CHARGE_OK:
1991 break;
1992 case CHARGE_RETRY: /* not in OOM situation but retry */
1993 csize = page_size;
1994 css_put(&mem->css);
1995 mem = NULL;
1996 goto again;
1997 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1998 css_put(&mem->css);
1999 goto nomem;
2000 case CHARGE_NOMEM: /* OOM routine works */
2001 if (!oom) {
2002 css_put(&mem->css);
2003 goto nomem;
2004 }
2005 /* If oom, we never return -ENOMEM */
2006 nr_oom_retries--;
2007 break;
2008 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2009 css_put(&mem->css);
2010 goto bypass;
2011 }
2012 } while (ret != CHARGE_OK);
2013
2014 if (csize > page_size)
2015 refill_stock(mem, csize - page_size);
2016 css_put(&mem->css);
2017done:
2018 *memcg = mem;
2019 return 0;
2020nomem:
2021 *memcg = NULL;
2022 return -ENOMEM;
2023bypass:
2024 *memcg = NULL;
2025 return 0;
2026}
2027
2028/*
2029 * Somemtimes we have to undo a charge we got by try_charge().
2030 * This function is for that and do uncharge, put css's refcnt.
2031 * gotten by try_charge().
2032 */
2033static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2034 unsigned long count)
2035{
2036 if (!mem_cgroup_is_root(mem)) {
2037 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2038 if (do_swap_account)
2039 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2040 }
2041}
2042
2043static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2044 int page_size)
2045{
2046 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2047}
2048
2049/*
2050 * A helper function to get mem_cgroup from ID. must be called under
2051 * rcu_read_lock(). The caller must check css_is_removed() or some if
2052 * it's concern. (dropping refcnt from swap can be called against removed
2053 * memcg.)
2054 */
2055static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2056{
2057 struct cgroup_subsys_state *css;
2058
2059 /* ID 0 is unused ID */
2060 if (!id)
2061 return NULL;
2062 css = css_lookup(&mem_cgroup_subsys, id);
2063 if (!css)
2064 return NULL;
2065 return container_of(css, struct mem_cgroup, css);
2066}
2067
2068struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2069{
2070 struct mem_cgroup *mem = NULL;
2071 struct page_cgroup *pc;
2072 unsigned short id;
2073 swp_entry_t ent;
2074
2075 VM_BUG_ON(!PageLocked(page));
2076
2077 pc = lookup_page_cgroup(page);
2078 lock_page_cgroup(pc);
2079 if (PageCgroupUsed(pc)) {
2080 mem = pc->mem_cgroup;
2081 if (mem && !css_tryget(&mem->css))
2082 mem = NULL;
2083 } else if (PageSwapCache(page)) {
2084 ent.val = page_private(page);
2085 id = lookup_swap_cgroup(ent);
2086 rcu_read_lock();
2087 mem = mem_cgroup_lookup(id);
2088 if (mem && !css_tryget(&mem->css))
2089 mem = NULL;
2090 rcu_read_unlock();
2091 }
2092 unlock_page_cgroup(pc);
2093 return mem;
2094}
2095
2096static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2097 struct page *page,
2098 struct page_cgroup *pc,
2099 enum charge_type ctype,
2100 int page_size)
2101{
2102 int nr_pages = page_size >> PAGE_SHIFT;
2103
2104 lock_page_cgroup(pc);
2105 if (unlikely(PageCgroupUsed(pc))) {
2106 unlock_page_cgroup(pc);
2107 mem_cgroup_cancel_charge(mem, page_size);
2108 return;
2109 }
2110 /*
2111 * we don't need page_cgroup_lock about tail pages, becase they are not
2112 * accessed by any other context at this point.
2113 */
2114 pc->mem_cgroup = mem;
2115 /*
2116 * We access a page_cgroup asynchronously without lock_page_cgroup().
2117 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2118 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2119 * before USED bit, we need memory barrier here.
2120 * See mem_cgroup_add_lru_list(), etc.
2121 */
2122 smp_wmb();
2123 switch (ctype) {
2124 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2125 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2126 SetPageCgroupCache(pc);
2127 SetPageCgroupUsed(pc);
2128 break;
2129 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2130 ClearPageCgroupCache(pc);
2131 SetPageCgroupUsed(pc);
2132 break;
2133 default:
2134 break;
2135 }
2136
2137 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2138 unlock_page_cgroup(pc);
2139 /*
2140 * "charge_statistics" updated event counter. Then, check it.
2141 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2142 * if they exceeds softlimit.
2143 */
2144 memcg_check_events(mem, page);
2145}
2146
2147#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2148
2149#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2150 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2151/*
2152 * Because tail pages are not marked as "used", set it. We're under
2153 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2154 */
2155void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2156{
2157 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2158 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2159 unsigned long flags;
2160
2161 if (mem_cgroup_disabled())
2162 return;
2163 /*
2164 * We have no races with charge/uncharge but will have races with
2165 * page state accounting.
2166 */
2167 move_lock_page_cgroup(head_pc, &flags);
2168
2169 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2170 smp_wmb(); /* see __commit_charge() */
2171 if (PageCgroupAcctLRU(head_pc)) {
2172 enum lru_list lru;
2173 struct mem_cgroup_per_zone *mz;
2174
2175 /*
2176 * LRU flags cannot be copied because we need to add tail
2177 *.page to LRU by generic call and our hook will be called.
2178 * We hold lru_lock, then, reduce counter directly.
2179 */
2180 lru = page_lru(head);
2181 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2182 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2183 }
2184 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2185 move_unlock_page_cgroup(head_pc, &flags);
2186}
2187#endif
2188
2189/**
2190 * mem_cgroup_move_account - move account of the page
2191 * @page: the page
2192 * @pc: page_cgroup of the page.
2193 * @from: mem_cgroup which the page is moved from.
2194 * @to: mem_cgroup which the page is moved to. @from != @to.
2195 * @uncharge: whether we should call uncharge and css_put against @from.
2196 * @charge_size: number of bytes to charge (regular or huge page)
2197 *
2198 * The caller must confirm following.
2199 * - page is not on LRU (isolate_page() is useful.)
2200 * - compound_lock is held when charge_size > PAGE_SIZE
2201 *
2202 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2203 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2204 * true, this function does "uncharge" from old cgroup, but it doesn't if
2205 * @uncharge is false, so a caller should do "uncharge".
2206 */
2207static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2208 struct mem_cgroup *from, struct mem_cgroup *to,
2209 bool uncharge, int charge_size)
2210{
2211 int nr_pages = charge_size >> PAGE_SHIFT;
2212 unsigned long flags;
2213 int ret;
2214
2215 VM_BUG_ON(from == to);
2216 VM_BUG_ON(PageLRU(page));
2217 /*
2218 * The page is isolated from LRU. So, collapse function
2219 * will not handle this page. But page splitting can happen.
2220 * Do this check under compound_page_lock(). The caller should
2221 * hold it.
2222 */
2223 ret = -EBUSY;
2224 if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2225 goto out;
2226
2227 lock_page_cgroup(pc);
2228
2229 ret = -EINVAL;
2230 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2231 goto unlock;
2232
2233 move_lock_page_cgroup(pc, &flags);
2234
2235 if (PageCgroupFileMapped(pc)) {
2236 /* Update mapped_file data for mem_cgroup */
2237 preempt_disable();
2238 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240 preempt_enable();
2241 }
2242 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 if (uncharge)
2244 /* This is not "cancel", but cancel_charge does all we need. */
2245 mem_cgroup_cancel_charge(from, charge_size);
2246
2247 /* caller should have done css_get */
2248 pc->mem_cgroup = to;
2249 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250 /*
2251 * We charges against "to" which may not have any tasks. Then, "to"
2252 * can be under rmdir(). But in current implementation, caller of
2253 * this function is just force_empty() and move charge, so it's
2254 * garanteed that "to" is never removed. So, we don't check rmdir
2255 * status here.
2256 */
2257 move_unlock_page_cgroup(pc, &flags);
2258 ret = 0;
2259unlock:
2260 unlock_page_cgroup(pc);
2261 /*
2262 * check events
2263 */
2264 memcg_check_events(to, page);
2265 memcg_check_events(from, page);
2266out:
2267 return ret;
2268}
2269
2270/*
2271 * move charges to its parent.
2272 */
2273
2274static int mem_cgroup_move_parent(struct page *page,
2275 struct page_cgroup *pc,
2276 struct mem_cgroup *child,
2277 gfp_t gfp_mask)
2278{
2279 struct cgroup *cg = child->css.cgroup;
2280 struct cgroup *pcg = cg->parent;
2281 struct mem_cgroup *parent;
2282 int page_size = PAGE_SIZE;
2283 unsigned long flags;
2284 int ret;
2285
2286 /* Is ROOT ? */
2287 if (!pcg)
2288 return -EINVAL;
2289
2290 ret = -EBUSY;
2291 if (!get_page_unless_zero(page))
2292 goto out;
2293 if (isolate_lru_page(page))
2294 goto put;
2295
2296 if (PageTransHuge(page))
2297 page_size = HPAGE_SIZE;
2298
2299 parent = mem_cgroup_from_cont(pcg);
2300 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2301 &parent, false, page_size);
2302 if (ret || !parent)
2303 goto put_back;
2304
2305 if (page_size > PAGE_SIZE)
2306 flags = compound_lock_irqsave(page);
2307
2308 ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2309 if (ret)
2310 mem_cgroup_cancel_charge(parent, page_size);
2311
2312 if (page_size > PAGE_SIZE)
2313 compound_unlock_irqrestore(page, flags);
2314put_back:
2315 putback_lru_page(page);
2316put:
2317 put_page(page);
2318out:
2319 return ret;
2320}
2321
2322/*
2323 * Charge the memory controller for page usage.
2324 * Return
2325 * 0 if the charge was successful
2326 * < 0 if the cgroup is over its limit
2327 */
2328static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2329 gfp_t gfp_mask, enum charge_type ctype)
2330{
2331 struct mem_cgroup *mem = NULL;
2332 int page_size = PAGE_SIZE;
2333 struct page_cgroup *pc;
2334 bool oom = true;
2335 int ret;
2336
2337 if (PageTransHuge(page)) {
2338 page_size <<= compound_order(page);
2339 VM_BUG_ON(!PageTransHuge(page));
2340 /*
2341 * Never OOM-kill a process for a huge page. The
2342 * fault handler will fall back to regular pages.
2343 */
2344 oom = false;
2345 }
2346
2347 pc = lookup_page_cgroup(page);
2348 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2349
2350 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2351 if (ret || !mem)
2352 return ret;
2353
2354 __mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2355 return 0;
2356}
2357
2358int mem_cgroup_newpage_charge(struct page *page,
2359 struct mm_struct *mm, gfp_t gfp_mask)
2360{
2361 if (mem_cgroup_disabled())
2362 return 0;
2363 /*
2364 * If already mapped, we don't have to account.
2365 * If page cache, page->mapping has address_space.
2366 * But page->mapping may have out-of-use anon_vma pointer,
2367 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2368 * is NULL.
2369 */
2370 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2371 return 0;
2372 if (unlikely(!mm))
2373 mm = &init_mm;
2374 return mem_cgroup_charge_common(page, mm, gfp_mask,
2375 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2376}
2377
2378static void
2379__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2380 enum charge_type ctype);
2381
2382int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2383 gfp_t gfp_mask)
2384{
2385 int ret;
2386
2387 if (mem_cgroup_disabled())
2388 return 0;
2389 if (PageCompound(page))
2390 return 0;
2391 /*
2392 * Corner case handling. This is called from add_to_page_cache()
2393 * in usual. But some FS (shmem) precharges this page before calling it
2394 * and call add_to_page_cache() with GFP_NOWAIT.
2395 *
2396 * For GFP_NOWAIT case, the page may be pre-charged before calling
2397 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2398 * charge twice. (It works but has to pay a bit larger cost.)
2399 * And when the page is SwapCache, it should take swap information
2400 * into account. This is under lock_page() now.
2401 */
2402 if (!(gfp_mask & __GFP_WAIT)) {
2403 struct page_cgroup *pc;
2404
2405 pc = lookup_page_cgroup(page);
2406 if (!pc)
2407 return 0;
2408 lock_page_cgroup(pc);
2409 if (PageCgroupUsed(pc)) {
2410 unlock_page_cgroup(pc);
2411 return 0;
2412 }
2413 unlock_page_cgroup(pc);
2414 }
2415
2416 if (unlikely(!mm))
2417 mm = &init_mm;
2418
2419 if (page_is_file_cache(page))
2420 return mem_cgroup_charge_common(page, mm, gfp_mask,
2421 MEM_CGROUP_CHARGE_TYPE_CACHE);
2422
2423 /* shmem */
2424 if (PageSwapCache(page)) {
2425 struct mem_cgroup *mem;
2426
2427 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2428 if (!ret)
2429 __mem_cgroup_commit_charge_swapin(page, mem,
2430 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2431 } else
2432 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2433 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2434
2435 return ret;
2436}
2437
2438/*
2439 * While swap-in, try_charge -> commit or cancel, the page is locked.
2440 * And when try_charge() successfully returns, one refcnt to memcg without
2441 * struct page_cgroup is acquired. This refcnt will be consumed by
2442 * "commit()" or removed by "cancel()"
2443 */
2444int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2445 struct page *page,
2446 gfp_t mask, struct mem_cgroup **ptr)
2447{
2448 struct mem_cgroup *mem;
2449 int ret;
2450
2451 *ptr = NULL;
2452
2453 if (mem_cgroup_disabled())
2454 return 0;
2455
2456 if (!do_swap_account)
2457 goto charge_cur_mm;
2458 /*
2459 * A racing thread's fault, or swapoff, may have already updated
2460 * the pte, and even removed page from swap cache: in those cases
2461 * do_swap_page()'s pte_same() test will fail; but there's also a
2462 * KSM case which does need to charge the page.
2463 */
2464 if (!PageSwapCache(page))
2465 goto charge_cur_mm;
2466 mem = try_get_mem_cgroup_from_page(page);
2467 if (!mem)
2468 goto charge_cur_mm;
2469 *ptr = mem;
2470 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2471 css_put(&mem->css);
2472 return ret;
2473charge_cur_mm:
2474 if (unlikely(!mm))
2475 mm = &init_mm;
2476 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2477}
2478
2479static void
2480__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2481 enum charge_type ctype)
2482{
2483 struct page_cgroup *pc;
2484
2485 if (mem_cgroup_disabled())
2486 return;
2487 if (!ptr)
2488 return;
2489 cgroup_exclude_rmdir(&ptr->css);
2490 pc = lookup_page_cgroup(page);
2491 mem_cgroup_lru_del_before_commit_swapcache(page);
2492 __mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2493 mem_cgroup_lru_add_after_commit_swapcache(page);
2494 /*
2495 * Now swap is on-memory. This means this page may be
2496 * counted both as mem and swap....double count.
2497 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2498 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2499 * may call delete_from_swap_cache() before reach here.
2500 */
2501 if (do_swap_account && PageSwapCache(page)) {
2502 swp_entry_t ent = {.val = page_private(page)};
2503 unsigned short id;
2504 struct mem_cgroup *memcg;
2505
2506 id = swap_cgroup_record(ent, 0);
2507 rcu_read_lock();
2508 memcg = mem_cgroup_lookup(id);
2509 if (memcg) {
2510 /*
2511 * This recorded memcg can be obsolete one. So, avoid
2512 * calling css_tryget
2513 */
2514 if (!mem_cgroup_is_root(memcg))
2515 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2516 mem_cgroup_swap_statistics(memcg, false);
2517 mem_cgroup_put(memcg);
2518 }
2519 rcu_read_unlock();
2520 }
2521 /*
2522 * At swapin, we may charge account against cgroup which has no tasks.
2523 * So, rmdir()->pre_destroy() can be called while we do this charge.
2524 * In that case, we need to call pre_destroy() again. check it here.
2525 */
2526 cgroup_release_and_wakeup_rmdir(&ptr->css);
2527}
2528
2529void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2530{
2531 __mem_cgroup_commit_charge_swapin(page, ptr,
2532 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2533}
2534
2535void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2536{
2537 if (mem_cgroup_disabled())
2538 return;
2539 if (!mem)
2540 return;
2541 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2542}
2543
2544static void
2545__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2546 int page_size)
2547{
2548 struct memcg_batch_info *batch = NULL;
2549 bool uncharge_memsw = true;
2550 /* If swapout, usage of swap doesn't decrease */
2551 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2552 uncharge_memsw = false;
2553
2554 batch = &current->memcg_batch;
2555 /*
2556 * In usual, we do css_get() when we remember memcg pointer.
2557 * But in this case, we keep res->usage until end of a series of
2558 * uncharges. Then, it's ok to ignore memcg's refcnt.
2559 */
2560 if (!batch->memcg)
2561 batch->memcg = mem;
2562 /*
2563 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2564 * In those cases, all pages freed continously can be expected to be in
2565 * the same cgroup and we have chance to coalesce uncharges.
2566 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2567 * because we want to do uncharge as soon as possible.
2568 */
2569
2570 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2571 goto direct_uncharge;
2572
2573 if (page_size != PAGE_SIZE)
2574 goto direct_uncharge;
2575
2576 /*
2577 * In typical case, batch->memcg == mem. This means we can
2578 * merge a series of uncharges to an uncharge of res_counter.
2579 * If not, we uncharge res_counter ony by one.
2580 */
2581 if (batch->memcg != mem)
2582 goto direct_uncharge;
2583 /* remember freed charge and uncharge it later */
2584 batch->bytes += PAGE_SIZE;
2585 if (uncharge_memsw)
2586 batch->memsw_bytes += PAGE_SIZE;
2587 return;
2588direct_uncharge:
2589 res_counter_uncharge(&mem->res, page_size);
2590 if (uncharge_memsw)
2591 res_counter_uncharge(&mem->memsw, page_size);
2592 if (unlikely(batch->memcg != mem))
2593 memcg_oom_recover(mem);
2594 return;
2595}
2596
2597/*
2598 * uncharge if !page_mapped(page)
2599 */
2600static struct mem_cgroup *
2601__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2602{
2603 int count;
2604 struct page_cgroup *pc;
2605 struct mem_cgroup *mem = NULL;
2606 int page_size = PAGE_SIZE;
2607
2608 if (mem_cgroup_disabled())
2609 return NULL;
2610
2611 if (PageSwapCache(page))
2612 return NULL;
2613
2614 if (PageTransHuge(page)) {
2615 page_size <<= compound_order(page);
2616 VM_BUG_ON(!PageTransHuge(page));
2617 }
2618
2619 count = page_size >> PAGE_SHIFT;
2620 /*
2621 * Check if our page_cgroup is valid
2622 */
2623 pc = lookup_page_cgroup(page);
2624 if (unlikely(!pc || !PageCgroupUsed(pc)))
2625 return NULL;
2626
2627 lock_page_cgroup(pc);
2628
2629 mem = pc->mem_cgroup;
2630
2631 if (!PageCgroupUsed(pc))
2632 goto unlock_out;
2633
2634 switch (ctype) {
2635 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2636 case MEM_CGROUP_CHARGE_TYPE_DROP:
2637 /* See mem_cgroup_prepare_migration() */
2638 if (page_mapped(page) || PageCgroupMigration(pc))
2639 goto unlock_out;
2640 break;
2641 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2642 if (!PageAnon(page)) { /* Shared memory */
2643 if (page->mapping && !page_is_file_cache(page))
2644 goto unlock_out;
2645 } else if (page_mapped(page)) /* Anon */
2646 goto unlock_out;
2647 break;
2648 default:
2649 break;
2650 }
2651
2652 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2653
2654 ClearPageCgroupUsed(pc);
2655 /*
2656 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2657 * freed from LRU. This is safe because uncharged page is expected not
2658 * to be reused (freed soon). Exception is SwapCache, it's handled by
2659 * special functions.
2660 */
2661
2662 unlock_page_cgroup(pc);
2663 /*
2664 * even after unlock, we have mem->res.usage here and this memcg
2665 * will never be freed.
2666 */
2667 memcg_check_events(mem, page);
2668 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2669 mem_cgroup_swap_statistics(mem, true);
2670 mem_cgroup_get(mem);
2671 }
2672 if (!mem_cgroup_is_root(mem))
2673 __do_uncharge(mem, ctype, page_size);
2674
2675 return mem;
2676
2677unlock_out:
2678 unlock_page_cgroup(pc);
2679 return NULL;
2680}
2681
2682void mem_cgroup_uncharge_page(struct page *page)
2683{
2684 /* early check. */
2685 if (page_mapped(page))
2686 return;
2687 if (page->mapping && !PageAnon(page))
2688 return;
2689 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2690}
2691
2692void mem_cgroup_uncharge_cache_page(struct page *page)
2693{
2694 VM_BUG_ON(page_mapped(page));
2695 VM_BUG_ON(page->mapping);
2696 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2697}
2698
2699/*
2700 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2701 * In that cases, pages are freed continuously and we can expect pages
2702 * are in the same memcg. All these calls itself limits the number of
2703 * pages freed at once, then uncharge_start/end() is called properly.
2704 * This may be called prural(2) times in a context,
2705 */
2706
2707void mem_cgroup_uncharge_start(void)
2708{
2709 current->memcg_batch.do_batch++;
2710 /* We can do nest. */
2711 if (current->memcg_batch.do_batch == 1) {
2712 current->memcg_batch.memcg = NULL;
2713 current->memcg_batch.bytes = 0;
2714 current->memcg_batch.memsw_bytes = 0;
2715 }
2716}
2717
2718void mem_cgroup_uncharge_end(void)
2719{
2720 struct memcg_batch_info *batch = &current->memcg_batch;
2721
2722 if (!batch->do_batch)
2723 return;
2724
2725 batch->do_batch--;
2726 if (batch->do_batch) /* If stacked, do nothing. */
2727 return;
2728
2729 if (!batch->memcg)
2730 return;
2731 /*
2732 * This "batch->memcg" is valid without any css_get/put etc...
2733 * bacause we hide charges behind us.
2734 */
2735 if (batch->bytes)
2736 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2737 if (batch->memsw_bytes)
2738 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2739 memcg_oom_recover(batch->memcg);
2740 /* forget this pointer (for sanity check) */
2741 batch->memcg = NULL;
2742}
2743
2744#ifdef CONFIG_SWAP
2745/*
2746 * called after __delete_from_swap_cache() and drop "page" account.
2747 * memcg information is recorded to swap_cgroup of "ent"
2748 */
2749void
2750mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2751{
2752 struct mem_cgroup *memcg;
2753 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2754
2755 if (!swapout) /* this was a swap cache but the swap is unused ! */
2756 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2757
2758 memcg = __mem_cgroup_uncharge_common(page, ctype);
2759
2760 /*
2761 * record memcg information, if swapout && memcg != NULL,
2762 * mem_cgroup_get() was called in uncharge().
2763 */
2764 if (do_swap_account && swapout && memcg)
2765 swap_cgroup_record(ent, css_id(&memcg->css));
2766}
2767#endif
2768
2769#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2770/*
2771 * called from swap_entry_free(). remove record in swap_cgroup and
2772 * uncharge "memsw" account.
2773 */
2774void mem_cgroup_uncharge_swap(swp_entry_t ent)
2775{
2776 struct mem_cgroup *memcg;
2777 unsigned short id;
2778
2779 if (!do_swap_account)
2780 return;
2781
2782 id = swap_cgroup_record(ent, 0);
2783 rcu_read_lock();
2784 memcg = mem_cgroup_lookup(id);
2785 if (memcg) {
2786 /*
2787 * We uncharge this because swap is freed.
2788 * This memcg can be obsolete one. We avoid calling css_tryget
2789 */
2790 if (!mem_cgroup_is_root(memcg))
2791 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2792 mem_cgroup_swap_statistics(memcg, false);
2793 mem_cgroup_put(memcg);
2794 }
2795 rcu_read_unlock();
2796}
2797
2798/**
2799 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2800 * @entry: swap entry to be moved
2801 * @from: mem_cgroup which the entry is moved from
2802 * @to: mem_cgroup which the entry is moved to
2803 * @need_fixup: whether we should fixup res_counters and refcounts.
2804 *
2805 * It succeeds only when the swap_cgroup's record for this entry is the same
2806 * as the mem_cgroup's id of @from.
2807 *
2808 * Returns 0 on success, -EINVAL on failure.
2809 *
2810 * The caller must have charged to @to, IOW, called res_counter_charge() about
2811 * both res and memsw, and called css_get().
2812 */
2813static int mem_cgroup_move_swap_account(swp_entry_t entry,
2814 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2815{
2816 unsigned short old_id, new_id;
2817
2818 old_id = css_id(&from->css);
2819 new_id = css_id(&to->css);
2820
2821 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2822 mem_cgroup_swap_statistics(from, false);
2823 mem_cgroup_swap_statistics(to, true);
2824 /*
2825 * This function is only called from task migration context now.
2826 * It postpones res_counter and refcount handling till the end
2827 * of task migration(mem_cgroup_clear_mc()) for performance
2828 * improvement. But we cannot postpone mem_cgroup_get(to)
2829 * because if the process that has been moved to @to does
2830 * swap-in, the refcount of @to might be decreased to 0.
2831 */
2832 mem_cgroup_get(to);
2833 if (need_fixup) {
2834 if (!mem_cgroup_is_root(from))
2835 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2836 mem_cgroup_put(from);
2837 /*
2838 * we charged both to->res and to->memsw, so we should
2839 * uncharge to->res.
2840 */
2841 if (!mem_cgroup_is_root(to))
2842 res_counter_uncharge(&to->res, PAGE_SIZE);
2843 }
2844 return 0;
2845 }
2846 return -EINVAL;
2847}
2848#else
2849static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2850 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2851{
2852 return -EINVAL;
2853}
2854#endif
2855
2856/*
2857 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2858 * page belongs to.
2859 */
2860int mem_cgroup_prepare_migration(struct page *page,
2861 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2862{
2863 struct page_cgroup *pc;
2864 struct mem_cgroup *mem = NULL;
2865 enum charge_type ctype;
2866 int ret = 0;
2867
2868 *ptr = NULL;
2869
2870 VM_BUG_ON(PageTransHuge(page));
2871 if (mem_cgroup_disabled())
2872 return 0;
2873
2874 pc = lookup_page_cgroup(page);
2875 lock_page_cgroup(pc);
2876 if (PageCgroupUsed(pc)) {
2877 mem = pc->mem_cgroup;
2878 css_get(&mem->css);
2879 /*
2880 * At migrating an anonymous page, its mapcount goes down
2881 * to 0 and uncharge() will be called. But, even if it's fully
2882 * unmapped, migration may fail and this page has to be
2883 * charged again. We set MIGRATION flag here and delay uncharge
2884 * until end_migration() is called
2885 *
2886 * Corner Case Thinking
2887 * A)
2888 * When the old page was mapped as Anon and it's unmap-and-freed
2889 * while migration was ongoing.
2890 * If unmap finds the old page, uncharge() of it will be delayed
2891 * until end_migration(). If unmap finds a new page, it's
2892 * uncharged when it make mapcount to be 1->0. If unmap code
2893 * finds swap_migration_entry, the new page will not be mapped
2894 * and end_migration() will find it(mapcount==0).
2895 *
2896 * B)
2897 * When the old page was mapped but migraion fails, the kernel
2898 * remaps it. A charge for it is kept by MIGRATION flag even
2899 * if mapcount goes down to 0. We can do remap successfully
2900 * without charging it again.
2901 *
2902 * C)
2903 * The "old" page is under lock_page() until the end of
2904 * migration, so, the old page itself will not be swapped-out.
2905 * If the new page is swapped out before end_migraton, our
2906 * hook to usual swap-out path will catch the event.
2907 */
2908 if (PageAnon(page))
2909 SetPageCgroupMigration(pc);
2910 }
2911 unlock_page_cgroup(pc);
2912 /*
2913 * If the page is not charged at this point,
2914 * we return here.
2915 */
2916 if (!mem)
2917 return 0;
2918
2919 *ptr = mem;
2920 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2921 css_put(&mem->css);/* drop extra refcnt */
2922 if (ret || *ptr == NULL) {
2923 if (PageAnon(page)) {
2924 lock_page_cgroup(pc);
2925 ClearPageCgroupMigration(pc);
2926 unlock_page_cgroup(pc);
2927 /*
2928 * The old page may be fully unmapped while we kept it.
2929 */
2930 mem_cgroup_uncharge_page(page);
2931 }
2932 return -ENOMEM;
2933 }
2934 /*
2935 * We charge new page before it's used/mapped. So, even if unlock_page()
2936 * is called before end_migration, we can catch all events on this new
2937 * page. In the case new page is migrated but not remapped, new page's
2938 * mapcount will be finally 0 and we call uncharge in end_migration().
2939 */
2940 pc = lookup_page_cgroup(newpage);
2941 if (PageAnon(page))
2942 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2943 else if (page_is_file_cache(page))
2944 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2945 else
2946 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2947 __mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2948 return ret;
2949}
2950
2951/* remove redundant charge if migration failed*/
2952void mem_cgroup_end_migration(struct mem_cgroup *mem,
2953 struct page *oldpage, struct page *newpage, bool migration_ok)
2954{
2955 struct page *used, *unused;
2956 struct page_cgroup *pc;
2957
2958 if (!mem)
2959 return;
2960 /* blocks rmdir() */
2961 cgroup_exclude_rmdir(&mem->css);
2962 if (!migration_ok) {
2963 used = oldpage;
2964 unused = newpage;
2965 } else {
2966 used = newpage;
2967 unused = oldpage;
2968 }
2969 /*
2970 * We disallowed uncharge of pages under migration because mapcount
2971 * of the page goes down to zero, temporarly.
2972 * Clear the flag and check the page should be charged.
2973 */
2974 pc = lookup_page_cgroup(oldpage);
2975 lock_page_cgroup(pc);
2976 ClearPageCgroupMigration(pc);
2977 unlock_page_cgroup(pc);
2978
2979 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2980
2981 /*
2982 * If a page is a file cache, radix-tree replacement is very atomic
2983 * and we can skip this check. When it was an Anon page, its mapcount
2984 * goes down to 0. But because we added MIGRATION flage, it's not
2985 * uncharged yet. There are several case but page->mapcount check
2986 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2987 * check. (see prepare_charge() also)
2988 */
2989 if (PageAnon(used))
2990 mem_cgroup_uncharge_page(used);
2991 /*
2992 * At migration, we may charge account against cgroup which has no
2993 * tasks.
2994 * So, rmdir()->pre_destroy() can be called while we do this charge.
2995 * In that case, we need to call pre_destroy() again. check it here.
2996 */
2997 cgroup_release_and_wakeup_rmdir(&mem->css);
2998}
2999
3000/*
3001 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3002 * Calling hierarchical_reclaim is not enough because we should update
3003 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3004 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3005 * not from the memcg which this page would be charged to.
3006 * try_charge_swapin does all of these works properly.
3007 */
3008int mem_cgroup_shmem_charge_fallback(struct page *page,
3009 struct mm_struct *mm,
3010 gfp_t gfp_mask)
3011{
3012 struct mem_cgroup *mem;
3013 int ret;
3014
3015 if (mem_cgroup_disabled())
3016 return 0;
3017
3018 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3019 if (!ret)
3020 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3021
3022 return ret;
3023}
3024
3025#ifdef CONFIG_DEBUG_VM
3026static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3027{
3028 struct page_cgroup *pc;
3029
3030 pc = lookup_page_cgroup(page);
3031 if (likely(pc) && PageCgroupUsed(pc))
3032 return pc;
3033 return NULL;
3034}
3035
3036bool mem_cgroup_bad_page_check(struct page *page)
3037{
3038 if (mem_cgroup_disabled())
3039 return false;
3040
3041 return lookup_page_cgroup_used(page) != NULL;
3042}
3043
3044void mem_cgroup_print_bad_page(struct page *page)
3045{
3046 struct page_cgroup *pc;
3047
3048 pc = lookup_page_cgroup_used(page);
3049 if (pc) {
3050 int ret = -1;
3051 char *path;
3052
3053 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3054 pc, pc->flags, pc->mem_cgroup);
3055
3056 path = kmalloc(PATH_MAX, GFP_KERNEL);
3057 if (path) {
3058 rcu_read_lock();
3059 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3060 path, PATH_MAX);
3061 rcu_read_unlock();
3062 }
3063
3064 printk(KERN_CONT "(%s)\n",
3065 (ret < 0) ? "cannot get the path" : path);
3066 kfree(path);
3067 }
3068}
3069#endif
3070
3071static DEFINE_MUTEX(set_limit_mutex);
3072
3073static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3074 unsigned long long val)
3075{
3076 int retry_count;
3077 u64 memswlimit, memlimit;
3078 int ret = 0;
3079 int children = mem_cgroup_count_children(memcg);
3080 u64 curusage, oldusage;
3081 int enlarge;
3082
3083 /*
3084 * For keeping hierarchical_reclaim simple, how long we should retry
3085 * is depends on callers. We set our retry-count to be function
3086 * of # of children which we should visit in this loop.
3087 */
3088 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3089
3090 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3091
3092 enlarge = 0;
3093 while (retry_count) {
3094 if (signal_pending(current)) {
3095 ret = -EINTR;
3096 break;
3097 }
3098 /*
3099 * Rather than hide all in some function, I do this in
3100 * open coded manner. You see what this really does.
3101 * We have to guarantee mem->res.limit < mem->memsw.limit.
3102 */
3103 mutex_lock(&set_limit_mutex);
3104 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3105 if (memswlimit < val) {
3106 ret = -EINVAL;
3107 mutex_unlock(&set_limit_mutex);
3108 break;
3109 }
3110
3111 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3112 if (memlimit < val)
3113 enlarge = 1;
3114
3115 ret = res_counter_set_limit(&memcg->res, val);
3116 if (!ret) {
3117 if (memswlimit == val)
3118 memcg->memsw_is_minimum = true;
3119 else
3120 memcg->memsw_is_minimum = false;
3121 }
3122 mutex_unlock(&set_limit_mutex);
3123
3124 if (!ret)
3125 break;
3126
3127 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3128 MEM_CGROUP_RECLAIM_SHRINK);
3129 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3130 /* Usage is reduced ? */
3131 if (curusage >= oldusage)
3132 retry_count--;
3133 else
3134 oldusage = curusage;
3135 }
3136 if (!ret && enlarge)
3137 memcg_oom_recover(memcg);
3138
3139 return ret;
3140}
3141
3142static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3143 unsigned long long val)
3144{
3145 int retry_count;
3146 u64 memlimit, memswlimit, oldusage, curusage;
3147 int children = mem_cgroup_count_children(memcg);
3148 int ret = -EBUSY;
3149 int enlarge = 0;
3150
3151 /* see mem_cgroup_resize_res_limit */
3152 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3153 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3154 while (retry_count) {
3155 if (signal_pending(current)) {
3156 ret = -EINTR;
3157 break;
3158 }
3159 /*
3160 * Rather than hide all in some function, I do this in
3161 * open coded manner. You see what this really does.
3162 * We have to guarantee mem->res.limit < mem->memsw.limit.
3163 */
3164 mutex_lock(&set_limit_mutex);
3165 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3166 if (memlimit > val) {
3167 ret = -EINVAL;
3168 mutex_unlock(&set_limit_mutex);
3169 break;
3170 }
3171 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3172 if (memswlimit < val)
3173 enlarge = 1;
3174 ret = res_counter_set_limit(&memcg->memsw, val);
3175 if (!ret) {
3176 if (memlimit == val)
3177 memcg->memsw_is_minimum = true;
3178 else
3179 memcg->memsw_is_minimum = false;
3180 }
3181 mutex_unlock(&set_limit_mutex);
3182
3183 if (!ret)
3184 break;
3185
3186 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3187 MEM_CGROUP_RECLAIM_NOSWAP |
3188 MEM_CGROUP_RECLAIM_SHRINK);
3189 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3190 /* Usage is reduced ? */
3191 if (curusage >= oldusage)
3192 retry_count--;
3193 else
3194 oldusage = curusage;
3195 }
3196 if (!ret && enlarge)
3197 memcg_oom_recover(memcg);
3198 return ret;
3199}
3200
3201unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3202 gfp_t gfp_mask)
3203{
3204 unsigned long nr_reclaimed = 0;
3205 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3206 unsigned long reclaimed;
3207 int loop = 0;
3208 struct mem_cgroup_tree_per_zone *mctz;
3209 unsigned long long excess;
3210
3211 if (order > 0)
3212 return 0;
3213
3214 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3215 /*
3216 * This loop can run a while, specially if mem_cgroup's continuously
3217 * keep exceeding their soft limit and putting the system under
3218 * pressure
3219 */
3220 do {
3221 if (next_mz)
3222 mz = next_mz;
3223 else
3224 mz = mem_cgroup_largest_soft_limit_node(mctz);
3225 if (!mz)
3226 break;
3227
3228 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3229 gfp_mask,
3230 MEM_CGROUP_RECLAIM_SOFT);
3231 nr_reclaimed += reclaimed;
3232 spin_lock(&mctz->lock);
3233
3234 /*
3235 * If we failed to reclaim anything from this memory cgroup
3236 * it is time to move on to the next cgroup
3237 */
3238 next_mz = NULL;
3239 if (!reclaimed) {
3240 do {
3241 /*
3242 * Loop until we find yet another one.
3243 *
3244 * By the time we get the soft_limit lock
3245 * again, someone might have aded the
3246 * group back on the RB tree. Iterate to
3247 * make sure we get a different mem.
3248 * mem_cgroup_largest_soft_limit_node returns
3249 * NULL if no other cgroup is present on
3250 * the tree
3251 */
3252 next_mz =
3253 __mem_cgroup_largest_soft_limit_node(mctz);
3254 if (next_mz == mz) {
3255 css_put(&next_mz->mem->css);
3256 next_mz = NULL;
3257 } else /* next_mz == NULL or other memcg */
3258 break;
3259 } while (1);
3260 }
3261 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3262 excess = res_counter_soft_limit_excess(&mz->mem->res);
3263 /*
3264 * One school of thought says that we should not add
3265 * back the node to the tree if reclaim returns 0.
3266 * But our reclaim could return 0, simply because due
3267 * to priority we are exposing a smaller subset of
3268 * memory to reclaim from. Consider this as a longer
3269 * term TODO.
3270 */
3271 /* If excess == 0, no tree ops */
3272 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3273 spin_unlock(&mctz->lock);
3274 css_put(&mz->mem->css);
3275 loop++;
3276 /*
3277 * Could not reclaim anything and there are no more
3278 * mem cgroups to try or we seem to be looping without
3279 * reclaiming anything.
3280 */
3281 if (!nr_reclaimed &&
3282 (next_mz == NULL ||
3283 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3284 break;
3285 } while (!nr_reclaimed);
3286 if (next_mz)
3287 css_put(&next_mz->mem->css);
3288 return nr_reclaimed;
3289}
3290
3291/*
3292 * This routine traverse page_cgroup in given list and drop them all.
3293 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3294 */
3295static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3296 int node, int zid, enum lru_list lru)
3297{
3298 struct zone *zone;
3299 struct mem_cgroup_per_zone *mz;
3300 struct page_cgroup *pc, *busy;
3301 unsigned long flags, loop;
3302 struct list_head *list;
3303 int ret = 0;
3304
3305 zone = &NODE_DATA(node)->node_zones[zid];
3306 mz = mem_cgroup_zoneinfo(mem, node, zid);
3307 list = &mz->lists[lru];
3308
3309 loop = MEM_CGROUP_ZSTAT(mz, lru);
3310 /* give some margin against EBUSY etc...*/
3311 loop += 256;
3312 busy = NULL;
3313 while (loop--) {
3314 struct page *page;
3315
3316 ret = 0;
3317 spin_lock_irqsave(&zone->lru_lock, flags);
3318 if (list_empty(list)) {
3319 spin_unlock_irqrestore(&zone->lru_lock, flags);
3320 break;
3321 }
3322 pc = list_entry(list->prev, struct page_cgroup, lru);
3323 if (busy == pc) {
3324 list_move(&pc->lru, list);
3325 busy = NULL;
3326 spin_unlock_irqrestore(&zone->lru_lock, flags);
3327 continue;
3328 }
3329 spin_unlock_irqrestore(&zone->lru_lock, flags);
3330
3331 page = lookup_cgroup_page(pc);
3332
3333 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3334 if (ret == -ENOMEM)
3335 break;
3336
3337 if (ret == -EBUSY || ret == -EINVAL) {
3338 /* found lock contention or "pc" is obsolete. */
3339 busy = pc;
3340 cond_resched();
3341 } else
3342 busy = NULL;
3343 }
3344
3345 if (!ret && !list_empty(list))
3346 return -EBUSY;
3347 return ret;
3348}
3349
3350/*
3351 * make mem_cgroup's charge to be 0 if there is no task.
3352 * This enables deleting this mem_cgroup.
3353 */
3354static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3355{
3356 int ret;
3357 int node, zid, shrink;
3358 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3359 struct cgroup *cgrp = mem->css.cgroup;
3360
3361 css_get(&mem->css);
3362
3363 shrink = 0;
3364 /* should free all ? */
3365 if (free_all)
3366 goto try_to_free;
3367move_account:
3368 do {
3369 ret = -EBUSY;
3370 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3371 goto out;
3372 ret = -EINTR;
3373 if (signal_pending(current))
3374 goto out;
3375 /* This is for making all *used* pages to be on LRU. */
3376 lru_add_drain_all();
3377 drain_all_stock_sync();
3378 ret = 0;
3379 mem_cgroup_start_move(mem);
3380 for_each_node_state(node, N_HIGH_MEMORY) {
3381 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3382 enum lru_list l;
3383 for_each_lru(l) {
3384 ret = mem_cgroup_force_empty_list(mem,
3385 node, zid, l);
3386 if (ret)
3387 break;
3388 }
3389 }
3390 if (ret)
3391 break;
3392 }
3393 mem_cgroup_end_move(mem);
3394 memcg_oom_recover(mem);
3395 /* it seems parent cgroup doesn't have enough mem */
3396 if (ret == -ENOMEM)
3397 goto try_to_free;
3398 cond_resched();
3399 /* "ret" should also be checked to ensure all lists are empty. */
3400 } while (mem->res.usage > 0 || ret);
3401out:
3402 css_put(&mem->css);
3403 return ret;
3404
3405try_to_free:
3406 /* returns EBUSY if there is a task or if we come here twice. */
3407 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3408 ret = -EBUSY;
3409 goto out;
3410 }
3411 /* we call try-to-free pages for make this cgroup empty */
3412 lru_add_drain_all();
3413 /* try to free all pages in this cgroup */
3414 shrink = 1;
3415 while (nr_retries && mem->res.usage > 0) {
3416 int progress;
3417
3418 if (signal_pending(current)) {
3419 ret = -EINTR;
3420 goto out;
3421 }
3422 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3423 false, get_swappiness(mem));
3424 if (!progress) {
3425 nr_retries--;
3426 /* maybe some writeback is necessary */
3427 congestion_wait(BLK_RW_ASYNC, HZ/10);
3428 }
3429
3430 }
3431 lru_add_drain();
3432 /* try move_account...there may be some *locked* pages. */
3433 goto move_account;
3434}
3435
3436int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3437{
3438 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3439}
3440
3441
3442static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3443{
3444 return mem_cgroup_from_cont(cont)->use_hierarchy;
3445}
3446
3447static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3448 u64 val)
3449{
3450 int retval = 0;
3451 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3452 struct cgroup *parent = cont->parent;
3453 struct mem_cgroup *parent_mem = NULL;
3454
3455 if (parent)
3456 parent_mem = mem_cgroup_from_cont(parent);
3457
3458 cgroup_lock();
3459 /*
3460 * If parent's use_hierarchy is set, we can't make any modifications
3461 * in the child subtrees. If it is unset, then the change can
3462 * occur, provided the current cgroup has no children.
3463 *
3464 * For the root cgroup, parent_mem is NULL, we allow value to be
3465 * set if there are no children.
3466 */
3467 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3468 (val == 1 || val == 0)) {
3469 if (list_empty(&cont->children))
3470 mem->use_hierarchy = val;
3471 else
3472 retval = -EBUSY;
3473 } else
3474 retval = -EINVAL;
3475 cgroup_unlock();
3476
3477 return retval;
3478}
3479
3480
3481static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3482 enum mem_cgroup_stat_index idx)
3483{
3484 struct mem_cgroup *iter;
3485 s64 val = 0;
3486
3487 /* each per cpu's value can be minus.Then, use s64 */
3488 for_each_mem_cgroup_tree(iter, mem)
3489 val += mem_cgroup_read_stat(iter, idx);
3490
3491 if (val < 0) /* race ? */
3492 val = 0;
3493 return val;
3494}
3495
3496static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3497{
3498 u64 val;
3499
3500 if (!mem_cgroup_is_root(mem)) {
3501 if (!swap)
3502 return res_counter_read_u64(&mem->res, RES_USAGE);
3503 else
3504 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3505 }
3506
3507 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3508 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3509
3510 if (swap)
3511 val += mem_cgroup_get_recursive_idx_stat(mem,
3512 MEM_CGROUP_STAT_SWAPOUT);
3513
3514 return val << PAGE_SHIFT;
3515}
3516
3517static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3518{
3519 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3520 u64 val;
3521 int type, name;
3522
3523 type = MEMFILE_TYPE(cft->private);
3524 name = MEMFILE_ATTR(cft->private);
3525 switch (type) {
3526 case _MEM:
3527 if (name == RES_USAGE)
3528 val = mem_cgroup_usage(mem, false);
3529 else
3530 val = res_counter_read_u64(&mem->res, name);
3531 break;
3532 case _MEMSWAP:
3533 if (name == RES_USAGE)
3534 val = mem_cgroup_usage(mem, true);
3535 else
3536 val = res_counter_read_u64(&mem->memsw, name);
3537 break;
3538 default:
3539 BUG();
3540 break;
3541 }
3542 return val;
3543}
3544/*
3545 * The user of this function is...
3546 * RES_LIMIT.
3547 */
3548static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3549 const char *buffer)
3550{
3551 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3552 int type, name;
3553 unsigned long long val;
3554 int ret;
3555
3556 type = MEMFILE_TYPE(cft->private);
3557 name = MEMFILE_ATTR(cft->private);
3558 switch (name) {
3559 case RES_LIMIT:
3560 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3561 ret = -EINVAL;
3562 break;
3563 }
3564 /* This function does all necessary parse...reuse it */
3565 ret = res_counter_memparse_write_strategy(buffer, &val);
3566 if (ret)
3567 break;
3568 if (type == _MEM)
3569 ret = mem_cgroup_resize_limit(memcg, val);
3570 else
3571 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3572 break;
3573 case RES_SOFT_LIMIT:
3574 ret = res_counter_memparse_write_strategy(buffer, &val);
3575 if (ret)
3576 break;
3577 /*
3578 * For memsw, soft limits are hard to implement in terms
3579 * of semantics, for now, we support soft limits for
3580 * control without swap
3581 */
3582 if (type == _MEM)
3583 ret = res_counter_set_soft_limit(&memcg->res, val);
3584 else
3585 ret = -EINVAL;
3586 break;
3587 default:
3588 ret = -EINVAL; /* should be BUG() ? */
3589 break;
3590 }
3591 return ret;
3592}
3593
3594static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3595 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3596{
3597 struct cgroup *cgroup;
3598 unsigned long long min_limit, min_memsw_limit, tmp;
3599
3600 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3601 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3602 cgroup = memcg->css.cgroup;
3603 if (!memcg->use_hierarchy)
3604 goto out;
3605
3606 while (cgroup->parent) {
3607 cgroup = cgroup->parent;
3608 memcg = mem_cgroup_from_cont(cgroup);
3609 if (!memcg->use_hierarchy)
3610 break;
3611 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3612 min_limit = min(min_limit, tmp);
3613 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3614 min_memsw_limit = min(min_memsw_limit, tmp);
3615 }
3616out:
3617 *mem_limit = min_limit;
3618 *memsw_limit = min_memsw_limit;
3619 return;
3620}
3621
3622static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3623{
3624 struct mem_cgroup *mem;
3625 int type, name;
3626
3627 mem = mem_cgroup_from_cont(cont);
3628 type = MEMFILE_TYPE(event);
3629 name = MEMFILE_ATTR(event);
3630 switch (name) {
3631 case RES_MAX_USAGE:
3632 if (type == _MEM)
3633 res_counter_reset_max(&mem->res);
3634 else
3635 res_counter_reset_max(&mem->memsw);
3636 break;
3637 case RES_FAILCNT:
3638 if (type == _MEM)
3639 res_counter_reset_failcnt(&mem->res);
3640 else
3641 res_counter_reset_failcnt(&mem->memsw);
3642 break;
3643 }
3644
3645 return 0;
3646}
3647
3648static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3649 struct cftype *cft)
3650{
3651 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3652}
3653
3654#ifdef CONFIG_MMU
3655static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3656 struct cftype *cft, u64 val)
3657{
3658 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3659
3660 if (val >= (1 << NR_MOVE_TYPE))
3661 return -EINVAL;
3662 /*
3663 * We check this value several times in both in can_attach() and
3664 * attach(), so we need cgroup lock to prevent this value from being
3665 * inconsistent.
3666 */
3667 cgroup_lock();
3668 mem->move_charge_at_immigrate = val;
3669 cgroup_unlock();
3670
3671 return 0;
3672}
3673#else
3674static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3675 struct cftype *cft, u64 val)
3676{
3677 return -ENOSYS;
3678}
3679#endif
3680
3681
3682/* For read statistics */
3683enum {
3684 MCS_CACHE,
3685 MCS_RSS,
3686 MCS_FILE_MAPPED,
3687 MCS_PGPGIN,
3688 MCS_PGPGOUT,
3689 MCS_SWAP,
3690 MCS_INACTIVE_ANON,
3691 MCS_ACTIVE_ANON,
3692 MCS_INACTIVE_FILE,
3693 MCS_ACTIVE_FILE,
3694 MCS_UNEVICTABLE,
3695 NR_MCS_STAT,
3696};
3697
3698struct mcs_total_stat {
3699 s64 stat[NR_MCS_STAT];
3700};
3701
3702struct {
3703 char *local_name;
3704 char *total_name;
3705} memcg_stat_strings[NR_MCS_STAT] = {
3706 {"cache", "total_cache"},
3707 {"rss", "total_rss"},
3708 {"mapped_file", "total_mapped_file"},
3709 {"pgpgin", "total_pgpgin"},
3710 {"pgpgout", "total_pgpgout"},
3711 {"swap", "total_swap"},
3712 {"inactive_anon", "total_inactive_anon"},
3713 {"active_anon", "total_active_anon"},
3714 {"inactive_file", "total_inactive_file"},
3715 {"active_file", "total_active_file"},
3716 {"unevictable", "total_unevictable"}
3717};
3718
3719
3720static void
3721mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3722{
3723 s64 val;
3724
3725 /* per cpu stat */
3726 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3727 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3728 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3729 s->stat[MCS_RSS] += val * PAGE_SIZE;
3730 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3731 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3732 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3733 s->stat[MCS_PGPGIN] += val;
3734 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3735 s->stat[MCS_PGPGOUT] += val;
3736 if (do_swap_account) {
3737 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3738 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3739 }
3740
3741 /* per zone stat */
3742 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3743 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3744 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3745 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3746 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3747 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3748 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3749 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3750 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3751 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3752}
3753
3754static void
3755mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3756{
3757 struct mem_cgroup *iter;
3758
3759 for_each_mem_cgroup_tree(iter, mem)
3760 mem_cgroup_get_local_stat(iter, s);
3761}
3762
3763static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3764 struct cgroup_map_cb *cb)
3765{
3766 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3767 struct mcs_total_stat mystat;
3768 int i;
3769
3770 memset(&mystat, 0, sizeof(mystat));
3771 mem_cgroup_get_local_stat(mem_cont, &mystat);
3772
3773 for (i = 0; i < NR_MCS_STAT; i++) {
3774 if (i == MCS_SWAP && !do_swap_account)
3775 continue;
3776 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3777 }
3778
3779 /* Hierarchical information */
3780 {
3781 unsigned long long limit, memsw_limit;
3782 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3783 cb->fill(cb, "hierarchical_memory_limit", limit);
3784 if (do_swap_account)
3785 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3786 }
3787
3788 memset(&mystat, 0, sizeof(mystat));
3789 mem_cgroup_get_total_stat(mem_cont, &mystat);
3790 for (i = 0; i < NR_MCS_STAT; i++) {
3791 if (i == MCS_SWAP && !do_swap_account)
3792 continue;
3793 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3794 }
3795
3796#ifdef CONFIG_DEBUG_VM
3797 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3798
3799 {
3800 int nid, zid;
3801 struct mem_cgroup_per_zone *mz;
3802 unsigned long recent_rotated[2] = {0, 0};
3803 unsigned long recent_scanned[2] = {0, 0};
3804
3805 for_each_online_node(nid)
3806 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3807 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3808
3809 recent_rotated[0] +=
3810 mz->reclaim_stat.recent_rotated[0];
3811 recent_rotated[1] +=
3812 mz->reclaim_stat.recent_rotated[1];
3813 recent_scanned[0] +=
3814 mz->reclaim_stat.recent_scanned[0];
3815 recent_scanned[1] +=
3816 mz->reclaim_stat.recent_scanned[1];
3817 }
3818 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3819 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3820 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3821 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3822 }
3823#endif
3824
3825 return 0;
3826}
3827
3828static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3829{
3830 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3831
3832 return get_swappiness(memcg);
3833}
3834
3835static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3836 u64 val)
3837{
3838 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3839 struct mem_cgroup *parent;
3840
3841 if (val > 100)
3842 return -EINVAL;
3843
3844 if (cgrp->parent == NULL)
3845 return -EINVAL;
3846
3847 parent = mem_cgroup_from_cont(cgrp->parent);
3848
3849 cgroup_lock();
3850
3851 /* If under hierarchy, only empty-root can set this value */
3852 if ((parent->use_hierarchy) ||
3853 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3854 cgroup_unlock();
3855 return -EINVAL;
3856 }
3857
3858 memcg->swappiness = val;
3859
3860 cgroup_unlock();
3861
3862 return 0;
3863}
3864
3865static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3866{
3867 struct mem_cgroup_threshold_ary *t;
3868 u64 usage;
3869 int i;
3870
3871 rcu_read_lock();
3872 if (!swap)
3873 t = rcu_dereference(memcg->thresholds.primary);
3874 else
3875 t = rcu_dereference(memcg->memsw_thresholds.primary);
3876
3877 if (!t)
3878 goto unlock;
3879
3880 usage = mem_cgroup_usage(memcg, swap);
3881
3882 /*
3883 * current_threshold points to threshold just below usage.
3884 * If it's not true, a threshold was crossed after last
3885 * call of __mem_cgroup_threshold().
3886 */
3887 i = t->current_threshold;
3888
3889 /*
3890 * Iterate backward over array of thresholds starting from
3891 * current_threshold and check if a threshold is crossed.
3892 * If none of thresholds below usage is crossed, we read
3893 * only one element of the array here.
3894 */
3895 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3896 eventfd_signal(t->entries[i].eventfd, 1);
3897
3898 /* i = current_threshold + 1 */
3899 i++;
3900
3901 /*
3902 * Iterate forward over array of thresholds starting from
3903 * current_threshold+1 and check if a threshold is crossed.
3904 * If none of thresholds above usage is crossed, we read
3905 * only one element of the array here.
3906 */
3907 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3908 eventfd_signal(t->entries[i].eventfd, 1);
3909
3910 /* Update current_threshold */
3911 t->current_threshold = i - 1;
3912unlock:
3913 rcu_read_unlock();
3914}
3915
3916static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3917{
3918 while (memcg) {
3919 __mem_cgroup_threshold(memcg, false);
3920 if (do_swap_account)
3921 __mem_cgroup_threshold(memcg, true);
3922
3923 memcg = parent_mem_cgroup(memcg);
3924 }
3925}
3926
3927static int compare_thresholds(const void *a, const void *b)
3928{
3929 const struct mem_cgroup_threshold *_a = a;
3930 const struct mem_cgroup_threshold *_b = b;
3931
3932 return _a->threshold - _b->threshold;
3933}
3934
3935static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3936{
3937 struct mem_cgroup_eventfd_list *ev;
3938
3939 list_for_each_entry(ev, &mem->oom_notify, list)
3940 eventfd_signal(ev->eventfd, 1);
3941 return 0;
3942}
3943
3944static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3945{
3946 struct mem_cgroup *iter;
3947
3948 for_each_mem_cgroup_tree(iter, mem)
3949 mem_cgroup_oom_notify_cb(iter);
3950}
3951
3952static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3953 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3954{
3955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3956 struct mem_cgroup_thresholds *thresholds;
3957 struct mem_cgroup_threshold_ary *new;
3958 int type = MEMFILE_TYPE(cft->private);
3959 u64 threshold, usage;
3960 int i, size, ret;
3961
3962 ret = res_counter_memparse_write_strategy(args, &threshold);
3963 if (ret)
3964 return ret;
3965
3966 mutex_lock(&memcg->thresholds_lock);
3967
3968 if (type == _MEM)
3969 thresholds = &memcg->thresholds;
3970 else if (type == _MEMSWAP)
3971 thresholds = &memcg->memsw_thresholds;
3972 else
3973 BUG();
3974
3975 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3976
3977 /* Check if a threshold crossed before adding a new one */
3978 if (thresholds->primary)
3979 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3980
3981 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3982
3983 /* Allocate memory for new array of thresholds */
3984 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3985 GFP_KERNEL);
3986 if (!new) {
3987 ret = -ENOMEM;
3988 goto unlock;
3989 }
3990 new->size = size;
3991
3992 /* Copy thresholds (if any) to new array */
3993 if (thresholds->primary) {
3994 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3995 sizeof(struct mem_cgroup_threshold));
3996 }
3997
3998 /* Add new threshold */
3999 new->entries[size - 1].eventfd = eventfd;
4000 new->entries[size - 1].threshold = threshold;
4001
4002 /* Sort thresholds. Registering of new threshold isn't time-critical */
4003 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4004 compare_thresholds, NULL);
4005
4006 /* Find current threshold */
4007 new->current_threshold = -1;
4008 for (i = 0; i < size; i++) {
4009 if (new->entries[i].threshold < usage) {
4010 /*
4011 * new->current_threshold will not be used until
4012 * rcu_assign_pointer(), so it's safe to increment
4013 * it here.
4014 */
4015 ++new->current_threshold;
4016 }
4017 }
4018
4019 /* Free old spare buffer and save old primary buffer as spare */
4020 kfree(thresholds->spare);
4021 thresholds->spare = thresholds->primary;
4022
4023 rcu_assign_pointer(thresholds->primary, new);
4024
4025 /* To be sure that nobody uses thresholds */
4026 synchronize_rcu();
4027
4028unlock:
4029 mutex_unlock(&memcg->thresholds_lock);
4030
4031 return ret;
4032}
4033
4034static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4035 struct cftype *cft, struct eventfd_ctx *eventfd)
4036{
4037 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4038 struct mem_cgroup_thresholds *thresholds;
4039 struct mem_cgroup_threshold_ary *new;
4040 int type = MEMFILE_TYPE(cft->private);
4041 u64 usage;
4042 int i, j, size;
4043
4044 mutex_lock(&memcg->thresholds_lock);
4045 if (type == _MEM)
4046 thresholds = &memcg->thresholds;
4047 else if (type == _MEMSWAP)
4048 thresholds = &memcg->memsw_thresholds;
4049 else
4050 BUG();
4051
4052 /*
4053 * Something went wrong if we trying to unregister a threshold
4054 * if we don't have thresholds
4055 */
4056 BUG_ON(!thresholds);
4057
4058 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4059
4060 /* Check if a threshold crossed before removing */
4061 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4062
4063 /* Calculate new number of threshold */
4064 size = 0;
4065 for (i = 0; i < thresholds->primary->size; i++) {
4066 if (thresholds->primary->entries[i].eventfd != eventfd)
4067 size++;
4068 }
4069
4070 new = thresholds->spare;
4071
4072 /* Set thresholds array to NULL if we don't have thresholds */
4073 if (!size) {
4074 kfree(new);
4075 new = NULL;
4076 goto swap_buffers;
4077 }
4078
4079 new->size = size;
4080
4081 /* Copy thresholds and find current threshold */
4082 new->current_threshold = -1;
4083 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4084 if (thresholds->primary->entries[i].eventfd == eventfd)
4085 continue;
4086
4087 new->entries[j] = thresholds->primary->entries[i];
4088 if (new->entries[j].threshold < usage) {
4089 /*
4090 * new->current_threshold will not be used
4091 * until rcu_assign_pointer(), so it's safe to increment
4092 * it here.
4093 */
4094 ++new->current_threshold;
4095 }
4096 j++;
4097 }
4098
4099swap_buffers:
4100 /* Swap primary and spare array */
4101 thresholds->spare = thresholds->primary;
4102 rcu_assign_pointer(thresholds->primary, new);
4103
4104 /* To be sure that nobody uses thresholds */
4105 synchronize_rcu();
4106
4107 mutex_unlock(&memcg->thresholds_lock);
4108}
4109
4110static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4111 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4112{
4113 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4114 struct mem_cgroup_eventfd_list *event;
4115 int type = MEMFILE_TYPE(cft->private);
4116
4117 BUG_ON(type != _OOM_TYPE);
4118 event = kmalloc(sizeof(*event), GFP_KERNEL);
4119 if (!event)
4120 return -ENOMEM;
4121
4122 mutex_lock(&memcg_oom_mutex);
4123
4124 event->eventfd = eventfd;
4125 list_add(&event->list, &memcg->oom_notify);
4126
4127 /* already in OOM ? */
4128 if (atomic_read(&memcg->oom_lock))
4129 eventfd_signal(eventfd, 1);
4130 mutex_unlock(&memcg_oom_mutex);
4131
4132 return 0;
4133}
4134
4135static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4136 struct cftype *cft, struct eventfd_ctx *eventfd)
4137{
4138 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4139 struct mem_cgroup_eventfd_list *ev, *tmp;
4140 int type = MEMFILE_TYPE(cft->private);
4141
4142 BUG_ON(type != _OOM_TYPE);
4143
4144 mutex_lock(&memcg_oom_mutex);
4145
4146 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4147 if (ev->eventfd == eventfd) {
4148 list_del(&ev->list);
4149 kfree(ev);
4150 }
4151 }
4152
4153 mutex_unlock(&memcg_oom_mutex);
4154}
4155
4156static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4157 struct cftype *cft, struct cgroup_map_cb *cb)
4158{
4159 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4160
4161 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4162
4163 if (atomic_read(&mem->oom_lock))
4164 cb->fill(cb, "under_oom", 1);
4165 else
4166 cb->fill(cb, "under_oom", 0);
4167 return 0;
4168}
4169
4170static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4171 struct cftype *cft, u64 val)
4172{
4173 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4174 struct mem_cgroup *parent;
4175
4176 /* cannot set to root cgroup and only 0 and 1 are allowed */
4177 if (!cgrp->parent || !((val == 0) || (val == 1)))
4178 return -EINVAL;
4179
4180 parent = mem_cgroup_from_cont(cgrp->parent);
4181
4182 cgroup_lock();
4183 /* oom-kill-disable is a flag for subhierarchy. */
4184 if ((parent->use_hierarchy) ||
4185 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4186 cgroup_unlock();
4187 return -EINVAL;
4188 }
4189 mem->oom_kill_disable = val;
4190 if (!val)
4191 memcg_oom_recover(mem);
4192 cgroup_unlock();
4193 return 0;
4194}
4195
4196static struct cftype mem_cgroup_files[] = {
4197 {
4198 .name = "usage_in_bytes",
4199 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4200 .read_u64 = mem_cgroup_read,
4201 .register_event = mem_cgroup_usage_register_event,
4202 .unregister_event = mem_cgroup_usage_unregister_event,
4203 },
4204 {
4205 .name = "max_usage_in_bytes",
4206 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4207 .trigger = mem_cgroup_reset,
4208 .read_u64 = mem_cgroup_read,
4209 },
4210 {
4211 .name = "limit_in_bytes",
4212 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4213 .write_string = mem_cgroup_write,
4214 .read_u64 = mem_cgroup_read,
4215 },
4216 {
4217 .name = "soft_limit_in_bytes",
4218 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4219 .write_string = mem_cgroup_write,
4220 .read_u64 = mem_cgroup_read,
4221 },
4222 {
4223 .name = "failcnt",
4224 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4225 .trigger = mem_cgroup_reset,
4226 .read_u64 = mem_cgroup_read,
4227 },
4228 {
4229 .name = "stat",
4230 .read_map = mem_control_stat_show,
4231 },
4232 {
4233 .name = "force_empty",
4234 .trigger = mem_cgroup_force_empty_write,
4235 },
4236 {
4237 .name = "use_hierarchy",
4238 .write_u64 = mem_cgroup_hierarchy_write,
4239 .read_u64 = mem_cgroup_hierarchy_read,
4240 },
4241 {
4242 .name = "swappiness",
4243 .read_u64 = mem_cgroup_swappiness_read,
4244 .write_u64 = mem_cgroup_swappiness_write,
4245 },
4246 {
4247 .name = "move_charge_at_immigrate",
4248 .read_u64 = mem_cgroup_move_charge_read,
4249 .write_u64 = mem_cgroup_move_charge_write,
4250 },
4251 {
4252 .name = "oom_control",
4253 .read_map = mem_cgroup_oom_control_read,
4254 .write_u64 = mem_cgroup_oom_control_write,
4255 .register_event = mem_cgroup_oom_register_event,
4256 .unregister_event = mem_cgroup_oom_unregister_event,
4257 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4258 },
4259};
4260
4261#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4262static struct cftype memsw_cgroup_files[] = {
4263 {
4264 .name = "memsw.usage_in_bytes",
4265 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4266 .read_u64 = mem_cgroup_read,
4267 .register_event = mem_cgroup_usage_register_event,
4268 .unregister_event = mem_cgroup_usage_unregister_event,
4269 },
4270 {
4271 .name = "memsw.max_usage_in_bytes",
4272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4273 .trigger = mem_cgroup_reset,
4274 .read_u64 = mem_cgroup_read,
4275 },
4276 {
4277 .name = "memsw.limit_in_bytes",
4278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4279 .write_string = mem_cgroup_write,
4280 .read_u64 = mem_cgroup_read,
4281 },
4282 {
4283 .name = "memsw.failcnt",
4284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4285 .trigger = mem_cgroup_reset,
4286 .read_u64 = mem_cgroup_read,
4287 },
4288};
4289
4290static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4291{
4292 if (!do_swap_account)
4293 return 0;
4294 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4295 ARRAY_SIZE(memsw_cgroup_files));
4296};
4297#else
4298static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4299{
4300 return 0;
4301}
4302#endif
4303
4304static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4305{
4306 struct mem_cgroup_per_node *pn;
4307 struct mem_cgroup_per_zone *mz;
4308 enum lru_list l;
4309 int zone, tmp = node;
4310 /*
4311 * This routine is called against possible nodes.
4312 * But it's BUG to call kmalloc() against offline node.
4313 *
4314 * TODO: this routine can waste much memory for nodes which will
4315 * never be onlined. It's better to use memory hotplug callback
4316 * function.
4317 */
4318 if (!node_state(node, N_NORMAL_MEMORY))
4319 tmp = -1;
4320 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4321 if (!pn)
4322 return 1;
4323
4324 mem->info.nodeinfo[node] = pn;
4325 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4326 mz = &pn->zoneinfo[zone];
4327 for_each_lru(l)
4328 INIT_LIST_HEAD(&mz->lists[l]);
4329 mz->usage_in_excess = 0;
4330 mz->on_tree = false;
4331 mz->mem = mem;
4332 }
4333 return 0;
4334}
4335
4336static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4337{
4338 kfree(mem->info.nodeinfo[node]);
4339}
4340
4341static struct mem_cgroup *mem_cgroup_alloc(void)
4342{
4343 struct mem_cgroup *mem;
4344 int size = sizeof(struct mem_cgroup);
4345
4346 /* Can be very big if MAX_NUMNODES is very big */
4347 if (size < PAGE_SIZE)
4348 mem = kzalloc(size, GFP_KERNEL);
4349 else
4350 mem = vzalloc(size);
4351
4352 if (!mem)
4353 return NULL;
4354
4355 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4356 if (!mem->stat)
4357 goto out_free;
4358 spin_lock_init(&mem->pcp_counter_lock);
4359 return mem;
4360
4361out_free:
4362 if (size < PAGE_SIZE)
4363 kfree(mem);
4364 else
4365 vfree(mem);
4366 return NULL;
4367}
4368
4369/*
4370 * At destroying mem_cgroup, references from swap_cgroup can remain.
4371 * (scanning all at force_empty is too costly...)
4372 *
4373 * Instead of clearing all references at force_empty, we remember
4374 * the number of reference from swap_cgroup and free mem_cgroup when
4375 * it goes down to 0.
4376 *
4377 * Removal of cgroup itself succeeds regardless of refs from swap.
4378 */
4379
4380static void __mem_cgroup_free(struct mem_cgroup *mem)
4381{
4382 int node;
4383
4384 mem_cgroup_remove_from_trees(mem);
4385 free_css_id(&mem_cgroup_subsys, &mem->css);
4386
4387 for_each_node_state(node, N_POSSIBLE)
4388 free_mem_cgroup_per_zone_info(mem, node);
4389
4390 free_percpu(mem->stat);
4391 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4392 kfree(mem);
4393 else
4394 vfree(mem);
4395}
4396
4397static void mem_cgroup_get(struct mem_cgroup *mem)
4398{
4399 atomic_inc(&mem->refcnt);
4400}
4401
4402static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4403{
4404 if (atomic_sub_and_test(count, &mem->refcnt)) {
4405 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4406 __mem_cgroup_free(mem);
4407 if (parent)
4408 mem_cgroup_put(parent);
4409 }
4410}
4411
4412static void mem_cgroup_put(struct mem_cgroup *mem)
4413{
4414 __mem_cgroup_put(mem, 1);
4415}
4416
4417/*
4418 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4419 */
4420static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4421{
4422 if (!mem->res.parent)
4423 return NULL;
4424 return mem_cgroup_from_res_counter(mem->res.parent, res);
4425}
4426
4427#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4428static void __init enable_swap_cgroup(void)
4429{
4430 if (!mem_cgroup_disabled() && really_do_swap_account)
4431 do_swap_account = 1;
4432}
4433#else
4434static void __init enable_swap_cgroup(void)
4435{
4436}
4437#endif
4438
4439static int mem_cgroup_soft_limit_tree_init(void)
4440{
4441 struct mem_cgroup_tree_per_node *rtpn;
4442 struct mem_cgroup_tree_per_zone *rtpz;
4443 int tmp, node, zone;
4444
4445 for_each_node_state(node, N_POSSIBLE) {
4446 tmp = node;
4447 if (!node_state(node, N_NORMAL_MEMORY))
4448 tmp = -1;
4449 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4450 if (!rtpn)
4451 return 1;
4452
4453 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4454
4455 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4456 rtpz = &rtpn->rb_tree_per_zone[zone];
4457 rtpz->rb_root = RB_ROOT;
4458 spin_lock_init(&rtpz->lock);
4459 }
4460 }
4461 return 0;
4462}
4463
4464static struct cgroup_subsys_state * __ref
4465mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4466{
4467 struct mem_cgroup *mem, *parent;
4468 long error = -ENOMEM;
4469 int node;
4470
4471 mem = mem_cgroup_alloc();
4472 if (!mem)
4473 return ERR_PTR(error);
4474
4475 for_each_node_state(node, N_POSSIBLE)
4476 if (alloc_mem_cgroup_per_zone_info(mem, node))
4477 goto free_out;
4478
4479 /* root ? */
4480 if (cont->parent == NULL) {
4481 int cpu;
4482 enable_swap_cgroup();
4483 parent = NULL;
4484 root_mem_cgroup = mem;
4485 if (mem_cgroup_soft_limit_tree_init())
4486 goto free_out;
4487 for_each_possible_cpu(cpu) {
4488 struct memcg_stock_pcp *stock =
4489 &per_cpu(memcg_stock, cpu);
4490 INIT_WORK(&stock->work, drain_local_stock);
4491 }
4492 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4493 } else {
4494 parent = mem_cgroup_from_cont(cont->parent);
4495 mem->use_hierarchy = parent->use_hierarchy;
4496 mem->oom_kill_disable = parent->oom_kill_disable;
4497 }
4498
4499 if (parent && parent->use_hierarchy) {
4500 res_counter_init(&mem->res, &parent->res);
4501 res_counter_init(&mem->memsw, &parent->memsw);
4502 /*
4503 * We increment refcnt of the parent to ensure that we can
4504 * safely access it on res_counter_charge/uncharge.
4505 * This refcnt will be decremented when freeing this
4506 * mem_cgroup(see mem_cgroup_put).
4507 */
4508 mem_cgroup_get(parent);
4509 } else {
4510 res_counter_init(&mem->res, NULL);
4511 res_counter_init(&mem->memsw, NULL);
4512 }
4513 mem->last_scanned_child = 0;
4514 INIT_LIST_HEAD(&mem->oom_notify);
4515
4516 if (parent)
4517 mem->swappiness = get_swappiness(parent);
4518 atomic_set(&mem->refcnt, 1);
4519 mem->move_charge_at_immigrate = 0;
4520 mutex_init(&mem->thresholds_lock);
4521 return &mem->css;
4522free_out:
4523 __mem_cgroup_free(mem);
4524 root_mem_cgroup = NULL;
4525 return ERR_PTR(error);
4526}
4527
4528static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4529 struct cgroup *cont)
4530{
4531 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4532
4533 return mem_cgroup_force_empty(mem, false);
4534}
4535
4536static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4537 struct cgroup *cont)
4538{
4539 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4540
4541 mem_cgroup_put(mem);
4542}
4543
4544static int mem_cgroup_populate(struct cgroup_subsys *ss,
4545 struct cgroup *cont)
4546{
4547 int ret;
4548
4549 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4550 ARRAY_SIZE(mem_cgroup_files));
4551
4552 if (!ret)
4553 ret = register_memsw_files(cont, ss);
4554 return ret;
4555}
4556
4557#ifdef CONFIG_MMU
4558/* Handlers for move charge at task migration. */
4559#define PRECHARGE_COUNT_AT_ONCE 256
4560static int mem_cgroup_do_precharge(unsigned long count)
4561{
4562 int ret = 0;
4563 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4564 struct mem_cgroup *mem = mc.to;
4565
4566 if (mem_cgroup_is_root(mem)) {
4567 mc.precharge += count;
4568 /* we don't need css_get for root */
4569 return ret;
4570 }
4571 /* try to charge at once */
4572 if (count > 1) {
4573 struct res_counter *dummy;
4574 /*
4575 * "mem" cannot be under rmdir() because we've already checked
4576 * by cgroup_lock_live_cgroup() that it is not removed and we
4577 * are still under the same cgroup_mutex. So we can postpone
4578 * css_get().
4579 */
4580 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4581 goto one_by_one;
4582 if (do_swap_account && res_counter_charge(&mem->memsw,
4583 PAGE_SIZE * count, &dummy)) {
4584 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4585 goto one_by_one;
4586 }
4587 mc.precharge += count;
4588 return ret;
4589 }
4590one_by_one:
4591 /* fall back to one by one charge */
4592 while (count--) {
4593 if (signal_pending(current)) {
4594 ret = -EINTR;
4595 break;
4596 }
4597 if (!batch_count--) {
4598 batch_count = PRECHARGE_COUNT_AT_ONCE;
4599 cond_resched();
4600 }
4601 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4602 PAGE_SIZE);
4603 if (ret || !mem)
4604 /* mem_cgroup_clear_mc() will do uncharge later */
4605 return -ENOMEM;
4606 mc.precharge++;
4607 }
4608 return ret;
4609}
4610
4611/**
4612 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4613 * @vma: the vma the pte to be checked belongs
4614 * @addr: the address corresponding to the pte to be checked
4615 * @ptent: the pte to be checked
4616 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4617 *
4618 * Returns
4619 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4620 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4621 * move charge. if @target is not NULL, the page is stored in target->page
4622 * with extra refcnt got(Callers should handle it).
4623 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4624 * target for charge migration. if @target is not NULL, the entry is stored
4625 * in target->ent.
4626 *
4627 * Called with pte lock held.
4628 */
4629union mc_target {
4630 struct page *page;
4631 swp_entry_t ent;
4632};
4633
4634enum mc_target_type {
4635 MC_TARGET_NONE, /* not used */
4636 MC_TARGET_PAGE,
4637 MC_TARGET_SWAP,
4638};
4639
4640static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4641 unsigned long addr, pte_t ptent)
4642{
4643 struct page *page = vm_normal_page(vma, addr, ptent);
4644
4645 if (!page || !page_mapped(page))
4646 return NULL;
4647 if (PageAnon(page)) {
4648 /* we don't move shared anon */
4649 if (!move_anon() || page_mapcount(page) > 2)
4650 return NULL;
4651 } else if (!move_file())
4652 /* we ignore mapcount for file pages */
4653 return NULL;
4654 if (!get_page_unless_zero(page))
4655 return NULL;
4656
4657 return page;
4658}
4659
4660static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4661 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4662{
4663 int usage_count;
4664 struct page *page = NULL;
4665 swp_entry_t ent = pte_to_swp_entry(ptent);
4666
4667 if (!move_anon() || non_swap_entry(ent))
4668 return NULL;
4669 usage_count = mem_cgroup_count_swap_user(ent, &page);
4670 if (usage_count > 1) { /* we don't move shared anon */
4671 if (page)
4672 put_page(page);
4673 return NULL;
4674 }
4675 if (do_swap_account)
4676 entry->val = ent.val;
4677
4678 return page;
4679}
4680
4681static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4682 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4683{
4684 struct page *page = NULL;
4685 struct inode *inode;
4686 struct address_space *mapping;
4687 pgoff_t pgoff;
4688
4689 if (!vma->vm_file) /* anonymous vma */
4690 return NULL;
4691 if (!move_file())
4692 return NULL;
4693
4694 inode = vma->vm_file->f_path.dentry->d_inode;
4695 mapping = vma->vm_file->f_mapping;
4696 if (pte_none(ptent))
4697 pgoff = linear_page_index(vma, addr);
4698 else /* pte_file(ptent) is true */
4699 pgoff = pte_to_pgoff(ptent);
4700
4701 /* page is moved even if it's not RSS of this task(page-faulted). */
4702 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4703 page = find_get_page(mapping, pgoff);
4704 } else { /* shmem/tmpfs file. we should take account of swap too. */
4705 swp_entry_t ent;
4706 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4707 if (do_swap_account)
4708 entry->val = ent.val;
4709 }
4710
4711 return page;
4712}
4713
4714static int is_target_pte_for_mc(struct vm_area_struct *vma,
4715 unsigned long addr, pte_t ptent, union mc_target *target)
4716{
4717 struct page *page = NULL;
4718 struct page_cgroup *pc;
4719 int ret = 0;
4720 swp_entry_t ent = { .val = 0 };
4721
4722 if (pte_present(ptent))
4723 page = mc_handle_present_pte(vma, addr, ptent);
4724 else if (is_swap_pte(ptent))
4725 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4726 else if (pte_none(ptent) || pte_file(ptent))
4727 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4728
4729 if (!page && !ent.val)
4730 return 0;
4731 if (page) {
4732 pc = lookup_page_cgroup(page);
4733 /*
4734 * Do only loose check w/o page_cgroup lock.
4735 * mem_cgroup_move_account() checks the pc is valid or not under
4736 * the lock.
4737 */
4738 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4739 ret = MC_TARGET_PAGE;
4740 if (target)
4741 target->page = page;
4742 }
4743 if (!ret || !target)
4744 put_page(page);
4745 }
4746 /* There is a swap entry and a page doesn't exist or isn't charged */
4747 if (ent.val && !ret &&
4748 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4749 ret = MC_TARGET_SWAP;
4750 if (target)
4751 target->ent = ent;
4752 }
4753 return ret;
4754}
4755
4756static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4757 unsigned long addr, unsigned long end,
4758 struct mm_walk *walk)
4759{
4760 struct vm_area_struct *vma = walk->private;
4761 pte_t *pte;
4762 spinlock_t *ptl;
4763
4764 split_huge_page_pmd(walk->mm, pmd);
4765
4766 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4767 for (; addr != end; pte++, addr += PAGE_SIZE)
4768 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4769 mc.precharge++; /* increment precharge temporarily */
4770 pte_unmap_unlock(pte - 1, ptl);
4771 cond_resched();
4772
4773 return 0;
4774}
4775
4776static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4777{
4778 unsigned long precharge;
4779 struct vm_area_struct *vma;
4780
4781 down_read(&mm->mmap_sem);
4782 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4783 struct mm_walk mem_cgroup_count_precharge_walk = {
4784 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4785 .mm = mm,
4786 .private = vma,
4787 };
4788 if (is_vm_hugetlb_page(vma))
4789 continue;
4790 walk_page_range(vma->vm_start, vma->vm_end,
4791 &mem_cgroup_count_precharge_walk);
4792 }
4793 up_read(&mm->mmap_sem);
4794
4795 precharge = mc.precharge;
4796 mc.precharge = 0;
4797
4798 return precharge;
4799}
4800
4801static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4802{
4803 unsigned long precharge = mem_cgroup_count_precharge(mm);
4804
4805 VM_BUG_ON(mc.moving_task);
4806 mc.moving_task = current;
4807 return mem_cgroup_do_precharge(precharge);
4808}
4809
4810/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4811static void __mem_cgroup_clear_mc(void)
4812{
4813 struct mem_cgroup *from = mc.from;
4814 struct mem_cgroup *to = mc.to;
4815
4816 /* we must uncharge all the leftover precharges from mc.to */
4817 if (mc.precharge) {
4818 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4819 mc.precharge = 0;
4820 }
4821 /*
4822 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4823 * we must uncharge here.
4824 */
4825 if (mc.moved_charge) {
4826 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4827 mc.moved_charge = 0;
4828 }
4829 /* we must fixup refcnts and charges */
4830 if (mc.moved_swap) {
4831 /* uncharge swap account from the old cgroup */
4832 if (!mem_cgroup_is_root(mc.from))
4833 res_counter_uncharge(&mc.from->memsw,
4834 PAGE_SIZE * mc.moved_swap);
4835 __mem_cgroup_put(mc.from, mc.moved_swap);
4836
4837 if (!mem_cgroup_is_root(mc.to)) {
4838 /*
4839 * we charged both to->res and to->memsw, so we should
4840 * uncharge to->res.
4841 */
4842 res_counter_uncharge(&mc.to->res,
4843 PAGE_SIZE * mc.moved_swap);
4844 }
4845 /* we've already done mem_cgroup_get(mc.to) */
4846 mc.moved_swap = 0;
4847 }
4848 memcg_oom_recover(from);
4849 memcg_oom_recover(to);
4850 wake_up_all(&mc.waitq);
4851}
4852
4853static void mem_cgroup_clear_mc(void)
4854{
4855 struct mem_cgroup *from = mc.from;
4856
4857 /*
4858 * we must clear moving_task before waking up waiters at the end of
4859 * task migration.
4860 */
4861 mc.moving_task = NULL;
4862 __mem_cgroup_clear_mc();
4863 spin_lock(&mc.lock);
4864 mc.from = NULL;
4865 mc.to = NULL;
4866 spin_unlock(&mc.lock);
4867 mem_cgroup_end_move(from);
4868}
4869
4870static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4871 struct cgroup *cgroup,
4872 struct task_struct *p,
4873 bool threadgroup)
4874{
4875 int ret = 0;
4876 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4877
4878 if (mem->move_charge_at_immigrate) {
4879 struct mm_struct *mm;
4880 struct mem_cgroup *from = mem_cgroup_from_task(p);
4881
4882 VM_BUG_ON(from == mem);
4883
4884 mm = get_task_mm(p);
4885 if (!mm)
4886 return 0;
4887 /* We move charges only when we move a owner of the mm */
4888 if (mm->owner == p) {
4889 VM_BUG_ON(mc.from);
4890 VM_BUG_ON(mc.to);
4891 VM_BUG_ON(mc.precharge);
4892 VM_BUG_ON(mc.moved_charge);
4893 VM_BUG_ON(mc.moved_swap);
4894 mem_cgroup_start_move(from);
4895 spin_lock(&mc.lock);
4896 mc.from = from;
4897 mc.to = mem;
4898 spin_unlock(&mc.lock);
4899 /* We set mc.moving_task later */
4900
4901 ret = mem_cgroup_precharge_mc(mm);
4902 if (ret)
4903 mem_cgroup_clear_mc();
4904 }
4905 mmput(mm);
4906 }
4907 return ret;
4908}
4909
4910static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4911 struct cgroup *cgroup,
4912 struct task_struct *p,
4913 bool threadgroup)
4914{
4915 mem_cgroup_clear_mc();
4916}
4917
4918static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4919 unsigned long addr, unsigned long end,
4920 struct mm_walk *walk)
4921{
4922 int ret = 0;
4923 struct vm_area_struct *vma = walk->private;
4924 pte_t *pte;
4925 spinlock_t *ptl;
4926
4927 split_huge_page_pmd(walk->mm, pmd);
4928retry:
4929 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4930 for (; addr != end; addr += PAGE_SIZE) {
4931 pte_t ptent = *(pte++);
4932 union mc_target target;
4933 int type;
4934 struct page *page;
4935 struct page_cgroup *pc;
4936 swp_entry_t ent;
4937
4938 if (!mc.precharge)
4939 break;
4940
4941 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4942 switch (type) {
4943 case MC_TARGET_PAGE:
4944 page = target.page;
4945 if (isolate_lru_page(page))
4946 goto put;
4947 pc = lookup_page_cgroup(page);
4948 if (!mem_cgroup_move_account(page, pc,
4949 mc.from, mc.to, false, PAGE_SIZE)) {
4950 mc.precharge--;
4951 /* we uncharge from mc.from later. */
4952 mc.moved_charge++;
4953 }
4954 putback_lru_page(page);
4955put: /* is_target_pte_for_mc() gets the page */
4956 put_page(page);
4957 break;
4958 case MC_TARGET_SWAP:
4959 ent = target.ent;
4960 if (!mem_cgroup_move_swap_account(ent,
4961 mc.from, mc.to, false)) {
4962 mc.precharge--;
4963 /* we fixup refcnts and charges later. */
4964 mc.moved_swap++;
4965 }
4966 break;
4967 default:
4968 break;
4969 }
4970 }
4971 pte_unmap_unlock(pte - 1, ptl);
4972 cond_resched();
4973
4974 if (addr != end) {
4975 /*
4976 * We have consumed all precharges we got in can_attach().
4977 * We try charge one by one, but don't do any additional
4978 * charges to mc.to if we have failed in charge once in attach()
4979 * phase.
4980 */
4981 ret = mem_cgroup_do_precharge(1);
4982 if (!ret)
4983 goto retry;
4984 }
4985
4986 return ret;
4987}
4988
4989static void mem_cgroup_move_charge(struct mm_struct *mm)
4990{
4991 struct vm_area_struct *vma;
4992
4993 lru_add_drain_all();
4994retry:
4995 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4996 /*
4997 * Someone who are holding the mmap_sem might be waiting in
4998 * waitq. So we cancel all extra charges, wake up all waiters,
4999 * and retry. Because we cancel precharges, we might not be able
5000 * to move enough charges, but moving charge is a best-effort
5001 * feature anyway, so it wouldn't be a big problem.
5002 */
5003 __mem_cgroup_clear_mc();
5004 cond_resched();
5005 goto retry;
5006 }
5007 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5008 int ret;
5009 struct mm_walk mem_cgroup_move_charge_walk = {
5010 .pmd_entry = mem_cgroup_move_charge_pte_range,
5011 .mm = mm,
5012 .private = vma,
5013 };
5014 if (is_vm_hugetlb_page(vma))
5015 continue;
5016 ret = walk_page_range(vma->vm_start, vma->vm_end,
5017 &mem_cgroup_move_charge_walk);
5018 if (ret)
5019 /*
5020 * means we have consumed all precharges and failed in
5021 * doing additional charge. Just abandon here.
5022 */
5023 break;
5024 }
5025 up_read(&mm->mmap_sem);
5026}
5027
5028static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5029 struct cgroup *cont,
5030 struct cgroup *old_cont,
5031 struct task_struct *p,
5032 bool threadgroup)
5033{
5034 struct mm_struct *mm;
5035
5036 if (!mc.to)
5037 /* no need to move charge */
5038 return;
5039
5040 mm = get_task_mm(p);
5041 if (mm) {
5042 mem_cgroup_move_charge(mm);
5043 mmput(mm);
5044 }
5045 mem_cgroup_clear_mc();
5046}
5047#else /* !CONFIG_MMU */
5048static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5049 struct cgroup *cgroup,
5050 struct task_struct *p,
5051 bool threadgroup)
5052{
5053 return 0;
5054}
5055static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5056 struct cgroup *cgroup,
5057 struct task_struct *p,
5058 bool threadgroup)
5059{
5060}
5061static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5062 struct cgroup *cont,
5063 struct cgroup *old_cont,
5064 struct task_struct *p,
5065 bool threadgroup)
5066{
5067}
5068#endif
5069
5070struct cgroup_subsys mem_cgroup_subsys = {
5071 .name = "memory",
5072 .subsys_id = mem_cgroup_subsys_id,
5073 .create = mem_cgroup_create,
5074 .pre_destroy = mem_cgroup_pre_destroy,
5075 .destroy = mem_cgroup_destroy,
5076 .populate = mem_cgroup_populate,
5077 .can_attach = mem_cgroup_can_attach,
5078 .cancel_attach = mem_cgroup_cancel_attach,
5079 .attach = mem_cgroup_move_task,
5080 .early_init = 0,
5081 .use_id = 1,
5082};
5083
5084#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5085static int __init enable_swap_account(char *s)
5086{
5087 /* consider enabled if no parameter or 1 is given */
5088 if (!(*s) || !strcmp(s, "=1"))
5089 really_do_swap_account = 1;
5090 else if (!strcmp(s, "=0"))
5091 really_do_swap_account = 0;
5092 return 1;
5093}
5094__setup("swapaccount", enable_swap_account);
5095
5096static int __init disable_swap_account(char *s)
5097{
5098 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5099 enable_swap_account("=0");
5100 return 1;
5101}
5102__setup("noswapaccount", disable_swap_account);
5103#endif