]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/memcontrol.c
memcg swap: mem_cgroup_move_swap_account never needs fixup
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account (0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93};
94
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102};
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
117#define NUMAINFO_EVENTS_TARGET (1024)
118
119struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123};
124
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
132/*
133 * per-zone information in memory controller.
134 */
135struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148};
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181};
182
183/* For threshold */
184struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191};
192
193struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202};
203
204/* for OOM */
205struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208};
209
210static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212
213/*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
223 */
224struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
257 */
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260#if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264#endif
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
269
270 bool oom_lock;
271 atomic_t under_oom;
272
273 atomic_t refcnt;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
287
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
290
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
293
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 /*
306 * percpu counter.
307 */
308 struct mem_cgroup_stat_cpu *stat;
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
315
316#ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318#endif
319};
320
321/* Stuffs for move charges at task migration. */
322/*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
330};
331
332/* "mc" and its members are protected by cgroup_mutex */
333static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342} mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345};
346
347static bool move_anon(void)
348{
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351}
352
353static bool move_file(void)
354{
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357}
358
359/*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
366enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
374};
375
376/* for encoding cft->private value on file */
377#define _MEM (0)
378#define _MEMSWAP (1)
379#define _OOM_TYPE (2)
380#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382#define MEMFILE_ATTR(val) ((val) & 0xffff)
383/* Used for OOM nofiier */
384#define OOM_CONTROL (0)
385
386/*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
394static void mem_cgroup_get(struct mem_cgroup *memcg);
395static void mem_cgroup_put(struct mem_cgroup *memcg);
396
397/* Writing them here to avoid exposing memcg's inner layout */
398#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399#include <net/sock.h>
400#include <net/ip.h>
401
402static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403void sock_update_memcg(struct sock *sk)
404{
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432}
433EXPORT_SYMBOL(sock_update_memcg);
434
435void sock_release_memcg(struct sock *sk)
436{
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443}
444
445#ifdef CONFIG_INET
446struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447{
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452}
453EXPORT_SYMBOL(tcp_proto_cgroup);
454#endif /* CONFIG_INET */
455#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
457static void drain_all_stock_async(struct mem_cgroup *memcg);
458
459static struct mem_cgroup_per_zone *
460mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461{
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463}
464
465struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466{
467 return &memcg->css;
468}
469
470static struct mem_cgroup_per_zone *
471page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472{
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
475
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
477}
478
479static struct mem_cgroup_tree_per_zone *
480soft_limit_tree_node_zone(int nid, int zid)
481{
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483}
484
485static struct mem_cgroup_tree_per_zone *
486soft_limit_tree_from_page(struct page *page)
487{
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492}
493
494static void
495__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526}
527
528static void
529__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532{
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537}
538
539static void
540mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543{
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
547}
548
549
550static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551{
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
562 */
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 /*
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
578 */
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
581 }
582 }
583}
584
585static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586{
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 }
597 }
598}
599
600static struct mem_cgroup_per_zone *
601__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602{
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
605
606retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622done:
623 return mz;
624}
625
626static struct mem_cgroup_per_zone *
627mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635}
636
637/*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
656static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
658{
659 long val = 0;
660 int cpu;
661
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665#ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669#endif
670 put_online_cpus();
671 return val;
672}
673
674static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
676{
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679}
680
681static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
683{
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689#ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693#endif
694 return val;
695}
696
697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
699{
700 preempt_disable();
701
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
719 }
720
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722
723 preempt_enable();
724}
725
726unsigned long
727mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
729{
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
733
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
739 }
740 return ret;
741}
742
743static unsigned long
744mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
746{
747 u64 total = 0;
748 int zid;
749
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
753
754 return total;
755}
756
757static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
759{
760 int nid;
761 u64 total = 0;
762
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
766}
767
768static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
770{
771 unsigned long val, next;
772
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
792 }
793 return false;
794}
795
796/*
797 * Check events in order.
798 *
799 */
800static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801{
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811#if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814#endif
815 preempt_enable();
816
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820#if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823#endif
824 } else
825 preempt_enable();
826}
827
828struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829{
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833}
834
835struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836{
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847}
848
849struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850{
851 struct mem_cgroup *memcg = NULL;
852
853 if (!mm)
854 return NULL;
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
868}
869
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890{
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
893
894 if (mem_cgroup_disabled())
895 return NULL;
896
897 if (!root)
898 root = root_mem_cgroup;
899
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
902
903 if (prev && prev != root)
904 css_put(&prev->css);
905
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
911
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
915
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
927
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
937
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
950}
951
952/**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
959{
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964}
965
966/*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971#define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
975
976#define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
980
981static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982{
983 return (memcg == root_mem_cgroup);
984}
985
986void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987{
988 struct mem_cgroup *memcg;
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
997
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1007 }
1008out:
1009 rcu_read_unlock();
1010}
1011EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
1013/**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032}
1033
1034/*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
1047
1048/**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1062{
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1066
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1069
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1089}
1090
1091/**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1100 */
1101void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102{
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1117}
1118
1119void mem_cgroup_lru_del(struct page *page)
1120{
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1122}
1123
1124/**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1142{
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1146}
1147
1148/*
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1151 */
1152bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154{
1155 if (root_memcg == memcg)
1156 return true;
1157 if (!root_memcg->use_hierarchy)
1158 return false;
1159 return css_is_ancestor(&memcg->css, &root_memcg->css);
1160}
1161
1162static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1163 struct mem_cgroup *memcg)
1164{
1165 bool ret;
1166
1167 rcu_read_lock();
1168 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1169 rcu_read_unlock();
1170 return ret;
1171}
1172
1173int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1174{
1175 int ret;
1176 struct mem_cgroup *curr = NULL;
1177 struct task_struct *p;
1178
1179 p = find_lock_task_mm(task);
1180 if (p) {
1181 curr = try_get_mem_cgroup_from_mm(p->mm);
1182 task_unlock(p);
1183 } else {
1184 /*
1185 * All threads may have already detached their mm's, but the oom
1186 * killer still needs to detect if they have already been oom
1187 * killed to prevent needlessly killing additional tasks.
1188 */
1189 task_lock(task);
1190 curr = mem_cgroup_from_task(task);
1191 if (curr)
1192 css_get(&curr->css);
1193 task_unlock(task);
1194 }
1195 if (!curr)
1196 return 0;
1197 /*
1198 * We should check use_hierarchy of "memcg" not "curr". Because checking
1199 * use_hierarchy of "curr" here make this function true if hierarchy is
1200 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1201 * hierarchy(even if use_hierarchy is disabled in "memcg").
1202 */
1203 ret = mem_cgroup_same_or_subtree(memcg, curr);
1204 css_put(&curr->css);
1205 return ret;
1206}
1207
1208int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1209{
1210 unsigned long inactive_ratio;
1211 int nid = zone_to_nid(zone);
1212 int zid = zone_idx(zone);
1213 unsigned long inactive;
1214 unsigned long active;
1215 unsigned long gb;
1216
1217 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1218 BIT(LRU_INACTIVE_ANON));
1219 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1220 BIT(LRU_ACTIVE_ANON));
1221
1222 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1223 if (gb)
1224 inactive_ratio = int_sqrt(10 * gb);
1225 else
1226 inactive_ratio = 1;
1227
1228 return inactive * inactive_ratio < active;
1229}
1230
1231int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1232{
1233 unsigned long active;
1234 unsigned long inactive;
1235 int zid = zone_idx(zone);
1236 int nid = zone_to_nid(zone);
1237
1238 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1239 BIT(LRU_INACTIVE_FILE));
1240 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1241 BIT(LRU_ACTIVE_FILE));
1242
1243 return (active > inactive);
1244}
1245
1246struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1247 struct zone *zone)
1248{
1249 int nid = zone_to_nid(zone);
1250 int zid = zone_idx(zone);
1251 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1252
1253 return &mz->reclaim_stat;
1254}
1255
1256struct zone_reclaim_stat *
1257mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1258{
1259 struct page_cgroup *pc;
1260 struct mem_cgroup_per_zone *mz;
1261
1262 if (mem_cgroup_disabled())
1263 return NULL;
1264
1265 pc = lookup_page_cgroup(page);
1266 if (!PageCgroupUsed(pc))
1267 return NULL;
1268 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1269 smp_rmb();
1270 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1271 return &mz->reclaim_stat;
1272}
1273
1274#define mem_cgroup_from_res_counter(counter, member) \
1275 container_of(counter, struct mem_cgroup, member)
1276
1277/**
1278 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1279 * @mem: the memory cgroup
1280 *
1281 * Returns the maximum amount of memory @mem can be charged with, in
1282 * pages.
1283 */
1284static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1285{
1286 unsigned long long margin;
1287
1288 margin = res_counter_margin(&memcg->res);
1289 if (do_swap_account)
1290 margin = min(margin, res_counter_margin(&memcg->memsw));
1291 return margin >> PAGE_SHIFT;
1292}
1293
1294int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1295{
1296 struct cgroup *cgrp = memcg->css.cgroup;
1297
1298 /* root ? */
1299 if (cgrp->parent == NULL)
1300 return vm_swappiness;
1301
1302 return memcg->swappiness;
1303}
1304
1305/*
1306 * memcg->moving_account is used for checking possibility that some thread is
1307 * calling move_account(). When a thread on CPU-A starts moving pages under
1308 * a memcg, other threads should check memcg->moving_account under
1309 * rcu_read_lock(), like this:
1310 *
1311 * CPU-A CPU-B
1312 * rcu_read_lock()
1313 * memcg->moving_account+1 if (memcg->mocing_account)
1314 * take heavy locks.
1315 * synchronize_rcu() update something.
1316 * rcu_read_unlock()
1317 * start move here.
1318 */
1319
1320/* for quick checking without looking up memcg */
1321atomic_t memcg_moving __read_mostly;
1322
1323static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1324{
1325 atomic_inc(&memcg_moving);
1326 atomic_inc(&memcg->moving_account);
1327 synchronize_rcu();
1328}
1329
1330static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1331{
1332 /*
1333 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1334 * We check NULL in callee rather than caller.
1335 */
1336 if (memcg) {
1337 atomic_dec(&memcg_moving);
1338 atomic_dec(&memcg->moving_account);
1339 }
1340}
1341
1342/*
1343 * 2 routines for checking "mem" is under move_account() or not.
1344 *
1345 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1346 * is used for avoiding races in accounting. If true,
1347 * pc->mem_cgroup may be overwritten.
1348 *
1349 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1350 * under hierarchy of moving cgroups. This is for
1351 * waiting at hith-memory prressure caused by "move".
1352 */
1353
1354static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1355{
1356 VM_BUG_ON(!rcu_read_lock_held());
1357 return atomic_read(&memcg->moving_account) > 0;
1358}
1359
1360static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1361{
1362 struct mem_cgroup *from;
1363 struct mem_cgroup *to;
1364 bool ret = false;
1365 /*
1366 * Unlike task_move routines, we access mc.to, mc.from not under
1367 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1368 */
1369 spin_lock(&mc.lock);
1370 from = mc.from;
1371 to = mc.to;
1372 if (!from)
1373 goto unlock;
1374
1375 ret = mem_cgroup_same_or_subtree(memcg, from)
1376 || mem_cgroup_same_or_subtree(memcg, to);
1377unlock:
1378 spin_unlock(&mc.lock);
1379 return ret;
1380}
1381
1382static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1383{
1384 if (mc.moving_task && current != mc.moving_task) {
1385 if (mem_cgroup_under_move(memcg)) {
1386 DEFINE_WAIT(wait);
1387 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1388 /* moving charge context might have finished. */
1389 if (mc.moving_task)
1390 schedule();
1391 finish_wait(&mc.waitq, &wait);
1392 return true;
1393 }
1394 }
1395 return false;
1396}
1397
1398/*
1399 * Take this lock when
1400 * - a code tries to modify page's memcg while it's USED.
1401 * - a code tries to modify page state accounting in a memcg.
1402 * see mem_cgroup_stolen(), too.
1403 */
1404static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1405 unsigned long *flags)
1406{
1407 spin_lock_irqsave(&memcg->move_lock, *flags);
1408}
1409
1410static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1411 unsigned long *flags)
1412{
1413 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1414}
1415
1416/**
1417 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1418 * @memcg: The memory cgroup that went over limit
1419 * @p: Task that is going to be killed
1420 *
1421 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1422 * enabled
1423 */
1424void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1425{
1426 struct cgroup *task_cgrp;
1427 struct cgroup *mem_cgrp;
1428 /*
1429 * Need a buffer in BSS, can't rely on allocations. The code relies
1430 * on the assumption that OOM is serialized for memory controller.
1431 * If this assumption is broken, revisit this code.
1432 */
1433 static char memcg_name[PATH_MAX];
1434 int ret;
1435
1436 if (!memcg || !p)
1437 return;
1438
1439 rcu_read_lock();
1440
1441 mem_cgrp = memcg->css.cgroup;
1442 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1443
1444 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1445 if (ret < 0) {
1446 /*
1447 * Unfortunately, we are unable to convert to a useful name
1448 * But we'll still print out the usage information
1449 */
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 printk(KERN_INFO "Task in %s killed", memcg_name);
1456
1457 rcu_read_lock();
1458 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1459 if (ret < 0) {
1460 rcu_read_unlock();
1461 goto done;
1462 }
1463 rcu_read_unlock();
1464
1465 /*
1466 * Continues from above, so we don't need an KERN_ level
1467 */
1468 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1469done:
1470
1471 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1472 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1473 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1474 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1475 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1476 "failcnt %llu\n",
1477 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1478 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1479 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1480}
1481
1482/*
1483 * This function returns the number of memcg under hierarchy tree. Returns
1484 * 1(self count) if no children.
1485 */
1486static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1487{
1488 int num = 0;
1489 struct mem_cgroup *iter;
1490
1491 for_each_mem_cgroup_tree(iter, memcg)
1492 num++;
1493 return num;
1494}
1495
1496/*
1497 * Return the memory (and swap, if configured) limit for a memcg.
1498 */
1499u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1500{
1501 u64 limit;
1502 u64 memsw;
1503
1504 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1505 limit += total_swap_pages << PAGE_SHIFT;
1506
1507 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1508 /*
1509 * If memsw is finite and limits the amount of swap space available
1510 * to this memcg, return that limit.
1511 */
1512 return min(limit, memsw);
1513}
1514
1515static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1516 gfp_t gfp_mask,
1517 unsigned long flags)
1518{
1519 unsigned long total = 0;
1520 bool noswap = false;
1521 int loop;
1522
1523 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1524 noswap = true;
1525 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1526 noswap = true;
1527
1528 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1529 if (loop)
1530 drain_all_stock_async(memcg);
1531 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1532 /*
1533 * Allow limit shrinkers, which are triggered directly
1534 * by userspace, to catch signals and stop reclaim
1535 * after minimal progress, regardless of the margin.
1536 */
1537 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1538 break;
1539 if (mem_cgroup_margin(memcg))
1540 break;
1541 /*
1542 * If nothing was reclaimed after two attempts, there
1543 * may be no reclaimable pages in this hierarchy.
1544 */
1545 if (loop && !total)
1546 break;
1547 }
1548 return total;
1549}
1550
1551/**
1552 * test_mem_cgroup_node_reclaimable
1553 * @mem: the target memcg
1554 * @nid: the node ID to be checked.
1555 * @noswap : specify true here if the user wants flle only information.
1556 *
1557 * This function returns whether the specified memcg contains any
1558 * reclaimable pages on a node. Returns true if there are any reclaimable
1559 * pages in the node.
1560 */
1561static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1562 int nid, bool noswap)
1563{
1564 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1565 return true;
1566 if (noswap || !total_swap_pages)
1567 return false;
1568 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1569 return true;
1570 return false;
1571
1572}
1573#if MAX_NUMNODES > 1
1574
1575/*
1576 * Always updating the nodemask is not very good - even if we have an empty
1577 * list or the wrong list here, we can start from some node and traverse all
1578 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1579 *
1580 */
1581static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1582{
1583 int nid;
1584 /*
1585 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1586 * pagein/pageout changes since the last update.
1587 */
1588 if (!atomic_read(&memcg->numainfo_events))
1589 return;
1590 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1591 return;
1592
1593 /* make a nodemask where this memcg uses memory from */
1594 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1595
1596 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1597
1598 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1599 node_clear(nid, memcg->scan_nodes);
1600 }
1601
1602 atomic_set(&memcg->numainfo_events, 0);
1603 atomic_set(&memcg->numainfo_updating, 0);
1604}
1605
1606/*
1607 * Selecting a node where we start reclaim from. Because what we need is just
1608 * reducing usage counter, start from anywhere is O,K. Considering
1609 * memory reclaim from current node, there are pros. and cons.
1610 *
1611 * Freeing memory from current node means freeing memory from a node which
1612 * we'll use or we've used. So, it may make LRU bad. And if several threads
1613 * hit limits, it will see a contention on a node. But freeing from remote
1614 * node means more costs for memory reclaim because of memory latency.
1615 *
1616 * Now, we use round-robin. Better algorithm is welcomed.
1617 */
1618int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1619{
1620 int node;
1621
1622 mem_cgroup_may_update_nodemask(memcg);
1623 node = memcg->last_scanned_node;
1624
1625 node = next_node(node, memcg->scan_nodes);
1626 if (node == MAX_NUMNODES)
1627 node = first_node(memcg->scan_nodes);
1628 /*
1629 * We call this when we hit limit, not when pages are added to LRU.
1630 * No LRU may hold pages because all pages are UNEVICTABLE or
1631 * memcg is too small and all pages are not on LRU. In that case,
1632 * we use curret node.
1633 */
1634 if (unlikely(node == MAX_NUMNODES))
1635 node = numa_node_id();
1636
1637 memcg->last_scanned_node = node;
1638 return node;
1639}
1640
1641/*
1642 * Check all nodes whether it contains reclaimable pages or not.
1643 * For quick scan, we make use of scan_nodes. This will allow us to skip
1644 * unused nodes. But scan_nodes is lazily updated and may not cotain
1645 * enough new information. We need to do double check.
1646 */
1647bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1648{
1649 int nid;
1650
1651 /*
1652 * quick check...making use of scan_node.
1653 * We can skip unused nodes.
1654 */
1655 if (!nodes_empty(memcg->scan_nodes)) {
1656 for (nid = first_node(memcg->scan_nodes);
1657 nid < MAX_NUMNODES;
1658 nid = next_node(nid, memcg->scan_nodes)) {
1659
1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 return true;
1662 }
1663 }
1664 /*
1665 * Check rest of nodes.
1666 */
1667 for_each_node_state(nid, N_HIGH_MEMORY) {
1668 if (node_isset(nid, memcg->scan_nodes))
1669 continue;
1670 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1671 return true;
1672 }
1673 return false;
1674}
1675
1676#else
1677int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1678{
1679 return 0;
1680}
1681
1682bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1683{
1684 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1685}
1686#endif
1687
1688static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1689 struct zone *zone,
1690 gfp_t gfp_mask,
1691 unsigned long *total_scanned)
1692{
1693 struct mem_cgroup *victim = NULL;
1694 int total = 0;
1695 int loop = 0;
1696 unsigned long excess;
1697 unsigned long nr_scanned;
1698 struct mem_cgroup_reclaim_cookie reclaim = {
1699 .zone = zone,
1700 .priority = 0,
1701 };
1702
1703 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1704
1705 while (1) {
1706 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1707 if (!victim) {
1708 loop++;
1709 if (loop >= 2) {
1710 /*
1711 * If we have not been able to reclaim
1712 * anything, it might because there are
1713 * no reclaimable pages under this hierarchy
1714 */
1715 if (!total)
1716 break;
1717 /*
1718 * We want to do more targeted reclaim.
1719 * excess >> 2 is not to excessive so as to
1720 * reclaim too much, nor too less that we keep
1721 * coming back to reclaim from this cgroup
1722 */
1723 if (total >= (excess >> 2) ||
1724 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1725 break;
1726 }
1727 continue;
1728 }
1729 if (!mem_cgroup_reclaimable(victim, false))
1730 continue;
1731 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1732 zone, &nr_scanned);
1733 *total_scanned += nr_scanned;
1734 if (!res_counter_soft_limit_excess(&root_memcg->res))
1735 break;
1736 }
1737 mem_cgroup_iter_break(root_memcg, victim);
1738 return total;
1739}
1740
1741/*
1742 * Check OOM-Killer is already running under our hierarchy.
1743 * If someone is running, return false.
1744 * Has to be called with memcg_oom_lock
1745 */
1746static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1747{
1748 struct mem_cgroup *iter, *failed = NULL;
1749
1750 for_each_mem_cgroup_tree(iter, memcg) {
1751 if (iter->oom_lock) {
1752 /*
1753 * this subtree of our hierarchy is already locked
1754 * so we cannot give a lock.
1755 */
1756 failed = iter;
1757 mem_cgroup_iter_break(memcg, iter);
1758 break;
1759 } else
1760 iter->oom_lock = true;
1761 }
1762
1763 if (!failed)
1764 return true;
1765
1766 /*
1767 * OK, we failed to lock the whole subtree so we have to clean up
1768 * what we set up to the failing subtree
1769 */
1770 for_each_mem_cgroup_tree(iter, memcg) {
1771 if (iter == failed) {
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
1774 }
1775 iter->oom_lock = false;
1776 }
1777 return false;
1778}
1779
1780/*
1781 * Has to be called with memcg_oom_lock
1782 */
1783static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1784{
1785 struct mem_cgroup *iter;
1786
1787 for_each_mem_cgroup_tree(iter, memcg)
1788 iter->oom_lock = false;
1789 return 0;
1790}
1791
1792static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1793{
1794 struct mem_cgroup *iter;
1795
1796 for_each_mem_cgroup_tree(iter, memcg)
1797 atomic_inc(&iter->under_oom);
1798}
1799
1800static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1801{
1802 struct mem_cgroup *iter;
1803
1804 /*
1805 * When a new child is created while the hierarchy is under oom,
1806 * mem_cgroup_oom_lock() may not be called. We have to use
1807 * atomic_add_unless() here.
1808 */
1809 for_each_mem_cgroup_tree(iter, memcg)
1810 atomic_add_unless(&iter->under_oom, -1, 0);
1811}
1812
1813static DEFINE_SPINLOCK(memcg_oom_lock);
1814static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1815
1816struct oom_wait_info {
1817 struct mem_cgroup *memcg;
1818 wait_queue_t wait;
1819};
1820
1821static int memcg_oom_wake_function(wait_queue_t *wait,
1822 unsigned mode, int sync, void *arg)
1823{
1824 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1825 struct mem_cgroup *oom_wait_memcg;
1826 struct oom_wait_info *oom_wait_info;
1827
1828 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1829 oom_wait_memcg = oom_wait_info->memcg;
1830
1831 /*
1832 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1833 * Then we can use css_is_ancestor without taking care of RCU.
1834 */
1835 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1836 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1837 return 0;
1838 return autoremove_wake_function(wait, mode, sync, arg);
1839}
1840
1841static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1842{
1843 /* for filtering, pass "memcg" as argument. */
1844 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1845}
1846
1847static void memcg_oom_recover(struct mem_cgroup *memcg)
1848{
1849 if (memcg && atomic_read(&memcg->under_oom))
1850 memcg_wakeup_oom(memcg);
1851}
1852
1853/*
1854 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1855 */
1856bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1857{
1858 struct oom_wait_info owait;
1859 bool locked, need_to_kill;
1860
1861 owait.memcg = memcg;
1862 owait.wait.flags = 0;
1863 owait.wait.func = memcg_oom_wake_function;
1864 owait.wait.private = current;
1865 INIT_LIST_HEAD(&owait.wait.task_list);
1866 need_to_kill = true;
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 /* At first, try to OOM lock hierarchy under memcg.*/
1870 spin_lock(&memcg_oom_lock);
1871 locked = mem_cgroup_oom_lock(memcg);
1872 /*
1873 * Even if signal_pending(), we can't quit charge() loop without
1874 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1875 * under OOM is always welcomed, use TASK_KILLABLE here.
1876 */
1877 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1878 if (!locked || memcg->oom_kill_disable)
1879 need_to_kill = false;
1880 if (locked)
1881 mem_cgroup_oom_notify(memcg);
1882 spin_unlock(&memcg_oom_lock);
1883
1884 if (need_to_kill) {
1885 finish_wait(&memcg_oom_waitq, &owait.wait);
1886 mem_cgroup_out_of_memory(memcg, mask, order);
1887 } else {
1888 schedule();
1889 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 }
1891 spin_lock(&memcg_oom_lock);
1892 if (locked)
1893 mem_cgroup_oom_unlock(memcg);
1894 memcg_wakeup_oom(memcg);
1895 spin_unlock(&memcg_oom_lock);
1896
1897 mem_cgroup_unmark_under_oom(memcg);
1898
1899 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1900 return false;
1901 /* Give chance to dying process */
1902 schedule_timeout_uninterruptible(1);
1903 return true;
1904}
1905
1906/*
1907 * Currently used to update mapped file statistics, but the routine can be
1908 * generalized to update other statistics as well.
1909 *
1910 * Notes: Race condition
1911 *
1912 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1913 * it tends to be costly. But considering some conditions, we doesn't need
1914 * to do so _always_.
1915 *
1916 * Considering "charge", lock_page_cgroup() is not required because all
1917 * file-stat operations happen after a page is attached to radix-tree. There
1918 * are no race with "charge".
1919 *
1920 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1921 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1922 * if there are race with "uncharge". Statistics itself is properly handled
1923 * by flags.
1924 *
1925 * Considering "move", this is an only case we see a race. To make the race
1926 * small, we check mm->moving_account and detect there are possibility of race
1927 * If there is, we take a lock.
1928 */
1929
1930void __mem_cgroup_begin_update_page_stat(struct page *page,
1931 bool *locked, unsigned long *flags)
1932{
1933 struct mem_cgroup *memcg;
1934 struct page_cgroup *pc;
1935
1936 pc = lookup_page_cgroup(page);
1937again:
1938 memcg = pc->mem_cgroup;
1939 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940 return;
1941 /*
1942 * If this memory cgroup is not under account moving, we don't
1943 * need to take move_lock_page_cgroup(). Because we already hold
1944 * rcu_read_lock(), any calls to move_account will be delayed until
1945 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1946 */
1947 if (!mem_cgroup_stolen(memcg))
1948 return;
1949
1950 move_lock_mem_cgroup(memcg, flags);
1951 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1952 move_unlock_mem_cgroup(memcg, flags);
1953 goto again;
1954 }
1955 *locked = true;
1956}
1957
1958void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1959{
1960 struct page_cgroup *pc = lookup_page_cgroup(page);
1961
1962 /*
1963 * It's guaranteed that pc->mem_cgroup never changes while
1964 * lock is held because a routine modifies pc->mem_cgroup
1965 * should take move_lock_page_cgroup().
1966 */
1967 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1968}
1969
1970void mem_cgroup_update_page_stat(struct page *page,
1971 enum mem_cgroup_page_stat_item idx, int val)
1972{
1973 struct mem_cgroup *memcg;
1974 struct page_cgroup *pc = lookup_page_cgroup(page);
1975 unsigned long uninitialized_var(flags);
1976
1977 if (mem_cgroup_disabled())
1978 return;
1979
1980 memcg = pc->mem_cgroup;
1981 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1982 return;
1983
1984 switch (idx) {
1985 case MEMCG_NR_FILE_MAPPED:
1986 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 break;
1988 default:
1989 BUG();
1990 }
1991
1992 this_cpu_add(memcg->stat->count[idx], val);
1993}
1994
1995/*
1996 * size of first charge trial. "32" comes from vmscan.c's magic value.
1997 * TODO: maybe necessary to use big numbers in big irons.
1998 */
1999#define CHARGE_BATCH 32U
2000struct memcg_stock_pcp {
2001 struct mem_cgroup *cached; /* this never be root cgroup */
2002 unsigned int nr_pages;
2003 struct work_struct work;
2004 unsigned long flags;
2005#define FLUSHING_CACHED_CHARGE (0)
2006};
2007static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2008static DEFINE_MUTEX(percpu_charge_mutex);
2009
2010/*
2011 * Try to consume stocked charge on this cpu. If success, one page is consumed
2012 * from local stock and true is returned. If the stock is 0 or charges from a
2013 * cgroup which is not current target, returns false. This stock will be
2014 * refilled.
2015 */
2016static bool consume_stock(struct mem_cgroup *memcg)
2017{
2018 struct memcg_stock_pcp *stock;
2019 bool ret = true;
2020
2021 stock = &get_cpu_var(memcg_stock);
2022 if (memcg == stock->cached && stock->nr_pages)
2023 stock->nr_pages--;
2024 else /* need to call res_counter_charge */
2025 ret = false;
2026 put_cpu_var(memcg_stock);
2027 return ret;
2028}
2029
2030/*
2031 * Returns stocks cached in percpu to res_counter and reset cached information.
2032 */
2033static void drain_stock(struct memcg_stock_pcp *stock)
2034{
2035 struct mem_cgroup *old = stock->cached;
2036
2037 if (stock->nr_pages) {
2038 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2039
2040 res_counter_uncharge(&old->res, bytes);
2041 if (do_swap_account)
2042 res_counter_uncharge(&old->memsw, bytes);
2043 stock->nr_pages = 0;
2044 }
2045 stock->cached = NULL;
2046}
2047
2048/*
2049 * This must be called under preempt disabled or must be called by
2050 * a thread which is pinned to local cpu.
2051 */
2052static void drain_local_stock(struct work_struct *dummy)
2053{
2054 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2055 drain_stock(stock);
2056 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2057}
2058
2059/*
2060 * Cache charges(val) which is from res_counter, to local per_cpu area.
2061 * This will be consumed by consume_stock() function, later.
2062 */
2063static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2064{
2065 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2066
2067 if (stock->cached != memcg) { /* reset if necessary */
2068 drain_stock(stock);
2069 stock->cached = memcg;
2070 }
2071 stock->nr_pages += nr_pages;
2072 put_cpu_var(memcg_stock);
2073}
2074
2075/*
2076 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2077 * of the hierarchy under it. sync flag says whether we should block
2078 * until the work is done.
2079 */
2080static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2081{
2082 int cpu, curcpu;
2083
2084 /* Notify other cpus that system-wide "drain" is running */
2085 get_online_cpus();
2086 curcpu = get_cpu();
2087 for_each_online_cpu(cpu) {
2088 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2089 struct mem_cgroup *memcg;
2090
2091 memcg = stock->cached;
2092 if (!memcg || !stock->nr_pages)
2093 continue;
2094 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2095 continue;
2096 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2097 if (cpu == curcpu)
2098 drain_local_stock(&stock->work);
2099 else
2100 schedule_work_on(cpu, &stock->work);
2101 }
2102 }
2103 put_cpu();
2104
2105 if (!sync)
2106 goto out;
2107
2108 for_each_online_cpu(cpu) {
2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2111 flush_work(&stock->work);
2112 }
2113out:
2114 put_online_cpus();
2115}
2116
2117/*
2118 * Tries to drain stocked charges in other cpus. This function is asynchronous
2119 * and just put a work per cpu for draining localy on each cpu. Caller can
2120 * expects some charges will be back to res_counter later but cannot wait for
2121 * it.
2122 */
2123static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2124{
2125 /*
2126 * If someone calls draining, avoid adding more kworker runs.
2127 */
2128 if (!mutex_trylock(&percpu_charge_mutex))
2129 return;
2130 drain_all_stock(root_memcg, false);
2131 mutex_unlock(&percpu_charge_mutex);
2132}
2133
2134/* This is a synchronous drain interface. */
2135static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2136{
2137 /* called when force_empty is called */
2138 mutex_lock(&percpu_charge_mutex);
2139 drain_all_stock(root_memcg, true);
2140 mutex_unlock(&percpu_charge_mutex);
2141}
2142
2143/*
2144 * This function drains percpu counter value from DEAD cpu and
2145 * move it to local cpu. Note that this function can be preempted.
2146 */
2147static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2148{
2149 int i;
2150
2151 spin_lock(&memcg->pcp_counter_lock);
2152 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2153 long x = per_cpu(memcg->stat->count[i], cpu);
2154
2155 per_cpu(memcg->stat->count[i], cpu) = 0;
2156 memcg->nocpu_base.count[i] += x;
2157 }
2158 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2159 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2160
2161 per_cpu(memcg->stat->events[i], cpu) = 0;
2162 memcg->nocpu_base.events[i] += x;
2163 }
2164 spin_unlock(&memcg->pcp_counter_lock);
2165}
2166
2167static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2168 unsigned long action,
2169 void *hcpu)
2170{
2171 int cpu = (unsigned long)hcpu;
2172 struct memcg_stock_pcp *stock;
2173 struct mem_cgroup *iter;
2174
2175 if (action == CPU_ONLINE)
2176 return NOTIFY_OK;
2177
2178 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2179 return NOTIFY_OK;
2180
2181 for_each_mem_cgroup(iter)
2182 mem_cgroup_drain_pcp_counter(iter, cpu);
2183
2184 stock = &per_cpu(memcg_stock, cpu);
2185 drain_stock(stock);
2186 return NOTIFY_OK;
2187}
2188
2189
2190/* See __mem_cgroup_try_charge() for details */
2191enum {
2192 CHARGE_OK, /* success */
2193 CHARGE_RETRY, /* need to retry but retry is not bad */
2194 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2195 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2196 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2197};
2198
2199static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2200 unsigned int nr_pages, bool oom_check)
2201{
2202 unsigned long csize = nr_pages * PAGE_SIZE;
2203 struct mem_cgroup *mem_over_limit;
2204 struct res_counter *fail_res;
2205 unsigned long flags = 0;
2206 int ret;
2207
2208 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2209
2210 if (likely(!ret)) {
2211 if (!do_swap_account)
2212 return CHARGE_OK;
2213 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2214 if (likely(!ret))
2215 return CHARGE_OK;
2216
2217 res_counter_uncharge(&memcg->res, csize);
2218 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2219 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2220 } else
2221 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2222 /*
2223 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2224 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2225 *
2226 * Never reclaim on behalf of optional batching, retry with a
2227 * single page instead.
2228 */
2229 if (nr_pages == CHARGE_BATCH)
2230 return CHARGE_RETRY;
2231
2232 if (!(gfp_mask & __GFP_WAIT))
2233 return CHARGE_WOULDBLOCK;
2234
2235 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2236 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2237 return CHARGE_RETRY;
2238 /*
2239 * Even though the limit is exceeded at this point, reclaim
2240 * may have been able to free some pages. Retry the charge
2241 * before killing the task.
2242 *
2243 * Only for regular pages, though: huge pages are rather
2244 * unlikely to succeed so close to the limit, and we fall back
2245 * to regular pages anyway in case of failure.
2246 */
2247 if (nr_pages == 1 && ret)
2248 return CHARGE_RETRY;
2249
2250 /*
2251 * At task move, charge accounts can be doubly counted. So, it's
2252 * better to wait until the end of task_move if something is going on.
2253 */
2254 if (mem_cgroup_wait_acct_move(mem_over_limit))
2255 return CHARGE_RETRY;
2256
2257 /* If we don't need to call oom-killer at el, return immediately */
2258 if (!oom_check)
2259 return CHARGE_NOMEM;
2260 /* check OOM */
2261 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2262 return CHARGE_OOM_DIE;
2263
2264 return CHARGE_RETRY;
2265}
2266
2267/*
2268 * __mem_cgroup_try_charge() does
2269 * 1. detect memcg to be charged against from passed *mm and *ptr,
2270 * 2. update res_counter
2271 * 3. call memory reclaim if necessary.
2272 *
2273 * In some special case, if the task is fatal, fatal_signal_pending() or
2274 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2275 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2276 * as possible without any hazards. 2: all pages should have a valid
2277 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2278 * pointer, that is treated as a charge to root_mem_cgroup.
2279 *
2280 * So __mem_cgroup_try_charge() will return
2281 * 0 ... on success, filling *ptr with a valid memcg pointer.
2282 * -ENOMEM ... charge failure because of resource limits.
2283 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2284 *
2285 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2286 * the oom-killer can be invoked.
2287 */
2288static int __mem_cgroup_try_charge(struct mm_struct *mm,
2289 gfp_t gfp_mask,
2290 unsigned int nr_pages,
2291 struct mem_cgroup **ptr,
2292 bool oom)
2293{
2294 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2295 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2296 struct mem_cgroup *memcg = NULL;
2297 int ret;
2298
2299 /*
2300 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2301 * in system level. So, allow to go ahead dying process in addition to
2302 * MEMDIE process.
2303 */
2304 if (unlikely(test_thread_flag(TIF_MEMDIE)
2305 || fatal_signal_pending(current)))
2306 goto bypass;
2307
2308 /*
2309 * We always charge the cgroup the mm_struct belongs to.
2310 * The mm_struct's mem_cgroup changes on task migration if the
2311 * thread group leader migrates. It's possible that mm is not
2312 * set, if so charge the init_mm (happens for pagecache usage).
2313 */
2314 if (!*ptr && !mm)
2315 *ptr = root_mem_cgroup;
2316again:
2317 if (*ptr) { /* css should be a valid one */
2318 memcg = *ptr;
2319 VM_BUG_ON(css_is_removed(&memcg->css));
2320 if (mem_cgroup_is_root(memcg))
2321 goto done;
2322 if (nr_pages == 1 && consume_stock(memcg))
2323 goto done;
2324 css_get(&memcg->css);
2325 } else {
2326 struct task_struct *p;
2327
2328 rcu_read_lock();
2329 p = rcu_dereference(mm->owner);
2330 /*
2331 * Because we don't have task_lock(), "p" can exit.
2332 * In that case, "memcg" can point to root or p can be NULL with
2333 * race with swapoff. Then, we have small risk of mis-accouning.
2334 * But such kind of mis-account by race always happens because
2335 * we don't have cgroup_mutex(). It's overkill and we allo that
2336 * small race, here.
2337 * (*) swapoff at el will charge against mm-struct not against
2338 * task-struct. So, mm->owner can be NULL.
2339 */
2340 memcg = mem_cgroup_from_task(p);
2341 if (!memcg)
2342 memcg = root_mem_cgroup;
2343 if (mem_cgroup_is_root(memcg)) {
2344 rcu_read_unlock();
2345 goto done;
2346 }
2347 if (nr_pages == 1 && consume_stock(memcg)) {
2348 /*
2349 * It seems dagerous to access memcg without css_get().
2350 * But considering how consume_stok works, it's not
2351 * necessary. If consume_stock success, some charges
2352 * from this memcg are cached on this cpu. So, we
2353 * don't need to call css_get()/css_tryget() before
2354 * calling consume_stock().
2355 */
2356 rcu_read_unlock();
2357 goto done;
2358 }
2359 /* after here, we may be blocked. we need to get refcnt */
2360 if (!css_tryget(&memcg->css)) {
2361 rcu_read_unlock();
2362 goto again;
2363 }
2364 rcu_read_unlock();
2365 }
2366
2367 do {
2368 bool oom_check;
2369
2370 /* If killed, bypass charge */
2371 if (fatal_signal_pending(current)) {
2372 css_put(&memcg->css);
2373 goto bypass;
2374 }
2375
2376 oom_check = false;
2377 if (oom && !nr_oom_retries) {
2378 oom_check = true;
2379 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380 }
2381
2382 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2383 switch (ret) {
2384 case CHARGE_OK:
2385 break;
2386 case CHARGE_RETRY: /* not in OOM situation but retry */
2387 batch = nr_pages;
2388 css_put(&memcg->css);
2389 memcg = NULL;
2390 goto again;
2391 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2392 css_put(&memcg->css);
2393 goto nomem;
2394 case CHARGE_NOMEM: /* OOM routine works */
2395 if (!oom) {
2396 css_put(&memcg->css);
2397 goto nomem;
2398 }
2399 /* If oom, we never return -ENOMEM */
2400 nr_oom_retries--;
2401 break;
2402 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2403 css_put(&memcg->css);
2404 goto bypass;
2405 }
2406 } while (ret != CHARGE_OK);
2407
2408 if (batch > nr_pages)
2409 refill_stock(memcg, batch - nr_pages);
2410 css_put(&memcg->css);
2411done:
2412 *ptr = memcg;
2413 return 0;
2414nomem:
2415 *ptr = NULL;
2416 return -ENOMEM;
2417bypass:
2418 *ptr = root_mem_cgroup;
2419 return -EINTR;
2420}
2421
2422/*
2423 * Somemtimes we have to undo a charge we got by try_charge().
2424 * This function is for that and do uncharge, put css's refcnt.
2425 * gotten by try_charge().
2426 */
2427static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2428 unsigned int nr_pages)
2429{
2430 if (!mem_cgroup_is_root(memcg)) {
2431 unsigned long bytes = nr_pages * PAGE_SIZE;
2432
2433 res_counter_uncharge(&memcg->res, bytes);
2434 if (do_swap_account)
2435 res_counter_uncharge(&memcg->memsw, bytes);
2436 }
2437}
2438
2439/*
2440 * A helper function to get mem_cgroup from ID. must be called under
2441 * rcu_read_lock(). The caller must check css_is_removed() or some if
2442 * it's concern. (dropping refcnt from swap can be called against removed
2443 * memcg.)
2444 */
2445static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2446{
2447 struct cgroup_subsys_state *css;
2448
2449 /* ID 0 is unused ID */
2450 if (!id)
2451 return NULL;
2452 css = css_lookup(&mem_cgroup_subsys, id);
2453 if (!css)
2454 return NULL;
2455 return container_of(css, struct mem_cgroup, css);
2456}
2457
2458struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2459{
2460 struct mem_cgroup *memcg = NULL;
2461 struct page_cgroup *pc;
2462 unsigned short id;
2463 swp_entry_t ent;
2464
2465 VM_BUG_ON(!PageLocked(page));
2466
2467 pc = lookup_page_cgroup(page);
2468 lock_page_cgroup(pc);
2469 if (PageCgroupUsed(pc)) {
2470 memcg = pc->mem_cgroup;
2471 if (memcg && !css_tryget(&memcg->css))
2472 memcg = NULL;
2473 } else if (PageSwapCache(page)) {
2474 ent.val = page_private(page);
2475 id = lookup_swap_cgroup_id(ent);
2476 rcu_read_lock();
2477 memcg = mem_cgroup_lookup(id);
2478 if (memcg && !css_tryget(&memcg->css))
2479 memcg = NULL;
2480 rcu_read_unlock();
2481 }
2482 unlock_page_cgroup(pc);
2483 return memcg;
2484}
2485
2486static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2487 struct page *page,
2488 unsigned int nr_pages,
2489 enum charge_type ctype,
2490 bool lrucare)
2491{
2492 struct page_cgroup *pc = lookup_page_cgroup(page);
2493 struct zone *uninitialized_var(zone);
2494 bool was_on_lru = false;
2495 bool anon;
2496
2497 lock_page_cgroup(pc);
2498 if (unlikely(PageCgroupUsed(pc))) {
2499 unlock_page_cgroup(pc);
2500 __mem_cgroup_cancel_charge(memcg, nr_pages);
2501 return;
2502 }
2503 /*
2504 * we don't need page_cgroup_lock about tail pages, becase they are not
2505 * accessed by any other context at this point.
2506 */
2507
2508 /*
2509 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2510 * may already be on some other mem_cgroup's LRU. Take care of it.
2511 */
2512 if (lrucare) {
2513 zone = page_zone(page);
2514 spin_lock_irq(&zone->lru_lock);
2515 if (PageLRU(page)) {
2516 ClearPageLRU(page);
2517 del_page_from_lru_list(zone, page, page_lru(page));
2518 was_on_lru = true;
2519 }
2520 }
2521
2522 pc->mem_cgroup = memcg;
2523 /*
2524 * We access a page_cgroup asynchronously without lock_page_cgroup().
2525 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2526 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2527 * before USED bit, we need memory barrier here.
2528 * See mem_cgroup_add_lru_list(), etc.
2529 */
2530 smp_wmb();
2531 SetPageCgroupUsed(pc);
2532
2533 if (lrucare) {
2534 if (was_on_lru) {
2535 VM_BUG_ON(PageLRU(page));
2536 SetPageLRU(page);
2537 add_page_to_lru_list(zone, page, page_lru(page));
2538 }
2539 spin_unlock_irq(&zone->lru_lock);
2540 }
2541
2542 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2543 anon = true;
2544 else
2545 anon = false;
2546
2547 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2548 unlock_page_cgroup(pc);
2549
2550 /*
2551 * "charge_statistics" updated event counter. Then, check it.
2552 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2553 * if they exceeds softlimit.
2554 */
2555 memcg_check_events(memcg, page);
2556}
2557
2558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2559
2560#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2561/*
2562 * Because tail pages are not marked as "used", set it. We're under
2563 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2564 * charge/uncharge will be never happen and move_account() is done under
2565 * compound_lock(), so we don't have to take care of races.
2566 */
2567void mem_cgroup_split_huge_fixup(struct page *head)
2568{
2569 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2570 struct page_cgroup *pc;
2571 int i;
2572
2573 if (mem_cgroup_disabled())
2574 return;
2575 for (i = 1; i < HPAGE_PMD_NR; i++) {
2576 pc = head_pc + i;
2577 pc->mem_cgroup = head_pc->mem_cgroup;
2578 smp_wmb();/* see __commit_charge() */
2579 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2580 }
2581}
2582#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2583
2584/**
2585 * mem_cgroup_move_account - move account of the page
2586 * @page: the page
2587 * @nr_pages: number of regular pages (>1 for huge pages)
2588 * @pc: page_cgroup of the page.
2589 * @from: mem_cgroup which the page is moved from.
2590 * @to: mem_cgroup which the page is moved to. @from != @to.
2591 * @uncharge: whether we should call uncharge and css_put against @from.
2592 *
2593 * The caller must confirm following.
2594 * - page is not on LRU (isolate_page() is useful.)
2595 * - compound_lock is held when nr_pages > 1
2596 *
2597 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2598 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2599 * true, this function does "uncharge" from old cgroup, but it doesn't if
2600 * @uncharge is false, so a caller should do "uncharge".
2601 */
2602static int mem_cgroup_move_account(struct page *page,
2603 unsigned int nr_pages,
2604 struct page_cgroup *pc,
2605 struct mem_cgroup *from,
2606 struct mem_cgroup *to,
2607 bool uncharge)
2608{
2609 unsigned long flags;
2610 int ret;
2611 bool anon = PageAnon(page);
2612
2613 VM_BUG_ON(from == to);
2614 VM_BUG_ON(PageLRU(page));
2615 /*
2616 * The page is isolated from LRU. So, collapse function
2617 * will not handle this page. But page splitting can happen.
2618 * Do this check under compound_page_lock(). The caller should
2619 * hold it.
2620 */
2621 ret = -EBUSY;
2622 if (nr_pages > 1 && !PageTransHuge(page))
2623 goto out;
2624
2625 lock_page_cgroup(pc);
2626
2627 ret = -EINVAL;
2628 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2629 goto unlock;
2630
2631 move_lock_mem_cgroup(from, &flags);
2632
2633 if (!anon && page_mapped(page)) {
2634 /* Update mapped_file data for mem_cgroup */
2635 preempt_disable();
2636 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2638 preempt_enable();
2639 }
2640 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2641 if (uncharge)
2642 /* This is not "cancel", but cancel_charge does all we need. */
2643 __mem_cgroup_cancel_charge(from, nr_pages);
2644
2645 /* caller should have done css_get */
2646 pc->mem_cgroup = to;
2647 mem_cgroup_charge_statistics(to, anon, nr_pages);
2648 /*
2649 * We charges against "to" which may not have any tasks. Then, "to"
2650 * can be under rmdir(). But in current implementation, caller of
2651 * this function is just force_empty() and move charge, so it's
2652 * guaranteed that "to" is never removed. So, we don't check rmdir
2653 * status here.
2654 */
2655 move_unlock_mem_cgroup(from, &flags);
2656 ret = 0;
2657unlock:
2658 unlock_page_cgroup(pc);
2659 /*
2660 * check events
2661 */
2662 memcg_check_events(to, page);
2663 memcg_check_events(from, page);
2664out:
2665 return ret;
2666}
2667
2668/*
2669 * move charges to its parent.
2670 */
2671
2672static int mem_cgroup_move_parent(struct page *page,
2673 struct page_cgroup *pc,
2674 struct mem_cgroup *child,
2675 gfp_t gfp_mask)
2676{
2677 struct cgroup *cg = child->css.cgroup;
2678 struct cgroup *pcg = cg->parent;
2679 struct mem_cgroup *parent;
2680 unsigned int nr_pages;
2681 unsigned long uninitialized_var(flags);
2682 int ret;
2683
2684 /* Is ROOT ? */
2685 if (!pcg)
2686 return -EINVAL;
2687
2688 ret = -EBUSY;
2689 if (!get_page_unless_zero(page))
2690 goto out;
2691 if (isolate_lru_page(page))
2692 goto put;
2693
2694 nr_pages = hpage_nr_pages(page);
2695
2696 parent = mem_cgroup_from_cont(pcg);
2697 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2698 if (ret)
2699 goto put_back;
2700
2701 if (nr_pages > 1)
2702 flags = compound_lock_irqsave(page);
2703
2704 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2705 if (ret)
2706 __mem_cgroup_cancel_charge(parent, nr_pages);
2707
2708 if (nr_pages > 1)
2709 compound_unlock_irqrestore(page, flags);
2710put_back:
2711 putback_lru_page(page);
2712put:
2713 put_page(page);
2714out:
2715 return ret;
2716}
2717
2718/*
2719 * Charge the memory controller for page usage.
2720 * Return
2721 * 0 if the charge was successful
2722 * < 0 if the cgroup is over its limit
2723 */
2724static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2725 gfp_t gfp_mask, enum charge_type ctype)
2726{
2727 struct mem_cgroup *memcg = NULL;
2728 unsigned int nr_pages = 1;
2729 bool oom = true;
2730 int ret;
2731
2732 if (PageTransHuge(page)) {
2733 nr_pages <<= compound_order(page);
2734 VM_BUG_ON(!PageTransHuge(page));
2735 /*
2736 * Never OOM-kill a process for a huge page. The
2737 * fault handler will fall back to regular pages.
2738 */
2739 oom = false;
2740 }
2741
2742 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2743 if (ret == -ENOMEM)
2744 return ret;
2745 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2746 return 0;
2747}
2748
2749int mem_cgroup_newpage_charge(struct page *page,
2750 struct mm_struct *mm, gfp_t gfp_mask)
2751{
2752 if (mem_cgroup_disabled())
2753 return 0;
2754 VM_BUG_ON(page_mapped(page));
2755 VM_BUG_ON(page->mapping && !PageAnon(page));
2756 VM_BUG_ON(!mm);
2757 return mem_cgroup_charge_common(page, mm, gfp_mask,
2758 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2759}
2760
2761static void
2762__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2763 enum charge_type ctype);
2764
2765int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2766 gfp_t gfp_mask)
2767{
2768 struct mem_cgroup *memcg = NULL;
2769 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2770 int ret;
2771
2772 if (mem_cgroup_disabled())
2773 return 0;
2774 if (PageCompound(page))
2775 return 0;
2776
2777 if (unlikely(!mm))
2778 mm = &init_mm;
2779 if (!page_is_file_cache(page))
2780 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2781
2782 if (!PageSwapCache(page))
2783 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2784 else { /* page is swapcache/shmem */
2785 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2786 if (!ret)
2787 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2788 }
2789 return ret;
2790}
2791
2792/*
2793 * While swap-in, try_charge -> commit or cancel, the page is locked.
2794 * And when try_charge() successfully returns, one refcnt to memcg without
2795 * struct page_cgroup is acquired. This refcnt will be consumed by
2796 * "commit()" or removed by "cancel()"
2797 */
2798int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2799 struct page *page,
2800 gfp_t mask, struct mem_cgroup **memcgp)
2801{
2802 struct mem_cgroup *memcg;
2803 int ret;
2804
2805 *memcgp = NULL;
2806
2807 if (mem_cgroup_disabled())
2808 return 0;
2809
2810 if (!do_swap_account)
2811 goto charge_cur_mm;
2812 /*
2813 * A racing thread's fault, or swapoff, may have already updated
2814 * the pte, and even removed page from swap cache: in those cases
2815 * do_swap_page()'s pte_same() test will fail; but there's also a
2816 * KSM case which does need to charge the page.
2817 */
2818 if (!PageSwapCache(page))
2819 goto charge_cur_mm;
2820 memcg = try_get_mem_cgroup_from_page(page);
2821 if (!memcg)
2822 goto charge_cur_mm;
2823 *memcgp = memcg;
2824 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2825 css_put(&memcg->css);
2826 if (ret == -EINTR)
2827 ret = 0;
2828 return ret;
2829charge_cur_mm:
2830 if (unlikely(!mm))
2831 mm = &init_mm;
2832 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2833 if (ret == -EINTR)
2834 ret = 0;
2835 return ret;
2836}
2837
2838static void
2839__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2840 enum charge_type ctype)
2841{
2842 if (mem_cgroup_disabled())
2843 return;
2844 if (!memcg)
2845 return;
2846 cgroup_exclude_rmdir(&memcg->css);
2847
2848 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2849 /*
2850 * Now swap is on-memory. This means this page may be
2851 * counted both as mem and swap....double count.
2852 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2853 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2854 * may call delete_from_swap_cache() before reach here.
2855 */
2856 if (do_swap_account && PageSwapCache(page)) {
2857 swp_entry_t ent = {.val = page_private(page)};
2858 struct mem_cgroup *swap_memcg;
2859 unsigned short id;
2860
2861 id = swap_cgroup_record(ent, 0);
2862 rcu_read_lock();
2863 swap_memcg = mem_cgroup_lookup(id);
2864 if (swap_memcg) {
2865 /*
2866 * This recorded memcg can be obsolete one. So, avoid
2867 * calling css_tryget
2868 */
2869 if (!mem_cgroup_is_root(swap_memcg))
2870 res_counter_uncharge(&swap_memcg->memsw,
2871 PAGE_SIZE);
2872 mem_cgroup_swap_statistics(swap_memcg, false);
2873 mem_cgroup_put(swap_memcg);
2874 }
2875 rcu_read_unlock();
2876 }
2877 /*
2878 * At swapin, we may charge account against cgroup which has no tasks.
2879 * So, rmdir()->pre_destroy() can be called while we do this charge.
2880 * In that case, we need to call pre_destroy() again. check it here.
2881 */
2882 cgroup_release_and_wakeup_rmdir(&memcg->css);
2883}
2884
2885void mem_cgroup_commit_charge_swapin(struct page *page,
2886 struct mem_cgroup *memcg)
2887{
2888 __mem_cgroup_commit_charge_swapin(page, memcg,
2889 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2890}
2891
2892void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2893{
2894 if (mem_cgroup_disabled())
2895 return;
2896 if (!memcg)
2897 return;
2898 __mem_cgroup_cancel_charge(memcg, 1);
2899}
2900
2901static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2902 unsigned int nr_pages,
2903 const enum charge_type ctype)
2904{
2905 struct memcg_batch_info *batch = NULL;
2906 bool uncharge_memsw = true;
2907
2908 /* If swapout, usage of swap doesn't decrease */
2909 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2910 uncharge_memsw = false;
2911
2912 batch = &current->memcg_batch;
2913 /*
2914 * In usual, we do css_get() when we remember memcg pointer.
2915 * But in this case, we keep res->usage until end of a series of
2916 * uncharges. Then, it's ok to ignore memcg's refcnt.
2917 */
2918 if (!batch->memcg)
2919 batch->memcg = memcg;
2920 /*
2921 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2922 * In those cases, all pages freed continuously can be expected to be in
2923 * the same cgroup and we have chance to coalesce uncharges.
2924 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2925 * because we want to do uncharge as soon as possible.
2926 */
2927
2928 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2929 goto direct_uncharge;
2930
2931 if (nr_pages > 1)
2932 goto direct_uncharge;
2933
2934 /*
2935 * In typical case, batch->memcg == mem. This means we can
2936 * merge a series of uncharges to an uncharge of res_counter.
2937 * If not, we uncharge res_counter ony by one.
2938 */
2939 if (batch->memcg != memcg)
2940 goto direct_uncharge;
2941 /* remember freed charge and uncharge it later */
2942 batch->nr_pages++;
2943 if (uncharge_memsw)
2944 batch->memsw_nr_pages++;
2945 return;
2946direct_uncharge:
2947 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2948 if (uncharge_memsw)
2949 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2950 if (unlikely(batch->memcg != memcg))
2951 memcg_oom_recover(memcg);
2952}
2953
2954/*
2955 * uncharge if !page_mapped(page)
2956 */
2957static struct mem_cgroup *
2958__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2959{
2960 struct mem_cgroup *memcg = NULL;
2961 unsigned int nr_pages = 1;
2962 struct page_cgroup *pc;
2963 bool anon;
2964
2965 if (mem_cgroup_disabled())
2966 return NULL;
2967
2968 if (PageSwapCache(page))
2969 return NULL;
2970
2971 if (PageTransHuge(page)) {
2972 nr_pages <<= compound_order(page);
2973 VM_BUG_ON(!PageTransHuge(page));
2974 }
2975 /*
2976 * Check if our page_cgroup is valid
2977 */
2978 pc = lookup_page_cgroup(page);
2979 if (unlikely(!PageCgroupUsed(pc)))
2980 return NULL;
2981
2982 lock_page_cgroup(pc);
2983
2984 memcg = pc->mem_cgroup;
2985
2986 if (!PageCgroupUsed(pc))
2987 goto unlock_out;
2988
2989 anon = PageAnon(page);
2990
2991 switch (ctype) {
2992 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2993 /*
2994 * Generally PageAnon tells if it's the anon statistics to be
2995 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2996 * used before page reached the stage of being marked PageAnon.
2997 */
2998 anon = true;
2999 /* fallthrough */
3000 case MEM_CGROUP_CHARGE_TYPE_DROP:
3001 /* See mem_cgroup_prepare_migration() */
3002 if (page_mapped(page) || PageCgroupMigration(pc))
3003 goto unlock_out;
3004 break;
3005 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3006 if (!PageAnon(page)) { /* Shared memory */
3007 if (page->mapping && !page_is_file_cache(page))
3008 goto unlock_out;
3009 } else if (page_mapped(page)) /* Anon */
3010 goto unlock_out;
3011 break;
3012 default:
3013 break;
3014 }
3015
3016 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3017
3018 ClearPageCgroupUsed(pc);
3019 /*
3020 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3021 * freed from LRU. This is safe because uncharged page is expected not
3022 * to be reused (freed soon). Exception is SwapCache, it's handled by
3023 * special functions.
3024 */
3025
3026 unlock_page_cgroup(pc);
3027 /*
3028 * even after unlock, we have memcg->res.usage here and this memcg
3029 * will never be freed.
3030 */
3031 memcg_check_events(memcg, page);
3032 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3033 mem_cgroup_swap_statistics(memcg, true);
3034 mem_cgroup_get(memcg);
3035 }
3036 if (!mem_cgroup_is_root(memcg))
3037 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3038
3039 return memcg;
3040
3041unlock_out:
3042 unlock_page_cgroup(pc);
3043 return NULL;
3044}
3045
3046void mem_cgroup_uncharge_page(struct page *page)
3047{
3048 /* early check. */
3049 if (page_mapped(page))
3050 return;
3051 VM_BUG_ON(page->mapping && !PageAnon(page));
3052 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3053}
3054
3055void mem_cgroup_uncharge_cache_page(struct page *page)
3056{
3057 VM_BUG_ON(page_mapped(page));
3058 VM_BUG_ON(page->mapping);
3059 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3060}
3061
3062/*
3063 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3064 * In that cases, pages are freed continuously and we can expect pages
3065 * are in the same memcg. All these calls itself limits the number of
3066 * pages freed at once, then uncharge_start/end() is called properly.
3067 * This may be called prural(2) times in a context,
3068 */
3069
3070void mem_cgroup_uncharge_start(void)
3071{
3072 current->memcg_batch.do_batch++;
3073 /* We can do nest. */
3074 if (current->memcg_batch.do_batch == 1) {
3075 current->memcg_batch.memcg = NULL;
3076 current->memcg_batch.nr_pages = 0;
3077 current->memcg_batch.memsw_nr_pages = 0;
3078 }
3079}
3080
3081void mem_cgroup_uncharge_end(void)
3082{
3083 struct memcg_batch_info *batch = &current->memcg_batch;
3084
3085 if (!batch->do_batch)
3086 return;
3087
3088 batch->do_batch--;
3089 if (batch->do_batch) /* If stacked, do nothing. */
3090 return;
3091
3092 if (!batch->memcg)
3093 return;
3094 /*
3095 * This "batch->memcg" is valid without any css_get/put etc...
3096 * bacause we hide charges behind us.
3097 */
3098 if (batch->nr_pages)
3099 res_counter_uncharge(&batch->memcg->res,
3100 batch->nr_pages * PAGE_SIZE);
3101 if (batch->memsw_nr_pages)
3102 res_counter_uncharge(&batch->memcg->memsw,
3103 batch->memsw_nr_pages * PAGE_SIZE);
3104 memcg_oom_recover(batch->memcg);
3105 /* forget this pointer (for sanity check) */
3106 batch->memcg = NULL;
3107}
3108
3109#ifdef CONFIG_SWAP
3110/*
3111 * called after __delete_from_swap_cache() and drop "page" account.
3112 * memcg information is recorded to swap_cgroup of "ent"
3113 */
3114void
3115mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3116{
3117 struct mem_cgroup *memcg;
3118 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3119
3120 if (!swapout) /* this was a swap cache but the swap is unused ! */
3121 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3122
3123 memcg = __mem_cgroup_uncharge_common(page, ctype);
3124
3125 /*
3126 * record memcg information, if swapout && memcg != NULL,
3127 * mem_cgroup_get() was called in uncharge().
3128 */
3129 if (do_swap_account && swapout && memcg)
3130 swap_cgroup_record(ent, css_id(&memcg->css));
3131}
3132#endif
3133
3134#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3135/*
3136 * called from swap_entry_free(). remove record in swap_cgroup and
3137 * uncharge "memsw" account.
3138 */
3139void mem_cgroup_uncharge_swap(swp_entry_t ent)
3140{
3141 struct mem_cgroup *memcg;
3142 unsigned short id;
3143
3144 if (!do_swap_account)
3145 return;
3146
3147 id = swap_cgroup_record(ent, 0);
3148 rcu_read_lock();
3149 memcg = mem_cgroup_lookup(id);
3150 if (memcg) {
3151 /*
3152 * We uncharge this because swap is freed.
3153 * This memcg can be obsolete one. We avoid calling css_tryget
3154 */
3155 if (!mem_cgroup_is_root(memcg))
3156 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3157 mem_cgroup_swap_statistics(memcg, false);
3158 mem_cgroup_put(memcg);
3159 }
3160 rcu_read_unlock();
3161}
3162
3163/**
3164 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3165 * @entry: swap entry to be moved
3166 * @from: mem_cgroup which the entry is moved from
3167 * @to: mem_cgroup which the entry is moved to
3168 *
3169 * It succeeds only when the swap_cgroup's record for this entry is the same
3170 * as the mem_cgroup's id of @from.
3171 *
3172 * Returns 0 on success, -EINVAL on failure.
3173 *
3174 * The caller must have charged to @to, IOW, called res_counter_charge() about
3175 * both res and memsw, and called css_get().
3176 */
3177static int mem_cgroup_move_swap_account(swp_entry_t entry,
3178 struct mem_cgroup *from, struct mem_cgroup *to)
3179{
3180 unsigned short old_id, new_id;
3181
3182 old_id = css_id(&from->css);
3183 new_id = css_id(&to->css);
3184
3185 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3186 mem_cgroup_swap_statistics(from, false);
3187 mem_cgroup_swap_statistics(to, true);
3188 /*
3189 * This function is only called from task migration context now.
3190 * It postpones res_counter and refcount handling till the end
3191 * of task migration(mem_cgroup_clear_mc()) for performance
3192 * improvement. But we cannot postpone mem_cgroup_get(to)
3193 * because if the process that has been moved to @to does
3194 * swap-in, the refcount of @to might be decreased to 0.
3195 */
3196 mem_cgroup_get(to);
3197 return 0;
3198 }
3199 return -EINVAL;
3200}
3201#else
3202static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3203 struct mem_cgroup *from, struct mem_cgroup *to)
3204{
3205 return -EINVAL;
3206}
3207#endif
3208
3209/*
3210 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3211 * page belongs to.
3212 */
3213int mem_cgroup_prepare_migration(struct page *page,
3214 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3215{
3216 struct mem_cgroup *memcg = NULL;
3217 struct page_cgroup *pc;
3218 enum charge_type ctype;
3219 int ret = 0;
3220
3221 *memcgp = NULL;
3222
3223 VM_BUG_ON(PageTransHuge(page));
3224 if (mem_cgroup_disabled())
3225 return 0;
3226
3227 pc = lookup_page_cgroup(page);
3228 lock_page_cgroup(pc);
3229 if (PageCgroupUsed(pc)) {
3230 memcg = pc->mem_cgroup;
3231 css_get(&memcg->css);
3232 /*
3233 * At migrating an anonymous page, its mapcount goes down
3234 * to 0 and uncharge() will be called. But, even if it's fully
3235 * unmapped, migration may fail and this page has to be
3236 * charged again. We set MIGRATION flag here and delay uncharge
3237 * until end_migration() is called
3238 *
3239 * Corner Case Thinking
3240 * A)
3241 * When the old page was mapped as Anon and it's unmap-and-freed
3242 * while migration was ongoing.
3243 * If unmap finds the old page, uncharge() of it will be delayed
3244 * until end_migration(). If unmap finds a new page, it's
3245 * uncharged when it make mapcount to be 1->0. If unmap code
3246 * finds swap_migration_entry, the new page will not be mapped
3247 * and end_migration() will find it(mapcount==0).
3248 *
3249 * B)
3250 * When the old page was mapped but migraion fails, the kernel
3251 * remaps it. A charge for it is kept by MIGRATION flag even
3252 * if mapcount goes down to 0. We can do remap successfully
3253 * without charging it again.
3254 *
3255 * C)
3256 * The "old" page is under lock_page() until the end of
3257 * migration, so, the old page itself will not be swapped-out.
3258 * If the new page is swapped out before end_migraton, our
3259 * hook to usual swap-out path will catch the event.
3260 */
3261 if (PageAnon(page))
3262 SetPageCgroupMigration(pc);
3263 }
3264 unlock_page_cgroup(pc);
3265 /*
3266 * If the page is not charged at this point,
3267 * we return here.
3268 */
3269 if (!memcg)
3270 return 0;
3271
3272 *memcgp = memcg;
3273 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3274 css_put(&memcg->css);/* drop extra refcnt */
3275 if (ret) {
3276 if (PageAnon(page)) {
3277 lock_page_cgroup(pc);
3278 ClearPageCgroupMigration(pc);
3279 unlock_page_cgroup(pc);
3280 /*
3281 * The old page may be fully unmapped while we kept it.
3282 */
3283 mem_cgroup_uncharge_page(page);
3284 }
3285 /* we'll need to revisit this error code (we have -EINTR) */
3286 return -ENOMEM;
3287 }
3288 /*
3289 * We charge new page before it's used/mapped. So, even if unlock_page()
3290 * is called before end_migration, we can catch all events on this new
3291 * page. In the case new page is migrated but not remapped, new page's
3292 * mapcount will be finally 0 and we call uncharge in end_migration().
3293 */
3294 if (PageAnon(page))
3295 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3296 else if (page_is_file_cache(page))
3297 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3298 else
3299 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3300 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3301 return ret;
3302}
3303
3304/* remove redundant charge if migration failed*/
3305void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3306 struct page *oldpage, struct page *newpage, bool migration_ok)
3307{
3308 struct page *used, *unused;
3309 struct page_cgroup *pc;
3310 bool anon;
3311
3312 if (!memcg)
3313 return;
3314 /* blocks rmdir() */
3315 cgroup_exclude_rmdir(&memcg->css);
3316 if (!migration_ok) {
3317 used = oldpage;
3318 unused = newpage;
3319 } else {
3320 used = newpage;
3321 unused = oldpage;
3322 }
3323 /*
3324 * We disallowed uncharge of pages under migration because mapcount
3325 * of the page goes down to zero, temporarly.
3326 * Clear the flag and check the page should be charged.
3327 */
3328 pc = lookup_page_cgroup(oldpage);
3329 lock_page_cgroup(pc);
3330 ClearPageCgroupMigration(pc);
3331 unlock_page_cgroup(pc);
3332 anon = PageAnon(used);
3333 __mem_cgroup_uncharge_common(unused,
3334 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3335 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3336
3337 /*
3338 * If a page is a file cache, radix-tree replacement is very atomic
3339 * and we can skip this check. When it was an Anon page, its mapcount
3340 * goes down to 0. But because we added MIGRATION flage, it's not
3341 * uncharged yet. There are several case but page->mapcount check
3342 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3343 * check. (see prepare_charge() also)
3344 */
3345 if (anon)
3346 mem_cgroup_uncharge_page(used);
3347 /*
3348 * At migration, we may charge account against cgroup which has no
3349 * tasks.
3350 * So, rmdir()->pre_destroy() can be called while we do this charge.
3351 * In that case, we need to call pre_destroy() again. check it here.
3352 */
3353 cgroup_release_and_wakeup_rmdir(&memcg->css);
3354}
3355
3356/*
3357 * At replace page cache, newpage is not under any memcg but it's on
3358 * LRU. So, this function doesn't touch res_counter but handles LRU
3359 * in correct way. Both pages are locked so we cannot race with uncharge.
3360 */
3361void mem_cgroup_replace_page_cache(struct page *oldpage,
3362 struct page *newpage)
3363{
3364 struct mem_cgroup *memcg = NULL;
3365 struct page_cgroup *pc;
3366 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3367
3368 if (mem_cgroup_disabled())
3369 return;
3370
3371 pc = lookup_page_cgroup(oldpage);
3372 /* fix accounting on old pages */
3373 lock_page_cgroup(pc);
3374 if (PageCgroupUsed(pc)) {
3375 memcg = pc->mem_cgroup;
3376 mem_cgroup_charge_statistics(memcg, false, -1);
3377 ClearPageCgroupUsed(pc);
3378 }
3379 unlock_page_cgroup(pc);
3380
3381 /*
3382 * When called from shmem_replace_page(), in some cases the
3383 * oldpage has already been charged, and in some cases not.
3384 */
3385 if (!memcg)
3386 return;
3387
3388 if (PageSwapBacked(oldpage))
3389 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3390
3391 /*
3392 * Even if newpage->mapping was NULL before starting replacement,
3393 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3394 * LRU while we overwrite pc->mem_cgroup.
3395 */
3396 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3397}
3398
3399#ifdef CONFIG_DEBUG_VM
3400static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3401{
3402 struct page_cgroup *pc;
3403
3404 pc = lookup_page_cgroup(page);
3405 /*
3406 * Can be NULL while feeding pages into the page allocator for
3407 * the first time, i.e. during boot or memory hotplug;
3408 * or when mem_cgroup_disabled().
3409 */
3410 if (likely(pc) && PageCgroupUsed(pc))
3411 return pc;
3412 return NULL;
3413}
3414
3415bool mem_cgroup_bad_page_check(struct page *page)
3416{
3417 if (mem_cgroup_disabled())
3418 return false;
3419
3420 return lookup_page_cgroup_used(page) != NULL;
3421}
3422
3423void mem_cgroup_print_bad_page(struct page *page)
3424{
3425 struct page_cgroup *pc;
3426
3427 pc = lookup_page_cgroup_used(page);
3428 if (pc) {
3429 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3430 pc, pc->flags, pc->mem_cgroup);
3431 }
3432}
3433#endif
3434
3435static DEFINE_MUTEX(set_limit_mutex);
3436
3437static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3438 unsigned long long val)
3439{
3440 int retry_count;
3441 u64 memswlimit, memlimit;
3442 int ret = 0;
3443 int children = mem_cgroup_count_children(memcg);
3444 u64 curusage, oldusage;
3445 int enlarge;
3446
3447 /*
3448 * For keeping hierarchical_reclaim simple, how long we should retry
3449 * is depends on callers. We set our retry-count to be function
3450 * of # of children which we should visit in this loop.
3451 */
3452 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3453
3454 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3455
3456 enlarge = 0;
3457 while (retry_count) {
3458 if (signal_pending(current)) {
3459 ret = -EINTR;
3460 break;
3461 }
3462 /*
3463 * Rather than hide all in some function, I do this in
3464 * open coded manner. You see what this really does.
3465 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 */
3467 mutex_lock(&set_limit_mutex);
3468 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3469 if (memswlimit < val) {
3470 ret = -EINVAL;
3471 mutex_unlock(&set_limit_mutex);
3472 break;
3473 }
3474
3475 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3476 if (memlimit < val)
3477 enlarge = 1;
3478
3479 ret = res_counter_set_limit(&memcg->res, val);
3480 if (!ret) {
3481 if (memswlimit == val)
3482 memcg->memsw_is_minimum = true;
3483 else
3484 memcg->memsw_is_minimum = false;
3485 }
3486 mutex_unlock(&set_limit_mutex);
3487
3488 if (!ret)
3489 break;
3490
3491 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3492 MEM_CGROUP_RECLAIM_SHRINK);
3493 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3494 /* Usage is reduced ? */
3495 if (curusage >= oldusage)
3496 retry_count--;
3497 else
3498 oldusage = curusage;
3499 }
3500 if (!ret && enlarge)
3501 memcg_oom_recover(memcg);
3502
3503 return ret;
3504}
3505
3506static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3507 unsigned long long val)
3508{
3509 int retry_count;
3510 u64 memlimit, memswlimit, oldusage, curusage;
3511 int children = mem_cgroup_count_children(memcg);
3512 int ret = -EBUSY;
3513 int enlarge = 0;
3514
3515 /* see mem_cgroup_resize_res_limit */
3516 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3517 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3518 while (retry_count) {
3519 if (signal_pending(current)) {
3520 ret = -EINTR;
3521 break;
3522 }
3523 /*
3524 * Rather than hide all in some function, I do this in
3525 * open coded manner. You see what this really does.
3526 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3527 */
3528 mutex_lock(&set_limit_mutex);
3529 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3530 if (memlimit > val) {
3531 ret = -EINVAL;
3532 mutex_unlock(&set_limit_mutex);
3533 break;
3534 }
3535 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3536 if (memswlimit < val)
3537 enlarge = 1;
3538 ret = res_counter_set_limit(&memcg->memsw, val);
3539 if (!ret) {
3540 if (memlimit == val)
3541 memcg->memsw_is_minimum = true;
3542 else
3543 memcg->memsw_is_minimum = false;
3544 }
3545 mutex_unlock(&set_limit_mutex);
3546
3547 if (!ret)
3548 break;
3549
3550 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3551 MEM_CGROUP_RECLAIM_NOSWAP |
3552 MEM_CGROUP_RECLAIM_SHRINK);
3553 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3554 /* Usage is reduced ? */
3555 if (curusage >= oldusage)
3556 retry_count--;
3557 else
3558 oldusage = curusage;
3559 }
3560 if (!ret && enlarge)
3561 memcg_oom_recover(memcg);
3562 return ret;
3563}
3564
3565unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3566 gfp_t gfp_mask,
3567 unsigned long *total_scanned)
3568{
3569 unsigned long nr_reclaimed = 0;
3570 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3571 unsigned long reclaimed;
3572 int loop = 0;
3573 struct mem_cgroup_tree_per_zone *mctz;
3574 unsigned long long excess;
3575 unsigned long nr_scanned;
3576
3577 if (order > 0)
3578 return 0;
3579
3580 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3581 /*
3582 * This loop can run a while, specially if mem_cgroup's continuously
3583 * keep exceeding their soft limit and putting the system under
3584 * pressure
3585 */
3586 do {
3587 if (next_mz)
3588 mz = next_mz;
3589 else
3590 mz = mem_cgroup_largest_soft_limit_node(mctz);
3591 if (!mz)
3592 break;
3593
3594 nr_scanned = 0;
3595 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3596 gfp_mask, &nr_scanned);
3597 nr_reclaimed += reclaimed;
3598 *total_scanned += nr_scanned;
3599 spin_lock(&mctz->lock);
3600
3601 /*
3602 * If we failed to reclaim anything from this memory cgroup
3603 * it is time to move on to the next cgroup
3604 */
3605 next_mz = NULL;
3606 if (!reclaimed) {
3607 do {
3608 /*
3609 * Loop until we find yet another one.
3610 *
3611 * By the time we get the soft_limit lock
3612 * again, someone might have aded the
3613 * group back on the RB tree. Iterate to
3614 * make sure we get a different mem.
3615 * mem_cgroup_largest_soft_limit_node returns
3616 * NULL if no other cgroup is present on
3617 * the tree
3618 */
3619 next_mz =
3620 __mem_cgroup_largest_soft_limit_node(mctz);
3621 if (next_mz == mz)
3622 css_put(&next_mz->memcg->css);
3623 else /* next_mz == NULL or other memcg */
3624 break;
3625 } while (1);
3626 }
3627 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3628 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3629 /*
3630 * One school of thought says that we should not add
3631 * back the node to the tree if reclaim returns 0.
3632 * But our reclaim could return 0, simply because due
3633 * to priority we are exposing a smaller subset of
3634 * memory to reclaim from. Consider this as a longer
3635 * term TODO.
3636 */
3637 /* If excess == 0, no tree ops */
3638 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3639 spin_unlock(&mctz->lock);
3640 css_put(&mz->memcg->css);
3641 loop++;
3642 /*
3643 * Could not reclaim anything and there are no more
3644 * mem cgroups to try or we seem to be looping without
3645 * reclaiming anything.
3646 */
3647 if (!nr_reclaimed &&
3648 (next_mz == NULL ||
3649 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3650 break;
3651 } while (!nr_reclaimed);
3652 if (next_mz)
3653 css_put(&next_mz->memcg->css);
3654 return nr_reclaimed;
3655}
3656
3657/*
3658 * This routine traverse page_cgroup in given list and drop them all.
3659 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3660 */
3661static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3662 int node, int zid, enum lru_list lru)
3663{
3664 struct mem_cgroup_per_zone *mz;
3665 unsigned long flags, loop;
3666 struct list_head *list;
3667 struct page *busy;
3668 struct zone *zone;
3669 int ret = 0;
3670
3671 zone = &NODE_DATA(node)->node_zones[zid];
3672 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3673 list = &mz->lruvec.lists[lru];
3674
3675 loop = mz->lru_size[lru];
3676 /* give some margin against EBUSY etc...*/
3677 loop += 256;
3678 busy = NULL;
3679 while (loop--) {
3680 struct page_cgroup *pc;
3681 struct page *page;
3682
3683 ret = 0;
3684 spin_lock_irqsave(&zone->lru_lock, flags);
3685 if (list_empty(list)) {
3686 spin_unlock_irqrestore(&zone->lru_lock, flags);
3687 break;
3688 }
3689 page = list_entry(list->prev, struct page, lru);
3690 if (busy == page) {
3691 list_move(&page->lru, list);
3692 busy = NULL;
3693 spin_unlock_irqrestore(&zone->lru_lock, flags);
3694 continue;
3695 }
3696 spin_unlock_irqrestore(&zone->lru_lock, flags);
3697
3698 pc = lookup_page_cgroup(page);
3699
3700 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3701 if (ret == -ENOMEM || ret == -EINTR)
3702 break;
3703
3704 if (ret == -EBUSY || ret == -EINVAL) {
3705 /* found lock contention or "pc" is obsolete. */
3706 busy = page;
3707 cond_resched();
3708 } else
3709 busy = NULL;
3710 }
3711
3712 if (!ret && !list_empty(list))
3713 return -EBUSY;
3714 return ret;
3715}
3716
3717/*
3718 * make mem_cgroup's charge to be 0 if there is no task.
3719 * This enables deleting this mem_cgroup.
3720 */
3721static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3722{
3723 int ret;
3724 int node, zid, shrink;
3725 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3726 struct cgroup *cgrp = memcg->css.cgroup;
3727
3728 css_get(&memcg->css);
3729
3730 shrink = 0;
3731 /* should free all ? */
3732 if (free_all)
3733 goto try_to_free;
3734move_account:
3735 do {
3736 ret = -EBUSY;
3737 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3738 goto out;
3739 ret = -EINTR;
3740 if (signal_pending(current))
3741 goto out;
3742 /* This is for making all *used* pages to be on LRU. */
3743 lru_add_drain_all();
3744 drain_all_stock_sync(memcg);
3745 ret = 0;
3746 mem_cgroup_start_move(memcg);
3747 for_each_node_state(node, N_HIGH_MEMORY) {
3748 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3749 enum lru_list lru;
3750 for_each_lru(lru) {
3751 ret = mem_cgroup_force_empty_list(memcg,
3752 node, zid, lru);
3753 if (ret)
3754 break;
3755 }
3756 }
3757 if (ret)
3758 break;
3759 }
3760 mem_cgroup_end_move(memcg);
3761 memcg_oom_recover(memcg);
3762 /* it seems parent cgroup doesn't have enough mem */
3763 if (ret == -ENOMEM)
3764 goto try_to_free;
3765 cond_resched();
3766 /* "ret" should also be checked to ensure all lists are empty. */
3767 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3768out:
3769 css_put(&memcg->css);
3770 return ret;
3771
3772try_to_free:
3773 /* returns EBUSY if there is a task or if we come here twice. */
3774 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3775 ret = -EBUSY;
3776 goto out;
3777 }
3778 /* we call try-to-free pages for make this cgroup empty */
3779 lru_add_drain_all();
3780 /* try to free all pages in this cgroup */
3781 shrink = 1;
3782 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3783 int progress;
3784
3785 if (signal_pending(current)) {
3786 ret = -EINTR;
3787 goto out;
3788 }
3789 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3790 false);
3791 if (!progress) {
3792 nr_retries--;
3793 /* maybe some writeback is necessary */
3794 congestion_wait(BLK_RW_ASYNC, HZ/10);
3795 }
3796
3797 }
3798 lru_add_drain();
3799 /* try move_account...there may be some *locked* pages. */
3800 goto move_account;
3801}
3802
3803int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3804{
3805 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3806}
3807
3808
3809static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3810{
3811 return mem_cgroup_from_cont(cont)->use_hierarchy;
3812}
3813
3814static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3815 u64 val)
3816{
3817 int retval = 0;
3818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3819 struct cgroup *parent = cont->parent;
3820 struct mem_cgroup *parent_memcg = NULL;
3821
3822 if (parent)
3823 parent_memcg = mem_cgroup_from_cont(parent);
3824
3825 cgroup_lock();
3826 /*
3827 * If parent's use_hierarchy is set, we can't make any modifications
3828 * in the child subtrees. If it is unset, then the change can
3829 * occur, provided the current cgroup has no children.
3830 *
3831 * For the root cgroup, parent_mem is NULL, we allow value to be
3832 * set if there are no children.
3833 */
3834 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3835 (val == 1 || val == 0)) {
3836 if (list_empty(&cont->children))
3837 memcg->use_hierarchy = val;
3838 else
3839 retval = -EBUSY;
3840 } else
3841 retval = -EINVAL;
3842 cgroup_unlock();
3843
3844 return retval;
3845}
3846
3847
3848static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3849 enum mem_cgroup_stat_index idx)
3850{
3851 struct mem_cgroup *iter;
3852 long val = 0;
3853
3854 /* Per-cpu values can be negative, use a signed accumulator */
3855 for_each_mem_cgroup_tree(iter, memcg)
3856 val += mem_cgroup_read_stat(iter, idx);
3857
3858 if (val < 0) /* race ? */
3859 val = 0;
3860 return val;
3861}
3862
3863static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864{
3865 u64 val;
3866
3867 if (!mem_cgroup_is_root(memcg)) {
3868 if (!swap)
3869 return res_counter_read_u64(&memcg->res, RES_USAGE);
3870 else
3871 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3872 }
3873
3874 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3875 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3876
3877 if (swap)
3878 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3879
3880 return val << PAGE_SHIFT;
3881}
3882
3883static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3884 struct file *file, char __user *buf,
3885 size_t nbytes, loff_t *ppos)
3886{
3887 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3888 char str[64];
3889 u64 val;
3890 int type, name, len;
3891
3892 type = MEMFILE_TYPE(cft->private);
3893 name = MEMFILE_ATTR(cft->private);
3894
3895 if (!do_swap_account && type == _MEMSWAP)
3896 return -EOPNOTSUPP;
3897
3898 switch (type) {
3899 case _MEM:
3900 if (name == RES_USAGE)
3901 val = mem_cgroup_usage(memcg, false);
3902 else
3903 val = res_counter_read_u64(&memcg->res, name);
3904 break;
3905 case _MEMSWAP:
3906 if (name == RES_USAGE)
3907 val = mem_cgroup_usage(memcg, true);
3908 else
3909 val = res_counter_read_u64(&memcg->memsw, name);
3910 break;
3911 default:
3912 BUG();
3913 }
3914
3915 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3916 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3917}
3918/*
3919 * The user of this function is...
3920 * RES_LIMIT.
3921 */
3922static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3923 const char *buffer)
3924{
3925 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3926 int type, name;
3927 unsigned long long val;
3928 int ret;
3929
3930 type = MEMFILE_TYPE(cft->private);
3931 name = MEMFILE_ATTR(cft->private);
3932
3933 if (!do_swap_account && type == _MEMSWAP)
3934 return -EOPNOTSUPP;
3935
3936 switch (name) {
3937 case RES_LIMIT:
3938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3939 ret = -EINVAL;
3940 break;
3941 }
3942 /* This function does all necessary parse...reuse it */
3943 ret = res_counter_memparse_write_strategy(buffer, &val);
3944 if (ret)
3945 break;
3946 if (type == _MEM)
3947 ret = mem_cgroup_resize_limit(memcg, val);
3948 else
3949 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3950 break;
3951 case RES_SOFT_LIMIT:
3952 ret = res_counter_memparse_write_strategy(buffer, &val);
3953 if (ret)
3954 break;
3955 /*
3956 * For memsw, soft limits are hard to implement in terms
3957 * of semantics, for now, we support soft limits for
3958 * control without swap
3959 */
3960 if (type == _MEM)
3961 ret = res_counter_set_soft_limit(&memcg->res, val);
3962 else
3963 ret = -EINVAL;
3964 break;
3965 default:
3966 ret = -EINVAL; /* should be BUG() ? */
3967 break;
3968 }
3969 return ret;
3970}
3971
3972static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3973 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3974{
3975 struct cgroup *cgroup;
3976 unsigned long long min_limit, min_memsw_limit, tmp;
3977
3978 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3979 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3980 cgroup = memcg->css.cgroup;
3981 if (!memcg->use_hierarchy)
3982 goto out;
3983
3984 while (cgroup->parent) {
3985 cgroup = cgroup->parent;
3986 memcg = mem_cgroup_from_cont(cgroup);
3987 if (!memcg->use_hierarchy)
3988 break;
3989 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3990 min_limit = min(min_limit, tmp);
3991 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3992 min_memsw_limit = min(min_memsw_limit, tmp);
3993 }
3994out:
3995 *mem_limit = min_limit;
3996 *memsw_limit = min_memsw_limit;
3997}
3998
3999static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4000{
4001 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4002 int type, name;
4003
4004 type = MEMFILE_TYPE(event);
4005 name = MEMFILE_ATTR(event);
4006
4007 if (!do_swap_account && type == _MEMSWAP)
4008 return -EOPNOTSUPP;
4009
4010 switch (name) {
4011 case RES_MAX_USAGE:
4012 if (type == _MEM)
4013 res_counter_reset_max(&memcg->res);
4014 else
4015 res_counter_reset_max(&memcg->memsw);
4016 break;
4017 case RES_FAILCNT:
4018 if (type == _MEM)
4019 res_counter_reset_failcnt(&memcg->res);
4020 else
4021 res_counter_reset_failcnt(&memcg->memsw);
4022 break;
4023 }
4024
4025 return 0;
4026}
4027
4028static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4029 struct cftype *cft)
4030{
4031 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4032}
4033
4034#ifdef CONFIG_MMU
4035static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4036 struct cftype *cft, u64 val)
4037{
4038 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4039
4040 if (val >= (1 << NR_MOVE_TYPE))
4041 return -EINVAL;
4042 /*
4043 * We check this value several times in both in can_attach() and
4044 * attach(), so we need cgroup lock to prevent this value from being
4045 * inconsistent.
4046 */
4047 cgroup_lock();
4048 memcg->move_charge_at_immigrate = val;
4049 cgroup_unlock();
4050
4051 return 0;
4052}
4053#else
4054static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4055 struct cftype *cft, u64 val)
4056{
4057 return -ENOSYS;
4058}
4059#endif
4060
4061
4062/* For read statistics */
4063enum {
4064 MCS_CACHE,
4065 MCS_RSS,
4066 MCS_FILE_MAPPED,
4067 MCS_PGPGIN,
4068 MCS_PGPGOUT,
4069 MCS_SWAP,
4070 MCS_PGFAULT,
4071 MCS_PGMAJFAULT,
4072 MCS_INACTIVE_ANON,
4073 MCS_ACTIVE_ANON,
4074 MCS_INACTIVE_FILE,
4075 MCS_ACTIVE_FILE,
4076 MCS_UNEVICTABLE,
4077 NR_MCS_STAT,
4078};
4079
4080struct mcs_total_stat {
4081 s64 stat[NR_MCS_STAT];
4082};
4083
4084struct {
4085 char *local_name;
4086 char *total_name;
4087} memcg_stat_strings[NR_MCS_STAT] = {
4088 {"cache", "total_cache"},
4089 {"rss", "total_rss"},
4090 {"mapped_file", "total_mapped_file"},
4091 {"pgpgin", "total_pgpgin"},
4092 {"pgpgout", "total_pgpgout"},
4093 {"swap", "total_swap"},
4094 {"pgfault", "total_pgfault"},
4095 {"pgmajfault", "total_pgmajfault"},
4096 {"inactive_anon", "total_inactive_anon"},
4097 {"active_anon", "total_active_anon"},
4098 {"inactive_file", "total_inactive_file"},
4099 {"active_file", "total_active_file"},
4100 {"unevictable", "total_unevictable"}
4101};
4102
4103
4104static void
4105mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4106{
4107 s64 val;
4108
4109 /* per cpu stat */
4110 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4111 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4112 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4113 s->stat[MCS_RSS] += val * PAGE_SIZE;
4114 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4115 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4116 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4117 s->stat[MCS_PGPGIN] += val;
4118 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4119 s->stat[MCS_PGPGOUT] += val;
4120 if (do_swap_account) {
4121 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4122 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4123 }
4124 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4125 s->stat[MCS_PGFAULT] += val;
4126 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4127 s->stat[MCS_PGMAJFAULT] += val;
4128
4129 /* per zone stat */
4130 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4131 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4132 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4133 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4134 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4135 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4136 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4137 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4138 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4139 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4140}
4141
4142static void
4143mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4144{
4145 struct mem_cgroup *iter;
4146
4147 for_each_mem_cgroup_tree(iter, memcg)
4148 mem_cgroup_get_local_stat(iter, s);
4149}
4150
4151#ifdef CONFIG_NUMA
4152static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4153{
4154 int nid;
4155 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4156 unsigned long node_nr;
4157 struct cgroup *cont = m->private;
4158 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4159
4160 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4161 seq_printf(m, "total=%lu", total_nr);
4162 for_each_node_state(nid, N_HIGH_MEMORY) {
4163 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4164 seq_printf(m, " N%d=%lu", nid, node_nr);
4165 }
4166 seq_putc(m, '\n');
4167
4168 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4169 seq_printf(m, "file=%lu", file_nr);
4170 for_each_node_state(nid, N_HIGH_MEMORY) {
4171 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4172 LRU_ALL_FILE);
4173 seq_printf(m, " N%d=%lu", nid, node_nr);
4174 }
4175 seq_putc(m, '\n');
4176
4177 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4178 seq_printf(m, "anon=%lu", anon_nr);
4179 for_each_node_state(nid, N_HIGH_MEMORY) {
4180 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4181 LRU_ALL_ANON);
4182 seq_printf(m, " N%d=%lu", nid, node_nr);
4183 }
4184 seq_putc(m, '\n');
4185
4186 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4187 seq_printf(m, "unevictable=%lu", unevictable_nr);
4188 for_each_node_state(nid, N_HIGH_MEMORY) {
4189 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4190 BIT(LRU_UNEVICTABLE));
4191 seq_printf(m, " N%d=%lu", nid, node_nr);
4192 }
4193 seq_putc(m, '\n');
4194 return 0;
4195}
4196#endif /* CONFIG_NUMA */
4197
4198static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4199 struct cgroup_map_cb *cb)
4200{
4201 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4202 struct mcs_total_stat mystat;
4203 int i;
4204
4205 memset(&mystat, 0, sizeof(mystat));
4206 mem_cgroup_get_local_stat(memcg, &mystat);
4207
4208
4209 for (i = 0; i < NR_MCS_STAT; i++) {
4210 if (i == MCS_SWAP && !do_swap_account)
4211 continue;
4212 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4213 }
4214
4215 /* Hierarchical information */
4216 {
4217 unsigned long long limit, memsw_limit;
4218 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4219 cb->fill(cb, "hierarchical_memory_limit", limit);
4220 if (do_swap_account)
4221 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4222 }
4223
4224 memset(&mystat, 0, sizeof(mystat));
4225 mem_cgroup_get_total_stat(memcg, &mystat);
4226 for (i = 0; i < NR_MCS_STAT; i++) {
4227 if (i == MCS_SWAP && !do_swap_account)
4228 continue;
4229 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4230 }
4231
4232#ifdef CONFIG_DEBUG_VM
4233 {
4234 int nid, zid;
4235 struct mem_cgroup_per_zone *mz;
4236 unsigned long recent_rotated[2] = {0, 0};
4237 unsigned long recent_scanned[2] = {0, 0};
4238
4239 for_each_online_node(nid)
4240 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4242
4243 recent_rotated[0] +=
4244 mz->reclaim_stat.recent_rotated[0];
4245 recent_rotated[1] +=
4246 mz->reclaim_stat.recent_rotated[1];
4247 recent_scanned[0] +=
4248 mz->reclaim_stat.recent_scanned[0];
4249 recent_scanned[1] +=
4250 mz->reclaim_stat.recent_scanned[1];
4251 }
4252 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4253 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4254 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4255 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4256 }
4257#endif
4258
4259 return 0;
4260}
4261
4262static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4263{
4264 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4265
4266 return mem_cgroup_swappiness(memcg);
4267}
4268
4269static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4270 u64 val)
4271{
4272 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4273 struct mem_cgroup *parent;
4274
4275 if (val > 100)
4276 return -EINVAL;
4277
4278 if (cgrp->parent == NULL)
4279 return -EINVAL;
4280
4281 parent = mem_cgroup_from_cont(cgrp->parent);
4282
4283 cgroup_lock();
4284
4285 /* If under hierarchy, only empty-root can set this value */
4286 if ((parent->use_hierarchy) ||
4287 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4288 cgroup_unlock();
4289 return -EINVAL;
4290 }
4291
4292 memcg->swappiness = val;
4293
4294 cgroup_unlock();
4295
4296 return 0;
4297}
4298
4299static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4300{
4301 struct mem_cgroup_threshold_ary *t;
4302 u64 usage;
4303 int i;
4304
4305 rcu_read_lock();
4306 if (!swap)
4307 t = rcu_dereference(memcg->thresholds.primary);
4308 else
4309 t = rcu_dereference(memcg->memsw_thresholds.primary);
4310
4311 if (!t)
4312 goto unlock;
4313
4314 usage = mem_cgroup_usage(memcg, swap);
4315
4316 /*
4317 * current_threshold points to threshold just below usage.
4318 * If it's not true, a threshold was crossed after last
4319 * call of __mem_cgroup_threshold().
4320 */
4321 i = t->current_threshold;
4322
4323 /*
4324 * Iterate backward over array of thresholds starting from
4325 * current_threshold and check if a threshold is crossed.
4326 * If none of thresholds below usage is crossed, we read
4327 * only one element of the array here.
4328 */
4329 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4330 eventfd_signal(t->entries[i].eventfd, 1);
4331
4332 /* i = current_threshold + 1 */
4333 i++;
4334
4335 /*
4336 * Iterate forward over array of thresholds starting from
4337 * current_threshold+1 and check if a threshold is crossed.
4338 * If none of thresholds above usage is crossed, we read
4339 * only one element of the array here.
4340 */
4341 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4342 eventfd_signal(t->entries[i].eventfd, 1);
4343
4344 /* Update current_threshold */
4345 t->current_threshold = i - 1;
4346unlock:
4347 rcu_read_unlock();
4348}
4349
4350static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4351{
4352 while (memcg) {
4353 __mem_cgroup_threshold(memcg, false);
4354 if (do_swap_account)
4355 __mem_cgroup_threshold(memcg, true);
4356
4357 memcg = parent_mem_cgroup(memcg);
4358 }
4359}
4360
4361static int compare_thresholds(const void *a, const void *b)
4362{
4363 const struct mem_cgroup_threshold *_a = a;
4364 const struct mem_cgroup_threshold *_b = b;
4365
4366 return _a->threshold - _b->threshold;
4367}
4368
4369static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4370{
4371 struct mem_cgroup_eventfd_list *ev;
4372
4373 list_for_each_entry(ev, &memcg->oom_notify, list)
4374 eventfd_signal(ev->eventfd, 1);
4375 return 0;
4376}
4377
4378static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4379{
4380 struct mem_cgroup *iter;
4381
4382 for_each_mem_cgroup_tree(iter, memcg)
4383 mem_cgroup_oom_notify_cb(iter);
4384}
4385
4386static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4387 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4388{
4389 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4390 struct mem_cgroup_thresholds *thresholds;
4391 struct mem_cgroup_threshold_ary *new;
4392 int type = MEMFILE_TYPE(cft->private);
4393 u64 threshold, usage;
4394 int i, size, ret;
4395
4396 ret = res_counter_memparse_write_strategy(args, &threshold);
4397 if (ret)
4398 return ret;
4399
4400 mutex_lock(&memcg->thresholds_lock);
4401
4402 if (type == _MEM)
4403 thresholds = &memcg->thresholds;
4404 else if (type == _MEMSWAP)
4405 thresholds = &memcg->memsw_thresholds;
4406 else
4407 BUG();
4408
4409 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4410
4411 /* Check if a threshold crossed before adding a new one */
4412 if (thresholds->primary)
4413 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4414
4415 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4416
4417 /* Allocate memory for new array of thresholds */
4418 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4419 GFP_KERNEL);
4420 if (!new) {
4421 ret = -ENOMEM;
4422 goto unlock;
4423 }
4424 new->size = size;
4425
4426 /* Copy thresholds (if any) to new array */
4427 if (thresholds->primary) {
4428 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4429 sizeof(struct mem_cgroup_threshold));
4430 }
4431
4432 /* Add new threshold */
4433 new->entries[size - 1].eventfd = eventfd;
4434 new->entries[size - 1].threshold = threshold;
4435
4436 /* Sort thresholds. Registering of new threshold isn't time-critical */
4437 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4438 compare_thresholds, NULL);
4439
4440 /* Find current threshold */
4441 new->current_threshold = -1;
4442 for (i = 0; i < size; i++) {
4443 if (new->entries[i].threshold < usage) {
4444 /*
4445 * new->current_threshold will not be used until
4446 * rcu_assign_pointer(), so it's safe to increment
4447 * it here.
4448 */
4449 ++new->current_threshold;
4450 }
4451 }
4452
4453 /* Free old spare buffer and save old primary buffer as spare */
4454 kfree(thresholds->spare);
4455 thresholds->spare = thresholds->primary;
4456
4457 rcu_assign_pointer(thresholds->primary, new);
4458
4459 /* To be sure that nobody uses thresholds */
4460 synchronize_rcu();
4461
4462unlock:
4463 mutex_unlock(&memcg->thresholds_lock);
4464
4465 return ret;
4466}
4467
4468static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4469 struct cftype *cft, struct eventfd_ctx *eventfd)
4470{
4471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 struct mem_cgroup_thresholds *thresholds;
4473 struct mem_cgroup_threshold_ary *new;
4474 int type = MEMFILE_TYPE(cft->private);
4475 u64 usage;
4476 int i, j, size;
4477
4478 mutex_lock(&memcg->thresholds_lock);
4479 if (type == _MEM)
4480 thresholds = &memcg->thresholds;
4481 else if (type == _MEMSWAP)
4482 thresholds = &memcg->memsw_thresholds;
4483 else
4484 BUG();
4485
4486 if (!thresholds->primary)
4487 goto unlock;
4488
4489 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4490
4491 /* Check if a threshold crossed before removing */
4492 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4493
4494 /* Calculate new number of threshold */
4495 size = 0;
4496 for (i = 0; i < thresholds->primary->size; i++) {
4497 if (thresholds->primary->entries[i].eventfd != eventfd)
4498 size++;
4499 }
4500
4501 new = thresholds->spare;
4502
4503 /* Set thresholds array to NULL if we don't have thresholds */
4504 if (!size) {
4505 kfree(new);
4506 new = NULL;
4507 goto swap_buffers;
4508 }
4509
4510 new->size = size;
4511
4512 /* Copy thresholds and find current threshold */
4513 new->current_threshold = -1;
4514 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4515 if (thresholds->primary->entries[i].eventfd == eventfd)
4516 continue;
4517
4518 new->entries[j] = thresholds->primary->entries[i];
4519 if (new->entries[j].threshold < usage) {
4520 /*
4521 * new->current_threshold will not be used
4522 * until rcu_assign_pointer(), so it's safe to increment
4523 * it here.
4524 */
4525 ++new->current_threshold;
4526 }
4527 j++;
4528 }
4529
4530swap_buffers:
4531 /* Swap primary and spare array */
4532 thresholds->spare = thresholds->primary;
4533 /* If all events are unregistered, free the spare array */
4534 if (!new) {
4535 kfree(thresholds->spare);
4536 thresholds->spare = NULL;
4537 }
4538
4539 rcu_assign_pointer(thresholds->primary, new);
4540
4541 /* To be sure that nobody uses thresholds */
4542 synchronize_rcu();
4543unlock:
4544 mutex_unlock(&memcg->thresholds_lock);
4545}
4546
4547static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4548 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4549{
4550 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4551 struct mem_cgroup_eventfd_list *event;
4552 int type = MEMFILE_TYPE(cft->private);
4553
4554 BUG_ON(type != _OOM_TYPE);
4555 event = kmalloc(sizeof(*event), GFP_KERNEL);
4556 if (!event)
4557 return -ENOMEM;
4558
4559 spin_lock(&memcg_oom_lock);
4560
4561 event->eventfd = eventfd;
4562 list_add(&event->list, &memcg->oom_notify);
4563
4564 /* already in OOM ? */
4565 if (atomic_read(&memcg->under_oom))
4566 eventfd_signal(eventfd, 1);
4567 spin_unlock(&memcg_oom_lock);
4568
4569 return 0;
4570}
4571
4572static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4573 struct cftype *cft, struct eventfd_ctx *eventfd)
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576 struct mem_cgroup_eventfd_list *ev, *tmp;
4577 int type = MEMFILE_TYPE(cft->private);
4578
4579 BUG_ON(type != _OOM_TYPE);
4580
4581 spin_lock(&memcg_oom_lock);
4582
4583 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4584 if (ev->eventfd == eventfd) {
4585 list_del(&ev->list);
4586 kfree(ev);
4587 }
4588 }
4589
4590 spin_unlock(&memcg_oom_lock);
4591}
4592
4593static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4594 struct cftype *cft, struct cgroup_map_cb *cb)
4595{
4596 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4597
4598 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4599
4600 if (atomic_read(&memcg->under_oom))
4601 cb->fill(cb, "under_oom", 1);
4602 else
4603 cb->fill(cb, "under_oom", 0);
4604 return 0;
4605}
4606
4607static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4608 struct cftype *cft, u64 val)
4609{
4610 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4611 struct mem_cgroup *parent;
4612
4613 /* cannot set to root cgroup and only 0 and 1 are allowed */
4614 if (!cgrp->parent || !((val == 0) || (val == 1)))
4615 return -EINVAL;
4616
4617 parent = mem_cgroup_from_cont(cgrp->parent);
4618
4619 cgroup_lock();
4620 /* oom-kill-disable is a flag for subhierarchy. */
4621 if ((parent->use_hierarchy) ||
4622 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4623 cgroup_unlock();
4624 return -EINVAL;
4625 }
4626 memcg->oom_kill_disable = val;
4627 if (!val)
4628 memcg_oom_recover(memcg);
4629 cgroup_unlock();
4630 return 0;
4631}
4632
4633#ifdef CONFIG_NUMA
4634static const struct file_operations mem_control_numa_stat_file_operations = {
4635 .read = seq_read,
4636 .llseek = seq_lseek,
4637 .release = single_release,
4638};
4639
4640static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4641{
4642 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4643
4644 file->f_op = &mem_control_numa_stat_file_operations;
4645 return single_open(file, mem_control_numa_stat_show, cont);
4646}
4647#endif /* CONFIG_NUMA */
4648
4649#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4650static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4651{
4652 return mem_cgroup_sockets_init(memcg, ss);
4653};
4654
4655static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4656{
4657 mem_cgroup_sockets_destroy(memcg);
4658}
4659#else
4660static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4661{
4662 return 0;
4663}
4664
4665static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4666{
4667}
4668#endif
4669
4670static struct cftype mem_cgroup_files[] = {
4671 {
4672 .name = "usage_in_bytes",
4673 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4674 .read = mem_cgroup_read,
4675 .register_event = mem_cgroup_usage_register_event,
4676 .unregister_event = mem_cgroup_usage_unregister_event,
4677 },
4678 {
4679 .name = "max_usage_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4681 .trigger = mem_cgroup_reset,
4682 .read = mem_cgroup_read,
4683 },
4684 {
4685 .name = "limit_in_bytes",
4686 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4687 .write_string = mem_cgroup_write,
4688 .read = mem_cgroup_read,
4689 },
4690 {
4691 .name = "soft_limit_in_bytes",
4692 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4693 .write_string = mem_cgroup_write,
4694 .read = mem_cgroup_read,
4695 },
4696 {
4697 .name = "failcnt",
4698 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4699 .trigger = mem_cgroup_reset,
4700 .read = mem_cgroup_read,
4701 },
4702 {
4703 .name = "stat",
4704 .read_map = mem_control_stat_show,
4705 },
4706 {
4707 .name = "force_empty",
4708 .trigger = mem_cgroup_force_empty_write,
4709 },
4710 {
4711 .name = "use_hierarchy",
4712 .write_u64 = mem_cgroup_hierarchy_write,
4713 .read_u64 = mem_cgroup_hierarchy_read,
4714 },
4715 {
4716 .name = "swappiness",
4717 .read_u64 = mem_cgroup_swappiness_read,
4718 .write_u64 = mem_cgroup_swappiness_write,
4719 },
4720 {
4721 .name = "move_charge_at_immigrate",
4722 .read_u64 = mem_cgroup_move_charge_read,
4723 .write_u64 = mem_cgroup_move_charge_write,
4724 },
4725 {
4726 .name = "oom_control",
4727 .read_map = mem_cgroup_oom_control_read,
4728 .write_u64 = mem_cgroup_oom_control_write,
4729 .register_event = mem_cgroup_oom_register_event,
4730 .unregister_event = mem_cgroup_oom_unregister_event,
4731 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4732 },
4733#ifdef CONFIG_NUMA
4734 {
4735 .name = "numa_stat",
4736 .open = mem_control_numa_stat_open,
4737 .mode = S_IRUGO,
4738 },
4739#endif
4740#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4741 {
4742 .name = "memsw.usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4744 .read = mem_cgroup_read,
4745 .register_event = mem_cgroup_usage_register_event,
4746 .unregister_event = mem_cgroup_usage_unregister_event,
4747 },
4748 {
4749 .name = "memsw.max_usage_in_bytes",
4750 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4751 .trigger = mem_cgroup_reset,
4752 .read = mem_cgroup_read,
4753 },
4754 {
4755 .name = "memsw.limit_in_bytes",
4756 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4757 .write_string = mem_cgroup_write,
4758 .read = mem_cgroup_read,
4759 },
4760 {
4761 .name = "memsw.failcnt",
4762 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4763 .trigger = mem_cgroup_reset,
4764 .read = mem_cgroup_read,
4765 },
4766#endif
4767 { }, /* terminate */
4768};
4769
4770static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4771{
4772 struct mem_cgroup_per_node *pn;
4773 struct mem_cgroup_per_zone *mz;
4774 enum lru_list lru;
4775 int zone, tmp = node;
4776 /*
4777 * This routine is called against possible nodes.
4778 * But it's BUG to call kmalloc() against offline node.
4779 *
4780 * TODO: this routine can waste much memory for nodes which will
4781 * never be onlined. It's better to use memory hotplug callback
4782 * function.
4783 */
4784 if (!node_state(node, N_NORMAL_MEMORY))
4785 tmp = -1;
4786 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4787 if (!pn)
4788 return 1;
4789
4790 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4791 mz = &pn->zoneinfo[zone];
4792 for_each_lru(lru)
4793 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4794 mz->usage_in_excess = 0;
4795 mz->on_tree = false;
4796 mz->memcg = memcg;
4797 }
4798 memcg->info.nodeinfo[node] = pn;
4799 return 0;
4800}
4801
4802static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4803{
4804 kfree(memcg->info.nodeinfo[node]);
4805}
4806
4807static struct mem_cgroup *mem_cgroup_alloc(void)
4808{
4809 struct mem_cgroup *memcg;
4810 int size = sizeof(struct mem_cgroup);
4811
4812 /* Can be very big if MAX_NUMNODES is very big */
4813 if (size < PAGE_SIZE)
4814 memcg = kzalloc(size, GFP_KERNEL);
4815 else
4816 memcg = vzalloc(size);
4817
4818 if (!memcg)
4819 return NULL;
4820
4821 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4822 if (!memcg->stat)
4823 goto out_free;
4824 spin_lock_init(&memcg->pcp_counter_lock);
4825 return memcg;
4826
4827out_free:
4828 if (size < PAGE_SIZE)
4829 kfree(memcg);
4830 else
4831 vfree(memcg);
4832 return NULL;
4833}
4834
4835/*
4836 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4837 * but in process context. The work_freeing structure is overlaid
4838 * on the rcu_freeing structure, which itself is overlaid on memsw.
4839 */
4840static void vfree_work(struct work_struct *work)
4841{
4842 struct mem_cgroup *memcg;
4843
4844 memcg = container_of(work, struct mem_cgroup, work_freeing);
4845 vfree(memcg);
4846}
4847static void vfree_rcu(struct rcu_head *rcu_head)
4848{
4849 struct mem_cgroup *memcg;
4850
4851 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4852 INIT_WORK(&memcg->work_freeing, vfree_work);
4853 schedule_work(&memcg->work_freeing);
4854}
4855
4856/*
4857 * At destroying mem_cgroup, references from swap_cgroup can remain.
4858 * (scanning all at force_empty is too costly...)
4859 *
4860 * Instead of clearing all references at force_empty, we remember
4861 * the number of reference from swap_cgroup and free mem_cgroup when
4862 * it goes down to 0.
4863 *
4864 * Removal of cgroup itself succeeds regardless of refs from swap.
4865 */
4866
4867static void __mem_cgroup_free(struct mem_cgroup *memcg)
4868{
4869 int node;
4870
4871 mem_cgroup_remove_from_trees(memcg);
4872 free_css_id(&mem_cgroup_subsys, &memcg->css);
4873
4874 for_each_node(node)
4875 free_mem_cgroup_per_zone_info(memcg, node);
4876
4877 free_percpu(memcg->stat);
4878 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4879 kfree_rcu(memcg, rcu_freeing);
4880 else
4881 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4882}
4883
4884static void mem_cgroup_get(struct mem_cgroup *memcg)
4885{
4886 atomic_inc(&memcg->refcnt);
4887}
4888
4889static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4890{
4891 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4892 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4893 __mem_cgroup_free(memcg);
4894 if (parent)
4895 mem_cgroup_put(parent);
4896 }
4897}
4898
4899static void mem_cgroup_put(struct mem_cgroup *memcg)
4900{
4901 __mem_cgroup_put(memcg, 1);
4902}
4903
4904/*
4905 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4906 */
4907struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4908{
4909 if (!memcg->res.parent)
4910 return NULL;
4911 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4912}
4913EXPORT_SYMBOL(parent_mem_cgroup);
4914
4915#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4916static void __init enable_swap_cgroup(void)
4917{
4918 if (!mem_cgroup_disabled() && really_do_swap_account)
4919 do_swap_account = 1;
4920}
4921#else
4922static void __init enable_swap_cgroup(void)
4923{
4924}
4925#endif
4926
4927static int mem_cgroup_soft_limit_tree_init(void)
4928{
4929 struct mem_cgroup_tree_per_node *rtpn;
4930 struct mem_cgroup_tree_per_zone *rtpz;
4931 int tmp, node, zone;
4932
4933 for_each_node(node) {
4934 tmp = node;
4935 if (!node_state(node, N_NORMAL_MEMORY))
4936 tmp = -1;
4937 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4938 if (!rtpn)
4939 goto err_cleanup;
4940
4941 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4942
4943 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4944 rtpz = &rtpn->rb_tree_per_zone[zone];
4945 rtpz->rb_root = RB_ROOT;
4946 spin_lock_init(&rtpz->lock);
4947 }
4948 }
4949 return 0;
4950
4951err_cleanup:
4952 for_each_node(node) {
4953 if (!soft_limit_tree.rb_tree_per_node[node])
4954 break;
4955 kfree(soft_limit_tree.rb_tree_per_node[node]);
4956 soft_limit_tree.rb_tree_per_node[node] = NULL;
4957 }
4958 return 1;
4959
4960}
4961
4962static struct cgroup_subsys_state * __ref
4963mem_cgroup_create(struct cgroup *cont)
4964{
4965 struct mem_cgroup *memcg, *parent;
4966 long error = -ENOMEM;
4967 int node;
4968
4969 memcg = mem_cgroup_alloc();
4970 if (!memcg)
4971 return ERR_PTR(error);
4972
4973 for_each_node(node)
4974 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4975 goto free_out;
4976
4977 /* root ? */
4978 if (cont->parent == NULL) {
4979 int cpu;
4980 enable_swap_cgroup();
4981 parent = NULL;
4982 if (mem_cgroup_soft_limit_tree_init())
4983 goto free_out;
4984 root_mem_cgroup = memcg;
4985 for_each_possible_cpu(cpu) {
4986 struct memcg_stock_pcp *stock =
4987 &per_cpu(memcg_stock, cpu);
4988 INIT_WORK(&stock->work, drain_local_stock);
4989 }
4990 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4991 } else {
4992 parent = mem_cgroup_from_cont(cont->parent);
4993 memcg->use_hierarchy = parent->use_hierarchy;
4994 memcg->oom_kill_disable = parent->oom_kill_disable;
4995 }
4996
4997 if (parent && parent->use_hierarchy) {
4998 res_counter_init(&memcg->res, &parent->res);
4999 res_counter_init(&memcg->memsw, &parent->memsw);
5000 /*
5001 * We increment refcnt of the parent to ensure that we can
5002 * safely access it on res_counter_charge/uncharge.
5003 * This refcnt will be decremented when freeing this
5004 * mem_cgroup(see mem_cgroup_put).
5005 */
5006 mem_cgroup_get(parent);
5007 } else {
5008 res_counter_init(&memcg->res, NULL);
5009 res_counter_init(&memcg->memsw, NULL);
5010 }
5011 memcg->last_scanned_node = MAX_NUMNODES;
5012 INIT_LIST_HEAD(&memcg->oom_notify);
5013
5014 if (parent)
5015 memcg->swappiness = mem_cgroup_swappiness(parent);
5016 atomic_set(&memcg->refcnt, 1);
5017 memcg->move_charge_at_immigrate = 0;
5018 mutex_init(&memcg->thresholds_lock);
5019 spin_lock_init(&memcg->move_lock);
5020
5021 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5022 if (error) {
5023 /*
5024 * We call put now because our (and parent's) refcnts
5025 * are already in place. mem_cgroup_put() will internally
5026 * call __mem_cgroup_free, so return directly
5027 */
5028 mem_cgroup_put(memcg);
5029 return ERR_PTR(error);
5030 }
5031 return &memcg->css;
5032free_out:
5033 __mem_cgroup_free(memcg);
5034 return ERR_PTR(error);
5035}
5036
5037static int mem_cgroup_pre_destroy(struct cgroup *cont)
5038{
5039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5040
5041 return mem_cgroup_force_empty(memcg, false);
5042}
5043
5044static void mem_cgroup_destroy(struct cgroup *cont)
5045{
5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047
5048 kmem_cgroup_destroy(memcg);
5049
5050 mem_cgroup_put(memcg);
5051}
5052
5053#ifdef CONFIG_MMU
5054/* Handlers for move charge at task migration. */
5055#define PRECHARGE_COUNT_AT_ONCE 256
5056static int mem_cgroup_do_precharge(unsigned long count)
5057{
5058 int ret = 0;
5059 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5060 struct mem_cgroup *memcg = mc.to;
5061
5062 if (mem_cgroup_is_root(memcg)) {
5063 mc.precharge += count;
5064 /* we don't need css_get for root */
5065 return ret;
5066 }
5067 /* try to charge at once */
5068 if (count > 1) {
5069 struct res_counter *dummy;
5070 /*
5071 * "memcg" cannot be under rmdir() because we've already checked
5072 * by cgroup_lock_live_cgroup() that it is not removed and we
5073 * are still under the same cgroup_mutex. So we can postpone
5074 * css_get().
5075 */
5076 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5077 goto one_by_one;
5078 if (do_swap_account && res_counter_charge(&memcg->memsw,
5079 PAGE_SIZE * count, &dummy)) {
5080 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5081 goto one_by_one;
5082 }
5083 mc.precharge += count;
5084 return ret;
5085 }
5086one_by_one:
5087 /* fall back to one by one charge */
5088 while (count--) {
5089 if (signal_pending(current)) {
5090 ret = -EINTR;
5091 break;
5092 }
5093 if (!batch_count--) {
5094 batch_count = PRECHARGE_COUNT_AT_ONCE;
5095 cond_resched();
5096 }
5097 ret = __mem_cgroup_try_charge(NULL,
5098 GFP_KERNEL, 1, &memcg, false);
5099 if (ret)
5100 /* mem_cgroup_clear_mc() will do uncharge later */
5101 return ret;
5102 mc.precharge++;
5103 }
5104 return ret;
5105}
5106
5107/**
5108 * get_mctgt_type - get target type of moving charge
5109 * @vma: the vma the pte to be checked belongs
5110 * @addr: the address corresponding to the pte to be checked
5111 * @ptent: the pte to be checked
5112 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5113 *
5114 * Returns
5115 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5116 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5117 * move charge. if @target is not NULL, the page is stored in target->page
5118 * with extra refcnt got(Callers should handle it).
5119 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5120 * target for charge migration. if @target is not NULL, the entry is stored
5121 * in target->ent.
5122 *
5123 * Called with pte lock held.
5124 */
5125union mc_target {
5126 struct page *page;
5127 swp_entry_t ent;
5128};
5129
5130enum mc_target_type {
5131 MC_TARGET_NONE = 0,
5132 MC_TARGET_PAGE,
5133 MC_TARGET_SWAP,
5134};
5135
5136static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5137 unsigned long addr, pte_t ptent)
5138{
5139 struct page *page = vm_normal_page(vma, addr, ptent);
5140
5141 if (!page || !page_mapped(page))
5142 return NULL;
5143 if (PageAnon(page)) {
5144 /* we don't move shared anon */
5145 if (!move_anon())
5146 return NULL;
5147 } else if (!move_file())
5148 /* we ignore mapcount for file pages */
5149 return NULL;
5150 if (!get_page_unless_zero(page))
5151 return NULL;
5152
5153 return page;
5154}
5155
5156#ifdef CONFIG_SWAP
5157static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5158 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5159{
5160 struct page *page = NULL;
5161 swp_entry_t ent = pte_to_swp_entry(ptent);
5162
5163 if (!move_anon() || non_swap_entry(ent))
5164 return NULL;
5165 /*
5166 * Because lookup_swap_cache() updates some statistics counter,
5167 * we call find_get_page() with swapper_space directly.
5168 */
5169 page = find_get_page(&swapper_space, ent.val);
5170 if (do_swap_account)
5171 entry->val = ent.val;
5172
5173 return page;
5174}
5175#else
5176static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178{
5179 return NULL;
5180}
5181#endif
5182
5183static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5184 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185{
5186 struct page *page = NULL;
5187 struct inode *inode;
5188 struct address_space *mapping;
5189 pgoff_t pgoff;
5190
5191 if (!vma->vm_file) /* anonymous vma */
5192 return NULL;
5193 if (!move_file())
5194 return NULL;
5195
5196 inode = vma->vm_file->f_path.dentry->d_inode;
5197 mapping = vma->vm_file->f_mapping;
5198 if (pte_none(ptent))
5199 pgoff = linear_page_index(vma, addr);
5200 else /* pte_file(ptent) is true */
5201 pgoff = pte_to_pgoff(ptent);
5202
5203 /* page is moved even if it's not RSS of this task(page-faulted). */
5204 page = find_get_page(mapping, pgoff);
5205
5206#ifdef CONFIG_SWAP
5207 /* shmem/tmpfs may report page out on swap: account for that too. */
5208 if (radix_tree_exceptional_entry(page)) {
5209 swp_entry_t swap = radix_to_swp_entry(page);
5210 if (do_swap_account)
5211 *entry = swap;
5212 page = find_get_page(&swapper_space, swap.val);
5213 }
5214#endif
5215 return page;
5216}
5217
5218static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5219 unsigned long addr, pte_t ptent, union mc_target *target)
5220{
5221 struct page *page = NULL;
5222 struct page_cgroup *pc;
5223 enum mc_target_type ret = MC_TARGET_NONE;
5224 swp_entry_t ent = { .val = 0 };
5225
5226 if (pte_present(ptent))
5227 page = mc_handle_present_pte(vma, addr, ptent);
5228 else if (is_swap_pte(ptent))
5229 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5230 else if (pte_none(ptent) || pte_file(ptent))
5231 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5232
5233 if (!page && !ent.val)
5234 return ret;
5235 if (page) {
5236 pc = lookup_page_cgroup(page);
5237 /*
5238 * Do only loose check w/o page_cgroup lock.
5239 * mem_cgroup_move_account() checks the pc is valid or not under
5240 * the lock.
5241 */
5242 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5243 ret = MC_TARGET_PAGE;
5244 if (target)
5245 target->page = page;
5246 }
5247 if (!ret || !target)
5248 put_page(page);
5249 }
5250 /* There is a swap entry and a page doesn't exist or isn't charged */
5251 if (ent.val && !ret &&
5252 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5253 ret = MC_TARGET_SWAP;
5254 if (target)
5255 target->ent = ent;
5256 }
5257 return ret;
5258}
5259
5260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5261/*
5262 * We don't consider swapping or file mapped pages because THP does not
5263 * support them for now.
5264 * Caller should make sure that pmd_trans_huge(pmd) is true.
5265 */
5266static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5267 unsigned long addr, pmd_t pmd, union mc_target *target)
5268{
5269 struct page *page = NULL;
5270 struct page_cgroup *pc;
5271 enum mc_target_type ret = MC_TARGET_NONE;
5272
5273 page = pmd_page(pmd);
5274 VM_BUG_ON(!page || !PageHead(page));
5275 if (!move_anon())
5276 return ret;
5277 pc = lookup_page_cgroup(page);
5278 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5279 ret = MC_TARGET_PAGE;
5280 if (target) {
5281 get_page(page);
5282 target->page = page;
5283 }
5284 }
5285 return ret;
5286}
5287#else
5288static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5289 unsigned long addr, pmd_t pmd, union mc_target *target)
5290{
5291 return MC_TARGET_NONE;
5292}
5293#endif
5294
5295static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5296 unsigned long addr, unsigned long end,
5297 struct mm_walk *walk)
5298{
5299 struct vm_area_struct *vma = walk->private;
5300 pte_t *pte;
5301 spinlock_t *ptl;
5302
5303 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5304 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5305 mc.precharge += HPAGE_PMD_NR;
5306 spin_unlock(&vma->vm_mm->page_table_lock);
5307 return 0;
5308 }
5309
5310 if (pmd_trans_unstable(pmd))
5311 return 0;
5312 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5313 for (; addr != end; pte++, addr += PAGE_SIZE)
5314 if (get_mctgt_type(vma, addr, *pte, NULL))
5315 mc.precharge++; /* increment precharge temporarily */
5316 pte_unmap_unlock(pte - 1, ptl);
5317 cond_resched();
5318
5319 return 0;
5320}
5321
5322static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5323{
5324 unsigned long precharge;
5325 struct vm_area_struct *vma;
5326
5327 down_read(&mm->mmap_sem);
5328 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5329 struct mm_walk mem_cgroup_count_precharge_walk = {
5330 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5331 .mm = mm,
5332 .private = vma,
5333 };
5334 if (is_vm_hugetlb_page(vma))
5335 continue;
5336 walk_page_range(vma->vm_start, vma->vm_end,
5337 &mem_cgroup_count_precharge_walk);
5338 }
5339 up_read(&mm->mmap_sem);
5340
5341 precharge = mc.precharge;
5342 mc.precharge = 0;
5343
5344 return precharge;
5345}
5346
5347static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5348{
5349 unsigned long precharge = mem_cgroup_count_precharge(mm);
5350
5351 VM_BUG_ON(mc.moving_task);
5352 mc.moving_task = current;
5353 return mem_cgroup_do_precharge(precharge);
5354}
5355
5356/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5357static void __mem_cgroup_clear_mc(void)
5358{
5359 struct mem_cgroup *from = mc.from;
5360 struct mem_cgroup *to = mc.to;
5361
5362 /* we must uncharge all the leftover precharges from mc.to */
5363 if (mc.precharge) {
5364 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5365 mc.precharge = 0;
5366 }
5367 /*
5368 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5369 * we must uncharge here.
5370 */
5371 if (mc.moved_charge) {
5372 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5373 mc.moved_charge = 0;
5374 }
5375 /* we must fixup refcnts and charges */
5376 if (mc.moved_swap) {
5377 /* uncharge swap account from the old cgroup */
5378 if (!mem_cgroup_is_root(mc.from))
5379 res_counter_uncharge(&mc.from->memsw,
5380 PAGE_SIZE * mc.moved_swap);
5381 __mem_cgroup_put(mc.from, mc.moved_swap);
5382
5383 if (!mem_cgroup_is_root(mc.to)) {
5384 /*
5385 * we charged both to->res and to->memsw, so we should
5386 * uncharge to->res.
5387 */
5388 res_counter_uncharge(&mc.to->res,
5389 PAGE_SIZE * mc.moved_swap);
5390 }
5391 /* we've already done mem_cgroup_get(mc.to) */
5392 mc.moved_swap = 0;
5393 }
5394 memcg_oom_recover(from);
5395 memcg_oom_recover(to);
5396 wake_up_all(&mc.waitq);
5397}
5398
5399static void mem_cgroup_clear_mc(void)
5400{
5401 struct mem_cgroup *from = mc.from;
5402
5403 /*
5404 * we must clear moving_task before waking up waiters at the end of
5405 * task migration.
5406 */
5407 mc.moving_task = NULL;
5408 __mem_cgroup_clear_mc();
5409 spin_lock(&mc.lock);
5410 mc.from = NULL;
5411 mc.to = NULL;
5412 spin_unlock(&mc.lock);
5413 mem_cgroup_end_move(from);
5414}
5415
5416static int mem_cgroup_can_attach(struct cgroup *cgroup,
5417 struct cgroup_taskset *tset)
5418{
5419 struct task_struct *p = cgroup_taskset_first(tset);
5420 int ret = 0;
5421 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5422
5423 if (memcg->move_charge_at_immigrate) {
5424 struct mm_struct *mm;
5425 struct mem_cgroup *from = mem_cgroup_from_task(p);
5426
5427 VM_BUG_ON(from == memcg);
5428
5429 mm = get_task_mm(p);
5430 if (!mm)
5431 return 0;
5432 /* We move charges only when we move a owner of the mm */
5433 if (mm->owner == p) {
5434 VM_BUG_ON(mc.from);
5435 VM_BUG_ON(mc.to);
5436 VM_BUG_ON(mc.precharge);
5437 VM_BUG_ON(mc.moved_charge);
5438 VM_BUG_ON(mc.moved_swap);
5439 mem_cgroup_start_move(from);
5440 spin_lock(&mc.lock);
5441 mc.from = from;
5442 mc.to = memcg;
5443 spin_unlock(&mc.lock);
5444 /* We set mc.moving_task later */
5445
5446 ret = mem_cgroup_precharge_mc(mm);
5447 if (ret)
5448 mem_cgroup_clear_mc();
5449 }
5450 mmput(mm);
5451 }
5452 return ret;
5453}
5454
5455static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5456 struct cgroup_taskset *tset)
5457{
5458 mem_cgroup_clear_mc();
5459}
5460
5461static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5462 unsigned long addr, unsigned long end,
5463 struct mm_walk *walk)
5464{
5465 int ret = 0;
5466 struct vm_area_struct *vma = walk->private;
5467 pte_t *pte;
5468 spinlock_t *ptl;
5469 enum mc_target_type target_type;
5470 union mc_target target;
5471 struct page *page;
5472 struct page_cgroup *pc;
5473
5474 /*
5475 * We don't take compound_lock() here but no race with splitting thp
5476 * happens because:
5477 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5478 * under splitting, which means there's no concurrent thp split,
5479 * - if another thread runs into split_huge_page() just after we
5480 * entered this if-block, the thread must wait for page table lock
5481 * to be unlocked in __split_huge_page_splitting(), where the main
5482 * part of thp split is not executed yet.
5483 */
5484 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5485 if (mc.precharge < HPAGE_PMD_NR) {
5486 spin_unlock(&vma->vm_mm->page_table_lock);
5487 return 0;
5488 }
5489 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5490 if (target_type == MC_TARGET_PAGE) {
5491 page = target.page;
5492 if (!isolate_lru_page(page)) {
5493 pc = lookup_page_cgroup(page);
5494 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5495 pc, mc.from, mc.to,
5496 false)) {
5497 mc.precharge -= HPAGE_PMD_NR;
5498 mc.moved_charge += HPAGE_PMD_NR;
5499 }
5500 putback_lru_page(page);
5501 }
5502 put_page(page);
5503 }
5504 spin_unlock(&vma->vm_mm->page_table_lock);
5505 return 0;
5506 }
5507
5508 if (pmd_trans_unstable(pmd))
5509 return 0;
5510retry:
5511 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5512 for (; addr != end; addr += PAGE_SIZE) {
5513 pte_t ptent = *(pte++);
5514 swp_entry_t ent;
5515
5516 if (!mc.precharge)
5517 break;
5518
5519 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5520 case MC_TARGET_PAGE:
5521 page = target.page;
5522 if (isolate_lru_page(page))
5523 goto put;
5524 pc = lookup_page_cgroup(page);
5525 if (!mem_cgroup_move_account(page, 1, pc,
5526 mc.from, mc.to, false)) {
5527 mc.precharge--;
5528 /* we uncharge from mc.from later. */
5529 mc.moved_charge++;
5530 }
5531 putback_lru_page(page);
5532put: /* get_mctgt_type() gets the page */
5533 put_page(page);
5534 break;
5535 case MC_TARGET_SWAP:
5536 ent = target.ent;
5537 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5538 mc.precharge--;
5539 /* we fixup refcnts and charges later. */
5540 mc.moved_swap++;
5541 }
5542 break;
5543 default:
5544 break;
5545 }
5546 }
5547 pte_unmap_unlock(pte - 1, ptl);
5548 cond_resched();
5549
5550 if (addr != end) {
5551 /*
5552 * We have consumed all precharges we got in can_attach().
5553 * We try charge one by one, but don't do any additional
5554 * charges to mc.to if we have failed in charge once in attach()
5555 * phase.
5556 */
5557 ret = mem_cgroup_do_precharge(1);
5558 if (!ret)
5559 goto retry;
5560 }
5561
5562 return ret;
5563}
5564
5565static void mem_cgroup_move_charge(struct mm_struct *mm)
5566{
5567 struct vm_area_struct *vma;
5568
5569 lru_add_drain_all();
5570retry:
5571 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5572 /*
5573 * Someone who are holding the mmap_sem might be waiting in
5574 * waitq. So we cancel all extra charges, wake up all waiters,
5575 * and retry. Because we cancel precharges, we might not be able
5576 * to move enough charges, but moving charge is a best-effort
5577 * feature anyway, so it wouldn't be a big problem.
5578 */
5579 __mem_cgroup_clear_mc();
5580 cond_resched();
5581 goto retry;
5582 }
5583 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5584 int ret;
5585 struct mm_walk mem_cgroup_move_charge_walk = {
5586 .pmd_entry = mem_cgroup_move_charge_pte_range,
5587 .mm = mm,
5588 .private = vma,
5589 };
5590 if (is_vm_hugetlb_page(vma))
5591 continue;
5592 ret = walk_page_range(vma->vm_start, vma->vm_end,
5593 &mem_cgroup_move_charge_walk);
5594 if (ret)
5595 /*
5596 * means we have consumed all precharges and failed in
5597 * doing additional charge. Just abandon here.
5598 */
5599 break;
5600 }
5601 up_read(&mm->mmap_sem);
5602}
5603
5604static void mem_cgroup_move_task(struct cgroup *cont,
5605 struct cgroup_taskset *tset)
5606{
5607 struct task_struct *p = cgroup_taskset_first(tset);
5608 struct mm_struct *mm = get_task_mm(p);
5609
5610 if (mm) {
5611 if (mc.to)
5612 mem_cgroup_move_charge(mm);
5613 mmput(mm);
5614 }
5615 if (mc.to)
5616 mem_cgroup_clear_mc();
5617}
5618#else /* !CONFIG_MMU */
5619static int mem_cgroup_can_attach(struct cgroup *cgroup,
5620 struct cgroup_taskset *tset)
5621{
5622 return 0;
5623}
5624static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5625 struct cgroup_taskset *tset)
5626{
5627}
5628static void mem_cgroup_move_task(struct cgroup *cont,
5629 struct cgroup_taskset *tset)
5630{
5631}
5632#endif
5633
5634struct cgroup_subsys mem_cgroup_subsys = {
5635 .name = "memory",
5636 .subsys_id = mem_cgroup_subsys_id,
5637 .create = mem_cgroup_create,
5638 .pre_destroy = mem_cgroup_pre_destroy,
5639 .destroy = mem_cgroup_destroy,
5640 .can_attach = mem_cgroup_can_attach,
5641 .cancel_attach = mem_cgroup_cancel_attach,
5642 .attach = mem_cgroup_move_task,
5643 .base_cftypes = mem_cgroup_files,
5644 .early_init = 0,
5645 .use_id = 1,
5646 .__DEPRECATED_clear_css_refs = true,
5647};
5648
5649#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5650static int __init enable_swap_account(char *s)
5651{
5652 /* consider enabled if no parameter or 1 is given */
5653 if (!strcmp(s, "1"))
5654 really_do_swap_account = 1;
5655 else if (!strcmp(s, "0"))
5656 really_do_swap_account = 0;
5657 return 1;
5658}
5659__setup("swapaccount=", enable_swap_account);
5660
5661#endif