]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-or-later | |
2 | /* memcontrol.c - Memory Controller | |
3 | * | |
4 | * Copyright IBM Corporation, 2007 | |
5 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
6 | * | |
7 | * Copyright 2007 OpenVZ SWsoft Inc | |
8 | * Author: Pavel Emelianov <xemul@openvz.org> | |
9 | * | |
10 | * Memory thresholds | |
11 | * Copyright (C) 2009 Nokia Corporation | |
12 | * Author: Kirill A. Shutemov | |
13 | * | |
14 | * Kernel Memory Controller | |
15 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
16 | * Authors: Glauber Costa and Suleiman Souhlal | |
17 | * | |
18 | * Native page reclaim | |
19 | * Charge lifetime sanitation | |
20 | * Lockless page tracking & accounting | |
21 | * Unified hierarchy configuration model | |
22 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | |
23 | * | |
24 | * Per memcg lru locking | |
25 | * Copyright (C) 2020 Alibaba, Inc, Alex Shi | |
26 | */ | |
27 | ||
28 | #include <linux/page_counter.h> | |
29 | #include <linux/memcontrol.h> | |
30 | #include <linux/cgroup.h> | |
31 | #include <linux/pagewalk.h> | |
32 | #include <linux/sched/mm.h> | |
33 | #include <linux/shmem_fs.h> | |
34 | #include <linux/hugetlb.h> | |
35 | #include <linux/pagemap.h> | |
36 | #include <linux/vm_event_item.h> | |
37 | #include <linux/smp.h> | |
38 | #include <linux/page-flags.h> | |
39 | #include <linux/backing-dev.h> | |
40 | #include <linux/bit_spinlock.h> | |
41 | #include <linux/rcupdate.h> | |
42 | #include <linux/limits.h> | |
43 | #include <linux/export.h> | |
44 | #include <linux/mutex.h> | |
45 | #include <linux/rbtree.h> | |
46 | #include <linux/slab.h> | |
47 | #include <linux/swap.h> | |
48 | #include <linux/swapops.h> | |
49 | #include <linux/spinlock.h> | |
50 | #include <linux/eventfd.h> | |
51 | #include <linux/poll.h> | |
52 | #include <linux/sort.h> | |
53 | #include <linux/fs.h> | |
54 | #include <linux/seq_file.h> | |
55 | #include <linux/vmpressure.h> | |
56 | #include <linux/mm_inline.h> | |
57 | #include <linux/swap_cgroup.h> | |
58 | #include <linux/cpu.h> | |
59 | #include <linux/oom.h> | |
60 | #include <linux/lockdep.h> | |
61 | #include <linux/file.h> | |
62 | #include <linux/tracehook.h> | |
63 | #include <linux/psi.h> | |
64 | #include <linux/seq_buf.h> | |
65 | #include "internal.h" | |
66 | #include <net/sock.h> | |
67 | #include <net/ip.h> | |
68 | #include "slab.h" | |
69 | ||
70 | #include <linux/uaccess.h> | |
71 | ||
72 | #include <trace/events/vmscan.h> | |
73 | ||
74 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | |
75 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
76 | ||
77 | struct mem_cgroup *root_mem_cgroup __read_mostly; | |
78 | ||
79 | /* Active memory cgroup to use from an interrupt context */ | |
80 | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); | |
81 | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); | |
82 | ||
83 | /* Socket memory accounting disabled? */ | |
84 | static bool cgroup_memory_nosocket __ro_after_init; | |
85 | ||
86 | /* Kernel memory accounting disabled? */ | |
87 | bool cgroup_memory_nokmem __ro_after_init; | |
88 | ||
89 | /* Whether the swap controller is active */ | |
90 | #ifdef CONFIG_MEMCG_SWAP | |
91 | bool cgroup_memory_noswap __ro_after_init; | |
92 | #else | |
93 | #define cgroup_memory_noswap 1 | |
94 | #endif | |
95 | ||
96 | #ifdef CONFIG_CGROUP_WRITEBACK | |
97 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); | |
98 | #endif | |
99 | ||
100 | /* Whether legacy memory+swap accounting is active */ | |
101 | static bool do_memsw_account(void) | |
102 | { | |
103 | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; | |
104 | } | |
105 | ||
106 | #define THRESHOLDS_EVENTS_TARGET 128 | |
107 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
108 | ||
109 | /* | |
110 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
111 | * their hierarchy representation | |
112 | */ | |
113 | ||
114 | struct mem_cgroup_tree_per_node { | |
115 | struct rb_root rb_root; | |
116 | struct rb_node *rb_rightmost; | |
117 | spinlock_t lock; | |
118 | }; | |
119 | ||
120 | struct mem_cgroup_tree { | |
121 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
122 | }; | |
123 | ||
124 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
125 | ||
126 | /* for OOM */ | |
127 | struct mem_cgroup_eventfd_list { | |
128 | struct list_head list; | |
129 | struct eventfd_ctx *eventfd; | |
130 | }; | |
131 | ||
132 | /* | |
133 | * cgroup_event represents events which userspace want to receive. | |
134 | */ | |
135 | struct mem_cgroup_event { | |
136 | /* | |
137 | * memcg which the event belongs to. | |
138 | */ | |
139 | struct mem_cgroup *memcg; | |
140 | /* | |
141 | * eventfd to signal userspace about the event. | |
142 | */ | |
143 | struct eventfd_ctx *eventfd; | |
144 | /* | |
145 | * Each of these stored in a list by the cgroup. | |
146 | */ | |
147 | struct list_head list; | |
148 | /* | |
149 | * register_event() callback will be used to add new userspace | |
150 | * waiter for changes related to this event. Use eventfd_signal() | |
151 | * on eventfd to send notification to userspace. | |
152 | */ | |
153 | int (*register_event)(struct mem_cgroup *memcg, | |
154 | struct eventfd_ctx *eventfd, const char *args); | |
155 | /* | |
156 | * unregister_event() callback will be called when userspace closes | |
157 | * the eventfd or on cgroup removing. This callback must be set, | |
158 | * if you want provide notification functionality. | |
159 | */ | |
160 | void (*unregister_event)(struct mem_cgroup *memcg, | |
161 | struct eventfd_ctx *eventfd); | |
162 | /* | |
163 | * All fields below needed to unregister event when | |
164 | * userspace closes eventfd. | |
165 | */ | |
166 | poll_table pt; | |
167 | wait_queue_head_t *wqh; | |
168 | wait_queue_entry_t wait; | |
169 | struct work_struct remove; | |
170 | }; | |
171 | ||
172 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | |
173 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
174 | ||
175 | /* Stuffs for move charges at task migration. */ | |
176 | /* | |
177 | * Types of charges to be moved. | |
178 | */ | |
179 | #define MOVE_ANON 0x1U | |
180 | #define MOVE_FILE 0x2U | |
181 | #define MOVE_MASK (MOVE_ANON | MOVE_FILE) | |
182 | ||
183 | /* "mc" and its members are protected by cgroup_mutex */ | |
184 | static struct move_charge_struct { | |
185 | spinlock_t lock; /* for from, to */ | |
186 | struct mm_struct *mm; | |
187 | struct mem_cgroup *from; | |
188 | struct mem_cgroup *to; | |
189 | unsigned long flags; | |
190 | unsigned long precharge; | |
191 | unsigned long moved_charge; | |
192 | unsigned long moved_swap; | |
193 | struct task_struct *moving_task; /* a task moving charges */ | |
194 | wait_queue_head_t waitq; /* a waitq for other context */ | |
195 | } mc = { | |
196 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | |
197 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | |
198 | }; | |
199 | ||
200 | /* | |
201 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
202 | * limit reclaim to prevent infinite loops, if they ever occur. | |
203 | */ | |
204 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 | |
205 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | |
206 | ||
207 | /* for encoding cft->private value on file */ | |
208 | enum res_type { | |
209 | _MEM, | |
210 | _MEMSWAP, | |
211 | _OOM_TYPE, | |
212 | _KMEM, | |
213 | _TCP, | |
214 | }; | |
215 | ||
216 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) | |
217 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
218 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
219 | /* Used for OOM notifier */ | |
220 | #define OOM_CONTROL (0) | |
221 | ||
222 | /* | |
223 | * Iteration constructs for visiting all cgroups (under a tree). If | |
224 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
225 | * be used for reference counting. | |
226 | */ | |
227 | #define for_each_mem_cgroup_tree(iter, root) \ | |
228 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ | |
229 | iter != NULL; \ | |
230 | iter = mem_cgroup_iter(root, iter, NULL)) | |
231 | ||
232 | #define for_each_mem_cgroup(iter) \ | |
233 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ | |
234 | iter != NULL; \ | |
235 | iter = mem_cgroup_iter(NULL, iter, NULL)) | |
236 | ||
237 | static inline bool task_is_dying(void) | |
238 | { | |
239 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | |
240 | (current->flags & PF_EXITING); | |
241 | } | |
242 | ||
243 | /* Some nice accessors for the vmpressure. */ | |
244 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
245 | { | |
246 | if (!memcg) | |
247 | memcg = root_mem_cgroup; | |
248 | return &memcg->vmpressure; | |
249 | } | |
250 | ||
251 | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) | |
252 | { | |
253 | return container_of(vmpr, struct mem_cgroup, vmpressure); | |
254 | } | |
255 | ||
256 | #ifdef CONFIG_MEMCG_KMEM | |
257 | static DEFINE_SPINLOCK(objcg_lock); | |
258 | ||
259 | bool mem_cgroup_kmem_disabled(void) | |
260 | { | |
261 | return cgroup_memory_nokmem; | |
262 | } | |
263 | ||
264 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, | |
265 | unsigned int nr_pages); | |
266 | ||
267 | static void obj_cgroup_release(struct percpu_ref *ref) | |
268 | { | |
269 | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); | |
270 | unsigned int nr_bytes; | |
271 | unsigned int nr_pages; | |
272 | unsigned long flags; | |
273 | ||
274 | /* | |
275 | * At this point all allocated objects are freed, and | |
276 | * objcg->nr_charged_bytes can't have an arbitrary byte value. | |
277 | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). | |
278 | * | |
279 | * The following sequence can lead to it: | |
280 | * 1) CPU0: objcg == stock->cached_objcg | |
281 | * 2) CPU1: we do a small allocation (e.g. 92 bytes), | |
282 | * PAGE_SIZE bytes are charged | |
283 | * 3) CPU1: a process from another memcg is allocating something, | |
284 | * the stock if flushed, | |
285 | * objcg->nr_charged_bytes = PAGE_SIZE - 92 | |
286 | * 5) CPU0: we do release this object, | |
287 | * 92 bytes are added to stock->nr_bytes | |
288 | * 6) CPU0: stock is flushed, | |
289 | * 92 bytes are added to objcg->nr_charged_bytes | |
290 | * | |
291 | * In the result, nr_charged_bytes == PAGE_SIZE. | |
292 | * This page will be uncharged in obj_cgroup_release(). | |
293 | */ | |
294 | nr_bytes = atomic_read(&objcg->nr_charged_bytes); | |
295 | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); | |
296 | nr_pages = nr_bytes >> PAGE_SHIFT; | |
297 | ||
298 | if (nr_pages) | |
299 | obj_cgroup_uncharge_pages(objcg, nr_pages); | |
300 | ||
301 | spin_lock_irqsave(&objcg_lock, flags); | |
302 | list_del(&objcg->list); | |
303 | spin_unlock_irqrestore(&objcg_lock, flags); | |
304 | ||
305 | percpu_ref_exit(ref); | |
306 | kfree_rcu(objcg, rcu); | |
307 | } | |
308 | ||
309 | static struct obj_cgroup *obj_cgroup_alloc(void) | |
310 | { | |
311 | struct obj_cgroup *objcg; | |
312 | int ret; | |
313 | ||
314 | objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); | |
315 | if (!objcg) | |
316 | return NULL; | |
317 | ||
318 | ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, | |
319 | GFP_KERNEL); | |
320 | if (ret) { | |
321 | kfree(objcg); | |
322 | return NULL; | |
323 | } | |
324 | INIT_LIST_HEAD(&objcg->list); | |
325 | return objcg; | |
326 | } | |
327 | ||
328 | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, | |
329 | struct mem_cgroup *parent) | |
330 | { | |
331 | struct obj_cgroup *objcg, *iter; | |
332 | ||
333 | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); | |
334 | ||
335 | spin_lock_irq(&objcg_lock); | |
336 | ||
337 | /* 1) Ready to reparent active objcg. */ | |
338 | list_add(&objcg->list, &memcg->objcg_list); | |
339 | /* 2) Reparent active objcg and already reparented objcgs to parent. */ | |
340 | list_for_each_entry(iter, &memcg->objcg_list, list) | |
341 | WRITE_ONCE(iter->memcg, parent); | |
342 | /* 3) Move already reparented objcgs to the parent's list */ | |
343 | list_splice(&memcg->objcg_list, &parent->objcg_list); | |
344 | ||
345 | spin_unlock_irq(&objcg_lock); | |
346 | ||
347 | percpu_ref_kill(&objcg->refcnt); | |
348 | } | |
349 | ||
350 | /* | |
351 | * This will be used as a shrinker list's index. | |
352 | * The main reason for not using cgroup id for this: | |
353 | * this works better in sparse environments, where we have a lot of memcgs, | |
354 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
355 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
356 | * 200 entry array for that. | |
357 | * | |
358 | * The current size of the caches array is stored in memcg_nr_cache_ids. It | |
359 | * will double each time we have to increase it. | |
360 | */ | |
361 | static DEFINE_IDA(memcg_cache_ida); | |
362 | int memcg_nr_cache_ids; | |
363 | ||
364 | /* Protects memcg_nr_cache_ids */ | |
365 | static DECLARE_RWSEM(memcg_cache_ids_sem); | |
366 | ||
367 | void memcg_get_cache_ids(void) | |
368 | { | |
369 | down_read(&memcg_cache_ids_sem); | |
370 | } | |
371 | ||
372 | void memcg_put_cache_ids(void) | |
373 | { | |
374 | up_read(&memcg_cache_ids_sem); | |
375 | } | |
376 | ||
377 | /* | |
378 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
379 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
380 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
381 | * tunable, but that is strictly not necessary. | |
382 | * | |
383 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | |
384 | * this constant directly from cgroup, but it is understandable that this is | |
385 | * better kept as an internal representation in cgroup.c. In any case, the | |
386 | * cgrp_id space is not getting any smaller, and we don't have to necessarily | |
387 | * increase ours as well if it increases. | |
388 | */ | |
389 | #define MEMCG_CACHES_MIN_SIZE 4 | |
390 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | |
391 | ||
392 | /* | |
393 | * A lot of the calls to the cache allocation functions are expected to be | |
394 | * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are | |
395 | * conditional to this static branch, we'll have to allow modules that does | |
396 | * kmem_cache_alloc and the such to see this symbol as well | |
397 | */ | |
398 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | |
399 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | |
400 | #endif | |
401 | ||
402 | /** | |
403 | * mem_cgroup_css_from_page - css of the memcg associated with a page | |
404 | * @page: page of interest | |
405 | * | |
406 | * If memcg is bound to the default hierarchy, css of the memcg associated | |
407 | * with @page is returned. The returned css remains associated with @page | |
408 | * until it is released. | |
409 | * | |
410 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | |
411 | * is returned. | |
412 | */ | |
413 | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | |
414 | { | |
415 | struct mem_cgroup *memcg; | |
416 | ||
417 | memcg = page_memcg(page); | |
418 | ||
419 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
420 | memcg = root_mem_cgroup; | |
421 | ||
422 | return &memcg->css; | |
423 | } | |
424 | ||
425 | /** | |
426 | * page_cgroup_ino - return inode number of the memcg a page is charged to | |
427 | * @page: the page | |
428 | * | |
429 | * Look up the closest online ancestor of the memory cgroup @page is charged to | |
430 | * and return its inode number or 0 if @page is not charged to any cgroup. It | |
431 | * is safe to call this function without holding a reference to @page. | |
432 | * | |
433 | * Note, this function is inherently racy, because there is nothing to prevent | |
434 | * the cgroup inode from getting torn down and potentially reallocated a moment | |
435 | * after page_cgroup_ino() returns, so it only should be used by callers that | |
436 | * do not care (such as procfs interfaces). | |
437 | */ | |
438 | ino_t page_cgroup_ino(struct page *page) | |
439 | { | |
440 | struct mem_cgroup *memcg; | |
441 | unsigned long ino = 0; | |
442 | ||
443 | rcu_read_lock(); | |
444 | memcg = page_memcg_check(page); | |
445 | ||
446 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | |
447 | memcg = parent_mem_cgroup(memcg); | |
448 | if (memcg) | |
449 | ino = cgroup_ino(memcg->css.cgroup); | |
450 | rcu_read_unlock(); | |
451 | return ino; | |
452 | } | |
453 | ||
454 | static struct mem_cgroup_per_node * | |
455 | mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) | |
456 | { | |
457 | int nid = page_to_nid(page); | |
458 | ||
459 | return memcg->nodeinfo[nid]; | |
460 | } | |
461 | ||
462 | static struct mem_cgroup_tree_per_node * | |
463 | soft_limit_tree_node(int nid) | |
464 | { | |
465 | return soft_limit_tree.rb_tree_per_node[nid]; | |
466 | } | |
467 | ||
468 | static struct mem_cgroup_tree_per_node * | |
469 | soft_limit_tree_from_page(struct page *page) | |
470 | { | |
471 | int nid = page_to_nid(page); | |
472 | ||
473 | return soft_limit_tree.rb_tree_per_node[nid]; | |
474 | } | |
475 | ||
476 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, | |
477 | struct mem_cgroup_tree_per_node *mctz, | |
478 | unsigned long new_usage_in_excess) | |
479 | { | |
480 | struct rb_node **p = &mctz->rb_root.rb_node; | |
481 | struct rb_node *parent = NULL; | |
482 | struct mem_cgroup_per_node *mz_node; | |
483 | bool rightmost = true; | |
484 | ||
485 | if (mz->on_tree) | |
486 | return; | |
487 | ||
488 | mz->usage_in_excess = new_usage_in_excess; | |
489 | if (!mz->usage_in_excess) | |
490 | return; | |
491 | while (*p) { | |
492 | parent = *p; | |
493 | mz_node = rb_entry(parent, struct mem_cgroup_per_node, | |
494 | tree_node); | |
495 | if (mz->usage_in_excess < mz_node->usage_in_excess) { | |
496 | p = &(*p)->rb_left; | |
497 | rightmost = false; | |
498 | } else { | |
499 | p = &(*p)->rb_right; | |
500 | } | |
501 | } | |
502 | ||
503 | if (rightmost) | |
504 | mctz->rb_rightmost = &mz->tree_node; | |
505 | ||
506 | rb_link_node(&mz->tree_node, parent, p); | |
507 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
508 | mz->on_tree = true; | |
509 | } | |
510 | ||
511 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | |
512 | struct mem_cgroup_tree_per_node *mctz) | |
513 | { | |
514 | if (!mz->on_tree) | |
515 | return; | |
516 | ||
517 | if (&mz->tree_node == mctz->rb_rightmost) | |
518 | mctz->rb_rightmost = rb_prev(&mz->tree_node); | |
519 | ||
520 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
521 | mz->on_tree = false; | |
522 | } | |
523 | ||
524 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | |
525 | struct mem_cgroup_tree_per_node *mctz) | |
526 | { | |
527 | unsigned long flags; | |
528 | ||
529 | spin_lock_irqsave(&mctz->lock, flags); | |
530 | __mem_cgroup_remove_exceeded(mz, mctz); | |
531 | spin_unlock_irqrestore(&mctz->lock, flags); | |
532 | } | |
533 | ||
534 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | |
535 | { | |
536 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
537 | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | |
538 | unsigned long excess = 0; | |
539 | ||
540 | if (nr_pages > soft_limit) | |
541 | excess = nr_pages - soft_limit; | |
542 | ||
543 | return excess; | |
544 | } | |
545 | ||
546 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
547 | { | |
548 | unsigned long excess; | |
549 | struct mem_cgroup_per_node *mz; | |
550 | struct mem_cgroup_tree_per_node *mctz; | |
551 | ||
552 | mctz = soft_limit_tree_from_page(page); | |
553 | if (!mctz) | |
554 | return; | |
555 | /* | |
556 | * Necessary to update all ancestors when hierarchy is used. | |
557 | * because their event counter is not touched. | |
558 | */ | |
559 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
560 | mz = mem_cgroup_page_nodeinfo(memcg, page); | |
561 | excess = soft_limit_excess(memcg); | |
562 | /* | |
563 | * We have to update the tree if mz is on RB-tree or | |
564 | * mem is over its softlimit. | |
565 | */ | |
566 | if (excess || mz->on_tree) { | |
567 | unsigned long flags; | |
568 | ||
569 | spin_lock_irqsave(&mctz->lock, flags); | |
570 | /* if on-tree, remove it */ | |
571 | if (mz->on_tree) | |
572 | __mem_cgroup_remove_exceeded(mz, mctz); | |
573 | /* | |
574 | * Insert again. mz->usage_in_excess will be updated. | |
575 | * If excess is 0, no tree ops. | |
576 | */ | |
577 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
578 | spin_unlock_irqrestore(&mctz->lock, flags); | |
579 | } | |
580 | } | |
581 | } | |
582 | ||
583 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
584 | { | |
585 | struct mem_cgroup_tree_per_node *mctz; | |
586 | struct mem_cgroup_per_node *mz; | |
587 | int nid; | |
588 | ||
589 | for_each_node(nid) { | |
590 | mz = memcg->nodeinfo[nid]; | |
591 | mctz = soft_limit_tree_node(nid); | |
592 | if (mctz) | |
593 | mem_cgroup_remove_exceeded(mz, mctz); | |
594 | } | |
595 | } | |
596 | ||
597 | static struct mem_cgroup_per_node * | |
598 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | |
599 | { | |
600 | struct mem_cgroup_per_node *mz; | |
601 | ||
602 | retry: | |
603 | mz = NULL; | |
604 | if (!mctz->rb_rightmost) | |
605 | goto done; /* Nothing to reclaim from */ | |
606 | ||
607 | mz = rb_entry(mctz->rb_rightmost, | |
608 | struct mem_cgroup_per_node, tree_node); | |
609 | /* | |
610 | * Remove the node now but someone else can add it back, | |
611 | * we will to add it back at the end of reclaim to its correct | |
612 | * position in the tree. | |
613 | */ | |
614 | __mem_cgroup_remove_exceeded(mz, mctz); | |
615 | if (!soft_limit_excess(mz->memcg) || | |
616 | !css_tryget(&mz->memcg->css)) | |
617 | goto retry; | |
618 | done: | |
619 | return mz; | |
620 | } | |
621 | ||
622 | static struct mem_cgroup_per_node * | |
623 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | |
624 | { | |
625 | struct mem_cgroup_per_node *mz; | |
626 | ||
627 | spin_lock_irq(&mctz->lock); | |
628 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
629 | spin_unlock_irq(&mctz->lock); | |
630 | return mz; | |
631 | } | |
632 | ||
633 | /* | |
634 | * memcg and lruvec stats flushing | |
635 | * | |
636 | * Many codepaths leading to stats update or read are performance sensitive and | |
637 | * adding stats flushing in such codepaths is not desirable. So, to optimize the | |
638 | * flushing the kernel does: | |
639 | * | |
640 | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let | |
641 | * rstat update tree grow unbounded. | |
642 | * | |
643 | * 2) Flush the stats synchronously on reader side only when there are more than | |
644 | * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization | |
645 | * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but | |
646 | * only for 2 seconds due to (1). | |
647 | */ | |
648 | static void flush_memcg_stats_dwork(struct work_struct *w); | |
649 | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); | |
650 | static DEFINE_SPINLOCK(stats_flush_lock); | |
651 | static DEFINE_PER_CPU(unsigned int, stats_updates); | |
652 | static atomic_t stats_flush_threshold = ATOMIC_INIT(0); | |
653 | ||
654 | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) | |
655 | { | |
656 | unsigned int x; | |
657 | ||
658 | cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); | |
659 | ||
660 | x = __this_cpu_add_return(stats_updates, abs(val)); | |
661 | if (x > MEMCG_CHARGE_BATCH) { | |
662 | atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); | |
663 | __this_cpu_write(stats_updates, 0); | |
664 | } | |
665 | } | |
666 | ||
667 | static void __mem_cgroup_flush_stats(void) | |
668 | { | |
669 | unsigned long flag; | |
670 | ||
671 | if (!spin_trylock_irqsave(&stats_flush_lock, flag)) | |
672 | return; | |
673 | ||
674 | cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); | |
675 | atomic_set(&stats_flush_threshold, 0); | |
676 | spin_unlock_irqrestore(&stats_flush_lock, flag); | |
677 | } | |
678 | ||
679 | void mem_cgroup_flush_stats(void) | |
680 | { | |
681 | if (atomic_read(&stats_flush_threshold) > num_online_cpus()) | |
682 | __mem_cgroup_flush_stats(); | |
683 | } | |
684 | ||
685 | static void flush_memcg_stats_dwork(struct work_struct *w) | |
686 | { | |
687 | __mem_cgroup_flush_stats(); | |
688 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); | |
689 | } | |
690 | ||
691 | /** | |
692 | * __mod_memcg_state - update cgroup memory statistics | |
693 | * @memcg: the memory cgroup | |
694 | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item | |
695 | * @val: delta to add to the counter, can be negative | |
696 | */ | |
697 | void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) | |
698 | { | |
699 | if (mem_cgroup_disabled()) | |
700 | return; | |
701 | ||
702 | __this_cpu_add(memcg->vmstats_percpu->state[idx], val); | |
703 | memcg_rstat_updated(memcg, val); | |
704 | } | |
705 | ||
706 | /* idx can be of type enum memcg_stat_item or node_stat_item. */ | |
707 | static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) | |
708 | { | |
709 | long x = 0; | |
710 | int cpu; | |
711 | ||
712 | for_each_possible_cpu(cpu) | |
713 | x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); | |
714 | #ifdef CONFIG_SMP | |
715 | if (x < 0) | |
716 | x = 0; | |
717 | #endif | |
718 | return x; | |
719 | } | |
720 | ||
721 | void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | |
722 | int val) | |
723 | { | |
724 | struct mem_cgroup_per_node *pn; | |
725 | struct mem_cgroup *memcg; | |
726 | ||
727 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | |
728 | memcg = pn->memcg; | |
729 | ||
730 | /* Update memcg */ | |
731 | __this_cpu_add(memcg->vmstats_percpu->state[idx], val); | |
732 | ||
733 | /* Update lruvec */ | |
734 | __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); | |
735 | ||
736 | memcg_rstat_updated(memcg, val); | |
737 | } | |
738 | ||
739 | /** | |
740 | * __mod_lruvec_state - update lruvec memory statistics | |
741 | * @lruvec: the lruvec | |
742 | * @idx: the stat item | |
743 | * @val: delta to add to the counter, can be negative | |
744 | * | |
745 | * The lruvec is the intersection of the NUMA node and a cgroup. This | |
746 | * function updates the all three counters that are affected by a | |
747 | * change of state at this level: per-node, per-cgroup, per-lruvec. | |
748 | */ | |
749 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | |
750 | int val) | |
751 | { | |
752 | /* Update node */ | |
753 | __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); | |
754 | ||
755 | /* Update memcg and lruvec */ | |
756 | if (!mem_cgroup_disabled()) | |
757 | __mod_memcg_lruvec_state(lruvec, idx, val); | |
758 | } | |
759 | ||
760 | void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, | |
761 | int val) | |
762 | { | |
763 | struct page *head = compound_head(page); /* rmap on tail pages */ | |
764 | struct mem_cgroup *memcg; | |
765 | pg_data_t *pgdat = page_pgdat(page); | |
766 | struct lruvec *lruvec; | |
767 | ||
768 | rcu_read_lock(); | |
769 | memcg = page_memcg(head); | |
770 | /* Untracked pages have no memcg, no lruvec. Update only the node */ | |
771 | if (!memcg) { | |
772 | rcu_read_unlock(); | |
773 | __mod_node_page_state(pgdat, idx, val); | |
774 | return; | |
775 | } | |
776 | ||
777 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
778 | __mod_lruvec_state(lruvec, idx, val); | |
779 | rcu_read_unlock(); | |
780 | } | |
781 | EXPORT_SYMBOL(__mod_lruvec_page_state); | |
782 | ||
783 | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) | |
784 | { | |
785 | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); | |
786 | struct mem_cgroup *memcg; | |
787 | struct lruvec *lruvec; | |
788 | ||
789 | rcu_read_lock(); | |
790 | memcg = mem_cgroup_from_obj(p); | |
791 | ||
792 | /* | |
793 | * Untracked pages have no memcg, no lruvec. Update only the | |
794 | * node. If we reparent the slab objects to the root memcg, | |
795 | * when we free the slab object, we need to update the per-memcg | |
796 | * vmstats to keep it correct for the root memcg. | |
797 | */ | |
798 | if (!memcg) { | |
799 | __mod_node_page_state(pgdat, idx, val); | |
800 | } else { | |
801 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
802 | __mod_lruvec_state(lruvec, idx, val); | |
803 | } | |
804 | rcu_read_unlock(); | |
805 | } | |
806 | ||
807 | /* | |
808 | * mod_objcg_mlstate() may be called with irq enabled, so | |
809 | * mod_memcg_lruvec_state() should be used. | |
810 | */ | |
811 | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, | |
812 | struct pglist_data *pgdat, | |
813 | enum node_stat_item idx, int nr) | |
814 | { | |
815 | struct mem_cgroup *memcg; | |
816 | struct lruvec *lruvec; | |
817 | ||
818 | rcu_read_lock(); | |
819 | memcg = obj_cgroup_memcg(objcg); | |
820 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
821 | mod_memcg_lruvec_state(lruvec, idx, nr); | |
822 | rcu_read_unlock(); | |
823 | } | |
824 | ||
825 | /** | |
826 | * __count_memcg_events - account VM events in a cgroup | |
827 | * @memcg: the memory cgroup | |
828 | * @idx: the event item | |
829 | * @count: the number of events that occurred | |
830 | */ | |
831 | void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, | |
832 | unsigned long count) | |
833 | { | |
834 | if (mem_cgroup_disabled()) | |
835 | return; | |
836 | ||
837 | __this_cpu_add(memcg->vmstats_percpu->events[idx], count); | |
838 | memcg_rstat_updated(memcg, count); | |
839 | } | |
840 | ||
841 | static unsigned long memcg_events(struct mem_cgroup *memcg, int event) | |
842 | { | |
843 | return READ_ONCE(memcg->vmstats.events[event]); | |
844 | } | |
845 | ||
846 | static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) | |
847 | { | |
848 | long x = 0; | |
849 | int cpu; | |
850 | ||
851 | for_each_possible_cpu(cpu) | |
852 | x += per_cpu(memcg->vmstats_percpu->events[event], cpu); | |
853 | return x; | |
854 | } | |
855 | ||
856 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | |
857 | struct page *page, | |
858 | int nr_pages) | |
859 | { | |
860 | /* pagein of a big page is an event. So, ignore page size */ | |
861 | if (nr_pages > 0) | |
862 | __count_memcg_events(memcg, PGPGIN, 1); | |
863 | else { | |
864 | __count_memcg_events(memcg, PGPGOUT, 1); | |
865 | nr_pages = -nr_pages; /* for event */ | |
866 | } | |
867 | ||
868 | __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); | |
869 | } | |
870 | ||
871 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | |
872 | enum mem_cgroup_events_target target) | |
873 | { | |
874 | unsigned long val, next; | |
875 | ||
876 | val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); | |
877 | next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); | |
878 | /* from time_after() in jiffies.h */ | |
879 | if ((long)(next - val) < 0) { | |
880 | switch (target) { | |
881 | case MEM_CGROUP_TARGET_THRESH: | |
882 | next = val + THRESHOLDS_EVENTS_TARGET; | |
883 | break; | |
884 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
885 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
886 | break; | |
887 | default: | |
888 | break; | |
889 | } | |
890 | __this_cpu_write(memcg->vmstats_percpu->targets[target], next); | |
891 | return true; | |
892 | } | |
893 | return false; | |
894 | } | |
895 | ||
896 | /* | |
897 | * Check events in order. | |
898 | * | |
899 | */ | |
900 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | |
901 | { | |
902 | /* threshold event is triggered in finer grain than soft limit */ | |
903 | if (unlikely(mem_cgroup_event_ratelimit(memcg, | |
904 | MEM_CGROUP_TARGET_THRESH))) { | |
905 | bool do_softlimit; | |
906 | ||
907 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | |
908 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
909 | mem_cgroup_threshold(memcg); | |
910 | if (unlikely(do_softlimit)) | |
911 | mem_cgroup_update_tree(memcg, page); | |
912 | } | |
913 | } | |
914 | ||
915 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |
916 | { | |
917 | /* | |
918 | * mm_update_next_owner() may clear mm->owner to NULL | |
919 | * if it races with swapoff, page migration, etc. | |
920 | * So this can be called with p == NULL. | |
921 | */ | |
922 | if (unlikely(!p)) | |
923 | return NULL; | |
924 | ||
925 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | |
926 | } | |
927 | EXPORT_SYMBOL(mem_cgroup_from_task); | |
928 | ||
929 | static __always_inline struct mem_cgroup *active_memcg(void) | |
930 | { | |
931 | if (!in_task()) | |
932 | return this_cpu_read(int_active_memcg); | |
933 | else | |
934 | return current->active_memcg; | |
935 | } | |
936 | ||
937 | /** | |
938 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | |
939 | * @mm: mm from which memcg should be extracted. It can be NULL. | |
940 | * | |
941 | * Obtain a reference on mm->memcg and returns it if successful. If mm | |
942 | * is NULL, then the memcg is chosen as follows: | |
943 | * 1) The active memcg, if set. | |
944 | * 2) current->mm->memcg, if available | |
945 | * 3) root memcg | |
946 | * If mem_cgroup is disabled, NULL is returned. | |
947 | */ | |
948 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | |
949 | { | |
950 | struct mem_cgroup *memcg; | |
951 | ||
952 | if (mem_cgroup_disabled()) | |
953 | return NULL; | |
954 | ||
955 | /* | |
956 | * Page cache insertions can happen without an | |
957 | * actual mm context, e.g. during disk probing | |
958 | * on boot, loopback IO, acct() writes etc. | |
959 | * | |
960 | * No need to css_get on root memcg as the reference | |
961 | * counting is disabled on the root level in the | |
962 | * cgroup core. See CSS_NO_REF. | |
963 | */ | |
964 | if (unlikely(!mm)) { | |
965 | memcg = active_memcg(); | |
966 | if (unlikely(memcg)) { | |
967 | /* remote memcg must hold a ref */ | |
968 | css_get(&memcg->css); | |
969 | return memcg; | |
970 | } | |
971 | mm = current->mm; | |
972 | if (unlikely(!mm)) | |
973 | return root_mem_cgroup; | |
974 | } | |
975 | ||
976 | rcu_read_lock(); | |
977 | do { | |
978 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
979 | if (unlikely(!memcg)) | |
980 | memcg = root_mem_cgroup; | |
981 | } while (!css_tryget(&memcg->css)); | |
982 | rcu_read_unlock(); | |
983 | return memcg; | |
984 | } | |
985 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); | |
986 | ||
987 | static __always_inline bool memcg_kmem_bypass(void) | |
988 | { | |
989 | /* Allow remote memcg charging from any context. */ | |
990 | if (unlikely(active_memcg())) | |
991 | return false; | |
992 | ||
993 | /* Memcg to charge can't be determined. */ | |
994 | if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) | |
995 | return true; | |
996 | ||
997 | return false; | |
998 | } | |
999 | ||
1000 | /** | |
1001 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1002 | * @root: hierarchy root | |
1003 | * @prev: previously returned memcg, NULL on first invocation | |
1004 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1005 | * | |
1006 | * Returns references to children of the hierarchy below @root, or | |
1007 | * @root itself, or %NULL after a full round-trip. | |
1008 | * | |
1009 | * Caller must pass the return value in @prev on subsequent | |
1010 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1011 | * to cancel a hierarchy walk before the round-trip is complete. | |
1012 | * | |
1013 | * Reclaimers can specify a node in @reclaim to divide up the memcgs | |
1014 | * in the hierarchy among all concurrent reclaimers operating on the | |
1015 | * same node. | |
1016 | */ | |
1017 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | |
1018 | struct mem_cgroup *prev, | |
1019 | struct mem_cgroup_reclaim_cookie *reclaim) | |
1020 | { | |
1021 | struct mem_cgroup_reclaim_iter *iter; | |
1022 | struct cgroup_subsys_state *css = NULL; | |
1023 | struct mem_cgroup *memcg = NULL; | |
1024 | struct mem_cgroup *pos = NULL; | |
1025 | ||
1026 | if (mem_cgroup_disabled()) | |
1027 | return NULL; | |
1028 | ||
1029 | if (!root) | |
1030 | root = root_mem_cgroup; | |
1031 | ||
1032 | if (prev && !reclaim) | |
1033 | pos = prev; | |
1034 | ||
1035 | rcu_read_lock(); | |
1036 | ||
1037 | if (reclaim) { | |
1038 | struct mem_cgroup_per_node *mz; | |
1039 | ||
1040 | mz = root->nodeinfo[reclaim->pgdat->node_id]; | |
1041 | iter = &mz->iter; | |
1042 | ||
1043 | if (prev && reclaim->generation != iter->generation) | |
1044 | goto out_unlock; | |
1045 | ||
1046 | while (1) { | |
1047 | pos = READ_ONCE(iter->position); | |
1048 | if (!pos || css_tryget(&pos->css)) | |
1049 | break; | |
1050 | /* | |
1051 | * css reference reached zero, so iter->position will | |
1052 | * be cleared by ->css_released. However, we should not | |
1053 | * rely on this happening soon, because ->css_released | |
1054 | * is called from a work queue, and by busy-waiting we | |
1055 | * might block it. So we clear iter->position right | |
1056 | * away. | |
1057 | */ | |
1058 | (void)cmpxchg(&iter->position, pos, NULL); | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | if (pos) | |
1063 | css = &pos->css; | |
1064 | ||
1065 | for (;;) { | |
1066 | css = css_next_descendant_pre(css, &root->css); | |
1067 | if (!css) { | |
1068 | /* | |
1069 | * Reclaimers share the hierarchy walk, and a | |
1070 | * new one might jump in right at the end of | |
1071 | * the hierarchy - make sure they see at least | |
1072 | * one group and restart from the beginning. | |
1073 | */ | |
1074 | if (!prev) | |
1075 | continue; | |
1076 | break; | |
1077 | } | |
1078 | ||
1079 | /* | |
1080 | * Verify the css and acquire a reference. The root | |
1081 | * is provided by the caller, so we know it's alive | |
1082 | * and kicking, and don't take an extra reference. | |
1083 | */ | |
1084 | memcg = mem_cgroup_from_css(css); | |
1085 | ||
1086 | if (css == &root->css) | |
1087 | break; | |
1088 | ||
1089 | if (css_tryget(css)) | |
1090 | break; | |
1091 | ||
1092 | memcg = NULL; | |
1093 | } | |
1094 | ||
1095 | if (reclaim) { | |
1096 | /* | |
1097 | * The position could have already been updated by a competing | |
1098 | * thread, so check that the value hasn't changed since we read | |
1099 | * it to avoid reclaiming from the same cgroup twice. | |
1100 | */ | |
1101 | (void)cmpxchg(&iter->position, pos, memcg); | |
1102 | ||
1103 | if (pos) | |
1104 | css_put(&pos->css); | |
1105 | ||
1106 | if (!memcg) | |
1107 | iter->generation++; | |
1108 | else if (!prev) | |
1109 | reclaim->generation = iter->generation; | |
1110 | } | |
1111 | ||
1112 | out_unlock: | |
1113 | rcu_read_unlock(); | |
1114 | if (prev && prev != root) | |
1115 | css_put(&prev->css); | |
1116 | ||
1117 | return memcg; | |
1118 | } | |
1119 | ||
1120 | /** | |
1121 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1122 | * @root: hierarchy root | |
1123 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1124 | */ | |
1125 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1126 | struct mem_cgroup *prev) | |
1127 | { | |
1128 | if (!root) | |
1129 | root = root_mem_cgroup; | |
1130 | if (prev && prev != root) | |
1131 | css_put(&prev->css); | |
1132 | } | |
1133 | ||
1134 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, | |
1135 | struct mem_cgroup *dead_memcg) | |
1136 | { | |
1137 | struct mem_cgroup_reclaim_iter *iter; | |
1138 | struct mem_cgroup_per_node *mz; | |
1139 | int nid; | |
1140 | ||
1141 | for_each_node(nid) { | |
1142 | mz = from->nodeinfo[nid]; | |
1143 | iter = &mz->iter; | |
1144 | cmpxchg(&iter->position, dead_memcg, NULL); | |
1145 | } | |
1146 | } | |
1147 | ||
1148 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | |
1149 | { | |
1150 | struct mem_cgroup *memcg = dead_memcg; | |
1151 | struct mem_cgroup *last; | |
1152 | ||
1153 | do { | |
1154 | __invalidate_reclaim_iterators(memcg, dead_memcg); | |
1155 | last = memcg; | |
1156 | } while ((memcg = parent_mem_cgroup(memcg))); | |
1157 | ||
1158 | /* | |
1159 | * When cgruop1 non-hierarchy mode is used, | |
1160 | * parent_mem_cgroup() does not walk all the way up to the | |
1161 | * cgroup root (root_mem_cgroup). So we have to handle | |
1162 | * dead_memcg from cgroup root separately. | |
1163 | */ | |
1164 | if (last != root_mem_cgroup) | |
1165 | __invalidate_reclaim_iterators(root_mem_cgroup, | |
1166 | dead_memcg); | |
1167 | } | |
1168 | ||
1169 | /** | |
1170 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | |
1171 | * @memcg: hierarchy root | |
1172 | * @fn: function to call for each task | |
1173 | * @arg: argument passed to @fn | |
1174 | * | |
1175 | * This function iterates over tasks attached to @memcg or to any of its | |
1176 | * descendants and calls @fn for each task. If @fn returns a non-zero | |
1177 | * value, the function breaks the iteration loop and returns the value. | |
1178 | * Otherwise, it will iterate over all tasks and return 0. | |
1179 | * | |
1180 | * This function must not be called for the root memory cgroup. | |
1181 | */ | |
1182 | int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | |
1183 | int (*fn)(struct task_struct *, void *), void *arg) | |
1184 | { | |
1185 | struct mem_cgroup *iter; | |
1186 | int ret = 0; | |
1187 | ||
1188 | BUG_ON(memcg == root_mem_cgroup); | |
1189 | ||
1190 | for_each_mem_cgroup_tree(iter, memcg) { | |
1191 | struct css_task_iter it; | |
1192 | struct task_struct *task; | |
1193 | ||
1194 | css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); | |
1195 | while (!ret && (task = css_task_iter_next(&it))) | |
1196 | ret = fn(task, arg); | |
1197 | css_task_iter_end(&it); | |
1198 | if (ret) { | |
1199 | mem_cgroup_iter_break(memcg, iter); | |
1200 | break; | |
1201 | } | |
1202 | } | |
1203 | return ret; | |
1204 | } | |
1205 | ||
1206 | #ifdef CONFIG_DEBUG_VM | |
1207 | void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) | |
1208 | { | |
1209 | struct mem_cgroup *memcg; | |
1210 | ||
1211 | if (mem_cgroup_disabled()) | |
1212 | return; | |
1213 | ||
1214 | memcg = page_memcg(page); | |
1215 | ||
1216 | if (!memcg) | |
1217 | VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); | |
1218 | else | |
1219 | VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); | |
1220 | } | |
1221 | #endif | |
1222 | ||
1223 | /** | |
1224 | * lock_page_lruvec - lock and return lruvec for a given page. | |
1225 | * @page: the page | |
1226 | * | |
1227 | * These functions are safe to use under any of the following conditions: | |
1228 | * - page locked | |
1229 | * - PageLRU cleared | |
1230 | * - lock_page_memcg() | |
1231 | * - page->_refcount is zero | |
1232 | */ | |
1233 | struct lruvec *lock_page_lruvec(struct page *page) | |
1234 | { | |
1235 | struct lruvec *lruvec; | |
1236 | ||
1237 | lruvec = mem_cgroup_page_lruvec(page); | |
1238 | spin_lock(&lruvec->lru_lock); | |
1239 | ||
1240 | lruvec_memcg_debug(lruvec, page); | |
1241 | ||
1242 | return lruvec; | |
1243 | } | |
1244 | ||
1245 | struct lruvec *lock_page_lruvec_irq(struct page *page) | |
1246 | { | |
1247 | struct lruvec *lruvec; | |
1248 | ||
1249 | lruvec = mem_cgroup_page_lruvec(page); | |
1250 | spin_lock_irq(&lruvec->lru_lock); | |
1251 | ||
1252 | lruvec_memcg_debug(lruvec, page); | |
1253 | ||
1254 | return lruvec; | |
1255 | } | |
1256 | ||
1257 | struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) | |
1258 | { | |
1259 | struct lruvec *lruvec; | |
1260 | ||
1261 | lruvec = mem_cgroup_page_lruvec(page); | |
1262 | spin_lock_irqsave(&lruvec->lru_lock, *flags); | |
1263 | ||
1264 | lruvec_memcg_debug(lruvec, page); | |
1265 | ||
1266 | return lruvec; | |
1267 | } | |
1268 | ||
1269 | /** | |
1270 | * mem_cgroup_update_lru_size - account for adding or removing an lru page | |
1271 | * @lruvec: mem_cgroup per zone lru vector | |
1272 | * @lru: index of lru list the page is sitting on | |
1273 | * @zid: zone id of the accounted pages | |
1274 | * @nr_pages: positive when adding or negative when removing | |
1275 | * | |
1276 | * This function must be called under lru_lock, just before a page is added | |
1277 | * to or just after a page is removed from an lru list (that ordering being | |
1278 | * so as to allow it to check that lru_size 0 is consistent with list_empty). | |
1279 | */ | |
1280 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | |
1281 | int zid, int nr_pages) | |
1282 | { | |
1283 | struct mem_cgroup_per_node *mz; | |
1284 | unsigned long *lru_size; | |
1285 | long size; | |
1286 | ||
1287 | if (mem_cgroup_disabled()) | |
1288 | return; | |
1289 | ||
1290 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | |
1291 | lru_size = &mz->lru_zone_size[zid][lru]; | |
1292 | ||
1293 | if (nr_pages < 0) | |
1294 | *lru_size += nr_pages; | |
1295 | ||
1296 | size = *lru_size; | |
1297 | if (WARN_ONCE(size < 0, | |
1298 | "%s(%p, %d, %d): lru_size %ld\n", | |
1299 | __func__, lruvec, lru, nr_pages, size)) { | |
1300 | VM_BUG_ON(1); | |
1301 | *lru_size = 0; | |
1302 | } | |
1303 | ||
1304 | if (nr_pages > 0) | |
1305 | *lru_size += nr_pages; | |
1306 | } | |
1307 | ||
1308 | /** | |
1309 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | |
1310 | * @memcg: the memory cgroup | |
1311 | * | |
1312 | * Returns the maximum amount of memory @mem can be charged with, in | |
1313 | * pages. | |
1314 | */ | |
1315 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | |
1316 | { | |
1317 | unsigned long margin = 0; | |
1318 | unsigned long count; | |
1319 | unsigned long limit; | |
1320 | ||
1321 | count = page_counter_read(&memcg->memory); | |
1322 | limit = READ_ONCE(memcg->memory.max); | |
1323 | if (count < limit) | |
1324 | margin = limit - count; | |
1325 | ||
1326 | if (do_memsw_account()) { | |
1327 | count = page_counter_read(&memcg->memsw); | |
1328 | limit = READ_ONCE(memcg->memsw.max); | |
1329 | if (count < limit) | |
1330 | margin = min(margin, limit - count); | |
1331 | else | |
1332 | margin = 0; | |
1333 | } | |
1334 | ||
1335 | return margin; | |
1336 | } | |
1337 | ||
1338 | /* | |
1339 | * A routine for checking "mem" is under move_account() or not. | |
1340 | * | |
1341 | * Checking a cgroup is mc.from or mc.to or under hierarchy of | |
1342 | * moving cgroups. This is for waiting at high-memory pressure | |
1343 | * caused by "move". | |
1344 | */ | |
1345 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | |
1346 | { | |
1347 | struct mem_cgroup *from; | |
1348 | struct mem_cgroup *to; | |
1349 | bool ret = false; | |
1350 | /* | |
1351 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1352 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1353 | */ | |
1354 | spin_lock(&mc.lock); | |
1355 | from = mc.from; | |
1356 | to = mc.to; | |
1357 | if (!from) | |
1358 | goto unlock; | |
1359 | ||
1360 | ret = mem_cgroup_is_descendant(from, memcg) || | |
1361 | mem_cgroup_is_descendant(to, memcg); | |
1362 | unlock: | |
1363 | spin_unlock(&mc.lock); | |
1364 | return ret; | |
1365 | } | |
1366 | ||
1367 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | |
1368 | { | |
1369 | if (mc.moving_task && current != mc.moving_task) { | |
1370 | if (mem_cgroup_under_move(memcg)) { | |
1371 | DEFINE_WAIT(wait); | |
1372 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1373 | /* moving charge context might have finished. */ | |
1374 | if (mc.moving_task) | |
1375 | schedule(); | |
1376 | finish_wait(&mc.waitq, &wait); | |
1377 | return true; | |
1378 | } | |
1379 | } | |
1380 | return false; | |
1381 | } | |
1382 | ||
1383 | struct memory_stat { | |
1384 | const char *name; | |
1385 | unsigned int idx; | |
1386 | }; | |
1387 | ||
1388 | static const struct memory_stat memory_stats[] = { | |
1389 | { "anon", NR_ANON_MAPPED }, | |
1390 | { "file", NR_FILE_PAGES }, | |
1391 | { "kernel_stack", NR_KERNEL_STACK_KB }, | |
1392 | { "pagetables", NR_PAGETABLE }, | |
1393 | { "percpu", MEMCG_PERCPU_B }, | |
1394 | { "sock", MEMCG_SOCK }, | |
1395 | { "shmem", NR_SHMEM }, | |
1396 | { "file_mapped", NR_FILE_MAPPED }, | |
1397 | { "file_dirty", NR_FILE_DIRTY }, | |
1398 | { "file_writeback", NR_WRITEBACK }, | |
1399 | #ifdef CONFIG_SWAP | |
1400 | { "swapcached", NR_SWAPCACHE }, | |
1401 | #endif | |
1402 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1403 | { "anon_thp", NR_ANON_THPS }, | |
1404 | { "file_thp", NR_FILE_THPS }, | |
1405 | { "shmem_thp", NR_SHMEM_THPS }, | |
1406 | #endif | |
1407 | { "inactive_anon", NR_INACTIVE_ANON }, | |
1408 | { "active_anon", NR_ACTIVE_ANON }, | |
1409 | { "inactive_file", NR_INACTIVE_FILE }, | |
1410 | { "active_file", NR_ACTIVE_FILE }, | |
1411 | { "unevictable", NR_UNEVICTABLE }, | |
1412 | { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, | |
1413 | { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, | |
1414 | ||
1415 | /* The memory events */ | |
1416 | { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, | |
1417 | { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, | |
1418 | { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, | |
1419 | { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, | |
1420 | { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, | |
1421 | { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, | |
1422 | { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, | |
1423 | }; | |
1424 | ||
1425 | /* Translate stat items to the correct unit for memory.stat output */ | |
1426 | static int memcg_page_state_unit(int item) | |
1427 | { | |
1428 | switch (item) { | |
1429 | case MEMCG_PERCPU_B: | |
1430 | case NR_SLAB_RECLAIMABLE_B: | |
1431 | case NR_SLAB_UNRECLAIMABLE_B: | |
1432 | case WORKINGSET_REFAULT_ANON: | |
1433 | case WORKINGSET_REFAULT_FILE: | |
1434 | case WORKINGSET_ACTIVATE_ANON: | |
1435 | case WORKINGSET_ACTIVATE_FILE: | |
1436 | case WORKINGSET_RESTORE_ANON: | |
1437 | case WORKINGSET_RESTORE_FILE: | |
1438 | case WORKINGSET_NODERECLAIM: | |
1439 | return 1; | |
1440 | case NR_KERNEL_STACK_KB: | |
1441 | return SZ_1K; | |
1442 | default: | |
1443 | return PAGE_SIZE; | |
1444 | } | |
1445 | } | |
1446 | ||
1447 | static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, | |
1448 | int item) | |
1449 | { | |
1450 | return memcg_page_state(memcg, item) * memcg_page_state_unit(item); | |
1451 | } | |
1452 | ||
1453 | static char *memory_stat_format(struct mem_cgroup *memcg) | |
1454 | { | |
1455 | struct seq_buf s; | |
1456 | int i; | |
1457 | ||
1458 | seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); | |
1459 | if (!s.buffer) | |
1460 | return NULL; | |
1461 | ||
1462 | /* | |
1463 | * Provide statistics on the state of the memory subsystem as | |
1464 | * well as cumulative event counters that show past behavior. | |
1465 | * | |
1466 | * This list is ordered following a combination of these gradients: | |
1467 | * 1) generic big picture -> specifics and details | |
1468 | * 2) reflecting userspace activity -> reflecting kernel heuristics | |
1469 | * | |
1470 | * Current memory state: | |
1471 | */ | |
1472 | mem_cgroup_flush_stats(); | |
1473 | ||
1474 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { | |
1475 | u64 size; | |
1476 | ||
1477 | size = memcg_page_state_output(memcg, memory_stats[i].idx); | |
1478 | seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); | |
1479 | ||
1480 | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { | |
1481 | size += memcg_page_state_output(memcg, | |
1482 | NR_SLAB_RECLAIMABLE_B); | |
1483 | seq_buf_printf(&s, "slab %llu\n", size); | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | /* Accumulated memory events */ | |
1488 | ||
1489 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), | |
1490 | memcg_events(memcg, PGFAULT)); | |
1491 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), | |
1492 | memcg_events(memcg, PGMAJFAULT)); | |
1493 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), | |
1494 | memcg_events(memcg, PGREFILL)); | |
1495 | seq_buf_printf(&s, "pgscan %lu\n", | |
1496 | memcg_events(memcg, PGSCAN_KSWAPD) + | |
1497 | memcg_events(memcg, PGSCAN_DIRECT)); | |
1498 | seq_buf_printf(&s, "pgsteal %lu\n", | |
1499 | memcg_events(memcg, PGSTEAL_KSWAPD) + | |
1500 | memcg_events(memcg, PGSTEAL_DIRECT)); | |
1501 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), | |
1502 | memcg_events(memcg, PGACTIVATE)); | |
1503 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), | |
1504 | memcg_events(memcg, PGDEACTIVATE)); | |
1505 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), | |
1506 | memcg_events(memcg, PGLAZYFREE)); | |
1507 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), | |
1508 | memcg_events(memcg, PGLAZYFREED)); | |
1509 | ||
1510 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1511 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), | |
1512 | memcg_events(memcg, THP_FAULT_ALLOC)); | |
1513 | seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), | |
1514 | memcg_events(memcg, THP_COLLAPSE_ALLOC)); | |
1515 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
1516 | ||
1517 | /* The above should easily fit into one page */ | |
1518 | WARN_ON_ONCE(seq_buf_has_overflowed(&s)); | |
1519 | ||
1520 | return s.buffer; | |
1521 | } | |
1522 | ||
1523 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
1524 | /** | |
1525 | * mem_cgroup_print_oom_context: Print OOM information relevant to | |
1526 | * memory controller. | |
1527 | * @memcg: The memory cgroup that went over limit | |
1528 | * @p: Task that is going to be killed | |
1529 | * | |
1530 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1531 | * enabled | |
1532 | */ | |
1533 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) | |
1534 | { | |
1535 | rcu_read_lock(); | |
1536 | ||
1537 | if (memcg) { | |
1538 | pr_cont(",oom_memcg="); | |
1539 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1540 | } else | |
1541 | pr_cont(",global_oom"); | |
1542 | if (p) { | |
1543 | pr_cont(",task_memcg="); | |
1544 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
1545 | } | |
1546 | rcu_read_unlock(); | |
1547 | } | |
1548 | ||
1549 | /** | |
1550 | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to | |
1551 | * memory controller. | |
1552 | * @memcg: The memory cgroup that went over limit | |
1553 | */ | |
1554 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) | |
1555 | { | |
1556 | char *buf; | |
1557 | ||
1558 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | |
1559 | K((u64)page_counter_read(&memcg->memory)), | |
1560 | K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); | |
1561 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
1562 | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1563 | K((u64)page_counter_read(&memcg->swap)), | |
1564 | K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); | |
1565 | else { | |
1566 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1567 | K((u64)page_counter_read(&memcg->memsw)), | |
1568 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); | |
1569 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1570 | K((u64)page_counter_read(&memcg->kmem)), | |
1571 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); | |
1572 | } | |
1573 | ||
1574 | pr_info("Memory cgroup stats for "); | |
1575 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1576 | pr_cont(":"); | |
1577 | buf = memory_stat_format(memcg); | |
1578 | if (!buf) | |
1579 | return; | |
1580 | pr_info("%s", buf); | |
1581 | kfree(buf); | |
1582 | } | |
1583 | ||
1584 | /* | |
1585 | * Return the memory (and swap, if configured) limit for a memcg. | |
1586 | */ | |
1587 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) | |
1588 | { | |
1589 | unsigned long max = READ_ONCE(memcg->memory.max); | |
1590 | ||
1591 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | |
1592 | if (mem_cgroup_swappiness(memcg)) | |
1593 | max += min(READ_ONCE(memcg->swap.max), | |
1594 | (unsigned long)total_swap_pages); | |
1595 | } else { /* v1 */ | |
1596 | if (mem_cgroup_swappiness(memcg)) { | |
1597 | /* Calculate swap excess capacity from memsw limit */ | |
1598 | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; | |
1599 | ||
1600 | max += min(swap, (unsigned long)total_swap_pages); | |
1601 | } | |
1602 | } | |
1603 | return max; | |
1604 | } | |
1605 | ||
1606 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) | |
1607 | { | |
1608 | return page_counter_read(&memcg->memory); | |
1609 | } | |
1610 | ||
1611 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
1612 | int order) | |
1613 | { | |
1614 | struct oom_control oc = { | |
1615 | .zonelist = NULL, | |
1616 | .nodemask = NULL, | |
1617 | .memcg = memcg, | |
1618 | .gfp_mask = gfp_mask, | |
1619 | .order = order, | |
1620 | }; | |
1621 | bool ret = true; | |
1622 | ||
1623 | if (mutex_lock_killable(&oom_lock)) | |
1624 | return true; | |
1625 | ||
1626 | if (mem_cgroup_margin(memcg) >= (1 << order)) | |
1627 | goto unlock; | |
1628 | ||
1629 | /* | |
1630 | * A few threads which were not waiting at mutex_lock_killable() can | |
1631 | * fail to bail out. Therefore, check again after holding oom_lock. | |
1632 | */ | |
1633 | ret = task_is_dying() || out_of_memory(&oc); | |
1634 | ||
1635 | unlock: | |
1636 | mutex_unlock(&oom_lock); | |
1637 | return ret; | |
1638 | } | |
1639 | ||
1640 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | |
1641 | pg_data_t *pgdat, | |
1642 | gfp_t gfp_mask, | |
1643 | unsigned long *total_scanned) | |
1644 | { | |
1645 | struct mem_cgroup *victim = NULL; | |
1646 | int total = 0; | |
1647 | int loop = 0; | |
1648 | unsigned long excess; | |
1649 | unsigned long nr_scanned; | |
1650 | struct mem_cgroup_reclaim_cookie reclaim = { | |
1651 | .pgdat = pgdat, | |
1652 | }; | |
1653 | ||
1654 | excess = soft_limit_excess(root_memcg); | |
1655 | ||
1656 | while (1) { | |
1657 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
1658 | if (!victim) { | |
1659 | loop++; | |
1660 | if (loop >= 2) { | |
1661 | /* | |
1662 | * If we have not been able to reclaim | |
1663 | * anything, it might because there are | |
1664 | * no reclaimable pages under this hierarchy | |
1665 | */ | |
1666 | if (!total) | |
1667 | break; | |
1668 | /* | |
1669 | * We want to do more targeted reclaim. | |
1670 | * excess >> 2 is not to excessive so as to | |
1671 | * reclaim too much, nor too less that we keep | |
1672 | * coming back to reclaim from this cgroup | |
1673 | */ | |
1674 | if (total >= (excess >> 2) || | |
1675 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
1676 | break; | |
1677 | } | |
1678 | continue; | |
1679 | } | |
1680 | total += mem_cgroup_shrink_node(victim, gfp_mask, false, | |
1681 | pgdat, &nr_scanned); | |
1682 | *total_scanned += nr_scanned; | |
1683 | if (!soft_limit_excess(root_memcg)) | |
1684 | break; | |
1685 | } | |
1686 | mem_cgroup_iter_break(root_memcg, victim); | |
1687 | return total; | |
1688 | } | |
1689 | ||
1690 | #ifdef CONFIG_LOCKDEP | |
1691 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
1692 | .name = "memcg_oom_lock", | |
1693 | }; | |
1694 | #endif | |
1695 | ||
1696 | static DEFINE_SPINLOCK(memcg_oom_lock); | |
1697 | ||
1698 | /* | |
1699 | * Check OOM-Killer is already running under our hierarchy. | |
1700 | * If someone is running, return false. | |
1701 | */ | |
1702 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | |
1703 | { | |
1704 | struct mem_cgroup *iter, *failed = NULL; | |
1705 | ||
1706 | spin_lock(&memcg_oom_lock); | |
1707 | ||
1708 | for_each_mem_cgroup_tree(iter, memcg) { | |
1709 | if (iter->oom_lock) { | |
1710 | /* | |
1711 | * this subtree of our hierarchy is already locked | |
1712 | * so we cannot give a lock. | |
1713 | */ | |
1714 | failed = iter; | |
1715 | mem_cgroup_iter_break(memcg, iter); | |
1716 | break; | |
1717 | } else | |
1718 | iter->oom_lock = true; | |
1719 | } | |
1720 | ||
1721 | if (failed) { | |
1722 | /* | |
1723 | * OK, we failed to lock the whole subtree so we have | |
1724 | * to clean up what we set up to the failing subtree | |
1725 | */ | |
1726 | for_each_mem_cgroup_tree(iter, memcg) { | |
1727 | if (iter == failed) { | |
1728 | mem_cgroup_iter_break(memcg, iter); | |
1729 | break; | |
1730 | } | |
1731 | iter->oom_lock = false; | |
1732 | } | |
1733 | } else | |
1734 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
1735 | ||
1736 | spin_unlock(&memcg_oom_lock); | |
1737 | ||
1738 | return !failed; | |
1739 | } | |
1740 | ||
1741 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | |
1742 | { | |
1743 | struct mem_cgroup *iter; | |
1744 | ||
1745 | spin_lock(&memcg_oom_lock); | |
1746 | mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); | |
1747 | for_each_mem_cgroup_tree(iter, memcg) | |
1748 | iter->oom_lock = false; | |
1749 | spin_unlock(&memcg_oom_lock); | |
1750 | } | |
1751 | ||
1752 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | |
1753 | { | |
1754 | struct mem_cgroup *iter; | |
1755 | ||
1756 | spin_lock(&memcg_oom_lock); | |
1757 | for_each_mem_cgroup_tree(iter, memcg) | |
1758 | iter->under_oom++; | |
1759 | spin_unlock(&memcg_oom_lock); | |
1760 | } | |
1761 | ||
1762 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | |
1763 | { | |
1764 | struct mem_cgroup *iter; | |
1765 | ||
1766 | /* | |
1767 | * Be careful about under_oom underflows because a child memcg | |
1768 | * could have been added after mem_cgroup_mark_under_oom. | |
1769 | */ | |
1770 | spin_lock(&memcg_oom_lock); | |
1771 | for_each_mem_cgroup_tree(iter, memcg) | |
1772 | if (iter->under_oom > 0) | |
1773 | iter->under_oom--; | |
1774 | spin_unlock(&memcg_oom_lock); | |
1775 | } | |
1776 | ||
1777 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | |
1778 | ||
1779 | struct oom_wait_info { | |
1780 | struct mem_cgroup *memcg; | |
1781 | wait_queue_entry_t wait; | |
1782 | }; | |
1783 | ||
1784 | static int memcg_oom_wake_function(wait_queue_entry_t *wait, | |
1785 | unsigned mode, int sync, void *arg) | |
1786 | { | |
1787 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | |
1788 | struct mem_cgroup *oom_wait_memcg; | |
1789 | struct oom_wait_info *oom_wait_info; | |
1790 | ||
1791 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
1792 | oom_wait_memcg = oom_wait_info->memcg; | |
1793 | ||
1794 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | |
1795 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | |
1796 | return 0; | |
1797 | return autoremove_wake_function(wait, mode, sync, arg); | |
1798 | } | |
1799 | ||
1800 | static void memcg_oom_recover(struct mem_cgroup *memcg) | |
1801 | { | |
1802 | /* | |
1803 | * For the following lockless ->under_oom test, the only required | |
1804 | * guarantee is that it must see the state asserted by an OOM when | |
1805 | * this function is called as a result of userland actions | |
1806 | * triggered by the notification of the OOM. This is trivially | |
1807 | * achieved by invoking mem_cgroup_mark_under_oom() before | |
1808 | * triggering notification. | |
1809 | */ | |
1810 | if (memcg && memcg->under_oom) | |
1811 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
1812 | } | |
1813 | ||
1814 | enum oom_status { | |
1815 | OOM_SUCCESS, | |
1816 | OOM_FAILED, | |
1817 | OOM_ASYNC, | |
1818 | OOM_SKIPPED | |
1819 | }; | |
1820 | ||
1821 | static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | |
1822 | { | |
1823 | enum oom_status ret; | |
1824 | bool locked; | |
1825 | ||
1826 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
1827 | return OOM_SKIPPED; | |
1828 | ||
1829 | memcg_memory_event(memcg, MEMCG_OOM); | |
1830 | ||
1831 | /* | |
1832 | * We are in the middle of the charge context here, so we | |
1833 | * don't want to block when potentially sitting on a callstack | |
1834 | * that holds all kinds of filesystem and mm locks. | |
1835 | * | |
1836 | * cgroup1 allows disabling the OOM killer and waiting for outside | |
1837 | * handling until the charge can succeed; remember the context and put | |
1838 | * the task to sleep at the end of the page fault when all locks are | |
1839 | * released. | |
1840 | * | |
1841 | * On the other hand, in-kernel OOM killer allows for an async victim | |
1842 | * memory reclaim (oom_reaper) and that means that we are not solely | |
1843 | * relying on the oom victim to make a forward progress and we can | |
1844 | * invoke the oom killer here. | |
1845 | * | |
1846 | * Please note that mem_cgroup_out_of_memory might fail to find a | |
1847 | * victim and then we have to bail out from the charge path. | |
1848 | */ | |
1849 | if (memcg->oom_kill_disable) { | |
1850 | if (!current->in_user_fault) | |
1851 | return OOM_SKIPPED; | |
1852 | css_get(&memcg->css); | |
1853 | current->memcg_in_oom = memcg; | |
1854 | current->memcg_oom_gfp_mask = mask; | |
1855 | current->memcg_oom_order = order; | |
1856 | ||
1857 | return OOM_ASYNC; | |
1858 | } | |
1859 | ||
1860 | mem_cgroup_mark_under_oom(memcg); | |
1861 | ||
1862 | locked = mem_cgroup_oom_trylock(memcg); | |
1863 | ||
1864 | if (locked) | |
1865 | mem_cgroup_oom_notify(memcg); | |
1866 | ||
1867 | mem_cgroup_unmark_under_oom(memcg); | |
1868 | if (mem_cgroup_out_of_memory(memcg, mask, order)) | |
1869 | ret = OOM_SUCCESS; | |
1870 | else | |
1871 | ret = OOM_FAILED; | |
1872 | ||
1873 | if (locked) | |
1874 | mem_cgroup_oom_unlock(memcg); | |
1875 | ||
1876 | return ret; | |
1877 | } | |
1878 | ||
1879 | /** | |
1880 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
1881 | * @handle: actually kill/wait or just clean up the OOM state | |
1882 | * | |
1883 | * This has to be called at the end of a page fault if the memcg OOM | |
1884 | * handler was enabled. | |
1885 | * | |
1886 | * Memcg supports userspace OOM handling where failed allocations must | |
1887 | * sleep on a waitqueue until the userspace task resolves the | |
1888 | * situation. Sleeping directly in the charge context with all kinds | |
1889 | * of locks held is not a good idea, instead we remember an OOM state | |
1890 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
1891 | * the end of the page fault to complete the OOM handling. | |
1892 | * | |
1893 | * Returns %true if an ongoing memcg OOM situation was detected and | |
1894 | * completed, %false otherwise. | |
1895 | */ | |
1896 | bool mem_cgroup_oom_synchronize(bool handle) | |
1897 | { | |
1898 | struct mem_cgroup *memcg = current->memcg_in_oom; | |
1899 | struct oom_wait_info owait; | |
1900 | bool locked; | |
1901 | ||
1902 | /* OOM is global, do not handle */ | |
1903 | if (!memcg) | |
1904 | return false; | |
1905 | ||
1906 | if (!handle) | |
1907 | goto cleanup; | |
1908 | ||
1909 | owait.memcg = memcg; | |
1910 | owait.wait.flags = 0; | |
1911 | owait.wait.func = memcg_oom_wake_function; | |
1912 | owait.wait.private = current; | |
1913 | INIT_LIST_HEAD(&owait.wait.entry); | |
1914 | ||
1915 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | |
1916 | mem_cgroup_mark_under_oom(memcg); | |
1917 | ||
1918 | locked = mem_cgroup_oom_trylock(memcg); | |
1919 | ||
1920 | if (locked) | |
1921 | mem_cgroup_oom_notify(memcg); | |
1922 | ||
1923 | if (locked && !memcg->oom_kill_disable) { | |
1924 | mem_cgroup_unmark_under_oom(memcg); | |
1925 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1926 | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | |
1927 | current->memcg_oom_order); | |
1928 | } else { | |
1929 | schedule(); | |
1930 | mem_cgroup_unmark_under_oom(memcg); | |
1931 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1932 | } | |
1933 | ||
1934 | if (locked) { | |
1935 | mem_cgroup_oom_unlock(memcg); | |
1936 | /* | |
1937 | * There is no guarantee that an OOM-lock contender | |
1938 | * sees the wakeups triggered by the OOM kill | |
1939 | * uncharges. Wake any sleepers explicitly. | |
1940 | */ | |
1941 | memcg_oom_recover(memcg); | |
1942 | } | |
1943 | cleanup: | |
1944 | current->memcg_in_oom = NULL; | |
1945 | css_put(&memcg->css); | |
1946 | return true; | |
1947 | } | |
1948 | ||
1949 | /** | |
1950 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | |
1951 | * @victim: task to be killed by the OOM killer | |
1952 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | |
1953 | * | |
1954 | * Returns a pointer to a memory cgroup, which has to be cleaned up | |
1955 | * by killing all belonging OOM-killable tasks. | |
1956 | * | |
1957 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | |
1958 | */ | |
1959 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | |
1960 | struct mem_cgroup *oom_domain) | |
1961 | { | |
1962 | struct mem_cgroup *oom_group = NULL; | |
1963 | struct mem_cgroup *memcg; | |
1964 | ||
1965 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
1966 | return NULL; | |
1967 | ||
1968 | if (!oom_domain) | |
1969 | oom_domain = root_mem_cgroup; | |
1970 | ||
1971 | rcu_read_lock(); | |
1972 | ||
1973 | memcg = mem_cgroup_from_task(victim); | |
1974 | if (memcg == root_mem_cgroup) | |
1975 | goto out; | |
1976 | ||
1977 | /* | |
1978 | * If the victim task has been asynchronously moved to a different | |
1979 | * memory cgroup, we might end up killing tasks outside oom_domain. | |
1980 | * In this case it's better to ignore memory.group.oom. | |
1981 | */ | |
1982 | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) | |
1983 | goto out; | |
1984 | ||
1985 | /* | |
1986 | * Traverse the memory cgroup hierarchy from the victim task's | |
1987 | * cgroup up to the OOMing cgroup (or root) to find the | |
1988 | * highest-level memory cgroup with oom.group set. | |
1989 | */ | |
1990 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
1991 | if (memcg->oom_group) | |
1992 | oom_group = memcg; | |
1993 | ||
1994 | if (memcg == oom_domain) | |
1995 | break; | |
1996 | } | |
1997 | ||
1998 | if (oom_group) | |
1999 | css_get(&oom_group->css); | |
2000 | out: | |
2001 | rcu_read_unlock(); | |
2002 | ||
2003 | return oom_group; | |
2004 | } | |
2005 | ||
2006 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | |
2007 | { | |
2008 | pr_info("Tasks in "); | |
2009 | pr_cont_cgroup_path(memcg->css.cgroup); | |
2010 | pr_cont(" are going to be killed due to memory.oom.group set\n"); | |
2011 | } | |
2012 | ||
2013 | /** | |
2014 | * lock_page_memcg - lock a page and memcg binding | |
2015 | * @page: the page | |
2016 | * | |
2017 | * This function protects unlocked LRU pages from being moved to | |
2018 | * another cgroup. | |
2019 | * | |
2020 | * It ensures lifetime of the locked memcg. Caller is responsible | |
2021 | * for the lifetime of the page. | |
2022 | */ | |
2023 | void lock_page_memcg(struct page *page) | |
2024 | { | |
2025 | struct page *head = compound_head(page); /* rmap on tail pages */ | |
2026 | struct mem_cgroup *memcg; | |
2027 | unsigned long flags; | |
2028 | ||
2029 | /* | |
2030 | * The RCU lock is held throughout the transaction. The fast | |
2031 | * path can get away without acquiring the memcg->move_lock | |
2032 | * because page moving starts with an RCU grace period. | |
2033 | */ | |
2034 | rcu_read_lock(); | |
2035 | ||
2036 | if (mem_cgroup_disabled()) | |
2037 | return; | |
2038 | again: | |
2039 | memcg = page_memcg(head); | |
2040 | if (unlikely(!memcg)) | |
2041 | return; | |
2042 | ||
2043 | #ifdef CONFIG_PROVE_LOCKING | |
2044 | local_irq_save(flags); | |
2045 | might_lock(&memcg->move_lock); | |
2046 | local_irq_restore(flags); | |
2047 | #endif | |
2048 | ||
2049 | if (atomic_read(&memcg->moving_account) <= 0) | |
2050 | return; | |
2051 | ||
2052 | spin_lock_irqsave(&memcg->move_lock, flags); | |
2053 | if (memcg != page_memcg(head)) { | |
2054 | spin_unlock_irqrestore(&memcg->move_lock, flags); | |
2055 | goto again; | |
2056 | } | |
2057 | ||
2058 | /* | |
2059 | * When charge migration first begins, we can have multiple | |
2060 | * critical sections holding the fast-path RCU lock and one | |
2061 | * holding the slowpath move_lock. Track the task who has the | |
2062 | * move_lock for unlock_page_memcg(). | |
2063 | */ | |
2064 | memcg->move_lock_task = current; | |
2065 | memcg->move_lock_flags = flags; | |
2066 | } | |
2067 | EXPORT_SYMBOL(lock_page_memcg); | |
2068 | ||
2069 | static void __unlock_page_memcg(struct mem_cgroup *memcg) | |
2070 | { | |
2071 | if (memcg && memcg->move_lock_task == current) { | |
2072 | unsigned long flags = memcg->move_lock_flags; | |
2073 | ||
2074 | memcg->move_lock_task = NULL; | |
2075 | memcg->move_lock_flags = 0; | |
2076 | ||
2077 | spin_unlock_irqrestore(&memcg->move_lock, flags); | |
2078 | } | |
2079 | ||
2080 | rcu_read_unlock(); | |
2081 | } | |
2082 | ||
2083 | /** | |
2084 | * unlock_page_memcg - unlock a page and memcg binding | |
2085 | * @page: the page | |
2086 | */ | |
2087 | void unlock_page_memcg(struct page *page) | |
2088 | { | |
2089 | struct page *head = compound_head(page); | |
2090 | ||
2091 | __unlock_page_memcg(page_memcg(head)); | |
2092 | } | |
2093 | EXPORT_SYMBOL(unlock_page_memcg); | |
2094 | ||
2095 | struct obj_stock { | |
2096 | #ifdef CONFIG_MEMCG_KMEM | |
2097 | struct obj_cgroup *cached_objcg; | |
2098 | struct pglist_data *cached_pgdat; | |
2099 | unsigned int nr_bytes; | |
2100 | int nr_slab_reclaimable_b; | |
2101 | int nr_slab_unreclaimable_b; | |
2102 | #else | |
2103 | int dummy[0]; | |
2104 | #endif | |
2105 | }; | |
2106 | ||
2107 | struct memcg_stock_pcp { | |
2108 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
2109 | unsigned int nr_pages; | |
2110 | struct obj_stock task_obj; | |
2111 | struct obj_stock irq_obj; | |
2112 | ||
2113 | struct work_struct work; | |
2114 | unsigned long flags; | |
2115 | #define FLUSHING_CACHED_CHARGE 0 | |
2116 | }; | |
2117 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
2118 | static DEFINE_MUTEX(percpu_charge_mutex); | |
2119 | ||
2120 | #ifdef CONFIG_MEMCG_KMEM | |
2121 | static void drain_obj_stock(struct obj_stock *stock); | |
2122 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, | |
2123 | struct mem_cgroup *root_memcg); | |
2124 | ||
2125 | #else | |
2126 | static inline void drain_obj_stock(struct obj_stock *stock) | |
2127 | { | |
2128 | } | |
2129 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, | |
2130 | struct mem_cgroup *root_memcg) | |
2131 | { | |
2132 | return false; | |
2133 | } | |
2134 | #endif | |
2135 | ||
2136 | /* | |
2137 | * Most kmem_cache_alloc() calls are from user context. The irq disable/enable | |
2138 | * sequence used in this case to access content from object stock is slow. | |
2139 | * To optimize for user context access, there are now two object stocks for | |
2140 | * task context and interrupt context access respectively. | |
2141 | * | |
2142 | * The task context object stock can be accessed by disabling preemption only | |
2143 | * which is cheap in non-preempt kernel. The interrupt context object stock | |
2144 | * can only be accessed after disabling interrupt. User context code can | |
2145 | * access interrupt object stock, but not vice versa. | |
2146 | */ | |
2147 | static inline struct obj_stock *get_obj_stock(unsigned long *pflags) | |
2148 | { | |
2149 | struct memcg_stock_pcp *stock; | |
2150 | ||
2151 | if (likely(in_task())) { | |
2152 | *pflags = 0UL; | |
2153 | preempt_disable(); | |
2154 | stock = this_cpu_ptr(&memcg_stock); | |
2155 | return &stock->task_obj; | |
2156 | } | |
2157 | ||
2158 | local_irq_save(*pflags); | |
2159 | stock = this_cpu_ptr(&memcg_stock); | |
2160 | return &stock->irq_obj; | |
2161 | } | |
2162 | ||
2163 | static inline void put_obj_stock(unsigned long flags) | |
2164 | { | |
2165 | if (likely(in_task())) | |
2166 | preempt_enable(); | |
2167 | else | |
2168 | local_irq_restore(flags); | |
2169 | } | |
2170 | ||
2171 | /** | |
2172 | * consume_stock: Try to consume stocked charge on this cpu. | |
2173 | * @memcg: memcg to consume from. | |
2174 | * @nr_pages: how many pages to charge. | |
2175 | * | |
2176 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2177 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2178 | * service an allocation will refill the stock. | |
2179 | * | |
2180 | * returns true if successful, false otherwise. | |
2181 | */ | |
2182 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2183 | { | |
2184 | struct memcg_stock_pcp *stock; | |
2185 | unsigned long flags; | |
2186 | bool ret = false; | |
2187 | ||
2188 | if (nr_pages > MEMCG_CHARGE_BATCH) | |
2189 | return ret; | |
2190 | ||
2191 | local_irq_save(flags); | |
2192 | ||
2193 | stock = this_cpu_ptr(&memcg_stock); | |
2194 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | |
2195 | stock->nr_pages -= nr_pages; | |
2196 | ret = true; | |
2197 | } | |
2198 | ||
2199 | local_irq_restore(flags); | |
2200 | ||
2201 | return ret; | |
2202 | } | |
2203 | ||
2204 | /* | |
2205 | * Returns stocks cached in percpu and reset cached information. | |
2206 | */ | |
2207 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2208 | { | |
2209 | struct mem_cgroup *old = stock->cached; | |
2210 | ||
2211 | if (!old) | |
2212 | return; | |
2213 | ||
2214 | if (stock->nr_pages) { | |
2215 | page_counter_uncharge(&old->memory, stock->nr_pages); | |
2216 | if (do_memsw_account()) | |
2217 | page_counter_uncharge(&old->memsw, stock->nr_pages); | |
2218 | stock->nr_pages = 0; | |
2219 | } | |
2220 | ||
2221 | css_put(&old->css); | |
2222 | stock->cached = NULL; | |
2223 | } | |
2224 | ||
2225 | static void drain_local_stock(struct work_struct *dummy) | |
2226 | { | |
2227 | struct memcg_stock_pcp *stock; | |
2228 | unsigned long flags; | |
2229 | ||
2230 | /* | |
2231 | * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. | |
2232 | * drain_stock races is that we always operate on local CPU stock | |
2233 | * here with IRQ disabled | |
2234 | */ | |
2235 | local_irq_save(flags); | |
2236 | ||
2237 | stock = this_cpu_ptr(&memcg_stock); | |
2238 | drain_obj_stock(&stock->irq_obj); | |
2239 | if (in_task()) | |
2240 | drain_obj_stock(&stock->task_obj); | |
2241 | drain_stock(stock); | |
2242 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | |
2243 | ||
2244 | local_irq_restore(flags); | |
2245 | } | |
2246 | ||
2247 | /* | |
2248 | * Cache charges(val) to local per_cpu area. | |
2249 | * This will be consumed by consume_stock() function, later. | |
2250 | */ | |
2251 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2252 | { | |
2253 | struct memcg_stock_pcp *stock; | |
2254 | unsigned long flags; | |
2255 | ||
2256 | local_irq_save(flags); | |
2257 | ||
2258 | stock = this_cpu_ptr(&memcg_stock); | |
2259 | if (stock->cached != memcg) { /* reset if necessary */ | |
2260 | drain_stock(stock); | |
2261 | css_get(&memcg->css); | |
2262 | stock->cached = memcg; | |
2263 | } | |
2264 | stock->nr_pages += nr_pages; | |
2265 | ||
2266 | if (stock->nr_pages > MEMCG_CHARGE_BATCH) | |
2267 | drain_stock(stock); | |
2268 | ||
2269 | local_irq_restore(flags); | |
2270 | } | |
2271 | ||
2272 | /* | |
2273 | * Drains all per-CPU charge caches for given root_memcg resp. subtree | |
2274 | * of the hierarchy under it. | |
2275 | */ | |
2276 | static void drain_all_stock(struct mem_cgroup *root_memcg) | |
2277 | { | |
2278 | int cpu, curcpu; | |
2279 | ||
2280 | /* If someone's already draining, avoid adding running more workers. */ | |
2281 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2282 | return; | |
2283 | /* | |
2284 | * Notify other cpus that system-wide "drain" is running | |
2285 | * We do not care about races with the cpu hotplug because cpu down | |
2286 | * as well as workers from this path always operate on the local | |
2287 | * per-cpu data. CPU up doesn't touch memcg_stock at all. | |
2288 | */ | |
2289 | curcpu = get_cpu(); | |
2290 | for_each_online_cpu(cpu) { | |
2291 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
2292 | struct mem_cgroup *memcg; | |
2293 | bool flush = false; | |
2294 | ||
2295 | rcu_read_lock(); | |
2296 | memcg = stock->cached; | |
2297 | if (memcg && stock->nr_pages && | |
2298 | mem_cgroup_is_descendant(memcg, root_memcg)) | |
2299 | flush = true; | |
2300 | else if (obj_stock_flush_required(stock, root_memcg)) | |
2301 | flush = true; | |
2302 | rcu_read_unlock(); | |
2303 | ||
2304 | if (flush && | |
2305 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | |
2306 | if (cpu == curcpu) | |
2307 | drain_local_stock(&stock->work); | |
2308 | else | |
2309 | schedule_work_on(cpu, &stock->work); | |
2310 | } | |
2311 | } | |
2312 | put_cpu(); | |
2313 | mutex_unlock(&percpu_charge_mutex); | |
2314 | } | |
2315 | ||
2316 | static int memcg_hotplug_cpu_dead(unsigned int cpu) | |
2317 | { | |
2318 | struct memcg_stock_pcp *stock; | |
2319 | ||
2320 | stock = &per_cpu(memcg_stock, cpu); | |
2321 | drain_stock(stock); | |
2322 | ||
2323 | return 0; | |
2324 | } | |
2325 | ||
2326 | static unsigned long reclaim_high(struct mem_cgroup *memcg, | |
2327 | unsigned int nr_pages, | |
2328 | gfp_t gfp_mask) | |
2329 | { | |
2330 | unsigned long nr_reclaimed = 0; | |
2331 | ||
2332 | do { | |
2333 | unsigned long pflags; | |
2334 | ||
2335 | if (page_counter_read(&memcg->memory) <= | |
2336 | READ_ONCE(memcg->memory.high)) | |
2337 | continue; | |
2338 | ||
2339 | memcg_memory_event(memcg, MEMCG_HIGH); | |
2340 | ||
2341 | psi_memstall_enter(&pflags); | |
2342 | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, | |
2343 | gfp_mask, true); | |
2344 | psi_memstall_leave(&pflags); | |
2345 | } while ((memcg = parent_mem_cgroup(memcg)) && | |
2346 | !mem_cgroup_is_root(memcg)); | |
2347 | ||
2348 | return nr_reclaimed; | |
2349 | } | |
2350 | ||
2351 | static void high_work_func(struct work_struct *work) | |
2352 | { | |
2353 | struct mem_cgroup *memcg; | |
2354 | ||
2355 | memcg = container_of(work, struct mem_cgroup, high_work); | |
2356 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); | |
2357 | } | |
2358 | ||
2359 | /* | |
2360 | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is | |
2361 | * enough to still cause a significant slowdown in most cases, while still | |
2362 | * allowing diagnostics and tracing to proceed without becoming stuck. | |
2363 | */ | |
2364 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) | |
2365 | ||
2366 | /* | |
2367 | * When calculating the delay, we use these either side of the exponentiation to | |
2368 | * maintain precision and scale to a reasonable number of jiffies (see the table | |
2369 | * below. | |
2370 | * | |
2371 | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the | |
2372 | * overage ratio to a delay. | |
2373 | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the | |
2374 | * proposed penalty in order to reduce to a reasonable number of jiffies, and | |
2375 | * to produce a reasonable delay curve. | |
2376 | * | |
2377 | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a | |
2378 | * reasonable delay curve compared to precision-adjusted overage, not | |
2379 | * penalising heavily at first, but still making sure that growth beyond the | |
2380 | * limit penalises misbehaviour cgroups by slowing them down exponentially. For | |
2381 | * example, with a high of 100 megabytes: | |
2382 | * | |
2383 | * +-------+------------------------+ | |
2384 | * | usage | time to allocate in ms | | |
2385 | * +-------+------------------------+ | |
2386 | * | 100M | 0 | | |
2387 | * | 101M | 6 | | |
2388 | * | 102M | 25 | | |
2389 | * | 103M | 57 | | |
2390 | * | 104M | 102 | | |
2391 | * | 105M | 159 | | |
2392 | * | 106M | 230 | | |
2393 | * | 107M | 313 | | |
2394 | * | 108M | 409 | | |
2395 | * | 109M | 518 | | |
2396 | * | 110M | 639 | | |
2397 | * | 111M | 774 | | |
2398 | * | 112M | 921 | | |
2399 | * | 113M | 1081 | | |
2400 | * | 114M | 1254 | | |
2401 | * | 115M | 1439 | | |
2402 | * | 116M | 1638 | | |
2403 | * | 117M | 1849 | | |
2404 | * | 118M | 2000 | | |
2405 | * | 119M | 2000 | | |
2406 | * | 120M | 2000 | | |
2407 | * +-------+------------------------+ | |
2408 | */ | |
2409 | #define MEMCG_DELAY_PRECISION_SHIFT 20 | |
2410 | #define MEMCG_DELAY_SCALING_SHIFT 14 | |
2411 | ||
2412 | static u64 calculate_overage(unsigned long usage, unsigned long high) | |
2413 | { | |
2414 | u64 overage; | |
2415 | ||
2416 | if (usage <= high) | |
2417 | return 0; | |
2418 | ||
2419 | /* | |
2420 | * Prevent division by 0 in overage calculation by acting as if | |
2421 | * it was a threshold of 1 page | |
2422 | */ | |
2423 | high = max(high, 1UL); | |
2424 | ||
2425 | overage = usage - high; | |
2426 | overage <<= MEMCG_DELAY_PRECISION_SHIFT; | |
2427 | return div64_u64(overage, high); | |
2428 | } | |
2429 | ||
2430 | static u64 mem_find_max_overage(struct mem_cgroup *memcg) | |
2431 | { | |
2432 | u64 overage, max_overage = 0; | |
2433 | ||
2434 | do { | |
2435 | overage = calculate_overage(page_counter_read(&memcg->memory), | |
2436 | READ_ONCE(memcg->memory.high)); | |
2437 | max_overage = max(overage, max_overage); | |
2438 | } while ((memcg = parent_mem_cgroup(memcg)) && | |
2439 | !mem_cgroup_is_root(memcg)); | |
2440 | ||
2441 | return max_overage; | |
2442 | } | |
2443 | ||
2444 | static u64 swap_find_max_overage(struct mem_cgroup *memcg) | |
2445 | { | |
2446 | u64 overage, max_overage = 0; | |
2447 | ||
2448 | do { | |
2449 | overage = calculate_overage(page_counter_read(&memcg->swap), | |
2450 | READ_ONCE(memcg->swap.high)); | |
2451 | if (overage) | |
2452 | memcg_memory_event(memcg, MEMCG_SWAP_HIGH); | |
2453 | max_overage = max(overage, max_overage); | |
2454 | } while ((memcg = parent_mem_cgroup(memcg)) && | |
2455 | !mem_cgroup_is_root(memcg)); | |
2456 | ||
2457 | return max_overage; | |
2458 | } | |
2459 | ||
2460 | /* | |
2461 | * Get the number of jiffies that we should penalise a mischievous cgroup which | |
2462 | * is exceeding its memory.high by checking both it and its ancestors. | |
2463 | */ | |
2464 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, | |
2465 | unsigned int nr_pages, | |
2466 | u64 max_overage) | |
2467 | { | |
2468 | unsigned long penalty_jiffies; | |
2469 | ||
2470 | if (!max_overage) | |
2471 | return 0; | |
2472 | ||
2473 | /* | |
2474 | * We use overage compared to memory.high to calculate the number of | |
2475 | * jiffies to sleep (penalty_jiffies). Ideally this value should be | |
2476 | * fairly lenient on small overages, and increasingly harsh when the | |
2477 | * memcg in question makes it clear that it has no intention of stopping | |
2478 | * its crazy behaviour, so we exponentially increase the delay based on | |
2479 | * overage amount. | |
2480 | */ | |
2481 | penalty_jiffies = max_overage * max_overage * HZ; | |
2482 | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; | |
2483 | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; | |
2484 | ||
2485 | /* | |
2486 | * Factor in the task's own contribution to the overage, such that four | |
2487 | * N-sized allocations are throttled approximately the same as one | |
2488 | * 4N-sized allocation. | |
2489 | * | |
2490 | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or | |
2491 | * larger the current charge patch is than that. | |
2492 | */ | |
2493 | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; | |
2494 | } | |
2495 | ||
2496 | /* | |
2497 | * Scheduled by try_charge() to be executed from the userland return path | |
2498 | * and reclaims memory over the high limit. | |
2499 | */ | |
2500 | void mem_cgroup_handle_over_high(void) | |
2501 | { | |
2502 | unsigned long penalty_jiffies; | |
2503 | unsigned long pflags; | |
2504 | unsigned long nr_reclaimed; | |
2505 | unsigned int nr_pages = current->memcg_nr_pages_over_high; | |
2506 | int nr_retries = MAX_RECLAIM_RETRIES; | |
2507 | struct mem_cgroup *memcg; | |
2508 | bool in_retry = false; | |
2509 | ||
2510 | if (likely(!nr_pages)) | |
2511 | return; | |
2512 | ||
2513 | memcg = get_mem_cgroup_from_mm(current->mm); | |
2514 | current->memcg_nr_pages_over_high = 0; | |
2515 | ||
2516 | retry_reclaim: | |
2517 | /* | |
2518 | * The allocating task should reclaim at least the batch size, but for | |
2519 | * subsequent retries we only want to do what's necessary to prevent oom | |
2520 | * or breaching resource isolation. | |
2521 | * | |
2522 | * This is distinct from memory.max or page allocator behaviour because | |
2523 | * memory.high is currently batched, whereas memory.max and the page | |
2524 | * allocator run every time an allocation is made. | |
2525 | */ | |
2526 | nr_reclaimed = reclaim_high(memcg, | |
2527 | in_retry ? SWAP_CLUSTER_MAX : nr_pages, | |
2528 | GFP_KERNEL); | |
2529 | ||
2530 | /* | |
2531 | * memory.high is breached and reclaim is unable to keep up. Throttle | |
2532 | * allocators proactively to slow down excessive growth. | |
2533 | */ | |
2534 | penalty_jiffies = calculate_high_delay(memcg, nr_pages, | |
2535 | mem_find_max_overage(memcg)); | |
2536 | ||
2537 | penalty_jiffies += calculate_high_delay(memcg, nr_pages, | |
2538 | swap_find_max_overage(memcg)); | |
2539 | ||
2540 | /* | |
2541 | * Clamp the max delay per usermode return so as to still keep the | |
2542 | * application moving forwards and also permit diagnostics, albeit | |
2543 | * extremely slowly. | |
2544 | */ | |
2545 | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); | |
2546 | ||
2547 | /* | |
2548 | * Don't sleep if the amount of jiffies this memcg owes us is so low | |
2549 | * that it's not even worth doing, in an attempt to be nice to those who | |
2550 | * go only a small amount over their memory.high value and maybe haven't | |
2551 | * been aggressively reclaimed enough yet. | |
2552 | */ | |
2553 | if (penalty_jiffies <= HZ / 100) | |
2554 | goto out; | |
2555 | ||
2556 | /* | |
2557 | * If reclaim is making forward progress but we're still over | |
2558 | * memory.high, we want to encourage that rather than doing allocator | |
2559 | * throttling. | |
2560 | */ | |
2561 | if (nr_reclaimed || nr_retries--) { | |
2562 | in_retry = true; | |
2563 | goto retry_reclaim; | |
2564 | } | |
2565 | ||
2566 | /* | |
2567 | * If we exit early, we're guaranteed to die (since | |
2568 | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't | |
2569 | * need to account for any ill-begotten jiffies to pay them off later. | |
2570 | */ | |
2571 | psi_memstall_enter(&pflags); | |
2572 | schedule_timeout_killable(penalty_jiffies); | |
2573 | psi_memstall_leave(&pflags); | |
2574 | ||
2575 | out: | |
2576 | css_put(&memcg->css); | |
2577 | } | |
2578 | ||
2579 | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
2580 | unsigned int nr_pages) | |
2581 | { | |
2582 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); | |
2583 | int nr_retries = MAX_RECLAIM_RETRIES; | |
2584 | struct mem_cgroup *mem_over_limit; | |
2585 | struct page_counter *counter; | |
2586 | enum oom_status oom_status; | |
2587 | unsigned long nr_reclaimed; | |
2588 | bool passed_oom = false; | |
2589 | bool may_swap = true; | |
2590 | bool drained = false; | |
2591 | unsigned long pflags; | |
2592 | ||
2593 | retry: | |
2594 | if (consume_stock(memcg, nr_pages)) | |
2595 | return 0; | |
2596 | ||
2597 | if (!do_memsw_account() || | |
2598 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | |
2599 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | |
2600 | goto done_restock; | |
2601 | if (do_memsw_account()) | |
2602 | page_counter_uncharge(&memcg->memsw, batch); | |
2603 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
2604 | } else { | |
2605 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | |
2606 | may_swap = false; | |
2607 | } | |
2608 | ||
2609 | if (batch > nr_pages) { | |
2610 | batch = nr_pages; | |
2611 | goto retry; | |
2612 | } | |
2613 | ||
2614 | /* | |
2615 | * Memcg doesn't have a dedicated reserve for atomic | |
2616 | * allocations. But like the global atomic pool, we need to | |
2617 | * put the burden of reclaim on regular allocation requests | |
2618 | * and let these go through as privileged allocations. | |
2619 | */ | |
2620 | if (gfp_mask & __GFP_ATOMIC) | |
2621 | goto force; | |
2622 | ||
2623 | /* | |
2624 | * Prevent unbounded recursion when reclaim operations need to | |
2625 | * allocate memory. This might exceed the limits temporarily, | |
2626 | * but we prefer facilitating memory reclaim and getting back | |
2627 | * under the limit over triggering OOM kills in these cases. | |
2628 | */ | |
2629 | if (unlikely(current->flags & PF_MEMALLOC)) | |
2630 | goto force; | |
2631 | ||
2632 | if (unlikely(task_in_memcg_oom(current))) | |
2633 | goto nomem; | |
2634 | ||
2635 | if (!gfpflags_allow_blocking(gfp_mask)) | |
2636 | goto nomem; | |
2637 | ||
2638 | memcg_memory_event(mem_over_limit, MEMCG_MAX); | |
2639 | ||
2640 | psi_memstall_enter(&pflags); | |
2641 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | |
2642 | gfp_mask, may_swap); | |
2643 | psi_memstall_leave(&pflags); | |
2644 | ||
2645 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | |
2646 | goto retry; | |
2647 | ||
2648 | if (!drained) { | |
2649 | drain_all_stock(mem_over_limit); | |
2650 | drained = true; | |
2651 | goto retry; | |
2652 | } | |
2653 | ||
2654 | if (gfp_mask & __GFP_NORETRY) | |
2655 | goto nomem; | |
2656 | /* | |
2657 | * Even though the limit is exceeded at this point, reclaim | |
2658 | * may have been able to free some pages. Retry the charge | |
2659 | * before killing the task. | |
2660 | * | |
2661 | * Only for regular pages, though: huge pages are rather | |
2662 | * unlikely to succeed so close to the limit, and we fall back | |
2663 | * to regular pages anyway in case of failure. | |
2664 | */ | |
2665 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | |
2666 | goto retry; | |
2667 | /* | |
2668 | * At task move, charge accounts can be doubly counted. So, it's | |
2669 | * better to wait until the end of task_move if something is going on. | |
2670 | */ | |
2671 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2672 | goto retry; | |
2673 | ||
2674 | if (nr_retries--) | |
2675 | goto retry; | |
2676 | ||
2677 | if (gfp_mask & __GFP_RETRY_MAYFAIL) | |
2678 | goto nomem; | |
2679 | ||
2680 | /* Avoid endless loop for tasks bypassed by the oom killer */ | |
2681 | if (passed_oom && task_is_dying()) | |
2682 | goto nomem; | |
2683 | ||
2684 | /* | |
2685 | * keep retrying as long as the memcg oom killer is able to make | |
2686 | * a forward progress or bypass the charge if the oom killer | |
2687 | * couldn't make any progress. | |
2688 | */ | |
2689 | oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, | |
2690 | get_order(nr_pages * PAGE_SIZE)); | |
2691 | if (oom_status == OOM_SUCCESS) { | |
2692 | passed_oom = true; | |
2693 | nr_retries = MAX_RECLAIM_RETRIES; | |
2694 | goto retry; | |
2695 | } | |
2696 | nomem: | |
2697 | if (!(gfp_mask & __GFP_NOFAIL)) | |
2698 | return -ENOMEM; | |
2699 | force: | |
2700 | /* | |
2701 | * The allocation either can't fail or will lead to more memory | |
2702 | * being freed very soon. Allow memory usage go over the limit | |
2703 | * temporarily by force charging it. | |
2704 | */ | |
2705 | page_counter_charge(&memcg->memory, nr_pages); | |
2706 | if (do_memsw_account()) | |
2707 | page_counter_charge(&memcg->memsw, nr_pages); | |
2708 | ||
2709 | return 0; | |
2710 | ||
2711 | done_restock: | |
2712 | if (batch > nr_pages) | |
2713 | refill_stock(memcg, batch - nr_pages); | |
2714 | ||
2715 | /* | |
2716 | * If the hierarchy is above the normal consumption range, schedule | |
2717 | * reclaim on returning to userland. We can perform reclaim here | |
2718 | * if __GFP_RECLAIM but let's always punt for simplicity and so that | |
2719 | * GFP_KERNEL can consistently be used during reclaim. @memcg is | |
2720 | * not recorded as it most likely matches current's and won't | |
2721 | * change in the meantime. As high limit is checked again before | |
2722 | * reclaim, the cost of mismatch is negligible. | |
2723 | */ | |
2724 | do { | |
2725 | bool mem_high, swap_high; | |
2726 | ||
2727 | mem_high = page_counter_read(&memcg->memory) > | |
2728 | READ_ONCE(memcg->memory.high); | |
2729 | swap_high = page_counter_read(&memcg->swap) > | |
2730 | READ_ONCE(memcg->swap.high); | |
2731 | ||
2732 | /* Don't bother a random interrupted task */ | |
2733 | if (in_interrupt()) { | |
2734 | if (mem_high) { | |
2735 | schedule_work(&memcg->high_work); | |
2736 | break; | |
2737 | } | |
2738 | continue; | |
2739 | } | |
2740 | ||
2741 | if (mem_high || swap_high) { | |
2742 | /* | |
2743 | * The allocating tasks in this cgroup will need to do | |
2744 | * reclaim or be throttled to prevent further growth | |
2745 | * of the memory or swap footprints. | |
2746 | * | |
2747 | * Target some best-effort fairness between the tasks, | |
2748 | * and distribute reclaim work and delay penalties | |
2749 | * based on how much each task is actually allocating. | |
2750 | */ | |
2751 | current->memcg_nr_pages_over_high += batch; | |
2752 | set_notify_resume(current); | |
2753 | break; | |
2754 | } | |
2755 | } while ((memcg = parent_mem_cgroup(memcg))); | |
2756 | ||
2757 | return 0; | |
2758 | } | |
2759 | ||
2760 | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
2761 | unsigned int nr_pages) | |
2762 | { | |
2763 | if (mem_cgroup_is_root(memcg)) | |
2764 | return 0; | |
2765 | ||
2766 | return try_charge_memcg(memcg, gfp_mask, nr_pages); | |
2767 | } | |
2768 | ||
2769 | #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) | |
2770 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2771 | { | |
2772 | if (mem_cgroup_is_root(memcg)) | |
2773 | return; | |
2774 | ||
2775 | page_counter_uncharge(&memcg->memory, nr_pages); | |
2776 | if (do_memsw_account()) | |
2777 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
2778 | } | |
2779 | #endif | |
2780 | ||
2781 | static void commit_charge(struct page *page, struct mem_cgroup *memcg) | |
2782 | { | |
2783 | VM_BUG_ON_PAGE(page_memcg(page), page); | |
2784 | /* | |
2785 | * Any of the following ensures page's memcg stability: | |
2786 | * | |
2787 | * - the page lock | |
2788 | * - LRU isolation | |
2789 | * - lock_page_memcg() | |
2790 | * - exclusive reference | |
2791 | */ | |
2792 | page->memcg_data = (unsigned long)memcg; | |
2793 | } | |
2794 | ||
2795 | static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) | |
2796 | { | |
2797 | struct mem_cgroup *memcg; | |
2798 | ||
2799 | rcu_read_lock(); | |
2800 | retry: | |
2801 | memcg = obj_cgroup_memcg(objcg); | |
2802 | if (unlikely(!css_tryget(&memcg->css))) | |
2803 | goto retry; | |
2804 | rcu_read_unlock(); | |
2805 | ||
2806 | return memcg; | |
2807 | } | |
2808 | ||
2809 | #ifdef CONFIG_MEMCG_KMEM | |
2810 | /* | |
2811 | * The allocated objcg pointers array is not accounted directly. | |
2812 | * Moreover, it should not come from DMA buffer and is not readily | |
2813 | * reclaimable. So those GFP bits should be masked off. | |
2814 | */ | |
2815 | #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) | |
2816 | ||
2817 | int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, | |
2818 | gfp_t gfp, bool new_page) | |
2819 | { | |
2820 | unsigned int objects = objs_per_slab_page(s, page); | |
2821 | unsigned long memcg_data; | |
2822 | void *vec; | |
2823 | ||
2824 | gfp &= ~OBJCGS_CLEAR_MASK; | |
2825 | vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, | |
2826 | page_to_nid(page)); | |
2827 | if (!vec) | |
2828 | return -ENOMEM; | |
2829 | ||
2830 | memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; | |
2831 | if (new_page) { | |
2832 | /* | |
2833 | * If the slab page is brand new and nobody can yet access | |
2834 | * it's memcg_data, no synchronization is required and | |
2835 | * memcg_data can be simply assigned. | |
2836 | */ | |
2837 | page->memcg_data = memcg_data; | |
2838 | } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { | |
2839 | /* | |
2840 | * If the slab page is already in use, somebody can allocate | |
2841 | * and assign obj_cgroups in parallel. In this case the existing | |
2842 | * objcg vector should be reused. | |
2843 | */ | |
2844 | kfree(vec); | |
2845 | return 0; | |
2846 | } | |
2847 | ||
2848 | kmemleak_not_leak(vec); | |
2849 | return 0; | |
2850 | } | |
2851 | ||
2852 | /* | |
2853 | * Returns a pointer to the memory cgroup to which the kernel object is charged. | |
2854 | * | |
2855 | * A passed kernel object can be a slab object or a generic kernel page, so | |
2856 | * different mechanisms for getting the memory cgroup pointer should be used. | |
2857 | * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller | |
2858 | * can not know for sure how the kernel object is implemented. | |
2859 | * mem_cgroup_from_obj() can be safely used in such cases. | |
2860 | * | |
2861 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), | |
2862 | * cgroup_mutex, etc. | |
2863 | */ | |
2864 | struct mem_cgroup *mem_cgroup_from_obj(void *p) | |
2865 | { | |
2866 | struct page *page; | |
2867 | ||
2868 | if (mem_cgroup_disabled()) | |
2869 | return NULL; | |
2870 | ||
2871 | page = virt_to_head_page(p); | |
2872 | ||
2873 | /* | |
2874 | * Slab objects are accounted individually, not per-page. | |
2875 | * Memcg membership data for each individual object is saved in | |
2876 | * the page->obj_cgroups. | |
2877 | */ | |
2878 | if (page_objcgs_check(page)) { | |
2879 | struct obj_cgroup *objcg; | |
2880 | unsigned int off; | |
2881 | ||
2882 | off = obj_to_index(page->slab_cache, page, p); | |
2883 | objcg = page_objcgs(page)[off]; | |
2884 | if (objcg) | |
2885 | return obj_cgroup_memcg(objcg); | |
2886 | ||
2887 | return NULL; | |
2888 | } | |
2889 | ||
2890 | /* | |
2891 | * page_memcg_check() is used here, because page_has_obj_cgroups() | |
2892 | * check above could fail because the object cgroups vector wasn't set | |
2893 | * at that moment, but it can be set concurrently. | |
2894 | * page_memcg_check(page) will guarantee that a proper memory | |
2895 | * cgroup pointer or NULL will be returned. | |
2896 | */ | |
2897 | return page_memcg_check(page); | |
2898 | } | |
2899 | ||
2900 | __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) | |
2901 | { | |
2902 | struct obj_cgroup *objcg = NULL; | |
2903 | struct mem_cgroup *memcg; | |
2904 | ||
2905 | if (memcg_kmem_bypass()) | |
2906 | return NULL; | |
2907 | ||
2908 | rcu_read_lock(); | |
2909 | if (unlikely(active_memcg())) | |
2910 | memcg = active_memcg(); | |
2911 | else | |
2912 | memcg = mem_cgroup_from_task(current); | |
2913 | ||
2914 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { | |
2915 | objcg = rcu_dereference(memcg->objcg); | |
2916 | if (objcg && obj_cgroup_tryget(objcg)) | |
2917 | break; | |
2918 | objcg = NULL; | |
2919 | } | |
2920 | rcu_read_unlock(); | |
2921 | ||
2922 | return objcg; | |
2923 | } | |
2924 | ||
2925 | static int memcg_alloc_cache_id(void) | |
2926 | { | |
2927 | int id, size; | |
2928 | int err; | |
2929 | ||
2930 | id = ida_simple_get(&memcg_cache_ida, | |
2931 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
2932 | if (id < 0) | |
2933 | return id; | |
2934 | ||
2935 | if (id < memcg_nr_cache_ids) | |
2936 | return id; | |
2937 | ||
2938 | /* | |
2939 | * There's no space for the new id in memcg_caches arrays, | |
2940 | * so we have to grow them. | |
2941 | */ | |
2942 | down_write(&memcg_cache_ids_sem); | |
2943 | ||
2944 | size = 2 * (id + 1); | |
2945 | if (size < MEMCG_CACHES_MIN_SIZE) | |
2946 | size = MEMCG_CACHES_MIN_SIZE; | |
2947 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2948 | size = MEMCG_CACHES_MAX_SIZE; | |
2949 | ||
2950 | err = memcg_update_all_list_lrus(size); | |
2951 | if (!err) | |
2952 | memcg_nr_cache_ids = size; | |
2953 | ||
2954 | up_write(&memcg_cache_ids_sem); | |
2955 | ||
2956 | if (err) { | |
2957 | ida_simple_remove(&memcg_cache_ida, id); | |
2958 | return err; | |
2959 | } | |
2960 | return id; | |
2961 | } | |
2962 | ||
2963 | static void memcg_free_cache_id(int id) | |
2964 | { | |
2965 | ida_simple_remove(&memcg_cache_ida, id); | |
2966 | } | |
2967 | ||
2968 | /* | |
2969 | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg | |
2970 | * @objcg: object cgroup to uncharge | |
2971 | * @nr_pages: number of pages to uncharge | |
2972 | */ | |
2973 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, | |
2974 | unsigned int nr_pages) | |
2975 | { | |
2976 | struct mem_cgroup *memcg; | |
2977 | ||
2978 | memcg = get_mem_cgroup_from_objcg(objcg); | |
2979 | ||
2980 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
2981 | page_counter_uncharge(&memcg->kmem, nr_pages); | |
2982 | refill_stock(memcg, nr_pages); | |
2983 | ||
2984 | css_put(&memcg->css); | |
2985 | } | |
2986 | ||
2987 | /* | |
2988 | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg | |
2989 | * @objcg: object cgroup to charge | |
2990 | * @gfp: reclaim mode | |
2991 | * @nr_pages: number of pages to charge | |
2992 | * | |
2993 | * Returns 0 on success, an error code on failure. | |
2994 | */ | |
2995 | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, | |
2996 | unsigned int nr_pages) | |
2997 | { | |
2998 | struct page_counter *counter; | |
2999 | struct mem_cgroup *memcg; | |
3000 | int ret; | |
3001 | ||
3002 | memcg = get_mem_cgroup_from_objcg(objcg); | |
3003 | ||
3004 | ret = try_charge_memcg(memcg, gfp, nr_pages); | |
3005 | if (ret) | |
3006 | goto out; | |
3007 | ||
3008 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | |
3009 | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | |
3010 | ||
3011 | /* | |
3012 | * Enforce __GFP_NOFAIL allocation because callers are not | |
3013 | * prepared to see failures and likely do not have any failure | |
3014 | * handling code. | |
3015 | */ | |
3016 | if (gfp & __GFP_NOFAIL) { | |
3017 | page_counter_charge(&memcg->kmem, nr_pages); | |
3018 | goto out; | |
3019 | } | |
3020 | cancel_charge(memcg, nr_pages); | |
3021 | ret = -ENOMEM; | |
3022 | } | |
3023 | out: | |
3024 | css_put(&memcg->css); | |
3025 | ||
3026 | return ret; | |
3027 | } | |
3028 | ||
3029 | /** | |
3030 | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup | |
3031 | * @page: page to charge | |
3032 | * @gfp: reclaim mode | |
3033 | * @order: allocation order | |
3034 | * | |
3035 | * Returns 0 on success, an error code on failure. | |
3036 | */ | |
3037 | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) | |
3038 | { | |
3039 | struct obj_cgroup *objcg; | |
3040 | int ret = 0; | |
3041 | ||
3042 | objcg = get_obj_cgroup_from_current(); | |
3043 | if (objcg) { | |
3044 | ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); | |
3045 | if (!ret) { | |
3046 | page->memcg_data = (unsigned long)objcg | | |
3047 | MEMCG_DATA_KMEM; | |
3048 | return 0; | |
3049 | } | |
3050 | obj_cgroup_put(objcg); | |
3051 | } | |
3052 | return ret; | |
3053 | } | |
3054 | ||
3055 | /** | |
3056 | * __memcg_kmem_uncharge_page: uncharge a kmem page | |
3057 | * @page: page to uncharge | |
3058 | * @order: allocation order | |
3059 | */ | |
3060 | void __memcg_kmem_uncharge_page(struct page *page, int order) | |
3061 | { | |
3062 | struct obj_cgroup *objcg; | |
3063 | unsigned int nr_pages = 1 << order; | |
3064 | ||
3065 | if (!PageMemcgKmem(page)) | |
3066 | return; | |
3067 | ||
3068 | objcg = __page_objcg(page); | |
3069 | obj_cgroup_uncharge_pages(objcg, nr_pages); | |
3070 | page->memcg_data = 0; | |
3071 | obj_cgroup_put(objcg); | |
3072 | } | |
3073 | ||
3074 | void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, | |
3075 | enum node_stat_item idx, int nr) | |
3076 | { | |
3077 | unsigned long flags; | |
3078 | struct obj_stock *stock = get_obj_stock(&flags); | |
3079 | int *bytes; | |
3080 | ||
3081 | /* | |
3082 | * Save vmstat data in stock and skip vmstat array update unless | |
3083 | * accumulating over a page of vmstat data or when pgdat or idx | |
3084 | * changes. | |
3085 | */ | |
3086 | if (stock->cached_objcg != objcg) { | |
3087 | drain_obj_stock(stock); | |
3088 | obj_cgroup_get(objcg); | |
3089 | stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) | |
3090 | ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; | |
3091 | stock->cached_objcg = objcg; | |
3092 | stock->cached_pgdat = pgdat; | |
3093 | } else if (stock->cached_pgdat != pgdat) { | |
3094 | /* Flush the existing cached vmstat data */ | |
3095 | struct pglist_data *oldpg = stock->cached_pgdat; | |
3096 | ||
3097 | if (stock->nr_slab_reclaimable_b) { | |
3098 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, | |
3099 | stock->nr_slab_reclaimable_b); | |
3100 | stock->nr_slab_reclaimable_b = 0; | |
3101 | } | |
3102 | if (stock->nr_slab_unreclaimable_b) { | |
3103 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, | |
3104 | stock->nr_slab_unreclaimable_b); | |
3105 | stock->nr_slab_unreclaimable_b = 0; | |
3106 | } | |
3107 | stock->cached_pgdat = pgdat; | |
3108 | } | |
3109 | ||
3110 | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b | |
3111 | : &stock->nr_slab_unreclaimable_b; | |
3112 | /* | |
3113 | * Even for large object >= PAGE_SIZE, the vmstat data will still be | |
3114 | * cached locally at least once before pushing it out. | |
3115 | */ | |
3116 | if (!*bytes) { | |
3117 | *bytes = nr; | |
3118 | nr = 0; | |
3119 | } else { | |
3120 | *bytes += nr; | |
3121 | if (abs(*bytes) > PAGE_SIZE) { | |
3122 | nr = *bytes; | |
3123 | *bytes = 0; | |
3124 | } else { | |
3125 | nr = 0; | |
3126 | } | |
3127 | } | |
3128 | if (nr) | |
3129 | mod_objcg_mlstate(objcg, pgdat, idx, nr); | |
3130 | ||
3131 | put_obj_stock(flags); | |
3132 | } | |
3133 | ||
3134 | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) | |
3135 | { | |
3136 | unsigned long flags; | |
3137 | struct obj_stock *stock = get_obj_stock(&flags); | |
3138 | bool ret = false; | |
3139 | ||
3140 | if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { | |
3141 | stock->nr_bytes -= nr_bytes; | |
3142 | ret = true; | |
3143 | } | |
3144 | ||
3145 | put_obj_stock(flags); | |
3146 | ||
3147 | return ret; | |
3148 | } | |
3149 | ||
3150 | static void drain_obj_stock(struct obj_stock *stock) | |
3151 | { | |
3152 | struct obj_cgroup *old = stock->cached_objcg; | |
3153 | ||
3154 | if (!old) | |
3155 | return; | |
3156 | ||
3157 | if (stock->nr_bytes) { | |
3158 | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; | |
3159 | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); | |
3160 | ||
3161 | if (nr_pages) | |
3162 | obj_cgroup_uncharge_pages(old, nr_pages); | |
3163 | ||
3164 | /* | |
3165 | * The leftover is flushed to the centralized per-memcg value. | |
3166 | * On the next attempt to refill obj stock it will be moved | |
3167 | * to a per-cpu stock (probably, on an other CPU), see | |
3168 | * refill_obj_stock(). | |
3169 | * | |
3170 | * How often it's flushed is a trade-off between the memory | |
3171 | * limit enforcement accuracy and potential CPU contention, | |
3172 | * so it might be changed in the future. | |
3173 | */ | |
3174 | atomic_add(nr_bytes, &old->nr_charged_bytes); | |
3175 | stock->nr_bytes = 0; | |
3176 | } | |
3177 | ||
3178 | /* | |
3179 | * Flush the vmstat data in current stock | |
3180 | */ | |
3181 | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { | |
3182 | if (stock->nr_slab_reclaimable_b) { | |
3183 | mod_objcg_mlstate(old, stock->cached_pgdat, | |
3184 | NR_SLAB_RECLAIMABLE_B, | |
3185 | stock->nr_slab_reclaimable_b); | |
3186 | stock->nr_slab_reclaimable_b = 0; | |
3187 | } | |
3188 | if (stock->nr_slab_unreclaimable_b) { | |
3189 | mod_objcg_mlstate(old, stock->cached_pgdat, | |
3190 | NR_SLAB_UNRECLAIMABLE_B, | |
3191 | stock->nr_slab_unreclaimable_b); | |
3192 | stock->nr_slab_unreclaimable_b = 0; | |
3193 | } | |
3194 | stock->cached_pgdat = NULL; | |
3195 | } | |
3196 | ||
3197 | obj_cgroup_put(old); | |
3198 | stock->cached_objcg = NULL; | |
3199 | } | |
3200 | ||
3201 | static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, | |
3202 | struct mem_cgroup *root_memcg) | |
3203 | { | |
3204 | struct mem_cgroup *memcg; | |
3205 | ||
3206 | if (in_task() && stock->task_obj.cached_objcg) { | |
3207 | memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); | |
3208 | if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) | |
3209 | return true; | |
3210 | } | |
3211 | if (stock->irq_obj.cached_objcg) { | |
3212 | memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); | |
3213 | if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) | |
3214 | return true; | |
3215 | } | |
3216 | ||
3217 | return false; | |
3218 | } | |
3219 | ||
3220 | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, | |
3221 | bool allow_uncharge) | |
3222 | { | |
3223 | unsigned long flags; | |
3224 | struct obj_stock *stock = get_obj_stock(&flags); | |
3225 | unsigned int nr_pages = 0; | |
3226 | ||
3227 | if (stock->cached_objcg != objcg) { /* reset if necessary */ | |
3228 | drain_obj_stock(stock); | |
3229 | obj_cgroup_get(objcg); | |
3230 | stock->cached_objcg = objcg; | |
3231 | stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) | |
3232 | ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; | |
3233 | allow_uncharge = true; /* Allow uncharge when objcg changes */ | |
3234 | } | |
3235 | stock->nr_bytes += nr_bytes; | |
3236 | ||
3237 | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { | |
3238 | nr_pages = stock->nr_bytes >> PAGE_SHIFT; | |
3239 | stock->nr_bytes &= (PAGE_SIZE - 1); | |
3240 | } | |
3241 | ||
3242 | put_obj_stock(flags); | |
3243 | ||
3244 | if (nr_pages) | |
3245 | obj_cgroup_uncharge_pages(objcg, nr_pages); | |
3246 | } | |
3247 | ||
3248 | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) | |
3249 | { | |
3250 | unsigned int nr_pages, nr_bytes; | |
3251 | int ret; | |
3252 | ||
3253 | if (consume_obj_stock(objcg, size)) | |
3254 | return 0; | |
3255 | ||
3256 | /* | |
3257 | * In theory, objcg->nr_charged_bytes can have enough | |
3258 | * pre-charged bytes to satisfy the allocation. However, | |
3259 | * flushing objcg->nr_charged_bytes requires two atomic | |
3260 | * operations, and objcg->nr_charged_bytes can't be big. | |
3261 | * The shared objcg->nr_charged_bytes can also become a | |
3262 | * performance bottleneck if all tasks of the same memcg are | |
3263 | * trying to update it. So it's better to ignore it and try | |
3264 | * grab some new pages. The stock's nr_bytes will be flushed to | |
3265 | * objcg->nr_charged_bytes later on when objcg changes. | |
3266 | * | |
3267 | * The stock's nr_bytes may contain enough pre-charged bytes | |
3268 | * to allow one less page from being charged, but we can't rely | |
3269 | * on the pre-charged bytes not being changed outside of | |
3270 | * consume_obj_stock() or refill_obj_stock(). So ignore those | |
3271 | * pre-charged bytes as well when charging pages. To avoid a | |
3272 | * page uncharge right after a page charge, we set the | |
3273 | * allow_uncharge flag to false when calling refill_obj_stock() | |
3274 | * to temporarily allow the pre-charged bytes to exceed the page | |
3275 | * size limit. The maximum reachable value of the pre-charged | |
3276 | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data | |
3277 | * race. | |
3278 | */ | |
3279 | nr_pages = size >> PAGE_SHIFT; | |
3280 | nr_bytes = size & (PAGE_SIZE - 1); | |
3281 | ||
3282 | if (nr_bytes) | |
3283 | nr_pages += 1; | |
3284 | ||
3285 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); | |
3286 | if (!ret && nr_bytes) | |
3287 | refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); | |
3288 | ||
3289 | return ret; | |
3290 | } | |
3291 | ||
3292 | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) | |
3293 | { | |
3294 | refill_obj_stock(objcg, size, true); | |
3295 | } | |
3296 | ||
3297 | #endif /* CONFIG_MEMCG_KMEM */ | |
3298 | ||
3299 | /* | |
3300 | * Because page_memcg(head) is not set on tails, set it now. | |
3301 | */ | |
3302 | void split_page_memcg(struct page *head, unsigned int nr) | |
3303 | { | |
3304 | struct mem_cgroup *memcg = page_memcg(head); | |
3305 | int i; | |
3306 | ||
3307 | if (mem_cgroup_disabled() || !memcg) | |
3308 | return; | |
3309 | ||
3310 | for (i = 1; i < nr; i++) | |
3311 | head[i].memcg_data = head->memcg_data; | |
3312 | ||
3313 | if (PageMemcgKmem(head)) | |
3314 | obj_cgroup_get_many(__page_objcg(head), nr - 1); | |
3315 | else | |
3316 | css_get_many(&memcg->css, nr - 1); | |
3317 | } | |
3318 | ||
3319 | #ifdef CONFIG_MEMCG_SWAP | |
3320 | /** | |
3321 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
3322 | * @entry: swap entry to be moved | |
3323 | * @from: mem_cgroup which the entry is moved from | |
3324 | * @to: mem_cgroup which the entry is moved to | |
3325 | * | |
3326 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
3327 | * as the mem_cgroup's id of @from. | |
3328 | * | |
3329 | * Returns 0 on success, -EINVAL on failure. | |
3330 | * | |
3331 | * The caller must have charged to @to, IOW, called page_counter_charge() about | |
3332 | * both res and memsw, and called css_get(). | |
3333 | */ | |
3334 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
3335 | struct mem_cgroup *from, struct mem_cgroup *to) | |
3336 | { | |
3337 | unsigned short old_id, new_id; | |
3338 | ||
3339 | old_id = mem_cgroup_id(from); | |
3340 | new_id = mem_cgroup_id(to); | |
3341 | ||
3342 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
3343 | mod_memcg_state(from, MEMCG_SWAP, -1); | |
3344 | mod_memcg_state(to, MEMCG_SWAP, 1); | |
3345 | return 0; | |
3346 | } | |
3347 | return -EINVAL; | |
3348 | } | |
3349 | #else | |
3350 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
3351 | struct mem_cgroup *from, struct mem_cgroup *to) | |
3352 | { | |
3353 | return -EINVAL; | |
3354 | } | |
3355 | #endif | |
3356 | ||
3357 | static DEFINE_MUTEX(memcg_max_mutex); | |
3358 | ||
3359 | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, | |
3360 | unsigned long max, bool memsw) | |
3361 | { | |
3362 | bool enlarge = false; | |
3363 | bool drained = false; | |
3364 | int ret; | |
3365 | bool limits_invariant; | |
3366 | struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; | |
3367 | ||
3368 | do { | |
3369 | if (signal_pending(current)) { | |
3370 | ret = -EINTR; | |
3371 | break; | |
3372 | } | |
3373 | ||
3374 | mutex_lock(&memcg_max_mutex); | |
3375 | /* | |
3376 | * Make sure that the new limit (memsw or memory limit) doesn't | |
3377 | * break our basic invariant rule memory.max <= memsw.max. | |
3378 | */ | |
3379 | limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : | |
3380 | max <= memcg->memsw.max; | |
3381 | if (!limits_invariant) { | |
3382 | mutex_unlock(&memcg_max_mutex); | |
3383 | ret = -EINVAL; | |
3384 | break; | |
3385 | } | |
3386 | if (max > counter->max) | |
3387 | enlarge = true; | |
3388 | ret = page_counter_set_max(counter, max); | |
3389 | mutex_unlock(&memcg_max_mutex); | |
3390 | ||
3391 | if (!ret) | |
3392 | break; | |
3393 | ||
3394 | if (!drained) { | |
3395 | drain_all_stock(memcg); | |
3396 | drained = true; | |
3397 | continue; | |
3398 | } | |
3399 | ||
3400 | if (!try_to_free_mem_cgroup_pages(memcg, 1, | |
3401 | GFP_KERNEL, !memsw)) { | |
3402 | ret = -EBUSY; | |
3403 | break; | |
3404 | } | |
3405 | } while (true); | |
3406 | ||
3407 | if (!ret && enlarge) | |
3408 | memcg_oom_recover(memcg); | |
3409 | ||
3410 | return ret; | |
3411 | } | |
3412 | ||
3413 | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, | |
3414 | gfp_t gfp_mask, | |
3415 | unsigned long *total_scanned) | |
3416 | { | |
3417 | unsigned long nr_reclaimed = 0; | |
3418 | struct mem_cgroup_per_node *mz, *next_mz = NULL; | |
3419 | unsigned long reclaimed; | |
3420 | int loop = 0; | |
3421 | struct mem_cgroup_tree_per_node *mctz; | |
3422 | unsigned long excess; | |
3423 | unsigned long nr_scanned; | |
3424 | ||
3425 | if (order > 0) | |
3426 | return 0; | |
3427 | ||
3428 | mctz = soft_limit_tree_node(pgdat->node_id); | |
3429 | ||
3430 | /* | |
3431 | * Do not even bother to check the largest node if the root | |
3432 | * is empty. Do it lockless to prevent lock bouncing. Races | |
3433 | * are acceptable as soft limit is best effort anyway. | |
3434 | */ | |
3435 | if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) | |
3436 | return 0; | |
3437 | ||
3438 | /* | |
3439 | * This loop can run a while, specially if mem_cgroup's continuously | |
3440 | * keep exceeding their soft limit and putting the system under | |
3441 | * pressure | |
3442 | */ | |
3443 | do { | |
3444 | if (next_mz) | |
3445 | mz = next_mz; | |
3446 | else | |
3447 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
3448 | if (!mz) | |
3449 | break; | |
3450 | ||
3451 | nr_scanned = 0; | |
3452 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, | |
3453 | gfp_mask, &nr_scanned); | |
3454 | nr_reclaimed += reclaimed; | |
3455 | *total_scanned += nr_scanned; | |
3456 | spin_lock_irq(&mctz->lock); | |
3457 | __mem_cgroup_remove_exceeded(mz, mctz); | |
3458 | ||
3459 | /* | |
3460 | * If we failed to reclaim anything from this memory cgroup | |
3461 | * it is time to move on to the next cgroup | |
3462 | */ | |
3463 | next_mz = NULL; | |
3464 | if (!reclaimed) | |
3465 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
3466 | ||
3467 | excess = soft_limit_excess(mz->memcg); | |
3468 | /* | |
3469 | * One school of thought says that we should not add | |
3470 | * back the node to the tree if reclaim returns 0. | |
3471 | * But our reclaim could return 0, simply because due | |
3472 | * to priority we are exposing a smaller subset of | |
3473 | * memory to reclaim from. Consider this as a longer | |
3474 | * term TODO. | |
3475 | */ | |
3476 | /* If excess == 0, no tree ops */ | |
3477 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
3478 | spin_unlock_irq(&mctz->lock); | |
3479 | css_put(&mz->memcg->css); | |
3480 | loop++; | |
3481 | /* | |
3482 | * Could not reclaim anything and there are no more | |
3483 | * mem cgroups to try or we seem to be looping without | |
3484 | * reclaiming anything. | |
3485 | */ | |
3486 | if (!nr_reclaimed && | |
3487 | (next_mz == NULL || | |
3488 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
3489 | break; | |
3490 | } while (!nr_reclaimed); | |
3491 | if (next_mz) | |
3492 | css_put(&next_mz->memcg->css); | |
3493 | return nr_reclaimed; | |
3494 | } | |
3495 | ||
3496 | /* | |
3497 | * Reclaims as many pages from the given memcg as possible. | |
3498 | * | |
3499 | * Caller is responsible for holding css reference for memcg. | |
3500 | */ | |
3501 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
3502 | { | |
3503 | int nr_retries = MAX_RECLAIM_RETRIES; | |
3504 | ||
3505 | /* we call try-to-free pages for make this cgroup empty */ | |
3506 | lru_add_drain_all(); | |
3507 | ||
3508 | drain_all_stock(memcg); | |
3509 | ||
3510 | /* try to free all pages in this cgroup */ | |
3511 | while (nr_retries && page_counter_read(&memcg->memory)) { | |
3512 | int progress; | |
3513 | ||
3514 | if (signal_pending(current)) | |
3515 | return -EINTR; | |
3516 | ||
3517 | progress = try_to_free_mem_cgroup_pages(memcg, 1, | |
3518 | GFP_KERNEL, true); | |
3519 | if (!progress) { | |
3520 | nr_retries--; | |
3521 | /* maybe some writeback is necessary */ | |
3522 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
3523 | } | |
3524 | ||
3525 | } | |
3526 | ||
3527 | return 0; | |
3528 | } | |
3529 | ||
3530 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | |
3531 | char *buf, size_t nbytes, | |
3532 | loff_t off) | |
3533 | { | |
3534 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3535 | ||
3536 | if (mem_cgroup_is_root(memcg)) | |
3537 | return -EINVAL; | |
3538 | return mem_cgroup_force_empty(memcg) ?: nbytes; | |
3539 | } | |
3540 | ||
3541 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | |
3542 | struct cftype *cft) | |
3543 | { | |
3544 | return 1; | |
3545 | } | |
3546 | ||
3547 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | |
3548 | struct cftype *cft, u64 val) | |
3549 | { | |
3550 | if (val == 1) | |
3551 | return 0; | |
3552 | ||
3553 | pr_warn_once("Non-hierarchical mode is deprecated. " | |
3554 | "Please report your usecase to linux-mm@kvack.org if you " | |
3555 | "depend on this functionality.\n"); | |
3556 | ||
3557 | return -EINVAL; | |
3558 | } | |
3559 | ||
3560 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | |
3561 | { | |
3562 | unsigned long val; | |
3563 | ||
3564 | if (mem_cgroup_is_root(memcg)) { | |
3565 | mem_cgroup_flush_stats(); | |
3566 | val = memcg_page_state(memcg, NR_FILE_PAGES) + | |
3567 | memcg_page_state(memcg, NR_ANON_MAPPED); | |
3568 | if (swap) | |
3569 | val += memcg_page_state(memcg, MEMCG_SWAP); | |
3570 | } else { | |
3571 | if (!swap) | |
3572 | val = page_counter_read(&memcg->memory); | |
3573 | else | |
3574 | val = page_counter_read(&memcg->memsw); | |
3575 | } | |
3576 | return val; | |
3577 | } | |
3578 | ||
3579 | enum { | |
3580 | RES_USAGE, | |
3581 | RES_LIMIT, | |
3582 | RES_MAX_USAGE, | |
3583 | RES_FAILCNT, | |
3584 | RES_SOFT_LIMIT, | |
3585 | }; | |
3586 | ||
3587 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | |
3588 | struct cftype *cft) | |
3589 | { | |
3590 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3591 | struct page_counter *counter; | |
3592 | ||
3593 | switch (MEMFILE_TYPE(cft->private)) { | |
3594 | case _MEM: | |
3595 | counter = &memcg->memory; | |
3596 | break; | |
3597 | case _MEMSWAP: | |
3598 | counter = &memcg->memsw; | |
3599 | break; | |
3600 | case _KMEM: | |
3601 | counter = &memcg->kmem; | |
3602 | break; | |
3603 | case _TCP: | |
3604 | counter = &memcg->tcpmem; | |
3605 | break; | |
3606 | default: | |
3607 | BUG(); | |
3608 | } | |
3609 | ||
3610 | switch (MEMFILE_ATTR(cft->private)) { | |
3611 | case RES_USAGE: | |
3612 | if (counter == &memcg->memory) | |
3613 | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | |
3614 | if (counter == &memcg->memsw) | |
3615 | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | |
3616 | return (u64)page_counter_read(counter) * PAGE_SIZE; | |
3617 | case RES_LIMIT: | |
3618 | return (u64)counter->max * PAGE_SIZE; | |
3619 | case RES_MAX_USAGE: | |
3620 | return (u64)counter->watermark * PAGE_SIZE; | |
3621 | case RES_FAILCNT: | |
3622 | return counter->failcnt; | |
3623 | case RES_SOFT_LIMIT: | |
3624 | return (u64)memcg->soft_limit * PAGE_SIZE; | |
3625 | default: | |
3626 | BUG(); | |
3627 | } | |
3628 | } | |
3629 | ||
3630 | #ifdef CONFIG_MEMCG_KMEM | |
3631 | static int memcg_online_kmem(struct mem_cgroup *memcg) | |
3632 | { | |
3633 | struct obj_cgroup *objcg; | |
3634 | int memcg_id; | |
3635 | ||
3636 | if (cgroup_memory_nokmem) | |
3637 | return 0; | |
3638 | ||
3639 | BUG_ON(memcg->kmemcg_id >= 0); | |
3640 | BUG_ON(memcg->kmem_state); | |
3641 | ||
3642 | memcg_id = memcg_alloc_cache_id(); | |
3643 | if (memcg_id < 0) | |
3644 | return memcg_id; | |
3645 | ||
3646 | objcg = obj_cgroup_alloc(); | |
3647 | if (!objcg) { | |
3648 | memcg_free_cache_id(memcg_id); | |
3649 | return -ENOMEM; | |
3650 | } | |
3651 | objcg->memcg = memcg; | |
3652 | rcu_assign_pointer(memcg->objcg, objcg); | |
3653 | ||
3654 | static_branch_enable(&memcg_kmem_enabled_key); | |
3655 | ||
3656 | memcg->kmemcg_id = memcg_id; | |
3657 | memcg->kmem_state = KMEM_ONLINE; | |
3658 | ||
3659 | return 0; | |
3660 | } | |
3661 | ||
3662 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | |
3663 | { | |
3664 | struct cgroup_subsys_state *css; | |
3665 | struct mem_cgroup *parent, *child; | |
3666 | int kmemcg_id; | |
3667 | ||
3668 | if (memcg->kmem_state != KMEM_ONLINE) | |
3669 | return; | |
3670 | ||
3671 | memcg->kmem_state = KMEM_ALLOCATED; | |
3672 | ||
3673 | parent = parent_mem_cgroup(memcg); | |
3674 | if (!parent) | |
3675 | parent = root_mem_cgroup; | |
3676 | ||
3677 | memcg_reparent_objcgs(memcg, parent); | |
3678 | ||
3679 | kmemcg_id = memcg->kmemcg_id; | |
3680 | BUG_ON(kmemcg_id < 0); | |
3681 | ||
3682 | /* | |
3683 | * Change kmemcg_id of this cgroup and all its descendants to the | |
3684 | * parent's id, and then move all entries from this cgroup's list_lrus | |
3685 | * to ones of the parent. After we have finished, all list_lrus | |
3686 | * corresponding to this cgroup are guaranteed to remain empty. The | |
3687 | * ordering is imposed by list_lru_node->lock taken by | |
3688 | * memcg_drain_all_list_lrus(). | |
3689 | */ | |
3690 | rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ | |
3691 | css_for_each_descendant_pre(css, &memcg->css) { | |
3692 | child = mem_cgroup_from_css(css); | |
3693 | BUG_ON(child->kmemcg_id != kmemcg_id); | |
3694 | child->kmemcg_id = parent->kmemcg_id; | |
3695 | } | |
3696 | rcu_read_unlock(); | |
3697 | ||
3698 | memcg_drain_all_list_lrus(kmemcg_id, parent); | |
3699 | ||
3700 | memcg_free_cache_id(kmemcg_id); | |
3701 | } | |
3702 | ||
3703 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
3704 | { | |
3705 | /* css_alloc() failed, offlining didn't happen */ | |
3706 | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | |
3707 | memcg_offline_kmem(memcg); | |
3708 | } | |
3709 | #else | |
3710 | static int memcg_online_kmem(struct mem_cgroup *memcg) | |
3711 | { | |
3712 | return 0; | |
3713 | } | |
3714 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | |
3715 | { | |
3716 | } | |
3717 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
3718 | { | |
3719 | } | |
3720 | #endif /* CONFIG_MEMCG_KMEM */ | |
3721 | ||
3722 | static int memcg_update_kmem_max(struct mem_cgroup *memcg, | |
3723 | unsigned long max) | |
3724 | { | |
3725 | int ret; | |
3726 | ||
3727 | mutex_lock(&memcg_max_mutex); | |
3728 | ret = page_counter_set_max(&memcg->kmem, max); | |
3729 | mutex_unlock(&memcg_max_mutex); | |
3730 | return ret; | |
3731 | } | |
3732 | ||
3733 | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) | |
3734 | { | |
3735 | int ret; | |
3736 | ||
3737 | mutex_lock(&memcg_max_mutex); | |
3738 | ||
3739 | ret = page_counter_set_max(&memcg->tcpmem, max); | |
3740 | if (ret) | |
3741 | goto out; | |
3742 | ||
3743 | if (!memcg->tcpmem_active) { | |
3744 | /* | |
3745 | * The active flag needs to be written after the static_key | |
3746 | * update. This is what guarantees that the socket activation | |
3747 | * function is the last one to run. See mem_cgroup_sk_alloc() | |
3748 | * for details, and note that we don't mark any socket as | |
3749 | * belonging to this memcg until that flag is up. | |
3750 | * | |
3751 | * We need to do this, because static_keys will span multiple | |
3752 | * sites, but we can't control their order. If we mark a socket | |
3753 | * as accounted, but the accounting functions are not patched in | |
3754 | * yet, we'll lose accounting. | |
3755 | * | |
3756 | * We never race with the readers in mem_cgroup_sk_alloc(), | |
3757 | * because when this value change, the code to process it is not | |
3758 | * patched in yet. | |
3759 | */ | |
3760 | static_branch_inc(&memcg_sockets_enabled_key); | |
3761 | memcg->tcpmem_active = true; | |
3762 | } | |
3763 | out: | |
3764 | mutex_unlock(&memcg_max_mutex); | |
3765 | return ret; | |
3766 | } | |
3767 | ||
3768 | /* | |
3769 | * The user of this function is... | |
3770 | * RES_LIMIT. | |
3771 | */ | |
3772 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | |
3773 | char *buf, size_t nbytes, loff_t off) | |
3774 | { | |
3775 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3776 | unsigned long nr_pages; | |
3777 | int ret; | |
3778 | ||
3779 | buf = strstrip(buf); | |
3780 | ret = page_counter_memparse(buf, "-1", &nr_pages); | |
3781 | if (ret) | |
3782 | return ret; | |
3783 | ||
3784 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
3785 | case RES_LIMIT: | |
3786 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | |
3787 | ret = -EINVAL; | |
3788 | break; | |
3789 | } | |
3790 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3791 | case _MEM: | |
3792 | ret = mem_cgroup_resize_max(memcg, nr_pages, false); | |
3793 | break; | |
3794 | case _MEMSWAP: | |
3795 | ret = mem_cgroup_resize_max(memcg, nr_pages, true); | |
3796 | break; | |
3797 | case _KMEM: | |
3798 | pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " | |
3799 | "Please report your usecase to linux-mm@kvack.org if you " | |
3800 | "depend on this functionality.\n"); | |
3801 | ret = memcg_update_kmem_max(memcg, nr_pages); | |
3802 | break; | |
3803 | case _TCP: | |
3804 | ret = memcg_update_tcp_max(memcg, nr_pages); | |
3805 | break; | |
3806 | } | |
3807 | break; | |
3808 | case RES_SOFT_LIMIT: | |
3809 | memcg->soft_limit = nr_pages; | |
3810 | ret = 0; | |
3811 | break; | |
3812 | } | |
3813 | return ret ?: nbytes; | |
3814 | } | |
3815 | ||
3816 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | |
3817 | size_t nbytes, loff_t off) | |
3818 | { | |
3819 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3820 | struct page_counter *counter; | |
3821 | ||
3822 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3823 | case _MEM: | |
3824 | counter = &memcg->memory; | |
3825 | break; | |
3826 | case _MEMSWAP: | |
3827 | counter = &memcg->memsw; | |
3828 | break; | |
3829 | case _KMEM: | |
3830 | counter = &memcg->kmem; | |
3831 | break; | |
3832 | case _TCP: | |
3833 | counter = &memcg->tcpmem; | |
3834 | break; | |
3835 | default: | |
3836 | BUG(); | |
3837 | } | |
3838 | ||
3839 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
3840 | case RES_MAX_USAGE: | |
3841 | page_counter_reset_watermark(counter); | |
3842 | break; | |
3843 | case RES_FAILCNT: | |
3844 | counter->failcnt = 0; | |
3845 | break; | |
3846 | default: | |
3847 | BUG(); | |
3848 | } | |
3849 | ||
3850 | return nbytes; | |
3851 | } | |
3852 | ||
3853 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | |
3854 | struct cftype *cft) | |
3855 | { | |
3856 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | |
3857 | } | |
3858 | ||
3859 | #ifdef CONFIG_MMU | |
3860 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3861 | struct cftype *cft, u64 val) | |
3862 | { | |
3863 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3864 | ||
3865 | if (val & ~MOVE_MASK) | |
3866 | return -EINVAL; | |
3867 | ||
3868 | /* | |
3869 | * No kind of locking is needed in here, because ->can_attach() will | |
3870 | * check this value once in the beginning of the process, and then carry | |
3871 | * on with stale data. This means that changes to this value will only | |
3872 | * affect task migrations starting after the change. | |
3873 | */ | |
3874 | memcg->move_charge_at_immigrate = val; | |
3875 | return 0; | |
3876 | } | |
3877 | #else | |
3878 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3879 | struct cftype *cft, u64 val) | |
3880 | { | |
3881 | return -ENOSYS; | |
3882 | } | |
3883 | #endif | |
3884 | ||
3885 | #ifdef CONFIG_NUMA | |
3886 | ||
3887 | #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) | |
3888 | #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) | |
3889 | #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) | |
3890 | ||
3891 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | |
3892 | int nid, unsigned int lru_mask, bool tree) | |
3893 | { | |
3894 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | |
3895 | unsigned long nr = 0; | |
3896 | enum lru_list lru; | |
3897 | ||
3898 | VM_BUG_ON((unsigned)nid >= nr_node_ids); | |
3899 | ||
3900 | for_each_lru(lru) { | |
3901 | if (!(BIT(lru) & lru_mask)) | |
3902 | continue; | |
3903 | if (tree) | |
3904 | nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); | |
3905 | else | |
3906 | nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); | |
3907 | } | |
3908 | return nr; | |
3909 | } | |
3910 | ||
3911 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | |
3912 | unsigned int lru_mask, | |
3913 | bool tree) | |
3914 | { | |
3915 | unsigned long nr = 0; | |
3916 | enum lru_list lru; | |
3917 | ||
3918 | for_each_lru(lru) { | |
3919 | if (!(BIT(lru) & lru_mask)) | |
3920 | continue; | |
3921 | if (tree) | |
3922 | nr += memcg_page_state(memcg, NR_LRU_BASE + lru); | |
3923 | else | |
3924 | nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); | |
3925 | } | |
3926 | return nr; | |
3927 | } | |
3928 | ||
3929 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | |
3930 | { | |
3931 | struct numa_stat { | |
3932 | const char *name; | |
3933 | unsigned int lru_mask; | |
3934 | }; | |
3935 | ||
3936 | static const struct numa_stat stats[] = { | |
3937 | { "total", LRU_ALL }, | |
3938 | { "file", LRU_ALL_FILE }, | |
3939 | { "anon", LRU_ALL_ANON }, | |
3940 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
3941 | }; | |
3942 | const struct numa_stat *stat; | |
3943 | int nid; | |
3944 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
3945 | ||
3946 | mem_cgroup_flush_stats(); | |
3947 | ||
3948 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3949 | seq_printf(m, "%s=%lu", stat->name, | |
3950 | mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, | |
3951 | false)); | |
3952 | for_each_node_state(nid, N_MEMORY) | |
3953 | seq_printf(m, " N%d=%lu", nid, | |
3954 | mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3955 | stat->lru_mask, false)); | |
3956 | seq_putc(m, '\n'); | |
3957 | } | |
3958 | ||
3959 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3960 | ||
3961 | seq_printf(m, "hierarchical_%s=%lu", stat->name, | |
3962 | mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, | |
3963 | true)); | |
3964 | for_each_node_state(nid, N_MEMORY) | |
3965 | seq_printf(m, " N%d=%lu", nid, | |
3966 | mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3967 | stat->lru_mask, true)); | |
3968 | seq_putc(m, '\n'); | |
3969 | } | |
3970 | ||
3971 | return 0; | |
3972 | } | |
3973 | #endif /* CONFIG_NUMA */ | |
3974 | ||
3975 | static const unsigned int memcg1_stats[] = { | |
3976 | NR_FILE_PAGES, | |
3977 | NR_ANON_MAPPED, | |
3978 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3979 | NR_ANON_THPS, | |
3980 | #endif | |
3981 | NR_SHMEM, | |
3982 | NR_FILE_MAPPED, | |
3983 | NR_FILE_DIRTY, | |
3984 | NR_WRITEBACK, | |
3985 | MEMCG_SWAP, | |
3986 | }; | |
3987 | ||
3988 | static const char *const memcg1_stat_names[] = { | |
3989 | "cache", | |
3990 | "rss", | |
3991 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3992 | "rss_huge", | |
3993 | #endif | |
3994 | "shmem", | |
3995 | "mapped_file", | |
3996 | "dirty", | |
3997 | "writeback", | |
3998 | "swap", | |
3999 | }; | |
4000 | ||
4001 | /* Universal VM events cgroup1 shows, original sort order */ | |
4002 | static const unsigned int memcg1_events[] = { | |
4003 | PGPGIN, | |
4004 | PGPGOUT, | |
4005 | PGFAULT, | |
4006 | PGMAJFAULT, | |
4007 | }; | |
4008 | ||
4009 | static int memcg_stat_show(struct seq_file *m, void *v) | |
4010 | { | |
4011 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
4012 | unsigned long memory, memsw; | |
4013 | struct mem_cgroup *mi; | |
4014 | unsigned int i; | |
4015 | ||
4016 | BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); | |
4017 | ||
4018 | mem_cgroup_flush_stats(); | |
4019 | ||
4020 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | |
4021 | unsigned long nr; | |
4022 | ||
4023 | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | |
4024 | continue; | |
4025 | nr = memcg_page_state_local(memcg, memcg1_stats[i]); | |
4026 | seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); | |
4027 | } | |
4028 | ||
4029 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | |
4030 | seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), | |
4031 | memcg_events_local(memcg, memcg1_events[i])); | |
4032 | ||
4033 | for (i = 0; i < NR_LRU_LISTS; i++) | |
4034 | seq_printf(m, "%s %lu\n", lru_list_name(i), | |
4035 | memcg_page_state_local(memcg, NR_LRU_BASE + i) * | |
4036 | PAGE_SIZE); | |
4037 | ||
4038 | /* Hierarchical information */ | |
4039 | memory = memsw = PAGE_COUNTER_MAX; | |
4040 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | |
4041 | memory = min(memory, READ_ONCE(mi->memory.max)); | |
4042 | memsw = min(memsw, READ_ONCE(mi->memsw.max)); | |
4043 | } | |
4044 | seq_printf(m, "hierarchical_memory_limit %llu\n", | |
4045 | (u64)memory * PAGE_SIZE); | |
4046 | if (do_memsw_account()) | |
4047 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | |
4048 | (u64)memsw * PAGE_SIZE); | |
4049 | ||
4050 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | |
4051 | unsigned long nr; | |
4052 | ||
4053 | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | |
4054 | continue; | |
4055 | nr = memcg_page_state(memcg, memcg1_stats[i]); | |
4056 | seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], | |
4057 | (u64)nr * PAGE_SIZE); | |
4058 | } | |
4059 | ||
4060 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | |
4061 | seq_printf(m, "total_%s %llu\n", | |
4062 | vm_event_name(memcg1_events[i]), | |
4063 | (u64)memcg_events(memcg, memcg1_events[i])); | |
4064 | ||
4065 | for (i = 0; i < NR_LRU_LISTS; i++) | |
4066 | seq_printf(m, "total_%s %llu\n", lru_list_name(i), | |
4067 | (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | |
4068 | PAGE_SIZE); | |
4069 | ||
4070 | #ifdef CONFIG_DEBUG_VM | |
4071 | { | |
4072 | pg_data_t *pgdat; | |
4073 | struct mem_cgroup_per_node *mz; | |
4074 | unsigned long anon_cost = 0; | |
4075 | unsigned long file_cost = 0; | |
4076 | ||
4077 | for_each_online_pgdat(pgdat) { | |
4078 | mz = memcg->nodeinfo[pgdat->node_id]; | |
4079 | ||
4080 | anon_cost += mz->lruvec.anon_cost; | |
4081 | file_cost += mz->lruvec.file_cost; | |
4082 | } | |
4083 | seq_printf(m, "anon_cost %lu\n", anon_cost); | |
4084 | seq_printf(m, "file_cost %lu\n", file_cost); | |
4085 | } | |
4086 | #endif | |
4087 | ||
4088 | return 0; | |
4089 | } | |
4090 | ||
4091 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | |
4092 | struct cftype *cft) | |
4093 | { | |
4094 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4095 | ||
4096 | return mem_cgroup_swappiness(memcg); | |
4097 | } | |
4098 | ||
4099 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | |
4100 | struct cftype *cft, u64 val) | |
4101 | { | |
4102 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4103 | ||
4104 | if (val > 200) | |
4105 | return -EINVAL; | |
4106 | ||
4107 | if (!mem_cgroup_is_root(memcg)) | |
4108 | memcg->swappiness = val; | |
4109 | else | |
4110 | vm_swappiness = val; | |
4111 | ||
4112 | return 0; | |
4113 | } | |
4114 | ||
4115 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | |
4116 | { | |
4117 | struct mem_cgroup_threshold_ary *t; | |
4118 | unsigned long usage; | |
4119 | int i; | |
4120 | ||
4121 | rcu_read_lock(); | |
4122 | if (!swap) | |
4123 | t = rcu_dereference(memcg->thresholds.primary); | |
4124 | else | |
4125 | t = rcu_dereference(memcg->memsw_thresholds.primary); | |
4126 | ||
4127 | if (!t) | |
4128 | goto unlock; | |
4129 | ||
4130 | usage = mem_cgroup_usage(memcg, swap); | |
4131 | ||
4132 | /* | |
4133 | * current_threshold points to threshold just below or equal to usage. | |
4134 | * If it's not true, a threshold was crossed after last | |
4135 | * call of __mem_cgroup_threshold(). | |
4136 | */ | |
4137 | i = t->current_threshold; | |
4138 | ||
4139 | /* | |
4140 | * Iterate backward over array of thresholds starting from | |
4141 | * current_threshold and check if a threshold is crossed. | |
4142 | * If none of thresholds below usage is crossed, we read | |
4143 | * only one element of the array here. | |
4144 | */ | |
4145 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
4146 | eventfd_signal(t->entries[i].eventfd, 1); | |
4147 | ||
4148 | /* i = current_threshold + 1 */ | |
4149 | i++; | |
4150 | ||
4151 | /* | |
4152 | * Iterate forward over array of thresholds starting from | |
4153 | * current_threshold+1 and check if a threshold is crossed. | |
4154 | * If none of thresholds above usage is crossed, we read | |
4155 | * only one element of the array here. | |
4156 | */ | |
4157 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
4158 | eventfd_signal(t->entries[i].eventfd, 1); | |
4159 | ||
4160 | /* Update current_threshold */ | |
4161 | t->current_threshold = i - 1; | |
4162 | unlock: | |
4163 | rcu_read_unlock(); | |
4164 | } | |
4165 | ||
4166 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
4167 | { | |
4168 | while (memcg) { | |
4169 | __mem_cgroup_threshold(memcg, false); | |
4170 | if (do_memsw_account()) | |
4171 | __mem_cgroup_threshold(memcg, true); | |
4172 | ||
4173 | memcg = parent_mem_cgroup(memcg); | |
4174 | } | |
4175 | } | |
4176 | ||
4177 | static int compare_thresholds(const void *a, const void *b) | |
4178 | { | |
4179 | const struct mem_cgroup_threshold *_a = a; | |
4180 | const struct mem_cgroup_threshold *_b = b; | |
4181 | ||
4182 | if (_a->threshold > _b->threshold) | |
4183 | return 1; | |
4184 | ||
4185 | if (_a->threshold < _b->threshold) | |
4186 | return -1; | |
4187 | ||
4188 | return 0; | |
4189 | } | |
4190 | ||
4191 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | |
4192 | { | |
4193 | struct mem_cgroup_eventfd_list *ev; | |
4194 | ||
4195 | spin_lock(&memcg_oom_lock); | |
4196 | ||
4197 | list_for_each_entry(ev, &memcg->oom_notify, list) | |
4198 | eventfd_signal(ev->eventfd, 1); | |
4199 | ||
4200 | spin_unlock(&memcg_oom_lock); | |
4201 | return 0; | |
4202 | } | |
4203 | ||
4204 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | |
4205 | { | |
4206 | struct mem_cgroup *iter; | |
4207 | ||
4208 | for_each_mem_cgroup_tree(iter, memcg) | |
4209 | mem_cgroup_oom_notify_cb(iter); | |
4210 | } | |
4211 | ||
4212 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
4213 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | |
4214 | { | |
4215 | struct mem_cgroup_thresholds *thresholds; | |
4216 | struct mem_cgroup_threshold_ary *new; | |
4217 | unsigned long threshold; | |
4218 | unsigned long usage; | |
4219 | int i, size, ret; | |
4220 | ||
4221 | ret = page_counter_memparse(args, "-1", &threshold); | |
4222 | if (ret) | |
4223 | return ret; | |
4224 | ||
4225 | mutex_lock(&memcg->thresholds_lock); | |
4226 | ||
4227 | if (type == _MEM) { | |
4228 | thresholds = &memcg->thresholds; | |
4229 | usage = mem_cgroup_usage(memcg, false); | |
4230 | } else if (type == _MEMSWAP) { | |
4231 | thresholds = &memcg->memsw_thresholds; | |
4232 | usage = mem_cgroup_usage(memcg, true); | |
4233 | } else | |
4234 | BUG(); | |
4235 | ||
4236 | /* Check if a threshold crossed before adding a new one */ | |
4237 | if (thresholds->primary) | |
4238 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4239 | ||
4240 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | |
4241 | ||
4242 | /* Allocate memory for new array of thresholds */ | |
4243 | new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); | |
4244 | if (!new) { | |
4245 | ret = -ENOMEM; | |
4246 | goto unlock; | |
4247 | } | |
4248 | new->size = size; | |
4249 | ||
4250 | /* Copy thresholds (if any) to new array */ | |
4251 | if (thresholds->primary) | |
4252 | memcpy(new->entries, thresholds->primary->entries, | |
4253 | flex_array_size(new, entries, size - 1)); | |
4254 | ||
4255 | /* Add new threshold */ | |
4256 | new->entries[size - 1].eventfd = eventfd; | |
4257 | new->entries[size - 1].threshold = threshold; | |
4258 | ||
4259 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
4260 | sort(new->entries, size, sizeof(*new->entries), | |
4261 | compare_thresholds, NULL); | |
4262 | ||
4263 | /* Find current threshold */ | |
4264 | new->current_threshold = -1; | |
4265 | for (i = 0; i < size; i++) { | |
4266 | if (new->entries[i].threshold <= usage) { | |
4267 | /* | |
4268 | * new->current_threshold will not be used until | |
4269 | * rcu_assign_pointer(), so it's safe to increment | |
4270 | * it here. | |
4271 | */ | |
4272 | ++new->current_threshold; | |
4273 | } else | |
4274 | break; | |
4275 | } | |
4276 | ||
4277 | /* Free old spare buffer and save old primary buffer as spare */ | |
4278 | kfree(thresholds->spare); | |
4279 | thresholds->spare = thresholds->primary; | |
4280 | ||
4281 | rcu_assign_pointer(thresholds->primary, new); | |
4282 | ||
4283 | /* To be sure that nobody uses thresholds */ | |
4284 | synchronize_rcu(); | |
4285 | ||
4286 | unlock: | |
4287 | mutex_unlock(&memcg->thresholds_lock); | |
4288 | ||
4289 | return ret; | |
4290 | } | |
4291 | ||
4292 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
4293 | struct eventfd_ctx *eventfd, const char *args) | |
4294 | { | |
4295 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | |
4296 | } | |
4297 | ||
4298 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
4299 | struct eventfd_ctx *eventfd, const char *args) | |
4300 | { | |
4301 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | |
4302 | } | |
4303 | ||
4304 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4305 | struct eventfd_ctx *eventfd, enum res_type type) | |
4306 | { | |
4307 | struct mem_cgroup_thresholds *thresholds; | |
4308 | struct mem_cgroup_threshold_ary *new; | |
4309 | unsigned long usage; | |
4310 | int i, j, size, entries; | |
4311 | ||
4312 | mutex_lock(&memcg->thresholds_lock); | |
4313 | ||
4314 | if (type == _MEM) { | |
4315 | thresholds = &memcg->thresholds; | |
4316 | usage = mem_cgroup_usage(memcg, false); | |
4317 | } else if (type == _MEMSWAP) { | |
4318 | thresholds = &memcg->memsw_thresholds; | |
4319 | usage = mem_cgroup_usage(memcg, true); | |
4320 | } else | |
4321 | BUG(); | |
4322 | ||
4323 | if (!thresholds->primary) | |
4324 | goto unlock; | |
4325 | ||
4326 | /* Check if a threshold crossed before removing */ | |
4327 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4328 | ||
4329 | /* Calculate new number of threshold */ | |
4330 | size = entries = 0; | |
4331 | for (i = 0; i < thresholds->primary->size; i++) { | |
4332 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
4333 | size++; | |
4334 | else | |
4335 | entries++; | |
4336 | } | |
4337 | ||
4338 | new = thresholds->spare; | |
4339 | ||
4340 | /* If no items related to eventfd have been cleared, nothing to do */ | |
4341 | if (!entries) | |
4342 | goto unlock; | |
4343 | ||
4344 | /* Set thresholds array to NULL if we don't have thresholds */ | |
4345 | if (!size) { | |
4346 | kfree(new); | |
4347 | new = NULL; | |
4348 | goto swap_buffers; | |
4349 | } | |
4350 | ||
4351 | new->size = size; | |
4352 | ||
4353 | /* Copy thresholds and find current threshold */ | |
4354 | new->current_threshold = -1; | |
4355 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
4356 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
4357 | continue; | |
4358 | ||
4359 | new->entries[j] = thresholds->primary->entries[i]; | |
4360 | if (new->entries[j].threshold <= usage) { | |
4361 | /* | |
4362 | * new->current_threshold will not be used | |
4363 | * until rcu_assign_pointer(), so it's safe to increment | |
4364 | * it here. | |
4365 | */ | |
4366 | ++new->current_threshold; | |
4367 | } | |
4368 | j++; | |
4369 | } | |
4370 | ||
4371 | swap_buffers: | |
4372 | /* Swap primary and spare array */ | |
4373 | thresholds->spare = thresholds->primary; | |
4374 | ||
4375 | rcu_assign_pointer(thresholds->primary, new); | |
4376 | ||
4377 | /* To be sure that nobody uses thresholds */ | |
4378 | synchronize_rcu(); | |
4379 | ||
4380 | /* If all events are unregistered, free the spare array */ | |
4381 | if (!new) { | |
4382 | kfree(thresholds->spare); | |
4383 | thresholds->spare = NULL; | |
4384 | } | |
4385 | unlock: | |
4386 | mutex_unlock(&memcg->thresholds_lock); | |
4387 | } | |
4388 | ||
4389 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4390 | struct eventfd_ctx *eventfd) | |
4391 | { | |
4392 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | |
4393 | } | |
4394 | ||
4395 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4396 | struct eventfd_ctx *eventfd) | |
4397 | { | |
4398 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | |
4399 | } | |
4400 | ||
4401 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | |
4402 | struct eventfd_ctx *eventfd, const char *args) | |
4403 | { | |
4404 | struct mem_cgroup_eventfd_list *event; | |
4405 | ||
4406 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
4407 | if (!event) | |
4408 | return -ENOMEM; | |
4409 | ||
4410 | spin_lock(&memcg_oom_lock); | |
4411 | ||
4412 | event->eventfd = eventfd; | |
4413 | list_add(&event->list, &memcg->oom_notify); | |
4414 | ||
4415 | /* already in OOM ? */ | |
4416 | if (memcg->under_oom) | |
4417 | eventfd_signal(eventfd, 1); | |
4418 | spin_unlock(&memcg_oom_lock); | |
4419 | ||
4420 | return 0; | |
4421 | } | |
4422 | ||
4423 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | |
4424 | struct eventfd_ctx *eventfd) | |
4425 | { | |
4426 | struct mem_cgroup_eventfd_list *ev, *tmp; | |
4427 | ||
4428 | spin_lock(&memcg_oom_lock); | |
4429 | ||
4430 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | |
4431 | if (ev->eventfd == eventfd) { | |
4432 | list_del(&ev->list); | |
4433 | kfree(ev); | |
4434 | } | |
4435 | } | |
4436 | ||
4437 | spin_unlock(&memcg_oom_lock); | |
4438 | } | |
4439 | ||
4440 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | |
4441 | { | |
4442 | struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); | |
4443 | ||
4444 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | |
4445 | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | |
4446 | seq_printf(sf, "oom_kill %lu\n", | |
4447 | atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | |
4448 | return 0; | |
4449 | } | |
4450 | ||
4451 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | |
4452 | struct cftype *cft, u64 val) | |
4453 | { | |
4454 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4455 | ||
4456 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
4457 | if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) | |
4458 | return -EINVAL; | |
4459 | ||
4460 | memcg->oom_kill_disable = val; | |
4461 | if (!val) | |
4462 | memcg_oom_recover(memcg); | |
4463 | ||
4464 | return 0; | |
4465 | } | |
4466 | ||
4467 | #ifdef CONFIG_CGROUP_WRITEBACK | |
4468 | ||
4469 | #include <trace/events/writeback.h> | |
4470 | ||
4471 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
4472 | { | |
4473 | return wb_domain_init(&memcg->cgwb_domain, gfp); | |
4474 | } | |
4475 | ||
4476 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
4477 | { | |
4478 | wb_domain_exit(&memcg->cgwb_domain); | |
4479 | } | |
4480 | ||
4481 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | |
4482 | { | |
4483 | wb_domain_size_changed(&memcg->cgwb_domain); | |
4484 | } | |
4485 | ||
4486 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | |
4487 | { | |
4488 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
4489 | ||
4490 | if (!memcg->css.parent) | |
4491 | return NULL; | |
4492 | ||
4493 | return &memcg->cgwb_domain; | |
4494 | } | |
4495 | ||
4496 | /** | |
4497 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | |
4498 | * @wb: bdi_writeback in question | |
4499 | * @pfilepages: out parameter for number of file pages | |
4500 | * @pheadroom: out parameter for number of allocatable pages according to memcg | |
4501 | * @pdirty: out parameter for number of dirty pages | |
4502 | * @pwriteback: out parameter for number of pages under writeback | |
4503 | * | |
4504 | * Determine the numbers of file, headroom, dirty, and writeback pages in | |
4505 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom | |
4506 | * is a bit more involved. | |
4507 | * | |
4508 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the | |
4509 | * headroom is calculated as the lowest headroom of itself and the | |
4510 | * ancestors. Note that this doesn't consider the actual amount of | |
4511 | * available memory in the system. The caller should further cap | |
4512 | * *@pheadroom accordingly. | |
4513 | */ | |
4514 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | |
4515 | unsigned long *pheadroom, unsigned long *pdirty, | |
4516 | unsigned long *pwriteback) | |
4517 | { | |
4518 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
4519 | struct mem_cgroup *parent; | |
4520 | ||
4521 | mem_cgroup_flush_stats(); | |
4522 | ||
4523 | *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); | |
4524 | *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); | |
4525 | *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + | |
4526 | memcg_page_state(memcg, NR_ACTIVE_FILE); | |
4527 | ||
4528 | *pheadroom = PAGE_COUNTER_MAX; | |
4529 | while ((parent = parent_mem_cgroup(memcg))) { | |
4530 | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), | |
4531 | READ_ONCE(memcg->memory.high)); | |
4532 | unsigned long used = page_counter_read(&memcg->memory); | |
4533 | ||
4534 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | |
4535 | memcg = parent; | |
4536 | } | |
4537 | } | |
4538 | ||
4539 | /* | |
4540 | * Foreign dirty flushing | |
4541 | * | |
4542 | * There's an inherent mismatch between memcg and writeback. The former | |
4543 | * tracks ownership per-page while the latter per-inode. This was a | |
4544 | * deliberate design decision because honoring per-page ownership in the | |
4545 | * writeback path is complicated, may lead to higher CPU and IO overheads | |
4546 | * and deemed unnecessary given that write-sharing an inode across | |
4547 | * different cgroups isn't a common use-case. | |
4548 | * | |
4549 | * Combined with inode majority-writer ownership switching, this works well | |
4550 | * enough in most cases but there are some pathological cases. For | |
4551 | * example, let's say there are two cgroups A and B which keep writing to | |
4552 | * different but confined parts of the same inode. B owns the inode and | |
4553 | * A's memory is limited far below B's. A's dirty ratio can rise enough to | |
4554 | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid | |
4555 | * triggering background writeback. A will be slowed down without a way to | |
4556 | * make writeback of the dirty pages happen. | |
4557 | * | |
4558 | * Conditions like the above can lead to a cgroup getting repeatedly and | |
4559 | * severely throttled after making some progress after each | |
4560 | * dirty_expire_interval while the underlying IO device is almost | |
4561 | * completely idle. | |
4562 | * | |
4563 | * Solving this problem completely requires matching the ownership tracking | |
4564 | * granularities between memcg and writeback in either direction. However, | |
4565 | * the more egregious behaviors can be avoided by simply remembering the | |
4566 | * most recent foreign dirtying events and initiating remote flushes on | |
4567 | * them when local writeback isn't enough to keep the memory clean enough. | |
4568 | * | |
4569 | * The following two functions implement such mechanism. When a foreign | |
4570 | * page - a page whose memcg and writeback ownerships don't match - is | |
4571 | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning | |
4572 | * bdi_writeback on the page owning memcg. When balance_dirty_pages() | |
4573 | * decides that the memcg needs to sleep due to high dirty ratio, it calls | |
4574 | * mem_cgroup_flush_foreign() which queues writeback on the recorded | |
4575 | * foreign bdi_writebacks which haven't expired. Both the numbers of | |
4576 | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are | |
4577 | * limited to MEMCG_CGWB_FRN_CNT. | |
4578 | * | |
4579 | * The mechanism only remembers IDs and doesn't hold any object references. | |
4580 | * As being wrong occasionally doesn't matter, updates and accesses to the | |
4581 | * records are lockless and racy. | |
4582 | */ | |
4583 | void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, | |
4584 | struct bdi_writeback *wb) | |
4585 | { | |
4586 | struct mem_cgroup *memcg = page_memcg(page); | |
4587 | struct memcg_cgwb_frn *frn; | |
4588 | u64 now = get_jiffies_64(); | |
4589 | u64 oldest_at = now; | |
4590 | int oldest = -1; | |
4591 | int i; | |
4592 | ||
4593 | trace_track_foreign_dirty(page, wb); | |
4594 | ||
4595 | /* | |
4596 | * Pick the slot to use. If there is already a slot for @wb, keep | |
4597 | * using it. If not replace the oldest one which isn't being | |
4598 | * written out. | |
4599 | */ | |
4600 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | |
4601 | frn = &memcg->cgwb_frn[i]; | |
4602 | if (frn->bdi_id == wb->bdi->id && | |
4603 | frn->memcg_id == wb->memcg_css->id) | |
4604 | break; | |
4605 | if (time_before64(frn->at, oldest_at) && | |
4606 | atomic_read(&frn->done.cnt) == 1) { | |
4607 | oldest = i; | |
4608 | oldest_at = frn->at; | |
4609 | } | |
4610 | } | |
4611 | ||
4612 | if (i < MEMCG_CGWB_FRN_CNT) { | |
4613 | /* | |
4614 | * Re-using an existing one. Update timestamp lazily to | |
4615 | * avoid making the cacheline hot. We want them to be | |
4616 | * reasonably up-to-date and significantly shorter than | |
4617 | * dirty_expire_interval as that's what expires the record. | |
4618 | * Use the shorter of 1s and dirty_expire_interval / 8. | |
4619 | */ | |
4620 | unsigned long update_intv = | |
4621 | min_t(unsigned long, HZ, | |
4622 | msecs_to_jiffies(dirty_expire_interval * 10) / 8); | |
4623 | ||
4624 | if (time_before64(frn->at, now - update_intv)) | |
4625 | frn->at = now; | |
4626 | } else if (oldest >= 0) { | |
4627 | /* replace the oldest free one */ | |
4628 | frn = &memcg->cgwb_frn[oldest]; | |
4629 | frn->bdi_id = wb->bdi->id; | |
4630 | frn->memcg_id = wb->memcg_css->id; | |
4631 | frn->at = now; | |
4632 | } | |
4633 | } | |
4634 | ||
4635 | /* issue foreign writeback flushes for recorded foreign dirtying events */ | |
4636 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) | |
4637 | { | |
4638 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
4639 | unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); | |
4640 | u64 now = jiffies_64; | |
4641 | int i; | |
4642 | ||
4643 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | |
4644 | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; | |
4645 | ||
4646 | /* | |
4647 | * If the record is older than dirty_expire_interval, | |
4648 | * writeback on it has already started. No need to kick it | |
4649 | * off again. Also, don't start a new one if there's | |
4650 | * already one in flight. | |
4651 | */ | |
4652 | if (time_after64(frn->at, now - intv) && | |
4653 | atomic_read(&frn->done.cnt) == 1) { | |
4654 | frn->at = 0; | |
4655 | trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); | |
4656 | cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, | |
4657 | WB_REASON_FOREIGN_FLUSH, | |
4658 | &frn->done); | |
4659 | } | |
4660 | } | |
4661 | } | |
4662 | ||
4663 | #else /* CONFIG_CGROUP_WRITEBACK */ | |
4664 | ||
4665 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
4666 | { | |
4667 | return 0; | |
4668 | } | |
4669 | ||
4670 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
4671 | { | |
4672 | } | |
4673 | ||
4674 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | |
4675 | { | |
4676 | } | |
4677 | ||
4678 | #endif /* CONFIG_CGROUP_WRITEBACK */ | |
4679 | ||
4680 | /* | |
4681 | * DO NOT USE IN NEW FILES. | |
4682 | * | |
4683 | * "cgroup.event_control" implementation. | |
4684 | * | |
4685 | * This is way over-engineered. It tries to support fully configurable | |
4686 | * events for each user. Such level of flexibility is completely | |
4687 | * unnecessary especially in the light of the planned unified hierarchy. | |
4688 | * | |
4689 | * Please deprecate this and replace with something simpler if at all | |
4690 | * possible. | |
4691 | */ | |
4692 | ||
4693 | /* | |
4694 | * Unregister event and free resources. | |
4695 | * | |
4696 | * Gets called from workqueue. | |
4697 | */ | |
4698 | static void memcg_event_remove(struct work_struct *work) | |
4699 | { | |
4700 | struct mem_cgroup_event *event = | |
4701 | container_of(work, struct mem_cgroup_event, remove); | |
4702 | struct mem_cgroup *memcg = event->memcg; | |
4703 | ||
4704 | remove_wait_queue(event->wqh, &event->wait); | |
4705 | ||
4706 | event->unregister_event(memcg, event->eventfd); | |
4707 | ||
4708 | /* Notify userspace the event is going away. */ | |
4709 | eventfd_signal(event->eventfd, 1); | |
4710 | ||
4711 | eventfd_ctx_put(event->eventfd); | |
4712 | kfree(event); | |
4713 | css_put(&memcg->css); | |
4714 | } | |
4715 | ||
4716 | /* | |
4717 | * Gets called on EPOLLHUP on eventfd when user closes it. | |
4718 | * | |
4719 | * Called with wqh->lock held and interrupts disabled. | |
4720 | */ | |
4721 | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, | |
4722 | int sync, void *key) | |
4723 | { | |
4724 | struct mem_cgroup_event *event = | |
4725 | container_of(wait, struct mem_cgroup_event, wait); | |
4726 | struct mem_cgroup *memcg = event->memcg; | |
4727 | __poll_t flags = key_to_poll(key); | |
4728 | ||
4729 | if (flags & EPOLLHUP) { | |
4730 | /* | |
4731 | * If the event has been detached at cgroup removal, we | |
4732 | * can simply return knowing the other side will cleanup | |
4733 | * for us. | |
4734 | * | |
4735 | * We can't race against event freeing since the other | |
4736 | * side will require wqh->lock via remove_wait_queue(), | |
4737 | * which we hold. | |
4738 | */ | |
4739 | spin_lock(&memcg->event_list_lock); | |
4740 | if (!list_empty(&event->list)) { | |
4741 | list_del_init(&event->list); | |
4742 | /* | |
4743 | * We are in atomic context, but cgroup_event_remove() | |
4744 | * may sleep, so we have to call it in workqueue. | |
4745 | */ | |
4746 | schedule_work(&event->remove); | |
4747 | } | |
4748 | spin_unlock(&memcg->event_list_lock); | |
4749 | } | |
4750 | ||
4751 | return 0; | |
4752 | } | |
4753 | ||
4754 | static void memcg_event_ptable_queue_proc(struct file *file, | |
4755 | wait_queue_head_t *wqh, poll_table *pt) | |
4756 | { | |
4757 | struct mem_cgroup_event *event = | |
4758 | container_of(pt, struct mem_cgroup_event, pt); | |
4759 | ||
4760 | event->wqh = wqh; | |
4761 | add_wait_queue(wqh, &event->wait); | |
4762 | } | |
4763 | ||
4764 | /* | |
4765 | * DO NOT USE IN NEW FILES. | |
4766 | * | |
4767 | * Parse input and register new cgroup event handler. | |
4768 | * | |
4769 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
4770 | * Interpretation of args is defined by control file implementation. | |
4771 | */ | |
4772 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | |
4773 | char *buf, size_t nbytes, loff_t off) | |
4774 | { | |
4775 | struct cgroup_subsys_state *css = of_css(of); | |
4776 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4777 | struct mem_cgroup_event *event; | |
4778 | struct cgroup_subsys_state *cfile_css; | |
4779 | unsigned int efd, cfd; | |
4780 | struct fd efile; | |
4781 | struct fd cfile; | |
4782 | const char *name; | |
4783 | char *endp; | |
4784 | int ret; | |
4785 | ||
4786 | buf = strstrip(buf); | |
4787 | ||
4788 | efd = simple_strtoul(buf, &endp, 10); | |
4789 | if (*endp != ' ') | |
4790 | return -EINVAL; | |
4791 | buf = endp + 1; | |
4792 | ||
4793 | cfd = simple_strtoul(buf, &endp, 10); | |
4794 | if ((*endp != ' ') && (*endp != '\0')) | |
4795 | return -EINVAL; | |
4796 | buf = endp + 1; | |
4797 | ||
4798 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
4799 | if (!event) | |
4800 | return -ENOMEM; | |
4801 | ||
4802 | event->memcg = memcg; | |
4803 | INIT_LIST_HEAD(&event->list); | |
4804 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | |
4805 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
4806 | INIT_WORK(&event->remove, memcg_event_remove); | |
4807 | ||
4808 | efile = fdget(efd); | |
4809 | if (!efile.file) { | |
4810 | ret = -EBADF; | |
4811 | goto out_kfree; | |
4812 | } | |
4813 | ||
4814 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
4815 | if (IS_ERR(event->eventfd)) { | |
4816 | ret = PTR_ERR(event->eventfd); | |
4817 | goto out_put_efile; | |
4818 | } | |
4819 | ||
4820 | cfile = fdget(cfd); | |
4821 | if (!cfile.file) { | |
4822 | ret = -EBADF; | |
4823 | goto out_put_eventfd; | |
4824 | } | |
4825 | ||
4826 | /* the process need read permission on control file */ | |
4827 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
4828 | ret = file_permission(cfile.file, MAY_READ); | |
4829 | if (ret < 0) | |
4830 | goto out_put_cfile; | |
4831 | ||
4832 | /* | |
4833 | * Determine the event callbacks and set them in @event. This used | |
4834 | * to be done via struct cftype but cgroup core no longer knows | |
4835 | * about these events. The following is crude but the whole thing | |
4836 | * is for compatibility anyway. | |
4837 | * | |
4838 | * DO NOT ADD NEW FILES. | |
4839 | */ | |
4840 | name = cfile.file->f_path.dentry->d_name.name; | |
4841 | ||
4842 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
4843 | event->register_event = mem_cgroup_usage_register_event; | |
4844 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
4845 | } else if (!strcmp(name, "memory.oom_control")) { | |
4846 | event->register_event = mem_cgroup_oom_register_event; | |
4847 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
4848 | } else if (!strcmp(name, "memory.pressure_level")) { | |
4849 | event->register_event = vmpressure_register_event; | |
4850 | event->unregister_event = vmpressure_unregister_event; | |
4851 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
4852 | event->register_event = memsw_cgroup_usage_register_event; | |
4853 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
4854 | } else { | |
4855 | ret = -EINVAL; | |
4856 | goto out_put_cfile; | |
4857 | } | |
4858 | ||
4859 | /* | |
4860 | * Verify @cfile should belong to @css. Also, remaining events are | |
4861 | * automatically removed on cgroup destruction but the removal is | |
4862 | * asynchronous, so take an extra ref on @css. | |
4863 | */ | |
4864 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | |
4865 | &memory_cgrp_subsys); | |
4866 | ret = -EINVAL; | |
4867 | if (IS_ERR(cfile_css)) | |
4868 | goto out_put_cfile; | |
4869 | if (cfile_css != css) { | |
4870 | css_put(cfile_css); | |
4871 | goto out_put_cfile; | |
4872 | } | |
4873 | ||
4874 | ret = event->register_event(memcg, event->eventfd, buf); | |
4875 | if (ret) | |
4876 | goto out_put_css; | |
4877 | ||
4878 | vfs_poll(efile.file, &event->pt); | |
4879 | ||
4880 | spin_lock_irq(&memcg->event_list_lock); | |
4881 | list_add(&event->list, &memcg->event_list); | |
4882 | spin_unlock_irq(&memcg->event_list_lock); | |
4883 | ||
4884 | fdput(cfile); | |
4885 | fdput(efile); | |
4886 | ||
4887 | return nbytes; | |
4888 | ||
4889 | out_put_css: | |
4890 | css_put(css); | |
4891 | out_put_cfile: | |
4892 | fdput(cfile); | |
4893 | out_put_eventfd: | |
4894 | eventfd_ctx_put(event->eventfd); | |
4895 | out_put_efile: | |
4896 | fdput(efile); | |
4897 | out_kfree: | |
4898 | kfree(event); | |
4899 | ||
4900 | return ret; | |
4901 | } | |
4902 | ||
4903 | static struct cftype mem_cgroup_legacy_files[] = { | |
4904 | { | |
4905 | .name = "usage_in_bytes", | |
4906 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | |
4907 | .read_u64 = mem_cgroup_read_u64, | |
4908 | }, | |
4909 | { | |
4910 | .name = "max_usage_in_bytes", | |
4911 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | |
4912 | .write = mem_cgroup_reset, | |
4913 | .read_u64 = mem_cgroup_read_u64, | |
4914 | }, | |
4915 | { | |
4916 | .name = "limit_in_bytes", | |
4917 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | |
4918 | .write = mem_cgroup_write, | |
4919 | .read_u64 = mem_cgroup_read_u64, | |
4920 | }, | |
4921 | { | |
4922 | .name = "soft_limit_in_bytes", | |
4923 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
4924 | .write = mem_cgroup_write, | |
4925 | .read_u64 = mem_cgroup_read_u64, | |
4926 | }, | |
4927 | { | |
4928 | .name = "failcnt", | |
4929 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | |
4930 | .write = mem_cgroup_reset, | |
4931 | .read_u64 = mem_cgroup_read_u64, | |
4932 | }, | |
4933 | { | |
4934 | .name = "stat", | |
4935 | .seq_show = memcg_stat_show, | |
4936 | }, | |
4937 | { | |
4938 | .name = "force_empty", | |
4939 | .write = mem_cgroup_force_empty_write, | |
4940 | }, | |
4941 | { | |
4942 | .name = "use_hierarchy", | |
4943 | .write_u64 = mem_cgroup_hierarchy_write, | |
4944 | .read_u64 = mem_cgroup_hierarchy_read, | |
4945 | }, | |
4946 | { | |
4947 | .name = "cgroup.event_control", /* XXX: for compat */ | |
4948 | .write = memcg_write_event_control, | |
4949 | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | |
4950 | }, | |
4951 | { | |
4952 | .name = "swappiness", | |
4953 | .read_u64 = mem_cgroup_swappiness_read, | |
4954 | .write_u64 = mem_cgroup_swappiness_write, | |
4955 | }, | |
4956 | { | |
4957 | .name = "move_charge_at_immigrate", | |
4958 | .read_u64 = mem_cgroup_move_charge_read, | |
4959 | .write_u64 = mem_cgroup_move_charge_write, | |
4960 | }, | |
4961 | { | |
4962 | .name = "oom_control", | |
4963 | .seq_show = mem_cgroup_oom_control_read, | |
4964 | .write_u64 = mem_cgroup_oom_control_write, | |
4965 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
4966 | }, | |
4967 | { | |
4968 | .name = "pressure_level", | |
4969 | }, | |
4970 | #ifdef CONFIG_NUMA | |
4971 | { | |
4972 | .name = "numa_stat", | |
4973 | .seq_show = memcg_numa_stat_show, | |
4974 | }, | |
4975 | #endif | |
4976 | { | |
4977 | .name = "kmem.limit_in_bytes", | |
4978 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
4979 | .write = mem_cgroup_write, | |
4980 | .read_u64 = mem_cgroup_read_u64, | |
4981 | }, | |
4982 | { | |
4983 | .name = "kmem.usage_in_bytes", | |
4984 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
4985 | .read_u64 = mem_cgroup_read_u64, | |
4986 | }, | |
4987 | { | |
4988 | .name = "kmem.failcnt", | |
4989 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
4990 | .write = mem_cgroup_reset, | |
4991 | .read_u64 = mem_cgroup_read_u64, | |
4992 | }, | |
4993 | { | |
4994 | .name = "kmem.max_usage_in_bytes", | |
4995 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
4996 | .write = mem_cgroup_reset, | |
4997 | .read_u64 = mem_cgroup_read_u64, | |
4998 | }, | |
4999 | #if defined(CONFIG_MEMCG_KMEM) && \ | |
5000 | (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) | |
5001 | { | |
5002 | .name = "kmem.slabinfo", | |
5003 | .seq_show = memcg_slab_show, | |
5004 | }, | |
5005 | #endif | |
5006 | { | |
5007 | .name = "kmem.tcp.limit_in_bytes", | |
5008 | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | |
5009 | .write = mem_cgroup_write, | |
5010 | .read_u64 = mem_cgroup_read_u64, | |
5011 | }, | |
5012 | { | |
5013 | .name = "kmem.tcp.usage_in_bytes", | |
5014 | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | |
5015 | .read_u64 = mem_cgroup_read_u64, | |
5016 | }, | |
5017 | { | |
5018 | .name = "kmem.tcp.failcnt", | |
5019 | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | |
5020 | .write = mem_cgroup_reset, | |
5021 | .read_u64 = mem_cgroup_read_u64, | |
5022 | }, | |
5023 | { | |
5024 | .name = "kmem.tcp.max_usage_in_bytes", | |
5025 | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | |
5026 | .write = mem_cgroup_reset, | |
5027 | .read_u64 = mem_cgroup_read_u64, | |
5028 | }, | |
5029 | { }, /* terminate */ | |
5030 | }; | |
5031 | ||
5032 | /* | |
5033 | * Private memory cgroup IDR | |
5034 | * | |
5035 | * Swap-out records and page cache shadow entries need to store memcg | |
5036 | * references in constrained space, so we maintain an ID space that is | |
5037 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | |
5038 | * memory-controlled cgroups to 64k. | |
5039 | * | |
5040 | * However, there usually are many references to the offline CSS after | |
5041 | * the cgroup has been destroyed, such as page cache or reclaimable | |
5042 | * slab objects, that don't need to hang on to the ID. We want to keep | |
5043 | * those dead CSS from occupying IDs, or we might quickly exhaust the | |
5044 | * relatively small ID space and prevent the creation of new cgroups | |
5045 | * even when there are much fewer than 64k cgroups - possibly none. | |
5046 | * | |
5047 | * Maintain a private 16-bit ID space for memcg, and allow the ID to | |
5048 | * be freed and recycled when it's no longer needed, which is usually | |
5049 | * when the CSS is offlined. | |
5050 | * | |
5051 | * The only exception to that are records of swapped out tmpfs/shmem | |
5052 | * pages that need to be attributed to live ancestors on swapin. But | |
5053 | * those references are manageable from userspace. | |
5054 | */ | |
5055 | ||
5056 | static DEFINE_IDR(mem_cgroup_idr); | |
5057 | ||
5058 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) | |
5059 | { | |
5060 | if (memcg->id.id > 0) { | |
5061 | idr_remove(&mem_cgroup_idr, memcg->id.id); | |
5062 | memcg->id.id = 0; | |
5063 | } | |
5064 | } | |
5065 | ||
5066 | static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, | |
5067 | unsigned int n) | |
5068 | { | |
5069 | refcount_add(n, &memcg->id.ref); | |
5070 | } | |
5071 | ||
5072 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) | |
5073 | { | |
5074 | if (refcount_sub_and_test(n, &memcg->id.ref)) { | |
5075 | mem_cgroup_id_remove(memcg); | |
5076 | ||
5077 | /* Memcg ID pins CSS */ | |
5078 | css_put(&memcg->css); | |
5079 | } | |
5080 | } | |
5081 | ||
5082 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | |
5083 | { | |
5084 | mem_cgroup_id_put_many(memcg, 1); | |
5085 | } | |
5086 | ||
5087 | /** | |
5088 | * mem_cgroup_from_id - look up a memcg from a memcg id | |
5089 | * @id: the memcg id to look up | |
5090 | * | |
5091 | * Caller must hold rcu_read_lock(). | |
5092 | */ | |
5093 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
5094 | { | |
5095 | WARN_ON_ONCE(!rcu_read_lock_held()); | |
5096 | return idr_find(&mem_cgroup_idr, id); | |
5097 | } | |
5098 | ||
5099 | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | |
5100 | { | |
5101 | struct mem_cgroup_per_node *pn; | |
5102 | int tmp = node; | |
5103 | /* | |
5104 | * This routine is called against possible nodes. | |
5105 | * But it's BUG to call kmalloc() against offline node. | |
5106 | * | |
5107 | * TODO: this routine can waste much memory for nodes which will | |
5108 | * never be onlined. It's better to use memory hotplug callback | |
5109 | * function. | |
5110 | */ | |
5111 | if (!node_state(node, N_NORMAL_MEMORY)) | |
5112 | tmp = -1; | |
5113 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | |
5114 | if (!pn) | |
5115 | return 1; | |
5116 | ||
5117 | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, | |
5118 | GFP_KERNEL_ACCOUNT); | |
5119 | if (!pn->lruvec_stats_percpu) { | |
5120 | kfree(pn); | |
5121 | return 1; | |
5122 | } | |
5123 | ||
5124 | lruvec_init(&pn->lruvec); | |
5125 | pn->usage_in_excess = 0; | |
5126 | pn->on_tree = false; | |
5127 | pn->memcg = memcg; | |
5128 | ||
5129 | memcg->nodeinfo[node] = pn; | |
5130 | return 0; | |
5131 | } | |
5132 | ||
5133 | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | |
5134 | { | |
5135 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; | |
5136 | ||
5137 | if (!pn) | |
5138 | return; | |
5139 | ||
5140 | free_percpu(pn->lruvec_stats_percpu); | |
5141 | kfree(pn); | |
5142 | } | |
5143 | ||
5144 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
5145 | { | |
5146 | int node; | |
5147 | ||
5148 | for_each_node(node) | |
5149 | free_mem_cgroup_per_node_info(memcg, node); | |
5150 | free_percpu(memcg->vmstats_percpu); | |
5151 | kfree(memcg); | |
5152 | } | |
5153 | ||
5154 | static void mem_cgroup_free(struct mem_cgroup *memcg) | |
5155 | { | |
5156 | memcg_wb_domain_exit(memcg); | |
5157 | __mem_cgroup_free(memcg); | |
5158 | } | |
5159 | ||
5160 | static struct mem_cgroup *mem_cgroup_alloc(void) | |
5161 | { | |
5162 | struct mem_cgroup *memcg; | |
5163 | unsigned int size; | |
5164 | int node; | |
5165 | int __maybe_unused i; | |
5166 | long error = -ENOMEM; | |
5167 | ||
5168 | size = sizeof(struct mem_cgroup); | |
5169 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
5170 | ||
5171 | memcg = kzalloc(size, GFP_KERNEL); | |
5172 | if (!memcg) | |
5173 | return ERR_PTR(error); | |
5174 | ||
5175 | memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, | |
5176 | 1, MEM_CGROUP_ID_MAX, | |
5177 | GFP_KERNEL); | |
5178 | if (memcg->id.id < 0) { | |
5179 | error = memcg->id.id; | |
5180 | goto fail; | |
5181 | } | |
5182 | ||
5183 | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, | |
5184 | GFP_KERNEL_ACCOUNT); | |
5185 | if (!memcg->vmstats_percpu) | |
5186 | goto fail; | |
5187 | ||
5188 | for_each_node(node) | |
5189 | if (alloc_mem_cgroup_per_node_info(memcg, node)) | |
5190 | goto fail; | |
5191 | ||
5192 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | |
5193 | goto fail; | |
5194 | ||
5195 | INIT_WORK(&memcg->high_work, high_work_func); | |
5196 | INIT_LIST_HEAD(&memcg->oom_notify); | |
5197 | mutex_init(&memcg->thresholds_lock); | |
5198 | spin_lock_init(&memcg->move_lock); | |
5199 | vmpressure_init(&memcg->vmpressure); | |
5200 | INIT_LIST_HEAD(&memcg->event_list); | |
5201 | spin_lock_init(&memcg->event_list_lock); | |
5202 | memcg->socket_pressure = jiffies; | |
5203 | #ifdef CONFIG_MEMCG_KMEM | |
5204 | memcg->kmemcg_id = -1; | |
5205 | INIT_LIST_HEAD(&memcg->objcg_list); | |
5206 | #endif | |
5207 | #ifdef CONFIG_CGROUP_WRITEBACK | |
5208 | INIT_LIST_HEAD(&memcg->cgwb_list); | |
5209 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | |
5210 | memcg->cgwb_frn[i].done = | |
5211 | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); | |
5212 | #endif | |
5213 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5214 | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); | |
5215 | INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); | |
5216 | memcg->deferred_split_queue.split_queue_len = 0; | |
5217 | #endif | |
5218 | idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); | |
5219 | return memcg; | |
5220 | fail: | |
5221 | mem_cgroup_id_remove(memcg); | |
5222 | __mem_cgroup_free(memcg); | |
5223 | return ERR_PTR(error); | |
5224 | } | |
5225 | ||
5226 | static struct cgroup_subsys_state * __ref | |
5227 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | |
5228 | { | |
5229 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | |
5230 | struct mem_cgroup *memcg, *old_memcg; | |
5231 | long error = -ENOMEM; | |
5232 | ||
5233 | old_memcg = set_active_memcg(parent); | |
5234 | memcg = mem_cgroup_alloc(); | |
5235 | set_active_memcg(old_memcg); | |
5236 | if (IS_ERR(memcg)) | |
5237 | return ERR_CAST(memcg); | |
5238 | ||
5239 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); | |
5240 | memcg->soft_limit = PAGE_COUNTER_MAX; | |
5241 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); | |
5242 | if (parent) { | |
5243 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
5244 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
5245 | ||
5246 | page_counter_init(&memcg->memory, &parent->memory); | |
5247 | page_counter_init(&memcg->swap, &parent->swap); | |
5248 | page_counter_init(&memcg->kmem, &parent->kmem); | |
5249 | page_counter_init(&memcg->tcpmem, &parent->tcpmem); | |
5250 | } else { | |
5251 | page_counter_init(&memcg->memory, NULL); | |
5252 | page_counter_init(&memcg->swap, NULL); | |
5253 | page_counter_init(&memcg->kmem, NULL); | |
5254 | page_counter_init(&memcg->tcpmem, NULL); | |
5255 | ||
5256 | root_mem_cgroup = memcg; | |
5257 | return &memcg->css; | |
5258 | } | |
5259 | ||
5260 | /* The following stuff does not apply to the root */ | |
5261 | error = memcg_online_kmem(memcg); | |
5262 | if (error) | |
5263 | goto fail; | |
5264 | ||
5265 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | |
5266 | static_branch_inc(&memcg_sockets_enabled_key); | |
5267 | ||
5268 | return &memcg->css; | |
5269 | fail: | |
5270 | mem_cgroup_id_remove(memcg); | |
5271 | mem_cgroup_free(memcg); | |
5272 | return ERR_PTR(error); | |
5273 | } | |
5274 | ||
5275 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) | |
5276 | { | |
5277 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5278 | ||
5279 | /* | |
5280 | * A memcg must be visible for expand_shrinker_info() | |
5281 | * by the time the maps are allocated. So, we allocate maps | |
5282 | * here, when for_each_mem_cgroup() can't skip it. | |
5283 | */ | |
5284 | if (alloc_shrinker_info(memcg)) { | |
5285 | mem_cgroup_id_remove(memcg); | |
5286 | return -ENOMEM; | |
5287 | } | |
5288 | ||
5289 | /* Online state pins memcg ID, memcg ID pins CSS */ | |
5290 | refcount_set(&memcg->id.ref, 1); | |
5291 | css_get(css); | |
5292 | ||
5293 | if (unlikely(mem_cgroup_is_root(memcg))) | |
5294 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, | |
5295 | 2UL*HZ); | |
5296 | return 0; | |
5297 | } | |
5298 | ||
5299 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | |
5300 | { | |
5301 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5302 | struct mem_cgroup_event *event, *tmp; | |
5303 | ||
5304 | /* | |
5305 | * Unregister events and notify userspace. | |
5306 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
5307 | * directory to avoid race between userspace and kernelspace. | |
5308 | */ | |
5309 | spin_lock_irq(&memcg->event_list_lock); | |
5310 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
5311 | list_del_init(&event->list); | |
5312 | schedule_work(&event->remove); | |
5313 | } | |
5314 | spin_unlock_irq(&memcg->event_list_lock); | |
5315 | ||
5316 | page_counter_set_min(&memcg->memory, 0); | |
5317 | page_counter_set_low(&memcg->memory, 0); | |
5318 | ||
5319 | memcg_offline_kmem(memcg); | |
5320 | reparent_shrinker_deferred(memcg); | |
5321 | wb_memcg_offline(memcg); | |
5322 | ||
5323 | drain_all_stock(memcg); | |
5324 | ||
5325 | mem_cgroup_id_put(memcg); | |
5326 | } | |
5327 | ||
5328 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | |
5329 | { | |
5330 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5331 | ||
5332 | invalidate_reclaim_iterators(memcg); | |
5333 | } | |
5334 | ||
5335 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | |
5336 | { | |
5337 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5338 | int __maybe_unused i; | |
5339 | ||
5340 | #ifdef CONFIG_CGROUP_WRITEBACK | |
5341 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | |
5342 | wb_wait_for_completion(&memcg->cgwb_frn[i].done); | |
5343 | #endif | |
5344 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | |
5345 | static_branch_dec(&memcg_sockets_enabled_key); | |
5346 | ||
5347 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | |
5348 | static_branch_dec(&memcg_sockets_enabled_key); | |
5349 | ||
5350 | vmpressure_cleanup(&memcg->vmpressure); | |
5351 | cancel_work_sync(&memcg->high_work); | |
5352 | mem_cgroup_remove_from_trees(memcg); | |
5353 | free_shrinker_info(memcg); | |
5354 | memcg_free_kmem(memcg); | |
5355 | mem_cgroup_free(memcg); | |
5356 | } | |
5357 | ||
5358 | /** | |
5359 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
5360 | * @css: the target css | |
5361 | * | |
5362 | * Reset the states of the mem_cgroup associated with @css. This is | |
5363 | * invoked when the userland requests disabling on the default hierarchy | |
5364 | * but the memcg is pinned through dependency. The memcg should stop | |
5365 | * applying policies and should revert to the vanilla state as it may be | |
5366 | * made visible again. | |
5367 | * | |
5368 | * The current implementation only resets the essential configurations. | |
5369 | * This needs to be expanded to cover all the visible parts. | |
5370 | */ | |
5371 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
5372 | { | |
5373 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5374 | ||
5375 | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); | |
5376 | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | |
5377 | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); | |
5378 | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | |
5379 | page_counter_set_min(&memcg->memory, 0); | |
5380 | page_counter_set_low(&memcg->memory, 0); | |
5381 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); | |
5382 | memcg->soft_limit = PAGE_COUNTER_MAX; | |
5383 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); | |
5384 | memcg_wb_domain_size_changed(memcg); | |
5385 | } | |
5386 | ||
5387 | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) | |
5388 | { | |
5389 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5390 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | |
5391 | struct memcg_vmstats_percpu *statc; | |
5392 | long delta, v; | |
5393 | int i, nid; | |
5394 | ||
5395 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); | |
5396 | ||
5397 | for (i = 0; i < MEMCG_NR_STAT; i++) { | |
5398 | /* | |
5399 | * Collect the aggregated propagation counts of groups | |
5400 | * below us. We're in a per-cpu loop here and this is | |
5401 | * a global counter, so the first cycle will get them. | |
5402 | */ | |
5403 | delta = memcg->vmstats.state_pending[i]; | |
5404 | if (delta) | |
5405 | memcg->vmstats.state_pending[i] = 0; | |
5406 | ||
5407 | /* Add CPU changes on this level since the last flush */ | |
5408 | v = READ_ONCE(statc->state[i]); | |
5409 | if (v != statc->state_prev[i]) { | |
5410 | delta += v - statc->state_prev[i]; | |
5411 | statc->state_prev[i] = v; | |
5412 | } | |
5413 | ||
5414 | if (!delta) | |
5415 | continue; | |
5416 | ||
5417 | /* Aggregate counts on this level and propagate upwards */ | |
5418 | memcg->vmstats.state[i] += delta; | |
5419 | if (parent) | |
5420 | parent->vmstats.state_pending[i] += delta; | |
5421 | } | |
5422 | ||
5423 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | |
5424 | delta = memcg->vmstats.events_pending[i]; | |
5425 | if (delta) | |
5426 | memcg->vmstats.events_pending[i] = 0; | |
5427 | ||
5428 | v = READ_ONCE(statc->events[i]); | |
5429 | if (v != statc->events_prev[i]) { | |
5430 | delta += v - statc->events_prev[i]; | |
5431 | statc->events_prev[i] = v; | |
5432 | } | |
5433 | ||
5434 | if (!delta) | |
5435 | continue; | |
5436 | ||
5437 | memcg->vmstats.events[i] += delta; | |
5438 | if (parent) | |
5439 | parent->vmstats.events_pending[i] += delta; | |
5440 | } | |
5441 | ||
5442 | for_each_node_state(nid, N_MEMORY) { | |
5443 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; | |
5444 | struct mem_cgroup_per_node *ppn = NULL; | |
5445 | struct lruvec_stats_percpu *lstatc; | |
5446 | ||
5447 | if (parent) | |
5448 | ppn = parent->nodeinfo[nid]; | |
5449 | ||
5450 | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); | |
5451 | ||
5452 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { | |
5453 | delta = pn->lruvec_stats.state_pending[i]; | |
5454 | if (delta) | |
5455 | pn->lruvec_stats.state_pending[i] = 0; | |
5456 | ||
5457 | v = READ_ONCE(lstatc->state[i]); | |
5458 | if (v != lstatc->state_prev[i]) { | |
5459 | delta += v - lstatc->state_prev[i]; | |
5460 | lstatc->state_prev[i] = v; | |
5461 | } | |
5462 | ||
5463 | if (!delta) | |
5464 | continue; | |
5465 | ||
5466 | pn->lruvec_stats.state[i] += delta; | |
5467 | if (ppn) | |
5468 | ppn->lruvec_stats.state_pending[i] += delta; | |
5469 | } | |
5470 | } | |
5471 | } | |
5472 | ||
5473 | #ifdef CONFIG_MMU | |
5474 | /* Handlers for move charge at task migration. */ | |
5475 | static int mem_cgroup_do_precharge(unsigned long count) | |
5476 | { | |
5477 | int ret; | |
5478 | ||
5479 | /* Try a single bulk charge without reclaim first, kswapd may wake */ | |
5480 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | |
5481 | if (!ret) { | |
5482 | mc.precharge += count; | |
5483 | return ret; | |
5484 | } | |
5485 | ||
5486 | /* Try charges one by one with reclaim, but do not retry */ | |
5487 | while (count--) { | |
5488 | ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); | |
5489 | if (ret) | |
5490 | return ret; | |
5491 | mc.precharge++; | |
5492 | cond_resched(); | |
5493 | } | |
5494 | return 0; | |
5495 | } | |
5496 | ||
5497 | union mc_target { | |
5498 | struct page *page; | |
5499 | swp_entry_t ent; | |
5500 | }; | |
5501 | ||
5502 | enum mc_target_type { | |
5503 | MC_TARGET_NONE = 0, | |
5504 | MC_TARGET_PAGE, | |
5505 | MC_TARGET_SWAP, | |
5506 | MC_TARGET_DEVICE, | |
5507 | }; | |
5508 | ||
5509 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | |
5510 | unsigned long addr, pte_t ptent) | |
5511 | { | |
5512 | struct page *page = vm_normal_page(vma, addr, ptent); | |
5513 | ||
5514 | if (!page || !page_mapped(page)) | |
5515 | return NULL; | |
5516 | if (PageAnon(page)) { | |
5517 | if (!(mc.flags & MOVE_ANON)) | |
5518 | return NULL; | |
5519 | } else { | |
5520 | if (!(mc.flags & MOVE_FILE)) | |
5521 | return NULL; | |
5522 | } | |
5523 | if (!get_page_unless_zero(page)) | |
5524 | return NULL; | |
5525 | ||
5526 | return page; | |
5527 | } | |
5528 | ||
5529 | #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) | |
5530 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
5531 | pte_t ptent, swp_entry_t *entry) | |
5532 | { | |
5533 | struct page *page = NULL; | |
5534 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
5535 | ||
5536 | if (!(mc.flags & MOVE_ANON)) | |
5537 | return NULL; | |
5538 | ||
5539 | /* | |
5540 | * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to | |
5541 | * a device and because they are not accessible by CPU they are store | |
5542 | * as special swap entry in the CPU page table. | |
5543 | */ | |
5544 | if (is_device_private_entry(ent)) { | |
5545 | page = pfn_swap_entry_to_page(ent); | |
5546 | /* | |
5547 | * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have | |
5548 | * a refcount of 1 when free (unlike normal page) | |
5549 | */ | |
5550 | if (!page_ref_add_unless(page, 1, 1)) | |
5551 | return NULL; | |
5552 | return page; | |
5553 | } | |
5554 | ||
5555 | if (non_swap_entry(ent)) | |
5556 | return NULL; | |
5557 | ||
5558 | /* | |
5559 | * Because lookup_swap_cache() updates some statistics counter, | |
5560 | * we call find_get_page() with swapper_space directly. | |
5561 | */ | |
5562 | page = find_get_page(swap_address_space(ent), swp_offset(ent)); | |
5563 | entry->val = ent.val; | |
5564 | ||
5565 | return page; | |
5566 | } | |
5567 | #else | |
5568 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
5569 | pte_t ptent, swp_entry_t *entry) | |
5570 | { | |
5571 | return NULL; | |
5572 | } | |
5573 | #endif | |
5574 | ||
5575 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | |
5576 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
5577 | { | |
5578 | if (!vma->vm_file) /* anonymous vma */ | |
5579 | return NULL; | |
5580 | if (!(mc.flags & MOVE_FILE)) | |
5581 | return NULL; | |
5582 | ||
5583 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
5584 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
5585 | return find_get_incore_page(vma->vm_file->f_mapping, | |
5586 | linear_page_index(vma, addr)); | |
5587 | } | |
5588 | ||
5589 | /** | |
5590 | * mem_cgroup_move_account - move account of the page | |
5591 | * @page: the page | |
5592 | * @compound: charge the page as compound or small page | |
5593 | * @from: mem_cgroup which the page is moved from. | |
5594 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
5595 | * | |
5596 | * The caller must make sure the page is not on LRU (isolate_page() is useful.) | |
5597 | * | |
5598 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | |
5599 | * from old cgroup. | |
5600 | */ | |
5601 | static int mem_cgroup_move_account(struct page *page, | |
5602 | bool compound, | |
5603 | struct mem_cgroup *from, | |
5604 | struct mem_cgroup *to) | |
5605 | { | |
5606 | struct lruvec *from_vec, *to_vec; | |
5607 | struct pglist_data *pgdat; | |
5608 | unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; | |
5609 | int ret; | |
5610 | ||
5611 | VM_BUG_ON(from == to); | |
5612 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5613 | VM_BUG_ON(compound && !PageTransHuge(page)); | |
5614 | ||
5615 | /* | |
5616 | * Prevent mem_cgroup_migrate() from looking at | |
5617 | * page's memory cgroup of its source page while we change it. | |
5618 | */ | |
5619 | ret = -EBUSY; | |
5620 | if (!trylock_page(page)) | |
5621 | goto out; | |
5622 | ||
5623 | ret = -EINVAL; | |
5624 | if (page_memcg(page) != from) | |
5625 | goto out_unlock; | |
5626 | ||
5627 | pgdat = page_pgdat(page); | |
5628 | from_vec = mem_cgroup_lruvec(from, pgdat); | |
5629 | to_vec = mem_cgroup_lruvec(to, pgdat); | |
5630 | ||
5631 | lock_page_memcg(page); | |
5632 | ||
5633 | if (PageAnon(page)) { | |
5634 | if (page_mapped(page)) { | |
5635 | __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); | |
5636 | __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); | |
5637 | if (PageTransHuge(page)) { | |
5638 | __mod_lruvec_state(from_vec, NR_ANON_THPS, | |
5639 | -nr_pages); | |
5640 | __mod_lruvec_state(to_vec, NR_ANON_THPS, | |
5641 | nr_pages); | |
5642 | } | |
5643 | } | |
5644 | } else { | |
5645 | __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); | |
5646 | __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); | |
5647 | ||
5648 | if (PageSwapBacked(page)) { | |
5649 | __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); | |
5650 | __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); | |
5651 | } | |
5652 | ||
5653 | if (page_mapped(page)) { | |
5654 | __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); | |
5655 | __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); | |
5656 | } | |
5657 | ||
5658 | if (PageDirty(page)) { | |
5659 | struct address_space *mapping = page_mapping(page); | |
5660 | ||
5661 | if (mapping_can_writeback(mapping)) { | |
5662 | __mod_lruvec_state(from_vec, NR_FILE_DIRTY, | |
5663 | -nr_pages); | |
5664 | __mod_lruvec_state(to_vec, NR_FILE_DIRTY, | |
5665 | nr_pages); | |
5666 | } | |
5667 | } | |
5668 | } | |
5669 | ||
5670 | if (PageWriteback(page)) { | |
5671 | __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); | |
5672 | __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); | |
5673 | } | |
5674 | ||
5675 | /* | |
5676 | * All state has been migrated, let's switch to the new memcg. | |
5677 | * | |
5678 | * It is safe to change page's memcg here because the page | |
5679 | * is referenced, charged, isolated, and locked: we can't race | |
5680 | * with (un)charging, migration, LRU putback, or anything else | |
5681 | * that would rely on a stable page's memory cgroup. | |
5682 | * | |
5683 | * Note that lock_page_memcg is a memcg lock, not a page lock, | |
5684 | * to save space. As soon as we switch page's memory cgroup to a | |
5685 | * new memcg that isn't locked, the above state can change | |
5686 | * concurrently again. Make sure we're truly done with it. | |
5687 | */ | |
5688 | smp_mb(); | |
5689 | ||
5690 | css_get(&to->css); | |
5691 | css_put(&from->css); | |
5692 | ||
5693 | page->memcg_data = (unsigned long)to; | |
5694 | ||
5695 | __unlock_page_memcg(from); | |
5696 | ||
5697 | ret = 0; | |
5698 | ||
5699 | local_irq_disable(); | |
5700 | mem_cgroup_charge_statistics(to, page, nr_pages); | |
5701 | memcg_check_events(to, page); | |
5702 | mem_cgroup_charge_statistics(from, page, -nr_pages); | |
5703 | memcg_check_events(from, page); | |
5704 | local_irq_enable(); | |
5705 | out_unlock: | |
5706 | unlock_page(page); | |
5707 | out: | |
5708 | return ret; | |
5709 | } | |
5710 | ||
5711 | /** | |
5712 | * get_mctgt_type - get target type of moving charge | |
5713 | * @vma: the vma the pte to be checked belongs | |
5714 | * @addr: the address corresponding to the pte to be checked | |
5715 | * @ptent: the pte to be checked | |
5716 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | |
5717 | * | |
5718 | * Returns | |
5719 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
5720 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
5721 | * move charge. if @target is not NULL, the page is stored in target->page | |
5722 | * with extra refcnt got(Callers should handle it). | |
5723 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | |
5724 | * target for charge migration. if @target is not NULL, the entry is stored | |
5725 | * in target->ent. | |
5726 | * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE | |
5727 | * (so ZONE_DEVICE page and thus not on the lru). | |
5728 | * For now we such page is charge like a regular page would be as for all | |
5729 | * intent and purposes it is just special memory taking the place of a | |
5730 | * regular page. | |
5731 | * | |
5732 | * See Documentations/vm/hmm.txt and include/linux/hmm.h | |
5733 | * | |
5734 | * Called with pte lock held. | |
5735 | */ | |
5736 | ||
5737 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | |
5738 | unsigned long addr, pte_t ptent, union mc_target *target) | |
5739 | { | |
5740 | struct page *page = NULL; | |
5741 | enum mc_target_type ret = MC_TARGET_NONE; | |
5742 | swp_entry_t ent = { .val = 0 }; | |
5743 | ||
5744 | if (pte_present(ptent)) | |
5745 | page = mc_handle_present_pte(vma, addr, ptent); | |
5746 | else if (is_swap_pte(ptent)) | |
5747 | page = mc_handle_swap_pte(vma, ptent, &ent); | |
5748 | else if (pte_none(ptent)) | |
5749 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
5750 | ||
5751 | if (!page && !ent.val) | |
5752 | return ret; | |
5753 | if (page) { | |
5754 | /* | |
5755 | * Do only loose check w/o serialization. | |
5756 | * mem_cgroup_move_account() checks the page is valid or | |
5757 | * not under LRU exclusion. | |
5758 | */ | |
5759 | if (page_memcg(page) == mc.from) { | |
5760 | ret = MC_TARGET_PAGE; | |
5761 | if (is_device_private_page(page)) | |
5762 | ret = MC_TARGET_DEVICE; | |
5763 | if (target) | |
5764 | target->page = page; | |
5765 | } | |
5766 | if (!ret || !target) | |
5767 | put_page(page); | |
5768 | } | |
5769 | /* | |
5770 | * There is a swap entry and a page doesn't exist or isn't charged. | |
5771 | * But we cannot move a tail-page in a THP. | |
5772 | */ | |
5773 | if (ent.val && !ret && (!page || !PageTransCompound(page)) && | |
5774 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | |
5775 | ret = MC_TARGET_SWAP; | |
5776 | if (target) | |
5777 | target->ent = ent; | |
5778 | } | |
5779 | return ret; | |
5780 | } | |
5781 | ||
5782 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5783 | /* | |
5784 | * We don't consider PMD mapped swapping or file mapped pages because THP does | |
5785 | * not support them for now. | |
5786 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
5787 | */ | |
5788 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
5789 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
5790 | { | |
5791 | struct page *page = NULL; | |
5792 | enum mc_target_type ret = MC_TARGET_NONE; | |
5793 | ||
5794 | if (unlikely(is_swap_pmd(pmd))) { | |
5795 | VM_BUG_ON(thp_migration_supported() && | |
5796 | !is_pmd_migration_entry(pmd)); | |
5797 | return ret; | |
5798 | } | |
5799 | page = pmd_page(pmd); | |
5800 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | |
5801 | if (!(mc.flags & MOVE_ANON)) | |
5802 | return ret; | |
5803 | if (page_memcg(page) == mc.from) { | |
5804 | ret = MC_TARGET_PAGE; | |
5805 | if (target) { | |
5806 | get_page(page); | |
5807 | target->page = page; | |
5808 | } | |
5809 | } | |
5810 | return ret; | |
5811 | } | |
5812 | #else | |
5813 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
5814 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
5815 | { | |
5816 | return MC_TARGET_NONE; | |
5817 | } | |
5818 | #endif | |
5819 | ||
5820 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | |
5821 | unsigned long addr, unsigned long end, | |
5822 | struct mm_walk *walk) | |
5823 | { | |
5824 | struct vm_area_struct *vma = walk->vma; | |
5825 | pte_t *pte; | |
5826 | spinlock_t *ptl; | |
5827 | ||
5828 | ptl = pmd_trans_huge_lock(pmd, vma); | |
5829 | if (ptl) { | |
5830 | /* | |
5831 | * Note their can not be MC_TARGET_DEVICE for now as we do not | |
5832 | * support transparent huge page with MEMORY_DEVICE_PRIVATE but | |
5833 | * this might change. | |
5834 | */ | |
5835 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | |
5836 | mc.precharge += HPAGE_PMD_NR; | |
5837 | spin_unlock(ptl); | |
5838 | return 0; | |
5839 | } | |
5840 | ||
5841 | if (pmd_trans_unstable(pmd)) | |
5842 | return 0; | |
5843 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
5844 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
5845 | if (get_mctgt_type(vma, addr, *pte, NULL)) | |
5846 | mc.precharge++; /* increment precharge temporarily */ | |
5847 | pte_unmap_unlock(pte - 1, ptl); | |
5848 | cond_resched(); | |
5849 | ||
5850 | return 0; | |
5851 | } | |
5852 | ||
5853 | static const struct mm_walk_ops precharge_walk_ops = { | |
5854 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
5855 | }; | |
5856 | ||
5857 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | |
5858 | { | |
5859 | unsigned long precharge; | |
5860 | ||
5861 | mmap_read_lock(mm); | |
5862 | walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); | |
5863 | mmap_read_unlock(mm); | |
5864 | ||
5865 | precharge = mc.precharge; | |
5866 | mc.precharge = 0; | |
5867 | ||
5868 | return precharge; | |
5869 | } | |
5870 | ||
5871 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |
5872 | { | |
5873 | unsigned long precharge = mem_cgroup_count_precharge(mm); | |
5874 | ||
5875 | VM_BUG_ON(mc.moving_task); | |
5876 | mc.moving_task = current; | |
5877 | return mem_cgroup_do_precharge(precharge); | |
5878 | } | |
5879 | ||
5880 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | |
5881 | static void __mem_cgroup_clear_mc(void) | |
5882 | { | |
5883 | struct mem_cgroup *from = mc.from; | |
5884 | struct mem_cgroup *to = mc.to; | |
5885 | ||
5886 | /* we must uncharge all the leftover precharges from mc.to */ | |
5887 | if (mc.precharge) { | |
5888 | cancel_charge(mc.to, mc.precharge); | |
5889 | mc.precharge = 0; | |
5890 | } | |
5891 | /* | |
5892 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
5893 | * we must uncharge here. | |
5894 | */ | |
5895 | if (mc.moved_charge) { | |
5896 | cancel_charge(mc.from, mc.moved_charge); | |
5897 | mc.moved_charge = 0; | |
5898 | } | |
5899 | /* we must fixup refcnts and charges */ | |
5900 | if (mc.moved_swap) { | |
5901 | /* uncharge swap account from the old cgroup */ | |
5902 | if (!mem_cgroup_is_root(mc.from)) | |
5903 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | |
5904 | ||
5905 | mem_cgroup_id_put_many(mc.from, mc.moved_swap); | |
5906 | ||
5907 | /* | |
5908 | * we charged both to->memory and to->memsw, so we | |
5909 | * should uncharge to->memory. | |
5910 | */ | |
5911 | if (!mem_cgroup_is_root(mc.to)) | |
5912 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | |
5913 | ||
5914 | mc.moved_swap = 0; | |
5915 | } | |
5916 | memcg_oom_recover(from); | |
5917 | memcg_oom_recover(to); | |
5918 | wake_up_all(&mc.waitq); | |
5919 | } | |
5920 | ||
5921 | static void mem_cgroup_clear_mc(void) | |
5922 | { | |
5923 | struct mm_struct *mm = mc.mm; | |
5924 | ||
5925 | /* | |
5926 | * we must clear moving_task before waking up waiters at the end of | |
5927 | * task migration. | |
5928 | */ | |
5929 | mc.moving_task = NULL; | |
5930 | __mem_cgroup_clear_mc(); | |
5931 | spin_lock(&mc.lock); | |
5932 | mc.from = NULL; | |
5933 | mc.to = NULL; | |
5934 | mc.mm = NULL; | |
5935 | spin_unlock(&mc.lock); | |
5936 | ||
5937 | mmput(mm); | |
5938 | } | |
5939 | ||
5940 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | |
5941 | { | |
5942 | struct cgroup_subsys_state *css; | |
5943 | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | |
5944 | struct mem_cgroup *from; | |
5945 | struct task_struct *leader, *p; | |
5946 | struct mm_struct *mm; | |
5947 | unsigned long move_flags; | |
5948 | int ret = 0; | |
5949 | ||
5950 | /* charge immigration isn't supported on the default hierarchy */ | |
5951 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5952 | return 0; | |
5953 | ||
5954 | /* | |
5955 | * Multi-process migrations only happen on the default hierarchy | |
5956 | * where charge immigration is not used. Perform charge | |
5957 | * immigration if @tset contains a leader and whine if there are | |
5958 | * multiple. | |
5959 | */ | |
5960 | p = NULL; | |
5961 | cgroup_taskset_for_each_leader(leader, css, tset) { | |
5962 | WARN_ON_ONCE(p); | |
5963 | p = leader; | |
5964 | memcg = mem_cgroup_from_css(css); | |
5965 | } | |
5966 | if (!p) | |
5967 | return 0; | |
5968 | ||
5969 | /* | |
5970 | * We are now committed to this value whatever it is. Changes in this | |
5971 | * tunable will only affect upcoming migrations, not the current one. | |
5972 | * So we need to save it, and keep it going. | |
5973 | */ | |
5974 | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | |
5975 | if (!move_flags) | |
5976 | return 0; | |
5977 | ||
5978 | from = mem_cgroup_from_task(p); | |
5979 | ||
5980 | VM_BUG_ON(from == memcg); | |
5981 | ||
5982 | mm = get_task_mm(p); | |
5983 | if (!mm) | |
5984 | return 0; | |
5985 | /* We move charges only when we move a owner of the mm */ | |
5986 | if (mm->owner == p) { | |
5987 | VM_BUG_ON(mc.from); | |
5988 | VM_BUG_ON(mc.to); | |
5989 | VM_BUG_ON(mc.precharge); | |
5990 | VM_BUG_ON(mc.moved_charge); | |
5991 | VM_BUG_ON(mc.moved_swap); | |
5992 | ||
5993 | spin_lock(&mc.lock); | |
5994 | mc.mm = mm; | |
5995 | mc.from = from; | |
5996 | mc.to = memcg; | |
5997 | mc.flags = move_flags; | |
5998 | spin_unlock(&mc.lock); | |
5999 | /* We set mc.moving_task later */ | |
6000 | ||
6001 | ret = mem_cgroup_precharge_mc(mm); | |
6002 | if (ret) | |
6003 | mem_cgroup_clear_mc(); | |
6004 | } else { | |
6005 | mmput(mm); | |
6006 | } | |
6007 | return ret; | |
6008 | } | |
6009 | ||
6010 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | |
6011 | { | |
6012 | if (mc.to) | |
6013 | mem_cgroup_clear_mc(); | |
6014 | } | |
6015 | ||
6016 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | |
6017 | unsigned long addr, unsigned long end, | |
6018 | struct mm_walk *walk) | |
6019 | { | |
6020 | int ret = 0; | |
6021 | struct vm_area_struct *vma = walk->vma; | |
6022 | pte_t *pte; | |
6023 | spinlock_t *ptl; | |
6024 | enum mc_target_type target_type; | |
6025 | union mc_target target; | |
6026 | struct page *page; | |
6027 | ||
6028 | ptl = pmd_trans_huge_lock(pmd, vma); | |
6029 | if (ptl) { | |
6030 | if (mc.precharge < HPAGE_PMD_NR) { | |
6031 | spin_unlock(ptl); | |
6032 | return 0; | |
6033 | } | |
6034 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
6035 | if (target_type == MC_TARGET_PAGE) { | |
6036 | page = target.page; | |
6037 | if (!isolate_lru_page(page)) { | |
6038 | if (!mem_cgroup_move_account(page, true, | |
6039 | mc.from, mc.to)) { | |
6040 | mc.precharge -= HPAGE_PMD_NR; | |
6041 | mc.moved_charge += HPAGE_PMD_NR; | |
6042 | } | |
6043 | putback_lru_page(page); | |
6044 | } | |
6045 | put_page(page); | |
6046 | } else if (target_type == MC_TARGET_DEVICE) { | |
6047 | page = target.page; | |
6048 | if (!mem_cgroup_move_account(page, true, | |
6049 | mc.from, mc.to)) { | |
6050 | mc.precharge -= HPAGE_PMD_NR; | |
6051 | mc.moved_charge += HPAGE_PMD_NR; | |
6052 | } | |
6053 | put_page(page); | |
6054 | } | |
6055 | spin_unlock(ptl); | |
6056 | return 0; | |
6057 | } | |
6058 | ||
6059 | if (pmd_trans_unstable(pmd)) | |
6060 | return 0; | |
6061 | retry: | |
6062 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
6063 | for (; addr != end; addr += PAGE_SIZE) { | |
6064 | pte_t ptent = *(pte++); | |
6065 | bool device = false; | |
6066 | swp_entry_t ent; | |
6067 | ||
6068 | if (!mc.precharge) | |
6069 | break; | |
6070 | ||
6071 | switch (get_mctgt_type(vma, addr, ptent, &target)) { | |
6072 | case MC_TARGET_DEVICE: | |
6073 | device = true; | |
6074 | fallthrough; | |
6075 | case MC_TARGET_PAGE: | |
6076 | page = target.page; | |
6077 | /* | |
6078 | * We can have a part of the split pmd here. Moving it | |
6079 | * can be done but it would be too convoluted so simply | |
6080 | * ignore such a partial THP and keep it in original | |
6081 | * memcg. There should be somebody mapping the head. | |
6082 | */ | |
6083 | if (PageTransCompound(page)) | |
6084 | goto put; | |
6085 | if (!device && isolate_lru_page(page)) | |
6086 | goto put; | |
6087 | if (!mem_cgroup_move_account(page, false, | |
6088 | mc.from, mc.to)) { | |
6089 | mc.precharge--; | |
6090 | /* we uncharge from mc.from later. */ | |
6091 | mc.moved_charge++; | |
6092 | } | |
6093 | if (!device) | |
6094 | putback_lru_page(page); | |
6095 | put: /* get_mctgt_type() gets the page */ | |
6096 | put_page(page); | |
6097 | break; | |
6098 | case MC_TARGET_SWAP: | |
6099 | ent = target.ent; | |
6100 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | |
6101 | mc.precharge--; | |
6102 | mem_cgroup_id_get_many(mc.to, 1); | |
6103 | /* we fixup other refcnts and charges later. */ | |
6104 | mc.moved_swap++; | |
6105 | } | |
6106 | break; | |
6107 | default: | |
6108 | break; | |
6109 | } | |
6110 | } | |
6111 | pte_unmap_unlock(pte - 1, ptl); | |
6112 | cond_resched(); | |
6113 | ||
6114 | if (addr != end) { | |
6115 | /* | |
6116 | * We have consumed all precharges we got in can_attach(). | |
6117 | * We try charge one by one, but don't do any additional | |
6118 | * charges to mc.to if we have failed in charge once in attach() | |
6119 | * phase. | |
6120 | */ | |
6121 | ret = mem_cgroup_do_precharge(1); | |
6122 | if (!ret) | |
6123 | goto retry; | |
6124 | } | |
6125 | ||
6126 | return ret; | |
6127 | } | |
6128 | ||
6129 | static const struct mm_walk_ops charge_walk_ops = { | |
6130 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
6131 | }; | |
6132 | ||
6133 | static void mem_cgroup_move_charge(void) | |
6134 | { | |
6135 | lru_add_drain_all(); | |
6136 | /* | |
6137 | * Signal lock_page_memcg() to take the memcg's move_lock | |
6138 | * while we're moving its pages to another memcg. Then wait | |
6139 | * for already started RCU-only updates to finish. | |
6140 | */ | |
6141 | atomic_inc(&mc.from->moving_account); | |
6142 | synchronize_rcu(); | |
6143 | retry: | |
6144 | if (unlikely(!mmap_read_trylock(mc.mm))) { | |
6145 | /* | |
6146 | * Someone who are holding the mmap_lock might be waiting in | |
6147 | * waitq. So we cancel all extra charges, wake up all waiters, | |
6148 | * and retry. Because we cancel precharges, we might not be able | |
6149 | * to move enough charges, but moving charge is a best-effort | |
6150 | * feature anyway, so it wouldn't be a big problem. | |
6151 | */ | |
6152 | __mem_cgroup_clear_mc(); | |
6153 | cond_resched(); | |
6154 | goto retry; | |
6155 | } | |
6156 | /* | |
6157 | * When we have consumed all precharges and failed in doing | |
6158 | * additional charge, the page walk just aborts. | |
6159 | */ | |
6160 | walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, | |
6161 | NULL); | |
6162 | ||
6163 | mmap_read_unlock(mc.mm); | |
6164 | atomic_dec(&mc.from->moving_account); | |
6165 | } | |
6166 | ||
6167 | static void mem_cgroup_move_task(void) | |
6168 | { | |
6169 | if (mc.to) { | |
6170 | mem_cgroup_move_charge(); | |
6171 | mem_cgroup_clear_mc(); | |
6172 | } | |
6173 | } | |
6174 | #else /* !CONFIG_MMU */ | |
6175 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | |
6176 | { | |
6177 | return 0; | |
6178 | } | |
6179 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | |
6180 | { | |
6181 | } | |
6182 | static void mem_cgroup_move_task(void) | |
6183 | { | |
6184 | } | |
6185 | #endif | |
6186 | ||
6187 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) | |
6188 | { | |
6189 | if (value == PAGE_COUNTER_MAX) | |
6190 | seq_puts(m, "max\n"); | |
6191 | else | |
6192 | seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); | |
6193 | ||
6194 | return 0; | |
6195 | } | |
6196 | ||
6197 | static u64 memory_current_read(struct cgroup_subsys_state *css, | |
6198 | struct cftype *cft) | |
6199 | { | |
6200 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
6201 | ||
6202 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | |
6203 | } | |
6204 | ||
6205 | static int memory_min_show(struct seq_file *m, void *v) | |
6206 | { | |
6207 | return seq_puts_memcg_tunable(m, | |
6208 | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); | |
6209 | } | |
6210 | ||
6211 | static ssize_t memory_min_write(struct kernfs_open_file *of, | |
6212 | char *buf, size_t nbytes, loff_t off) | |
6213 | { | |
6214 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6215 | unsigned long min; | |
6216 | int err; | |
6217 | ||
6218 | buf = strstrip(buf); | |
6219 | err = page_counter_memparse(buf, "max", &min); | |
6220 | if (err) | |
6221 | return err; | |
6222 | ||
6223 | page_counter_set_min(&memcg->memory, min); | |
6224 | ||
6225 | return nbytes; | |
6226 | } | |
6227 | ||
6228 | static int memory_low_show(struct seq_file *m, void *v) | |
6229 | { | |
6230 | return seq_puts_memcg_tunable(m, | |
6231 | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); | |
6232 | } | |
6233 | ||
6234 | static ssize_t memory_low_write(struct kernfs_open_file *of, | |
6235 | char *buf, size_t nbytes, loff_t off) | |
6236 | { | |
6237 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6238 | unsigned long low; | |
6239 | int err; | |
6240 | ||
6241 | buf = strstrip(buf); | |
6242 | err = page_counter_memparse(buf, "max", &low); | |
6243 | if (err) | |
6244 | return err; | |
6245 | ||
6246 | page_counter_set_low(&memcg->memory, low); | |
6247 | ||
6248 | return nbytes; | |
6249 | } | |
6250 | ||
6251 | static int memory_high_show(struct seq_file *m, void *v) | |
6252 | { | |
6253 | return seq_puts_memcg_tunable(m, | |
6254 | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); | |
6255 | } | |
6256 | ||
6257 | static ssize_t memory_high_write(struct kernfs_open_file *of, | |
6258 | char *buf, size_t nbytes, loff_t off) | |
6259 | { | |
6260 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6261 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; | |
6262 | bool drained = false; | |
6263 | unsigned long high; | |
6264 | int err; | |
6265 | ||
6266 | buf = strstrip(buf); | |
6267 | err = page_counter_memparse(buf, "max", &high); | |
6268 | if (err) | |
6269 | return err; | |
6270 | ||
6271 | page_counter_set_high(&memcg->memory, high); | |
6272 | ||
6273 | for (;;) { | |
6274 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
6275 | unsigned long reclaimed; | |
6276 | ||
6277 | if (nr_pages <= high) | |
6278 | break; | |
6279 | ||
6280 | if (signal_pending(current)) | |
6281 | break; | |
6282 | ||
6283 | if (!drained) { | |
6284 | drain_all_stock(memcg); | |
6285 | drained = true; | |
6286 | continue; | |
6287 | } | |
6288 | ||
6289 | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | |
6290 | GFP_KERNEL, true); | |
6291 | ||
6292 | if (!reclaimed && !nr_retries--) | |
6293 | break; | |
6294 | } | |
6295 | ||
6296 | memcg_wb_domain_size_changed(memcg); | |
6297 | return nbytes; | |
6298 | } | |
6299 | ||
6300 | static int memory_max_show(struct seq_file *m, void *v) | |
6301 | { | |
6302 | return seq_puts_memcg_tunable(m, | |
6303 | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); | |
6304 | } | |
6305 | ||
6306 | static ssize_t memory_max_write(struct kernfs_open_file *of, | |
6307 | char *buf, size_t nbytes, loff_t off) | |
6308 | { | |
6309 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6310 | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; | |
6311 | bool drained = false; | |
6312 | unsigned long max; | |
6313 | int err; | |
6314 | ||
6315 | buf = strstrip(buf); | |
6316 | err = page_counter_memparse(buf, "max", &max); | |
6317 | if (err) | |
6318 | return err; | |
6319 | ||
6320 | xchg(&memcg->memory.max, max); | |
6321 | ||
6322 | for (;;) { | |
6323 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
6324 | ||
6325 | if (nr_pages <= max) | |
6326 | break; | |
6327 | ||
6328 | if (signal_pending(current)) | |
6329 | break; | |
6330 | ||
6331 | if (!drained) { | |
6332 | drain_all_stock(memcg); | |
6333 | drained = true; | |
6334 | continue; | |
6335 | } | |
6336 | ||
6337 | if (nr_reclaims) { | |
6338 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | |
6339 | GFP_KERNEL, true)) | |
6340 | nr_reclaims--; | |
6341 | continue; | |
6342 | } | |
6343 | ||
6344 | memcg_memory_event(memcg, MEMCG_OOM); | |
6345 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | |
6346 | break; | |
6347 | } | |
6348 | ||
6349 | memcg_wb_domain_size_changed(memcg); | |
6350 | return nbytes; | |
6351 | } | |
6352 | ||
6353 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) | |
6354 | { | |
6355 | seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); | |
6356 | seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); | |
6357 | seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); | |
6358 | seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); | |
6359 | seq_printf(m, "oom_kill %lu\n", | |
6360 | atomic_long_read(&events[MEMCG_OOM_KILL])); | |
6361 | } | |
6362 | ||
6363 | static int memory_events_show(struct seq_file *m, void *v) | |
6364 | { | |
6365 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
6366 | ||
6367 | __memory_events_show(m, memcg->memory_events); | |
6368 | return 0; | |
6369 | } | |
6370 | ||
6371 | static int memory_events_local_show(struct seq_file *m, void *v) | |
6372 | { | |
6373 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
6374 | ||
6375 | __memory_events_show(m, memcg->memory_events_local); | |
6376 | return 0; | |
6377 | } | |
6378 | ||
6379 | static int memory_stat_show(struct seq_file *m, void *v) | |
6380 | { | |
6381 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
6382 | char *buf; | |
6383 | ||
6384 | buf = memory_stat_format(memcg); | |
6385 | if (!buf) | |
6386 | return -ENOMEM; | |
6387 | seq_puts(m, buf); | |
6388 | kfree(buf); | |
6389 | return 0; | |
6390 | } | |
6391 | ||
6392 | #ifdef CONFIG_NUMA | |
6393 | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, | |
6394 | int item) | |
6395 | { | |
6396 | return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); | |
6397 | } | |
6398 | ||
6399 | static int memory_numa_stat_show(struct seq_file *m, void *v) | |
6400 | { | |
6401 | int i; | |
6402 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
6403 | ||
6404 | mem_cgroup_flush_stats(); | |
6405 | ||
6406 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { | |
6407 | int nid; | |
6408 | ||
6409 | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) | |
6410 | continue; | |
6411 | ||
6412 | seq_printf(m, "%s", memory_stats[i].name); | |
6413 | for_each_node_state(nid, N_MEMORY) { | |
6414 | u64 size; | |
6415 | struct lruvec *lruvec; | |
6416 | ||
6417 | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | |
6418 | size = lruvec_page_state_output(lruvec, | |
6419 | memory_stats[i].idx); | |
6420 | seq_printf(m, " N%d=%llu", nid, size); | |
6421 | } | |
6422 | seq_putc(m, '\n'); | |
6423 | } | |
6424 | ||
6425 | return 0; | |
6426 | } | |
6427 | #endif | |
6428 | ||
6429 | static int memory_oom_group_show(struct seq_file *m, void *v) | |
6430 | { | |
6431 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
6432 | ||
6433 | seq_printf(m, "%d\n", memcg->oom_group); | |
6434 | ||
6435 | return 0; | |
6436 | } | |
6437 | ||
6438 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | |
6439 | char *buf, size_t nbytes, loff_t off) | |
6440 | { | |
6441 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6442 | int ret, oom_group; | |
6443 | ||
6444 | buf = strstrip(buf); | |
6445 | if (!buf) | |
6446 | return -EINVAL; | |
6447 | ||
6448 | ret = kstrtoint(buf, 0, &oom_group); | |
6449 | if (ret) | |
6450 | return ret; | |
6451 | ||
6452 | if (oom_group != 0 && oom_group != 1) | |
6453 | return -EINVAL; | |
6454 | ||
6455 | memcg->oom_group = oom_group; | |
6456 | ||
6457 | return nbytes; | |
6458 | } | |
6459 | ||
6460 | static struct cftype memory_files[] = { | |
6461 | { | |
6462 | .name = "current", | |
6463 | .flags = CFTYPE_NOT_ON_ROOT, | |
6464 | .read_u64 = memory_current_read, | |
6465 | }, | |
6466 | { | |
6467 | .name = "min", | |
6468 | .flags = CFTYPE_NOT_ON_ROOT, | |
6469 | .seq_show = memory_min_show, | |
6470 | .write = memory_min_write, | |
6471 | }, | |
6472 | { | |
6473 | .name = "low", | |
6474 | .flags = CFTYPE_NOT_ON_ROOT, | |
6475 | .seq_show = memory_low_show, | |
6476 | .write = memory_low_write, | |
6477 | }, | |
6478 | { | |
6479 | .name = "high", | |
6480 | .flags = CFTYPE_NOT_ON_ROOT, | |
6481 | .seq_show = memory_high_show, | |
6482 | .write = memory_high_write, | |
6483 | }, | |
6484 | { | |
6485 | .name = "max", | |
6486 | .flags = CFTYPE_NOT_ON_ROOT, | |
6487 | .seq_show = memory_max_show, | |
6488 | .write = memory_max_write, | |
6489 | }, | |
6490 | { | |
6491 | .name = "events", | |
6492 | .flags = CFTYPE_NOT_ON_ROOT, | |
6493 | .file_offset = offsetof(struct mem_cgroup, events_file), | |
6494 | .seq_show = memory_events_show, | |
6495 | }, | |
6496 | { | |
6497 | .name = "events.local", | |
6498 | .flags = CFTYPE_NOT_ON_ROOT, | |
6499 | .file_offset = offsetof(struct mem_cgroup, events_local_file), | |
6500 | .seq_show = memory_events_local_show, | |
6501 | }, | |
6502 | { | |
6503 | .name = "stat", | |
6504 | .seq_show = memory_stat_show, | |
6505 | }, | |
6506 | #ifdef CONFIG_NUMA | |
6507 | { | |
6508 | .name = "numa_stat", | |
6509 | .seq_show = memory_numa_stat_show, | |
6510 | }, | |
6511 | #endif | |
6512 | { | |
6513 | .name = "oom.group", | |
6514 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | |
6515 | .seq_show = memory_oom_group_show, | |
6516 | .write = memory_oom_group_write, | |
6517 | }, | |
6518 | { } /* terminate */ | |
6519 | }; | |
6520 | ||
6521 | struct cgroup_subsys memory_cgrp_subsys = { | |
6522 | .css_alloc = mem_cgroup_css_alloc, | |
6523 | .css_online = mem_cgroup_css_online, | |
6524 | .css_offline = mem_cgroup_css_offline, | |
6525 | .css_released = mem_cgroup_css_released, | |
6526 | .css_free = mem_cgroup_css_free, | |
6527 | .css_reset = mem_cgroup_css_reset, | |
6528 | .css_rstat_flush = mem_cgroup_css_rstat_flush, | |
6529 | .can_attach = mem_cgroup_can_attach, | |
6530 | .cancel_attach = mem_cgroup_cancel_attach, | |
6531 | .post_attach = mem_cgroup_move_task, | |
6532 | .dfl_cftypes = memory_files, | |
6533 | .legacy_cftypes = mem_cgroup_legacy_files, | |
6534 | .early_init = 0, | |
6535 | }; | |
6536 | ||
6537 | /* | |
6538 | * This function calculates an individual cgroup's effective | |
6539 | * protection which is derived from its own memory.min/low, its | |
6540 | * parent's and siblings' settings, as well as the actual memory | |
6541 | * distribution in the tree. | |
6542 | * | |
6543 | * The following rules apply to the effective protection values: | |
6544 | * | |
6545 | * 1. At the first level of reclaim, effective protection is equal to | |
6546 | * the declared protection in memory.min and memory.low. | |
6547 | * | |
6548 | * 2. To enable safe delegation of the protection configuration, at | |
6549 | * subsequent levels the effective protection is capped to the | |
6550 | * parent's effective protection. | |
6551 | * | |
6552 | * 3. To make complex and dynamic subtrees easier to configure, the | |
6553 | * user is allowed to overcommit the declared protection at a given | |
6554 | * level. If that is the case, the parent's effective protection is | |
6555 | * distributed to the children in proportion to how much protection | |
6556 | * they have declared and how much of it they are utilizing. | |
6557 | * | |
6558 | * This makes distribution proportional, but also work-conserving: | |
6559 | * if one cgroup claims much more protection than it uses memory, | |
6560 | * the unused remainder is available to its siblings. | |
6561 | * | |
6562 | * 4. Conversely, when the declared protection is undercommitted at a | |
6563 | * given level, the distribution of the larger parental protection | |
6564 | * budget is NOT proportional. A cgroup's protection from a sibling | |
6565 | * is capped to its own memory.min/low setting. | |
6566 | * | |
6567 | * 5. However, to allow protecting recursive subtrees from each other | |
6568 | * without having to declare each individual cgroup's fixed share | |
6569 | * of the ancestor's claim to protection, any unutilized - | |
6570 | * "floating" - protection from up the tree is distributed in | |
6571 | * proportion to each cgroup's *usage*. This makes the protection | |
6572 | * neutral wrt sibling cgroups and lets them compete freely over | |
6573 | * the shared parental protection budget, but it protects the | |
6574 | * subtree as a whole from neighboring subtrees. | |
6575 | * | |
6576 | * Note that 4. and 5. are not in conflict: 4. is about protecting | |
6577 | * against immediate siblings whereas 5. is about protecting against | |
6578 | * neighboring subtrees. | |
6579 | */ | |
6580 | static unsigned long effective_protection(unsigned long usage, | |
6581 | unsigned long parent_usage, | |
6582 | unsigned long setting, | |
6583 | unsigned long parent_effective, | |
6584 | unsigned long siblings_protected) | |
6585 | { | |
6586 | unsigned long protected; | |
6587 | unsigned long ep; | |
6588 | ||
6589 | protected = min(usage, setting); | |
6590 | /* | |
6591 | * If all cgroups at this level combined claim and use more | |
6592 | * protection then what the parent affords them, distribute | |
6593 | * shares in proportion to utilization. | |
6594 | * | |
6595 | * We are using actual utilization rather than the statically | |
6596 | * claimed protection in order to be work-conserving: claimed | |
6597 | * but unused protection is available to siblings that would | |
6598 | * otherwise get a smaller chunk than what they claimed. | |
6599 | */ | |
6600 | if (siblings_protected > parent_effective) | |
6601 | return protected * parent_effective / siblings_protected; | |
6602 | ||
6603 | /* | |
6604 | * Ok, utilized protection of all children is within what the | |
6605 | * parent affords them, so we know whatever this child claims | |
6606 | * and utilizes is effectively protected. | |
6607 | * | |
6608 | * If there is unprotected usage beyond this value, reclaim | |
6609 | * will apply pressure in proportion to that amount. | |
6610 | * | |
6611 | * If there is unutilized protection, the cgroup will be fully | |
6612 | * shielded from reclaim, but we do return a smaller value for | |
6613 | * protection than what the group could enjoy in theory. This | |
6614 | * is okay. With the overcommit distribution above, effective | |
6615 | * protection is always dependent on how memory is actually | |
6616 | * consumed among the siblings anyway. | |
6617 | */ | |
6618 | ep = protected; | |
6619 | ||
6620 | /* | |
6621 | * If the children aren't claiming (all of) the protection | |
6622 | * afforded to them by the parent, distribute the remainder in | |
6623 | * proportion to the (unprotected) memory of each cgroup. That | |
6624 | * way, cgroups that aren't explicitly prioritized wrt each | |
6625 | * other compete freely over the allowance, but they are | |
6626 | * collectively protected from neighboring trees. | |
6627 | * | |
6628 | * We're using unprotected memory for the weight so that if | |
6629 | * some cgroups DO claim explicit protection, we don't protect | |
6630 | * the same bytes twice. | |
6631 | * | |
6632 | * Check both usage and parent_usage against the respective | |
6633 | * protected values. One should imply the other, but they | |
6634 | * aren't read atomically - make sure the division is sane. | |
6635 | */ | |
6636 | if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) | |
6637 | return ep; | |
6638 | if (parent_effective > siblings_protected && | |
6639 | parent_usage > siblings_protected && | |
6640 | usage > protected) { | |
6641 | unsigned long unclaimed; | |
6642 | ||
6643 | unclaimed = parent_effective - siblings_protected; | |
6644 | unclaimed *= usage - protected; | |
6645 | unclaimed /= parent_usage - siblings_protected; | |
6646 | ||
6647 | ep += unclaimed; | |
6648 | } | |
6649 | ||
6650 | return ep; | |
6651 | } | |
6652 | ||
6653 | /** | |
6654 | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range | |
6655 | * @root: the top ancestor of the sub-tree being checked | |
6656 | * @memcg: the memory cgroup to check | |
6657 | * | |
6658 | * WARNING: This function is not stateless! It can only be used as part | |
6659 | * of a top-down tree iteration, not for isolated queries. | |
6660 | */ | |
6661 | void mem_cgroup_calculate_protection(struct mem_cgroup *root, | |
6662 | struct mem_cgroup *memcg) | |
6663 | { | |
6664 | unsigned long usage, parent_usage; | |
6665 | struct mem_cgroup *parent; | |
6666 | ||
6667 | if (mem_cgroup_disabled()) | |
6668 | return; | |
6669 | ||
6670 | if (!root) | |
6671 | root = root_mem_cgroup; | |
6672 | ||
6673 | /* | |
6674 | * Effective values of the reclaim targets are ignored so they | |
6675 | * can be stale. Have a look at mem_cgroup_protection for more | |
6676 | * details. | |
6677 | * TODO: calculation should be more robust so that we do not need | |
6678 | * that special casing. | |
6679 | */ | |
6680 | if (memcg == root) | |
6681 | return; | |
6682 | ||
6683 | usage = page_counter_read(&memcg->memory); | |
6684 | if (!usage) | |
6685 | return; | |
6686 | ||
6687 | parent = parent_mem_cgroup(memcg); | |
6688 | /* No parent means a non-hierarchical mode on v1 memcg */ | |
6689 | if (!parent) | |
6690 | return; | |
6691 | ||
6692 | if (parent == root) { | |
6693 | memcg->memory.emin = READ_ONCE(memcg->memory.min); | |
6694 | memcg->memory.elow = READ_ONCE(memcg->memory.low); | |
6695 | return; | |
6696 | } | |
6697 | ||
6698 | parent_usage = page_counter_read(&parent->memory); | |
6699 | ||
6700 | WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, | |
6701 | READ_ONCE(memcg->memory.min), | |
6702 | READ_ONCE(parent->memory.emin), | |
6703 | atomic_long_read(&parent->memory.children_min_usage))); | |
6704 | ||
6705 | WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, | |
6706 | READ_ONCE(memcg->memory.low), | |
6707 | READ_ONCE(parent->memory.elow), | |
6708 | atomic_long_read(&parent->memory.children_low_usage))); | |
6709 | } | |
6710 | ||
6711 | static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp) | |
6712 | { | |
6713 | unsigned int nr_pages = thp_nr_pages(page); | |
6714 | int ret; | |
6715 | ||
6716 | ret = try_charge(memcg, gfp, nr_pages); | |
6717 | if (ret) | |
6718 | goto out; | |
6719 | ||
6720 | css_get(&memcg->css); | |
6721 | commit_charge(page, memcg); | |
6722 | ||
6723 | local_irq_disable(); | |
6724 | mem_cgroup_charge_statistics(memcg, page, nr_pages); | |
6725 | memcg_check_events(memcg, page); | |
6726 | local_irq_enable(); | |
6727 | out: | |
6728 | return ret; | |
6729 | } | |
6730 | ||
6731 | /** | |
6732 | * __mem_cgroup_charge - charge a newly allocated page to a cgroup | |
6733 | * @page: page to charge | |
6734 | * @mm: mm context of the victim | |
6735 | * @gfp_mask: reclaim mode | |
6736 | * | |
6737 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | |
6738 | * pages according to @gfp_mask if necessary. if @mm is NULL, try to | |
6739 | * charge to the active memcg. | |
6740 | * | |
6741 | * Do not use this for pages allocated for swapin. | |
6742 | * | |
6743 | * Returns 0 on success. Otherwise, an error code is returned. | |
6744 | */ | |
6745 | int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, | |
6746 | gfp_t gfp_mask) | |
6747 | { | |
6748 | struct mem_cgroup *memcg; | |
6749 | int ret; | |
6750 | ||
6751 | memcg = get_mem_cgroup_from_mm(mm); | |
6752 | ret = charge_memcg(page, memcg, gfp_mask); | |
6753 | css_put(&memcg->css); | |
6754 | ||
6755 | return ret; | |
6756 | } | |
6757 | ||
6758 | /** | |
6759 | * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin | |
6760 | * @page: page to charge | |
6761 | * @mm: mm context of the victim | |
6762 | * @gfp: reclaim mode | |
6763 | * @entry: swap entry for which the page is allocated | |
6764 | * | |
6765 | * This function charges a page allocated for swapin. Please call this before | |
6766 | * adding the page to the swapcache. | |
6767 | * | |
6768 | * Returns 0 on success. Otherwise, an error code is returned. | |
6769 | */ | |
6770 | int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, | |
6771 | gfp_t gfp, swp_entry_t entry) | |
6772 | { | |
6773 | struct mem_cgroup *memcg; | |
6774 | unsigned short id; | |
6775 | int ret; | |
6776 | ||
6777 | if (mem_cgroup_disabled()) | |
6778 | return 0; | |
6779 | ||
6780 | id = lookup_swap_cgroup_id(entry); | |
6781 | rcu_read_lock(); | |
6782 | memcg = mem_cgroup_from_id(id); | |
6783 | if (!memcg || !css_tryget_online(&memcg->css)) | |
6784 | memcg = get_mem_cgroup_from_mm(mm); | |
6785 | rcu_read_unlock(); | |
6786 | ||
6787 | ret = charge_memcg(page, memcg, gfp); | |
6788 | ||
6789 | css_put(&memcg->css); | |
6790 | return ret; | |
6791 | } | |
6792 | ||
6793 | /* | |
6794 | * mem_cgroup_swapin_uncharge_swap - uncharge swap slot | |
6795 | * @entry: swap entry for which the page is charged | |
6796 | * | |
6797 | * Call this function after successfully adding the charged page to swapcache. | |
6798 | * | |
6799 | * Note: This function assumes the page for which swap slot is being uncharged | |
6800 | * is order 0 page. | |
6801 | */ | |
6802 | void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) | |
6803 | { | |
6804 | /* | |
6805 | * Cgroup1's unified memory+swap counter has been charged with the | |
6806 | * new swapcache page, finish the transfer by uncharging the swap | |
6807 | * slot. The swap slot would also get uncharged when it dies, but | |
6808 | * it can stick around indefinitely and we'd count the page twice | |
6809 | * the entire time. | |
6810 | * | |
6811 | * Cgroup2 has separate resource counters for memory and swap, | |
6812 | * so this is a non-issue here. Memory and swap charge lifetimes | |
6813 | * correspond 1:1 to page and swap slot lifetimes: we charge the | |
6814 | * page to memory here, and uncharge swap when the slot is freed. | |
6815 | */ | |
6816 | if (!mem_cgroup_disabled() && do_memsw_account()) { | |
6817 | /* | |
6818 | * The swap entry might not get freed for a long time, | |
6819 | * let's not wait for it. The page already received a | |
6820 | * memory+swap charge, drop the swap entry duplicate. | |
6821 | */ | |
6822 | mem_cgroup_uncharge_swap(entry, 1); | |
6823 | } | |
6824 | } | |
6825 | ||
6826 | struct uncharge_gather { | |
6827 | struct mem_cgroup *memcg; | |
6828 | unsigned long nr_memory; | |
6829 | unsigned long pgpgout; | |
6830 | unsigned long nr_kmem; | |
6831 | struct page *dummy_page; | |
6832 | }; | |
6833 | ||
6834 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | |
6835 | { | |
6836 | memset(ug, 0, sizeof(*ug)); | |
6837 | } | |
6838 | ||
6839 | static void uncharge_batch(const struct uncharge_gather *ug) | |
6840 | { | |
6841 | unsigned long flags; | |
6842 | ||
6843 | if (ug->nr_memory) { | |
6844 | page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); | |
6845 | if (do_memsw_account()) | |
6846 | page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); | |
6847 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) | |
6848 | page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); | |
6849 | memcg_oom_recover(ug->memcg); | |
6850 | } | |
6851 | ||
6852 | local_irq_save(flags); | |
6853 | __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); | |
6854 | __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); | |
6855 | memcg_check_events(ug->memcg, ug->dummy_page); | |
6856 | local_irq_restore(flags); | |
6857 | ||
6858 | /* drop reference from uncharge_page */ | |
6859 | css_put(&ug->memcg->css); | |
6860 | } | |
6861 | ||
6862 | static void uncharge_page(struct page *page, struct uncharge_gather *ug) | |
6863 | { | |
6864 | unsigned long nr_pages; | |
6865 | struct mem_cgroup *memcg; | |
6866 | struct obj_cgroup *objcg; | |
6867 | bool use_objcg = PageMemcgKmem(page); | |
6868 | ||
6869 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
6870 | ||
6871 | /* | |
6872 | * Nobody should be changing or seriously looking at | |
6873 | * page memcg or objcg at this point, we have fully | |
6874 | * exclusive access to the page. | |
6875 | */ | |
6876 | if (use_objcg) { | |
6877 | objcg = __page_objcg(page); | |
6878 | /* | |
6879 | * This get matches the put at the end of the function and | |
6880 | * kmem pages do not hold memcg references anymore. | |
6881 | */ | |
6882 | memcg = get_mem_cgroup_from_objcg(objcg); | |
6883 | } else { | |
6884 | memcg = __page_memcg(page); | |
6885 | } | |
6886 | ||
6887 | if (!memcg) | |
6888 | return; | |
6889 | ||
6890 | if (ug->memcg != memcg) { | |
6891 | if (ug->memcg) { | |
6892 | uncharge_batch(ug); | |
6893 | uncharge_gather_clear(ug); | |
6894 | } | |
6895 | ug->memcg = memcg; | |
6896 | ug->dummy_page = page; | |
6897 | ||
6898 | /* pairs with css_put in uncharge_batch */ | |
6899 | css_get(&memcg->css); | |
6900 | } | |
6901 | ||
6902 | nr_pages = compound_nr(page); | |
6903 | ||
6904 | if (use_objcg) { | |
6905 | ug->nr_memory += nr_pages; | |
6906 | ug->nr_kmem += nr_pages; | |
6907 | ||
6908 | page->memcg_data = 0; | |
6909 | obj_cgroup_put(objcg); | |
6910 | } else { | |
6911 | /* LRU pages aren't accounted at the root level */ | |
6912 | if (!mem_cgroup_is_root(memcg)) | |
6913 | ug->nr_memory += nr_pages; | |
6914 | ug->pgpgout++; | |
6915 | ||
6916 | page->memcg_data = 0; | |
6917 | } | |
6918 | ||
6919 | css_put(&memcg->css); | |
6920 | } | |
6921 | ||
6922 | /** | |
6923 | * __mem_cgroup_uncharge - uncharge a page | |
6924 | * @page: page to uncharge | |
6925 | * | |
6926 | * Uncharge a page previously charged with __mem_cgroup_charge(). | |
6927 | */ | |
6928 | void __mem_cgroup_uncharge(struct page *page) | |
6929 | { | |
6930 | struct uncharge_gather ug; | |
6931 | ||
6932 | /* Don't touch page->lru of any random page, pre-check: */ | |
6933 | if (!page_memcg(page)) | |
6934 | return; | |
6935 | ||
6936 | uncharge_gather_clear(&ug); | |
6937 | uncharge_page(page, &ug); | |
6938 | uncharge_batch(&ug); | |
6939 | } | |
6940 | ||
6941 | /** | |
6942 | * __mem_cgroup_uncharge_list - uncharge a list of page | |
6943 | * @page_list: list of pages to uncharge | |
6944 | * | |
6945 | * Uncharge a list of pages previously charged with | |
6946 | * __mem_cgroup_charge(). | |
6947 | */ | |
6948 | void __mem_cgroup_uncharge_list(struct list_head *page_list) | |
6949 | { | |
6950 | struct uncharge_gather ug; | |
6951 | struct page *page; | |
6952 | ||
6953 | uncharge_gather_clear(&ug); | |
6954 | list_for_each_entry(page, page_list, lru) | |
6955 | uncharge_page(page, &ug); | |
6956 | if (ug.memcg) | |
6957 | uncharge_batch(&ug); | |
6958 | } | |
6959 | ||
6960 | /** | |
6961 | * mem_cgroup_migrate - charge a page's replacement | |
6962 | * @oldpage: currently circulating page | |
6963 | * @newpage: replacement page | |
6964 | * | |
6965 | * Charge @newpage as a replacement page for @oldpage. @oldpage will | |
6966 | * be uncharged upon free. | |
6967 | * | |
6968 | * Both pages must be locked, @newpage->mapping must be set up. | |
6969 | */ | |
6970 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | |
6971 | { | |
6972 | struct mem_cgroup *memcg; | |
6973 | unsigned int nr_pages; | |
6974 | unsigned long flags; | |
6975 | ||
6976 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
6977 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
6978 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | |
6979 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | |
6980 | newpage); | |
6981 | ||
6982 | if (mem_cgroup_disabled()) | |
6983 | return; | |
6984 | ||
6985 | /* Page cache replacement: new page already charged? */ | |
6986 | if (page_memcg(newpage)) | |
6987 | return; | |
6988 | ||
6989 | memcg = page_memcg(oldpage); | |
6990 | VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); | |
6991 | if (!memcg) | |
6992 | return; | |
6993 | ||
6994 | /* Force-charge the new page. The old one will be freed soon */ | |
6995 | nr_pages = thp_nr_pages(newpage); | |
6996 | ||
6997 | if (!mem_cgroup_is_root(memcg)) { | |
6998 | page_counter_charge(&memcg->memory, nr_pages); | |
6999 | if (do_memsw_account()) | |
7000 | page_counter_charge(&memcg->memsw, nr_pages); | |
7001 | } | |
7002 | ||
7003 | css_get(&memcg->css); | |
7004 | commit_charge(newpage, memcg); | |
7005 | ||
7006 | local_irq_save(flags); | |
7007 | mem_cgroup_charge_statistics(memcg, newpage, nr_pages); | |
7008 | memcg_check_events(memcg, newpage); | |
7009 | local_irq_restore(flags); | |
7010 | } | |
7011 | ||
7012 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | |
7013 | EXPORT_SYMBOL(memcg_sockets_enabled_key); | |
7014 | ||
7015 | void mem_cgroup_sk_alloc(struct sock *sk) | |
7016 | { | |
7017 | struct mem_cgroup *memcg; | |
7018 | ||
7019 | if (!mem_cgroup_sockets_enabled) | |
7020 | return; | |
7021 | ||
7022 | /* Do not associate the sock with unrelated interrupted task's memcg. */ | |
7023 | if (in_interrupt()) | |
7024 | return; | |
7025 | ||
7026 | rcu_read_lock(); | |
7027 | memcg = mem_cgroup_from_task(current); | |
7028 | if (memcg == root_mem_cgroup) | |
7029 | goto out; | |
7030 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | |
7031 | goto out; | |
7032 | if (css_tryget(&memcg->css)) | |
7033 | sk->sk_memcg = memcg; | |
7034 | out: | |
7035 | rcu_read_unlock(); | |
7036 | } | |
7037 | ||
7038 | void mem_cgroup_sk_free(struct sock *sk) | |
7039 | { | |
7040 | if (sk->sk_memcg) | |
7041 | css_put(&sk->sk_memcg->css); | |
7042 | } | |
7043 | ||
7044 | /** | |
7045 | * mem_cgroup_charge_skmem - charge socket memory | |
7046 | * @memcg: memcg to charge | |
7047 | * @nr_pages: number of pages to charge | |
7048 | * @gfp_mask: reclaim mode | |
7049 | * | |
7050 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | |
7051 | * @memcg's configured limit, %false if it doesn't. | |
7052 | */ | |
7053 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, | |
7054 | gfp_t gfp_mask) | |
7055 | { | |
7056 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | |
7057 | struct page_counter *fail; | |
7058 | ||
7059 | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | |
7060 | memcg->tcpmem_pressure = 0; | |
7061 | return true; | |
7062 | } | |
7063 | memcg->tcpmem_pressure = 1; | |
7064 | if (gfp_mask & __GFP_NOFAIL) { | |
7065 | page_counter_charge(&memcg->tcpmem, nr_pages); | |
7066 | return true; | |
7067 | } | |
7068 | return false; | |
7069 | } | |
7070 | ||
7071 | if (try_charge(memcg, gfp_mask, nr_pages) == 0) { | |
7072 | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); | |
7073 | return true; | |
7074 | } | |
7075 | ||
7076 | return false; | |
7077 | } | |
7078 | ||
7079 | /** | |
7080 | * mem_cgroup_uncharge_skmem - uncharge socket memory | |
7081 | * @memcg: memcg to uncharge | |
7082 | * @nr_pages: number of pages to uncharge | |
7083 | */ | |
7084 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
7085 | { | |
7086 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | |
7087 | page_counter_uncharge(&memcg->tcpmem, nr_pages); | |
7088 | return; | |
7089 | } | |
7090 | ||
7091 | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); | |
7092 | ||
7093 | refill_stock(memcg, nr_pages); | |
7094 | } | |
7095 | ||
7096 | static int __init cgroup_memory(char *s) | |
7097 | { | |
7098 | char *token; | |
7099 | ||
7100 | while ((token = strsep(&s, ",")) != NULL) { | |
7101 | if (!*token) | |
7102 | continue; | |
7103 | if (!strcmp(token, "nosocket")) | |
7104 | cgroup_memory_nosocket = true; | |
7105 | if (!strcmp(token, "nokmem")) | |
7106 | cgroup_memory_nokmem = true; | |
7107 | } | |
7108 | return 1; | |
7109 | } | |
7110 | __setup("cgroup.memory=", cgroup_memory); | |
7111 | ||
7112 | /* | |
7113 | * subsys_initcall() for memory controller. | |
7114 | * | |
7115 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this | |
7116 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | |
7117 | * basically everything that doesn't depend on a specific mem_cgroup structure | |
7118 | * should be initialized from here. | |
7119 | */ | |
7120 | static int __init mem_cgroup_init(void) | |
7121 | { | |
7122 | int cpu, node; | |
7123 | ||
7124 | /* | |
7125 | * Currently s32 type (can refer to struct batched_lruvec_stat) is | |
7126 | * used for per-memcg-per-cpu caching of per-node statistics. In order | |
7127 | * to work fine, we should make sure that the overfill threshold can't | |
7128 | * exceed S32_MAX / PAGE_SIZE. | |
7129 | */ | |
7130 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); | |
7131 | ||
7132 | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, | |
7133 | memcg_hotplug_cpu_dead); | |
7134 | ||
7135 | for_each_possible_cpu(cpu) | |
7136 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | |
7137 | drain_local_stock); | |
7138 | ||
7139 | for_each_node(node) { | |
7140 | struct mem_cgroup_tree_per_node *rtpn; | |
7141 | ||
7142 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | |
7143 | node_online(node) ? node : NUMA_NO_NODE); | |
7144 | ||
7145 | rtpn->rb_root = RB_ROOT; | |
7146 | rtpn->rb_rightmost = NULL; | |
7147 | spin_lock_init(&rtpn->lock); | |
7148 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
7149 | } | |
7150 | ||
7151 | return 0; | |
7152 | } | |
7153 | subsys_initcall(mem_cgroup_init); | |
7154 | ||
7155 | #ifdef CONFIG_MEMCG_SWAP | |
7156 | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) | |
7157 | { | |
7158 | while (!refcount_inc_not_zero(&memcg->id.ref)) { | |
7159 | /* | |
7160 | * The root cgroup cannot be destroyed, so it's refcount must | |
7161 | * always be >= 1. | |
7162 | */ | |
7163 | if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { | |
7164 | VM_BUG_ON(1); | |
7165 | break; | |
7166 | } | |
7167 | memcg = parent_mem_cgroup(memcg); | |
7168 | if (!memcg) | |
7169 | memcg = root_mem_cgroup; | |
7170 | } | |
7171 | return memcg; | |
7172 | } | |
7173 | ||
7174 | /** | |
7175 | * mem_cgroup_swapout - transfer a memsw charge to swap | |
7176 | * @page: page whose memsw charge to transfer | |
7177 | * @entry: swap entry to move the charge to | |
7178 | * | |
7179 | * Transfer the memsw charge of @page to @entry. | |
7180 | */ | |
7181 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | |
7182 | { | |
7183 | struct mem_cgroup *memcg, *swap_memcg; | |
7184 | unsigned int nr_entries; | |
7185 | unsigned short oldid; | |
7186 | ||
7187 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
7188 | VM_BUG_ON_PAGE(page_count(page), page); | |
7189 | ||
7190 | if (mem_cgroup_disabled()) | |
7191 | return; | |
7192 | ||
7193 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
7194 | return; | |
7195 | ||
7196 | memcg = page_memcg(page); | |
7197 | ||
7198 | VM_WARN_ON_ONCE_PAGE(!memcg, page); | |
7199 | if (!memcg) | |
7200 | return; | |
7201 | ||
7202 | /* | |
7203 | * In case the memcg owning these pages has been offlined and doesn't | |
7204 | * have an ID allocated to it anymore, charge the closest online | |
7205 | * ancestor for the swap instead and transfer the memory+swap charge. | |
7206 | */ | |
7207 | swap_memcg = mem_cgroup_id_get_online(memcg); | |
7208 | nr_entries = thp_nr_pages(page); | |
7209 | /* Get references for the tail pages, too */ | |
7210 | if (nr_entries > 1) | |
7211 | mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); | |
7212 | oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), | |
7213 | nr_entries); | |
7214 | VM_BUG_ON_PAGE(oldid, page); | |
7215 | mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); | |
7216 | ||
7217 | page->memcg_data = 0; | |
7218 | ||
7219 | if (!mem_cgroup_is_root(memcg)) | |
7220 | page_counter_uncharge(&memcg->memory, nr_entries); | |
7221 | ||
7222 | if (!cgroup_memory_noswap && memcg != swap_memcg) { | |
7223 | if (!mem_cgroup_is_root(swap_memcg)) | |
7224 | page_counter_charge(&swap_memcg->memsw, nr_entries); | |
7225 | page_counter_uncharge(&memcg->memsw, nr_entries); | |
7226 | } | |
7227 | ||
7228 | /* | |
7229 | * Interrupts should be disabled here because the caller holds the | |
7230 | * i_pages lock which is taken with interrupts-off. It is | |
7231 | * important here to have the interrupts disabled because it is the | |
7232 | * only synchronisation we have for updating the per-CPU variables. | |
7233 | */ | |
7234 | VM_BUG_ON(!irqs_disabled()); | |
7235 | mem_cgroup_charge_statistics(memcg, page, -nr_entries); | |
7236 | memcg_check_events(memcg, page); | |
7237 | ||
7238 | css_put(&memcg->css); | |
7239 | } | |
7240 | ||
7241 | /** | |
7242 | * __mem_cgroup_try_charge_swap - try charging swap space for a page | |
7243 | * @page: page being added to swap | |
7244 | * @entry: swap entry to charge | |
7245 | * | |
7246 | * Try to charge @page's memcg for the swap space at @entry. | |
7247 | * | |
7248 | * Returns 0 on success, -ENOMEM on failure. | |
7249 | */ | |
7250 | int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | |
7251 | { | |
7252 | unsigned int nr_pages = thp_nr_pages(page); | |
7253 | struct page_counter *counter; | |
7254 | struct mem_cgroup *memcg; | |
7255 | unsigned short oldid; | |
7256 | ||
7257 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
7258 | return 0; | |
7259 | ||
7260 | memcg = page_memcg(page); | |
7261 | ||
7262 | VM_WARN_ON_ONCE_PAGE(!memcg, page); | |
7263 | if (!memcg) | |
7264 | return 0; | |
7265 | ||
7266 | if (!entry.val) { | |
7267 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | |
7268 | return 0; | |
7269 | } | |
7270 | ||
7271 | memcg = mem_cgroup_id_get_online(memcg); | |
7272 | ||
7273 | if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && | |
7274 | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { | |
7275 | memcg_memory_event(memcg, MEMCG_SWAP_MAX); | |
7276 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | |
7277 | mem_cgroup_id_put(memcg); | |
7278 | return -ENOMEM; | |
7279 | } | |
7280 | ||
7281 | /* Get references for the tail pages, too */ | |
7282 | if (nr_pages > 1) | |
7283 | mem_cgroup_id_get_many(memcg, nr_pages - 1); | |
7284 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); | |
7285 | VM_BUG_ON_PAGE(oldid, page); | |
7286 | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); | |
7287 | ||
7288 | return 0; | |
7289 | } | |
7290 | ||
7291 | /** | |
7292 | * __mem_cgroup_uncharge_swap - uncharge swap space | |
7293 | * @entry: swap entry to uncharge | |
7294 | * @nr_pages: the amount of swap space to uncharge | |
7295 | */ | |
7296 | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) | |
7297 | { | |
7298 | struct mem_cgroup *memcg; | |
7299 | unsigned short id; | |
7300 | ||
7301 | id = swap_cgroup_record(entry, 0, nr_pages); | |
7302 | rcu_read_lock(); | |
7303 | memcg = mem_cgroup_from_id(id); | |
7304 | if (memcg) { | |
7305 | if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { | |
7306 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
7307 | page_counter_uncharge(&memcg->swap, nr_pages); | |
7308 | else | |
7309 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
7310 | } | |
7311 | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); | |
7312 | mem_cgroup_id_put_many(memcg, nr_pages); | |
7313 | } | |
7314 | rcu_read_unlock(); | |
7315 | } | |
7316 | ||
7317 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | |
7318 | { | |
7319 | long nr_swap_pages = get_nr_swap_pages(); | |
7320 | ||
7321 | if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
7322 | return nr_swap_pages; | |
7323 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | |
7324 | nr_swap_pages = min_t(long, nr_swap_pages, | |
7325 | READ_ONCE(memcg->swap.max) - | |
7326 | page_counter_read(&memcg->swap)); | |
7327 | return nr_swap_pages; | |
7328 | } | |
7329 | ||
7330 | bool mem_cgroup_swap_full(struct page *page) | |
7331 | { | |
7332 | struct mem_cgroup *memcg; | |
7333 | ||
7334 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
7335 | ||
7336 | if (vm_swap_full()) | |
7337 | return true; | |
7338 | if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
7339 | return false; | |
7340 | ||
7341 | memcg = page_memcg(page); | |
7342 | if (!memcg) | |
7343 | return false; | |
7344 | ||
7345 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { | |
7346 | unsigned long usage = page_counter_read(&memcg->swap); | |
7347 | ||
7348 | if (usage * 2 >= READ_ONCE(memcg->swap.high) || | |
7349 | usage * 2 >= READ_ONCE(memcg->swap.max)) | |
7350 | return true; | |
7351 | } | |
7352 | ||
7353 | return false; | |
7354 | } | |
7355 | ||
7356 | static int __init setup_swap_account(char *s) | |
7357 | { | |
7358 | if (!strcmp(s, "1")) | |
7359 | cgroup_memory_noswap = false; | |
7360 | else if (!strcmp(s, "0")) | |
7361 | cgroup_memory_noswap = true; | |
7362 | return 1; | |
7363 | } | |
7364 | __setup("swapaccount=", setup_swap_account); | |
7365 | ||
7366 | static u64 swap_current_read(struct cgroup_subsys_state *css, | |
7367 | struct cftype *cft) | |
7368 | { | |
7369 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
7370 | ||
7371 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | |
7372 | } | |
7373 | ||
7374 | static int swap_high_show(struct seq_file *m, void *v) | |
7375 | { | |
7376 | return seq_puts_memcg_tunable(m, | |
7377 | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); | |
7378 | } | |
7379 | ||
7380 | static ssize_t swap_high_write(struct kernfs_open_file *of, | |
7381 | char *buf, size_t nbytes, loff_t off) | |
7382 | { | |
7383 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
7384 | unsigned long high; | |
7385 | int err; | |
7386 | ||
7387 | buf = strstrip(buf); | |
7388 | err = page_counter_memparse(buf, "max", &high); | |
7389 | if (err) | |
7390 | return err; | |
7391 | ||
7392 | page_counter_set_high(&memcg->swap, high); | |
7393 | ||
7394 | return nbytes; | |
7395 | } | |
7396 | ||
7397 | static int swap_max_show(struct seq_file *m, void *v) | |
7398 | { | |
7399 | return seq_puts_memcg_tunable(m, | |
7400 | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); | |
7401 | } | |
7402 | ||
7403 | static ssize_t swap_max_write(struct kernfs_open_file *of, | |
7404 | char *buf, size_t nbytes, loff_t off) | |
7405 | { | |
7406 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
7407 | unsigned long max; | |
7408 | int err; | |
7409 | ||
7410 | buf = strstrip(buf); | |
7411 | err = page_counter_memparse(buf, "max", &max); | |
7412 | if (err) | |
7413 | return err; | |
7414 | ||
7415 | xchg(&memcg->swap.max, max); | |
7416 | ||
7417 | return nbytes; | |
7418 | } | |
7419 | ||
7420 | static int swap_events_show(struct seq_file *m, void *v) | |
7421 | { | |
7422 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
7423 | ||
7424 | seq_printf(m, "high %lu\n", | |
7425 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); | |
7426 | seq_printf(m, "max %lu\n", | |
7427 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | |
7428 | seq_printf(m, "fail %lu\n", | |
7429 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | |
7430 | ||
7431 | return 0; | |
7432 | } | |
7433 | ||
7434 | static struct cftype swap_files[] = { | |
7435 | { | |
7436 | .name = "swap.current", | |
7437 | .flags = CFTYPE_NOT_ON_ROOT, | |
7438 | .read_u64 = swap_current_read, | |
7439 | }, | |
7440 | { | |
7441 | .name = "swap.high", | |
7442 | .flags = CFTYPE_NOT_ON_ROOT, | |
7443 | .seq_show = swap_high_show, | |
7444 | .write = swap_high_write, | |
7445 | }, | |
7446 | { | |
7447 | .name = "swap.max", | |
7448 | .flags = CFTYPE_NOT_ON_ROOT, | |
7449 | .seq_show = swap_max_show, | |
7450 | .write = swap_max_write, | |
7451 | }, | |
7452 | { | |
7453 | .name = "swap.events", | |
7454 | .flags = CFTYPE_NOT_ON_ROOT, | |
7455 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), | |
7456 | .seq_show = swap_events_show, | |
7457 | }, | |
7458 | { } /* terminate */ | |
7459 | }; | |
7460 | ||
7461 | static struct cftype memsw_files[] = { | |
7462 | { | |
7463 | .name = "memsw.usage_in_bytes", | |
7464 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
7465 | .read_u64 = mem_cgroup_read_u64, | |
7466 | }, | |
7467 | { | |
7468 | .name = "memsw.max_usage_in_bytes", | |
7469 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
7470 | .write = mem_cgroup_reset, | |
7471 | .read_u64 = mem_cgroup_read_u64, | |
7472 | }, | |
7473 | { | |
7474 | .name = "memsw.limit_in_bytes", | |
7475 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
7476 | .write = mem_cgroup_write, | |
7477 | .read_u64 = mem_cgroup_read_u64, | |
7478 | }, | |
7479 | { | |
7480 | .name = "memsw.failcnt", | |
7481 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
7482 | .write = mem_cgroup_reset, | |
7483 | .read_u64 = mem_cgroup_read_u64, | |
7484 | }, | |
7485 | { }, /* terminate */ | |
7486 | }; | |
7487 | ||
7488 | /* | |
7489 | * If mem_cgroup_swap_init() is implemented as a subsys_initcall() | |
7490 | * instead of a core_initcall(), this could mean cgroup_memory_noswap still | |
7491 | * remains set to false even when memcg is disabled via "cgroup_disable=memory" | |
7492 | * boot parameter. This may result in premature OOPS inside | |
7493 | * mem_cgroup_get_nr_swap_pages() function in corner cases. | |
7494 | */ | |
7495 | static int __init mem_cgroup_swap_init(void) | |
7496 | { | |
7497 | /* No memory control -> no swap control */ | |
7498 | if (mem_cgroup_disabled()) | |
7499 | cgroup_memory_noswap = true; | |
7500 | ||
7501 | if (cgroup_memory_noswap) | |
7502 | return 0; | |
7503 | ||
7504 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); | |
7505 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); | |
7506 | ||
7507 | return 0; | |
7508 | } | |
7509 | core_initcall(mem_cgroup_swap_init); | |
7510 | ||
7511 | #endif /* CONFIG_MEMCG_SWAP */ |