]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/memory-failure.c
mm/filemap.c: make global sync not clear error status of individual inodes
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched.h>
44#include <linux/ksm.h>
45#include <linux/rmap.h>
46#include <linux/export.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
53#include <linux/slab.h>
54#include <linux/swapops.h>
55#include <linux/hugetlb.h>
56#include <linux/memory_hotplug.h>
57#include <linux/mm_inline.h>
58#include <linux/kfifo.h>
59#include "internal.h"
60#include "ras/ras_event.h"
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70u32 hwpoison_filter_enable = 0;
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133#ifdef CONFIG_MEMCG
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145}
146#else
147static int hwpoison_filter_task(struct page *p) { return 0; }
148#endif
149
150int hwpoison_filter(struct page *p)
151{
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165}
166#else
167int hwpoison_filter(struct page *p)
168{
169 return 0;
170}
171#endif
172
173EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175/*
176 * Send all the processes who have the page mapped a signal.
177 * ``action optional'' if they are not immediately affected by the error
178 * ``action required'' if error happened in current execution context
179 */
180static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
181 unsigned long pfn, struct page *page, int flags)
182{
183 struct siginfo si;
184 int ret;
185
186 printk(KERN_ERR
187 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192#ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194#endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214}
215
216/*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220void shake_page(struct page *p, int access)
221{
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
230
231 /*
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
234 */
235 if (access)
236 drop_slab_node(page_to_nid(p));
237}
238EXPORT_SYMBOL_GPL(shake_page);
239
240/*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
267};
268
269/*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274/*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283{
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 printk(KERN_ERR
293 "MCE: Out of memory while machine check handling\n");
294 return;
295 }
296 }
297 tk->addr = page_address_in_vma(p, vma);
298 tk->addr_valid = 1;
299
300 /*
301 * In theory we don't have to kill when the page was
302 * munmaped. But it could be also a mremap. Since that's
303 * likely very rare kill anyways just out of paranoia, but use
304 * a SIGKILL because the error is not contained anymore.
305 */
306 if (tk->addr == -EFAULT) {
307 pr_info("MCE: Unable to find user space address %lx in %s\n",
308 page_to_pfn(p), tsk->comm);
309 tk->addr_valid = 0;
310 }
311 get_task_struct(tsk);
312 tk->tsk = tsk;
313 list_add_tail(&tk->nd, to_kill);
314}
315
316/*
317 * Kill the processes that have been collected earlier.
318 *
319 * Only do anything when DOIT is set, otherwise just free the list
320 * (this is used for clean pages which do not need killing)
321 * Also when FAIL is set do a force kill because something went
322 * wrong earlier.
323 */
324static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
325 int fail, struct page *page, unsigned long pfn,
326 int flags)
327{
328 struct to_kill *tk, *next;
329
330 list_for_each_entry_safe (tk, next, to_kill, nd) {
331 if (forcekill) {
332 /*
333 * In case something went wrong with munmapping
334 * make sure the process doesn't catch the
335 * signal and then access the memory. Just kill it.
336 */
337 if (fail || tk->addr_valid == 0) {
338 printk(KERN_ERR
339 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
340 pfn, tk->tsk->comm, tk->tsk->pid);
341 force_sig(SIGKILL, tk->tsk);
342 }
343
344 /*
345 * In theory the process could have mapped
346 * something else on the address in-between. We could
347 * check for that, but we need to tell the
348 * process anyways.
349 */
350 else if (kill_proc(tk->tsk, tk->addr, trapno,
351 pfn, page, flags) < 0)
352 printk(KERN_ERR
353 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
354 pfn, tk->tsk->comm, tk->tsk->pid);
355 }
356 put_task_struct(tk->tsk);
357 kfree(tk);
358 }
359}
360
361/*
362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363 * on behalf of the thread group. Return task_struct of the (first found)
364 * dedicated thread if found, and return NULL otherwise.
365 *
366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367 * have to call rcu_read_lock/unlock() in this function.
368 */
369static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370{
371 struct task_struct *t;
372
373 for_each_thread(tsk, t)
374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 return t;
376 return NULL;
377}
378
379/*
380 * Determine whether a given process is "early kill" process which expects
381 * to be signaled when some page under the process is hwpoisoned.
382 * Return task_struct of the dedicated thread (main thread unless explicitly
383 * specified) if the process is "early kill," and otherwise returns NULL.
384 */
385static struct task_struct *task_early_kill(struct task_struct *tsk,
386 int force_early)
387{
388 struct task_struct *t;
389 if (!tsk->mm)
390 return NULL;
391 if (force_early)
392 return tsk;
393 t = find_early_kill_thread(tsk);
394 if (t)
395 return t;
396 if (sysctl_memory_failure_early_kill)
397 return tsk;
398 return NULL;
399}
400
401/*
402 * Collect processes when the error hit an anonymous page.
403 */
404static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405 struct to_kill **tkc, int force_early)
406{
407 struct vm_area_struct *vma;
408 struct task_struct *tsk;
409 struct anon_vma *av;
410 pgoff_t pgoff;
411
412 av = page_lock_anon_vma_read(page);
413 if (av == NULL) /* Not actually mapped anymore */
414 return;
415
416 pgoff = page_to_pgoff(page);
417 read_lock(&tasklist_lock);
418 for_each_process (tsk) {
419 struct anon_vma_chain *vmac;
420 struct task_struct *t = task_early_kill(tsk, force_early);
421
422 if (!t)
423 continue;
424 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 pgoff, pgoff) {
426 vma = vmac->vma;
427 if (!page_mapped_in_vma(page, vma))
428 continue;
429 if (vma->vm_mm == t->mm)
430 add_to_kill(t, page, vma, to_kill, tkc);
431 }
432 }
433 read_unlock(&tasklist_lock);
434 page_unlock_anon_vma_read(av);
435}
436
437/*
438 * Collect processes when the error hit a file mapped page.
439 */
440static void collect_procs_file(struct page *page, struct list_head *to_kill,
441 struct to_kill **tkc, int force_early)
442{
443 struct vm_area_struct *vma;
444 struct task_struct *tsk;
445 struct address_space *mapping = page->mapping;
446
447 i_mmap_lock_read(mapping);
448 read_lock(&tasklist_lock);
449 for_each_process(tsk) {
450 pgoff_t pgoff = page_to_pgoff(page);
451 struct task_struct *t = task_early_kill(tsk, force_early);
452
453 if (!t)
454 continue;
455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 pgoff) {
457 /*
458 * Send early kill signal to tasks where a vma covers
459 * the page but the corrupted page is not necessarily
460 * mapped it in its pte.
461 * Assume applications who requested early kill want
462 * to be informed of all such data corruptions.
463 */
464 if (vma->vm_mm == t->mm)
465 add_to_kill(t, page, vma, to_kill, tkc);
466 }
467 }
468 read_unlock(&tasklist_lock);
469 i_mmap_unlock_read(mapping);
470}
471
472/*
473 * Collect the processes who have the corrupted page mapped to kill.
474 * This is done in two steps for locking reasons.
475 * First preallocate one tokill structure outside the spin locks,
476 * so that we can kill at least one process reasonably reliable.
477 */
478static void collect_procs(struct page *page, struct list_head *tokill,
479 int force_early)
480{
481 struct to_kill *tk;
482
483 if (!page->mapping)
484 return;
485
486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 if (!tk)
488 return;
489 if (PageAnon(page))
490 collect_procs_anon(page, tokill, &tk, force_early);
491 else
492 collect_procs_file(page, tokill, &tk, force_early);
493 kfree(tk);
494}
495
496static const char *action_name[] = {
497 [MF_IGNORED] = "Ignored",
498 [MF_FAILED] = "Failed",
499 [MF_DELAYED] = "Delayed",
500 [MF_RECOVERED] = "Recovered",
501};
502
503static const char * const action_page_types[] = {
504 [MF_MSG_KERNEL] = "reserved kernel page",
505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
506 [MF_MSG_SLAB] = "kernel slab page",
507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
509 [MF_MSG_HUGE] = "huge page",
510 [MF_MSG_FREE_HUGE] = "free huge page",
511 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
512 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
513 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
514 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
515 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
516 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
517 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
518 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
519 [MF_MSG_CLEAN_LRU] = "clean LRU page",
520 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
521 [MF_MSG_BUDDY] = "free buddy page",
522 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
523 [MF_MSG_UNKNOWN] = "unknown page",
524};
525
526/*
527 * XXX: It is possible that a page is isolated from LRU cache,
528 * and then kept in swap cache or failed to remove from page cache.
529 * The page count will stop it from being freed by unpoison.
530 * Stress tests should be aware of this memory leak problem.
531 */
532static int delete_from_lru_cache(struct page *p)
533{
534 if (!isolate_lru_page(p)) {
535 /*
536 * Clear sensible page flags, so that the buddy system won't
537 * complain when the page is unpoison-and-freed.
538 */
539 ClearPageActive(p);
540 ClearPageUnevictable(p);
541 /*
542 * drop the page count elevated by isolate_lru_page()
543 */
544 page_cache_release(p);
545 return 0;
546 }
547 return -EIO;
548}
549
550/*
551 * Error hit kernel page.
552 * Do nothing, try to be lucky and not touch this instead. For a few cases we
553 * could be more sophisticated.
554 */
555static int me_kernel(struct page *p, unsigned long pfn)
556{
557 return MF_IGNORED;
558}
559
560/*
561 * Page in unknown state. Do nothing.
562 */
563static int me_unknown(struct page *p, unsigned long pfn)
564{
565 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
566 return MF_FAILED;
567}
568
569/*
570 * Clean (or cleaned) page cache page.
571 */
572static int me_pagecache_clean(struct page *p, unsigned long pfn)
573{
574 int err;
575 int ret = MF_FAILED;
576 struct address_space *mapping;
577
578 delete_from_lru_cache(p);
579
580 /*
581 * For anonymous pages we're done the only reference left
582 * should be the one m_f() holds.
583 */
584 if (PageAnon(p))
585 return MF_RECOVERED;
586
587 /*
588 * Now truncate the page in the page cache. This is really
589 * more like a "temporary hole punch"
590 * Don't do this for block devices when someone else
591 * has a reference, because it could be file system metadata
592 * and that's not safe to truncate.
593 */
594 mapping = page_mapping(p);
595 if (!mapping) {
596 /*
597 * Page has been teared down in the meanwhile
598 */
599 return MF_FAILED;
600 }
601
602 /*
603 * Truncation is a bit tricky. Enable it per file system for now.
604 *
605 * Open: to take i_mutex or not for this? Right now we don't.
606 */
607 if (mapping->a_ops->error_remove_page) {
608 err = mapping->a_ops->error_remove_page(mapping, p);
609 if (err != 0) {
610 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
611 pfn, err);
612 } else if (page_has_private(p) &&
613 !try_to_release_page(p, GFP_NOIO)) {
614 pr_info("MCE %#lx: failed to release buffers\n", pfn);
615 } else {
616 ret = MF_RECOVERED;
617 }
618 } else {
619 /*
620 * If the file system doesn't support it just invalidate
621 * This fails on dirty or anything with private pages
622 */
623 if (invalidate_inode_page(p))
624 ret = MF_RECOVERED;
625 else
626 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
627 pfn);
628 }
629 return ret;
630}
631
632/*
633 * Dirty pagecache page
634 * Issues: when the error hit a hole page the error is not properly
635 * propagated.
636 */
637static int me_pagecache_dirty(struct page *p, unsigned long pfn)
638{
639 struct address_space *mapping = page_mapping(p);
640
641 SetPageError(p);
642 /* TBD: print more information about the file. */
643 if (mapping) {
644 /*
645 * IO error will be reported by write(), fsync(), etc.
646 * who check the mapping.
647 * This way the application knows that something went
648 * wrong with its dirty file data.
649 *
650 * There's one open issue:
651 *
652 * The EIO will be only reported on the next IO
653 * operation and then cleared through the IO map.
654 * Normally Linux has two mechanisms to pass IO error
655 * first through the AS_EIO flag in the address space
656 * and then through the PageError flag in the page.
657 * Since we drop pages on memory failure handling the
658 * only mechanism open to use is through AS_AIO.
659 *
660 * This has the disadvantage that it gets cleared on
661 * the first operation that returns an error, while
662 * the PageError bit is more sticky and only cleared
663 * when the page is reread or dropped. If an
664 * application assumes it will always get error on
665 * fsync, but does other operations on the fd before
666 * and the page is dropped between then the error
667 * will not be properly reported.
668 *
669 * This can already happen even without hwpoisoned
670 * pages: first on metadata IO errors (which only
671 * report through AS_EIO) or when the page is dropped
672 * at the wrong time.
673 *
674 * So right now we assume that the application DTRT on
675 * the first EIO, but we're not worse than other parts
676 * of the kernel.
677 */
678 mapping_set_error(mapping, EIO);
679 }
680
681 return me_pagecache_clean(p, pfn);
682}
683
684/*
685 * Clean and dirty swap cache.
686 *
687 * Dirty swap cache page is tricky to handle. The page could live both in page
688 * cache and swap cache(ie. page is freshly swapped in). So it could be
689 * referenced concurrently by 2 types of PTEs:
690 * normal PTEs and swap PTEs. We try to handle them consistently by calling
691 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
692 * and then
693 * - clear dirty bit to prevent IO
694 * - remove from LRU
695 * - but keep in the swap cache, so that when we return to it on
696 * a later page fault, we know the application is accessing
697 * corrupted data and shall be killed (we installed simple
698 * interception code in do_swap_page to catch it).
699 *
700 * Clean swap cache pages can be directly isolated. A later page fault will
701 * bring in the known good data from disk.
702 */
703static int me_swapcache_dirty(struct page *p, unsigned long pfn)
704{
705 ClearPageDirty(p);
706 /* Trigger EIO in shmem: */
707 ClearPageUptodate(p);
708
709 if (!delete_from_lru_cache(p))
710 return MF_DELAYED;
711 else
712 return MF_FAILED;
713}
714
715static int me_swapcache_clean(struct page *p, unsigned long pfn)
716{
717 delete_from_swap_cache(p);
718
719 if (!delete_from_lru_cache(p))
720 return MF_RECOVERED;
721 else
722 return MF_FAILED;
723}
724
725/*
726 * Huge pages. Needs work.
727 * Issues:
728 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
729 * To narrow down kill region to one page, we need to break up pmd.
730 */
731static int me_huge_page(struct page *p, unsigned long pfn)
732{
733 int res = 0;
734 struct page *hpage = compound_head(p);
735
736 if (!PageHuge(hpage))
737 return MF_DELAYED;
738
739 /*
740 * We can safely recover from error on free or reserved (i.e.
741 * not in-use) hugepage by dequeuing it from freelist.
742 * To check whether a hugepage is in-use or not, we can't use
743 * page->lru because it can be used in other hugepage operations,
744 * such as __unmap_hugepage_range() and gather_surplus_pages().
745 * So instead we use page_mapping() and PageAnon().
746 * We assume that this function is called with page lock held,
747 * so there is no race between isolation and mapping/unmapping.
748 */
749 if (!(page_mapping(hpage) || PageAnon(hpage))) {
750 res = dequeue_hwpoisoned_huge_page(hpage);
751 if (!res)
752 return MF_RECOVERED;
753 }
754 return MF_DELAYED;
755}
756
757/*
758 * Various page states we can handle.
759 *
760 * A page state is defined by its current page->flags bits.
761 * The table matches them in order and calls the right handler.
762 *
763 * This is quite tricky because we can access page at any time
764 * in its live cycle, so all accesses have to be extremely careful.
765 *
766 * This is not complete. More states could be added.
767 * For any missing state don't attempt recovery.
768 */
769
770#define dirty (1UL << PG_dirty)
771#define sc (1UL << PG_swapcache)
772#define unevict (1UL << PG_unevictable)
773#define mlock (1UL << PG_mlocked)
774#define writeback (1UL << PG_writeback)
775#define lru (1UL << PG_lru)
776#define swapbacked (1UL << PG_swapbacked)
777#define head (1UL << PG_head)
778#define tail (1UL << PG_tail)
779#define compound (1UL << PG_compound)
780#define slab (1UL << PG_slab)
781#define reserved (1UL << PG_reserved)
782
783static struct page_state {
784 unsigned long mask;
785 unsigned long res;
786 enum mf_action_page_type type;
787 int (*action)(struct page *p, unsigned long pfn);
788} error_states[] = {
789 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
790 /*
791 * free pages are specially detected outside this table:
792 * PG_buddy pages only make a small fraction of all free pages.
793 */
794
795 /*
796 * Could in theory check if slab page is free or if we can drop
797 * currently unused objects without touching them. But just
798 * treat it as standard kernel for now.
799 */
800 { slab, slab, MF_MSG_SLAB, me_kernel },
801
802#ifdef CONFIG_PAGEFLAGS_EXTENDED
803 { head, head, MF_MSG_HUGE, me_huge_page },
804 { tail, tail, MF_MSG_HUGE, me_huge_page },
805#else
806 { compound, compound, MF_MSG_HUGE, me_huge_page },
807#endif
808
809 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
810 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
811
812 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
813 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
814
815 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
816 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
817
818 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
819 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
820
821 /*
822 * Catchall entry: must be at end.
823 */
824 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
825};
826
827#undef dirty
828#undef sc
829#undef unevict
830#undef mlock
831#undef writeback
832#undef lru
833#undef swapbacked
834#undef head
835#undef tail
836#undef compound
837#undef slab
838#undef reserved
839
840/*
841 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
842 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
843 */
844static void action_result(unsigned long pfn, enum mf_action_page_type type,
845 enum mf_result result)
846{
847 trace_memory_failure_event(pfn, type, result);
848
849 pr_err("MCE %#lx: recovery action for %s: %s\n",
850 pfn, action_page_types[type], action_name[result]);
851}
852
853static int page_action(struct page_state *ps, struct page *p,
854 unsigned long pfn)
855{
856 int result;
857 int count;
858
859 result = ps->action(p, pfn);
860
861 count = page_count(p) - 1;
862 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
863 count--;
864 if (count != 0) {
865 printk(KERN_ERR
866 "MCE %#lx: %s still referenced by %d users\n",
867 pfn, action_page_types[ps->type], count);
868 result = MF_FAILED;
869 }
870 action_result(pfn, ps->type, result);
871
872 /* Could do more checks here if page looks ok */
873 /*
874 * Could adjust zone counters here to correct for the missing page.
875 */
876
877 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
878}
879
880/**
881 * get_hwpoison_page() - Get refcount for memory error handling:
882 * @page: raw error page (hit by memory error)
883 *
884 * Return: return 0 if failed to grab the refcount, otherwise true (some
885 * non-zero value.)
886 */
887int get_hwpoison_page(struct page *page)
888{
889 struct page *head = compound_head(page);
890
891 if (PageHuge(head))
892 return get_page_unless_zero(head);
893
894 /*
895 * Thp tail page has special refcounting rule (refcount of tail pages
896 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
897 * directly for tail pages.
898 */
899 if (PageTransHuge(head)) {
900 /*
901 * Non anonymous thp exists only in allocation/free time. We
902 * can't handle such a case correctly, so let's give it up.
903 * This should be better than triggering BUG_ON when kernel
904 * tries to touch the "partially handled" page.
905 */
906 if (!PageAnon(head)) {
907 pr_err("MCE: %#lx: non anonymous thp\n",
908 page_to_pfn(page));
909 return 0;
910 }
911
912 if (get_page_unless_zero(head)) {
913 if (PageTail(page))
914 get_page(page);
915 return 1;
916 } else {
917 return 0;
918 }
919 }
920
921 return get_page_unless_zero(page);
922}
923EXPORT_SYMBOL_GPL(get_hwpoison_page);
924
925/**
926 * put_hwpoison_page() - Put refcount for memory error handling:
927 * @page: raw error page (hit by memory error)
928 */
929void put_hwpoison_page(struct page *page)
930{
931 struct page *head = compound_head(page);
932
933 if (PageHuge(head)) {
934 put_page(head);
935 return;
936 }
937
938 if (PageTransHuge(head))
939 if (page != head)
940 put_page(head);
941
942 put_page(page);
943}
944EXPORT_SYMBOL_GPL(put_hwpoison_page);
945
946/*
947 * Do all that is necessary to remove user space mappings. Unmap
948 * the pages and send SIGBUS to the processes if the data was dirty.
949 */
950static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
951 int trapno, int flags, struct page **hpagep)
952{
953 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
954 struct address_space *mapping;
955 LIST_HEAD(tokill);
956 int ret;
957 int kill = 1, forcekill;
958 struct page *hpage = *hpagep;
959
960 /*
961 * Here we are interested only in user-mapped pages, so skip any
962 * other types of pages.
963 */
964 if (PageReserved(p) || PageSlab(p))
965 return SWAP_SUCCESS;
966 if (!(PageLRU(hpage) || PageHuge(p)))
967 return SWAP_SUCCESS;
968
969 /*
970 * This check implies we don't kill processes if their pages
971 * are in the swap cache early. Those are always late kills.
972 */
973 if (!page_mapped(hpage))
974 return SWAP_SUCCESS;
975
976 if (PageKsm(p)) {
977 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
978 return SWAP_FAIL;
979 }
980
981 if (PageSwapCache(p)) {
982 printk(KERN_ERR
983 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
984 ttu |= TTU_IGNORE_HWPOISON;
985 }
986
987 /*
988 * Propagate the dirty bit from PTEs to struct page first, because we
989 * need this to decide if we should kill or just drop the page.
990 * XXX: the dirty test could be racy: set_page_dirty() may not always
991 * be called inside page lock (it's recommended but not enforced).
992 */
993 mapping = page_mapping(hpage);
994 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
995 mapping_cap_writeback_dirty(mapping)) {
996 if (page_mkclean(hpage)) {
997 SetPageDirty(hpage);
998 } else {
999 kill = 0;
1000 ttu |= TTU_IGNORE_HWPOISON;
1001 printk(KERN_INFO
1002 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
1003 pfn);
1004 }
1005 }
1006
1007 /*
1008 * First collect all the processes that have the page
1009 * mapped in dirty form. This has to be done before try_to_unmap,
1010 * because ttu takes the rmap data structures down.
1011 *
1012 * Error handling: We ignore errors here because
1013 * there's nothing that can be done.
1014 */
1015 if (kill)
1016 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1017
1018 ret = try_to_unmap(hpage, ttu);
1019 if (ret != SWAP_SUCCESS)
1020 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1021 pfn, page_mapcount(hpage));
1022
1023 /*
1024 * Now that the dirty bit has been propagated to the
1025 * struct page and all unmaps done we can decide if
1026 * killing is needed or not. Only kill when the page
1027 * was dirty or the process is not restartable,
1028 * otherwise the tokill list is merely
1029 * freed. When there was a problem unmapping earlier
1030 * use a more force-full uncatchable kill to prevent
1031 * any accesses to the poisoned memory.
1032 */
1033 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1034 kill_procs(&tokill, forcekill, trapno,
1035 ret != SWAP_SUCCESS, p, pfn, flags);
1036
1037 return ret;
1038}
1039
1040static void set_page_hwpoison_huge_page(struct page *hpage)
1041{
1042 int i;
1043 int nr_pages = 1 << compound_order(hpage);
1044 for (i = 0; i < nr_pages; i++)
1045 SetPageHWPoison(hpage + i);
1046}
1047
1048static void clear_page_hwpoison_huge_page(struct page *hpage)
1049{
1050 int i;
1051 int nr_pages = 1 << compound_order(hpage);
1052 for (i = 0; i < nr_pages; i++)
1053 ClearPageHWPoison(hpage + i);
1054}
1055
1056/**
1057 * memory_failure - Handle memory failure of a page.
1058 * @pfn: Page Number of the corrupted page
1059 * @trapno: Trap number reported in the signal to user space.
1060 * @flags: fine tune action taken
1061 *
1062 * This function is called by the low level machine check code
1063 * of an architecture when it detects hardware memory corruption
1064 * of a page. It tries its best to recover, which includes
1065 * dropping pages, killing processes etc.
1066 *
1067 * The function is primarily of use for corruptions that
1068 * happen outside the current execution context (e.g. when
1069 * detected by a background scrubber)
1070 *
1071 * Must run in process context (e.g. a work queue) with interrupts
1072 * enabled and no spinlocks hold.
1073 */
1074int memory_failure(unsigned long pfn, int trapno, int flags)
1075{
1076 struct page_state *ps;
1077 struct page *p;
1078 struct page *hpage;
1079 struct page *orig_head;
1080 int res;
1081 unsigned int nr_pages;
1082 unsigned long page_flags;
1083
1084 if (!sysctl_memory_failure_recovery)
1085 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1086
1087 if (!pfn_valid(pfn)) {
1088 printk(KERN_ERR
1089 "MCE %#lx: memory outside kernel control\n",
1090 pfn);
1091 return -ENXIO;
1092 }
1093
1094 p = pfn_to_page(pfn);
1095 orig_head = hpage = compound_head(p);
1096 if (TestSetPageHWPoison(p)) {
1097 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1098 return 0;
1099 }
1100
1101 /*
1102 * Currently errors on hugetlbfs pages are measured in hugepage units,
1103 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1104 * transparent hugepages, they are supposed to be split and error
1105 * measurement is done in normal page units. So nr_pages should be one
1106 * in this case.
1107 */
1108 if (PageHuge(p))
1109 nr_pages = 1 << compound_order(hpage);
1110 else /* normal page or thp */
1111 nr_pages = 1;
1112 num_poisoned_pages_add(nr_pages);
1113
1114 /*
1115 * We need/can do nothing about count=0 pages.
1116 * 1) it's a free page, and therefore in safe hand:
1117 * prep_new_page() will be the gate keeper.
1118 * 2) it's a free hugepage, which is also safe:
1119 * an affected hugepage will be dequeued from hugepage freelist,
1120 * so there's no concern about reusing it ever after.
1121 * 3) it's part of a non-compound high order page.
1122 * Implies some kernel user: cannot stop them from
1123 * R/W the page; let's pray that the page has been
1124 * used and will be freed some time later.
1125 * In fact it's dangerous to directly bump up page count from 0,
1126 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1127 */
1128 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1129 if (is_free_buddy_page(p)) {
1130 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1131 return 0;
1132 } else if (PageHuge(hpage)) {
1133 /*
1134 * Check "filter hit" and "race with other subpage."
1135 */
1136 lock_page(hpage);
1137 if (PageHWPoison(hpage)) {
1138 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1139 || (p != hpage && TestSetPageHWPoison(hpage))) {
1140 num_poisoned_pages_sub(nr_pages);
1141 unlock_page(hpage);
1142 return 0;
1143 }
1144 }
1145 set_page_hwpoison_huge_page(hpage);
1146 res = dequeue_hwpoisoned_huge_page(hpage);
1147 action_result(pfn, MF_MSG_FREE_HUGE,
1148 res ? MF_IGNORED : MF_DELAYED);
1149 unlock_page(hpage);
1150 return res;
1151 } else {
1152 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1153 return -EBUSY;
1154 }
1155 }
1156
1157 if (!PageHuge(p) && PageTransHuge(hpage)) {
1158 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1159 if (!PageAnon(hpage))
1160 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1161 else
1162 pr_err("MCE: %#lx: thp split failed\n", pfn);
1163 if (TestClearPageHWPoison(p))
1164 num_poisoned_pages_sub(nr_pages);
1165 put_hwpoison_page(p);
1166 return -EBUSY;
1167 }
1168 VM_BUG_ON_PAGE(!page_count(p), p);
1169 hpage = compound_head(p);
1170 }
1171
1172 /*
1173 * We ignore non-LRU pages for good reasons.
1174 * - PG_locked is only well defined for LRU pages and a few others
1175 * - to avoid races with __set_page_locked()
1176 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1177 * The check (unnecessarily) ignores LRU pages being isolated and
1178 * walked by the page reclaim code, however that's not a big loss.
1179 */
1180 if (!PageHuge(p)) {
1181 if (!PageLRU(p))
1182 shake_page(p, 0);
1183 if (!PageLRU(p)) {
1184 /*
1185 * shake_page could have turned it free.
1186 */
1187 if (is_free_buddy_page(p)) {
1188 if (flags & MF_COUNT_INCREASED)
1189 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1190 else
1191 action_result(pfn, MF_MSG_BUDDY_2ND,
1192 MF_DELAYED);
1193 return 0;
1194 }
1195 }
1196 }
1197
1198 lock_page(hpage);
1199
1200 /*
1201 * The page could have changed compound pages during the locking.
1202 * If this happens just bail out.
1203 */
1204 if (PageCompound(p) && compound_head(p) != orig_head) {
1205 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1206 res = -EBUSY;
1207 goto out;
1208 }
1209
1210 /*
1211 * We use page flags to determine what action should be taken, but
1212 * the flags can be modified by the error containment action. One
1213 * example is an mlocked page, where PG_mlocked is cleared by
1214 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1215 * correctly, we save a copy of the page flags at this time.
1216 */
1217 page_flags = p->flags;
1218
1219 /*
1220 * unpoison always clear PG_hwpoison inside page lock
1221 */
1222 if (!PageHWPoison(p)) {
1223 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1224 num_poisoned_pages_sub(nr_pages);
1225 unlock_page(hpage);
1226 put_hwpoison_page(hpage);
1227 return 0;
1228 }
1229 if (hwpoison_filter(p)) {
1230 if (TestClearPageHWPoison(p))
1231 num_poisoned_pages_sub(nr_pages);
1232 unlock_page(hpage);
1233 put_hwpoison_page(hpage);
1234 return 0;
1235 }
1236
1237 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1238 goto identify_page_state;
1239
1240 /*
1241 * For error on the tail page, we should set PG_hwpoison
1242 * on the head page to show that the hugepage is hwpoisoned
1243 */
1244 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1245 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1246 unlock_page(hpage);
1247 put_hwpoison_page(hpage);
1248 return 0;
1249 }
1250 /*
1251 * Set PG_hwpoison on all pages in an error hugepage,
1252 * because containment is done in hugepage unit for now.
1253 * Since we have done TestSetPageHWPoison() for the head page with
1254 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1255 */
1256 if (PageHuge(p))
1257 set_page_hwpoison_huge_page(hpage);
1258
1259 /*
1260 * It's very difficult to mess with pages currently under IO
1261 * and in many cases impossible, so we just avoid it here.
1262 */
1263 wait_on_page_writeback(p);
1264
1265 /*
1266 * Now take care of user space mappings.
1267 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1268 *
1269 * When the raw error page is thp tail page, hpage points to the raw
1270 * page after thp split.
1271 */
1272 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1273 != SWAP_SUCCESS) {
1274 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1275 res = -EBUSY;
1276 goto out;
1277 }
1278
1279 /*
1280 * Torn down by someone else?
1281 */
1282 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1283 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1284 res = -EBUSY;
1285 goto out;
1286 }
1287
1288identify_page_state:
1289 res = -EBUSY;
1290 /*
1291 * The first check uses the current page flags which may not have any
1292 * relevant information. The second check with the saved page flagss is
1293 * carried out only if the first check can't determine the page status.
1294 */
1295 for (ps = error_states;; ps++)
1296 if ((p->flags & ps->mask) == ps->res)
1297 break;
1298
1299 page_flags |= (p->flags & (1UL << PG_dirty));
1300
1301 if (!ps->mask)
1302 for (ps = error_states;; ps++)
1303 if ((page_flags & ps->mask) == ps->res)
1304 break;
1305 res = page_action(ps, p, pfn);
1306out:
1307 unlock_page(hpage);
1308 return res;
1309}
1310EXPORT_SYMBOL_GPL(memory_failure);
1311
1312#define MEMORY_FAILURE_FIFO_ORDER 4
1313#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1314
1315struct memory_failure_entry {
1316 unsigned long pfn;
1317 int trapno;
1318 int flags;
1319};
1320
1321struct memory_failure_cpu {
1322 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1323 MEMORY_FAILURE_FIFO_SIZE);
1324 spinlock_t lock;
1325 struct work_struct work;
1326};
1327
1328static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1329
1330/**
1331 * memory_failure_queue - Schedule handling memory failure of a page.
1332 * @pfn: Page Number of the corrupted page
1333 * @trapno: Trap number reported in the signal to user space.
1334 * @flags: Flags for memory failure handling
1335 *
1336 * This function is called by the low level hardware error handler
1337 * when it detects hardware memory corruption of a page. It schedules
1338 * the recovering of error page, including dropping pages, killing
1339 * processes etc.
1340 *
1341 * The function is primarily of use for corruptions that
1342 * happen outside the current execution context (e.g. when
1343 * detected by a background scrubber)
1344 *
1345 * Can run in IRQ context.
1346 */
1347void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1348{
1349 struct memory_failure_cpu *mf_cpu;
1350 unsigned long proc_flags;
1351 struct memory_failure_entry entry = {
1352 .pfn = pfn,
1353 .trapno = trapno,
1354 .flags = flags,
1355 };
1356
1357 mf_cpu = &get_cpu_var(memory_failure_cpu);
1358 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1359 if (kfifo_put(&mf_cpu->fifo, entry))
1360 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1361 else
1362 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1363 pfn);
1364 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1365 put_cpu_var(memory_failure_cpu);
1366}
1367EXPORT_SYMBOL_GPL(memory_failure_queue);
1368
1369static void memory_failure_work_func(struct work_struct *work)
1370{
1371 struct memory_failure_cpu *mf_cpu;
1372 struct memory_failure_entry entry = { 0, };
1373 unsigned long proc_flags;
1374 int gotten;
1375
1376 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1377 for (;;) {
1378 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1379 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1380 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1381 if (!gotten)
1382 break;
1383 if (entry.flags & MF_SOFT_OFFLINE)
1384 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1385 else
1386 memory_failure(entry.pfn, entry.trapno, entry.flags);
1387 }
1388}
1389
1390static int __init memory_failure_init(void)
1391{
1392 struct memory_failure_cpu *mf_cpu;
1393 int cpu;
1394
1395 for_each_possible_cpu(cpu) {
1396 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1397 spin_lock_init(&mf_cpu->lock);
1398 INIT_KFIFO(mf_cpu->fifo);
1399 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1400 }
1401
1402 return 0;
1403}
1404core_initcall(memory_failure_init);
1405
1406/**
1407 * unpoison_memory - Unpoison a previously poisoned page
1408 * @pfn: Page number of the to be unpoisoned page
1409 *
1410 * Software-unpoison a page that has been poisoned by
1411 * memory_failure() earlier.
1412 *
1413 * This is only done on the software-level, so it only works
1414 * for linux injected failures, not real hardware failures
1415 *
1416 * Returns 0 for success, otherwise -errno.
1417 */
1418int unpoison_memory(unsigned long pfn)
1419{
1420 struct page *page;
1421 struct page *p;
1422 int freeit = 0;
1423 unsigned int nr_pages;
1424
1425 if (!pfn_valid(pfn))
1426 return -ENXIO;
1427
1428 p = pfn_to_page(pfn);
1429 page = compound_head(p);
1430
1431 if (!PageHWPoison(p)) {
1432 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1433 return 0;
1434 }
1435
1436 if (page_count(page) > 1) {
1437 pr_info("MCE: Someone grabs the hwpoison page %#lx\n", pfn);
1438 return 0;
1439 }
1440
1441 if (page_mapped(page)) {
1442 pr_info("MCE: Someone maps the hwpoison page %#lx\n", pfn);
1443 return 0;
1444 }
1445
1446 if (page_mapping(page)) {
1447 pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1448 pfn);
1449 return 0;
1450 }
1451
1452 /*
1453 * unpoison_memory() can encounter thp only when the thp is being
1454 * worked by memory_failure() and the page lock is not held yet.
1455 * In such case, we yield to memory_failure() and make unpoison fail.
1456 */
1457 if (!PageHuge(page) && PageTransHuge(page)) {
1458 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1459 return 0;
1460 }
1461
1462 nr_pages = 1 << compound_order(page);
1463
1464 if (!get_hwpoison_page(p)) {
1465 /*
1466 * Since HWPoisoned hugepage should have non-zero refcount,
1467 * race between memory failure and unpoison seems to happen.
1468 * In such case unpoison fails and memory failure runs
1469 * to the end.
1470 */
1471 if (PageHuge(page)) {
1472 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1473 return 0;
1474 }
1475 if (TestClearPageHWPoison(p))
1476 num_poisoned_pages_dec();
1477 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1478 return 0;
1479 }
1480
1481 lock_page(page);
1482 /*
1483 * This test is racy because PG_hwpoison is set outside of page lock.
1484 * That's acceptable because that won't trigger kernel panic. Instead,
1485 * the PG_hwpoison page will be caught and isolated on the entrance to
1486 * the free buddy page pool.
1487 */
1488 if (TestClearPageHWPoison(page)) {
1489 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1490 num_poisoned_pages_sub(nr_pages);
1491 freeit = 1;
1492 if (PageHuge(page))
1493 clear_page_hwpoison_huge_page(page);
1494 }
1495 unlock_page(page);
1496
1497 put_hwpoison_page(page);
1498 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1499 put_hwpoison_page(page);
1500
1501 return 0;
1502}
1503EXPORT_SYMBOL(unpoison_memory);
1504
1505static struct page *new_page(struct page *p, unsigned long private, int **x)
1506{
1507 int nid = page_to_nid(p);
1508 if (PageHuge(p))
1509 return alloc_huge_page_node(page_hstate(compound_head(p)),
1510 nid);
1511 else
1512 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1513}
1514
1515/*
1516 * Safely get reference count of an arbitrary page.
1517 * Returns 0 for a free page, -EIO for a zero refcount page
1518 * that is not free, and 1 for any other page type.
1519 * For 1 the page is returned with increased page count, otherwise not.
1520 */
1521static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1522{
1523 int ret;
1524
1525 if (flags & MF_COUNT_INCREASED)
1526 return 1;
1527
1528 /*
1529 * When the target page is a free hugepage, just remove it
1530 * from free hugepage list.
1531 */
1532 if (!get_hwpoison_page(p)) {
1533 if (PageHuge(p)) {
1534 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1535 ret = 0;
1536 } else if (is_free_buddy_page(p)) {
1537 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1538 ret = 0;
1539 } else {
1540 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1541 __func__, pfn, p->flags);
1542 ret = -EIO;
1543 }
1544 } else {
1545 /* Not a free page */
1546 ret = 1;
1547 }
1548 return ret;
1549}
1550
1551static int get_any_page(struct page *page, unsigned long pfn, int flags)
1552{
1553 int ret = __get_any_page(page, pfn, flags);
1554
1555 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1556 /*
1557 * Try to free it.
1558 */
1559 put_hwpoison_page(page);
1560 shake_page(page, 1);
1561
1562 /*
1563 * Did it turn free?
1564 */
1565 ret = __get_any_page(page, pfn, 0);
1566 if (!PageLRU(page)) {
1567 /* Drop page reference which is from __get_any_page() */
1568 put_hwpoison_page(page);
1569 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1570 pfn, page->flags);
1571 return -EIO;
1572 }
1573 }
1574 return ret;
1575}
1576
1577static int soft_offline_huge_page(struct page *page, int flags)
1578{
1579 int ret;
1580 unsigned long pfn = page_to_pfn(page);
1581 struct page *hpage = compound_head(page);
1582 LIST_HEAD(pagelist);
1583
1584 /*
1585 * This double-check of PageHWPoison is to avoid the race with
1586 * memory_failure(). See also comment in __soft_offline_page().
1587 */
1588 lock_page(hpage);
1589 if (PageHWPoison(hpage)) {
1590 unlock_page(hpage);
1591 put_hwpoison_page(hpage);
1592 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1593 return -EBUSY;
1594 }
1595 unlock_page(hpage);
1596
1597 ret = isolate_huge_page(hpage, &pagelist);
1598 /*
1599 * get_any_page() and isolate_huge_page() takes a refcount each,
1600 * so need to drop one here.
1601 */
1602 put_hwpoison_page(hpage);
1603 if (!ret) {
1604 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1605 return -EBUSY;
1606 }
1607
1608 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1609 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1610 if (ret) {
1611 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1612 pfn, ret, page->flags);
1613 /*
1614 * We know that soft_offline_huge_page() tries to migrate
1615 * only one hugepage pointed to by hpage, so we need not
1616 * run through the pagelist here.
1617 */
1618 putback_active_hugepage(hpage);
1619 if (ret > 0)
1620 ret = -EIO;
1621 } else {
1622 /* overcommit hugetlb page will be freed to buddy */
1623 if (PageHuge(page)) {
1624 set_page_hwpoison_huge_page(hpage);
1625 dequeue_hwpoisoned_huge_page(hpage);
1626 num_poisoned_pages_add(1 << compound_order(hpage));
1627 } else {
1628 SetPageHWPoison(page);
1629 num_poisoned_pages_inc();
1630 }
1631 }
1632 return ret;
1633}
1634
1635static int __soft_offline_page(struct page *page, int flags)
1636{
1637 int ret;
1638 unsigned long pfn = page_to_pfn(page);
1639
1640 /*
1641 * Check PageHWPoison again inside page lock because PageHWPoison
1642 * is set by memory_failure() outside page lock. Note that
1643 * memory_failure() also double-checks PageHWPoison inside page lock,
1644 * so there's no race between soft_offline_page() and memory_failure().
1645 */
1646 lock_page(page);
1647 wait_on_page_writeback(page);
1648 if (PageHWPoison(page)) {
1649 unlock_page(page);
1650 put_hwpoison_page(page);
1651 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1652 return -EBUSY;
1653 }
1654 /*
1655 * Try to invalidate first. This should work for
1656 * non dirty unmapped page cache pages.
1657 */
1658 ret = invalidate_inode_page(page);
1659 unlock_page(page);
1660 /*
1661 * RED-PEN would be better to keep it isolated here, but we
1662 * would need to fix isolation locking first.
1663 */
1664 if (ret == 1) {
1665 put_hwpoison_page(page);
1666 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1667 SetPageHWPoison(page);
1668 num_poisoned_pages_inc();
1669 return 0;
1670 }
1671
1672 /*
1673 * Simple invalidation didn't work.
1674 * Try to migrate to a new page instead. migrate.c
1675 * handles a large number of cases for us.
1676 */
1677 ret = isolate_lru_page(page);
1678 /*
1679 * Drop page reference which is came from get_any_page()
1680 * successful isolate_lru_page() already took another one.
1681 */
1682 put_hwpoison_page(page);
1683 if (!ret) {
1684 LIST_HEAD(pagelist);
1685 inc_zone_page_state(page, NR_ISOLATED_ANON +
1686 page_is_file_cache(page));
1687 list_add(&page->lru, &pagelist);
1688 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1689 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1690 if (ret) {
1691 if (!list_empty(&pagelist)) {
1692 list_del(&page->lru);
1693 dec_zone_page_state(page, NR_ISOLATED_ANON +
1694 page_is_file_cache(page));
1695 putback_lru_page(page);
1696 }
1697
1698 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1699 pfn, ret, page->flags);
1700 if (ret > 0)
1701 ret = -EIO;
1702 }
1703 } else {
1704 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1705 pfn, ret, page_count(page), page->flags);
1706 }
1707 return ret;
1708}
1709
1710/**
1711 * soft_offline_page - Soft offline a page.
1712 * @page: page to offline
1713 * @flags: flags. Same as memory_failure().
1714 *
1715 * Returns 0 on success, otherwise negated errno.
1716 *
1717 * Soft offline a page, by migration or invalidation,
1718 * without killing anything. This is for the case when
1719 * a page is not corrupted yet (so it's still valid to access),
1720 * but has had a number of corrected errors and is better taken
1721 * out.
1722 *
1723 * The actual policy on when to do that is maintained by
1724 * user space.
1725 *
1726 * This should never impact any application or cause data loss,
1727 * however it might take some time.
1728 *
1729 * This is not a 100% solution for all memory, but tries to be
1730 * ``good enough'' for the majority of memory.
1731 */
1732int soft_offline_page(struct page *page, int flags)
1733{
1734 int ret;
1735 unsigned long pfn = page_to_pfn(page);
1736 struct page *hpage = compound_head(page);
1737
1738 if (PageHWPoison(page)) {
1739 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1740 if (flags & MF_COUNT_INCREASED)
1741 put_hwpoison_page(page);
1742 return -EBUSY;
1743 }
1744 if (!PageHuge(page) && PageTransHuge(hpage)) {
1745 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1746 pr_info("soft offline: %#lx: failed to split THP\n",
1747 pfn);
1748 if (flags & MF_COUNT_INCREASED)
1749 put_hwpoison_page(page);
1750 return -EBUSY;
1751 }
1752 }
1753
1754 get_online_mems();
1755
1756 ret = get_any_page(page, pfn, flags);
1757 put_online_mems();
1758 if (ret > 0) { /* for in-use pages */
1759 if (PageHuge(page))
1760 ret = soft_offline_huge_page(page, flags);
1761 else
1762 ret = __soft_offline_page(page, flags);
1763 } else if (ret == 0) { /* for free pages */
1764 if (PageHuge(page)) {
1765 set_page_hwpoison_huge_page(hpage);
1766 if (!dequeue_hwpoisoned_huge_page(hpage))
1767 num_poisoned_pages_add(1 << compound_order(hpage));
1768 } else {
1769 if (!TestSetPageHWPoison(page))
1770 num_poisoned_pages_inc();
1771 }
1772 }
1773 return ret;
1774}