]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/memory-failure.c
mm, memcg: Try charging a page before setting page up to date
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched.h>
44#include <linux/ksm.h>
45#include <linux/rmap.h>
46#include <linux/export.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
53#include <linux/slab.h>
54#include <linux/swapops.h>
55#include <linux/hugetlb.h>
56#include <linux/memory_hotplug.h>
57#include <linux/mm_inline.h>
58#include <linux/kfifo.h>
59#include "internal.h"
60
61int sysctl_memory_failure_early_kill __read_mostly = 0;
62
63int sysctl_memory_failure_recovery __read_mostly = 1;
64
65atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66
67#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68
69u32 hwpoison_filter_enable = 0;
70u32 hwpoison_filter_dev_major = ~0U;
71u32 hwpoison_filter_dev_minor = ~0U;
72u64 hwpoison_filter_flags_mask;
73u64 hwpoison_filter_flags_value;
74EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79
80static int hwpoison_filter_dev(struct page *p)
81{
82 struct address_space *mapping;
83 dev_t dev;
84
85 if (hwpoison_filter_dev_major == ~0U &&
86 hwpoison_filter_dev_minor == ~0U)
87 return 0;
88
89 /*
90 * page_mapping() does not accept slab pages.
91 */
92 if (PageSlab(p))
93 return -EINVAL;
94
95 mapping = page_mapping(p);
96 if (mapping == NULL || mapping->host == NULL)
97 return -EINVAL;
98
99 dev = mapping->host->i_sb->s_dev;
100 if (hwpoison_filter_dev_major != ~0U &&
101 hwpoison_filter_dev_major != MAJOR(dev))
102 return -EINVAL;
103 if (hwpoison_filter_dev_minor != ~0U &&
104 hwpoison_filter_dev_minor != MINOR(dev))
105 return -EINVAL;
106
107 return 0;
108}
109
110static int hwpoison_filter_flags(struct page *p)
111{
112 if (!hwpoison_filter_flags_mask)
113 return 0;
114
115 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
116 hwpoison_filter_flags_value)
117 return 0;
118 else
119 return -EINVAL;
120}
121
122/*
123 * This allows stress tests to limit test scope to a collection of tasks
124 * by putting them under some memcg. This prevents killing unrelated/important
125 * processes such as /sbin/init. Note that the target task may share clean
126 * pages with init (eg. libc text), which is harmless. If the target task
127 * share _dirty_ pages with another task B, the test scheme must make sure B
128 * is also included in the memcg. At last, due to race conditions this filter
129 * can only guarantee that the page either belongs to the memcg tasks, or is
130 * a freed page.
131 */
132#ifdef CONFIG_MEMCG_SWAP
133u64 hwpoison_filter_memcg;
134EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
135static int hwpoison_filter_task(struct page *p)
136{
137 struct mem_cgroup *mem;
138 struct cgroup_subsys_state *css;
139 unsigned long ino;
140
141 if (!hwpoison_filter_memcg)
142 return 0;
143
144 mem = try_get_mem_cgroup_from_page(p);
145 if (!mem)
146 return -EINVAL;
147
148 css = mem_cgroup_css(mem);
149 ino = cgroup_ino(css->cgroup);
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
161int hwpoison_filter(struct page *p)
162{
163 if (!hwpoison_filter_enable)
164 return 0;
165
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
175 return 0;
176}
177#else
178int hwpoison_filter(struct page *p)
179{
180 return 0;
181}
182#endif
183
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186/*
187 * Send all the processes who have the page mapped a signal.
188 * ``action optional'' if they are not immediately affected by the error
189 * ``action required'' if error happened in current execution context
190 */
191static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
192 unsigned long pfn, struct page *page, int flags)
193{
194 struct siginfo si;
195 int ret;
196
197 printk(KERN_ERR
198 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
199 pfn, t->comm, t->pid);
200 si.si_signo = SIGBUS;
201 si.si_errno = 0;
202 si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205#endif
206 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207
208 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
209 si.si_code = BUS_MCEERR_AR;
210 ret = force_sig_info(SIGBUS, &si, current);
211 } else {
212 /*
213 * Don't use force here, it's convenient if the signal
214 * can be temporarily blocked.
215 * This could cause a loop when the user sets SIGBUS
216 * to SIG_IGN, but hopefully no one will do that?
217 */
218 si.si_code = BUS_MCEERR_AO;
219 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
220 }
221 if (ret < 0)
222 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
223 t->comm, t->pid, ret);
224 return ret;
225}
226
227/*
228 * When a unknown page type is encountered drain as many buffers as possible
229 * in the hope to turn the page into a LRU or free page, which we can handle.
230 */
231void shake_page(struct page *p, int access)
232{
233 if (!PageSlab(p)) {
234 lru_add_drain_all();
235 if (PageLRU(p))
236 return;
237 drain_all_pages(page_zone(p));
238 if (PageLRU(p) || is_free_buddy_page(p))
239 return;
240 }
241
242 /*
243 * Only call shrink_node_slabs here (which would also shrink
244 * other caches) if access is not potentially fatal.
245 */
246 if (access)
247 drop_slab_node(page_to_nid(p));
248}
249EXPORT_SYMBOL_GPL(shake_page);
250
251/*
252 * Kill all processes that have a poisoned page mapped and then isolate
253 * the page.
254 *
255 * General strategy:
256 * Find all processes having the page mapped and kill them.
257 * But we keep a page reference around so that the page is not
258 * actually freed yet.
259 * Then stash the page away
260 *
261 * There's no convenient way to get back to mapped processes
262 * from the VMAs. So do a brute-force search over all
263 * running processes.
264 *
265 * Remember that machine checks are not common (or rather
266 * if they are common you have other problems), so this shouldn't
267 * be a performance issue.
268 *
269 * Also there are some races possible while we get from the
270 * error detection to actually handle it.
271 */
272
273struct to_kill {
274 struct list_head nd;
275 struct task_struct *tsk;
276 unsigned long addr;
277 char addr_valid;
278};
279
280/*
281 * Failure handling: if we can't find or can't kill a process there's
282 * not much we can do. We just print a message and ignore otherwise.
283 */
284
285/*
286 * Schedule a process for later kill.
287 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
288 * TBD would GFP_NOIO be enough?
289 */
290static void add_to_kill(struct task_struct *tsk, struct page *p,
291 struct vm_area_struct *vma,
292 struct list_head *to_kill,
293 struct to_kill **tkc)
294{
295 struct to_kill *tk;
296
297 if (*tkc) {
298 tk = *tkc;
299 *tkc = NULL;
300 } else {
301 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
302 if (!tk) {
303 printk(KERN_ERR
304 "MCE: Out of memory while machine check handling\n");
305 return;
306 }
307 }
308 tk->addr = page_address_in_vma(p, vma);
309 tk->addr_valid = 1;
310
311 /*
312 * In theory we don't have to kill when the page was
313 * munmaped. But it could be also a mremap. Since that's
314 * likely very rare kill anyways just out of paranoia, but use
315 * a SIGKILL because the error is not contained anymore.
316 */
317 if (tk->addr == -EFAULT) {
318 pr_info("MCE: Unable to find user space address %lx in %s\n",
319 page_to_pfn(p), tsk->comm);
320 tk->addr_valid = 0;
321 }
322 get_task_struct(tsk);
323 tk->tsk = tsk;
324 list_add_tail(&tk->nd, to_kill);
325}
326
327/*
328 * Kill the processes that have been collected earlier.
329 *
330 * Only do anything when DOIT is set, otherwise just free the list
331 * (this is used for clean pages which do not need killing)
332 * Also when FAIL is set do a force kill because something went
333 * wrong earlier.
334 */
335static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
336 int fail, struct page *page, unsigned long pfn,
337 int flags)
338{
339 struct to_kill *tk, *next;
340
341 list_for_each_entry_safe (tk, next, to_kill, nd) {
342 if (forcekill) {
343 /*
344 * In case something went wrong with munmapping
345 * make sure the process doesn't catch the
346 * signal and then access the memory. Just kill it.
347 */
348 if (fail || tk->addr_valid == 0) {
349 printk(KERN_ERR
350 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 force_sig(SIGKILL, tk->tsk);
353 }
354
355 /*
356 * In theory the process could have mapped
357 * something else on the address in-between. We could
358 * check for that, but we need to tell the
359 * process anyways.
360 */
361 else if (kill_proc(tk->tsk, tk->addr, trapno,
362 pfn, page, flags) < 0)
363 printk(KERN_ERR
364 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
365 pfn, tk->tsk->comm, tk->tsk->pid);
366 }
367 put_task_struct(tk->tsk);
368 kfree(tk);
369 }
370}
371
372/*
373 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
374 * on behalf of the thread group. Return task_struct of the (first found)
375 * dedicated thread if found, and return NULL otherwise.
376 *
377 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
378 * have to call rcu_read_lock/unlock() in this function.
379 */
380static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
381{
382 struct task_struct *t;
383
384 for_each_thread(tsk, t)
385 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
386 return t;
387 return NULL;
388}
389
390/*
391 * Determine whether a given process is "early kill" process which expects
392 * to be signaled when some page under the process is hwpoisoned.
393 * Return task_struct of the dedicated thread (main thread unless explicitly
394 * specified) if the process is "early kill," and otherwise returns NULL.
395 */
396static struct task_struct *task_early_kill(struct task_struct *tsk,
397 int force_early)
398{
399 struct task_struct *t;
400 if (!tsk->mm)
401 return NULL;
402 if (force_early)
403 return tsk;
404 t = find_early_kill_thread(tsk);
405 if (t)
406 return t;
407 if (sysctl_memory_failure_early_kill)
408 return tsk;
409 return NULL;
410}
411
412/*
413 * Collect processes when the error hit an anonymous page.
414 */
415static void collect_procs_anon(struct page *page, struct list_head *to_kill,
416 struct to_kill **tkc, int force_early)
417{
418 struct vm_area_struct *vma;
419 struct task_struct *tsk;
420 struct anon_vma *av;
421 pgoff_t pgoff;
422
423 av = page_lock_anon_vma_read(page);
424 if (av == NULL) /* Not actually mapped anymore */
425 return;
426
427 pgoff = page_to_pgoff(page);
428 read_lock(&tasklist_lock);
429 for_each_process (tsk) {
430 struct anon_vma_chain *vmac;
431 struct task_struct *t = task_early_kill(tsk, force_early);
432
433 if (!t)
434 continue;
435 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
436 pgoff, pgoff) {
437 vma = vmac->vma;
438 if (!page_mapped_in_vma(page, vma))
439 continue;
440 if (vma->vm_mm == t->mm)
441 add_to_kill(t, page, vma, to_kill, tkc);
442 }
443 }
444 read_unlock(&tasklist_lock);
445 page_unlock_anon_vma_read(av);
446}
447
448/*
449 * Collect processes when the error hit a file mapped page.
450 */
451static void collect_procs_file(struct page *page, struct list_head *to_kill,
452 struct to_kill **tkc, int force_early)
453{
454 struct vm_area_struct *vma;
455 struct task_struct *tsk;
456 struct address_space *mapping = page->mapping;
457
458 i_mmap_lock_read(mapping);
459 read_lock(&tasklist_lock);
460 for_each_process(tsk) {
461 pgoff_t pgoff = page_to_pgoff(page);
462 struct task_struct *t = task_early_kill(tsk, force_early);
463
464 if (!t)
465 continue;
466 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
467 pgoff) {
468 /*
469 * Send early kill signal to tasks where a vma covers
470 * the page but the corrupted page is not necessarily
471 * mapped it in its pte.
472 * Assume applications who requested early kill want
473 * to be informed of all such data corruptions.
474 */
475 if (vma->vm_mm == t->mm)
476 add_to_kill(t, page, vma, to_kill, tkc);
477 }
478 }
479 read_unlock(&tasklist_lock);
480 i_mmap_unlock_read(mapping);
481}
482
483/*
484 * Collect the processes who have the corrupted page mapped to kill.
485 * This is done in two steps for locking reasons.
486 * First preallocate one tokill structure outside the spin locks,
487 * so that we can kill at least one process reasonably reliable.
488 */
489static void collect_procs(struct page *page, struct list_head *tokill,
490 int force_early)
491{
492 struct to_kill *tk;
493
494 if (!page->mapping)
495 return;
496
497 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
498 if (!tk)
499 return;
500 if (PageAnon(page))
501 collect_procs_anon(page, tokill, &tk, force_early);
502 else
503 collect_procs_file(page, tokill, &tk, force_early);
504 kfree(tk);
505}
506
507/*
508 * Error handlers for various types of pages.
509 */
510
511enum outcome {
512 IGNORED, /* Error: cannot be handled */
513 FAILED, /* Error: handling failed */
514 DELAYED, /* Will be handled later */
515 RECOVERED, /* Successfully recovered */
516};
517
518static const char *action_name[] = {
519 [IGNORED] = "Ignored",
520 [FAILED] = "Failed",
521 [DELAYED] = "Delayed",
522 [RECOVERED] = "Recovered",
523};
524
525enum action_page_type {
526 MSG_KERNEL,
527 MSG_KERNEL_HIGH_ORDER,
528 MSG_SLAB,
529 MSG_DIFFERENT_COMPOUND,
530 MSG_POISONED_HUGE,
531 MSG_HUGE,
532 MSG_FREE_HUGE,
533 MSG_UNMAP_FAILED,
534 MSG_DIRTY_SWAPCACHE,
535 MSG_CLEAN_SWAPCACHE,
536 MSG_DIRTY_MLOCKED_LRU,
537 MSG_CLEAN_MLOCKED_LRU,
538 MSG_DIRTY_UNEVICTABLE_LRU,
539 MSG_CLEAN_UNEVICTABLE_LRU,
540 MSG_DIRTY_LRU,
541 MSG_CLEAN_LRU,
542 MSG_TRUNCATED_LRU,
543 MSG_BUDDY,
544 MSG_BUDDY_2ND,
545 MSG_UNKNOWN,
546};
547
548static const char * const action_page_types[] = {
549 [MSG_KERNEL] = "reserved kernel page",
550 [MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
551 [MSG_SLAB] = "kernel slab page",
552 [MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
553 [MSG_POISONED_HUGE] = "huge page already hardware poisoned",
554 [MSG_HUGE] = "huge page",
555 [MSG_FREE_HUGE] = "free huge page",
556 [MSG_UNMAP_FAILED] = "unmapping failed page",
557 [MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
558 [MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
559 [MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
560 [MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
561 [MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
562 [MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
563 [MSG_DIRTY_LRU] = "dirty LRU page",
564 [MSG_CLEAN_LRU] = "clean LRU page",
565 [MSG_TRUNCATED_LRU] = "already truncated LRU page",
566 [MSG_BUDDY] = "free buddy page",
567 [MSG_BUDDY_2ND] = "free buddy page (2nd try)",
568 [MSG_UNKNOWN] = "unknown page",
569};
570
571/*
572 * XXX: It is possible that a page is isolated from LRU cache,
573 * and then kept in swap cache or failed to remove from page cache.
574 * The page count will stop it from being freed by unpoison.
575 * Stress tests should be aware of this memory leak problem.
576 */
577static int delete_from_lru_cache(struct page *p)
578{
579 if (!isolate_lru_page(p)) {
580 /*
581 * Clear sensible page flags, so that the buddy system won't
582 * complain when the page is unpoison-and-freed.
583 */
584 ClearPageActive(p);
585 ClearPageUnevictable(p);
586 /*
587 * drop the page count elevated by isolate_lru_page()
588 */
589 page_cache_release(p);
590 return 0;
591 }
592 return -EIO;
593}
594
595/*
596 * Error hit kernel page.
597 * Do nothing, try to be lucky and not touch this instead. For a few cases we
598 * could be more sophisticated.
599 */
600static int me_kernel(struct page *p, unsigned long pfn)
601{
602 return IGNORED;
603}
604
605/*
606 * Page in unknown state. Do nothing.
607 */
608static int me_unknown(struct page *p, unsigned long pfn)
609{
610 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
611 return FAILED;
612}
613
614/*
615 * Clean (or cleaned) page cache page.
616 */
617static int me_pagecache_clean(struct page *p, unsigned long pfn)
618{
619 int err;
620 int ret = FAILED;
621 struct address_space *mapping;
622
623 delete_from_lru_cache(p);
624
625 /*
626 * For anonymous pages we're done the only reference left
627 * should be the one m_f() holds.
628 */
629 if (PageAnon(p))
630 return RECOVERED;
631
632 /*
633 * Now truncate the page in the page cache. This is really
634 * more like a "temporary hole punch"
635 * Don't do this for block devices when someone else
636 * has a reference, because it could be file system metadata
637 * and that's not safe to truncate.
638 */
639 mapping = page_mapping(p);
640 if (!mapping) {
641 /*
642 * Page has been teared down in the meanwhile
643 */
644 return FAILED;
645 }
646
647 /*
648 * Truncation is a bit tricky. Enable it per file system for now.
649 *
650 * Open: to take i_mutex or not for this? Right now we don't.
651 */
652 if (mapping->a_ops->error_remove_page) {
653 err = mapping->a_ops->error_remove_page(mapping, p);
654 if (err != 0) {
655 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
656 pfn, err);
657 } else if (page_has_private(p) &&
658 !try_to_release_page(p, GFP_NOIO)) {
659 pr_info("MCE %#lx: failed to release buffers\n", pfn);
660 } else {
661 ret = RECOVERED;
662 }
663 } else {
664 /*
665 * If the file system doesn't support it just invalidate
666 * This fails on dirty or anything with private pages
667 */
668 if (invalidate_inode_page(p))
669 ret = RECOVERED;
670 else
671 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
672 pfn);
673 }
674 return ret;
675}
676
677/*
678 * Dirty pagecache page
679 * Issues: when the error hit a hole page the error is not properly
680 * propagated.
681 */
682static int me_pagecache_dirty(struct page *p, unsigned long pfn)
683{
684 struct address_space *mapping = page_mapping(p);
685
686 SetPageError(p);
687 /* TBD: print more information about the file. */
688 if (mapping) {
689 /*
690 * IO error will be reported by write(), fsync(), etc.
691 * who check the mapping.
692 * This way the application knows that something went
693 * wrong with its dirty file data.
694 *
695 * There's one open issue:
696 *
697 * The EIO will be only reported on the next IO
698 * operation and then cleared through the IO map.
699 * Normally Linux has two mechanisms to pass IO error
700 * first through the AS_EIO flag in the address space
701 * and then through the PageError flag in the page.
702 * Since we drop pages on memory failure handling the
703 * only mechanism open to use is through AS_AIO.
704 *
705 * This has the disadvantage that it gets cleared on
706 * the first operation that returns an error, while
707 * the PageError bit is more sticky and only cleared
708 * when the page is reread or dropped. If an
709 * application assumes it will always get error on
710 * fsync, but does other operations on the fd before
711 * and the page is dropped between then the error
712 * will not be properly reported.
713 *
714 * This can already happen even without hwpoisoned
715 * pages: first on metadata IO errors (which only
716 * report through AS_EIO) or when the page is dropped
717 * at the wrong time.
718 *
719 * So right now we assume that the application DTRT on
720 * the first EIO, but we're not worse than other parts
721 * of the kernel.
722 */
723 mapping_set_error(mapping, EIO);
724 }
725
726 return me_pagecache_clean(p, pfn);
727}
728
729/*
730 * Clean and dirty swap cache.
731 *
732 * Dirty swap cache page is tricky to handle. The page could live both in page
733 * cache and swap cache(ie. page is freshly swapped in). So it could be
734 * referenced concurrently by 2 types of PTEs:
735 * normal PTEs and swap PTEs. We try to handle them consistently by calling
736 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
737 * and then
738 * - clear dirty bit to prevent IO
739 * - remove from LRU
740 * - but keep in the swap cache, so that when we return to it on
741 * a later page fault, we know the application is accessing
742 * corrupted data and shall be killed (we installed simple
743 * interception code in do_swap_page to catch it).
744 *
745 * Clean swap cache pages can be directly isolated. A later page fault will
746 * bring in the known good data from disk.
747 */
748static int me_swapcache_dirty(struct page *p, unsigned long pfn)
749{
750 ClearPageDirty(p);
751 /* Trigger EIO in shmem: */
752 ClearPageUptodate(p);
753
754 if (!delete_from_lru_cache(p))
755 return DELAYED;
756 else
757 return FAILED;
758}
759
760static int me_swapcache_clean(struct page *p, unsigned long pfn)
761{
762 delete_from_swap_cache(p);
763
764 if (!delete_from_lru_cache(p))
765 return RECOVERED;
766 else
767 return FAILED;
768}
769
770/*
771 * Huge pages. Needs work.
772 * Issues:
773 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
774 * To narrow down kill region to one page, we need to break up pmd.
775 */
776static int me_huge_page(struct page *p, unsigned long pfn)
777{
778 int res = 0;
779 struct page *hpage = compound_head(p);
780
781 if (!PageHuge(hpage))
782 return MF_DELAYED;
783
784 /*
785 * We can safely recover from error on free or reserved (i.e.
786 * not in-use) hugepage by dequeuing it from freelist.
787 * To check whether a hugepage is in-use or not, we can't use
788 * page->lru because it can be used in other hugepage operations,
789 * such as __unmap_hugepage_range() and gather_surplus_pages().
790 * So instead we use page_mapping() and PageAnon().
791 * We assume that this function is called with page lock held,
792 * so there is no race between isolation and mapping/unmapping.
793 */
794 if (!(page_mapping(hpage) || PageAnon(hpage))) {
795 res = dequeue_hwpoisoned_huge_page(hpage);
796 if (!res)
797 return RECOVERED;
798 }
799 return DELAYED;
800}
801
802/*
803 * Various page states we can handle.
804 *
805 * A page state is defined by its current page->flags bits.
806 * The table matches them in order and calls the right handler.
807 *
808 * This is quite tricky because we can access page at any time
809 * in its live cycle, so all accesses have to be extremely careful.
810 *
811 * This is not complete. More states could be added.
812 * For any missing state don't attempt recovery.
813 */
814
815#define dirty (1UL << PG_dirty)
816#define sc (1UL << PG_swapcache)
817#define unevict (1UL << PG_unevictable)
818#define mlock (1UL << PG_mlocked)
819#define writeback (1UL << PG_writeback)
820#define lru (1UL << PG_lru)
821#define swapbacked (1UL << PG_swapbacked)
822#define head (1UL << PG_head)
823#define tail (1UL << PG_tail)
824#define compound (1UL << PG_compound)
825#define slab (1UL << PG_slab)
826#define reserved (1UL << PG_reserved)
827
828static struct page_state {
829 unsigned long mask;
830 unsigned long res;
831 enum action_page_type type;
832 int (*action)(struct page *p, unsigned long pfn);
833} error_states[] = {
834 { reserved, reserved, MSG_KERNEL, me_kernel },
835 /*
836 * free pages are specially detected outside this table:
837 * PG_buddy pages only make a small fraction of all free pages.
838 */
839
840 /*
841 * Could in theory check if slab page is free or if we can drop
842 * currently unused objects without touching them. But just
843 * treat it as standard kernel for now.
844 */
845 { slab, slab, MSG_SLAB, me_kernel },
846
847#ifdef CONFIG_PAGEFLAGS_EXTENDED
848 { head, head, MSG_HUGE, me_huge_page },
849 { tail, tail, MSG_HUGE, me_huge_page },
850#else
851 { compound, compound, MSG_HUGE, me_huge_page },
852#endif
853
854 { sc|dirty, sc|dirty, MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MSG_UNKNOWN, me_unknown },
870};
871
872#undef dirty
873#undef sc
874#undef unevict
875#undef mlock
876#undef writeback
877#undef lru
878#undef swapbacked
879#undef head
880#undef tail
881#undef compound
882#undef slab
883#undef reserved
884
885/*
886 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
887 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
888 */
889static void action_result(unsigned long pfn, enum action_page_type type, int result)
890{
891 pr_err("MCE %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893}
894
895static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897{
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == DELAYED)
905 count--;
906 if (count != 0) {
907 printk(KERN_ERR
908 "MCE %#lx: %s still referenced by %d users\n",
909 pfn, action_page_types[ps->type], count);
910 result = FAILED;
911 }
912 action_result(pfn, ps->type, result);
913
914 /* Could do more checks here if page looks ok */
915 /*
916 * Could adjust zone counters here to correct for the missing page.
917 */
918
919 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
920}
921
922/**
923 * get_hwpoison_page() - Get refcount for memory error handling:
924 * @page: raw error page (hit by memory error)
925 *
926 * Return: return 0 if failed to grab the refcount, otherwise true (some
927 * non-zero value.)
928 */
929int get_hwpoison_page(struct page *page)
930{
931 struct page *head = compound_head(page);
932
933 if (PageHuge(head))
934 return get_page_unless_zero(head);
935
936 /*
937 * Thp tail page has special refcounting rule (refcount of tail pages
938 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
939 * directly for tail pages.
940 */
941 if (PageTransHuge(head)) {
942 if (get_page_unless_zero(head)) {
943 if (PageTail(page))
944 get_page(page);
945 return 1;
946 } else {
947 return 0;
948 }
949 }
950
951 return get_page_unless_zero(page);
952}
953EXPORT_SYMBOL_GPL(get_hwpoison_page);
954
955/*
956 * Do all that is necessary to remove user space mappings. Unmap
957 * the pages and send SIGBUS to the processes if the data was dirty.
958 */
959static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
960 int trapno, int flags, struct page **hpagep)
961{
962 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
963 struct address_space *mapping;
964 LIST_HEAD(tokill);
965 int ret;
966 int kill = 1, forcekill;
967 struct page *hpage = *hpagep;
968
969 /*
970 * Here we are interested only in user-mapped pages, so skip any
971 * other types of pages.
972 */
973 if (PageReserved(p) || PageSlab(p))
974 return SWAP_SUCCESS;
975 if (!(PageLRU(hpage) || PageHuge(p)))
976 return SWAP_SUCCESS;
977
978 /*
979 * This check implies we don't kill processes if their pages
980 * are in the swap cache early. Those are always late kills.
981 */
982 if (!page_mapped(hpage))
983 return SWAP_SUCCESS;
984
985 if (PageKsm(p)) {
986 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
987 return SWAP_FAIL;
988 }
989
990 if (PageSwapCache(p)) {
991 printk(KERN_ERR
992 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
993 ttu |= TTU_IGNORE_HWPOISON;
994 }
995
996 /*
997 * Propagate the dirty bit from PTEs to struct page first, because we
998 * need this to decide if we should kill or just drop the page.
999 * XXX: the dirty test could be racy: set_page_dirty() may not always
1000 * be called inside page lock (it's recommended but not enforced).
1001 */
1002 mapping = page_mapping(hpage);
1003 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1004 mapping_cap_writeback_dirty(mapping)) {
1005 if (page_mkclean(hpage)) {
1006 SetPageDirty(hpage);
1007 } else {
1008 kill = 0;
1009 ttu |= TTU_IGNORE_HWPOISON;
1010 printk(KERN_INFO
1011 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
1012 pfn);
1013 }
1014 }
1015
1016 /*
1017 * First collect all the processes that have the page
1018 * mapped in dirty form. This has to be done before try_to_unmap,
1019 * because ttu takes the rmap data structures down.
1020 *
1021 * Error handling: We ignore errors here because
1022 * there's nothing that can be done.
1023 */
1024 if (kill)
1025 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1026
1027 ret = try_to_unmap(hpage, ttu);
1028 if (ret != SWAP_SUCCESS)
1029 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1030 pfn, page_mapcount(hpage));
1031
1032 /*
1033 * Now that the dirty bit has been propagated to the
1034 * struct page and all unmaps done we can decide if
1035 * killing is needed or not. Only kill when the page
1036 * was dirty or the process is not restartable,
1037 * otherwise the tokill list is merely
1038 * freed. When there was a problem unmapping earlier
1039 * use a more force-full uncatchable kill to prevent
1040 * any accesses to the poisoned memory.
1041 */
1042 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1043 kill_procs(&tokill, forcekill, trapno,
1044 ret != SWAP_SUCCESS, p, pfn, flags);
1045
1046 return ret;
1047}
1048
1049static void set_page_hwpoison_huge_page(struct page *hpage)
1050{
1051 int i;
1052 int nr_pages = 1 << compound_order(hpage);
1053 for (i = 0; i < nr_pages; i++)
1054 SetPageHWPoison(hpage + i);
1055}
1056
1057static void clear_page_hwpoison_huge_page(struct page *hpage)
1058{
1059 int i;
1060 int nr_pages = 1 << compound_order(hpage);
1061 for (i = 0; i < nr_pages; i++)
1062 ClearPageHWPoison(hpage + i);
1063}
1064
1065/**
1066 * memory_failure - Handle memory failure of a page.
1067 * @pfn: Page Number of the corrupted page
1068 * @trapno: Trap number reported in the signal to user space.
1069 * @flags: fine tune action taken
1070 *
1071 * This function is called by the low level machine check code
1072 * of an architecture when it detects hardware memory corruption
1073 * of a page. It tries its best to recover, which includes
1074 * dropping pages, killing processes etc.
1075 *
1076 * The function is primarily of use for corruptions that
1077 * happen outside the current execution context (e.g. when
1078 * detected by a background scrubber)
1079 *
1080 * Must run in process context (e.g. a work queue) with interrupts
1081 * enabled and no spinlocks hold.
1082 */
1083int memory_failure(unsigned long pfn, int trapno, int flags)
1084{
1085 struct page_state *ps;
1086 struct page *p;
1087 struct page *hpage;
1088 struct page *orig_head;
1089 int res;
1090 unsigned int nr_pages;
1091 unsigned long page_flags;
1092
1093 if (!sysctl_memory_failure_recovery)
1094 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1095
1096 if (!pfn_valid(pfn)) {
1097 printk(KERN_ERR
1098 "MCE %#lx: memory outside kernel control\n",
1099 pfn);
1100 return -ENXIO;
1101 }
1102
1103 p = pfn_to_page(pfn);
1104 orig_head = hpage = compound_head(p);
1105 if (TestSetPageHWPoison(p)) {
1106 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1107 return 0;
1108 }
1109
1110 /*
1111 * Currently errors on hugetlbfs pages are measured in hugepage units,
1112 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1113 * transparent hugepages, they are supposed to be split and error
1114 * measurement is done in normal page units. So nr_pages should be one
1115 * in this case.
1116 */
1117 if (PageHuge(p))
1118 nr_pages = 1 << compound_order(hpage);
1119 else /* normal page or thp */
1120 nr_pages = 1;
1121 atomic_long_add(nr_pages, &num_poisoned_pages);
1122
1123 /*
1124 * We need/can do nothing about count=0 pages.
1125 * 1) it's a free page, and therefore in safe hand:
1126 * prep_new_page() will be the gate keeper.
1127 * 2) it's a free hugepage, which is also safe:
1128 * an affected hugepage will be dequeued from hugepage freelist,
1129 * so there's no concern about reusing it ever after.
1130 * 3) it's part of a non-compound high order page.
1131 * Implies some kernel user: cannot stop them from
1132 * R/W the page; let's pray that the page has been
1133 * used and will be freed some time later.
1134 * In fact it's dangerous to directly bump up page count from 0,
1135 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1136 */
1137 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1138 if (is_free_buddy_page(p)) {
1139 action_result(pfn, MSG_BUDDY, DELAYED);
1140 return 0;
1141 } else if (PageHuge(hpage)) {
1142 /*
1143 * Check "filter hit" and "race with other subpage."
1144 */
1145 lock_page(hpage);
1146 if (PageHWPoison(hpage)) {
1147 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1148 || (p != hpage && TestSetPageHWPoison(hpage))) {
1149 atomic_long_sub(nr_pages, &num_poisoned_pages);
1150 unlock_page(hpage);
1151 return 0;
1152 }
1153 }
1154 set_page_hwpoison_huge_page(hpage);
1155 res = dequeue_hwpoisoned_huge_page(hpage);
1156 action_result(pfn, MSG_FREE_HUGE,
1157 res ? IGNORED : DELAYED);
1158 unlock_page(hpage);
1159 return res;
1160 } else {
1161 action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1162 return -EBUSY;
1163 }
1164 }
1165
1166 if (!PageHuge(p) && PageTransHuge(hpage)) {
1167 if (!PageAnon(hpage)) {
1168 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1169 if (TestClearPageHWPoison(p))
1170 atomic_long_sub(nr_pages, &num_poisoned_pages);
1171 put_page(p);
1172 if (p != hpage)
1173 put_page(hpage);
1174 return -EBUSY;
1175 }
1176 if (unlikely(split_huge_page(hpage))) {
1177 pr_err("MCE: %#lx: thp split failed\n", pfn);
1178 if (TestClearPageHWPoison(p))
1179 atomic_long_sub(nr_pages, &num_poisoned_pages);
1180 put_page(p);
1181 if (p != hpage)
1182 put_page(hpage);
1183 return -EBUSY;
1184 }
1185 VM_BUG_ON_PAGE(!page_count(p), p);
1186 hpage = compound_head(p);
1187 }
1188
1189 /*
1190 * We ignore non-LRU pages for good reasons.
1191 * - PG_locked is only well defined for LRU pages and a few others
1192 * - to avoid races with __set_page_locked()
1193 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1194 * The check (unnecessarily) ignores LRU pages being isolated and
1195 * walked by the page reclaim code, however that's not a big loss.
1196 */
1197 if (!PageHuge(p)) {
1198 if (!PageLRU(p))
1199 shake_page(p, 0);
1200 if (!PageLRU(p)) {
1201 /*
1202 * shake_page could have turned it free.
1203 */
1204 if (is_free_buddy_page(p)) {
1205 if (flags & MF_COUNT_INCREASED)
1206 action_result(pfn, MSG_BUDDY, DELAYED);
1207 else
1208 action_result(pfn, MSG_BUDDY_2ND,
1209 DELAYED);
1210 return 0;
1211 }
1212 }
1213 }
1214
1215 lock_page(hpage);
1216
1217 /*
1218 * The page could have changed compound pages during the locking.
1219 * If this happens just bail out.
1220 */
1221 if (PageCompound(p) && compound_head(p) != orig_head) {
1222 action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1223 res = -EBUSY;
1224 goto out;
1225 }
1226
1227 /*
1228 * We use page flags to determine what action should be taken, but
1229 * the flags can be modified by the error containment action. One
1230 * example is an mlocked page, where PG_mlocked is cleared by
1231 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1232 * correctly, we save a copy of the page flags at this time.
1233 */
1234 page_flags = p->flags;
1235
1236 /*
1237 * unpoison always clear PG_hwpoison inside page lock
1238 */
1239 if (!PageHWPoison(p)) {
1240 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1241 atomic_long_sub(nr_pages, &num_poisoned_pages);
1242 put_page(hpage);
1243 res = 0;
1244 goto out;
1245 }
1246 if (hwpoison_filter(p)) {
1247 if (TestClearPageHWPoison(p))
1248 atomic_long_sub(nr_pages, &num_poisoned_pages);
1249 unlock_page(hpage);
1250 put_page(hpage);
1251 return 0;
1252 }
1253
1254 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1255 goto identify_page_state;
1256
1257 /*
1258 * For error on the tail page, we should set PG_hwpoison
1259 * on the head page to show that the hugepage is hwpoisoned
1260 */
1261 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1262 action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1263 unlock_page(hpage);
1264 put_page(hpage);
1265 return 0;
1266 }
1267 /*
1268 * Set PG_hwpoison on all pages in an error hugepage,
1269 * because containment is done in hugepage unit for now.
1270 * Since we have done TestSetPageHWPoison() for the head page with
1271 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1272 */
1273 if (PageHuge(p))
1274 set_page_hwpoison_huge_page(hpage);
1275
1276 /*
1277 * It's very difficult to mess with pages currently under IO
1278 * and in many cases impossible, so we just avoid it here.
1279 */
1280 wait_on_page_writeback(p);
1281
1282 /*
1283 * Now take care of user space mappings.
1284 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1285 *
1286 * When the raw error page is thp tail page, hpage points to the raw
1287 * page after thp split.
1288 */
1289 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1290 != SWAP_SUCCESS) {
1291 action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
1292 res = -EBUSY;
1293 goto out;
1294 }
1295
1296 /*
1297 * Torn down by someone else?
1298 */
1299 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1300 action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1301 res = -EBUSY;
1302 goto out;
1303 }
1304
1305identify_page_state:
1306 res = -EBUSY;
1307 /*
1308 * The first check uses the current page flags which may not have any
1309 * relevant information. The second check with the saved page flagss is
1310 * carried out only if the first check can't determine the page status.
1311 */
1312 for (ps = error_states;; ps++)
1313 if ((p->flags & ps->mask) == ps->res)
1314 break;
1315
1316 page_flags |= (p->flags & (1UL << PG_dirty));
1317
1318 if (!ps->mask)
1319 for (ps = error_states;; ps++)
1320 if ((page_flags & ps->mask) == ps->res)
1321 break;
1322 res = page_action(ps, p, pfn);
1323out:
1324 unlock_page(hpage);
1325 return res;
1326}
1327EXPORT_SYMBOL_GPL(memory_failure);
1328
1329#define MEMORY_FAILURE_FIFO_ORDER 4
1330#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1331
1332struct memory_failure_entry {
1333 unsigned long pfn;
1334 int trapno;
1335 int flags;
1336};
1337
1338struct memory_failure_cpu {
1339 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1340 MEMORY_FAILURE_FIFO_SIZE);
1341 spinlock_t lock;
1342 struct work_struct work;
1343};
1344
1345static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1346
1347/**
1348 * memory_failure_queue - Schedule handling memory failure of a page.
1349 * @pfn: Page Number of the corrupted page
1350 * @trapno: Trap number reported in the signal to user space.
1351 * @flags: Flags for memory failure handling
1352 *
1353 * This function is called by the low level hardware error handler
1354 * when it detects hardware memory corruption of a page. It schedules
1355 * the recovering of error page, including dropping pages, killing
1356 * processes etc.
1357 *
1358 * The function is primarily of use for corruptions that
1359 * happen outside the current execution context (e.g. when
1360 * detected by a background scrubber)
1361 *
1362 * Can run in IRQ context.
1363 */
1364void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1365{
1366 struct memory_failure_cpu *mf_cpu;
1367 unsigned long proc_flags;
1368 struct memory_failure_entry entry = {
1369 .pfn = pfn,
1370 .trapno = trapno,
1371 .flags = flags,
1372 };
1373
1374 mf_cpu = &get_cpu_var(memory_failure_cpu);
1375 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1376 if (kfifo_put(&mf_cpu->fifo, entry))
1377 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1378 else
1379 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1380 pfn);
1381 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1382 put_cpu_var(memory_failure_cpu);
1383}
1384EXPORT_SYMBOL_GPL(memory_failure_queue);
1385
1386static void memory_failure_work_func(struct work_struct *work)
1387{
1388 struct memory_failure_cpu *mf_cpu;
1389 struct memory_failure_entry entry = { 0, };
1390 unsigned long proc_flags;
1391 int gotten;
1392
1393 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1394 for (;;) {
1395 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1396 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1397 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1398 if (!gotten)
1399 break;
1400 if (entry.flags & MF_SOFT_OFFLINE)
1401 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1402 else
1403 memory_failure(entry.pfn, entry.trapno, entry.flags);
1404 }
1405}
1406
1407static int __init memory_failure_init(void)
1408{
1409 struct memory_failure_cpu *mf_cpu;
1410 int cpu;
1411
1412 for_each_possible_cpu(cpu) {
1413 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1414 spin_lock_init(&mf_cpu->lock);
1415 INIT_KFIFO(mf_cpu->fifo);
1416 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1417 }
1418
1419 return 0;
1420}
1421core_initcall(memory_failure_init);
1422
1423/**
1424 * unpoison_memory - Unpoison a previously poisoned page
1425 * @pfn: Page number of the to be unpoisoned page
1426 *
1427 * Software-unpoison a page that has been poisoned by
1428 * memory_failure() earlier.
1429 *
1430 * This is only done on the software-level, so it only works
1431 * for linux injected failures, not real hardware failures
1432 *
1433 * Returns 0 for success, otherwise -errno.
1434 */
1435int unpoison_memory(unsigned long pfn)
1436{
1437 struct page *page;
1438 struct page *p;
1439 int freeit = 0;
1440 unsigned int nr_pages;
1441
1442 if (!pfn_valid(pfn))
1443 return -ENXIO;
1444
1445 p = pfn_to_page(pfn);
1446 page = compound_head(p);
1447
1448 if (!PageHWPoison(p)) {
1449 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1450 return 0;
1451 }
1452
1453 /*
1454 * unpoison_memory() can encounter thp only when the thp is being
1455 * worked by memory_failure() and the page lock is not held yet.
1456 * In such case, we yield to memory_failure() and make unpoison fail.
1457 */
1458 if (!PageHuge(page) && PageTransHuge(page)) {
1459 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1460 return 0;
1461 }
1462
1463 nr_pages = 1 << compound_order(page);
1464
1465 if (!get_hwpoison_page(p)) {
1466 /*
1467 * Since HWPoisoned hugepage should have non-zero refcount,
1468 * race between memory failure and unpoison seems to happen.
1469 * In such case unpoison fails and memory failure runs
1470 * to the end.
1471 */
1472 if (PageHuge(page)) {
1473 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1474 return 0;
1475 }
1476 if (TestClearPageHWPoison(p))
1477 atomic_long_dec(&num_poisoned_pages);
1478 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1479 return 0;
1480 }
1481
1482 lock_page(page);
1483 /*
1484 * This test is racy because PG_hwpoison is set outside of page lock.
1485 * That's acceptable because that won't trigger kernel panic. Instead,
1486 * the PG_hwpoison page will be caught and isolated on the entrance to
1487 * the free buddy page pool.
1488 */
1489 if (TestClearPageHWPoison(page)) {
1490 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1491 atomic_long_sub(nr_pages, &num_poisoned_pages);
1492 freeit = 1;
1493 if (PageHuge(page))
1494 clear_page_hwpoison_huge_page(page);
1495 }
1496 unlock_page(page);
1497
1498 put_page(page);
1499 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1500 put_page(page);
1501
1502 return 0;
1503}
1504EXPORT_SYMBOL(unpoison_memory);
1505
1506static struct page *new_page(struct page *p, unsigned long private, int **x)
1507{
1508 int nid = page_to_nid(p);
1509 if (PageHuge(p))
1510 return alloc_huge_page_node(page_hstate(compound_head(p)),
1511 nid);
1512 else
1513 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1514}
1515
1516/*
1517 * Safely get reference count of an arbitrary page.
1518 * Returns 0 for a free page, -EIO for a zero refcount page
1519 * that is not free, and 1 for any other page type.
1520 * For 1 the page is returned with increased page count, otherwise not.
1521 */
1522static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1523{
1524 int ret;
1525
1526 if (flags & MF_COUNT_INCREASED)
1527 return 1;
1528
1529 /*
1530 * When the target page is a free hugepage, just remove it
1531 * from free hugepage list.
1532 */
1533 if (!get_hwpoison_page(p)) {
1534 if (PageHuge(p)) {
1535 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1536 ret = 0;
1537 } else if (is_free_buddy_page(p)) {
1538 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1539 ret = 0;
1540 } else {
1541 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1542 __func__, pfn, p->flags);
1543 ret = -EIO;
1544 }
1545 } else {
1546 /* Not a free page */
1547 ret = 1;
1548 }
1549 return ret;
1550}
1551
1552static int get_any_page(struct page *page, unsigned long pfn, int flags)
1553{
1554 int ret = __get_any_page(page, pfn, flags);
1555
1556 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1557 /*
1558 * Try to free it.
1559 */
1560 put_page(page);
1561 shake_page(page, 1);
1562
1563 /*
1564 * Did it turn free?
1565 */
1566 ret = __get_any_page(page, pfn, 0);
1567 if (!PageLRU(page)) {
1568 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1569 pfn, page->flags);
1570 return -EIO;
1571 }
1572 }
1573 return ret;
1574}
1575
1576static int soft_offline_huge_page(struct page *page, int flags)
1577{
1578 int ret;
1579 unsigned long pfn = page_to_pfn(page);
1580 struct page *hpage = compound_head(page);
1581 LIST_HEAD(pagelist);
1582
1583 /*
1584 * This double-check of PageHWPoison is to avoid the race with
1585 * memory_failure(). See also comment in __soft_offline_page().
1586 */
1587 lock_page(hpage);
1588 if (PageHWPoison(hpage)) {
1589 unlock_page(hpage);
1590 put_page(hpage);
1591 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1592 return -EBUSY;
1593 }
1594 unlock_page(hpage);
1595
1596 ret = isolate_huge_page(hpage, &pagelist);
1597 if (ret) {
1598 /*
1599 * get_any_page() and isolate_huge_page() takes a refcount each,
1600 * so need to drop one here.
1601 */
1602 put_page(hpage);
1603 } else {
1604 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1605 return -EBUSY;
1606 }
1607
1608 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1609 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1610 if (ret) {
1611 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1612 pfn, ret, page->flags);
1613 /*
1614 * We know that soft_offline_huge_page() tries to migrate
1615 * only one hugepage pointed to by hpage, so we need not
1616 * run through the pagelist here.
1617 */
1618 putback_active_hugepage(hpage);
1619 if (ret > 0)
1620 ret = -EIO;
1621 } else {
1622 /* overcommit hugetlb page will be freed to buddy */
1623 if (PageHuge(page)) {
1624 set_page_hwpoison_huge_page(hpage);
1625 dequeue_hwpoisoned_huge_page(hpage);
1626 atomic_long_add(1 << compound_order(hpage),
1627 &num_poisoned_pages);
1628 } else {
1629 SetPageHWPoison(page);
1630 atomic_long_inc(&num_poisoned_pages);
1631 }
1632 }
1633 return ret;
1634}
1635
1636static int __soft_offline_page(struct page *page, int flags)
1637{
1638 int ret;
1639 unsigned long pfn = page_to_pfn(page);
1640
1641 /*
1642 * Check PageHWPoison again inside page lock because PageHWPoison
1643 * is set by memory_failure() outside page lock. Note that
1644 * memory_failure() also double-checks PageHWPoison inside page lock,
1645 * so there's no race between soft_offline_page() and memory_failure().
1646 */
1647 lock_page(page);
1648 wait_on_page_writeback(page);
1649 if (PageHWPoison(page)) {
1650 unlock_page(page);
1651 put_page(page);
1652 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1653 return -EBUSY;
1654 }
1655 /*
1656 * Try to invalidate first. This should work for
1657 * non dirty unmapped page cache pages.
1658 */
1659 ret = invalidate_inode_page(page);
1660 unlock_page(page);
1661 /*
1662 * RED-PEN would be better to keep it isolated here, but we
1663 * would need to fix isolation locking first.
1664 */
1665 if (ret == 1) {
1666 put_page(page);
1667 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1668 SetPageHWPoison(page);
1669 atomic_long_inc(&num_poisoned_pages);
1670 return 0;
1671 }
1672
1673 /*
1674 * Simple invalidation didn't work.
1675 * Try to migrate to a new page instead. migrate.c
1676 * handles a large number of cases for us.
1677 */
1678 ret = isolate_lru_page(page);
1679 /*
1680 * Drop page reference which is came from get_any_page()
1681 * successful isolate_lru_page() already took another one.
1682 */
1683 put_page(page);
1684 if (!ret) {
1685 LIST_HEAD(pagelist);
1686 inc_zone_page_state(page, NR_ISOLATED_ANON +
1687 page_is_file_cache(page));
1688 list_add(&page->lru, &pagelist);
1689 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1690 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1691 if (ret) {
1692 if (!list_empty(&pagelist)) {
1693 list_del(&page->lru);
1694 dec_zone_page_state(page, NR_ISOLATED_ANON +
1695 page_is_file_cache(page));
1696 putback_lru_page(page);
1697 }
1698
1699 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1700 pfn, ret, page->flags);
1701 if (ret > 0)
1702 ret = -EIO;
1703 } else {
1704 SetPageHWPoison(page);
1705 atomic_long_inc(&num_poisoned_pages);
1706 }
1707 } else {
1708 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1709 pfn, ret, page_count(page), page->flags);
1710 }
1711 return ret;
1712}
1713
1714/**
1715 * soft_offline_page - Soft offline a page.
1716 * @page: page to offline
1717 * @flags: flags. Same as memory_failure().
1718 *
1719 * Returns 0 on success, otherwise negated errno.
1720 *
1721 * Soft offline a page, by migration or invalidation,
1722 * without killing anything. This is for the case when
1723 * a page is not corrupted yet (so it's still valid to access),
1724 * but has had a number of corrected errors and is better taken
1725 * out.
1726 *
1727 * The actual policy on when to do that is maintained by
1728 * user space.
1729 *
1730 * This should never impact any application or cause data loss,
1731 * however it might take some time.
1732 *
1733 * This is not a 100% solution for all memory, but tries to be
1734 * ``good enough'' for the majority of memory.
1735 */
1736int soft_offline_page(struct page *page, int flags)
1737{
1738 int ret;
1739 unsigned long pfn = page_to_pfn(page);
1740 struct page *hpage = compound_head(page);
1741
1742 if (PageHWPoison(page)) {
1743 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1744 return -EBUSY;
1745 }
1746 if (!PageHuge(page) && PageTransHuge(hpage)) {
1747 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1748 pr_info("soft offline: %#lx: failed to split THP\n",
1749 pfn);
1750 return -EBUSY;
1751 }
1752 }
1753
1754 get_online_mems();
1755
1756 ret = get_any_page(page, pfn, flags);
1757 put_online_mems();
1758 if (ret > 0) { /* for in-use pages */
1759 if (PageHuge(page))
1760 ret = soft_offline_huge_page(page, flags);
1761 else
1762 ret = __soft_offline_page(page, flags);
1763 } else if (ret == 0) { /* for free pages */
1764 if (PageHuge(page)) {
1765 set_page_hwpoison_huge_page(hpage);
1766 if (!dequeue_hwpoisoned_huge_page(hpage))
1767 atomic_long_add(1 << compound_order(hpage),
1768 &num_poisoned_pages);
1769 } else {
1770 if (!TestSetPageHWPoison(page))
1771 atomic_long_inc(&num_poisoned_pages);
1772 }
1773 }
1774 return ret;
1775}