]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/mempolicy.c
mm/mempolicy: remove redundant check in get_nodes
[mirror_ubuntu-hirsute-kernel.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/mm.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/sched/mm.h>
77#include <linux/sched/numa_balancing.h>
78#include <linux/sched/task.h>
79#include <linux/nodemask.h>
80#include <linux/cpuset.h>
81#include <linux/slab.h>
82#include <linux/string.h>
83#include <linux/export.h>
84#include <linux/nsproxy.h>
85#include <linux/interrupt.h>
86#include <linux/init.h>
87#include <linux/compat.h>
88#include <linux/ptrace.h>
89#include <linux/swap.h>
90#include <linux/seq_file.h>
91#include <linux/proc_fs.h>
92#include <linux/migrate.h>
93#include <linux/ksm.h>
94#include <linux/rmap.h>
95#include <linux/security.h>
96#include <linux/syscalls.h>
97#include <linux/ctype.h>
98#include <linux/mm_inline.h>
99#include <linux/mmu_notifier.h>
100#include <linux/printk.h>
101#include <linux/swapops.h>
102
103#include <asm/tlbflush.h>
104#include <linux/uaccess.h>
105
106#include "internal.h"
107
108/* Internal flags */
109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112static struct kmem_cache *policy_cache;
113static struct kmem_cache *sn_cache;
114
115/* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117enum zone_type policy_zone = 0;
118
119/*
120 * run-time system-wide default policy => local allocation
121 */
122static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126};
127
128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130struct mempolicy *get_task_policy(struct task_struct *p)
131{
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147}
148
149static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152} mpol_ops[MPOL_MAX];
153
154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155{
156 return pol->flags & MPOL_MODE_FLAGS;
157}
158
159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161{
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165}
166
167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168{
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173}
174
175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176{
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184}
185
186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187{
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192}
193
194/*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205{
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236}
237
238/*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244{
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284}
285
286/* Slow path of a mpol destructor. */
287void __mpol_put(struct mempolicy *p)
288{
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292}
293
294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295{
296}
297
298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299{
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316}
317
318static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320{
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340}
341
342/*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350{
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358}
359
360/*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368{
369 mpol_rebind_policy(tsk->mempolicy, new);
370}
371
372/*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379{
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386}
387
388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404};
405
406static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414};
415
416/*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424{
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429}
430
431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 unsigned long end, struct mm_walk *walk)
433{
434 int ret = 0;
435 struct page *page;
436 struct queue_pages *qp = walk->private;
437 unsigned long flags;
438
439 if (unlikely(is_pmd_migration_entry(*pmd))) {
440 ret = 1;
441 goto unlock;
442 }
443 page = pmd_page(*pmd);
444 if (is_huge_zero_page(page)) {
445 spin_unlock(ptl);
446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 goto out;
448 }
449 if (!thp_migration_supported()) {
450 get_page(page);
451 spin_unlock(ptl);
452 lock_page(page);
453 ret = split_huge_page(page);
454 unlock_page(page);
455 put_page(page);
456 goto out;
457 }
458 if (!queue_pages_required(page, qp)) {
459 ret = 1;
460 goto unlock;
461 }
462
463 ret = 1;
464 flags = qp->flags;
465 /* go to thp migration */
466 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 migrate_page_add(page, qp->pagelist, flags);
468unlock:
469 spin_unlock(ptl);
470out:
471 return ret;
472}
473
474/*
475 * Scan through pages checking if pages follow certain conditions,
476 * and move them to the pagelist if they do.
477 */
478static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 unsigned long end, struct mm_walk *walk)
480{
481 struct vm_area_struct *vma = walk->vma;
482 struct page *page;
483 struct queue_pages *qp = walk->private;
484 unsigned long flags = qp->flags;
485 int ret;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 ptl = pmd_trans_huge_lock(pmd, vma);
490 if (ptl) {
491 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 if (ret)
493 return 0;
494 }
495
496 if (pmd_trans_unstable(pmd))
497 return 0;
498retry:
499 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 for (; addr != end; pte++, addr += PAGE_SIZE) {
501 if (!pte_present(*pte))
502 continue;
503 page = vm_normal_page(vma, addr, *pte);
504 if (!page)
505 continue;
506 /*
507 * vm_normal_page() filters out zero pages, but there might
508 * still be PageReserved pages to skip, perhaps in a VDSO.
509 */
510 if (PageReserved(page))
511 continue;
512 if (!queue_pages_required(page, qp))
513 continue;
514 if (PageTransCompound(page) && !thp_migration_supported()) {
515 get_page(page);
516 pte_unmap_unlock(pte, ptl);
517 lock_page(page);
518 ret = split_huge_page(page);
519 unlock_page(page);
520 put_page(page);
521 /* Failed to split -- skip. */
522 if (ret) {
523 pte = pte_offset_map_lock(walk->mm, pmd,
524 addr, &ptl);
525 continue;
526 }
527 goto retry;
528 }
529
530 migrate_page_add(page, qp->pagelist, flags);
531 }
532 pte_unmap_unlock(pte - 1, ptl);
533 cond_resched();
534 return 0;
535}
536
537static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 unsigned long addr, unsigned long end,
539 struct mm_walk *walk)
540{
541#ifdef CONFIG_HUGETLB_PAGE
542 struct queue_pages *qp = walk->private;
543 unsigned long flags = qp->flags;
544 struct page *page;
545 spinlock_t *ptl;
546 pte_t entry;
547
548 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 entry = huge_ptep_get(pte);
550 if (!pte_present(entry))
551 goto unlock;
552 page = pte_page(entry);
553 if (!queue_pages_required(page, qp))
554 goto unlock;
555 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 if (flags & (MPOL_MF_MOVE_ALL) ||
557 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 isolate_huge_page(page, qp->pagelist);
559unlock:
560 spin_unlock(ptl);
561#else
562 BUG();
563#endif
564 return 0;
565}
566
567#ifdef CONFIG_NUMA_BALANCING
568/*
569 * This is used to mark a range of virtual addresses to be inaccessible.
570 * These are later cleared by a NUMA hinting fault. Depending on these
571 * faults, pages may be migrated for better NUMA placement.
572 *
573 * This is assuming that NUMA faults are handled using PROT_NONE. If
574 * an architecture makes a different choice, it will need further
575 * changes to the core.
576 */
577unsigned long change_prot_numa(struct vm_area_struct *vma,
578 unsigned long addr, unsigned long end)
579{
580 int nr_updated;
581
582 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 if (nr_updated)
584 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585
586 return nr_updated;
587}
588#else
589static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 unsigned long addr, unsigned long end)
591{
592 return 0;
593}
594#endif /* CONFIG_NUMA_BALANCING */
595
596static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 struct mm_walk *walk)
598{
599 struct vm_area_struct *vma = walk->vma;
600 struct queue_pages *qp = walk->private;
601 unsigned long endvma = vma->vm_end;
602 unsigned long flags = qp->flags;
603
604 if (!vma_migratable(vma))
605 return 1;
606
607 if (endvma > end)
608 endvma = end;
609 if (vma->vm_start > start)
610 start = vma->vm_start;
611
612 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 if (!vma->vm_next && vma->vm_end < end)
614 return -EFAULT;
615 if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 return -EFAULT;
617 }
618
619 qp->prev = vma;
620
621 if (flags & MPOL_MF_LAZY) {
622 /* Similar to task_numa_work, skip inaccessible VMAs */
623 if (!is_vm_hugetlb_page(vma) &&
624 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 !(vma->vm_flags & VM_MIXEDMAP))
626 change_prot_numa(vma, start, endvma);
627 return 1;
628 }
629
630 /* queue pages from current vma */
631 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 return 0;
633 return 1;
634}
635
636/*
637 * Walk through page tables and collect pages to be migrated.
638 *
639 * If pages found in a given range are on a set of nodes (determined by
640 * @nodes and @flags,) it's isolated and queued to the pagelist which is
641 * passed via @private.)
642 */
643static int
644queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 nodemask_t *nodes, unsigned long flags,
646 struct list_head *pagelist)
647{
648 struct queue_pages qp = {
649 .pagelist = pagelist,
650 .flags = flags,
651 .nmask = nodes,
652 .prev = NULL,
653 };
654 struct mm_walk queue_pages_walk = {
655 .hugetlb_entry = queue_pages_hugetlb,
656 .pmd_entry = queue_pages_pte_range,
657 .test_walk = queue_pages_test_walk,
658 .mm = mm,
659 .private = &qp,
660 };
661
662 return walk_page_range(start, end, &queue_pages_walk);
663}
664
665/*
666 * Apply policy to a single VMA
667 * This must be called with the mmap_sem held for writing.
668 */
669static int vma_replace_policy(struct vm_area_struct *vma,
670 struct mempolicy *pol)
671{
672 int err;
673 struct mempolicy *old;
674 struct mempolicy *new;
675
676 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 vma->vm_ops, vma->vm_file,
679 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680
681 new = mpol_dup(pol);
682 if (IS_ERR(new))
683 return PTR_ERR(new);
684
685 if (vma->vm_ops && vma->vm_ops->set_policy) {
686 err = vma->vm_ops->set_policy(vma, new);
687 if (err)
688 goto err_out;
689 }
690
691 old = vma->vm_policy;
692 vma->vm_policy = new; /* protected by mmap_sem */
693 mpol_put(old);
694
695 return 0;
696 err_out:
697 mpol_put(new);
698 return err;
699}
700
701/* Step 2: apply policy to a range and do splits. */
702static int mbind_range(struct mm_struct *mm, unsigned long start,
703 unsigned long end, struct mempolicy *new_pol)
704{
705 struct vm_area_struct *next;
706 struct vm_area_struct *prev;
707 struct vm_area_struct *vma;
708 int err = 0;
709 pgoff_t pgoff;
710 unsigned long vmstart;
711 unsigned long vmend;
712
713 vma = find_vma(mm, start);
714 if (!vma || vma->vm_start > start)
715 return -EFAULT;
716
717 prev = vma->vm_prev;
718 if (start > vma->vm_start)
719 prev = vma;
720
721 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 next = vma->vm_next;
723 vmstart = max(start, vma->vm_start);
724 vmend = min(end, vma->vm_end);
725
726 if (mpol_equal(vma_policy(vma), new_pol))
727 continue;
728
729 pgoff = vma->vm_pgoff +
730 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 vma->anon_vma, vma->vm_file, pgoff,
733 new_pol, vma->vm_userfaultfd_ctx);
734 if (prev) {
735 vma = prev;
736 next = vma->vm_next;
737 if (mpol_equal(vma_policy(vma), new_pol))
738 continue;
739 /* vma_merge() joined vma && vma->next, case 8 */
740 goto replace;
741 }
742 if (vma->vm_start != vmstart) {
743 err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 if (err)
745 goto out;
746 }
747 if (vma->vm_end != vmend) {
748 err = split_vma(vma->vm_mm, vma, vmend, 0);
749 if (err)
750 goto out;
751 }
752 replace:
753 err = vma_replace_policy(vma, new_pol);
754 if (err)
755 goto out;
756 }
757
758 out:
759 return err;
760}
761
762/* Set the process memory policy */
763static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 nodemask_t *nodes)
765{
766 struct mempolicy *new, *old;
767 NODEMASK_SCRATCH(scratch);
768 int ret;
769
770 if (!scratch)
771 return -ENOMEM;
772
773 new = mpol_new(mode, flags, nodes);
774 if (IS_ERR(new)) {
775 ret = PTR_ERR(new);
776 goto out;
777 }
778
779 task_lock(current);
780 ret = mpol_set_nodemask(new, nodes, scratch);
781 if (ret) {
782 task_unlock(current);
783 mpol_put(new);
784 goto out;
785 }
786 old = current->mempolicy;
787 current->mempolicy = new;
788 if (new && new->mode == MPOL_INTERLEAVE)
789 current->il_prev = MAX_NUMNODES-1;
790 task_unlock(current);
791 mpol_put(old);
792 ret = 0;
793out:
794 NODEMASK_SCRATCH_FREE(scratch);
795 return ret;
796}
797
798/*
799 * Return nodemask for policy for get_mempolicy() query
800 *
801 * Called with task's alloc_lock held
802 */
803static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804{
805 nodes_clear(*nodes);
806 if (p == &default_policy)
807 return;
808
809 switch (p->mode) {
810 case MPOL_BIND:
811 /* Fall through */
812 case MPOL_INTERLEAVE:
813 *nodes = p->v.nodes;
814 break;
815 case MPOL_PREFERRED:
816 if (!(p->flags & MPOL_F_LOCAL))
817 node_set(p->v.preferred_node, *nodes);
818 /* else return empty node mask for local allocation */
819 break;
820 default:
821 BUG();
822 }
823}
824
825static int lookup_node(unsigned long addr)
826{
827 struct page *p;
828 int err;
829
830 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 if (err >= 0) {
832 err = page_to_nid(p);
833 put_page(p);
834 }
835 return err;
836}
837
838/* Retrieve NUMA policy */
839static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 unsigned long addr, unsigned long flags)
841{
842 int err;
843 struct mm_struct *mm = current->mm;
844 struct vm_area_struct *vma = NULL;
845 struct mempolicy *pol = current->mempolicy;
846
847 if (flags &
848 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 return -EINVAL;
850
851 if (flags & MPOL_F_MEMS_ALLOWED) {
852 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 return -EINVAL;
854 *policy = 0; /* just so it's initialized */
855 task_lock(current);
856 *nmask = cpuset_current_mems_allowed;
857 task_unlock(current);
858 return 0;
859 }
860
861 if (flags & MPOL_F_ADDR) {
862 /*
863 * Do NOT fall back to task policy if the
864 * vma/shared policy at addr is NULL. We
865 * want to return MPOL_DEFAULT in this case.
866 */
867 down_read(&mm->mmap_sem);
868 vma = find_vma_intersection(mm, addr, addr+1);
869 if (!vma) {
870 up_read(&mm->mmap_sem);
871 return -EFAULT;
872 }
873 if (vma->vm_ops && vma->vm_ops->get_policy)
874 pol = vma->vm_ops->get_policy(vma, addr);
875 else
876 pol = vma->vm_policy;
877 } else if (addr)
878 return -EINVAL;
879
880 if (!pol)
881 pol = &default_policy; /* indicates default behavior */
882
883 if (flags & MPOL_F_NODE) {
884 if (flags & MPOL_F_ADDR) {
885 err = lookup_node(addr);
886 if (err < 0)
887 goto out;
888 *policy = err;
889 } else if (pol == current->mempolicy &&
890 pol->mode == MPOL_INTERLEAVE) {
891 *policy = next_node_in(current->il_prev, pol->v.nodes);
892 } else {
893 err = -EINVAL;
894 goto out;
895 }
896 } else {
897 *policy = pol == &default_policy ? MPOL_DEFAULT :
898 pol->mode;
899 /*
900 * Internal mempolicy flags must be masked off before exposing
901 * the policy to userspace.
902 */
903 *policy |= (pol->flags & MPOL_MODE_FLAGS);
904 }
905
906 err = 0;
907 if (nmask) {
908 if (mpol_store_user_nodemask(pol)) {
909 *nmask = pol->w.user_nodemask;
910 } else {
911 task_lock(current);
912 get_policy_nodemask(pol, nmask);
913 task_unlock(current);
914 }
915 }
916
917 out:
918 mpol_cond_put(pol);
919 if (vma)
920 up_read(&current->mm->mmap_sem);
921 return err;
922}
923
924#ifdef CONFIG_MIGRATION
925/*
926 * page migration, thp tail pages can be passed.
927 */
928static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 unsigned long flags)
930{
931 struct page *head = compound_head(page);
932 /*
933 * Avoid migrating a page that is shared with others.
934 */
935 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 if (!isolate_lru_page(head)) {
937 list_add_tail(&head->lru, pagelist);
938 mod_node_page_state(page_pgdat(head),
939 NR_ISOLATED_ANON + page_is_file_cache(head),
940 hpage_nr_pages(head));
941 }
942 }
943}
944
945static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946{
947 if (PageHuge(page))
948 return alloc_huge_page_node(page_hstate(compound_head(page)),
949 node);
950 else if (thp_migration_supported() && PageTransHuge(page)) {
951 struct page *thp;
952
953 thp = alloc_pages_node(node,
954 (GFP_TRANSHUGE | __GFP_THISNODE),
955 HPAGE_PMD_ORDER);
956 if (!thp)
957 return NULL;
958 prep_transhuge_page(thp);
959 return thp;
960 } else
961 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 __GFP_THISNODE, 0);
963}
964
965/*
966 * Migrate pages from one node to a target node.
967 * Returns error or the number of pages not migrated.
968 */
969static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 int flags)
971{
972 nodemask_t nmask;
973 LIST_HEAD(pagelist);
974 int err = 0;
975
976 nodes_clear(nmask);
977 node_set(source, nmask);
978
979 /*
980 * This does not "check" the range but isolates all pages that
981 * need migration. Between passing in the full user address
982 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 */
984 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987
988 if (!list_empty(&pagelist)) {
989 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 MIGRATE_SYNC, MR_SYSCALL);
991 if (err)
992 putback_movable_pages(&pagelist);
993 }
994
995 return err;
996}
997
998/*
999 * Move pages between the two nodesets so as to preserve the physical
1000 * layout as much as possible.
1001 *
1002 * Returns the number of page that could not be moved.
1003 */
1004int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 const nodemask_t *to, int flags)
1006{
1007 int busy = 0;
1008 int err;
1009 nodemask_t tmp;
1010
1011 err = migrate_prep();
1012 if (err)
1013 return err;
1014
1015 down_read(&mm->mmap_sem);
1016
1017 /*
1018 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1020 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 * The pair of nodemasks 'to' and 'from' define the map.
1022 *
1023 * If no pair of bits is found that way, fallback to picking some
1024 * pair of 'source' and 'dest' bits that are not the same. If the
1025 * 'source' and 'dest' bits are the same, this represents a node
1026 * that will be migrating to itself, so no pages need move.
1027 *
1028 * If no bits are left in 'tmp', or if all remaining bits left
1029 * in 'tmp' correspond to the same bit in 'to', return false
1030 * (nothing left to migrate).
1031 *
1032 * This lets us pick a pair of nodes to migrate between, such that
1033 * if possible the dest node is not already occupied by some other
1034 * source node, minimizing the risk of overloading the memory on a
1035 * node that would happen if we migrated incoming memory to a node
1036 * before migrating outgoing memory source that same node.
1037 *
1038 * A single scan of tmp is sufficient. As we go, we remember the
1039 * most recent <s, d> pair that moved (s != d). If we find a pair
1040 * that not only moved, but what's better, moved to an empty slot
1041 * (d is not set in tmp), then we break out then, with that pair.
1042 * Otherwise when we finish scanning from_tmp, we at least have the
1043 * most recent <s, d> pair that moved. If we get all the way through
1044 * the scan of tmp without finding any node that moved, much less
1045 * moved to an empty node, then there is nothing left worth migrating.
1046 */
1047
1048 tmp = *from;
1049 while (!nodes_empty(tmp)) {
1050 int s,d;
1051 int source = NUMA_NO_NODE;
1052 int dest = 0;
1053
1054 for_each_node_mask(s, tmp) {
1055
1056 /*
1057 * do_migrate_pages() tries to maintain the relative
1058 * node relationship of the pages established between
1059 * threads and memory areas.
1060 *
1061 * However if the number of source nodes is not equal to
1062 * the number of destination nodes we can not preserve
1063 * this node relative relationship. In that case, skip
1064 * copying memory from a node that is in the destination
1065 * mask.
1066 *
1067 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 */
1070
1071 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 (node_isset(s, *to)))
1073 continue;
1074
1075 d = node_remap(s, *from, *to);
1076 if (s == d)
1077 continue;
1078
1079 source = s; /* Node moved. Memorize */
1080 dest = d;
1081
1082 /* dest not in remaining from nodes? */
1083 if (!node_isset(dest, tmp))
1084 break;
1085 }
1086 if (source == NUMA_NO_NODE)
1087 break;
1088
1089 node_clear(source, tmp);
1090 err = migrate_to_node(mm, source, dest, flags);
1091 if (err > 0)
1092 busy += err;
1093 if (err < 0)
1094 break;
1095 }
1096 up_read(&mm->mmap_sem);
1097 if (err < 0)
1098 return err;
1099 return busy;
1100
1101}
1102
1103/*
1104 * Allocate a new page for page migration based on vma policy.
1105 * Start by assuming the page is mapped by the same vma as contains @start.
1106 * Search forward from there, if not. N.B., this assumes that the
1107 * list of pages handed to migrate_pages()--which is how we get here--
1108 * is in virtual address order.
1109 */
1110static struct page *new_page(struct page *page, unsigned long start, int **x)
1111{
1112 struct vm_area_struct *vma;
1113 unsigned long uninitialized_var(address);
1114
1115 vma = find_vma(current->mm, start);
1116 while (vma) {
1117 address = page_address_in_vma(page, vma);
1118 if (address != -EFAULT)
1119 break;
1120 vma = vma->vm_next;
1121 }
1122
1123 if (PageHuge(page)) {
1124 BUG_ON(!vma);
1125 return alloc_huge_page_noerr(vma, address, 1);
1126 } else if (thp_migration_supported() && PageTransHuge(page)) {
1127 struct page *thp;
1128
1129 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 HPAGE_PMD_ORDER);
1131 if (!thp)
1132 return NULL;
1133 prep_transhuge_page(thp);
1134 return thp;
1135 }
1136 /*
1137 * if !vma, alloc_page_vma() will use task or system default policy
1138 */
1139 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 vma, address);
1141}
1142#else
1143
1144static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 unsigned long flags)
1146{
1147}
1148
1149int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 const nodemask_t *to, int flags)
1151{
1152 return -ENOSYS;
1153}
1154
1155static struct page *new_page(struct page *page, unsigned long start, int **x)
1156{
1157 return NULL;
1158}
1159#endif
1160
1161static long do_mbind(unsigned long start, unsigned long len,
1162 unsigned short mode, unsigned short mode_flags,
1163 nodemask_t *nmask, unsigned long flags)
1164{
1165 struct mm_struct *mm = current->mm;
1166 struct mempolicy *new;
1167 unsigned long end;
1168 int err;
1169 LIST_HEAD(pagelist);
1170
1171 if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 return -EINVAL;
1173 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 return -EPERM;
1175
1176 if (start & ~PAGE_MASK)
1177 return -EINVAL;
1178
1179 if (mode == MPOL_DEFAULT)
1180 flags &= ~MPOL_MF_STRICT;
1181
1182 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 end = start + len;
1184
1185 if (end < start)
1186 return -EINVAL;
1187 if (end == start)
1188 return 0;
1189
1190 new = mpol_new(mode, mode_flags, nmask);
1191 if (IS_ERR(new))
1192 return PTR_ERR(new);
1193
1194 if (flags & MPOL_MF_LAZY)
1195 new->flags |= MPOL_F_MOF;
1196
1197 /*
1198 * If we are using the default policy then operation
1199 * on discontinuous address spaces is okay after all
1200 */
1201 if (!new)
1202 flags |= MPOL_MF_DISCONTIG_OK;
1203
1204 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 start, start + len, mode, mode_flags,
1206 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207
1208 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209
1210 err = migrate_prep();
1211 if (err)
1212 goto mpol_out;
1213 }
1214 {
1215 NODEMASK_SCRATCH(scratch);
1216 if (scratch) {
1217 down_write(&mm->mmap_sem);
1218 task_lock(current);
1219 err = mpol_set_nodemask(new, nmask, scratch);
1220 task_unlock(current);
1221 if (err)
1222 up_write(&mm->mmap_sem);
1223 } else
1224 err = -ENOMEM;
1225 NODEMASK_SCRATCH_FREE(scratch);
1226 }
1227 if (err)
1228 goto mpol_out;
1229
1230 err = queue_pages_range(mm, start, end, nmask,
1231 flags | MPOL_MF_INVERT, &pagelist);
1232 if (!err)
1233 err = mbind_range(mm, start, end, new);
1234
1235 if (!err) {
1236 int nr_failed = 0;
1237
1238 if (!list_empty(&pagelist)) {
1239 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 if (nr_failed)
1243 putback_movable_pages(&pagelist);
1244 }
1245
1246 if (nr_failed && (flags & MPOL_MF_STRICT))
1247 err = -EIO;
1248 } else
1249 putback_movable_pages(&pagelist);
1250
1251 up_write(&mm->mmap_sem);
1252 mpol_out:
1253 mpol_put(new);
1254 return err;
1255}
1256
1257/*
1258 * User space interface with variable sized bitmaps for nodelists.
1259 */
1260
1261/* Copy a node mask from user space. */
1262static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 unsigned long maxnode)
1264{
1265 unsigned long k;
1266 unsigned long nlongs;
1267 unsigned long endmask;
1268
1269 --maxnode;
1270 nodes_clear(*nodes);
1271 if (maxnode == 0 || !nmask)
1272 return 0;
1273 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1274 return -EINVAL;
1275
1276 nlongs = BITS_TO_LONGS(maxnode);
1277 if ((maxnode % BITS_PER_LONG) == 0)
1278 endmask = ~0UL;
1279 else
1280 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1281
1282 /* When the user specified more nodes than supported just check
1283 if the non supported part is all zero. */
1284 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1285 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1286 unsigned long t;
1287 if (get_user(t, nmask + k))
1288 return -EFAULT;
1289 if (k == nlongs - 1) {
1290 if (t & endmask)
1291 return -EINVAL;
1292 } else if (t)
1293 return -EINVAL;
1294 }
1295 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1296 endmask = ~0UL;
1297 }
1298
1299 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1300 return -EFAULT;
1301 nodes_addr(*nodes)[nlongs-1] &= endmask;
1302 return 0;
1303}
1304
1305/* Copy a kernel node mask to user space */
1306static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1307 nodemask_t *nodes)
1308{
1309 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1310 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1311
1312 if (copy > nbytes) {
1313 if (copy > PAGE_SIZE)
1314 return -EINVAL;
1315 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1316 return -EFAULT;
1317 copy = nbytes;
1318 }
1319 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1320}
1321
1322SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1323 unsigned long, mode, const unsigned long __user *, nmask,
1324 unsigned long, maxnode, unsigned, flags)
1325{
1326 nodemask_t nodes;
1327 int err;
1328 unsigned short mode_flags;
1329
1330 mode_flags = mode & MPOL_MODE_FLAGS;
1331 mode &= ~MPOL_MODE_FLAGS;
1332 if (mode >= MPOL_MAX)
1333 return -EINVAL;
1334 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1335 (mode_flags & MPOL_F_RELATIVE_NODES))
1336 return -EINVAL;
1337 err = get_nodes(&nodes, nmask, maxnode);
1338 if (err)
1339 return err;
1340 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1341}
1342
1343/* Set the process memory policy */
1344SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1345 unsigned long, maxnode)
1346{
1347 int err;
1348 nodemask_t nodes;
1349 unsigned short flags;
1350
1351 flags = mode & MPOL_MODE_FLAGS;
1352 mode &= ~MPOL_MODE_FLAGS;
1353 if ((unsigned int)mode >= MPOL_MAX)
1354 return -EINVAL;
1355 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356 return -EINVAL;
1357 err = get_nodes(&nodes, nmask, maxnode);
1358 if (err)
1359 return err;
1360 return do_set_mempolicy(mode, flags, &nodes);
1361}
1362
1363SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1364 const unsigned long __user *, old_nodes,
1365 const unsigned long __user *, new_nodes)
1366{
1367 struct mm_struct *mm = NULL;
1368 struct task_struct *task;
1369 nodemask_t task_nodes;
1370 int err;
1371 nodemask_t *old;
1372 nodemask_t *new;
1373 NODEMASK_SCRATCH(scratch);
1374
1375 if (!scratch)
1376 return -ENOMEM;
1377
1378 old = &scratch->mask1;
1379 new = &scratch->mask2;
1380
1381 err = get_nodes(old, old_nodes, maxnode);
1382 if (err)
1383 goto out;
1384
1385 err = get_nodes(new, new_nodes, maxnode);
1386 if (err)
1387 goto out;
1388
1389 /* Find the mm_struct */
1390 rcu_read_lock();
1391 task = pid ? find_task_by_vpid(pid) : current;
1392 if (!task) {
1393 rcu_read_unlock();
1394 err = -ESRCH;
1395 goto out;
1396 }
1397 get_task_struct(task);
1398
1399 err = -EINVAL;
1400
1401 /*
1402 * Check if this process has the right to modify the specified process.
1403 * Use the regular "ptrace_may_access()" checks.
1404 */
1405 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1406 rcu_read_unlock();
1407 err = -EPERM;
1408 goto out_put;
1409 }
1410 rcu_read_unlock();
1411
1412 task_nodes = cpuset_mems_allowed(task);
1413 /* Is the user allowed to access the target nodes? */
1414 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1415 err = -EPERM;
1416 goto out_put;
1417 }
1418
1419 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1420 err = -EINVAL;
1421 goto out_put;
1422 }
1423
1424 err = security_task_movememory(task);
1425 if (err)
1426 goto out_put;
1427
1428 mm = get_task_mm(task);
1429 put_task_struct(task);
1430
1431 if (!mm) {
1432 err = -EINVAL;
1433 goto out;
1434 }
1435
1436 err = do_migrate_pages(mm, old, new,
1437 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1438
1439 mmput(mm);
1440out:
1441 NODEMASK_SCRATCH_FREE(scratch);
1442
1443 return err;
1444
1445out_put:
1446 put_task_struct(task);
1447 goto out;
1448
1449}
1450
1451
1452/* Retrieve NUMA policy */
1453SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1454 unsigned long __user *, nmask, unsigned long, maxnode,
1455 unsigned long, addr, unsigned long, flags)
1456{
1457 int err;
1458 int uninitialized_var(pval);
1459 nodemask_t nodes;
1460
1461 if (nmask != NULL && maxnode < MAX_NUMNODES)
1462 return -EINVAL;
1463
1464 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1465
1466 if (err)
1467 return err;
1468
1469 if (policy && put_user(pval, policy))
1470 return -EFAULT;
1471
1472 if (nmask)
1473 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1474
1475 return err;
1476}
1477
1478#ifdef CONFIG_COMPAT
1479
1480COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1481 compat_ulong_t __user *, nmask,
1482 compat_ulong_t, maxnode,
1483 compat_ulong_t, addr, compat_ulong_t, flags)
1484{
1485 long err;
1486 unsigned long __user *nm = NULL;
1487 unsigned long nr_bits, alloc_size;
1488 DECLARE_BITMAP(bm, MAX_NUMNODES);
1489
1490 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1491 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1492
1493 if (nmask)
1494 nm = compat_alloc_user_space(alloc_size);
1495
1496 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1497
1498 if (!err && nmask) {
1499 unsigned long copy_size;
1500 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1501 err = copy_from_user(bm, nm, copy_size);
1502 /* ensure entire bitmap is zeroed */
1503 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1504 err |= compat_put_bitmap(nmask, bm, nr_bits);
1505 }
1506
1507 return err;
1508}
1509
1510COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1511 compat_ulong_t, maxnode)
1512{
1513 unsigned long __user *nm = NULL;
1514 unsigned long nr_bits, alloc_size;
1515 DECLARE_BITMAP(bm, MAX_NUMNODES);
1516
1517 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1518 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1519
1520 if (nmask) {
1521 if (compat_get_bitmap(bm, nmask, nr_bits))
1522 return -EFAULT;
1523 nm = compat_alloc_user_space(alloc_size);
1524 if (copy_to_user(nm, bm, alloc_size))
1525 return -EFAULT;
1526 }
1527
1528 return sys_set_mempolicy(mode, nm, nr_bits+1);
1529}
1530
1531COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1532 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1533 compat_ulong_t, maxnode, compat_ulong_t, flags)
1534{
1535 unsigned long __user *nm = NULL;
1536 unsigned long nr_bits, alloc_size;
1537 nodemask_t bm;
1538
1539 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1540 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1541
1542 if (nmask) {
1543 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1544 return -EFAULT;
1545 nm = compat_alloc_user_space(alloc_size);
1546 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1547 return -EFAULT;
1548 }
1549
1550 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1551}
1552
1553#endif
1554
1555struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1556 unsigned long addr)
1557{
1558 struct mempolicy *pol = NULL;
1559
1560 if (vma) {
1561 if (vma->vm_ops && vma->vm_ops->get_policy) {
1562 pol = vma->vm_ops->get_policy(vma, addr);
1563 } else if (vma->vm_policy) {
1564 pol = vma->vm_policy;
1565
1566 /*
1567 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1568 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1569 * count on these policies which will be dropped by
1570 * mpol_cond_put() later
1571 */
1572 if (mpol_needs_cond_ref(pol))
1573 mpol_get(pol);
1574 }
1575 }
1576
1577 return pol;
1578}
1579
1580/*
1581 * get_vma_policy(@vma, @addr)
1582 * @vma: virtual memory area whose policy is sought
1583 * @addr: address in @vma for shared policy lookup
1584 *
1585 * Returns effective policy for a VMA at specified address.
1586 * Falls back to current->mempolicy or system default policy, as necessary.
1587 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1588 * count--added by the get_policy() vm_op, as appropriate--to protect against
1589 * freeing by another task. It is the caller's responsibility to free the
1590 * extra reference for shared policies.
1591 */
1592static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1593 unsigned long addr)
1594{
1595 struct mempolicy *pol = __get_vma_policy(vma, addr);
1596
1597 if (!pol)
1598 pol = get_task_policy(current);
1599
1600 return pol;
1601}
1602
1603bool vma_policy_mof(struct vm_area_struct *vma)
1604{
1605 struct mempolicy *pol;
1606
1607 if (vma->vm_ops && vma->vm_ops->get_policy) {
1608 bool ret = false;
1609
1610 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1611 if (pol && (pol->flags & MPOL_F_MOF))
1612 ret = true;
1613 mpol_cond_put(pol);
1614
1615 return ret;
1616 }
1617
1618 pol = vma->vm_policy;
1619 if (!pol)
1620 pol = get_task_policy(current);
1621
1622 return pol->flags & MPOL_F_MOF;
1623}
1624
1625static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1626{
1627 enum zone_type dynamic_policy_zone = policy_zone;
1628
1629 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1630
1631 /*
1632 * if policy->v.nodes has movable memory only,
1633 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1634 *
1635 * policy->v.nodes is intersect with node_states[N_MEMORY].
1636 * so if the following test faile, it implies
1637 * policy->v.nodes has movable memory only.
1638 */
1639 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1640 dynamic_policy_zone = ZONE_MOVABLE;
1641
1642 return zone >= dynamic_policy_zone;
1643}
1644
1645/*
1646 * Return a nodemask representing a mempolicy for filtering nodes for
1647 * page allocation
1648 */
1649static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1650{
1651 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1652 if (unlikely(policy->mode == MPOL_BIND) &&
1653 apply_policy_zone(policy, gfp_zone(gfp)) &&
1654 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1655 return &policy->v.nodes;
1656
1657 return NULL;
1658}
1659
1660/* Return the node id preferred by the given mempolicy, or the given id */
1661static int policy_node(gfp_t gfp, struct mempolicy *policy,
1662 int nd)
1663{
1664 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1665 nd = policy->v.preferred_node;
1666 else {
1667 /*
1668 * __GFP_THISNODE shouldn't even be used with the bind policy
1669 * because we might easily break the expectation to stay on the
1670 * requested node and not break the policy.
1671 */
1672 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1673 }
1674
1675 return nd;
1676}
1677
1678/* Do dynamic interleaving for a process */
1679static unsigned interleave_nodes(struct mempolicy *policy)
1680{
1681 unsigned next;
1682 struct task_struct *me = current;
1683
1684 next = next_node_in(me->il_prev, policy->v.nodes);
1685 if (next < MAX_NUMNODES)
1686 me->il_prev = next;
1687 return next;
1688}
1689
1690/*
1691 * Depending on the memory policy provide a node from which to allocate the
1692 * next slab entry.
1693 */
1694unsigned int mempolicy_slab_node(void)
1695{
1696 struct mempolicy *policy;
1697 int node = numa_mem_id();
1698
1699 if (in_interrupt())
1700 return node;
1701
1702 policy = current->mempolicy;
1703 if (!policy || policy->flags & MPOL_F_LOCAL)
1704 return node;
1705
1706 switch (policy->mode) {
1707 case MPOL_PREFERRED:
1708 /*
1709 * handled MPOL_F_LOCAL above
1710 */
1711 return policy->v.preferred_node;
1712
1713 case MPOL_INTERLEAVE:
1714 return interleave_nodes(policy);
1715
1716 case MPOL_BIND: {
1717 struct zoneref *z;
1718
1719 /*
1720 * Follow bind policy behavior and start allocation at the
1721 * first node.
1722 */
1723 struct zonelist *zonelist;
1724 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1725 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1726 z = first_zones_zonelist(zonelist, highest_zoneidx,
1727 &policy->v.nodes);
1728 return z->zone ? z->zone->node : node;
1729 }
1730
1731 default:
1732 BUG();
1733 }
1734}
1735
1736/*
1737 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1738 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1739 * number of present nodes.
1740 */
1741static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1742{
1743 unsigned nnodes = nodes_weight(pol->v.nodes);
1744 unsigned target;
1745 int i;
1746 int nid;
1747
1748 if (!nnodes)
1749 return numa_node_id();
1750 target = (unsigned int)n % nnodes;
1751 nid = first_node(pol->v.nodes);
1752 for (i = 0; i < target; i++)
1753 nid = next_node(nid, pol->v.nodes);
1754 return nid;
1755}
1756
1757/* Determine a node number for interleave */
1758static inline unsigned interleave_nid(struct mempolicy *pol,
1759 struct vm_area_struct *vma, unsigned long addr, int shift)
1760{
1761 if (vma) {
1762 unsigned long off;
1763
1764 /*
1765 * for small pages, there is no difference between
1766 * shift and PAGE_SHIFT, so the bit-shift is safe.
1767 * for huge pages, since vm_pgoff is in units of small
1768 * pages, we need to shift off the always 0 bits to get
1769 * a useful offset.
1770 */
1771 BUG_ON(shift < PAGE_SHIFT);
1772 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1773 off += (addr - vma->vm_start) >> shift;
1774 return offset_il_node(pol, off);
1775 } else
1776 return interleave_nodes(pol);
1777}
1778
1779#ifdef CONFIG_HUGETLBFS
1780/*
1781 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1782 * @vma: virtual memory area whose policy is sought
1783 * @addr: address in @vma for shared policy lookup and interleave policy
1784 * @gfp_flags: for requested zone
1785 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1786 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1787 *
1788 * Returns a nid suitable for a huge page allocation and a pointer
1789 * to the struct mempolicy for conditional unref after allocation.
1790 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1791 * @nodemask for filtering the zonelist.
1792 *
1793 * Must be protected by read_mems_allowed_begin()
1794 */
1795int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1796 struct mempolicy **mpol, nodemask_t **nodemask)
1797{
1798 int nid;
1799
1800 *mpol = get_vma_policy(vma, addr);
1801 *nodemask = NULL; /* assume !MPOL_BIND */
1802
1803 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1804 nid = interleave_nid(*mpol, vma, addr,
1805 huge_page_shift(hstate_vma(vma)));
1806 } else {
1807 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1808 if ((*mpol)->mode == MPOL_BIND)
1809 *nodemask = &(*mpol)->v.nodes;
1810 }
1811 return nid;
1812}
1813
1814/*
1815 * init_nodemask_of_mempolicy
1816 *
1817 * If the current task's mempolicy is "default" [NULL], return 'false'
1818 * to indicate default policy. Otherwise, extract the policy nodemask
1819 * for 'bind' or 'interleave' policy into the argument nodemask, or
1820 * initialize the argument nodemask to contain the single node for
1821 * 'preferred' or 'local' policy and return 'true' to indicate presence
1822 * of non-default mempolicy.
1823 *
1824 * We don't bother with reference counting the mempolicy [mpol_get/put]
1825 * because the current task is examining it's own mempolicy and a task's
1826 * mempolicy is only ever changed by the task itself.
1827 *
1828 * N.B., it is the caller's responsibility to free a returned nodemask.
1829 */
1830bool init_nodemask_of_mempolicy(nodemask_t *mask)
1831{
1832 struct mempolicy *mempolicy;
1833 int nid;
1834
1835 if (!(mask && current->mempolicy))
1836 return false;
1837
1838 task_lock(current);
1839 mempolicy = current->mempolicy;
1840 switch (mempolicy->mode) {
1841 case MPOL_PREFERRED:
1842 if (mempolicy->flags & MPOL_F_LOCAL)
1843 nid = numa_node_id();
1844 else
1845 nid = mempolicy->v.preferred_node;
1846 init_nodemask_of_node(mask, nid);
1847 break;
1848
1849 case MPOL_BIND:
1850 /* Fall through */
1851 case MPOL_INTERLEAVE:
1852 *mask = mempolicy->v.nodes;
1853 break;
1854
1855 default:
1856 BUG();
1857 }
1858 task_unlock(current);
1859
1860 return true;
1861}
1862#endif
1863
1864/*
1865 * mempolicy_nodemask_intersects
1866 *
1867 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1868 * policy. Otherwise, check for intersection between mask and the policy
1869 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1870 * policy, always return true since it may allocate elsewhere on fallback.
1871 *
1872 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1873 */
1874bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1875 const nodemask_t *mask)
1876{
1877 struct mempolicy *mempolicy;
1878 bool ret = true;
1879
1880 if (!mask)
1881 return ret;
1882 task_lock(tsk);
1883 mempolicy = tsk->mempolicy;
1884 if (!mempolicy)
1885 goto out;
1886
1887 switch (mempolicy->mode) {
1888 case MPOL_PREFERRED:
1889 /*
1890 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1891 * allocate from, they may fallback to other nodes when oom.
1892 * Thus, it's possible for tsk to have allocated memory from
1893 * nodes in mask.
1894 */
1895 break;
1896 case MPOL_BIND:
1897 case MPOL_INTERLEAVE:
1898 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1899 break;
1900 default:
1901 BUG();
1902 }
1903out:
1904 task_unlock(tsk);
1905 return ret;
1906}
1907
1908/* Allocate a page in interleaved policy.
1909 Own path because it needs to do special accounting. */
1910static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1911 unsigned nid)
1912{
1913 struct page *page;
1914
1915 page = __alloc_pages(gfp, order, nid);
1916 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1917 if (!static_branch_likely(&vm_numa_stat_key))
1918 return page;
1919 if (page && page_to_nid(page) == nid) {
1920 preempt_disable();
1921 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1922 preempt_enable();
1923 }
1924 return page;
1925}
1926
1927/**
1928 * alloc_pages_vma - Allocate a page for a VMA.
1929 *
1930 * @gfp:
1931 * %GFP_USER user allocation.
1932 * %GFP_KERNEL kernel allocations,
1933 * %GFP_HIGHMEM highmem/user allocations,
1934 * %GFP_FS allocation should not call back into a file system.
1935 * %GFP_ATOMIC don't sleep.
1936 *
1937 * @order:Order of the GFP allocation.
1938 * @vma: Pointer to VMA or NULL if not available.
1939 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1940 * @node: Which node to prefer for allocation (modulo policy).
1941 * @hugepage: for hugepages try only the preferred node if possible
1942 *
1943 * This function allocates a page from the kernel page pool and applies
1944 * a NUMA policy associated with the VMA or the current process.
1945 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1946 * mm_struct of the VMA to prevent it from going away. Should be used for
1947 * all allocations for pages that will be mapped into user space. Returns
1948 * NULL when no page can be allocated.
1949 */
1950struct page *
1951alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1952 unsigned long addr, int node, bool hugepage)
1953{
1954 struct mempolicy *pol;
1955 struct page *page;
1956 int preferred_nid;
1957 nodemask_t *nmask;
1958
1959 pol = get_vma_policy(vma, addr);
1960
1961 if (pol->mode == MPOL_INTERLEAVE) {
1962 unsigned nid;
1963
1964 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1965 mpol_cond_put(pol);
1966 page = alloc_page_interleave(gfp, order, nid);
1967 goto out;
1968 }
1969
1970 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1971 int hpage_node = node;
1972
1973 /*
1974 * For hugepage allocation and non-interleave policy which
1975 * allows the current node (or other explicitly preferred
1976 * node) we only try to allocate from the current/preferred
1977 * node and don't fall back to other nodes, as the cost of
1978 * remote accesses would likely offset THP benefits.
1979 *
1980 * If the policy is interleave, or does not allow the current
1981 * node in its nodemask, we allocate the standard way.
1982 */
1983 if (pol->mode == MPOL_PREFERRED &&
1984 !(pol->flags & MPOL_F_LOCAL))
1985 hpage_node = pol->v.preferred_node;
1986
1987 nmask = policy_nodemask(gfp, pol);
1988 if (!nmask || node_isset(hpage_node, *nmask)) {
1989 mpol_cond_put(pol);
1990 page = __alloc_pages_node(hpage_node,
1991 gfp | __GFP_THISNODE, order);
1992 goto out;
1993 }
1994 }
1995
1996 nmask = policy_nodemask(gfp, pol);
1997 preferred_nid = policy_node(gfp, pol, node);
1998 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
1999 mpol_cond_put(pol);
2000out:
2001 return page;
2002}
2003
2004/**
2005 * alloc_pages_current - Allocate pages.
2006 *
2007 * @gfp:
2008 * %GFP_USER user allocation,
2009 * %GFP_KERNEL kernel allocation,
2010 * %GFP_HIGHMEM highmem allocation,
2011 * %GFP_FS don't call back into a file system.
2012 * %GFP_ATOMIC don't sleep.
2013 * @order: Power of two of allocation size in pages. 0 is a single page.
2014 *
2015 * Allocate a page from the kernel page pool. When not in
2016 * interrupt context and apply the current process NUMA policy.
2017 * Returns NULL when no page can be allocated.
2018 */
2019struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2020{
2021 struct mempolicy *pol = &default_policy;
2022 struct page *page;
2023
2024 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2025 pol = get_task_policy(current);
2026
2027 /*
2028 * No reference counting needed for current->mempolicy
2029 * nor system default_policy
2030 */
2031 if (pol->mode == MPOL_INTERLEAVE)
2032 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2033 else
2034 page = __alloc_pages_nodemask(gfp, order,
2035 policy_node(gfp, pol, numa_node_id()),
2036 policy_nodemask(gfp, pol));
2037
2038 return page;
2039}
2040EXPORT_SYMBOL(alloc_pages_current);
2041
2042int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2043{
2044 struct mempolicy *pol = mpol_dup(vma_policy(src));
2045
2046 if (IS_ERR(pol))
2047 return PTR_ERR(pol);
2048 dst->vm_policy = pol;
2049 return 0;
2050}
2051
2052/*
2053 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2054 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2055 * with the mems_allowed returned by cpuset_mems_allowed(). This
2056 * keeps mempolicies cpuset relative after its cpuset moves. See
2057 * further kernel/cpuset.c update_nodemask().
2058 *
2059 * current's mempolicy may be rebinded by the other task(the task that changes
2060 * cpuset's mems), so we needn't do rebind work for current task.
2061 */
2062
2063/* Slow path of a mempolicy duplicate */
2064struct mempolicy *__mpol_dup(struct mempolicy *old)
2065{
2066 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2067
2068 if (!new)
2069 return ERR_PTR(-ENOMEM);
2070
2071 /* task's mempolicy is protected by alloc_lock */
2072 if (old == current->mempolicy) {
2073 task_lock(current);
2074 *new = *old;
2075 task_unlock(current);
2076 } else
2077 *new = *old;
2078
2079 if (current_cpuset_is_being_rebound()) {
2080 nodemask_t mems = cpuset_mems_allowed(current);
2081 mpol_rebind_policy(new, &mems);
2082 }
2083 atomic_set(&new->refcnt, 1);
2084 return new;
2085}
2086
2087/* Slow path of a mempolicy comparison */
2088bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2089{
2090 if (!a || !b)
2091 return false;
2092 if (a->mode != b->mode)
2093 return false;
2094 if (a->flags != b->flags)
2095 return false;
2096 if (mpol_store_user_nodemask(a))
2097 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2098 return false;
2099
2100 switch (a->mode) {
2101 case MPOL_BIND:
2102 /* Fall through */
2103 case MPOL_INTERLEAVE:
2104 return !!nodes_equal(a->v.nodes, b->v.nodes);
2105 case MPOL_PREFERRED:
2106 return a->v.preferred_node == b->v.preferred_node;
2107 default:
2108 BUG();
2109 return false;
2110 }
2111}
2112
2113/*
2114 * Shared memory backing store policy support.
2115 *
2116 * Remember policies even when nobody has shared memory mapped.
2117 * The policies are kept in Red-Black tree linked from the inode.
2118 * They are protected by the sp->lock rwlock, which should be held
2119 * for any accesses to the tree.
2120 */
2121
2122/*
2123 * lookup first element intersecting start-end. Caller holds sp->lock for
2124 * reading or for writing
2125 */
2126static struct sp_node *
2127sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2128{
2129 struct rb_node *n = sp->root.rb_node;
2130
2131 while (n) {
2132 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2133
2134 if (start >= p->end)
2135 n = n->rb_right;
2136 else if (end <= p->start)
2137 n = n->rb_left;
2138 else
2139 break;
2140 }
2141 if (!n)
2142 return NULL;
2143 for (;;) {
2144 struct sp_node *w = NULL;
2145 struct rb_node *prev = rb_prev(n);
2146 if (!prev)
2147 break;
2148 w = rb_entry(prev, struct sp_node, nd);
2149 if (w->end <= start)
2150 break;
2151 n = prev;
2152 }
2153 return rb_entry(n, struct sp_node, nd);
2154}
2155
2156/*
2157 * Insert a new shared policy into the list. Caller holds sp->lock for
2158 * writing.
2159 */
2160static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2161{
2162 struct rb_node **p = &sp->root.rb_node;
2163 struct rb_node *parent = NULL;
2164 struct sp_node *nd;
2165
2166 while (*p) {
2167 parent = *p;
2168 nd = rb_entry(parent, struct sp_node, nd);
2169 if (new->start < nd->start)
2170 p = &(*p)->rb_left;
2171 else if (new->end > nd->end)
2172 p = &(*p)->rb_right;
2173 else
2174 BUG();
2175 }
2176 rb_link_node(&new->nd, parent, p);
2177 rb_insert_color(&new->nd, &sp->root);
2178 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2179 new->policy ? new->policy->mode : 0);
2180}
2181
2182/* Find shared policy intersecting idx */
2183struct mempolicy *
2184mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2185{
2186 struct mempolicy *pol = NULL;
2187 struct sp_node *sn;
2188
2189 if (!sp->root.rb_node)
2190 return NULL;
2191 read_lock(&sp->lock);
2192 sn = sp_lookup(sp, idx, idx+1);
2193 if (sn) {
2194 mpol_get(sn->policy);
2195 pol = sn->policy;
2196 }
2197 read_unlock(&sp->lock);
2198 return pol;
2199}
2200
2201static void sp_free(struct sp_node *n)
2202{
2203 mpol_put(n->policy);
2204 kmem_cache_free(sn_cache, n);
2205}
2206
2207/**
2208 * mpol_misplaced - check whether current page node is valid in policy
2209 *
2210 * @page: page to be checked
2211 * @vma: vm area where page mapped
2212 * @addr: virtual address where page mapped
2213 *
2214 * Lookup current policy node id for vma,addr and "compare to" page's
2215 * node id.
2216 *
2217 * Returns:
2218 * -1 - not misplaced, page is in the right node
2219 * node - node id where the page should be
2220 *
2221 * Policy determination "mimics" alloc_page_vma().
2222 * Called from fault path where we know the vma and faulting address.
2223 */
2224int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2225{
2226 struct mempolicy *pol;
2227 struct zoneref *z;
2228 int curnid = page_to_nid(page);
2229 unsigned long pgoff;
2230 int thiscpu = raw_smp_processor_id();
2231 int thisnid = cpu_to_node(thiscpu);
2232 int polnid = -1;
2233 int ret = -1;
2234
2235 pol = get_vma_policy(vma, addr);
2236 if (!(pol->flags & MPOL_F_MOF))
2237 goto out;
2238
2239 switch (pol->mode) {
2240 case MPOL_INTERLEAVE:
2241 pgoff = vma->vm_pgoff;
2242 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2243 polnid = offset_il_node(pol, pgoff);
2244 break;
2245
2246 case MPOL_PREFERRED:
2247 if (pol->flags & MPOL_F_LOCAL)
2248 polnid = numa_node_id();
2249 else
2250 polnid = pol->v.preferred_node;
2251 break;
2252
2253 case MPOL_BIND:
2254
2255 /*
2256 * allows binding to multiple nodes.
2257 * use current page if in policy nodemask,
2258 * else select nearest allowed node, if any.
2259 * If no allowed nodes, use current [!misplaced].
2260 */
2261 if (node_isset(curnid, pol->v.nodes))
2262 goto out;
2263 z = first_zones_zonelist(
2264 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2265 gfp_zone(GFP_HIGHUSER),
2266 &pol->v.nodes);
2267 polnid = z->zone->node;
2268 break;
2269
2270 default:
2271 BUG();
2272 }
2273
2274 /* Migrate the page towards the node whose CPU is referencing it */
2275 if (pol->flags & MPOL_F_MORON) {
2276 polnid = thisnid;
2277
2278 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2279 goto out;
2280 }
2281
2282 if (curnid != polnid)
2283 ret = polnid;
2284out:
2285 mpol_cond_put(pol);
2286
2287 return ret;
2288}
2289
2290/*
2291 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2292 * dropped after task->mempolicy is set to NULL so that any allocation done as
2293 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2294 * policy.
2295 */
2296void mpol_put_task_policy(struct task_struct *task)
2297{
2298 struct mempolicy *pol;
2299
2300 task_lock(task);
2301 pol = task->mempolicy;
2302 task->mempolicy = NULL;
2303 task_unlock(task);
2304 mpol_put(pol);
2305}
2306
2307static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2308{
2309 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2310 rb_erase(&n->nd, &sp->root);
2311 sp_free(n);
2312}
2313
2314static void sp_node_init(struct sp_node *node, unsigned long start,
2315 unsigned long end, struct mempolicy *pol)
2316{
2317 node->start = start;
2318 node->end = end;
2319 node->policy = pol;
2320}
2321
2322static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2323 struct mempolicy *pol)
2324{
2325 struct sp_node *n;
2326 struct mempolicy *newpol;
2327
2328 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2329 if (!n)
2330 return NULL;
2331
2332 newpol = mpol_dup(pol);
2333 if (IS_ERR(newpol)) {
2334 kmem_cache_free(sn_cache, n);
2335 return NULL;
2336 }
2337 newpol->flags |= MPOL_F_SHARED;
2338 sp_node_init(n, start, end, newpol);
2339
2340 return n;
2341}
2342
2343/* Replace a policy range. */
2344static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2345 unsigned long end, struct sp_node *new)
2346{
2347 struct sp_node *n;
2348 struct sp_node *n_new = NULL;
2349 struct mempolicy *mpol_new = NULL;
2350 int ret = 0;
2351
2352restart:
2353 write_lock(&sp->lock);
2354 n = sp_lookup(sp, start, end);
2355 /* Take care of old policies in the same range. */
2356 while (n && n->start < end) {
2357 struct rb_node *next = rb_next(&n->nd);
2358 if (n->start >= start) {
2359 if (n->end <= end)
2360 sp_delete(sp, n);
2361 else
2362 n->start = end;
2363 } else {
2364 /* Old policy spanning whole new range. */
2365 if (n->end > end) {
2366 if (!n_new)
2367 goto alloc_new;
2368
2369 *mpol_new = *n->policy;
2370 atomic_set(&mpol_new->refcnt, 1);
2371 sp_node_init(n_new, end, n->end, mpol_new);
2372 n->end = start;
2373 sp_insert(sp, n_new);
2374 n_new = NULL;
2375 mpol_new = NULL;
2376 break;
2377 } else
2378 n->end = start;
2379 }
2380 if (!next)
2381 break;
2382 n = rb_entry(next, struct sp_node, nd);
2383 }
2384 if (new)
2385 sp_insert(sp, new);
2386 write_unlock(&sp->lock);
2387 ret = 0;
2388
2389err_out:
2390 if (mpol_new)
2391 mpol_put(mpol_new);
2392 if (n_new)
2393 kmem_cache_free(sn_cache, n_new);
2394
2395 return ret;
2396
2397alloc_new:
2398 write_unlock(&sp->lock);
2399 ret = -ENOMEM;
2400 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2401 if (!n_new)
2402 goto err_out;
2403 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2404 if (!mpol_new)
2405 goto err_out;
2406 goto restart;
2407}
2408
2409/**
2410 * mpol_shared_policy_init - initialize shared policy for inode
2411 * @sp: pointer to inode shared policy
2412 * @mpol: struct mempolicy to install
2413 *
2414 * Install non-NULL @mpol in inode's shared policy rb-tree.
2415 * On entry, the current task has a reference on a non-NULL @mpol.
2416 * This must be released on exit.
2417 * This is called at get_inode() calls and we can use GFP_KERNEL.
2418 */
2419void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2420{
2421 int ret;
2422
2423 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2424 rwlock_init(&sp->lock);
2425
2426 if (mpol) {
2427 struct vm_area_struct pvma;
2428 struct mempolicy *new;
2429 NODEMASK_SCRATCH(scratch);
2430
2431 if (!scratch)
2432 goto put_mpol;
2433 /* contextualize the tmpfs mount point mempolicy */
2434 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2435 if (IS_ERR(new))
2436 goto free_scratch; /* no valid nodemask intersection */
2437
2438 task_lock(current);
2439 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2440 task_unlock(current);
2441 if (ret)
2442 goto put_new;
2443
2444 /* Create pseudo-vma that contains just the policy */
2445 memset(&pvma, 0, sizeof(struct vm_area_struct));
2446 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2447 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2448
2449put_new:
2450 mpol_put(new); /* drop initial ref */
2451free_scratch:
2452 NODEMASK_SCRATCH_FREE(scratch);
2453put_mpol:
2454 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2455 }
2456}
2457
2458int mpol_set_shared_policy(struct shared_policy *info,
2459 struct vm_area_struct *vma, struct mempolicy *npol)
2460{
2461 int err;
2462 struct sp_node *new = NULL;
2463 unsigned long sz = vma_pages(vma);
2464
2465 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2466 vma->vm_pgoff,
2467 sz, npol ? npol->mode : -1,
2468 npol ? npol->flags : -1,
2469 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2470
2471 if (npol) {
2472 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2473 if (!new)
2474 return -ENOMEM;
2475 }
2476 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2477 if (err && new)
2478 sp_free(new);
2479 return err;
2480}
2481
2482/* Free a backing policy store on inode delete. */
2483void mpol_free_shared_policy(struct shared_policy *p)
2484{
2485 struct sp_node *n;
2486 struct rb_node *next;
2487
2488 if (!p->root.rb_node)
2489 return;
2490 write_lock(&p->lock);
2491 next = rb_first(&p->root);
2492 while (next) {
2493 n = rb_entry(next, struct sp_node, nd);
2494 next = rb_next(&n->nd);
2495 sp_delete(p, n);
2496 }
2497 write_unlock(&p->lock);
2498}
2499
2500#ifdef CONFIG_NUMA_BALANCING
2501static int __initdata numabalancing_override;
2502
2503static void __init check_numabalancing_enable(void)
2504{
2505 bool numabalancing_default = false;
2506
2507 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2508 numabalancing_default = true;
2509
2510 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2511 if (numabalancing_override)
2512 set_numabalancing_state(numabalancing_override == 1);
2513
2514 if (num_online_nodes() > 1 && !numabalancing_override) {
2515 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2516 numabalancing_default ? "Enabling" : "Disabling");
2517 set_numabalancing_state(numabalancing_default);
2518 }
2519}
2520
2521static int __init setup_numabalancing(char *str)
2522{
2523 int ret = 0;
2524 if (!str)
2525 goto out;
2526
2527 if (!strcmp(str, "enable")) {
2528 numabalancing_override = 1;
2529 ret = 1;
2530 } else if (!strcmp(str, "disable")) {
2531 numabalancing_override = -1;
2532 ret = 1;
2533 }
2534out:
2535 if (!ret)
2536 pr_warn("Unable to parse numa_balancing=\n");
2537
2538 return ret;
2539}
2540__setup("numa_balancing=", setup_numabalancing);
2541#else
2542static inline void __init check_numabalancing_enable(void)
2543{
2544}
2545#endif /* CONFIG_NUMA_BALANCING */
2546
2547/* assumes fs == KERNEL_DS */
2548void __init numa_policy_init(void)
2549{
2550 nodemask_t interleave_nodes;
2551 unsigned long largest = 0;
2552 int nid, prefer = 0;
2553
2554 policy_cache = kmem_cache_create("numa_policy",
2555 sizeof(struct mempolicy),
2556 0, SLAB_PANIC, NULL);
2557
2558 sn_cache = kmem_cache_create("shared_policy_node",
2559 sizeof(struct sp_node),
2560 0, SLAB_PANIC, NULL);
2561
2562 for_each_node(nid) {
2563 preferred_node_policy[nid] = (struct mempolicy) {
2564 .refcnt = ATOMIC_INIT(1),
2565 .mode = MPOL_PREFERRED,
2566 .flags = MPOL_F_MOF | MPOL_F_MORON,
2567 .v = { .preferred_node = nid, },
2568 };
2569 }
2570
2571 /*
2572 * Set interleaving policy for system init. Interleaving is only
2573 * enabled across suitably sized nodes (default is >= 16MB), or
2574 * fall back to the largest node if they're all smaller.
2575 */
2576 nodes_clear(interleave_nodes);
2577 for_each_node_state(nid, N_MEMORY) {
2578 unsigned long total_pages = node_present_pages(nid);
2579
2580 /* Preserve the largest node */
2581 if (largest < total_pages) {
2582 largest = total_pages;
2583 prefer = nid;
2584 }
2585
2586 /* Interleave this node? */
2587 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2588 node_set(nid, interleave_nodes);
2589 }
2590
2591 /* All too small, use the largest */
2592 if (unlikely(nodes_empty(interleave_nodes)))
2593 node_set(prefer, interleave_nodes);
2594
2595 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2596 pr_err("%s: interleaving failed\n", __func__);
2597
2598 check_numabalancing_enable();
2599}
2600
2601/* Reset policy of current process to default */
2602void numa_default_policy(void)
2603{
2604 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2605}
2606
2607/*
2608 * Parse and format mempolicy from/to strings
2609 */
2610
2611/*
2612 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2613 */
2614static const char * const policy_modes[] =
2615{
2616 [MPOL_DEFAULT] = "default",
2617 [MPOL_PREFERRED] = "prefer",
2618 [MPOL_BIND] = "bind",
2619 [MPOL_INTERLEAVE] = "interleave",
2620 [MPOL_LOCAL] = "local",
2621};
2622
2623
2624#ifdef CONFIG_TMPFS
2625/**
2626 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2627 * @str: string containing mempolicy to parse
2628 * @mpol: pointer to struct mempolicy pointer, returned on success.
2629 *
2630 * Format of input:
2631 * <mode>[=<flags>][:<nodelist>]
2632 *
2633 * On success, returns 0, else 1
2634 */
2635int mpol_parse_str(char *str, struct mempolicy **mpol)
2636{
2637 struct mempolicy *new = NULL;
2638 unsigned short mode;
2639 unsigned short mode_flags;
2640 nodemask_t nodes;
2641 char *nodelist = strchr(str, ':');
2642 char *flags = strchr(str, '=');
2643 int err = 1;
2644
2645 if (nodelist) {
2646 /* NUL-terminate mode or flags string */
2647 *nodelist++ = '\0';
2648 if (nodelist_parse(nodelist, nodes))
2649 goto out;
2650 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2651 goto out;
2652 } else
2653 nodes_clear(nodes);
2654
2655 if (flags)
2656 *flags++ = '\0'; /* terminate mode string */
2657
2658 for (mode = 0; mode < MPOL_MAX; mode++) {
2659 if (!strcmp(str, policy_modes[mode])) {
2660 break;
2661 }
2662 }
2663 if (mode >= MPOL_MAX)
2664 goto out;
2665
2666 switch (mode) {
2667 case MPOL_PREFERRED:
2668 /*
2669 * Insist on a nodelist of one node only
2670 */
2671 if (nodelist) {
2672 char *rest = nodelist;
2673 while (isdigit(*rest))
2674 rest++;
2675 if (*rest)
2676 goto out;
2677 }
2678 break;
2679 case MPOL_INTERLEAVE:
2680 /*
2681 * Default to online nodes with memory if no nodelist
2682 */
2683 if (!nodelist)
2684 nodes = node_states[N_MEMORY];
2685 break;
2686 case MPOL_LOCAL:
2687 /*
2688 * Don't allow a nodelist; mpol_new() checks flags
2689 */
2690 if (nodelist)
2691 goto out;
2692 mode = MPOL_PREFERRED;
2693 break;
2694 case MPOL_DEFAULT:
2695 /*
2696 * Insist on a empty nodelist
2697 */
2698 if (!nodelist)
2699 err = 0;
2700 goto out;
2701 case MPOL_BIND:
2702 /*
2703 * Insist on a nodelist
2704 */
2705 if (!nodelist)
2706 goto out;
2707 }
2708
2709 mode_flags = 0;
2710 if (flags) {
2711 /*
2712 * Currently, we only support two mutually exclusive
2713 * mode flags.
2714 */
2715 if (!strcmp(flags, "static"))
2716 mode_flags |= MPOL_F_STATIC_NODES;
2717 else if (!strcmp(flags, "relative"))
2718 mode_flags |= MPOL_F_RELATIVE_NODES;
2719 else
2720 goto out;
2721 }
2722
2723 new = mpol_new(mode, mode_flags, &nodes);
2724 if (IS_ERR(new))
2725 goto out;
2726
2727 /*
2728 * Save nodes for mpol_to_str() to show the tmpfs mount options
2729 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2730 */
2731 if (mode != MPOL_PREFERRED)
2732 new->v.nodes = nodes;
2733 else if (nodelist)
2734 new->v.preferred_node = first_node(nodes);
2735 else
2736 new->flags |= MPOL_F_LOCAL;
2737
2738 /*
2739 * Save nodes for contextualization: this will be used to "clone"
2740 * the mempolicy in a specific context [cpuset] at a later time.
2741 */
2742 new->w.user_nodemask = nodes;
2743
2744 err = 0;
2745
2746out:
2747 /* Restore string for error message */
2748 if (nodelist)
2749 *--nodelist = ':';
2750 if (flags)
2751 *--flags = '=';
2752 if (!err)
2753 *mpol = new;
2754 return err;
2755}
2756#endif /* CONFIG_TMPFS */
2757
2758/**
2759 * mpol_to_str - format a mempolicy structure for printing
2760 * @buffer: to contain formatted mempolicy string
2761 * @maxlen: length of @buffer
2762 * @pol: pointer to mempolicy to be formatted
2763 *
2764 * Convert @pol into a string. If @buffer is too short, truncate the string.
2765 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2766 * longest flag, "relative", and to display at least a few node ids.
2767 */
2768void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2769{
2770 char *p = buffer;
2771 nodemask_t nodes = NODE_MASK_NONE;
2772 unsigned short mode = MPOL_DEFAULT;
2773 unsigned short flags = 0;
2774
2775 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2776 mode = pol->mode;
2777 flags = pol->flags;
2778 }
2779
2780 switch (mode) {
2781 case MPOL_DEFAULT:
2782 break;
2783 case MPOL_PREFERRED:
2784 if (flags & MPOL_F_LOCAL)
2785 mode = MPOL_LOCAL;
2786 else
2787 node_set(pol->v.preferred_node, nodes);
2788 break;
2789 case MPOL_BIND:
2790 case MPOL_INTERLEAVE:
2791 nodes = pol->v.nodes;
2792 break;
2793 default:
2794 WARN_ON_ONCE(1);
2795 snprintf(p, maxlen, "unknown");
2796 return;
2797 }
2798
2799 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2800
2801 if (flags & MPOL_MODE_FLAGS) {
2802 p += snprintf(p, buffer + maxlen - p, "=");
2803
2804 /*
2805 * Currently, the only defined flags are mutually exclusive
2806 */
2807 if (flags & MPOL_F_STATIC_NODES)
2808 p += snprintf(p, buffer + maxlen - p, "static");
2809 else if (flags & MPOL_F_RELATIVE_NODES)
2810 p += snprintf(p, buffer + maxlen - p, "relative");
2811 }
2812
2813 if (!nodes_empty(nodes))
2814 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2815 nodemask_pr_args(&nodes));
2816}