]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/mempolicy.c
mm: wrap calls to set_pte_at_notify with invalidate_range_start and invalidate_range_end
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/export.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608}
609
610/*
611 * Apply policy to a single VMA
612 * This must be called with the mmap_sem held for writing.
613 */
614static int vma_replace_policy(struct vm_area_struct *vma,
615 struct mempolicy *pol)
616{
617 int err;
618 struct mempolicy *old;
619 struct mempolicy *new;
620
621 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622 vma->vm_start, vma->vm_end, vma->vm_pgoff,
623 vma->vm_ops, vma->vm_file,
624 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
625
626 new = mpol_dup(pol);
627 if (IS_ERR(new))
628 return PTR_ERR(new);
629
630 if (vma->vm_ops && vma->vm_ops->set_policy) {
631 err = vma->vm_ops->set_policy(vma, new);
632 if (err)
633 goto err_out;
634 }
635
636 old = vma->vm_policy;
637 vma->vm_policy = new; /* protected by mmap_sem */
638 mpol_put(old);
639
640 return 0;
641 err_out:
642 mpol_put(new);
643 return err;
644}
645
646/* Step 2: apply policy to a range and do splits. */
647static int mbind_range(struct mm_struct *mm, unsigned long start,
648 unsigned long end, struct mempolicy *new_pol)
649{
650 struct vm_area_struct *next;
651 struct vm_area_struct *prev;
652 struct vm_area_struct *vma;
653 int err = 0;
654 pgoff_t pgoff;
655 unsigned long vmstart;
656 unsigned long vmend;
657
658 vma = find_vma(mm, start);
659 if (!vma || vma->vm_start > start)
660 return -EFAULT;
661
662 prev = vma->vm_prev;
663 if (start > vma->vm_start)
664 prev = vma;
665
666 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
667 next = vma->vm_next;
668 vmstart = max(start, vma->vm_start);
669 vmend = min(end, vma->vm_end);
670
671 if (mpol_equal(vma_policy(vma), new_pol))
672 continue;
673
674 pgoff = vma->vm_pgoff +
675 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
676 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
677 vma->anon_vma, vma->vm_file, pgoff,
678 new_pol);
679 if (prev) {
680 vma = prev;
681 next = vma->vm_next;
682 continue;
683 }
684 if (vma->vm_start != vmstart) {
685 err = split_vma(vma->vm_mm, vma, vmstart, 1);
686 if (err)
687 goto out;
688 }
689 if (vma->vm_end != vmend) {
690 err = split_vma(vma->vm_mm, vma, vmend, 0);
691 if (err)
692 goto out;
693 }
694 err = vma_replace_policy(vma, new_pol);
695 if (err)
696 goto out;
697 }
698
699 out:
700 return err;
701}
702
703/*
704 * Update task->flags PF_MEMPOLICY bit: set iff non-default
705 * mempolicy. Allows more rapid checking of this (combined perhaps
706 * with other PF_* flag bits) on memory allocation hot code paths.
707 *
708 * If called from outside this file, the task 'p' should -only- be
709 * a newly forked child not yet visible on the task list, because
710 * manipulating the task flags of a visible task is not safe.
711 *
712 * The above limitation is why this routine has the funny name
713 * mpol_fix_fork_child_flag().
714 *
715 * It is also safe to call this with a task pointer of current,
716 * which the static wrapper mpol_set_task_struct_flag() does,
717 * for use within this file.
718 */
719
720void mpol_fix_fork_child_flag(struct task_struct *p)
721{
722 if (p->mempolicy)
723 p->flags |= PF_MEMPOLICY;
724 else
725 p->flags &= ~PF_MEMPOLICY;
726}
727
728static void mpol_set_task_struct_flag(void)
729{
730 mpol_fix_fork_child_flag(current);
731}
732
733/* Set the process memory policy */
734static long do_set_mempolicy(unsigned short mode, unsigned short flags,
735 nodemask_t *nodes)
736{
737 struct mempolicy *new, *old;
738 struct mm_struct *mm = current->mm;
739 NODEMASK_SCRATCH(scratch);
740 int ret;
741
742 if (!scratch)
743 return -ENOMEM;
744
745 new = mpol_new(mode, flags, nodes);
746 if (IS_ERR(new)) {
747 ret = PTR_ERR(new);
748 goto out;
749 }
750 /*
751 * prevent changing our mempolicy while show_numa_maps()
752 * is using it.
753 * Note: do_set_mempolicy() can be called at init time
754 * with no 'mm'.
755 */
756 if (mm)
757 down_write(&mm->mmap_sem);
758 task_lock(current);
759 ret = mpol_set_nodemask(new, nodes, scratch);
760 if (ret) {
761 task_unlock(current);
762 if (mm)
763 up_write(&mm->mmap_sem);
764 mpol_put(new);
765 goto out;
766 }
767 old = current->mempolicy;
768 current->mempolicy = new;
769 mpol_set_task_struct_flag();
770 if (new && new->mode == MPOL_INTERLEAVE &&
771 nodes_weight(new->v.nodes))
772 current->il_next = first_node(new->v.nodes);
773 task_unlock(current);
774 if (mm)
775 up_write(&mm->mmap_sem);
776
777 mpol_put(old);
778 ret = 0;
779out:
780 NODEMASK_SCRATCH_FREE(scratch);
781 return ret;
782}
783
784/*
785 * Return nodemask for policy for get_mempolicy() query
786 *
787 * Called with task's alloc_lock held
788 */
789static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
790{
791 nodes_clear(*nodes);
792 if (p == &default_policy)
793 return;
794
795 switch (p->mode) {
796 case MPOL_BIND:
797 /* Fall through */
798 case MPOL_INTERLEAVE:
799 *nodes = p->v.nodes;
800 break;
801 case MPOL_PREFERRED:
802 if (!(p->flags & MPOL_F_LOCAL))
803 node_set(p->v.preferred_node, *nodes);
804 /* else return empty node mask for local allocation */
805 break;
806 default:
807 BUG();
808 }
809}
810
811static int lookup_node(struct mm_struct *mm, unsigned long addr)
812{
813 struct page *p;
814 int err;
815
816 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
817 if (err >= 0) {
818 err = page_to_nid(p);
819 put_page(p);
820 }
821 return err;
822}
823
824/* Retrieve NUMA policy */
825static long do_get_mempolicy(int *policy, nodemask_t *nmask,
826 unsigned long addr, unsigned long flags)
827{
828 int err;
829 struct mm_struct *mm = current->mm;
830 struct vm_area_struct *vma = NULL;
831 struct mempolicy *pol = current->mempolicy;
832
833 if (flags &
834 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
835 return -EINVAL;
836
837 if (flags & MPOL_F_MEMS_ALLOWED) {
838 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
839 return -EINVAL;
840 *policy = 0; /* just so it's initialized */
841 task_lock(current);
842 *nmask = cpuset_current_mems_allowed;
843 task_unlock(current);
844 return 0;
845 }
846
847 if (flags & MPOL_F_ADDR) {
848 /*
849 * Do NOT fall back to task policy if the
850 * vma/shared policy at addr is NULL. We
851 * want to return MPOL_DEFAULT in this case.
852 */
853 down_read(&mm->mmap_sem);
854 vma = find_vma_intersection(mm, addr, addr+1);
855 if (!vma) {
856 up_read(&mm->mmap_sem);
857 return -EFAULT;
858 }
859 if (vma->vm_ops && vma->vm_ops->get_policy)
860 pol = vma->vm_ops->get_policy(vma, addr);
861 else
862 pol = vma->vm_policy;
863 } else if (addr)
864 return -EINVAL;
865
866 if (!pol)
867 pol = &default_policy; /* indicates default behavior */
868
869 if (flags & MPOL_F_NODE) {
870 if (flags & MPOL_F_ADDR) {
871 err = lookup_node(mm, addr);
872 if (err < 0)
873 goto out;
874 *policy = err;
875 } else if (pol == current->mempolicy &&
876 pol->mode == MPOL_INTERLEAVE) {
877 *policy = current->il_next;
878 } else {
879 err = -EINVAL;
880 goto out;
881 }
882 } else {
883 *policy = pol == &default_policy ? MPOL_DEFAULT :
884 pol->mode;
885 /*
886 * Internal mempolicy flags must be masked off before exposing
887 * the policy to userspace.
888 */
889 *policy |= (pol->flags & MPOL_MODE_FLAGS);
890 }
891
892 if (vma) {
893 up_read(&current->mm->mmap_sem);
894 vma = NULL;
895 }
896
897 err = 0;
898 if (nmask) {
899 if (mpol_store_user_nodemask(pol)) {
900 *nmask = pol->w.user_nodemask;
901 } else {
902 task_lock(current);
903 get_policy_nodemask(pol, nmask);
904 task_unlock(current);
905 }
906 }
907
908 out:
909 mpol_cond_put(pol);
910 if (vma)
911 up_read(&current->mm->mmap_sem);
912 return err;
913}
914
915#ifdef CONFIG_MIGRATION
916/*
917 * page migration
918 */
919static void migrate_page_add(struct page *page, struct list_head *pagelist,
920 unsigned long flags)
921{
922 /*
923 * Avoid migrating a page that is shared with others.
924 */
925 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926 if (!isolate_lru_page(page)) {
927 list_add_tail(&page->lru, pagelist);
928 inc_zone_page_state(page, NR_ISOLATED_ANON +
929 page_is_file_cache(page));
930 }
931 }
932}
933
934static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935{
936 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
937}
938
939/*
940 * Migrate pages from one node to a target node.
941 * Returns error or the number of pages not migrated.
942 */
943static int migrate_to_node(struct mm_struct *mm, int source, int dest,
944 int flags)
945{
946 nodemask_t nmask;
947 LIST_HEAD(pagelist);
948 int err = 0;
949 struct vm_area_struct *vma;
950
951 nodes_clear(nmask);
952 node_set(source, nmask);
953
954 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
955 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
956 if (IS_ERR(vma))
957 return PTR_ERR(vma);
958
959 if (!list_empty(&pagelist)) {
960 err = migrate_pages(&pagelist, new_node_page, dest,
961 false, MIGRATE_SYNC);
962 if (err)
963 putback_lru_pages(&pagelist);
964 }
965
966 return err;
967}
968
969/*
970 * Move pages between the two nodesets so as to preserve the physical
971 * layout as much as possible.
972 *
973 * Returns the number of page that could not be moved.
974 */
975int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
976 const nodemask_t *to, int flags)
977{
978 int busy = 0;
979 int err;
980 nodemask_t tmp;
981
982 err = migrate_prep();
983 if (err)
984 return err;
985
986 down_read(&mm->mmap_sem);
987
988 err = migrate_vmas(mm, from, to, flags);
989 if (err)
990 goto out;
991
992 /*
993 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
994 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
995 * bit in 'tmp', and return that <source, dest> pair for migration.
996 * The pair of nodemasks 'to' and 'from' define the map.
997 *
998 * If no pair of bits is found that way, fallback to picking some
999 * pair of 'source' and 'dest' bits that are not the same. If the
1000 * 'source' and 'dest' bits are the same, this represents a node
1001 * that will be migrating to itself, so no pages need move.
1002 *
1003 * If no bits are left in 'tmp', or if all remaining bits left
1004 * in 'tmp' correspond to the same bit in 'to', return false
1005 * (nothing left to migrate).
1006 *
1007 * This lets us pick a pair of nodes to migrate between, such that
1008 * if possible the dest node is not already occupied by some other
1009 * source node, minimizing the risk of overloading the memory on a
1010 * node that would happen if we migrated incoming memory to a node
1011 * before migrating outgoing memory source that same node.
1012 *
1013 * A single scan of tmp is sufficient. As we go, we remember the
1014 * most recent <s, d> pair that moved (s != d). If we find a pair
1015 * that not only moved, but what's better, moved to an empty slot
1016 * (d is not set in tmp), then we break out then, with that pair.
1017 * Otherwise when we finish scanning from_tmp, we at least have the
1018 * most recent <s, d> pair that moved. If we get all the way through
1019 * the scan of tmp without finding any node that moved, much less
1020 * moved to an empty node, then there is nothing left worth migrating.
1021 */
1022
1023 tmp = *from;
1024 while (!nodes_empty(tmp)) {
1025 int s,d;
1026 int source = -1;
1027 int dest = 0;
1028
1029 for_each_node_mask(s, tmp) {
1030
1031 /*
1032 * do_migrate_pages() tries to maintain the relative
1033 * node relationship of the pages established between
1034 * threads and memory areas.
1035 *
1036 * However if the number of source nodes is not equal to
1037 * the number of destination nodes we can not preserve
1038 * this node relative relationship. In that case, skip
1039 * copying memory from a node that is in the destination
1040 * mask.
1041 *
1042 * Example: [2,3,4] -> [3,4,5] moves everything.
1043 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1044 */
1045
1046 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1047 (node_isset(s, *to)))
1048 continue;
1049
1050 d = node_remap(s, *from, *to);
1051 if (s == d)
1052 continue;
1053
1054 source = s; /* Node moved. Memorize */
1055 dest = d;
1056
1057 /* dest not in remaining from nodes? */
1058 if (!node_isset(dest, tmp))
1059 break;
1060 }
1061 if (source == -1)
1062 break;
1063
1064 node_clear(source, tmp);
1065 err = migrate_to_node(mm, source, dest, flags);
1066 if (err > 0)
1067 busy += err;
1068 if (err < 0)
1069 break;
1070 }
1071out:
1072 up_read(&mm->mmap_sem);
1073 if (err < 0)
1074 return err;
1075 return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start assuming that page is mapped by vma pointed to by @private.
1082 * Search forward from there, if not. N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1087{
1088 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1089 unsigned long uninitialized_var(address);
1090
1091 while (vma) {
1092 address = page_address_in_vma(page, vma);
1093 if (address != -EFAULT)
1094 break;
1095 vma = vma->vm_next;
1096 }
1097
1098 /*
1099 * if !vma, alloc_page_vma() will use task or system default policy
1100 */
1101 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1102}
1103#else
1104
1105static void migrate_page_add(struct page *page, struct list_head *pagelist,
1106 unsigned long flags)
1107{
1108}
1109
1110int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 const nodemask_t *to, int flags)
1112{
1113 return -ENOSYS;
1114}
1115
1116static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1117{
1118 return NULL;
1119}
1120#endif
1121
1122static long do_mbind(unsigned long start, unsigned long len,
1123 unsigned short mode, unsigned short mode_flags,
1124 nodemask_t *nmask, unsigned long flags)
1125{
1126 struct vm_area_struct *vma;
1127 struct mm_struct *mm = current->mm;
1128 struct mempolicy *new;
1129 unsigned long end;
1130 int err;
1131 LIST_HEAD(pagelist);
1132
1133 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1134 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1135 return -EINVAL;
1136 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1137 return -EPERM;
1138
1139 if (start & ~PAGE_MASK)
1140 return -EINVAL;
1141
1142 if (mode == MPOL_DEFAULT)
1143 flags &= ~MPOL_MF_STRICT;
1144
1145 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1146 end = start + len;
1147
1148 if (end < start)
1149 return -EINVAL;
1150 if (end == start)
1151 return 0;
1152
1153 new = mpol_new(mode, mode_flags, nmask);
1154 if (IS_ERR(new))
1155 return PTR_ERR(new);
1156
1157 /*
1158 * If we are using the default policy then operation
1159 * on discontinuous address spaces is okay after all
1160 */
1161 if (!new)
1162 flags |= MPOL_MF_DISCONTIG_OK;
1163
1164 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1165 start, start + len, mode, mode_flags,
1166 nmask ? nodes_addr(*nmask)[0] : -1);
1167
1168 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1169
1170 err = migrate_prep();
1171 if (err)
1172 goto mpol_out;
1173 }
1174 {
1175 NODEMASK_SCRATCH(scratch);
1176 if (scratch) {
1177 down_write(&mm->mmap_sem);
1178 task_lock(current);
1179 err = mpol_set_nodemask(new, nmask, scratch);
1180 task_unlock(current);
1181 if (err)
1182 up_write(&mm->mmap_sem);
1183 } else
1184 err = -ENOMEM;
1185 NODEMASK_SCRATCH_FREE(scratch);
1186 }
1187 if (err)
1188 goto mpol_out;
1189
1190 vma = check_range(mm, start, end, nmask,
1191 flags | MPOL_MF_INVERT, &pagelist);
1192
1193 err = PTR_ERR(vma);
1194 if (!IS_ERR(vma)) {
1195 int nr_failed = 0;
1196
1197 err = mbind_range(mm, start, end, new);
1198
1199 if (!list_empty(&pagelist)) {
1200 nr_failed = migrate_pages(&pagelist, new_vma_page,
1201 (unsigned long)vma,
1202 false, MIGRATE_SYNC);
1203 if (nr_failed)
1204 putback_lru_pages(&pagelist);
1205 }
1206
1207 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1208 err = -EIO;
1209 } else
1210 putback_lru_pages(&pagelist);
1211
1212 up_write(&mm->mmap_sem);
1213 mpol_out:
1214 mpol_put(new);
1215 return err;
1216}
1217
1218/*
1219 * User space interface with variable sized bitmaps for nodelists.
1220 */
1221
1222/* Copy a node mask from user space. */
1223static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1224 unsigned long maxnode)
1225{
1226 unsigned long k;
1227 unsigned long nlongs;
1228 unsigned long endmask;
1229
1230 --maxnode;
1231 nodes_clear(*nodes);
1232 if (maxnode == 0 || !nmask)
1233 return 0;
1234 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1235 return -EINVAL;
1236
1237 nlongs = BITS_TO_LONGS(maxnode);
1238 if ((maxnode % BITS_PER_LONG) == 0)
1239 endmask = ~0UL;
1240 else
1241 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1242
1243 /* When the user specified more nodes than supported just check
1244 if the non supported part is all zero. */
1245 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1246 if (nlongs > PAGE_SIZE/sizeof(long))
1247 return -EINVAL;
1248 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1249 unsigned long t;
1250 if (get_user(t, nmask + k))
1251 return -EFAULT;
1252 if (k == nlongs - 1) {
1253 if (t & endmask)
1254 return -EINVAL;
1255 } else if (t)
1256 return -EINVAL;
1257 }
1258 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1259 endmask = ~0UL;
1260 }
1261
1262 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1263 return -EFAULT;
1264 nodes_addr(*nodes)[nlongs-1] &= endmask;
1265 return 0;
1266}
1267
1268/* Copy a kernel node mask to user space */
1269static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1270 nodemask_t *nodes)
1271{
1272 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1273 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1274
1275 if (copy > nbytes) {
1276 if (copy > PAGE_SIZE)
1277 return -EINVAL;
1278 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1279 return -EFAULT;
1280 copy = nbytes;
1281 }
1282 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1283}
1284
1285SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1286 unsigned long, mode, unsigned long __user *, nmask,
1287 unsigned long, maxnode, unsigned, flags)
1288{
1289 nodemask_t nodes;
1290 int err;
1291 unsigned short mode_flags;
1292
1293 mode_flags = mode & MPOL_MODE_FLAGS;
1294 mode &= ~MPOL_MODE_FLAGS;
1295 if (mode >= MPOL_MAX)
1296 return -EINVAL;
1297 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1298 (mode_flags & MPOL_F_RELATIVE_NODES))
1299 return -EINVAL;
1300 err = get_nodes(&nodes, nmask, maxnode);
1301 if (err)
1302 return err;
1303 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1304}
1305
1306/* Set the process memory policy */
1307SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1308 unsigned long, maxnode)
1309{
1310 int err;
1311 nodemask_t nodes;
1312 unsigned short flags;
1313
1314 flags = mode & MPOL_MODE_FLAGS;
1315 mode &= ~MPOL_MODE_FLAGS;
1316 if ((unsigned int)mode >= MPOL_MAX)
1317 return -EINVAL;
1318 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1319 return -EINVAL;
1320 err = get_nodes(&nodes, nmask, maxnode);
1321 if (err)
1322 return err;
1323 return do_set_mempolicy(mode, flags, &nodes);
1324}
1325
1326SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1327 const unsigned long __user *, old_nodes,
1328 const unsigned long __user *, new_nodes)
1329{
1330 const struct cred *cred = current_cred(), *tcred;
1331 struct mm_struct *mm = NULL;
1332 struct task_struct *task;
1333 nodemask_t task_nodes;
1334 int err;
1335 nodemask_t *old;
1336 nodemask_t *new;
1337 NODEMASK_SCRATCH(scratch);
1338
1339 if (!scratch)
1340 return -ENOMEM;
1341
1342 old = &scratch->mask1;
1343 new = &scratch->mask2;
1344
1345 err = get_nodes(old, old_nodes, maxnode);
1346 if (err)
1347 goto out;
1348
1349 err = get_nodes(new, new_nodes, maxnode);
1350 if (err)
1351 goto out;
1352
1353 /* Find the mm_struct */
1354 rcu_read_lock();
1355 task = pid ? find_task_by_vpid(pid) : current;
1356 if (!task) {
1357 rcu_read_unlock();
1358 err = -ESRCH;
1359 goto out;
1360 }
1361 get_task_struct(task);
1362
1363 err = -EINVAL;
1364
1365 /*
1366 * Check if this process has the right to modify the specified
1367 * process. The right exists if the process has administrative
1368 * capabilities, superuser privileges or the same
1369 * userid as the target process.
1370 */
1371 tcred = __task_cred(task);
1372 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1373 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1374 !capable(CAP_SYS_NICE)) {
1375 rcu_read_unlock();
1376 err = -EPERM;
1377 goto out_put;
1378 }
1379 rcu_read_unlock();
1380
1381 task_nodes = cpuset_mems_allowed(task);
1382 /* Is the user allowed to access the target nodes? */
1383 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1384 err = -EPERM;
1385 goto out_put;
1386 }
1387
1388 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1389 err = -EINVAL;
1390 goto out_put;
1391 }
1392
1393 err = security_task_movememory(task);
1394 if (err)
1395 goto out_put;
1396
1397 mm = get_task_mm(task);
1398 put_task_struct(task);
1399
1400 if (!mm) {
1401 err = -EINVAL;
1402 goto out;
1403 }
1404
1405 err = do_migrate_pages(mm, old, new,
1406 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1407
1408 mmput(mm);
1409out:
1410 NODEMASK_SCRATCH_FREE(scratch);
1411
1412 return err;
1413
1414out_put:
1415 put_task_struct(task);
1416 goto out;
1417
1418}
1419
1420
1421/* Retrieve NUMA policy */
1422SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1423 unsigned long __user *, nmask, unsigned long, maxnode,
1424 unsigned long, addr, unsigned long, flags)
1425{
1426 int err;
1427 int uninitialized_var(pval);
1428 nodemask_t nodes;
1429
1430 if (nmask != NULL && maxnode < MAX_NUMNODES)
1431 return -EINVAL;
1432
1433 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1434
1435 if (err)
1436 return err;
1437
1438 if (policy && put_user(pval, policy))
1439 return -EFAULT;
1440
1441 if (nmask)
1442 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1443
1444 return err;
1445}
1446
1447#ifdef CONFIG_COMPAT
1448
1449asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1450 compat_ulong_t __user *nmask,
1451 compat_ulong_t maxnode,
1452 compat_ulong_t addr, compat_ulong_t flags)
1453{
1454 long err;
1455 unsigned long __user *nm = NULL;
1456 unsigned long nr_bits, alloc_size;
1457 DECLARE_BITMAP(bm, MAX_NUMNODES);
1458
1459 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1460 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1461
1462 if (nmask)
1463 nm = compat_alloc_user_space(alloc_size);
1464
1465 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1466
1467 if (!err && nmask) {
1468 unsigned long copy_size;
1469 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1470 err = copy_from_user(bm, nm, copy_size);
1471 /* ensure entire bitmap is zeroed */
1472 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1473 err |= compat_put_bitmap(nmask, bm, nr_bits);
1474 }
1475
1476 return err;
1477}
1478
1479asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1480 compat_ulong_t maxnode)
1481{
1482 long err = 0;
1483 unsigned long __user *nm = NULL;
1484 unsigned long nr_bits, alloc_size;
1485 DECLARE_BITMAP(bm, MAX_NUMNODES);
1486
1487 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1488 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1489
1490 if (nmask) {
1491 err = compat_get_bitmap(bm, nmask, nr_bits);
1492 nm = compat_alloc_user_space(alloc_size);
1493 err |= copy_to_user(nm, bm, alloc_size);
1494 }
1495
1496 if (err)
1497 return -EFAULT;
1498
1499 return sys_set_mempolicy(mode, nm, nr_bits+1);
1500}
1501
1502asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1503 compat_ulong_t mode, compat_ulong_t __user *nmask,
1504 compat_ulong_t maxnode, compat_ulong_t flags)
1505{
1506 long err = 0;
1507 unsigned long __user *nm = NULL;
1508 unsigned long nr_bits, alloc_size;
1509 nodemask_t bm;
1510
1511 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1512 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1513
1514 if (nmask) {
1515 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1516 nm = compat_alloc_user_space(alloc_size);
1517 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1518 }
1519
1520 if (err)
1521 return -EFAULT;
1522
1523 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1524}
1525
1526#endif
1527
1528/*
1529 * get_vma_policy(@task, @vma, @addr)
1530 * @task - task for fallback if vma policy == default
1531 * @vma - virtual memory area whose policy is sought
1532 * @addr - address in @vma for shared policy lookup
1533 *
1534 * Returns effective policy for a VMA at specified address.
1535 * Falls back to @task or system default policy, as necessary.
1536 * Current or other task's task mempolicy and non-shared vma policies
1537 * are protected by the task's mmap_sem, which must be held for read by
1538 * the caller.
1539 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1540 * count--added by the get_policy() vm_op, as appropriate--to protect against
1541 * freeing by another task. It is the caller's responsibility to free the
1542 * extra reference for shared policies.
1543 */
1544struct mempolicy *get_vma_policy(struct task_struct *task,
1545 struct vm_area_struct *vma, unsigned long addr)
1546{
1547 struct mempolicy *pol = task->mempolicy;
1548
1549 if (vma) {
1550 if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1552 addr);
1553 if (vpol)
1554 pol = vpol;
1555 } else if (vma->vm_policy) {
1556 pol = vma->vm_policy;
1557
1558 /*
1559 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1560 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1561 * count on these policies which will be dropped by
1562 * mpol_cond_put() later
1563 */
1564 if (mpol_needs_cond_ref(pol))
1565 mpol_get(pol);
1566 }
1567 }
1568 if (!pol)
1569 pol = &default_policy;
1570 return pol;
1571}
1572
1573/*
1574 * Return a nodemask representing a mempolicy for filtering nodes for
1575 * page allocation
1576 */
1577static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1578{
1579 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1580 if (unlikely(policy->mode == MPOL_BIND) &&
1581 gfp_zone(gfp) >= policy_zone &&
1582 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1583 return &policy->v.nodes;
1584
1585 return NULL;
1586}
1587
1588/* Return a zonelist indicated by gfp for node representing a mempolicy */
1589static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1590 int nd)
1591{
1592 switch (policy->mode) {
1593 case MPOL_PREFERRED:
1594 if (!(policy->flags & MPOL_F_LOCAL))
1595 nd = policy->v.preferred_node;
1596 break;
1597 case MPOL_BIND:
1598 /*
1599 * Normally, MPOL_BIND allocations are node-local within the
1600 * allowed nodemask. However, if __GFP_THISNODE is set and the
1601 * current node isn't part of the mask, we use the zonelist for
1602 * the first node in the mask instead.
1603 */
1604 if (unlikely(gfp & __GFP_THISNODE) &&
1605 unlikely(!node_isset(nd, policy->v.nodes)))
1606 nd = first_node(policy->v.nodes);
1607 break;
1608 default:
1609 BUG();
1610 }
1611 return node_zonelist(nd, gfp);
1612}
1613
1614/* Do dynamic interleaving for a process */
1615static unsigned interleave_nodes(struct mempolicy *policy)
1616{
1617 unsigned nid, next;
1618 struct task_struct *me = current;
1619
1620 nid = me->il_next;
1621 next = next_node(nid, policy->v.nodes);
1622 if (next >= MAX_NUMNODES)
1623 next = first_node(policy->v.nodes);
1624 if (next < MAX_NUMNODES)
1625 me->il_next = next;
1626 return nid;
1627}
1628
1629/*
1630 * Depending on the memory policy provide a node from which to allocate the
1631 * next slab entry.
1632 * @policy must be protected by freeing by the caller. If @policy is
1633 * the current task's mempolicy, this protection is implicit, as only the
1634 * task can change it's policy. The system default policy requires no
1635 * such protection.
1636 */
1637unsigned slab_node(void)
1638{
1639 struct mempolicy *policy;
1640
1641 if (in_interrupt())
1642 return numa_node_id();
1643
1644 policy = current->mempolicy;
1645 if (!policy || policy->flags & MPOL_F_LOCAL)
1646 return numa_node_id();
1647
1648 switch (policy->mode) {
1649 case MPOL_PREFERRED:
1650 /*
1651 * handled MPOL_F_LOCAL above
1652 */
1653 return policy->v.preferred_node;
1654
1655 case MPOL_INTERLEAVE:
1656 return interleave_nodes(policy);
1657
1658 case MPOL_BIND: {
1659 /*
1660 * Follow bind policy behavior and start allocation at the
1661 * first node.
1662 */
1663 struct zonelist *zonelist;
1664 struct zone *zone;
1665 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1666 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1667 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1668 &policy->v.nodes,
1669 &zone);
1670 return zone ? zone->node : numa_node_id();
1671 }
1672
1673 default:
1674 BUG();
1675 }
1676}
1677
1678/* Do static interleaving for a VMA with known offset. */
1679static unsigned offset_il_node(struct mempolicy *pol,
1680 struct vm_area_struct *vma, unsigned long off)
1681{
1682 unsigned nnodes = nodes_weight(pol->v.nodes);
1683 unsigned target;
1684 int c;
1685 int nid = -1;
1686
1687 if (!nnodes)
1688 return numa_node_id();
1689 target = (unsigned int)off % nnodes;
1690 c = 0;
1691 do {
1692 nid = next_node(nid, pol->v.nodes);
1693 c++;
1694 } while (c <= target);
1695 return nid;
1696}
1697
1698/* Determine a node number for interleave */
1699static inline unsigned interleave_nid(struct mempolicy *pol,
1700 struct vm_area_struct *vma, unsigned long addr, int shift)
1701{
1702 if (vma) {
1703 unsigned long off;
1704
1705 /*
1706 * for small pages, there is no difference between
1707 * shift and PAGE_SHIFT, so the bit-shift is safe.
1708 * for huge pages, since vm_pgoff is in units of small
1709 * pages, we need to shift off the always 0 bits to get
1710 * a useful offset.
1711 */
1712 BUG_ON(shift < PAGE_SHIFT);
1713 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1714 off += (addr - vma->vm_start) >> shift;
1715 return offset_il_node(pol, vma, off);
1716 } else
1717 return interleave_nodes(pol);
1718}
1719
1720/*
1721 * Return the bit number of a random bit set in the nodemask.
1722 * (returns -1 if nodemask is empty)
1723 */
1724int node_random(const nodemask_t *maskp)
1725{
1726 int w, bit = -1;
1727
1728 w = nodes_weight(*maskp);
1729 if (w)
1730 bit = bitmap_ord_to_pos(maskp->bits,
1731 get_random_int() % w, MAX_NUMNODES);
1732 return bit;
1733}
1734
1735#ifdef CONFIG_HUGETLBFS
1736/*
1737 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1738 * @vma = virtual memory area whose policy is sought
1739 * @addr = address in @vma for shared policy lookup and interleave policy
1740 * @gfp_flags = for requested zone
1741 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1742 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1743 *
1744 * Returns a zonelist suitable for a huge page allocation and a pointer
1745 * to the struct mempolicy for conditional unref after allocation.
1746 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1747 * @nodemask for filtering the zonelist.
1748 *
1749 * Must be protected by get_mems_allowed()
1750 */
1751struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1752 gfp_t gfp_flags, struct mempolicy **mpol,
1753 nodemask_t **nodemask)
1754{
1755 struct zonelist *zl;
1756
1757 *mpol = get_vma_policy(current, vma, addr);
1758 *nodemask = NULL; /* assume !MPOL_BIND */
1759
1760 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1761 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1762 huge_page_shift(hstate_vma(vma))), gfp_flags);
1763 } else {
1764 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1765 if ((*mpol)->mode == MPOL_BIND)
1766 *nodemask = &(*mpol)->v.nodes;
1767 }
1768 return zl;
1769}
1770
1771/*
1772 * init_nodemask_of_mempolicy
1773 *
1774 * If the current task's mempolicy is "default" [NULL], return 'false'
1775 * to indicate default policy. Otherwise, extract the policy nodemask
1776 * for 'bind' or 'interleave' policy into the argument nodemask, or
1777 * initialize the argument nodemask to contain the single node for
1778 * 'preferred' or 'local' policy and return 'true' to indicate presence
1779 * of non-default mempolicy.
1780 *
1781 * We don't bother with reference counting the mempolicy [mpol_get/put]
1782 * because the current task is examining it's own mempolicy and a task's
1783 * mempolicy is only ever changed by the task itself.
1784 *
1785 * N.B., it is the caller's responsibility to free a returned nodemask.
1786 */
1787bool init_nodemask_of_mempolicy(nodemask_t *mask)
1788{
1789 struct mempolicy *mempolicy;
1790 int nid;
1791
1792 if (!(mask && current->mempolicy))
1793 return false;
1794
1795 task_lock(current);
1796 mempolicy = current->mempolicy;
1797 switch (mempolicy->mode) {
1798 case MPOL_PREFERRED:
1799 if (mempolicy->flags & MPOL_F_LOCAL)
1800 nid = numa_node_id();
1801 else
1802 nid = mempolicy->v.preferred_node;
1803 init_nodemask_of_node(mask, nid);
1804 break;
1805
1806 case MPOL_BIND:
1807 /* Fall through */
1808 case MPOL_INTERLEAVE:
1809 *mask = mempolicy->v.nodes;
1810 break;
1811
1812 default:
1813 BUG();
1814 }
1815 task_unlock(current);
1816
1817 return true;
1818}
1819#endif
1820
1821/*
1822 * mempolicy_nodemask_intersects
1823 *
1824 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1825 * policy. Otherwise, check for intersection between mask and the policy
1826 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1827 * policy, always return true since it may allocate elsewhere on fallback.
1828 *
1829 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1830 */
1831bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1832 const nodemask_t *mask)
1833{
1834 struct mempolicy *mempolicy;
1835 bool ret = true;
1836
1837 if (!mask)
1838 return ret;
1839 task_lock(tsk);
1840 mempolicy = tsk->mempolicy;
1841 if (!mempolicy)
1842 goto out;
1843
1844 switch (mempolicy->mode) {
1845 case MPOL_PREFERRED:
1846 /*
1847 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1848 * allocate from, they may fallback to other nodes when oom.
1849 * Thus, it's possible for tsk to have allocated memory from
1850 * nodes in mask.
1851 */
1852 break;
1853 case MPOL_BIND:
1854 case MPOL_INTERLEAVE:
1855 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1856 break;
1857 default:
1858 BUG();
1859 }
1860out:
1861 task_unlock(tsk);
1862 return ret;
1863}
1864
1865/* Allocate a page in interleaved policy.
1866 Own path because it needs to do special accounting. */
1867static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1868 unsigned nid)
1869{
1870 struct zonelist *zl;
1871 struct page *page;
1872
1873 zl = node_zonelist(nid, gfp);
1874 page = __alloc_pages(gfp, order, zl);
1875 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1876 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1877 return page;
1878}
1879
1880/**
1881 * alloc_pages_vma - Allocate a page for a VMA.
1882 *
1883 * @gfp:
1884 * %GFP_USER user allocation.
1885 * %GFP_KERNEL kernel allocations,
1886 * %GFP_HIGHMEM highmem/user allocations,
1887 * %GFP_FS allocation should not call back into a file system.
1888 * %GFP_ATOMIC don't sleep.
1889 *
1890 * @order:Order of the GFP allocation.
1891 * @vma: Pointer to VMA or NULL if not available.
1892 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1893 *
1894 * This function allocates a page from the kernel page pool and applies
1895 * a NUMA policy associated with the VMA or the current process.
1896 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1897 * mm_struct of the VMA to prevent it from going away. Should be used for
1898 * all allocations for pages that will be mapped into
1899 * user space. Returns NULL when no page can be allocated.
1900 *
1901 * Should be called with the mm_sem of the vma hold.
1902 */
1903struct page *
1904alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1905 unsigned long addr, int node)
1906{
1907 struct mempolicy *pol;
1908 struct zonelist *zl;
1909 struct page *page;
1910 unsigned int cpuset_mems_cookie;
1911
1912retry_cpuset:
1913 pol = get_vma_policy(current, vma, addr);
1914 cpuset_mems_cookie = get_mems_allowed();
1915
1916 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1917 unsigned nid;
1918
1919 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1920 mpol_cond_put(pol);
1921 page = alloc_page_interleave(gfp, order, nid);
1922 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1923 goto retry_cpuset;
1924
1925 return page;
1926 }
1927 zl = policy_zonelist(gfp, pol, node);
1928 if (unlikely(mpol_needs_cond_ref(pol))) {
1929 /*
1930 * slow path: ref counted shared policy
1931 */
1932 struct page *page = __alloc_pages_nodemask(gfp, order,
1933 zl, policy_nodemask(gfp, pol));
1934 __mpol_put(pol);
1935 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1936 goto retry_cpuset;
1937 return page;
1938 }
1939 /*
1940 * fast path: default or task policy
1941 */
1942 page = __alloc_pages_nodemask(gfp, order, zl,
1943 policy_nodemask(gfp, pol));
1944 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1945 goto retry_cpuset;
1946 return page;
1947}
1948
1949/**
1950 * alloc_pages_current - Allocate pages.
1951 *
1952 * @gfp:
1953 * %GFP_USER user allocation,
1954 * %GFP_KERNEL kernel allocation,
1955 * %GFP_HIGHMEM highmem allocation,
1956 * %GFP_FS don't call back into a file system.
1957 * %GFP_ATOMIC don't sleep.
1958 * @order: Power of two of allocation size in pages. 0 is a single page.
1959 *
1960 * Allocate a page from the kernel page pool. When not in
1961 * interrupt context and apply the current process NUMA policy.
1962 * Returns NULL when no page can be allocated.
1963 *
1964 * Don't call cpuset_update_task_memory_state() unless
1965 * 1) it's ok to take cpuset_sem (can WAIT), and
1966 * 2) allocating for current task (not interrupt).
1967 */
1968struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1969{
1970 struct mempolicy *pol = current->mempolicy;
1971 struct page *page;
1972 unsigned int cpuset_mems_cookie;
1973
1974 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1975 pol = &default_policy;
1976
1977retry_cpuset:
1978 cpuset_mems_cookie = get_mems_allowed();
1979
1980 /*
1981 * No reference counting needed for current->mempolicy
1982 * nor system default_policy
1983 */
1984 if (pol->mode == MPOL_INTERLEAVE)
1985 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1986 else
1987 page = __alloc_pages_nodemask(gfp, order,
1988 policy_zonelist(gfp, pol, numa_node_id()),
1989 policy_nodemask(gfp, pol));
1990
1991 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1992 goto retry_cpuset;
1993
1994 return page;
1995}
1996EXPORT_SYMBOL(alloc_pages_current);
1997
1998/*
1999 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2000 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2001 * with the mems_allowed returned by cpuset_mems_allowed(). This
2002 * keeps mempolicies cpuset relative after its cpuset moves. See
2003 * further kernel/cpuset.c update_nodemask().
2004 *
2005 * current's mempolicy may be rebinded by the other task(the task that changes
2006 * cpuset's mems), so we needn't do rebind work for current task.
2007 */
2008
2009/* Slow path of a mempolicy duplicate */
2010struct mempolicy *__mpol_dup(struct mempolicy *old)
2011{
2012 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2013
2014 if (!new)
2015 return ERR_PTR(-ENOMEM);
2016
2017 /* task's mempolicy is protected by alloc_lock */
2018 if (old == current->mempolicy) {
2019 task_lock(current);
2020 *new = *old;
2021 task_unlock(current);
2022 } else
2023 *new = *old;
2024
2025 rcu_read_lock();
2026 if (current_cpuset_is_being_rebound()) {
2027 nodemask_t mems = cpuset_mems_allowed(current);
2028 if (new->flags & MPOL_F_REBINDING)
2029 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2030 else
2031 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2032 }
2033 rcu_read_unlock();
2034 atomic_set(&new->refcnt, 1);
2035 return new;
2036}
2037
2038/*
2039 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2040 * eliminate the * MPOL_F_* flags that require conditional ref and
2041 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2042 * after return. Use the returned value.
2043 *
2044 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2045 * policy lookup, even if the policy needs/has extra ref on lookup.
2046 * shmem_readahead needs this.
2047 */
2048struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2049 struct mempolicy *frompol)
2050{
2051 if (!mpol_needs_cond_ref(frompol))
2052 return frompol;
2053
2054 *tompol = *frompol;
2055 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2056 __mpol_put(frompol);
2057 return tompol;
2058}
2059
2060/* Slow path of a mempolicy comparison */
2061bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2062{
2063 if (!a || !b)
2064 return false;
2065 if (a->mode != b->mode)
2066 return false;
2067 if (a->flags != b->flags)
2068 return false;
2069 if (mpol_store_user_nodemask(a))
2070 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2071 return false;
2072
2073 switch (a->mode) {
2074 case MPOL_BIND:
2075 /* Fall through */
2076 case MPOL_INTERLEAVE:
2077 return !!nodes_equal(a->v.nodes, b->v.nodes);
2078 case MPOL_PREFERRED:
2079 return a->v.preferred_node == b->v.preferred_node;
2080 default:
2081 BUG();
2082 return false;
2083 }
2084}
2085
2086/*
2087 * Shared memory backing store policy support.
2088 *
2089 * Remember policies even when nobody has shared memory mapped.
2090 * The policies are kept in Red-Black tree linked from the inode.
2091 * They are protected by the sp->lock spinlock, which should be held
2092 * for any accesses to the tree.
2093 */
2094
2095/* lookup first element intersecting start-end */
2096/* Caller holds sp->mutex */
2097static struct sp_node *
2098sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2099{
2100 struct rb_node *n = sp->root.rb_node;
2101
2102 while (n) {
2103 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2104
2105 if (start >= p->end)
2106 n = n->rb_right;
2107 else if (end <= p->start)
2108 n = n->rb_left;
2109 else
2110 break;
2111 }
2112 if (!n)
2113 return NULL;
2114 for (;;) {
2115 struct sp_node *w = NULL;
2116 struct rb_node *prev = rb_prev(n);
2117 if (!prev)
2118 break;
2119 w = rb_entry(prev, struct sp_node, nd);
2120 if (w->end <= start)
2121 break;
2122 n = prev;
2123 }
2124 return rb_entry(n, struct sp_node, nd);
2125}
2126
2127/* Insert a new shared policy into the list. */
2128/* Caller holds sp->lock */
2129static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2130{
2131 struct rb_node **p = &sp->root.rb_node;
2132 struct rb_node *parent = NULL;
2133 struct sp_node *nd;
2134
2135 while (*p) {
2136 parent = *p;
2137 nd = rb_entry(parent, struct sp_node, nd);
2138 if (new->start < nd->start)
2139 p = &(*p)->rb_left;
2140 else if (new->end > nd->end)
2141 p = &(*p)->rb_right;
2142 else
2143 BUG();
2144 }
2145 rb_link_node(&new->nd, parent, p);
2146 rb_insert_color(&new->nd, &sp->root);
2147 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2148 new->policy ? new->policy->mode : 0);
2149}
2150
2151/* Find shared policy intersecting idx */
2152struct mempolicy *
2153mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2154{
2155 struct mempolicy *pol = NULL;
2156 struct sp_node *sn;
2157
2158 if (!sp->root.rb_node)
2159 return NULL;
2160 mutex_lock(&sp->mutex);
2161 sn = sp_lookup(sp, idx, idx+1);
2162 if (sn) {
2163 mpol_get(sn->policy);
2164 pol = sn->policy;
2165 }
2166 mutex_unlock(&sp->mutex);
2167 return pol;
2168}
2169
2170static void sp_free(struct sp_node *n)
2171{
2172 mpol_put(n->policy);
2173 kmem_cache_free(sn_cache, n);
2174}
2175
2176static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2177{
2178 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2179 rb_erase(&n->nd, &sp->root);
2180 sp_free(n);
2181}
2182
2183static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2184 struct mempolicy *pol)
2185{
2186 struct sp_node *n;
2187 struct mempolicy *newpol;
2188
2189 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2190 if (!n)
2191 return NULL;
2192
2193 newpol = mpol_dup(pol);
2194 if (IS_ERR(newpol)) {
2195 kmem_cache_free(sn_cache, n);
2196 return NULL;
2197 }
2198 newpol->flags |= MPOL_F_SHARED;
2199
2200 n->start = start;
2201 n->end = end;
2202 n->policy = newpol;
2203
2204 return n;
2205}
2206
2207/* Replace a policy range. */
2208static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2209 unsigned long end, struct sp_node *new)
2210{
2211 struct sp_node *n;
2212 int ret = 0;
2213
2214 mutex_lock(&sp->mutex);
2215 n = sp_lookup(sp, start, end);
2216 /* Take care of old policies in the same range. */
2217 while (n && n->start < end) {
2218 struct rb_node *next = rb_next(&n->nd);
2219 if (n->start >= start) {
2220 if (n->end <= end)
2221 sp_delete(sp, n);
2222 else
2223 n->start = end;
2224 } else {
2225 /* Old policy spanning whole new range. */
2226 if (n->end > end) {
2227 struct sp_node *new2;
2228 new2 = sp_alloc(end, n->end, n->policy);
2229 if (!new2) {
2230 ret = -ENOMEM;
2231 goto out;
2232 }
2233 n->end = start;
2234 sp_insert(sp, new2);
2235 break;
2236 } else
2237 n->end = start;
2238 }
2239 if (!next)
2240 break;
2241 n = rb_entry(next, struct sp_node, nd);
2242 }
2243 if (new)
2244 sp_insert(sp, new);
2245out:
2246 mutex_unlock(&sp->mutex);
2247 return ret;
2248}
2249
2250/**
2251 * mpol_shared_policy_init - initialize shared policy for inode
2252 * @sp: pointer to inode shared policy
2253 * @mpol: struct mempolicy to install
2254 *
2255 * Install non-NULL @mpol in inode's shared policy rb-tree.
2256 * On entry, the current task has a reference on a non-NULL @mpol.
2257 * This must be released on exit.
2258 * This is called at get_inode() calls and we can use GFP_KERNEL.
2259 */
2260void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2261{
2262 int ret;
2263
2264 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2265 mutex_init(&sp->mutex);
2266
2267 if (mpol) {
2268 struct vm_area_struct pvma;
2269 struct mempolicy *new;
2270 NODEMASK_SCRATCH(scratch);
2271
2272 if (!scratch)
2273 goto put_mpol;
2274 /* contextualize the tmpfs mount point mempolicy */
2275 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2276 if (IS_ERR(new))
2277 goto free_scratch; /* no valid nodemask intersection */
2278
2279 task_lock(current);
2280 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2281 task_unlock(current);
2282 if (ret)
2283 goto put_new;
2284
2285 /* Create pseudo-vma that contains just the policy */
2286 memset(&pvma, 0, sizeof(struct vm_area_struct));
2287 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2288 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2289
2290put_new:
2291 mpol_put(new); /* drop initial ref */
2292free_scratch:
2293 NODEMASK_SCRATCH_FREE(scratch);
2294put_mpol:
2295 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2296 }
2297}
2298
2299int mpol_set_shared_policy(struct shared_policy *info,
2300 struct vm_area_struct *vma, struct mempolicy *npol)
2301{
2302 int err;
2303 struct sp_node *new = NULL;
2304 unsigned long sz = vma_pages(vma);
2305
2306 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2307 vma->vm_pgoff,
2308 sz, npol ? npol->mode : -1,
2309 npol ? npol->flags : -1,
2310 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2311
2312 if (npol) {
2313 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2314 if (!new)
2315 return -ENOMEM;
2316 }
2317 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2318 if (err && new)
2319 sp_free(new);
2320 return err;
2321}
2322
2323/* Free a backing policy store on inode delete. */
2324void mpol_free_shared_policy(struct shared_policy *p)
2325{
2326 struct sp_node *n;
2327 struct rb_node *next;
2328
2329 if (!p->root.rb_node)
2330 return;
2331 mutex_lock(&p->mutex);
2332 next = rb_first(&p->root);
2333 while (next) {
2334 n = rb_entry(next, struct sp_node, nd);
2335 next = rb_next(&n->nd);
2336 sp_delete(p, n);
2337 }
2338 mutex_unlock(&p->mutex);
2339}
2340
2341/* assumes fs == KERNEL_DS */
2342void __init numa_policy_init(void)
2343{
2344 nodemask_t interleave_nodes;
2345 unsigned long largest = 0;
2346 int nid, prefer = 0;
2347
2348 policy_cache = kmem_cache_create("numa_policy",
2349 sizeof(struct mempolicy),
2350 0, SLAB_PANIC, NULL);
2351
2352 sn_cache = kmem_cache_create("shared_policy_node",
2353 sizeof(struct sp_node),
2354 0, SLAB_PANIC, NULL);
2355
2356 /*
2357 * Set interleaving policy for system init. Interleaving is only
2358 * enabled across suitably sized nodes (default is >= 16MB), or
2359 * fall back to the largest node if they're all smaller.
2360 */
2361 nodes_clear(interleave_nodes);
2362 for_each_node_state(nid, N_HIGH_MEMORY) {
2363 unsigned long total_pages = node_present_pages(nid);
2364
2365 /* Preserve the largest node */
2366 if (largest < total_pages) {
2367 largest = total_pages;
2368 prefer = nid;
2369 }
2370
2371 /* Interleave this node? */
2372 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2373 node_set(nid, interleave_nodes);
2374 }
2375
2376 /* All too small, use the largest */
2377 if (unlikely(nodes_empty(interleave_nodes)))
2378 node_set(prefer, interleave_nodes);
2379
2380 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2381 printk("numa_policy_init: interleaving failed\n");
2382}
2383
2384/* Reset policy of current process to default */
2385void numa_default_policy(void)
2386{
2387 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2388}
2389
2390/*
2391 * Parse and format mempolicy from/to strings
2392 */
2393
2394/*
2395 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2396 * Used only for mpol_parse_str() and mpol_to_str()
2397 */
2398#define MPOL_LOCAL MPOL_MAX
2399static const char * const policy_modes[] =
2400{
2401 [MPOL_DEFAULT] = "default",
2402 [MPOL_PREFERRED] = "prefer",
2403 [MPOL_BIND] = "bind",
2404 [MPOL_INTERLEAVE] = "interleave",
2405 [MPOL_LOCAL] = "local"
2406};
2407
2408
2409#ifdef CONFIG_TMPFS
2410/**
2411 * mpol_parse_str - parse string to mempolicy
2412 * @str: string containing mempolicy to parse
2413 * @mpol: pointer to struct mempolicy pointer, returned on success.
2414 * @no_context: flag whether to "contextualize" the mempolicy
2415 *
2416 * Format of input:
2417 * <mode>[=<flags>][:<nodelist>]
2418 *
2419 * if @no_context is true, save the input nodemask in w.user_nodemask in
2420 * the returned mempolicy. This will be used to "clone" the mempolicy in
2421 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2422 * mount option. Note that if 'static' or 'relative' mode flags were
2423 * specified, the input nodemask will already have been saved. Saving
2424 * it again is redundant, but safe.
2425 *
2426 * On success, returns 0, else 1
2427 */
2428int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2429{
2430 struct mempolicy *new = NULL;
2431 unsigned short mode;
2432 unsigned short uninitialized_var(mode_flags);
2433 nodemask_t nodes;
2434 char *nodelist = strchr(str, ':');
2435 char *flags = strchr(str, '=');
2436 int err = 1;
2437
2438 if (nodelist) {
2439 /* NUL-terminate mode or flags string */
2440 *nodelist++ = '\0';
2441 if (nodelist_parse(nodelist, nodes))
2442 goto out;
2443 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2444 goto out;
2445 } else
2446 nodes_clear(nodes);
2447
2448 if (flags)
2449 *flags++ = '\0'; /* terminate mode string */
2450
2451 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2452 if (!strcmp(str, policy_modes[mode])) {
2453 break;
2454 }
2455 }
2456 if (mode > MPOL_LOCAL)
2457 goto out;
2458
2459 switch (mode) {
2460 case MPOL_PREFERRED:
2461 /*
2462 * Insist on a nodelist of one node only
2463 */
2464 if (nodelist) {
2465 char *rest = nodelist;
2466 while (isdigit(*rest))
2467 rest++;
2468 if (*rest)
2469 goto out;
2470 }
2471 break;
2472 case MPOL_INTERLEAVE:
2473 /*
2474 * Default to online nodes with memory if no nodelist
2475 */
2476 if (!nodelist)
2477 nodes = node_states[N_HIGH_MEMORY];
2478 break;
2479 case MPOL_LOCAL:
2480 /*
2481 * Don't allow a nodelist; mpol_new() checks flags
2482 */
2483 if (nodelist)
2484 goto out;
2485 mode = MPOL_PREFERRED;
2486 break;
2487 case MPOL_DEFAULT:
2488 /*
2489 * Insist on a empty nodelist
2490 */
2491 if (!nodelist)
2492 err = 0;
2493 goto out;
2494 case MPOL_BIND:
2495 /*
2496 * Insist on a nodelist
2497 */
2498 if (!nodelist)
2499 goto out;
2500 }
2501
2502 mode_flags = 0;
2503 if (flags) {
2504 /*
2505 * Currently, we only support two mutually exclusive
2506 * mode flags.
2507 */
2508 if (!strcmp(flags, "static"))
2509 mode_flags |= MPOL_F_STATIC_NODES;
2510 else if (!strcmp(flags, "relative"))
2511 mode_flags |= MPOL_F_RELATIVE_NODES;
2512 else
2513 goto out;
2514 }
2515
2516 new = mpol_new(mode, mode_flags, &nodes);
2517 if (IS_ERR(new))
2518 goto out;
2519
2520 if (no_context) {
2521 /* save for contextualization */
2522 new->w.user_nodemask = nodes;
2523 } else {
2524 int ret;
2525 NODEMASK_SCRATCH(scratch);
2526 if (scratch) {
2527 task_lock(current);
2528 ret = mpol_set_nodemask(new, &nodes, scratch);
2529 task_unlock(current);
2530 } else
2531 ret = -ENOMEM;
2532 NODEMASK_SCRATCH_FREE(scratch);
2533 if (ret) {
2534 mpol_put(new);
2535 goto out;
2536 }
2537 }
2538 err = 0;
2539
2540out:
2541 /* Restore string for error message */
2542 if (nodelist)
2543 *--nodelist = ':';
2544 if (flags)
2545 *--flags = '=';
2546 if (!err)
2547 *mpol = new;
2548 return err;
2549}
2550#endif /* CONFIG_TMPFS */
2551
2552/**
2553 * mpol_to_str - format a mempolicy structure for printing
2554 * @buffer: to contain formatted mempolicy string
2555 * @maxlen: length of @buffer
2556 * @pol: pointer to mempolicy to be formatted
2557 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2558 *
2559 * Convert a mempolicy into a string.
2560 * Returns the number of characters in buffer (if positive)
2561 * or an error (negative)
2562 */
2563int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2564{
2565 char *p = buffer;
2566 int l;
2567 nodemask_t nodes;
2568 unsigned short mode;
2569 unsigned short flags = pol ? pol->flags : 0;
2570
2571 /*
2572 * Sanity check: room for longest mode, flag and some nodes
2573 */
2574 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2575
2576 if (!pol || pol == &default_policy)
2577 mode = MPOL_DEFAULT;
2578 else
2579 mode = pol->mode;
2580
2581 switch (mode) {
2582 case MPOL_DEFAULT:
2583 nodes_clear(nodes);
2584 break;
2585
2586 case MPOL_PREFERRED:
2587 nodes_clear(nodes);
2588 if (flags & MPOL_F_LOCAL)
2589 mode = MPOL_LOCAL; /* pseudo-policy */
2590 else
2591 node_set(pol->v.preferred_node, nodes);
2592 break;
2593
2594 case MPOL_BIND:
2595 /* Fall through */
2596 case MPOL_INTERLEAVE:
2597 if (no_context)
2598 nodes = pol->w.user_nodemask;
2599 else
2600 nodes = pol->v.nodes;
2601 break;
2602
2603 default:
2604 return -EINVAL;
2605 }
2606
2607 l = strlen(policy_modes[mode]);
2608 if (buffer + maxlen < p + l + 1)
2609 return -ENOSPC;
2610
2611 strcpy(p, policy_modes[mode]);
2612 p += l;
2613
2614 if (flags & MPOL_MODE_FLAGS) {
2615 if (buffer + maxlen < p + 2)
2616 return -ENOSPC;
2617 *p++ = '=';
2618
2619 /*
2620 * Currently, the only defined flags are mutually exclusive
2621 */
2622 if (flags & MPOL_F_STATIC_NODES)
2623 p += snprintf(p, buffer + maxlen - p, "static");
2624 else if (flags & MPOL_F_RELATIVE_NODES)
2625 p += snprintf(p, buffer + maxlen - p, "relative");
2626 }
2627
2628 if (!nodes_empty(nodes)) {
2629 if (buffer + maxlen < p + 2)
2630 return -ENOSPC;
2631 *p++ = ':';
2632 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2633 }
2634 return p - buffer;
2635}