]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/mempolicy.c
mempolicy: sanitize the usage of get_task_policy()
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/mm.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/nodemask.h>
77#include <linux/cpuset.h>
78#include <linux/slab.h>
79#include <linux/string.h>
80#include <linux/export.h>
81#include <linux/nsproxy.h>
82#include <linux/interrupt.h>
83#include <linux/init.h>
84#include <linux/compat.h>
85#include <linux/swap.h>
86#include <linux/seq_file.h>
87#include <linux/proc_fs.h>
88#include <linux/migrate.h>
89#include <linux/ksm.h>
90#include <linux/rmap.h>
91#include <linux/security.h>
92#include <linux/syscalls.h>
93#include <linux/ctype.h>
94#include <linux/mm_inline.h>
95#include <linux/mmu_notifier.h>
96#include <linux/printk.h>
97
98#include <asm/tlbflush.h>
99#include <asm/uaccess.h>
100#include <linux/random.h>
101
102#include "internal.h"
103
104/* Internal flags */
105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108static struct kmem_cache *policy_cache;
109static struct kmem_cache *sn_cache;
110
111/* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113enum zone_type policy_zone = 0;
114
115/*
116 * run-time system-wide default policy => local allocation
117 */
118static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122};
123
124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126static struct mempolicy *get_task_policy(struct task_struct *p)
127{
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143}
144
145static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163} mpol_ops[MPOL_MAX];
164
165/* Check that the nodemask contains at least one populated zone */
166static int is_valid_nodemask(const nodemask_t *nodemask)
167{
168 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169}
170
171static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172{
173 return pol->flags & MPOL_MODE_FLAGS;
174}
175
176static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 const nodemask_t *rel)
178{
179 nodemask_t tmp;
180 nodes_fold(tmp, *orig, nodes_weight(*rel));
181 nodes_onto(*ret, tmp, *rel);
182}
183
184static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185{
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190}
191
192static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193{
194 if (!nodes)
195 pol->flags |= MPOL_F_LOCAL; /* local allocation */
196 else if (nodes_empty(*nodes))
197 return -EINVAL; /* no allowed nodes */
198 else
199 pol->v.preferred_node = first_node(*nodes);
200 return 0;
201}
202
203static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204{
205 if (!is_valid_nodemask(nodes))
206 return -EINVAL;
207 pol->v.nodes = *nodes;
208 return 0;
209}
210
211/*
212 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213 * any, for the new policy. mpol_new() has already validated the nodes
214 * parameter with respect to the policy mode and flags. But, we need to
215 * handle an empty nodemask with MPOL_PREFERRED here.
216 *
217 * Must be called holding task's alloc_lock to protect task's mems_allowed
218 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 */
220static int mpol_set_nodemask(struct mempolicy *pol,
221 const nodemask_t *nodes, struct nodemask_scratch *nsc)
222{
223 int ret;
224
225 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 if (pol == NULL)
227 return 0;
228 /* Check N_MEMORY */
229 nodes_and(nsc->mask1,
230 cpuset_current_mems_allowed, node_states[N_MEMORY]);
231
232 VM_BUG_ON(!nodes);
233 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 nodes = NULL; /* explicit local allocation */
235 else {
236 if (pol->flags & MPOL_F_RELATIVE_NODES)
237 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 else
239 nodes_and(nsc->mask2, *nodes, nsc->mask1);
240
241 if (mpol_store_user_nodemask(pol))
242 pol->w.user_nodemask = *nodes;
243 else
244 pol->w.cpuset_mems_allowed =
245 cpuset_current_mems_allowed;
246 }
247
248 if (nodes)
249 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 else
251 ret = mpol_ops[pol->mode].create(pol, NULL);
252 return ret;
253}
254
255/*
256 * This function just creates a new policy, does some check and simple
257 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 */
259static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 nodemask_t *nodes)
261{
262 struct mempolicy *policy;
263
264 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266
267 if (mode == MPOL_DEFAULT) {
268 if (nodes && !nodes_empty(*nodes))
269 return ERR_PTR(-EINVAL);
270 return NULL;
271 }
272 VM_BUG_ON(!nodes);
273
274 /*
275 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 * All other modes require a valid pointer to a non-empty nodemask.
278 */
279 if (mode == MPOL_PREFERRED) {
280 if (nodes_empty(*nodes)) {
281 if (((flags & MPOL_F_STATIC_NODES) ||
282 (flags & MPOL_F_RELATIVE_NODES)))
283 return ERR_PTR(-EINVAL);
284 }
285 } else if (mode == MPOL_LOCAL) {
286 if (!nodes_empty(*nodes))
287 return ERR_PTR(-EINVAL);
288 mode = MPOL_PREFERRED;
289 } else if (nodes_empty(*nodes))
290 return ERR_PTR(-EINVAL);
291 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 if (!policy)
293 return ERR_PTR(-ENOMEM);
294 atomic_set(&policy->refcnt, 1);
295 policy->mode = mode;
296 policy->flags = flags;
297
298 return policy;
299}
300
301/* Slow path of a mpol destructor. */
302void __mpol_put(struct mempolicy *p)
303{
304 if (!atomic_dec_and_test(&p->refcnt))
305 return;
306 kmem_cache_free(policy_cache, p);
307}
308
309static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 enum mpol_rebind_step step)
311{
312}
313
314/*
315 * step:
316 * MPOL_REBIND_ONCE - do rebind work at once
317 * MPOL_REBIND_STEP1 - set all the newly nodes
318 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 */
320static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 enum mpol_rebind_step step)
322{
323 nodemask_t tmp;
324
325 if (pol->flags & MPOL_F_STATIC_NODES)
326 nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 else {
330 /*
331 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 * result
333 */
334 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 nodes_remap(tmp, pol->v.nodes,
336 pol->w.cpuset_mems_allowed, *nodes);
337 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 } else if (step == MPOL_REBIND_STEP2) {
339 tmp = pol->w.cpuset_mems_allowed;
340 pol->w.cpuset_mems_allowed = *nodes;
341 } else
342 BUG();
343 }
344
345 if (nodes_empty(tmp))
346 tmp = *nodes;
347
348 if (step == MPOL_REBIND_STEP1)
349 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 pol->v.nodes = tmp;
352 else
353 BUG();
354
355 if (!node_isset(current->il_next, tmp)) {
356 current->il_next = next_node(current->il_next, tmp);
357 if (current->il_next >= MAX_NUMNODES)
358 current->il_next = first_node(tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = numa_node_id();
361 }
362}
363
364static void mpol_rebind_preferred(struct mempolicy *pol,
365 const nodemask_t *nodes,
366 enum mpol_rebind_step step)
367{
368 nodemask_t tmp;
369
370 if (pol->flags & MPOL_F_STATIC_NODES) {
371 int node = first_node(pol->w.user_nodemask);
372
373 if (node_isset(node, *nodes)) {
374 pol->v.preferred_node = node;
375 pol->flags &= ~MPOL_F_LOCAL;
376 } else
377 pol->flags |= MPOL_F_LOCAL;
378 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 pol->v.preferred_node = first_node(tmp);
381 } else if (!(pol->flags & MPOL_F_LOCAL)) {
382 pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 pol->w.cpuset_mems_allowed,
384 *nodes);
385 pol->w.cpuset_mems_allowed = *nodes;
386 }
387}
388
389/*
390 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 *
392 * If read-side task has no lock to protect task->mempolicy, write-side
393 * task will rebind the task->mempolicy by two step. The first step is
394 * setting all the newly nodes, and the second step is cleaning all the
395 * disallowed nodes. In this way, we can avoid finding no node to alloc
396 * page.
397 * If we have a lock to protect task->mempolicy in read-side, we do
398 * rebind directly.
399 *
400 * step:
401 * MPOL_REBIND_ONCE - do rebind work at once
402 * MPOL_REBIND_STEP1 - set all the newly nodes
403 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 */
405static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 enum mpol_rebind_step step)
407{
408 if (!pol)
409 return;
410 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 return;
413
414 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 return;
416
417 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 BUG();
419
420 if (step == MPOL_REBIND_STEP1)
421 pol->flags |= MPOL_F_REBINDING;
422 else if (step == MPOL_REBIND_STEP2)
423 pol->flags &= ~MPOL_F_REBINDING;
424 else if (step >= MPOL_REBIND_NSTEP)
425 BUG();
426
427 mpol_ops[pol->mode].rebind(pol, newmask, step);
428}
429
430/*
431 * Wrapper for mpol_rebind_policy() that just requires task
432 * pointer, and updates task mempolicy.
433 *
434 * Called with task's alloc_lock held.
435 */
436
437void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 enum mpol_rebind_step step)
439{
440 mpol_rebind_policy(tsk->mempolicy, new, step);
441}
442
443/*
444 * Rebind each vma in mm to new nodemask.
445 *
446 * Call holding a reference to mm. Takes mm->mmap_sem during call.
447 */
448
449void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450{
451 struct vm_area_struct *vma;
452
453 down_write(&mm->mmap_sem);
454 for (vma = mm->mmap; vma; vma = vma->vm_next)
455 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 up_write(&mm->mmap_sem);
457}
458
459static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 [MPOL_DEFAULT] = {
461 .rebind = mpol_rebind_default,
462 },
463 [MPOL_INTERLEAVE] = {
464 .create = mpol_new_interleave,
465 .rebind = mpol_rebind_nodemask,
466 },
467 [MPOL_PREFERRED] = {
468 .create = mpol_new_preferred,
469 .rebind = mpol_rebind_preferred,
470 },
471 [MPOL_BIND] = {
472 .create = mpol_new_bind,
473 .rebind = mpol_rebind_nodemask,
474 },
475};
476
477static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 unsigned long flags);
479
480/*
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
483 */
484static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 unsigned long addr, unsigned long end,
486 const nodemask_t *nodes, unsigned long flags,
487 void *private)
488{
489 pte_t *orig_pte;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 do {
495 struct page *page;
496 int nid;
497
498 if (!pte_present(*pte))
499 continue;
500 page = vm_normal_page(vma, addr, *pte);
501 if (!page)
502 continue;
503 /*
504 * vm_normal_page() filters out zero pages, but there might
505 * still be PageReserved pages to skip, perhaps in a VDSO.
506 */
507 if (PageReserved(page))
508 continue;
509 nid = page_to_nid(page);
510 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 continue;
512
513 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 migrate_page_add(page, private, flags);
515 else
516 break;
517 } while (pte++, addr += PAGE_SIZE, addr != end);
518 pte_unmap_unlock(orig_pte, ptl);
519 return addr != end;
520}
521
522static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 void *private)
525{
526#ifdef CONFIG_HUGETLB_PAGE
527 int nid;
528 struct page *page;
529 spinlock_t *ptl;
530 pte_t entry;
531
532 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 entry = huge_ptep_get((pte_t *)pmd);
534 if (!pte_present(entry))
535 goto unlock;
536 page = pte_page(entry);
537 nid = page_to_nid(page);
538 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 goto unlock;
540 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 if (flags & (MPOL_MF_MOVE_ALL) ||
542 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 isolate_huge_page(page, private);
544unlock:
545 spin_unlock(ptl);
546#else
547 BUG();
548#endif
549}
550
551static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 unsigned long addr, unsigned long end,
553 const nodemask_t *nodes, unsigned long flags,
554 void *private)
555{
556 pmd_t *pmd;
557 unsigned long next;
558
559 pmd = pmd_offset(pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 if (!pmd_present(*pmd))
563 continue;
564 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 flags, private);
567 continue;
568 }
569 split_huge_page_pmd(vma, addr, pmd);
570 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 continue;
572 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 flags, private))
574 return -EIO;
575 } while (pmd++, addr = next, addr != end);
576 return 0;
577}
578
579static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 const nodemask_t *nodes, unsigned long flags,
582 void *private)
583{
584 pud_t *pud;
585 unsigned long next;
586
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 continue;
592 if (pud_none_or_clear_bad(pud))
593 continue;
594 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 flags, private))
596 return -EIO;
597 } while (pud++, addr = next, addr != end);
598 return 0;
599}
600
601static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end,
603 const nodemask_t *nodes, unsigned long flags,
604 void *private)
605{
606 pgd_t *pgd;
607 unsigned long next;
608
609 pgd = pgd_offset(vma->vm_mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 flags, private))
616 return -EIO;
617 } while (pgd++, addr = next, addr != end);
618 return 0;
619}
620
621#ifdef CONFIG_NUMA_BALANCING
622/*
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
626 *
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
630 */
631unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633{
634 int nr_updated;
635
636 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 if (nr_updated)
638 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639
640 return nr_updated;
641}
642#else
643static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
645{
646 return 0;
647}
648#endif /* CONFIG_NUMA_BALANCING */
649
650/*
651 * Walk through page tables and collect pages to be migrated.
652 *
653 * If pages found in a given range are on a set of nodes (determined by
654 * @nodes and @flags,) it's isolated and queued to the pagelist which is
655 * passed via @private.)
656 */
657static int
658queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 const nodemask_t *nodes, unsigned long flags, void *private)
660{
661 int err = 0;
662 struct vm_area_struct *vma, *prev;
663
664 vma = find_vma(mm, start);
665 if (!vma)
666 return -EFAULT;
667 prev = NULL;
668 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 unsigned long endvma = vma->vm_end;
670
671 if (endvma > end)
672 endvma = end;
673 if (vma->vm_start > start)
674 start = vma->vm_start;
675
676 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 if (!vma->vm_next && vma->vm_end < end)
678 return -EFAULT;
679 if (prev && prev->vm_end < vma->vm_start)
680 return -EFAULT;
681 }
682
683 if (flags & MPOL_MF_LAZY) {
684 change_prot_numa(vma, start, endvma);
685 goto next;
686 }
687
688 if ((flags & MPOL_MF_STRICT) ||
689 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
690 vma_migratable(vma))) {
691
692 err = queue_pages_pgd_range(vma, start, endvma, nodes,
693 flags, private);
694 if (err)
695 break;
696 }
697next:
698 prev = vma;
699 }
700 return err;
701}
702
703/*
704 * Apply policy to a single VMA
705 * This must be called with the mmap_sem held for writing.
706 */
707static int vma_replace_policy(struct vm_area_struct *vma,
708 struct mempolicy *pol)
709{
710 int err;
711 struct mempolicy *old;
712 struct mempolicy *new;
713
714 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
715 vma->vm_start, vma->vm_end, vma->vm_pgoff,
716 vma->vm_ops, vma->vm_file,
717 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
718
719 new = mpol_dup(pol);
720 if (IS_ERR(new))
721 return PTR_ERR(new);
722
723 if (vma->vm_ops && vma->vm_ops->set_policy) {
724 err = vma->vm_ops->set_policy(vma, new);
725 if (err)
726 goto err_out;
727 }
728
729 old = vma->vm_policy;
730 vma->vm_policy = new; /* protected by mmap_sem */
731 mpol_put(old);
732
733 return 0;
734 err_out:
735 mpol_put(new);
736 return err;
737}
738
739/* Step 2: apply policy to a range and do splits. */
740static int mbind_range(struct mm_struct *mm, unsigned long start,
741 unsigned long end, struct mempolicy *new_pol)
742{
743 struct vm_area_struct *next;
744 struct vm_area_struct *prev;
745 struct vm_area_struct *vma;
746 int err = 0;
747 pgoff_t pgoff;
748 unsigned long vmstart;
749 unsigned long vmend;
750
751 vma = find_vma(mm, start);
752 if (!vma || vma->vm_start > start)
753 return -EFAULT;
754
755 prev = vma->vm_prev;
756 if (start > vma->vm_start)
757 prev = vma;
758
759 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
760 next = vma->vm_next;
761 vmstart = max(start, vma->vm_start);
762 vmend = min(end, vma->vm_end);
763
764 if (mpol_equal(vma_policy(vma), new_pol))
765 continue;
766
767 pgoff = vma->vm_pgoff +
768 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
769 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
770 vma->anon_vma, vma->vm_file, pgoff,
771 new_pol);
772 if (prev) {
773 vma = prev;
774 next = vma->vm_next;
775 if (mpol_equal(vma_policy(vma), new_pol))
776 continue;
777 /* vma_merge() joined vma && vma->next, case 8 */
778 goto replace;
779 }
780 if (vma->vm_start != vmstart) {
781 err = split_vma(vma->vm_mm, vma, vmstart, 1);
782 if (err)
783 goto out;
784 }
785 if (vma->vm_end != vmend) {
786 err = split_vma(vma->vm_mm, vma, vmend, 0);
787 if (err)
788 goto out;
789 }
790 replace:
791 err = vma_replace_policy(vma, new_pol);
792 if (err)
793 goto out;
794 }
795
796 out:
797 return err;
798}
799
800/* Set the process memory policy */
801static long do_set_mempolicy(unsigned short mode, unsigned short flags,
802 nodemask_t *nodes)
803{
804 struct mempolicy *new, *old;
805 struct mm_struct *mm = current->mm;
806 NODEMASK_SCRATCH(scratch);
807 int ret;
808
809 if (!scratch)
810 return -ENOMEM;
811
812 new = mpol_new(mode, flags, nodes);
813 if (IS_ERR(new)) {
814 ret = PTR_ERR(new);
815 goto out;
816 }
817 /*
818 * prevent changing our mempolicy while show_numa_maps()
819 * is using it.
820 * Note: do_set_mempolicy() can be called at init time
821 * with no 'mm'.
822 */
823 if (mm)
824 down_write(&mm->mmap_sem);
825 task_lock(current);
826 ret = mpol_set_nodemask(new, nodes, scratch);
827 if (ret) {
828 task_unlock(current);
829 if (mm)
830 up_write(&mm->mmap_sem);
831 mpol_put(new);
832 goto out;
833 }
834 old = current->mempolicy;
835 current->mempolicy = new;
836 if (new && new->mode == MPOL_INTERLEAVE &&
837 nodes_weight(new->v.nodes))
838 current->il_next = first_node(new->v.nodes);
839 task_unlock(current);
840 if (mm)
841 up_write(&mm->mmap_sem);
842
843 mpol_put(old);
844 ret = 0;
845out:
846 NODEMASK_SCRATCH_FREE(scratch);
847 return ret;
848}
849
850/*
851 * Return nodemask for policy for get_mempolicy() query
852 *
853 * Called with task's alloc_lock held
854 */
855static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
856{
857 nodes_clear(*nodes);
858 if (p == &default_policy)
859 return;
860
861 switch (p->mode) {
862 case MPOL_BIND:
863 /* Fall through */
864 case MPOL_INTERLEAVE:
865 *nodes = p->v.nodes;
866 break;
867 case MPOL_PREFERRED:
868 if (!(p->flags & MPOL_F_LOCAL))
869 node_set(p->v.preferred_node, *nodes);
870 /* else return empty node mask for local allocation */
871 break;
872 default:
873 BUG();
874 }
875}
876
877static int lookup_node(struct mm_struct *mm, unsigned long addr)
878{
879 struct page *p;
880 int err;
881
882 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
883 if (err >= 0) {
884 err = page_to_nid(p);
885 put_page(p);
886 }
887 return err;
888}
889
890/* Retrieve NUMA policy */
891static long do_get_mempolicy(int *policy, nodemask_t *nmask,
892 unsigned long addr, unsigned long flags)
893{
894 int err;
895 struct mm_struct *mm = current->mm;
896 struct vm_area_struct *vma = NULL;
897 struct mempolicy *pol = current->mempolicy;
898
899 if (flags &
900 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
901 return -EINVAL;
902
903 if (flags & MPOL_F_MEMS_ALLOWED) {
904 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
905 return -EINVAL;
906 *policy = 0; /* just so it's initialized */
907 task_lock(current);
908 *nmask = cpuset_current_mems_allowed;
909 task_unlock(current);
910 return 0;
911 }
912
913 if (flags & MPOL_F_ADDR) {
914 /*
915 * Do NOT fall back to task policy if the
916 * vma/shared policy at addr is NULL. We
917 * want to return MPOL_DEFAULT in this case.
918 */
919 down_read(&mm->mmap_sem);
920 vma = find_vma_intersection(mm, addr, addr+1);
921 if (!vma) {
922 up_read(&mm->mmap_sem);
923 return -EFAULT;
924 }
925 if (vma->vm_ops && vma->vm_ops->get_policy)
926 pol = vma->vm_ops->get_policy(vma, addr);
927 else
928 pol = vma->vm_policy;
929 } else if (addr)
930 return -EINVAL;
931
932 if (!pol)
933 pol = &default_policy; /* indicates default behavior */
934
935 if (flags & MPOL_F_NODE) {
936 if (flags & MPOL_F_ADDR) {
937 err = lookup_node(mm, addr);
938 if (err < 0)
939 goto out;
940 *policy = err;
941 } else if (pol == current->mempolicy &&
942 pol->mode == MPOL_INTERLEAVE) {
943 *policy = current->il_next;
944 } else {
945 err = -EINVAL;
946 goto out;
947 }
948 } else {
949 *policy = pol == &default_policy ? MPOL_DEFAULT :
950 pol->mode;
951 /*
952 * Internal mempolicy flags must be masked off before exposing
953 * the policy to userspace.
954 */
955 *policy |= (pol->flags & MPOL_MODE_FLAGS);
956 }
957
958 if (vma) {
959 up_read(&current->mm->mmap_sem);
960 vma = NULL;
961 }
962
963 err = 0;
964 if (nmask) {
965 if (mpol_store_user_nodemask(pol)) {
966 *nmask = pol->w.user_nodemask;
967 } else {
968 task_lock(current);
969 get_policy_nodemask(pol, nmask);
970 task_unlock(current);
971 }
972 }
973
974 out:
975 mpol_cond_put(pol);
976 if (vma)
977 up_read(&current->mm->mmap_sem);
978 return err;
979}
980
981#ifdef CONFIG_MIGRATION
982/*
983 * page migration
984 */
985static void migrate_page_add(struct page *page, struct list_head *pagelist,
986 unsigned long flags)
987{
988 /*
989 * Avoid migrating a page that is shared with others.
990 */
991 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
992 if (!isolate_lru_page(page)) {
993 list_add_tail(&page->lru, pagelist);
994 inc_zone_page_state(page, NR_ISOLATED_ANON +
995 page_is_file_cache(page));
996 }
997 }
998}
999
1000static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1001{
1002 if (PageHuge(page))
1003 return alloc_huge_page_node(page_hstate(compound_head(page)),
1004 node);
1005 else
1006 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1007}
1008
1009/*
1010 * Migrate pages from one node to a target node.
1011 * Returns error or the number of pages not migrated.
1012 */
1013static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1014 int flags)
1015{
1016 nodemask_t nmask;
1017 LIST_HEAD(pagelist);
1018 int err = 0;
1019
1020 nodes_clear(nmask);
1021 node_set(source, nmask);
1022
1023 /*
1024 * This does not "check" the range but isolates all pages that
1025 * need migration. Between passing in the full user address
1026 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1027 */
1028 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1029 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1030 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1031
1032 if (!list_empty(&pagelist)) {
1033 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1034 MIGRATE_SYNC, MR_SYSCALL);
1035 if (err)
1036 putback_movable_pages(&pagelist);
1037 }
1038
1039 return err;
1040}
1041
1042/*
1043 * Move pages between the two nodesets so as to preserve the physical
1044 * layout as much as possible.
1045 *
1046 * Returns the number of page that could not be moved.
1047 */
1048int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1049 const nodemask_t *to, int flags)
1050{
1051 int busy = 0;
1052 int err;
1053 nodemask_t tmp;
1054
1055 err = migrate_prep();
1056 if (err)
1057 return err;
1058
1059 down_read(&mm->mmap_sem);
1060
1061 err = migrate_vmas(mm, from, to, flags);
1062 if (err)
1063 goto out;
1064
1065 /*
1066 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1067 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1068 * bit in 'tmp', and return that <source, dest> pair for migration.
1069 * The pair of nodemasks 'to' and 'from' define the map.
1070 *
1071 * If no pair of bits is found that way, fallback to picking some
1072 * pair of 'source' and 'dest' bits that are not the same. If the
1073 * 'source' and 'dest' bits are the same, this represents a node
1074 * that will be migrating to itself, so no pages need move.
1075 *
1076 * If no bits are left in 'tmp', or if all remaining bits left
1077 * in 'tmp' correspond to the same bit in 'to', return false
1078 * (nothing left to migrate).
1079 *
1080 * This lets us pick a pair of nodes to migrate between, such that
1081 * if possible the dest node is not already occupied by some other
1082 * source node, minimizing the risk of overloading the memory on a
1083 * node that would happen if we migrated incoming memory to a node
1084 * before migrating outgoing memory source that same node.
1085 *
1086 * A single scan of tmp is sufficient. As we go, we remember the
1087 * most recent <s, d> pair that moved (s != d). If we find a pair
1088 * that not only moved, but what's better, moved to an empty slot
1089 * (d is not set in tmp), then we break out then, with that pair.
1090 * Otherwise when we finish scanning from_tmp, we at least have the
1091 * most recent <s, d> pair that moved. If we get all the way through
1092 * the scan of tmp without finding any node that moved, much less
1093 * moved to an empty node, then there is nothing left worth migrating.
1094 */
1095
1096 tmp = *from;
1097 while (!nodes_empty(tmp)) {
1098 int s,d;
1099 int source = NUMA_NO_NODE;
1100 int dest = 0;
1101
1102 for_each_node_mask(s, tmp) {
1103
1104 /*
1105 * do_migrate_pages() tries to maintain the relative
1106 * node relationship of the pages established between
1107 * threads and memory areas.
1108 *
1109 * However if the number of source nodes is not equal to
1110 * the number of destination nodes we can not preserve
1111 * this node relative relationship. In that case, skip
1112 * copying memory from a node that is in the destination
1113 * mask.
1114 *
1115 * Example: [2,3,4] -> [3,4,5] moves everything.
1116 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1117 */
1118
1119 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1120 (node_isset(s, *to)))
1121 continue;
1122
1123 d = node_remap(s, *from, *to);
1124 if (s == d)
1125 continue;
1126
1127 source = s; /* Node moved. Memorize */
1128 dest = d;
1129
1130 /* dest not in remaining from nodes? */
1131 if (!node_isset(dest, tmp))
1132 break;
1133 }
1134 if (source == NUMA_NO_NODE)
1135 break;
1136
1137 node_clear(source, tmp);
1138 err = migrate_to_node(mm, source, dest, flags);
1139 if (err > 0)
1140 busy += err;
1141 if (err < 0)
1142 break;
1143 }
1144out:
1145 up_read(&mm->mmap_sem);
1146 if (err < 0)
1147 return err;
1148 return busy;
1149
1150}
1151
1152/*
1153 * Allocate a new page for page migration based on vma policy.
1154 * Start by assuming the page is mapped by the same vma as contains @start.
1155 * Search forward from there, if not. N.B., this assumes that the
1156 * list of pages handed to migrate_pages()--which is how we get here--
1157 * is in virtual address order.
1158 */
1159static struct page *new_page(struct page *page, unsigned long start, int **x)
1160{
1161 struct vm_area_struct *vma;
1162 unsigned long uninitialized_var(address);
1163
1164 vma = find_vma(current->mm, start);
1165 while (vma) {
1166 address = page_address_in_vma(page, vma);
1167 if (address != -EFAULT)
1168 break;
1169 vma = vma->vm_next;
1170 }
1171
1172 if (PageHuge(page)) {
1173 BUG_ON(!vma);
1174 return alloc_huge_page_noerr(vma, address, 1);
1175 }
1176 /*
1177 * if !vma, alloc_page_vma() will use task or system default policy
1178 */
1179 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1180}
1181#else
1182
1183static void migrate_page_add(struct page *page, struct list_head *pagelist,
1184 unsigned long flags)
1185{
1186}
1187
1188int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1189 const nodemask_t *to, int flags)
1190{
1191 return -ENOSYS;
1192}
1193
1194static struct page *new_page(struct page *page, unsigned long start, int **x)
1195{
1196 return NULL;
1197}
1198#endif
1199
1200static long do_mbind(unsigned long start, unsigned long len,
1201 unsigned short mode, unsigned short mode_flags,
1202 nodemask_t *nmask, unsigned long flags)
1203{
1204 struct mm_struct *mm = current->mm;
1205 struct mempolicy *new;
1206 unsigned long end;
1207 int err;
1208 LIST_HEAD(pagelist);
1209
1210 if (flags & ~(unsigned long)MPOL_MF_VALID)
1211 return -EINVAL;
1212 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1213 return -EPERM;
1214
1215 if (start & ~PAGE_MASK)
1216 return -EINVAL;
1217
1218 if (mode == MPOL_DEFAULT)
1219 flags &= ~MPOL_MF_STRICT;
1220
1221 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1222 end = start + len;
1223
1224 if (end < start)
1225 return -EINVAL;
1226 if (end == start)
1227 return 0;
1228
1229 new = mpol_new(mode, mode_flags, nmask);
1230 if (IS_ERR(new))
1231 return PTR_ERR(new);
1232
1233 if (flags & MPOL_MF_LAZY)
1234 new->flags |= MPOL_F_MOF;
1235
1236 /*
1237 * If we are using the default policy then operation
1238 * on discontinuous address spaces is okay after all
1239 */
1240 if (!new)
1241 flags |= MPOL_MF_DISCONTIG_OK;
1242
1243 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1244 start, start + len, mode, mode_flags,
1245 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1246
1247 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1248
1249 err = migrate_prep();
1250 if (err)
1251 goto mpol_out;
1252 }
1253 {
1254 NODEMASK_SCRATCH(scratch);
1255 if (scratch) {
1256 down_write(&mm->mmap_sem);
1257 task_lock(current);
1258 err = mpol_set_nodemask(new, nmask, scratch);
1259 task_unlock(current);
1260 if (err)
1261 up_write(&mm->mmap_sem);
1262 } else
1263 err = -ENOMEM;
1264 NODEMASK_SCRATCH_FREE(scratch);
1265 }
1266 if (err)
1267 goto mpol_out;
1268
1269 err = queue_pages_range(mm, start, end, nmask,
1270 flags | MPOL_MF_INVERT, &pagelist);
1271 if (!err)
1272 err = mbind_range(mm, start, end, new);
1273
1274 if (!err) {
1275 int nr_failed = 0;
1276
1277 if (!list_empty(&pagelist)) {
1278 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1279 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1280 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1281 if (nr_failed)
1282 putback_movable_pages(&pagelist);
1283 }
1284
1285 if (nr_failed && (flags & MPOL_MF_STRICT))
1286 err = -EIO;
1287 } else
1288 putback_movable_pages(&pagelist);
1289
1290 up_write(&mm->mmap_sem);
1291 mpol_out:
1292 mpol_put(new);
1293 return err;
1294}
1295
1296/*
1297 * User space interface with variable sized bitmaps for nodelists.
1298 */
1299
1300/* Copy a node mask from user space. */
1301static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1302 unsigned long maxnode)
1303{
1304 unsigned long k;
1305 unsigned long nlongs;
1306 unsigned long endmask;
1307
1308 --maxnode;
1309 nodes_clear(*nodes);
1310 if (maxnode == 0 || !nmask)
1311 return 0;
1312 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1313 return -EINVAL;
1314
1315 nlongs = BITS_TO_LONGS(maxnode);
1316 if ((maxnode % BITS_PER_LONG) == 0)
1317 endmask = ~0UL;
1318 else
1319 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1320
1321 /* When the user specified more nodes than supported just check
1322 if the non supported part is all zero. */
1323 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1324 if (nlongs > PAGE_SIZE/sizeof(long))
1325 return -EINVAL;
1326 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1327 unsigned long t;
1328 if (get_user(t, nmask + k))
1329 return -EFAULT;
1330 if (k == nlongs - 1) {
1331 if (t & endmask)
1332 return -EINVAL;
1333 } else if (t)
1334 return -EINVAL;
1335 }
1336 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1337 endmask = ~0UL;
1338 }
1339
1340 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1341 return -EFAULT;
1342 nodes_addr(*nodes)[nlongs-1] &= endmask;
1343 return 0;
1344}
1345
1346/* Copy a kernel node mask to user space */
1347static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1348 nodemask_t *nodes)
1349{
1350 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1351 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1352
1353 if (copy > nbytes) {
1354 if (copy > PAGE_SIZE)
1355 return -EINVAL;
1356 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1357 return -EFAULT;
1358 copy = nbytes;
1359 }
1360 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1361}
1362
1363SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1364 unsigned long, mode, const unsigned long __user *, nmask,
1365 unsigned long, maxnode, unsigned, flags)
1366{
1367 nodemask_t nodes;
1368 int err;
1369 unsigned short mode_flags;
1370
1371 mode_flags = mode & MPOL_MODE_FLAGS;
1372 mode &= ~MPOL_MODE_FLAGS;
1373 if (mode >= MPOL_MAX)
1374 return -EINVAL;
1375 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1376 (mode_flags & MPOL_F_RELATIVE_NODES))
1377 return -EINVAL;
1378 err = get_nodes(&nodes, nmask, maxnode);
1379 if (err)
1380 return err;
1381 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1382}
1383
1384/* Set the process memory policy */
1385SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1386 unsigned long, maxnode)
1387{
1388 int err;
1389 nodemask_t nodes;
1390 unsigned short flags;
1391
1392 flags = mode & MPOL_MODE_FLAGS;
1393 mode &= ~MPOL_MODE_FLAGS;
1394 if ((unsigned int)mode >= MPOL_MAX)
1395 return -EINVAL;
1396 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1397 return -EINVAL;
1398 err = get_nodes(&nodes, nmask, maxnode);
1399 if (err)
1400 return err;
1401 return do_set_mempolicy(mode, flags, &nodes);
1402}
1403
1404SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1405 const unsigned long __user *, old_nodes,
1406 const unsigned long __user *, new_nodes)
1407{
1408 const struct cred *cred = current_cred(), *tcred;
1409 struct mm_struct *mm = NULL;
1410 struct task_struct *task;
1411 nodemask_t task_nodes;
1412 int err;
1413 nodemask_t *old;
1414 nodemask_t *new;
1415 NODEMASK_SCRATCH(scratch);
1416
1417 if (!scratch)
1418 return -ENOMEM;
1419
1420 old = &scratch->mask1;
1421 new = &scratch->mask2;
1422
1423 err = get_nodes(old, old_nodes, maxnode);
1424 if (err)
1425 goto out;
1426
1427 err = get_nodes(new, new_nodes, maxnode);
1428 if (err)
1429 goto out;
1430
1431 /* Find the mm_struct */
1432 rcu_read_lock();
1433 task = pid ? find_task_by_vpid(pid) : current;
1434 if (!task) {
1435 rcu_read_unlock();
1436 err = -ESRCH;
1437 goto out;
1438 }
1439 get_task_struct(task);
1440
1441 err = -EINVAL;
1442
1443 /*
1444 * Check if this process has the right to modify the specified
1445 * process. The right exists if the process has administrative
1446 * capabilities, superuser privileges or the same
1447 * userid as the target process.
1448 */
1449 tcred = __task_cred(task);
1450 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1451 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1452 !capable(CAP_SYS_NICE)) {
1453 rcu_read_unlock();
1454 err = -EPERM;
1455 goto out_put;
1456 }
1457 rcu_read_unlock();
1458
1459 task_nodes = cpuset_mems_allowed(task);
1460 /* Is the user allowed to access the target nodes? */
1461 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1462 err = -EPERM;
1463 goto out_put;
1464 }
1465
1466 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1467 err = -EINVAL;
1468 goto out_put;
1469 }
1470
1471 err = security_task_movememory(task);
1472 if (err)
1473 goto out_put;
1474
1475 mm = get_task_mm(task);
1476 put_task_struct(task);
1477
1478 if (!mm) {
1479 err = -EINVAL;
1480 goto out;
1481 }
1482
1483 err = do_migrate_pages(mm, old, new,
1484 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1485
1486 mmput(mm);
1487out:
1488 NODEMASK_SCRATCH_FREE(scratch);
1489
1490 return err;
1491
1492out_put:
1493 put_task_struct(task);
1494 goto out;
1495
1496}
1497
1498
1499/* Retrieve NUMA policy */
1500SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1501 unsigned long __user *, nmask, unsigned long, maxnode,
1502 unsigned long, addr, unsigned long, flags)
1503{
1504 int err;
1505 int uninitialized_var(pval);
1506 nodemask_t nodes;
1507
1508 if (nmask != NULL && maxnode < MAX_NUMNODES)
1509 return -EINVAL;
1510
1511 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1512
1513 if (err)
1514 return err;
1515
1516 if (policy && put_user(pval, policy))
1517 return -EFAULT;
1518
1519 if (nmask)
1520 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1521
1522 return err;
1523}
1524
1525#ifdef CONFIG_COMPAT
1526
1527COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1528 compat_ulong_t __user *, nmask,
1529 compat_ulong_t, maxnode,
1530 compat_ulong_t, addr, compat_ulong_t, flags)
1531{
1532 long err;
1533 unsigned long __user *nm = NULL;
1534 unsigned long nr_bits, alloc_size;
1535 DECLARE_BITMAP(bm, MAX_NUMNODES);
1536
1537 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1538 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1539
1540 if (nmask)
1541 nm = compat_alloc_user_space(alloc_size);
1542
1543 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1544
1545 if (!err && nmask) {
1546 unsigned long copy_size;
1547 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1548 err = copy_from_user(bm, nm, copy_size);
1549 /* ensure entire bitmap is zeroed */
1550 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1551 err |= compat_put_bitmap(nmask, bm, nr_bits);
1552 }
1553
1554 return err;
1555}
1556
1557COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1558 compat_ulong_t, maxnode)
1559{
1560 long err = 0;
1561 unsigned long __user *nm = NULL;
1562 unsigned long nr_bits, alloc_size;
1563 DECLARE_BITMAP(bm, MAX_NUMNODES);
1564
1565 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568 if (nmask) {
1569 err = compat_get_bitmap(bm, nmask, nr_bits);
1570 nm = compat_alloc_user_space(alloc_size);
1571 err |= copy_to_user(nm, bm, alloc_size);
1572 }
1573
1574 if (err)
1575 return -EFAULT;
1576
1577 return sys_set_mempolicy(mode, nm, nr_bits+1);
1578}
1579
1580COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1581 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1582 compat_ulong_t, maxnode, compat_ulong_t, flags)
1583{
1584 long err = 0;
1585 unsigned long __user *nm = NULL;
1586 unsigned long nr_bits, alloc_size;
1587 nodemask_t bm;
1588
1589 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1590 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1591
1592 if (nmask) {
1593 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1594 nm = compat_alloc_user_space(alloc_size);
1595 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1596 }
1597
1598 if (err)
1599 return -EFAULT;
1600
1601 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1602}
1603
1604#endif
1605
1606/*
1607 * get_vma_policy(@task, @vma, @addr)
1608 * @task: task for fallback if vma policy == default
1609 * @vma: virtual memory area whose policy is sought
1610 * @addr: address in @vma for shared policy lookup
1611 *
1612 * Returns effective policy for a VMA at specified address.
1613 * Falls back to @task or system default policy, as necessary.
1614 * Current or other task's task mempolicy and non-shared vma policies must be
1615 * protected by task_lock(task) by the caller.
1616 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1617 * count--added by the get_policy() vm_op, as appropriate--to protect against
1618 * freeing by another task. It is the caller's responsibility to free the
1619 * extra reference for shared policies.
1620 */
1621struct mempolicy *get_vma_policy(struct task_struct *task,
1622 struct vm_area_struct *vma, unsigned long addr)
1623{
1624 struct mempolicy *pol = NULL;
1625
1626 if (vma) {
1627 if (vma->vm_ops && vma->vm_ops->get_policy) {
1628 pol = vma->vm_ops->get_policy(vma, addr);
1629 } else if (vma->vm_policy) {
1630 pol = vma->vm_policy;
1631
1632 /*
1633 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1634 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1635 * count on these policies which will be dropped by
1636 * mpol_cond_put() later
1637 */
1638 if (mpol_needs_cond_ref(pol))
1639 mpol_get(pol);
1640 }
1641 }
1642
1643 if (!pol)
1644 pol = get_task_policy(task);
1645
1646 return pol;
1647}
1648
1649bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1650{
1651 struct mempolicy *pol = NULL;
1652
1653 if (vma) {
1654 if (vma->vm_ops && vma->vm_ops->get_policy) {
1655 bool ret = false;
1656
1657 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1658 if (pol && (pol->flags & MPOL_F_MOF))
1659 ret = true;
1660 mpol_cond_put(pol);
1661
1662 return ret;
1663 }
1664
1665 pol = vma->vm_policy;
1666 }
1667
1668 if (!pol)
1669 pol = get_task_policy(task);
1670
1671 return pol->flags & MPOL_F_MOF;
1672}
1673
1674static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1675{
1676 enum zone_type dynamic_policy_zone = policy_zone;
1677
1678 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1679
1680 /*
1681 * if policy->v.nodes has movable memory only,
1682 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1683 *
1684 * policy->v.nodes is intersect with node_states[N_MEMORY].
1685 * so if the following test faile, it implies
1686 * policy->v.nodes has movable memory only.
1687 */
1688 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1689 dynamic_policy_zone = ZONE_MOVABLE;
1690
1691 return zone >= dynamic_policy_zone;
1692}
1693
1694/*
1695 * Return a nodemask representing a mempolicy for filtering nodes for
1696 * page allocation
1697 */
1698static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1699{
1700 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1701 if (unlikely(policy->mode == MPOL_BIND) &&
1702 apply_policy_zone(policy, gfp_zone(gfp)) &&
1703 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1704 return &policy->v.nodes;
1705
1706 return NULL;
1707}
1708
1709/* Return a zonelist indicated by gfp for node representing a mempolicy */
1710static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1711 int nd)
1712{
1713 switch (policy->mode) {
1714 case MPOL_PREFERRED:
1715 if (!(policy->flags & MPOL_F_LOCAL))
1716 nd = policy->v.preferred_node;
1717 break;
1718 case MPOL_BIND:
1719 /*
1720 * Normally, MPOL_BIND allocations are node-local within the
1721 * allowed nodemask. However, if __GFP_THISNODE is set and the
1722 * current node isn't part of the mask, we use the zonelist for
1723 * the first node in the mask instead.
1724 */
1725 if (unlikely(gfp & __GFP_THISNODE) &&
1726 unlikely(!node_isset(nd, policy->v.nodes)))
1727 nd = first_node(policy->v.nodes);
1728 break;
1729 default:
1730 BUG();
1731 }
1732 return node_zonelist(nd, gfp);
1733}
1734
1735/* Do dynamic interleaving for a process */
1736static unsigned interleave_nodes(struct mempolicy *policy)
1737{
1738 unsigned nid, next;
1739 struct task_struct *me = current;
1740
1741 nid = me->il_next;
1742 next = next_node(nid, policy->v.nodes);
1743 if (next >= MAX_NUMNODES)
1744 next = first_node(policy->v.nodes);
1745 if (next < MAX_NUMNODES)
1746 me->il_next = next;
1747 return nid;
1748}
1749
1750/*
1751 * Depending on the memory policy provide a node from which to allocate the
1752 * next slab entry.
1753 */
1754unsigned int mempolicy_slab_node(void)
1755{
1756 struct mempolicy *policy;
1757 int node = numa_mem_id();
1758
1759 if (in_interrupt())
1760 return node;
1761
1762 policy = current->mempolicy;
1763 if (!policy || policy->flags & MPOL_F_LOCAL)
1764 return node;
1765
1766 switch (policy->mode) {
1767 case MPOL_PREFERRED:
1768 /*
1769 * handled MPOL_F_LOCAL above
1770 */
1771 return policy->v.preferred_node;
1772
1773 case MPOL_INTERLEAVE:
1774 return interleave_nodes(policy);
1775
1776 case MPOL_BIND: {
1777 /*
1778 * Follow bind policy behavior and start allocation at the
1779 * first node.
1780 */
1781 struct zonelist *zonelist;
1782 struct zone *zone;
1783 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784 zonelist = &NODE_DATA(node)->node_zonelists[0];
1785 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1786 &policy->v.nodes,
1787 &zone);
1788 return zone ? zone->node : node;
1789 }
1790
1791 default:
1792 BUG();
1793 }
1794}
1795
1796/* Do static interleaving for a VMA with known offset. */
1797static unsigned offset_il_node(struct mempolicy *pol,
1798 struct vm_area_struct *vma, unsigned long off)
1799{
1800 unsigned nnodes = nodes_weight(pol->v.nodes);
1801 unsigned target;
1802 int c;
1803 int nid = NUMA_NO_NODE;
1804
1805 if (!nnodes)
1806 return numa_node_id();
1807 target = (unsigned int)off % nnodes;
1808 c = 0;
1809 do {
1810 nid = next_node(nid, pol->v.nodes);
1811 c++;
1812 } while (c <= target);
1813 return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818 struct vm_area_struct *vma, unsigned long addr, int shift)
1819{
1820 if (vma) {
1821 unsigned long off;
1822
1823 /*
1824 * for small pages, there is no difference between
1825 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826 * for huge pages, since vm_pgoff is in units of small
1827 * pages, we need to shift off the always 0 bits to get
1828 * a useful offset.
1829 */
1830 BUG_ON(shift < PAGE_SHIFT);
1831 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832 off += (addr - vma->vm_start) >> shift;
1833 return offset_il_node(pol, vma, off);
1834 } else
1835 return interleave_nodes(pol);
1836}
1837
1838/*
1839 * Return the bit number of a random bit set in the nodemask.
1840 * (returns NUMA_NO_NODE if nodemask is empty)
1841 */
1842int node_random(const nodemask_t *maskp)
1843{
1844 int w, bit = NUMA_NO_NODE;
1845
1846 w = nodes_weight(*maskp);
1847 if (w)
1848 bit = bitmap_ord_to_pos(maskp->bits,
1849 get_random_int() % w, MAX_NUMNODES);
1850 return bit;
1851}
1852
1853#ifdef CONFIG_HUGETLBFS
1854/*
1855 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1856 * @vma: virtual memory area whose policy is sought
1857 * @addr: address in @vma for shared policy lookup and interleave policy
1858 * @gfp_flags: for requested zone
1859 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1860 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1861 *
1862 * Returns a zonelist suitable for a huge page allocation and a pointer
1863 * to the struct mempolicy for conditional unref after allocation.
1864 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1865 * @nodemask for filtering the zonelist.
1866 *
1867 * Must be protected by read_mems_allowed_begin()
1868 */
1869struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1870 gfp_t gfp_flags, struct mempolicy **mpol,
1871 nodemask_t **nodemask)
1872{
1873 struct zonelist *zl;
1874
1875 *mpol = get_vma_policy(current, vma, addr);
1876 *nodemask = NULL; /* assume !MPOL_BIND */
1877
1878 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1879 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1880 huge_page_shift(hstate_vma(vma))), gfp_flags);
1881 } else {
1882 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1883 if ((*mpol)->mode == MPOL_BIND)
1884 *nodemask = &(*mpol)->v.nodes;
1885 }
1886 return zl;
1887}
1888
1889/*
1890 * init_nodemask_of_mempolicy
1891 *
1892 * If the current task's mempolicy is "default" [NULL], return 'false'
1893 * to indicate default policy. Otherwise, extract the policy nodemask
1894 * for 'bind' or 'interleave' policy into the argument nodemask, or
1895 * initialize the argument nodemask to contain the single node for
1896 * 'preferred' or 'local' policy and return 'true' to indicate presence
1897 * of non-default mempolicy.
1898 *
1899 * We don't bother with reference counting the mempolicy [mpol_get/put]
1900 * because the current task is examining it's own mempolicy and a task's
1901 * mempolicy is only ever changed by the task itself.
1902 *
1903 * N.B., it is the caller's responsibility to free a returned nodemask.
1904 */
1905bool init_nodemask_of_mempolicy(nodemask_t *mask)
1906{
1907 struct mempolicy *mempolicy;
1908 int nid;
1909
1910 if (!(mask && current->mempolicy))
1911 return false;
1912
1913 task_lock(current);
1914 mempolicy = current->mempolicy;
1915 switch (mempolicy->mode) {
1916 case MPOL_PREFERRED:
1917 if (mempolicy->flags & MPOL_F_LOCAL)
1918 nid = numa_node_id();
1919 else
1920 nid = mempolicy->v.preferred_node;
1921 init_nodemask_of_node(mask, nid);
1922 break;
1923
1924 case MPOL_BIND:
1925 /* Fall through */
1926 case MPOL_INTERLEAVE:
1927 *mask = mempolicy->v.nodes;
1928 break;
1929
1930 default:
1931 BUG();
1932 }
1933 task_unlock(current);
1934
1935 return true;
1936}
1937#endif
1938
1939/*
1940 * mempolicy_nodemask_intersects
1941 *
1942 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1943 * policy. Otherwise, check for intersection between mask and the policy
1944 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1945 * policy, always return true since it may allocate elsewhere on fallback.
1946 *
1947 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1948 */
1949bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1950 const nodemask_t *mask)
1951{
1952 struct mempolicy *mempolicy;
1953 bool ret = true;
1954
1955 if (!mask)
1956 return ret;
1957 task_lock(tsk);
1958 mempolicy = tsk->mempolicy;
1959 if (!mempolicy)
1960 goto out;
1961
1962 switch (mempolicy->mode) {
1963 case MPOL_PREFERRED:
1964 /*
1965 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1966 * allocate from, they may fallback to other nodes when oom.
1967 * Thus, it's possible for tsk to have allocated memory from
1968 * nodes in mask.
1969 */
1970 break;
1971 case MPOL_BIND:
1972 case MPOL_INTERLEAVE:
1973 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1974 break;
1975 default:
1976 BUG();
1977 }
1978out:
1979 task_unlock(tsk);
1980 return ret;
1981}
1982
1983/* Allocate a page in interleaved policy.
1984 Own path because it needs to do special accounting. */
1985static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1986 unsigned nid)
1987{
1988 struct zonelist *zl;
1989 struct page *page;
1990
1991 zl = node_zonelist(nid, gfp);
1992 page = __alloc_pages(gfp, order, zl);
1993 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1994 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1995 return page;
1996}
1997
1998/**
1999 * alloc_pages_vma - Allocate a page for a VMA.
2000 *
2001 * @gfp:
2002 * %GFP_USER user allocation.
2003 * %GFP_KERNEL kernel allocations,
2004 * %GFP_HIGHMEM highmem/user allocations,
2005 * %GFP_FS allocation should not call back into a file system.
2006 * %GFP_ATOMIC don't sleep.
2007 *
2008 * @order:Order of the GFP allocation.
2009 * @vma: Pointer to VMA or NULL if not available.
2010 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2011 *
2012 * This function allocates a page from the kernel page pool and applies
2013 * a NUMA policy associated with the VMA or the current process.
2014 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2015 * mm_struct of the VMA to prevent it from going away. Should be used for
2016 * all allocations for pages that will be mapped into
2017 * user space. Returns NULL when no page can be allocated.
2018 *
2019 * Should be called with the mm_sem of the vma hold.
2020 */
2021struct page *
2022alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2023 unsigned long addr, int node)
2024{
2025 struct mempolicy *pol;
2026 struct page *page;
2027 unsigned int cpuset_mems_cookie;
2028
2029retry_cpuset:
2030 pol = get_vma_policy(current, vma, addr);
2031 cpuset_mems_cookie = read_mems_allowed_begin();
2032
2033 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2034 unsigned nid;
2035
2036 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2037 mpol_cond_put(pol);
2038 page = alloc_page_interleave(gfp, order, nid);
2039 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2040 goto retry_cpuset;
2041
2042 return page;
2043 }
2044 page = __alloc_pages_nodemask(gfp, order,
2045 policy_zonelist(gfp, pol, node),
2046 policy_nodemask(gfp, pol));
2047 mpol_cond_put(pol);
2048 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2049 goto retry_cpuset;
2050 return page;
2051}
2052
2053/**
2054 * alloc_pages_current - Allocate pages.
2055 *
2056 * @gfp:
2057 * %GFP_USER user allocation,
2058 * %GFP_KERNEL kernel allocation,
2059 * %GFP_HIGHMEM highmem allocation,
2060 * %GFP_FS don't call back into a file system.
2061 * %GFP_ATOMIC don't sleep.
2062 * @order: Power of two of allocation size in pages. 0 is a single page.
2063 *
2064 * Allocate a page from the kernel page pool. When not in
2065 * interrupt context and apply the current process NUMA policy.
2066 * Returns NULL when no page can be allocated.
2067 *
2068 * Don't call cpuset_update_task_memory_state() unless
2069 * 1) it's ok to take cpuset_sem (can WAIT), and
2070 * 2) allocating for current task (not interrupt).
2071 */
2072struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2073{
2074 struct mempolicy *pol = &default_policy;
2075 struct page *page;
2076 unsigned int cpuset_mems_cookie;
2077
2078 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2079 pol = get_task_policy(current);
2080
2081retry_cpuset:
2082 cpuset_mems_cookie = read_mems_allowed_begin();
2083
2084 /*
2085 * No reference counting needed for current->mempolicy
2086 * nor system default_policy
2087 */
2088 if (pol->mode == MPOL_INTERLEAVE)
2089 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2090 else
2091 page = __alloc_pages_nodemask(gfp, order,
2092 policy_zonelist(gfp, pol, numa_node_id()),
2093 policy_nodemask(gfp, pol));
2094
2095 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2096 goto retry_cpuset;
2097
2098 return page;
2099}
2100EXPORT_SYMBOL(alloc_pages_current);
2101
2102int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2103{
2104 struct mempolicy *pol = mpol_dup(vma_policy(src));
2105
2106 if (IS_ERR(pol))
2107 return PTR_ERR(pol);
2108 dst->vm_policy = pol;
2109 return 0;
2110}
2111
2112/*
2113 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2114 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2115 * with the mems_allowed returned by cpuset_mems_allowed(). This
2116 * keeps mempolicies cpuset relative after its cpuset moves. See
2117 * further kernel/cpuset.c update_nodemask().
2118 *
2119 * current's mempolicy may be rebinded by the other task(the task that changes
2120 * cpuset's mems), so we needn't do rebind work for current task.
2121 */
2122
2123/* Slow path of a mempolicy duplicate */
2124struct mempolicy *__mpol_dup(struct mempolicy *old)
2125{
2126 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2127
2128 if (!new)
2129 return ERR_PTR(-ENOMEM);
2130
2131 /* task's mempolicy is protected by alloc_lock */
2132 if (old == current->mempolicy) {
2133 task_lock(current);
2134 *new = *old;
2135 task_unlock(current);
2136 } else
2137 *new = *old;
2138
2139 if (current_cpuset_is_being_rebound()) {
2140 nodemask_t mems = cpuset_mems_allowed(current);
2141 if (new->flags & MPOL_F_REBINDING)
2142 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2143 else
2144 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2145 }
2146 atomic_set(&new->refcnt, 1);
2147 return new;
2148}
2149
2150/* Slow path of a mempolicy comparison */
2151bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2152{
2153 if (!a || !b)
2154 return false;
2155 if (a->mode != b->mode)
2156 return false;
2157 if (a->flags != b->flags)
2158 return false;
2159 if (mpol_store_user_nodemask(a))
2160 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2161 return false;
2162
2163 switch (a->mode) {
2164 case MPOL_BIND:
2165 /* Fall through */
2166 case MPOL_INTERLEAVE:
2167 return !!nodes_equal(a->v.nodes, b->v.nodes);
2168 case MPOL_PREFERRED:
2169 return a->v.preferred_node == b->v.preferred_node;
2170 default:
2171 BUG();
2172 return false;
2173 }
2174}
2175
2176/*
2177 * Shared memory backing store policy support.
2178 *
2179 * Remember policies even when nobody has shared memory mapped.
2180 * The policies are kept in Red-Black tree linked from the inode.
2181 * They are protected by the sp->lock spinlock, which should be held
2182 * for any accesses to the tree.
2183 */
2184
2185/* lookup first element intersecting start-end */
2186/* Caller holds sp->lock */
2187static struct sp_node *
2188sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2189{
2190 struct rb_node *n = sp->root.rb_node;
2191
2192 while (n) {
2193 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2194
2195 if (start >= p->end)
2196 n = n->rb_right;
2197 else if (end <= p->start)
2198 n = n->rb_left;
2199 else
2200 break;
2201 }
2202 if (!n)
2203 return NULL;
2204 for (;;) {
2205 struct sp_node *w = NULL;
2206 struct rb_node *prev = rb_prev(n);
2207 if (!prev)
2208 break;
2209 w = rb_entry(prev, struct sp_node, nd);
2210 if (w->end <= start)
2211 break;
2212 n = prev;
2213 }
2214 return rb_entry(n, struct sp_node, nd);
2215}
2216
2217/* Insert a new shared policy into the list. */
2218/* Caller holds sp->lock */
2219static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2220{
2221 struct rb_node **p = &sp->root.rb_node;
2222 struct rb_node *parent = NULL;
2223 struct sp_node *nd;
2224
2225 while (*p) {
2226 parent = *p;
2227 nd = rb_entry(parent, struct sp_node, nd);
2228 if (new->start < nd->start)
2229 p = &(*p)->rb_left;
2230 else if (new->end > nd->end)
2231 p = &(*p)->rb_right;
2232 else
2233 BUG();
2234 }
2235 rb_link_node(&new->nd, parent, p);
2236 rb_insert_color(&new->nd, &sp->root);
2237 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2238 new->policy ? new->policy->mode : 0);
2239}
2240
2241/* Find shared policy intersecting idx */
2242struct mempolicy *
2243mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2244{
2245 struct mempolicy *pol = NULL;
2246 struct sp_node *sn;
2247
2248 if (!sp->root.rb_node)
2249 return NULL;
2250 spin_lock(&sp->lock);
2251 sn = sp_lookup(sp, idx, idx+1);
2252 if (sn) {
2253 mpol_get(sn->policy);
2254 pol = sn->policy;
2255 }
2256 spin_unlock(&sp->lock);
2257 return pol;
2258}
2259
2260static void sp_free(struct sp_node *n)
2261{
2262 mpol_put(n->policy);
2263 kmem_cache_free(sn_cache, n);
2264}
2265
2266/**
2267 * mpol_misplaced - check whether current page node is valid in policy
2268 *
2269 * @page: page to be checked
2270 * @vma: vm area where page mapped
2271 * @addr: virtual address where page mapped
2272 *
2273 * Lookup current policy node id for vma,addr and "compare to" page's
2274 * node id.
2275 *
2276 * Returns:
2277 * -1 - not misplaced, page is in the right node
2278 * node - node id where the page should be
2279 *
2280 * Policy determination "mimics" alloc_page_vma().
2281 * Called from fault path where we know the vma and faulting address.
2282 */
2283int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2284{
2285 struct mempolicy *pol;
2286 struct zone *zone;
2287 int curnid = page_to_nid(page);
2288 unsigned long pgoff;
2289 int thiscpu = raw_smp_processor_id();
2290 int thisnid = cpu_to_node(thiscpu);
2291 int polnid = -1;
2292 int ret = -1;
2293
2294 BUG_ON(!vma);
2295
2296 pol = get_vma_policy(current, vma, addr);
2297 if (!(pol->flags & MPOL_F_MOF))
2298 goto out;
2299
2300 switch (pol->mode) {
2301 case MPOL_INTERLEAVE:
2302 BUG_ON(addr >= vma->vm_end);
2303 BUG_ON(addr < vma->vm_start);
2304
2305 pgoff = vma->vm_pgoff;
2306 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2307 polnid = offset_il_node(pol, vma, pgoff);
2308 break;
2309
2310 case MPOL_PREFERRED:
2311 if (pol->flags & MPOL_F_LOCAL)
2312 polnid = numa_node_id();
2313 else
2314 polnid = pol->v.preferred_node;
2315 break;
2316
2317 case MPOL_BIND:
2318 /*
2319 * allows binding to multiple nodes.
2320 * use current page if in policy nodemask,
2321 * else select nearest allowed node, if any.
2322 * If no allowed nodes, use current [!misplaced].
2323 */
2324 if (node_isset(curnid, pol->v.nodes))
2325 goto out;
2326 (void)first_zones_zonelist(
2327 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2328 gfp_zone(GFP_HIGHUSER),
2329 &pol->v.nodes, &zone);
2330 polnid = zone->node;
2331 break;
2332
2333 default:
2334 BUG();
2335 }
2336
2337 /* Migrate the page towards the node whose CPU is referencing it */
2338 if (pol->flags & MPOL_F_MORON) {
2339 polnid = thisnid;
2340
2341 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2342 goto out;
2343 }
2344
2345 if (curnid != polnid)
2346 ret = polnid;
2347out:
2348 mpol_cond_put(pol);
2349
2350 return ret;
2351}
2352
2353static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2354{
2355 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2356 rb_erase(&n->nd, &sp->root);
2357 sp_free(n);
2358}
2359
2360static void sp_node_init(struct sp_node *node, unsigned long start,
2361 unsigned long end, struct mempolicy *pol)
2362{
2363 node->start = start;
2364 node->end = end;
2365 node->policy = pol;
2366}
2367
2368static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2369 struct mempolicy *pol)
2370{
2371 struct sp_node *n;
2372 struct mempolicy *newpol;
2373
2374 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2375 if (!n)
2376 return NULL;
2377
2378 newpol = mpol_dup(pol);
2379 if (IS_ERR(newpol)) {
2380 kmem_cache_free(sn_cache, n);
2381 return NULL;
2382 }
2383 newpol->flags |= MPOL_F_SHARED;
2384 sp_node_init(n, start, end, newpol);
2385
2386 return n;
2387}
2388
2389/* Replace a policy range. */
2390static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2391 unsigned long end, struct sp_node *new)
2392{
2393 struct sp_node *n;
2394 struct sp_node *n_new = NULL;
2395 struct mempolicy *mpol_new = NULL;
2396 int ret = 0;
2397
2398restart:
2399 spin_lock(&sp->lock);
2400 n = sp_lookup(sp, start, end);
2401 /* Take care of old policies in the same range. */
2402 while (n && n->start < end) {
2403 struct rb_node *next = rb_next(&n->nd);
2404 if (n->start >= start) {
2405 if (n->end <= end)
2406 sp_delete(sp, n);
2407 else
2408 n->start = end;
2409 } else {
2410 /* Old policy spanning whole new range. */
2411 if (n->end > end) {
2412 if (!n_new)
2413 goto alloc_new;
2414
2415 *mpol_new = *n->policy;
2416 atomic_set(&mpol_new->refcnt, 1);
2417 sp_node_init(n_new, end, n->end, mpol_new);
2418 n->end = start;
2419 sp_insert(sp, n_new);
2420 n_new = NULL;
2421 mpol_new = NULL;
2422 break;
2423 } else
2424 n->end = start;
2425 }
2426 if (!next)
2427 break;
2428 n = rb_entry(next, struct sp_node, nd);
2429 }
2430 if (new)
2431 sp_insert(sp, new);
2432 spin_unlock(&sp->lock);
2433 ret = 0;
2434
2435err_out:
2436 if (mpol_new)
2437 mpol_put(mpol_new);
2438 if (n_new)
2439 kmem_cache_free(sn_cache, n_new);
2440
2441 return ret;
2442
2443alloc_new:
2444 spin_unlock(&sp->lock);
2445 ret = -ENOMEM;
2446 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2447 if (!n_new)
2448 goto err_out;
2449 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2450 if (!mpol_new)
2451 goto err_out;
2452 goto restart;
2453}
2454
2455/**
2456 * mpol_shared_policy_init - initialize shared policy for inode
2457 * @sp: pointer to inode shared policy
2458 * @mpol: struct mempolicy to install
2459 *
2460 * Install non-NULL @mpol in inode's shared policy rb-tree.
2461 * On entry, the current task has a reference on a non-NULL @mpol.
2462 * This must be released on exit.
2463 * This is called at get_inode() calls and we can use GFP_KERNEL.
2464 */
2465void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2466{
2467 int ret;
2468
2469 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2470 spin_lock_init(&sp->lock);
2471
2472 if (mpol) {
2473 struct vm_area_struct pvma;
2474 struct mempolicy *new;
2475 NODEMASK_SCRATCH(scratch);
2476
2477 if (!scratch)
2478 goto put_mpol;
2479 /* contextualize the tmpfs mount point mempolicy */
2480 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2481 if (IS_ERR(new))
2482 goto free_scratch; /* no valid nodemask intersection */
2483
2484 task_lock(current);
2485 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2486 task_unlock(current);
2487 if (ret)
2488 goto put_new;
2489
2490 /* Create pseudo-vma that contains just the policy */
2491 memset(&pvma, 0, sizeof(struct vm_area_struct));
2492 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2493 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2494
2495put_new:
2496 mpol_put(new); /* drop initial ref */
2497free_scratch:
2498 NODEMASK_SCRATCH_FREE(scratch);
2499put_mpol:
2500 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2501 }
2502}
2503
2504int mpol_set_shared_policy(struct shared_policy *info,
2505 struct vm_area_struct *vma, struct mempolicy *npol)
2506{
2507 int err;
2508 struct sp_node *new = NULL;
2509 unsigned long sz = vma_pages(vma);
2510
2511 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2512 vma->vm_pgoff,
2513 sz, npol ? npol->mode : -1,
2514 npol ? npol->flags : -1,
2515 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2516
2517 if (npol) {
2518 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2519 if (!new)
2520 return -ENOMEM;
2521 }
2522 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2523 if (err && new)
2524 sp_free(new);
2525 return err;
2526}
2527
2528/* Free a backing policy store on inode delete. */
2529void mpol_free_shared_policy(struct shared_policy *p)
2530{
2531 struct sp_node *n;
2532 struct rb_node *next;
2533
2534 if (!p->root.rb_node)
2535 return;
2536 spin_lock(&p->lock);
2537 next = rb_first(&p->root);
2538 while (next) {
2539 n = rb_entry(next, struct sp_node, nd);
2540 next = rb_next(&n->nd);
2541 sp_delete(p, n);
2542 }
2543 spin_unlock(&p->lock);
2544}
2545
2546#ifdef CONFIG_NUMA_BALANCING
2547static int __initdata numabalancing_override;
2548
2549static void __init check_numabalancing_enable(void)
2550{
2551 bool numabalancing_default = false;
2552
2553 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2554 numabalancing_default = true;
2555
2556 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2557 if (numabalancing_override)
2558 set_numabalancing_state(numabalancing_override == 1);
2559
2560 if (nr_node_ids > 1 && !numabalancing_override) {
2561 pr_info("%s automatic NUMA balancing. "
2562 "Configure with numa_balancing= or the "
2563 "kernel.numa_balancing sysctl",
2564 numabalancing_default ? "Enabling" : "Disabling");
2565 set_numabalancing_state(numabalancing_default);
2566 }
2567}
2568
2569static int __init setup_numabalancing(char *str)
2570{
2571 int ret = 0;
2572 if (!str)
2573 goto out;
2574
2575 if (!strcmp(str, "enable")) {
2576 numabalancing_override = 1;
2577 ret = 1;
2578 } else if (!strcmp(str, "disable")) {
2579 numabalancing_override = -1;
2580 ret = 1;
2581 }
2582out:
2583 if (!ret)
2584 pr_warn("Unable to parse numa_balancing=\n");
2585
2586 return ret;
2587}
2588__setup("numa_balancing=", setup_numabalancing);
2589#else
2590static inline void __init check_numabalancing_enable(void)
2591{
2592}
2593#endif /* CONFIG_NUMA_BALANCING */
2594
2595/* assumes fs == KERNEL_DS */
2596void __init numa_policy_init(void)
2597{
2598 nodemask_t interleave_nodes;
2599 unsigned long largest = 0;
2600 int nid, prefer = 0;
2601
2602 policy_cache = kmem_cache_create("numa_policy",
2603 sizeof(struct mempolicy),
2604 0, SLAB_PANIC, NULL);
2605
2606 sn_cache = kmem_cache_create("shared_policy_node",
2607 sizeof(struct sp_node),
2608 0, SLAB_PANIC, NULL);
2609
2610 for_each_node(nid) {
2611 preferred_node_policy[nid] = (struct mempolicy) {
2612 .refcnt = ATOMIC_INIT(1),
2613 .mode = MPOL_PREFERRED,
2614 .flags = MPOL_F_MOF | MPOL_F_MORON,
2615 .v = { .preferred_node = nid, },
2616 };
2617 }
2618
2619 /*
2620 * Set interleaving policy for system init. Interleaving is only
2621 * enabled across suitably sized nodes (default is >= 16MB), or
2622 * fall back to the largest node if they're all smaller.
2623 */
2624 nodes_clear(interleave_nodes);
2625 for_each_node_state(nid, N_MEMORY) {
2626 unsigned long total_pages = node_present_pages(nid);
2627
2628 /* Preserve the largest node */
2629 if (largest < total_pages) {
2630 largest = total_pages;
2631 prefer = nid;
2632 }
2633
2634 /* Interleave this node? */
2635 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2636 node_set(nid, interleave_nodes);
2637 }
2638
2639 /* All too small, use the largest */
2640 if (unlikely(nodes_empty(interleave_nodes)))
2641 node_set(prefer, interleave_nodes);
2642
2643 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2644 pr_err("%s: interleaving failed\n", __func__);
2645
2646 check_numabalancing_enable();
2647}
2648
2649/* Reset policy of current process to default */
2650void numa_default_policy(void)
2651{
2652 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2653}
2654
2655/*
2656 * Parse and format mempolicy from/to strings
2657 */
2658
2659/*
2660 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2661 */
2662static const char * const policy_modes[] =
2663{
2664 [MPOL_DEFAULT] = "default",
2665 [MPOL_PREFERRED] = "prefer",
2666 [MPOL_BIND] = "bind",
2667 [MPOL_INTERLEAVE] = "interleave",
2668 [MPOL_LOCAL] = "local",
2669};
2670
2671
2672#ifdef CONFIG_TMPFS
2673/**
2674 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2675 * @str: string containing mempolicy to parse
2676 * @mpol: pointer to struct mempolicy pointer, returned on success.
2677 *
2678 * Format of input:
2679 * <mode>[=<flags>][:<nodelist>]
2680 *
2681 * On success, returns 0, else 1
2682 */
2683int mpol_parse_str(char *str, struct mempolicy **mpol)
2684{
2685 struct mempolicy *new = NULL;
2686 unsigned short mode;
2687 unsigned short mode_flags;
2688 nodemask_t nodes;
2689 char *nodelist = strchr(str, ':');
2690 char *flags = strchr(str, '=');
2691 int err = 1;
2692
2693 if (nodelist) {
2694 /* NUL-terminate mode or flags string */
2695 *nodelist++ = '\0';
2696 if (nodelist_parse(nodelist, nodes))
2697 goto out;
2698 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2699 goto out;
2700 } else
2701 nodes_clear(nodes);
2702
2703 if (flags)
2704 *flags++ = '\0'; /* terminate mode string */
2705
2706 for (mode = 0; mode < MPOL_MAX; mode++) {
2707 if (!strcmp(str, policy_modes[mode])) {
2708 break;
2709 }
2710 }
2711 if (mode >= MPOL_MAX)
2712 goto out;
2713
2714 switch (mode) {
2715 case MPOL_PREFERRED:
2716 /*
2717 * Insist on a nodelist of one node only
2718 */
2719 if (nodelist) {
2720 char *rest = nodelist;
2721 while (isdigit(*rest))
2722 rest++;
2723 if (*rest)
2724 goto out;
2725 }
2726 break;
2727 case MPOL_INTERLEAVE:
2728 /*
2729 * Default to online nodes with memory if no nodelist
2730 */
2731 if (!nodelist)
2732 nodes = node_states[N_MEMORY];
2733 break;
2734 case MPOL_LOCAL:
2735 /*
2736 * Don't allow a nodelist; mpol_new() checks flags
2737 */
2738 if (nodelist)
2739 goto out;
2740 mode = MPOL_PREFERRED;
2741 break;
2742 case MPOL_DEFAULT:
2743 /*
2744 * Insist on a empty nodelist
2745 */
2746 if (!nodelist)
2747 err = 0;
2748 goto out;
2749 case MPOL_BIND:
2750 /*
2751 * Insist on a nodelist
2752 */
2753 if (!nodelist)
2754 goto out;
2755 }
2756
2757 mode_flags = 0;
2758 if (flags) {
2759 /*
2760 * Currently, we only support two mutually exclusive
2761 * mode flags.
2762 */
2763 if (!strcmp(flags, "static"))
2764 mode_flags |= MPOL_F_STATIC_NODES;
2765 else if (!strcmp(flags, "relative"))
2766 mode_flags |= MPOL_F_RELATIVE_NODES;
2767 else
2768 goto out;
2769 }
2770
2771 new = mpol_new(mode, mode_flags, &nodes);
2772 if (IS_ERR(new))
2773 goto out;
2774
2775 /*
2776 * Save nodes for mpol_to_str() to show the tmpfs mount options
2777 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2778 */
2779 if (mode != MPOL_PREFERRED)
2780 new->v.nodes = nodes;
2781 else if (nodelist)
2782 new->v.preferred_node = first_node(nodes);
2783 else
2784 new->flags |= MPOL_F_LOCAL;
2785
2786 /*
2787 * Save nodes for contextualization: this will be used to "clone"
2788 * the mempolicy in a specific context [cpuset] at a later time.
2789 */
2790 new->w.user_nodemask = nodes;
2791
2792 err = 0;
2793
2794out:
2795 /* Restore string for error message */
2796 if (nodelist)
2797 *--nodelist = ':';
2798 if (flags)
2799 *--flags = '=';
2800 if (!err)
2801 *mpol = new;
2802 return err;
2803}
2804#endif /* CONFIG_TMPFS */
2805
2806/**
2807 * mpol_to_str - format a mempolicy structure for printing
2808 * @buffer: to contain formatted mempolicy string
2809 * @maxlen: length of @buffer
2810 * @pol: pointer to mempolicy to be formatted
2811 *
2812 * Convert @pol into a string. If @buffer is too short, truncate the string.
2813 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2814 * longest flag, "relative", and to display at least a few node ids.
2815 */
2816void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2817{
2818 char *p = buffer;
2819 nodemask_t nodes = NODE_MASK_NONE;
2820 unsigned short mode = MPOL_DEFAULT;
2821 unsigned short flags = 0;
2822
2823 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2824 mode = pol->mode;
2825 flags = pol->flags;
2826 }
2827
2828 switch (mode) {
2829 case MPOL_DEFAULT:
2830 break;
2831 case MPOL_PREFERRED:
2832 if (flags & MPOL_F_LOCAL)
2833 mode = MPOL_LOCAL;
2834 else
2835 node_set(pol->v.preferred_node, nodes);
2836 break;
2837 case MPOL_BIND:
2838 case MPOL_INTERLEAVE:
2839 nodes = pol->v.nodes;
2840 break;
2841 default:
2842 WARN_ON_ONCE(1);
2843 snprintf(p, maxlen, "unknown");
2844 return;
2845 }
2846
2847 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2848
2849 if (flags & MPOL_MODE_FLAGS) {
2850 p += snprintf(p, buffer + maxlen - p, "=");
2851
2852 /*
2853 * Currently, the only defined flags are mutually exclusive
2854 */
2855 if (flags & MPOL_F_STATIC_NODES)
2856 p += snprintf(p, buffer + maxlen - p, "static");
2857 else if (flags & MPOL_F_RELATIVE_NODES)
2858 p += snprintf(p, buffer + maxlen - p, "relative");
2859 }
2860
2861 if (!nodes_empty(nodes)) {
2862 p += snprintf(p, buffer + maxlen - p, ":");
2863 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2864 }
2865}