]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/mempolicy.c
memory-hotplug: create /sys/firmware/memmap entry for new memory
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/gfp.h>
77#include <linux/slab.h>
78#include <linux/string.h>
79#include <linux/module.h>
80#include <linux/nsproxy.h>
81#include <linux/interrupt.h>
82#include <linux/init.h>
83#include <linux/compat.h>
84#include <linux/swap.h>
85#include <linux/seq_file.h>
86#include <linux/proc_fs.h>
87#include <linux/migrate.h>
88#include <linux/ksm.h>
89#include <linux/rmap.h>
90#include <linux/security.h>
91#include <linux/syscalls.h>
92#include <linux/ctype.h>
93#include <linux/mm_inline.h>
94
95#include <asm/tlbflush.h>
96#include <asm/uaccess.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
104
105static struct kmem_cache *policy_cache;
106static struct kmem_cache *sn_cache;
107
108/* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110enum zone_type policy_zone = 0;
111
112/*
113 * run-time system-wide default policy => local allocation
114 */
115struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119};
120
121static const struct mempolicy_operations {
122 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
123 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
124} mpol_ops[MPOL_MAX];
125
126/* Check that the nodemask contains at least one populated zone */
127static int is_valid_nodemask(const nodemask_t *nodemask)
128{
129 int nd, k;
130
131 /* Check that there is something useful in this mask */
132 k = policy_zone;
133
134 for_each_node_mask(nd, *nodemask) {
135 struct zone *z;
136
137 for (k = 0; k <= policy_zone; k++) {
138 z = &NODE_DATA(nd)->node_zones[k];
139 if (z->present_pages > 0)
140 return 1;
141 }
142 }
143
144 return 0;
145}
146
147static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
148{
149 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
150}
151
152static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
153 const nodemask_t *rel)
154{
155 nodemask_t tmp;
156 nodes_fold(tmp, *orig, nodes_weight(*rel));
157 nodes_onto(*ret, tmp, *rel);
158}
159
160static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
161{
162 if (nodes_empty(*nodes))
163 return -EINVAL;
164 pol->v.nodes = *nodes;
165 return 0;
166}
167
168static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
169{
170 if (!nodes)
171 pol->flags |= MPOL_F_LOCAL; /* local allocation */
172 else if (nodes_empty(*nodes))
173 return -EINVAL; /* no allowed nodes */
174 else
175 pol->v.preferred_node = first_node(*nodes);
176 return 0;
177}
178
179static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!is_valid_nodemask(nodes))
182 return -EINVAL;
183 pol->v.nodes = *nodes;
184 return 0;
185}
186
187/*
188 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
189 * any, for the new policy. mpol_new() has already validated the nodes
190 * parameter with respect to the policy mode and flags. But, we need to
191 * handle an empty nodemask with MPOL_PREFERRED here.
192 *
193 * Must be called holding task's alloc_lock to protect task's mems_allowed
194 * and mempolicy. May also be called holding the mmap_semaphore for write.
195 */
196static int mpol_set_nodemask(struct mempolicy *pol,
197 const nodemask_t *nodes, struct nodemask_scratch *nsc)
198{
199 int ret;
200
201 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
202 if (pol == NULL)
203 return 0;
204 /* Check N_HIGH_MEMORY */
205 nodes_and(nsc->mask1,
206 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
207
208 VM_BUG_ON(!nodes);
209 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
210 nodes = NULL; /* explicit local allocation */
211 else {
212 if (pol->flags & MPOL_F_RELATIVE_NODES)
213 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
214 else
215 nodes_and(nsc->mask2, *nodes, nsc->mask1);
216
217 if (mpol_store_user_nodemask(pol))
218 pol->w.user_nodemask = *nodes;
219 else
220 pol->w.cpuset_mems_allowed =
221 cpuset_current_mems_allowed;
222 }
223
224 if (nodes)
225 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
226 else
227 ret = mpol_ops[pol->mode].create(pol, NULL);
228 return ret;
229}
230
231/*
232 * This function just creates a new policy, does some check and simple
233 * initialization. You must invoke mpol_set_nodemask() to set nodes.
234 */
235static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
236 nodemask_t *nodes)
237{
238 struct mempolicy *policy;
239
240 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
241 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
242
243 if (mode == MPOL_DEFAULT) {
244 if (nodes && !nodes_empty(*nodes))
245 return ERR_PTR(-EINVAL);
246 return NULL; /* simply delete any existing policy */
247 }
248 VM_BUG_ON(!nodes);
249
250 /*
251 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
252 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
253 * All other modes require a valid pointer to a non-empty nodemask.
254 */
255 if (mode == MPOL_PREFERRED) {
256 if (nodes_empty(*nodes)) {
257 if (((flags & MPOL_F_STATIC_NODES) ||
258 (flags & MPOL_F_RELATIVE_NODES)))
259 return ERR_PTR(-EINVAL);
260 }
261 } else if (nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
264 if (!policy)
265 return ERR_PTR(-ENOMEM);
266 atomic_set(&policy->refcnt, 1);
267 policy->mode = mode;
268 policy->flags = flags;
269
270 return policy;
271}
272
273/* Slow path of a mpol destructor. */
274void __mpol_put(struct mempolicy *p)
275{
276 if (!atomic_dec_and_test(&p->refcnt))
277 return;
278 kmem_cache_free(policy_cache, p);
279}
280
281static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
282{
283}
284
285static void mpol_rebind_nodemask(struct mempolicy *pol,
286 const nodemask_t *nodes)
287{
288 nodemask_t tmp;
289
290 if (pol->flags & MPOL_F_STATIC_NODES)
291 nodes_and(tmp, pol->w.user_nodemask, *nodes);
292 else if (pol->flags & MPOL_F_RELATIVE_NODES)
293 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
294 else {
295 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
296 *nodes);
297 pol->w.cpuset_mems_allowed = *nodes;
298 }
299
300 pol->v.nodes = tmp;
301 if (!node_isset(current->il_next, tmp)) {
302 current->il_next = next_node(current->il_next, tmp);
303 if (current->il_next >= MAX_NUMNODES)
304 current->il_next = first_node(tmp);
305 if (current->il_next >= MAX_NUMNODES)
306 current->il_next = numa_node_id();
307 }
308}
309
310static void mpol_rebind_preferred(struct mempolicy *pol,
311 const nodemask_t *nodes)
312{
313 nodemask_t tmp;
314
315 if (pol->flags & MPOL_F_STATIC_NODES) {
316 int node = first_node(pol->w.user_nodemask);
317
318 if (node_isset(node, *nodes)) {
319 pol->v.preferred_node = node;
320 pol->flags &= ~MPOL_F_LOCAL;
321 } else
322 pol->flags |= MPOL_F_LOCAL;
323 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 pol->v.preferred_node = first_node(tmp);
326 } else if (!(pol->flags & MPOL_F_LOCAL)) {
327 pol->v.preferred_node = node_remap(pol->v.preferred_node,
328 pol->w.cpuset_mems_allowed,
329 *nodes);
330 pol->w.cpuset_mems_allowed = *nodes;
331 }
332}
333
334/* Migrate a policy to a different set of nodes */
335static void mpol_rebind_policy(struct mempolicy *pol,
336 const nodemask_t *newmask)
337{
338 if (!pol)
339 return;
340 if (!mpol_store_user_nodemask(pol) &&
341 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
342 return;
343 mpol_ops[pol->mode].rebind(pol, newmask);
344}
345
346/*
347 * Wrapper for mpol_rebind_policy() that just requires task
348 * pointer, and updates task mempolicy.
349 *
350 * Called with task's alloc_lock held.
351 */
352
353void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
354{
355 mpol_rebind_policy(tsk->mempolicy, new);
356}
357
358/*
359 * Rebind each vma in mm to new nodemask.
360 *
361 * Call holding a reference to mm. Takes mm->mmap_sem during call.
362 */
363
364void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
365{
366 struct vm_area_struct *vma;
367
368 down_write(&mm->mmap_sem);
369 for (vma = mm->mmap; vma; vma = vma->vm_next)
370 mpol_rebind_policy(vma->vm_policy, new);
371 up_write(&mm->mmap_sem);
372}
373
374static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
375 [MPOL_DEFAULT] = {
376 .rebind = mpol_rebind_default,
377 },
378 [MPOL_INTERLEAVE] = {
379 .create = mpol_new_interleave,
380 .rebind = mpol_rebind_nodemask,
381 },
382 [MPOL_PREFERRED] = {
383 .create = mpol_new_preferred,
384 .rebind = mpol_rebind_preferred,
385 },
386 [MPOL_BIND] = {
387 .create = mpol_new_bind,
388 .rebind = mpol_rebind_nodemask,
389 },
390};
391
392static void gather_stats(struct page *, void *, int pte_dirty);
393static void migrate_page_add(struct page *page, struct list_head *pagelist,
394 unsigned long flags);
395
396/* Scan through pages checking if pages follow certain conditions. */
397static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
398 unsigned long addr, unsigned long end,
399 const nodemask_t *nodes, unsigned long flags,
400 void *private)
401{
402 pte_t *orig_pte;
403 pte_t *pte;
404 spinlock_t *ptl;
405
406 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
407 do {
408 struct page *page;
409 int nid;
410
411 if (!pte_present(*pte))
412 continue;
413 page = vm_normal_page(vma, addr, *pte);
414 if (!page)
415 continue;
416 /*
417 * vm_normal_page() filters out zero pages, but there might
418 * still be PageReserved pages to skip, perhaps in a VDSO.
419 * And we cannot move PageKsm pages sensibly or safely yet.
420 */
421 if (PageReserved(page) || PageKsm(page))
422 continue;
423 nid = page_to_nid(page);
424 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
425 continue;
426
427 if (flags & MPOL_MF_STATS)
428 gather_stats(page, private, pte_dirty(*pte));
429 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
430 migrate_page_add(page, private, flags);
431 else
432 break;
433 } while (pte++, addr += PAGE_SIZE, addr != end);
434 pte_unmap_unlock(orig_pte, ptl);
435 return addr != end;
436}
437
438static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
439 unsigned long addr, unsigned long end,
440 const nodemask_t *nodes, unsigned long flags,
441 void *private)
442{
443 pmd_t *pmd;
444 unsigned long next;
445
446 pmd = pmd_offset(pud, addr);
447 do {
448 next = pmd_addr_end(addr, end);
449 if (pmd_none_or_clear_bad(pmd))
450 continue;
451 if (check_pte_range(vma, pmd, addr, next, nodes,
452 flags, private))
453 return -EIO;
454 } while (pmd++, addr = next, addr != end);
455 return 0;
456}
457
458static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
459 unsigned long addr, unsigned long end,
460 const nodemask_t *nodes, unsigned long flags,
461 void *private)
462{
463 pud_t *pud;
464 unsigned long next;
465
466 pud = pud_offset(pgd, addr);
467 do {
468 next = pud_addr_end(addr, end);
469 if (pud_none_or_clear_bad(pud))
470 continue;
471 if (check_pmd_range(vma, pud, addr, next, nodes,
472 flags, private))
473 return -EIO;
474 } while (pud++, addr = next, addr != end);
475 return 0;
476}
477
478static inline int check_pgd_range(struct vm_area_struct *vma,
479 unsigned long addr, unsigned long end,
480 const nodemask_t *nodes, unsigned long flags,
481 void *private)
482{
483 pgd_t *pgd;
484 unsigned long next;
485
486 pgd = pgd_offset(vma->vm_mm, addr);
487 do {
488 next = pgd_addr_end(addr, end);
489 if (pgd_none_or_clear_bad(pgd))
490 continue;
491 if (check_pud_range(vma, pgd, addr, next, nodes,
492 flags, private))
493 return -EIO;
494 } while (pgd++, addr = next, addr != end);
495 return 0;
496}
497
498/*
499 * Check if all pages in a range are on a set of nodes.
500 * If pagelist != NULL then isolate pages from the LRU and
501 * put them on the pagelist.
502 */
503static struct vm_area_struct *
504check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags, void *private)
506{
507 int err;
508 struct vm_area_struct *first, *vma, *prev;
509
510
511 first = find_vma(mm, start);
512 if (!first)
513 return ERR_PTR(-EFAULT);
514 prev = NULL;
515 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
516 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
517 if (!vma->vm_next && vma->vm_end < end)
518 return ERR_PTR(-EFAULT);
519 if (prev && prev->vm_end < vma->vm_start)
520 return ERR_PTR(-EFAULT);
521 }
522 if (!is_vm_hugetlb_page(vma) &&
523 ((flags & MPOL_MF_STRICT) ||
524 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
525 vma_migratable(vma)))) {
526 unsigned long endvma = vma->vm_end;
527
528 if (endvma > end)
529 endvma = end;
530 if (vma->vm_start > start)
531 start = vma->vm_start;
532 err = check_pgd_range(vma, start, endvma, nodes,
533 flags, private);
534 if (err) {
535 first = ERR_PTR(err);
536 break;
537 }
538 }
539 prev = vma;
540 }
541 return first;
542}
543
544/* Apply policy to a single VMA */
545static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
546{
547 int err = 0;
548 struct mempolicy *old = vma->vm_policy;
549
550 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
551 vma->vm_start, vma->vm_end, vma->vm_pgoff,
552 vma->vm_ops, vma->vm_file,
553 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
554
555 if (vma->vm_ops && vma->vm_ops->set_policy)
556 err = vma->vm_ops->set_policy(vma, new);
557 if (!err) {
558 mpol_get(new);
559 vma->vm_policy = new;
560 mpol_put(old);
561 }
562 return err;
563}
564
565/* Step 2: apply policy to a range and do splits. */
566static int mbind_range(struct mm_struct *mm, unsigned long start,
567 unsigned long end, struct mempolicy *new_pol)
568{
569 struct vm_area_struct *next;
570 struct vm_area_struct *prev;
571 struct vm_area_struct *vma;
572 int err = 0;
573 pgoff_t pgoff;
574 unsigned long vmstart;
575 unsigned long vmend;
576
577 vma = find_vma_prev(mm, start, &prev);
578 if (!vma || vma->vm_start > start)
579 return -EFAULT;
580
581 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
582 next = vma->vm_next;
583 vmstart = max(start, vma->vm_start);
584 vmend = min(end, vma->vm_end);
585
586 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
587 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
588 vma->anon_vma, vma->vm_file, pgoff, new_pol);
589 if (prev) {
590 vma = prev;
591 next = vma->vm_next;
592 continue;
593 }
594 if (vma->vm_start != vmstart) {
595 err = split_vma(vma->vm_mm, vma, vmstart, 1);
596 if (err)
597 goto out;
598 }
599 if (vma->vm_end != vmend) {
600 err = split_vma(vma->vm_mm, vma, vmend, 0);
601 if (err)
602 goto out;
603 }
604 err = policy_vma(vma, new_pol);
605 if (err)
606 goto out;
607 }
608
609 out:
610 return err;
611}
612
613/*
614 * Update task->flags PF_MEMPOLICY bit: set iff non-default
615 * mempolicy. Allows more rapid checking of this (combined perhaps
616 * with other PF_* flag bits) on memory allocation hot code paths.
617 *
618 * If called from outside this file, the task 'p' should -only- be
619 * a newly forked child not yet visible on the task list, because
620 * manipulating the task flags of a visible task is not safe.
621 *
622 * The above limitation is why this routine has the funny name
623 * mpol_fix_fork_child_flag().
624 *
625 * It is also safe to call this with a task pointer of current,
626 * which the static wrapper mpol_set_task_struct_flag() does,
627 * for use within this file.
628 */
629
630void mpol_fix_fork_child_flag(struct task_struct *p)
631{
632 if (p->mempolicy)
633 p->flags |= PF_MEMPOLICY;
634 else
635 p->flags &= ~PF_MEMPOLICY;
636}
637
638static void mpol_set_task_struct_flag(void)
639{
640 mpol_fix_fork_child_flag(current);
641}
642
643/* Set the process memory policy */
644static long do_set_mempolicy(unsigned short mode, unsigned short flags,
645 nodemask_t *nodes)
646{
647 struct mempolicy *new, *old;
648 struct mm_struct *mm = current->mm;
649 NODEMASK_SCRATCH(scratch);
650 int ret;
651
652 if (!scratch)
653 return -ENOMEM;
654
655 new = mpol_new(mode, flags, nodes);
656 if (IS_ERR(new)) {
657 ret = PTR_ERR(new);
658 goto out;
659 }
660 /*
661 * prevent changing our mempolicy while show_numa_maps()
662 * is using it.
663 * Note: do_set_mempolicy() can be called at init time
664 * with no 'mm'.
665 */
666 if (mm)
667 down_write(&mm->mmap_sem);
668 task_lock(current);
669 ret = mpol_set_nodemask(new, nodes, scratch);
670 if (ret) {
671 task_unlock(current);
672 if (mm)
673 up_write(&mm->mmap_sem);
674 mpol_put(new);
675 goto out;
676 }
677 old = current->mempolicy;
678 current->mempolicy = new;
679 mpol_set_task_struct_flag();
680 if (new && new->mode == MPOL_INTERLEAVE &&
681 nodes_weight(new->v.nodes))
682 current->il_next = first_node(new->v.nodes);
683 task_unlock(current);
684 if (mm)
685 up_write(&mm->mmap_sem);
686
687 mpol_put(old);
688 ret = 0;
689out:
690 NODEMASK_SCRATCH_FREE(scratch);
691 return ret;
692}
693
694/*
695 * Return nodemask for policy for get_mempolicy() query
696 *
697 * Called with task's alloc_lock held
698 */
699static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
700{
701 nodes_clear(*nodes);
702 if (p == &default_policy)
703 return;
704
705 switch (p->mode) {
706 case MPOL_BIND:
707 /* Fall through */
708 case MPOL_INTERLEAVE:
709 *nodes = p->v.nodes;
710 break;
711 case MPOL_PREFERRED:
712 if (!(p->flags & MPOL_F_LOCAL))
713 node_set(p->v.preferred_node, *nodes);
714 /* else return empty node mask for local allocation */
715 break;
716 default:
717 BUG();
718 }
719}
720
721static int lookup_node(struct mm_struct *mm, unsigned long addr)
722{
723 struct page *p;
724 int err;
725
726 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
727 if (err >= 0) {
728 err = page_to_nid(p);
729 put_page(p);
730 }
731 return err;
732}
733
734/* Retrieve NUMA policy */
735static long do_get_mempolicy(int *policy, nodemask_t *nmask,
736 unsigned long addr, unsigned long flags)
737{
738 int err;
739 struct mm_struct *mm = current->mm;
740 struct vm_area_struct *vma = NULL;
741 struct mempolicy *pol = current->mempolicy;
742
743 if (flags &
744 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
745 return -EINVAL;
746
747 if (flags & MPOL_F_MEMS_ALLOWED) {
748 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
749 return -EINVAL;
750 *policy = 0; /* just so it's initialized */
751 task_lock(current);
752 *nmask = cpuset_current_mems_allowed;
753 task_unlock(current);
754 return 0;
755 }
756
757 if (flags & MPOL_F_ADDR) {
758 /*
759 * Do NOT fall back to task policy if the
760 * vma/shared policy at addr is NULL. We
761 * want to return MPOL_DEFAULT in this case.
762 */
763 down_read(&mm->mmap_sem);
764 vma = find_vma_intersection(mm, addr, addr+1);
765 if (!vma) {
766 up_read(&mm->mmap_sem);
767 return -EFAULT;
768 }
769 if (vma->vm_ops && vma->vm_ops->get_policy)
770 pol = vma->vm_ops->get_policy(vma, addr);
771 else
772 pol = vma->vm_policy;
773 } else if (addr)
774 return -EINVAL;
775
776 if (!pol)
777 pol = &default_policy; /* indicates default behavior */
778
779 if (flags & MPOL_F_NODE) {
780 if (flags & MPOL_F_ADDR) {
781 err = lookup_node(mm, addr);
782 if (err < 0)
783 goto out;
784 *policy = err;
785 } else if (pol == current->mempolicy &&
786 pol->mode == MPOL_INTERLEAVE) {
787 *policy = current->il_next;
788 } else {
789 err = -EINVAL;
790 goto out;
791 }
792 } else {
793 *policy = pol == &default_policy ? MPOL_DEFAULT :
794 pol->mode;
795 /*
796 * Internal mempolicy flags must be masked off before exposing
797 * the policy to userspace.
798 */
799 *policy |= (pol->flags & MPOL_MODE_FLAGS);
800 }
801
802 if (vma) {
803 up_read(&current->mm->mmap_sem);
804 vma = NULL;
805 }
806
807 err = 0;
808 if (nmask) {
809 task_lock(current);
810 get_policy_nodemask(pol, nmask);
811 task_unlock(current);
812 }
813
814 out:
815 mpol_cond_put(pol);
816 if (vma)
817 up_read(&current->mm->mmap_sem);
818 return err;
819}
820
821#ifdef CONFIG_MIGRATION
822/*
823 * page migration
824 */
825static void migrate_page_add(struct page *page, struct list_head *pagelist,
826 unsigned long flags)
827{
828 /*
829 * Avoid migrating a page that is shared with others.
830 */
831 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
832 if (!isolate_lru_page(page)) {
833 list_add_tail(&page->lru, pagelist);
834 inc_zone_page_state(page, NR_ISOLATED_ANON +
835 page_is_file_cache(page));
836 }
837 }
838}
839
840static struct page *new_node_page(struct page *page, unsigned long node, int **x)
841{
842 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
843}
844
845/*
846 * Migrate pages from one node to a target node.
847 * Returns error or the number of pages not migrated.
848 */
849static int migrate_to_node(struct mm_struct *mm, int source, int dest,
850 int flags)
851{
852 nodemask_t nmask;
853 LIST_HEAD(pagelist);
854 int err = 0;
855
856 nodes_clear(nmask);
857 node_set(source, nmask);
858
859 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
860 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
861
862 if (!list_empty(&pagelist))
863 err = migrate_pages(&pagelist, new_node_page, dest, 0);
864
865 return err;
866}
867
868/*
869 * Move pages between the two nodesets so as to preserve the physical
870 * layout as much as possible.
871 *
872 * Returns the number of page that could not be moved.
873 */
874int do_migrate_pages(struct mm_struct *mm,
875 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
876{
877 int busy = 0;
878 int err;
879 nodemask_t tmp;
880
881 err = migrate_prep();
882 if (err)
883 return err;
884
885 down_read(&mm->mmap_sem);
886
887 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
888 if (err)
889 goto out;
890
891/*
892 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
893 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
894 * bit in 'tmp', and return that <source, dest> pair for migration.
895 * The pair of nodemasks 'to' and 'from' define the map.
896 *
897 * If no pair of bits is found that way, fallback to picking some
898 * pair of 'source' and 'dest' bits that are not the same. If the
899 * 'source' and 'dest' bits are the same, this represents a node
900 * that will be migrating to itself, so no pages need move.
901 *
902 * If no bits are left in 'tmp', or if all remaining bits left
903 * in 'tmp' correspond to the same bit in 'to', return false
904 * (nothing left to migrate).
905 *
906 * This lets us pick a pair of nodes to migrate between, such that
907 * if possible the dest node is not already occupied by some other
908 * source node, minimizing the risk of overloading the memory on a
909 * node that would happen if we migrated incoming memory to a node
910 * before migrating outgoing memory source that same node.
911 *
912 * A single scan of tmp is sufficient. As we go, we remember the
913 * most recent <s, d> pair that moved (s != d). If we find a pair
914 * that not only moved, but what's better, moved to an empty slot
915 * (d is not set in tmp), then we break out then, with that pair.
916 * Otherwise when we finish scannng from_tmp, we at least have the
917 * most recent <s, d> pair that moved. If we get all the way through
918 * the scan of tmp without finding any node that moved, much less
919 * moved to an empty node, then there is nothing left worth migrating.
920 */
921
922 tmp = *from_nodes;
923 while (!nodes_empty(tmp)) {
924 int s,d;
925 int source = -1;
926 int dest = 0;
927
928 for_each_node_mask(s, tmp) {
929 d = node_remap(s, *from_nodes, *to_nodes);
930 if (s == d)
931 continue;
932
933 source = s; /* Node moved. Memorize */
934 dest = d;
935
936 /* dest not in remaining from nodes? */
937 if (!node_isset(dest, tmp))
938 break;
939 }
940 if (source == -1)
941 break;
942
943 node_clear(source, tmp);
944 err = migrate_to_node(mm, source, dest, flags);
945 if (err > 0)
946 busy += err;
947 if (err < 0)
948 break;
949 }
950out:
951 up_read(&mm->mmap_sem);
952 if (err < 0)
953 return err;
954 return busy;
955
956}
957
958/*
959 * Allocate a new page for page migration based on vma policy.
960 * Start assuming that page is mapped by vma pointed to by @private.
961 * Search forward from there, if not. N.B., this assumes that the
962 * list of pages handed to migrate_pages()--which is how we get here--
963 * is in virtual address order.
964 */
965static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
966{
967 struct vm_area_struct *vma = (struct vm_area_struct *)private;
968 unsigned long uninitialized_var(address);
969
970 while (vma) {
971 address = page_address_in_vma(page, vma);
972 if (address != -EFAULT)
973 break;
974 vma = vma->vm_next;
975 }
976
977 /*
978 * if !vma, alloc_page_vma() will use task or system default policy
979 */
980 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
981}
982#else
983
984static void migrate_page_add(struct page *page, struct list_head *pagelist,
985 unsigned long flags)
986{
987}
988
989int do_migrate_pages(struct mm_struct *mm,
990 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
991{
992 return -ENOSYS;
993}
994
995static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
996{
997 return NULL;
998}
999#endif
1000
1001static long do_mbind(unsigned long start, unsigned long len,
1002 unsigned short mode, unsigned short mode_flags,
1003 nodemask_t *nmask, unsigned long flags)
1004{
1005 struct vm_area_struct *vma;
1006 struct mm_struct *mm = current->mm;
1007 struct mempolicy *new;
1008 unsigned long end;
1009 int err;
1010 LIST_HEAD(pagelist);
1011
1012 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1013 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1014 return -EINVAL;
1015 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1016 return -EPERM;
1017
1018 if (start & ~PAGE_MASK)
1019 return -EINVAL;
1020
1021 if (mode == MPOL_DEFAULT)
1022 flags &= ~MPOL_MF_STRICT;
1023
1024 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1025 end = start + len;
1026
1027 if (end < start)
1028 return -EINVAL;
1029 if (end == start)
1030 return 0;
1031
1032 new = mpol_new(mode, mode_flags, nmask);
1033 if (IS_ERR(new))
1034 return PTR_ERR(new);
1035
1036 /*
1037 * If we are using the default policy then operation
1038 * on discontinuous address spaces is okay after all
1039 */
1040 if (!new)
1041 flags |= MPOL_MF_DISCONTIG_OK;
1042
1043 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1044 start, start + len, mode, mode_flags,
1045 nmask ? nodes_addr(*nmask)[0] : -1);
1046
1047 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1048
1049 err = migrate_prep();
1050 if (err)
1051 goto mpol_out;
1052 }
1053 {
1054 NODEMASK_SCRATCH(scratch);
1055 if (scratch) {
1056 down_write(&mm->mmap_sem);
1057 task_lock(current);
1058 err = mpol_set_nodemask(new, nmask, scratch);
1059 task_unlock(current);
1060 if (err)
1061 up_write(&mm->mmap_sem);
1062 } else
1063 err = -ENOMEM;
1064 NODEMASK_SCRATCH_FREE(scratch);
1065 }
1066 if (err)
1067 goto mpol_out;
1068
1069 vma = check_range(mm, start, end, nmask,
1070 flags | MPOL_MF_INVERT, &pagelist);
1071
1072 err = PTR_ERR(vma);
1073 if (!IS_ERR(vma)) {
1074 int nr_failed = 0;
1075
1076 err = mbind_range(mm, start, end, new);
1077
1078 if (!list_empty(&pagelist))
1079 nr_failed = migrate_pages(&pagelist, new_vma_page,
1080 (unsigned long)vma, 0);
1081
1082 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1083 err = -EIO;
1084 } else
1085 putback_lru_pages(&pagelist);
1086
1087 up_write(&mm->mmap_sem);
1088 mpol_out:
1089 mpol_put(new);
1090 return err;
1091}
1092
1093/*
1094 * User space interface with variable sized bitmaps for nodelists.
1095 */
1096
1097/* Copy a node mask from user space. */
1098static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1099 unsigned long maxnode)
1100{
1101 unsigned long k;
1102 unsigned long nlongs;
1103 unsigned long endmask;
1104
1105 --maxnode;
1106 nodes_clear(*nodes);
1107 if (maxnode == 0 || !nmask)
1108 return 0;
1109 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1110 return -EINVAL;
1111
1112 nlongs = BITS_TO_LONGS(maxnode);
1113 if ((maxnode % BITS_PER_LONG) == 0)
1114 endmask = ~0UL;
1115 else
1116 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1117
1118 /* When the user specified more nodes than supported just check
1119 if the non supported part is all zero. */
1120 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1121 if (nlongs > PAGE_SIZE/sizeof(long))
1122 return -EINVAL;
1123 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1124 unsigned long t;
1125 if (get_user(t, nmask + k))
1126 return -EFAULT;
1127 if (k == nlongs - 1) {
1128 if (t & endmask)
1129 return -EINVAL;
1130 } else if (t)
1131 return -EINVAL;
1132 }
1133 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1134 endmask = ~0UL;
1135 }
1136
1137 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1138 return -EFAULT;
1139 nodes_addr(*nodes)[nlongs-1] &= endmask;
1140 return 0;
1141}
1142
1143/* Copy a kernel node mask to user space */
1144static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1145 nodemask_t *nodes)
1146{
1147 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1148 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1149
1150 if (copy > nbytes) {
1151 if (copy > PAGE_SIZE)
1152 return -EINVAL;
1153 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1154 return -EFAULT;
1155 copy = nbytes;
1156 }
1157 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1158}
1159
1160SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1161 unsigned long, mode, unsigned long __user *, nmask,
1162 unsigned long, maxnode, unsigned, flags)
1163{
1164 nodemask_t nodes;
1165 int err;
1166 unsigned short mode_flags;
1167
1168 mode_flags = mode & MPOL_MODE_FLAGS;
1169 mode &= ~MPOL_MODE_FLAGS;
1170 if (mode >= MPOL_MAX)
1171 return -EINVAL;
1172 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1173 (mode_flags & MPOL_F_RELATIVE_NODES))
1174 return -EINVAL;
1175 err = get_nodes(&nodes, nmask, maxnode);
1176 if (err)
1177 return err;
1178 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1179}
1180
1181/* Set the process memory policy */
1182SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1183 unsigned long, maxnode)
1184{
1185 int err;
1186 nodemask_t nodes;
1187 unsigned short flags;
1188
1189 flags = mode & MPOL_MODE_FLAGS;
1190 mode &= ~MPOL_MODE_FLAGS;
1191 if ((unsigned int)mode >= MPOL_MAX)
1192 return -EINVAL;
1193 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1194 return -EINVAL;
1195 err = get_nodes(&nodes, nmask, maxnode);
1196 if (err)
1197 return err;
1198 return do_set_mempolicy(mode, flags, &nodes);
1199}
1200
1201SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1202 const unsigned long __user *, old_nodes,
1203 const unsigned long __user *, new_nodes)
1204{
1205 const struct cred *cred = current_cred(), *tcred;
1206 struct mm_struct *mm;
1207 struct task_struct *task;
1208 nodemask_t old;
1209 nodemask_t new;
1210 nodemask_t task_nodes;
1211 int err;
1212
1213 err = get_nodes(&old, old_nodes, maxnode);
1214 if (err)
1215 return err;
1216
1217 err = get_nodes(&new, new_nodes, maxnode);
1218 if (err)
1219 return err;
1220
1221 /* Find the mm_struct */
1222 read_lock(&tasklist_lock);
1223 task = pid ? find_task_by_vpid(pid) : current;
1224 if (!task) {
1225 read_unlock(&tasklist_lock);
1226 return -ESRCH;
1227 }
1228 mm = get_task_mm(task);
1229 read_unlock(&tasklist_lock);
1230
1231 if (!mm)
1232 return -EINVAL;
1233
1234 /*
1235 * Check if this process has the right to modify the specified
1236 * process. The right exists if the process has administrative
1237 * capabilities, superuser privileges or the same
1238 * userid as the target process.
1239 */
1240 rcu_read_lock();
1241 tcred = __task_cred(task);
1242 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1243 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1244 !capable(CAP_SYS_NICE)) {
1245 rcu_read_unlock();
1246 err = -EPERM;
1247 goto out;
1248 }
1249 rcu_read_unlock();
1250
1251 task_nodes = cpuset_mems_allowed(task);
1252 /* Is the user allowed to access the target nodes? */
1253 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1254 err = -EPERM;
1255 goto out;
1256 }
1257
1258 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1259 err = -EINVAL;
1260 goto out;
1261 }
1262
1263 err = security_task_movememory(task);
1264 if (err)
1265 goto out;
1266
1267 err = do_migrate_pages(mm, &old, &new,
1268 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1269out:
1270 mmput(mm);
1271 return err;
1272}
1273
1274
1275/* Retrieve NUMA policy */
1276SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1277 unsigned long __user *, nmask, unsigned long, maxnode,
1278 unsigned long, addr, unsigned long, flags)
1279{
1280 int err;
1281 int uninitialized_var(pval);
1282 nodemask_t nodes;
1283
1284 if (nmask != NULL && maxnode < MAX_NUMNODES)
1285 return -EINVAL;
1286
1287 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1288
1289 if (err)
1290 return err;
1291
1292 if (policy && put_user(pval, policy))
1293 return -EFAULT;
1294
1295 if (nmask)
1296 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1297
1298 return err;
1299}
1300
1301#ifdef CONFIG_COMPAT
1302
1303asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1304 compat_ulong_t __user *nmask,
1305 compat_ulong_t maxnode,
1306 compat_ulong_t addr, compat_ulong_t flags)
1307{
1308 long err;
1309 unsigned long __user *nm = NULL;
1310 unsigned long nr_bits, alloc_size;
1311 DECLARE_BITMAP(bm, MAX_NUMNODES);
1312
1313 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1314 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1315
1316 if (nmask)
1317 nm = compat_alloc_user_space(alloc_size);
1318
1319 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1320
1321 if (!err && nmask) {
1322 err = copy_from_user(bm, nm, alloc_size);
1323 /* ensure entire bitmap is zeroed */
1324 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1325 err |= compat_put_bitmap(nmask, bm, nr_bits);
1326 }
1327
1328 return err;
1329}
1330
1331asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1332 compat_ulong_t maxnode)
1333{
1334 long err = 0;
1335 unsigned long __user *nm = NULL;
1336 unsigned long nr_bits, alloc_size;
1337 DECLARE_BITMAP(bm, MAX_NUMNODES);
1338
1339 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1340 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1341
1342 if (nmask) {
1343 err = compat_get_bitmap(bm, nmask, nr_bits);
1344 nm = compat_alloc_user_space(alloc_size);
1345 err |= copy_to_user(nm, bm, alloc_size);
1346 }
1347
1348 if (err)
1349 return -EFAULT;
1350
1351 return sys_set_mempolicy(mode, nm, nr_bits+1);
1352}
1353
1354asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1355 compat_ulong_t mode, compat_ulong_t __user *nmask,
1356 compat_ulong_t maxnode, compat_ulong_t flags)
1357{
1358 long err = 0;
1359 unsigned long __user *nm = NULL;
1360 unsigned long nr_bits, alloc_size;
1361 nodemask_t bm;
1362
1363 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1364 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1365
1366 if (nmask) {
1367 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1368 nm = compat_alloc_user_space(alloc_size);
1369 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1370 }
1371
1372 if (err)
1373 return -EFAULT;
1374
1375 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1376}
1377
1378#endif
1379
1380/*
1381 * get_vma_policy(@task, @vma, @addr)
1382 * @task - task for fallback if vma policy == default
1383 * @vma - virtual memory area whose policy is sought
1384 * @addr - address in @vma for shared policy lookup
1385 *
1386 * Returns effective policy for a VMA at specified address.
1387 * Falls back to @task or system default policy, as necessary.
1388 * Current or other task's task mempolicy and non-shared vma policies
1389 * are protected by the task's mmap_sem, which must be held for read by
1390 * the caller.
1391 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1392 * count--added by the get_policy() vm_op, as appropriate--to protect against
1393 * freeing by another task. It is the caller's responsibility to free the
1394 * extra reference for shared policies.
1395 */
1396static struct mempolicy *get_vma_policy(struct task_struct *task,
1397 struct vm_area_struct *vma, unsigned long addr)
1398{
1399 struct mempolicy *pol = task->mempolicy;
1400
1401 if (vma) {
1402 if (vma->vm_ops && vma->vm_ops->get_policy) {
1403 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1404 addr);
1405 if (vpol)
1406 pol = vpol;
1407 } else if (vma->vm_policy)
1408 pol = vma->vm_policy;
1409 }
1410 if (!pol)
1411 pol = &default_policy;
1412 return pol;
1413}
1414
1415/*
1416 * Return a nodemask representing a mempolicy for filtering nodes for
1417 * page allocation
1418 */
1419static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1420{
1421 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1422 if (unlikely(policy->mode == MPOL_BIND) &&
1423 gfp_zone(gfp) >= policy_zone &&
1424 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1425 return &policy->v.nodes;
1426
1427 return NULL;
1428}
1429
1430/* Return a zonelist indicated by gfp for node representing a mempolicy */
1431static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1432{
1433 int nd = numa_node_id();
1434
1435 switch (policy->mode) {
1436 case MPOL_PREFERRED:
1437 if (!(policy->flags & MPOL_F_LOCAL))
1438 nd = policy->v.preferred_node;
1439 break;
1440 case MPOL_BIND:
1441 /*
1442 * Normally, MPOL_BIND allocations are node-local within the
1443 * allowed nodemask. However, if __GFP_THISNODE is set and the
1444 * current node is part of the mask, we use the zonelist for
1445 * the first node in the mask instead.
1446 */
1447 if (unlikely(gfp & __GFP_THISNODE) &&
1448 unlikely(!node_isset(nd, policy->v.nodes)))
1449 nd = first_node(policy->v.nodes);
1450 break;
1451 case MPOL_INTERLEAVE: /* should not happen */
1452 break;
1453 default:
1454 BUG();
1455 }
1456 return node_zonelist(nd, gfp);
1457}
1458
1459/* Do dynamic interleaving for a process */
1460static unsigned interleave_nodes(struct mempolicy *policy)
1461{
1462 unsigned nid, next;
1463 struct task_struct *me = current;
1464
1465 nid = me->il_next;
1466 next = next_node(nid, policy->v.nodes);
1467 if (next >= MAX_NUMNODES)
1468 next = first_node(policy->v.nodes);
1469 if (next < MAX_NUMNODES)
1470 me->il_next = next;
1471 return nid;
1472}
1473
1474/*
1475 * Depending on the memory policy provide a node from which to allocate the
1476 * next slab entry.
1477 * @policy must be protected by freeing by the caller. If @policy is
1478 * the current task's mempolicy, this protection is implicit, as only the
1479 * task can change it's policy. The system default policy requires no
1480 * such protection.
1481 */
1482unsigned slab_node(struct mempolicy *policy)
1483{
1484 if (!policy || policy->flags & MPOL_F_LOCAL)
1485 return numa_node_id();
1486
1487 switch (policy->mode) {
1488 case MPOL_PREFERRED:
1489 /*
1490 * handled MPOL_F_LOCAL above
1491 */
1492 return policy->v.preferred_node;
1493
1494 case MPOL_INTERLEAVE:
1495 return interleave_nodes(policy);
1496
1497 case MPOL_BIND: {
1498 /*
1499 * Follow bind policy behavior and start allocation at the
1500 * first node.
1501 */
1502 struct zonelist *zonelist;
1503 struct zone *zone;
1504 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1505 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1506 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1507 &policy->v.nodes,
1508 &zone);
1509 return zone->node;
1510 }
1511
1512 default:
1513 BUG();
1514 }
1515}
1516
1517/* Do static interleaving for a VMA with known offset. */
1518static unsigned offset_il_node(struct mempolicy *pol,
1519 struct vm_area_struct *vma, unsigned long off)
1520{
1521 unsigned nnodes = nodes_weight(pol->v.nodes);
1522 unsigned target;
1523 int c;
1524 int nid = -1;
1525
1526 if (!nnodes)
1527 return numa_node_id();
1528 target = (unsigned int)off % nnodes;
1529 c = 0;
1530 do {
1531 nid = next_node(nid, pol->v.nodes);
1532 c++;
1533 } while (c <= target);
1534 return nid;
1535}
1536
1537/* Determine a node number for interleave */
1538static inline unsigned interleave_nid(struct mempolicy *pol,
1539 struct vm_area_struct *vma, unsigned long addr, int shift)
1540{
1541 if (vma) {
1542 unsigned long off;
1543
1544 /*
1545 * for small pages, there is no difference between
1546 * shift and PAGE_SHIFT, so the bit-shift is safe.
1547 * for huge pages, since vm_pgoff is in units of small
1548 * pages, we need to shift off the always 0 bits to get
1549 * a useful offset.
1550 */
1551 BUG_ON(shift < PAGE_SHIFT);
1552 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1553 off += (addr - vma->vm_start) >> shift;
1554 return offset_il_node(pol, vma, off);
1555 } else
1556 return interleave_nodes(pol);
1557}
1558
1559#ifdef CONFIG_HUGETLBFS
1560/*
1561 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1562 * @vma = virtual memory area whose policy is sought
1563 * @addr = address in @vma for shared policy lookup and interleave policy
1564 * @gfp_flags = for requested zone
1565 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1566 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1567 *
1568 * Returns a zonelist suitable for a huge page allocation and a pointer
1569 * to the struct mempolicy for conditional unref after allocation.
1570 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1571 * @nodemask for filtering the zonelist.
1572 */
1573struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1574 gfp_t gfp_flags, struct mempolicy **mpol,
1575 nodemask_t **nodemask)
1576{
1577 struct zonelist *zl;
1578
1579 *mpol = get_vma_policy(current, vma, addr);
1580 *nodemask = NULL; /* assume !MPOL_BIND */
1581
1582 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1583 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1584 huge_page_shift(hstate_vma(vma))), gfp_flags);
1585 } else {
1586 zl = policy_zonelist(gfp_flags, *mpol);
1587 if ((*mpol)->mode == MPOL_BIND)
1588 *nodemask = &(*mpol)->v.nodes;
1589 }
1590 return zl;
1591}
1592
1593/*
1594 * init_nodemask_of_mempolicy
1595 *
1596 * If the current task's mempolicy is "default" [NULL], return 'false'
1597 * to indicate default policy. Otherwise, extract the policy nodemask
1598 * for 'bind' or 'interleave' policy into the argument nodemask, or
1599 * initialize the argument nodemask to contain the single node for
1600 * 'preferred' or 'local' policy and return 'true' to indicate presence
1601 * of non-default mempolicy.
1602 *
1603 * We don't bother with reference counting the mempolicy [mpol_get/put]
1604 * because the current task is examining it's own mempolicy and a task's
1605 * mempolicy is only ever changed by the task itself.
1606 *
1607 * N.B., it is the caller's responsibility to free a returned nodemask.
1608 */
1609bool init_nodemask_of_mempolicy(nodemask_t *mask)
1610{
1611 struct mempolicy *mempolicy;
1612 int nid;
1613
1614 if (!(mask && current->mempolicy))
1615 return false;
1616
1617 mempolicy = current->mempolicy;
1618 switch (mempolicy->mode) {
1619 case MPOL_PREFERRED:
1620 if (mempolicy->flags & MPOL_F_LOCAL)
1621 nid = numa_node_id();
1622 else
1623 nid = mempolicy->v.preferred_node;
1624 init_nodemask_of_node(mask, nid);
1625 break;
1626
1627 case MPOL_BIND:
1628 /* Fall through */
1629 case MPOL_INTERLEAVE:
1630 *mask = mempolicy->v.nodes;
1631 break;
1632
1633 default:
1634 BUG();
1635 }
1636
1637 return true;
1638}
1639#endif
1640
1641/* Allocate a page in interleaved policy.
1642 Own path because it needs to do special accounting. */
1643static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1644 unsigned nid)
1645{
1646 struct zonelist *zl;
1647 struct page *page;
1648
1649 zl = node_zonelist(nid, gfp);
1650 page = __alloc_pages(gfp, order, zl);
1651 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1652 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1653 return page;
1654}
1655
1656/**
1657 * alloc_page_vma - Allocate a page for a VMA.
1658 *
1659 * @gfp:
1660 * %GFP_USER user allocation.
1661 * %GFP_KERNEL kernel allocations,
1662 * %GFP_HIGHMEM highmem/user allocations,
1663 * %GFP_FS allocation should not call back into a file system.
1664 * %GFP_ATOMIC don't sleep.
1665 *
1666 * @vma: Pointer to VMA or NULL if not available.
1667 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1668 *
1669 * This function allocates a page from the kernel page pool and applies
1670 * a NUMA policy associated with the VMA or the current process.
1671 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1672 * mm_struct of the VMA to prevent it from going away. Should be used for
1673 * all allocations for pages that will be mapped into
1674 * user space. Returns NULL when no page can be allocated.
1675 *
1676 * Should be called with the mm_sem of the vma hold.
1677 */
1678struct page *
1679alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1680{
1681 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1682 struct zonelist *zl;
1683
1684 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1685 unsigned nid;
1686
1687 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1688 mpol_cond_put(pol);
1689 return alloc_page_interleave(gfp, 0, nid);
1690 }
1691 zl = policy_zonelist(gfp, pol);
1692 if (unlikely(mpol_needs_cond_ref(pol))) {
1693 /*
1694 * slow path: ref counted shared policy
1695 */
1696 struct page *page = __alloc_pages_nodemask(gfp, 0,
1697 zl, policy_nodemask(gfp, pol));
1698 __mpol_put(pol);
1699 return page;
1700 }
1701 /*
1702 * fast path: default or task policy
1703 */
1704 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1705}
1706
1707/**
1708 * alloc_pages_current - Allocate pages.
1709 *
1710 * @gfp:
1711 * %GFP_USER user allocation,
1712 * %GFP_KERNEL kernel allocation,
1713 * %GFP_HIGHMEM highmem allocation,
1714 * %GFP_FS don't call back into a file system.
1715 * %GFP_ATOMIC don't sleep.
1716 * @order: Power of two of allocation size in pages. 0 is a single page.
1717 *
1718 * Allocate a page from the kernel page pool. When not in
1719 * interrupt context and apply the current process NUMA policy.
1720 * Returns NULL when no page can be allocated.
1721 *
1722 * Don't call cpuset_update_task_memory_state() unless
1723 * 1) it's ok to take cpuset_sem (can WAIT), and
1724 * 2) allocating for current task (not interrupt).
1725 */
1726struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1727{
1728 struct mempolicy *pol = current->mempolicy;
1729
1730 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1731 pol = &default_policy;
1732
1733 /*
1734 * No reference counting needed for current->mempolicy
1735 * nor system default_policy
1736 */
1737 if (pol->mode == MPOL_INTERLEAVE)
1738 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1739 return __alloc_pages_nodemask(gfp, order,
1740 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1741}
1742EXPORT_SYMBOL(alloc_pages_current);
1743
1744/*
1745 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1746 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1747 * with the mems_allowed returned by cpuset_mems_allowed(). This
1748 * keeps mempolicies cpuset relative after its cpuset moves. See
1749 * further kernel/cpuset.c update_nodemask().
1750 */
1751
1752/* Slow path of a mempolicy duplicate */
1753struct mempolicy *__mpol_dup(struct mempolicy *old)
1754{
1755 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1756
1757 if (!new)
1758 return ERR_PTR(-ENOMEM);
1759 if (current_cpuset_is_being_rebound()) {
1760 nodemask_t mems = cpuset_mems_allowed(current);
1761 mpol_rebind_policy(old, &mems);
1762 }
1763 *new = *old;
1764 atomic_set(&new->refcnt, 1);
1765 return new;
1766}
1767
1768/*
1769 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1770 * eliminate the * MPOL_F_* flags that require conditional ref and
1771 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1772 * after return. Use the returned value.
1773 *
1774 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1775 * policy lookup, even if the policy needs/has extra ref on lookup.
1776 * shmem_readahead needs this.
1777 */
1778struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1779 struct mempolicy *frompol)
1780{
1781 if (!mpol_needs_cond_ref(frompol))
1782 return frompol;
1783
1784 *tompol = *frompol;
1785 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1786 __mpol_put(frompol);
1787 return tompol;
1788}
1789
1790static int mpol_match_intent(const struct mempolicy *a,
1791 const struct mempolicy *b)
1792{
1793 if (a->flags != b->flags)
1794 return 0;
1795 if (!mpol_store_user_nodemask(a))
1796 return 1;
1797 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1798}
1799
1800/* Slow path of a mempolicy comparison */
1801int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1802{
1803 if (!a || !b)
1804 return 0;
1805 if (a->mode != b->mode)
1806 return 0;
1807 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1808 return 0;
1809 switch (a->mode) {
1810 case MPOL_BIND:
1811 /* Fall through */
1812 case MPOL_INTERLEAVE:
1813 return nodes_equal(a->v.nodes, b->v.nodes);
1814 case MPOL_PREFERRED:
1815 return a->v.preferred_node == b->v.preferred_node &&
1816 a->flags == b->flags;
1817 default:
1818 BUG();
1819 return 0;
1820 }
1821}
1822
1823/*
1824 * Shared memory backing store policy support.
1825 *
1826 * Remember policies even when nobody has shared memory mapped.
1827 * The policies are kept in Red-Black tree linked from the inode.
1828 * They are protected by the sp->lock spinlock, which should be held
1829 * for any accesses to the tree.
1830 */
1831
1832/* lookup first element intersecting start-end */
1833/* Caller holds sp->lock */
1834static struct sp_node *
1835sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1836{
1837 struct rb_node *n = sp->root.rb_node;
1838
1839 while (n) {
1840 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1841
1842 if (start >= p->end)
1843 n = n->rb_right;
1844 else if (end <= p->start)
1845 n = n->rb_left;
1846 else
1847 break;
1848 }
1849 if (!n)
1850 return NULL;
1851 for (;;) {
1852 struct sp_node *w = NULL;
1853 struct rb_node *prev = rb_prev(n);
1854 if (!prev)
1855 break;
1856 w = rb_entry(prev, struct sp_node, nd);
1857 if (w->end <= start)
1858 break;
1859 n = prev;
1860 }
1861 return rb_entry(n, struct sp_node, nd);
1862}
1863
1864/* Insert a new shared policy into the list. */
1865/* Caller holds sp->lock */
1866static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1867{
1868 struct rb_node **p = &sp->root.rb_node;
1869 struct rb_node *parent = NULL;
1870 struct sp_node *nd;
1871
1872 while (*p) {
1873 parent = *p;
1874 nd = rb_entry(parent, struct sp_node, nd);
1875 if (new->start < nd->start)
1876 p = &(*p)->rb_left;
1877 else if (new->end > nd->end)
1878 p = &(*p)->rb_right;
1879 else
1880 BUG();
1881 }
1882 rb_link_node(&new->nd, parent, p);
1883 rb_insert_color(&new->nd, &sp->root);
1884 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1885 new->policy ? new->policy->mode : 0);
1886}
1887
1888/* Find shared policy intersecting idx */
1889struct mempolicy *
1890mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1891{
1892 struct mempolicy *pol = NULL;
1893 struct sp_node *sn;
1894
1895 if (!sp->root.rb_node)
1896 return NULL;
1897 spin_lock(&sp->lock);
1898 sn = sp_lookup(sp, idx, idx+1);
1899 if (sn) {
1900 mpol_get(sn->policy);
1901 pol = sn->policy;
1902 }
1903 spin_unlock(&sp->lock);
1904 return pol;
1905}
1906
1907static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1908{
1909 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1910 rb_erase(&n->nd, &sp->root);
1911 mpol_put(n->policy);
1912 kmem_cache_free(sn_cache, n);
1913}
1914
1915static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1916 struct mempolicy *pol)
1917{
1918 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1919
1920 if (!n)
1921 return NULL;
1922 n->start = start;
1923 n->end = end;
1924 mpol_get(pol);
1925 pol->flags |= MPOL_F_SHARED; /* for unref */
1926 n->policy = pol;
1927 return n;
1928}
1929
1930/* Replace a policy range. */
1931static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1932 unsigned long end, struct sp_node *new)
1933{
1934 struct sp_node *n, *new2 = NULL;
1935
1936restart:
1937 spin_lock(&sp->lock);
1938 n = sp_lookup(sp, start, end);
1939 /* Take care of old policies in the same range. */
1940 while (n && n->start < end) {
1941 struct rb_node *next = rb_next(&n->nd);
1942 if (n->start >= start) {
1943 if (n->end <= end)
1944 sp_delete(sp, n);
1945 else
1946 n->start = end;
1947 } else {
1948 /* Old policy spanning whole new range. */
1949 if (n->end > end) {
1950 if (!new2) {
1951 spin_unlock(&sp->lock);
1952 new2 = sp_alloc(end, n->end, n->policy);
1953 if (!new2)
1954 return -ENOMEM;
1955 goto restart;
1956 }
1957 n->end = start;
1958 sp_insert(sp, new2);
1959 new2 = NULL;
1960 break;
1961 } else
1962 n->end = start;
1963 }
1964 if (!next)
1965 break;
1966 n = rb_entry(next, struct sp_node, nd);
1967 }
1968 if (new)
1969 sp_insert(sp, new);
1970 spin_unlock(&sp->lock);
1971 if (new2) {
1972 mpol_put(new2->policy);
1973 kmem_cache_free(sn_cache, new2);
1974 }
1975 return 0;
1976}
1977
1978/**
1979 * mpol_shared_policy_init - initialize shared policy for inode
1980 * @sp: pointer to inode shared policy
1981 * @mpol: struct mempolicy to install
1982 *
1983 * Install non-NULL @mpol in inode's shared policy rb-tree.
1984 * On entry, the current task has a reference on a non-NULL @mpol.
1985 * This must be released on exit.
1986 * This is called at get_inode() calls and we can use GFP_KERNEL.
1987 */
1988void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1989{
1990 int ret;
1991
1992 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1993 spin_lock_init(&sp->lock);
1994
1995 if (mpol) {
1996 struct vm_area_struct pvma;
1997 struct mempolicy *new;
1998 NODEMASK_SCRATCH(scratch);
1999
2000 if (!scratch)
2001 return;
2002 /* contextualize the tmpfs mount point mempolicy */
2003 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2004 if (IS_ERR(new)) {
2005 mpol_put(mpol); /* drop our ref on sb mpol */
2006 NODEMASK_SCRATCH_FREE(scratch);
2007 return; /* no valid nodemask intersection */
2008 }
2009
2010 task_lock(current);
2011 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2012 task_unlock(current);
2013 mpol_put(mpol); /* drop our ref on sb mpol */
2014 if (ret) {
2015 NODEMASK_SCRATCH_FREE(scratch);
2016 mpol_put(new);
2017 return;
2018 }
2019
2020 /* Create pseudo-vma that contains just the policy */
2021 memset(&pvma, 0, sizeof(struct vm_area_struct));
2022 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2023 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2024 mpol_put(new); /* drop initial ref */
2025 NODEMASK_SCRATCH_FREE(scratch);
2026 }
2027}
2028
2029int mpol_set_shared_policy(struct shared_policy *info,
2030 struct vm_area_struct *vma, struct mempolicy *npol)
2031{
2032 int err;
2033 struct sp_node *new = NULL;
2034 unsigned long sz = vma_pages(vma);
2035
2036 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2037 vma->vm_pgoff,
2038 sz, npol ? npol->mode : -1,
2039 npol ? npol->flags : -1,
2040 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2041
2042 if (npol) {
2043 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2044 if (!new)
2045 return -ENOMEM;
2046 }
2047 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2048 if (err && new)
2049 kmem_cache_free(sn_cache, new);
2050 return err;
2051}
2052
2053/* Free a backing policy store on inode delete. */
2054void mpol_free_shared_policy(struct shared_policy *p)
2055{
2056 struct sp_node *n;
2057 struct rb_node *next;
2058
2059 if (!p->root.rb_node)
2060 return;
2061 spin_lock(&p->lock);
2062 next = rb_first(&p->root);
2063 while (next) {
2064 n = rb_entry(next, struct sp_node, nd);
2065 next = rb_next(&n->nd);
2066 rb_erase(&n->nd, &p->root);
2067 mpol_put(n->policy);
2068 kmem_cache_free(sn_cache, n);
2069 }
2070 spin_unlock(&p->lock);
2071}
2072
2073/* assumes fs == KERNEL_DS */
2074void __init numa_policy_init(void)
2075{
2076 nodemask_t interleave_nodes;
2077 unsigned long largest = 0;
2078 int nid, prefer = 0;
2079
2080 policy_cache = kmem_cache_create("numa_policy",
2081 sizeof(struct mempolicy),
2082 0, SLAB_PANIC, NULL);
2083
2084 sn_cache = kmem_cache_create("shared_policy_node",
2085 sizeof(struct sp_node),
2086 0, SLAB_PANIC, NULL);
2087
2088 /*
2089 * Set interleaving policy for system init. Interleaving is only
2090 * enabled across suitably sized nodes (default is >= 16MB), or
2091 * fall back to the largest node if they're all smaller.
2092 */
2093 nodes_clear(interleave_nodes);
2094 for_each_node_state(nid, N_HIGH_MEMORY) {
2095 unsigned long total_pages = node_present_pages(nid);
2096
2097 /* Preserve the largest node */
2098 if (largest < total_pages) {
2099 largest = total_pages;
2100 prefer = nid;
2101 }
2102
2103 /* Interleave this node? */
2104 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2105 node_set(nid, interleave_nodes);
2106 }
2107
2108 /* All too small, use the largest */
2109 if (unlikely(nodes_empty(interleave_nodes)))
2110 node_set(prefer, interleave_nodes);
2111
2112 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2113 printk("numa_policy_init: interleaving failed\n");
2114}
2115
2116/* Reset policy of current process to default */
2117void numa_default_policy(void)
2118{
2119 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2120}
2121
2122/*
2123 * Parse and format mempolicy from/to strings
2124 */
2125
2126/*
2127 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2128 * Used only for mpol_parse_str() and mpol_to_str()
2129 */
2130#define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
2131static const char * const policy_types[] =
2132 { "default", "prefer", "bind", "interleave", "local" };
2133
2134
2135#ifdef CONFIG_TMPFS
2136/**
2137 * mpol_parse_str - parse string to mempolicy
2138 * @str: string containing mempolicy to parse
2139 * @mpol: pointer to struct mempolicy pointer, returned on success.
2140 * @no_context: flag whether to "contextualize" the mempolicy
2141 *
2142 * Format of input:
2143 * <mode>[=<flags>][:<nodelist>]
2144 *
2145 * if @no_context is true, save the input nodemask in w.user_nodemask in
2146 * the returned mempolicy. This will be used to "clone" the mempolicy in
2147 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2148 * mount option. Note that if 'static' or 'relative' mode flags were
2149 * specified, the input nodemask will already have been saved. Saving
2150 * it again is redundant, but safe.
2151 *
2152 * On success, returns 0, else 1
2153 */
2154int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2155{
2156 struct mempolicy *new = NULL;
2157 unsigned short uninitialized_var(mode);
2158 unsigned short uninitialized_var(mode_flags);
2159 nodemask_t nodes;
2160 char *nodelist = strchr(str, ':');
2161 char *flags = strchr(str, '=');
2162 int i;
2163 int err = 1;
2164
2165 if (nodelist) {
2166 /* NUL-terminate mode or flags string */
2167 *nodelist++ = '\0';
2168 if (nodelist_parse(nodelist, nodes))
2169 goto out;
2170 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2171 goto out;
2172 } else
2173 nodes_clear(nodes);
2174
2175 if (flags)
2176 *flags++ = '\0'; /* terminate mode string */
2177
2178 for (i = 0; i <= MPOL_LOCAL; i++) {
2179 if (!strcmp(str, policy_types[i])) {
2180 mode = i;
2181 break;
2182 }
2183 }
2184 if (i > MPOL_LOCAL)
2185 goto out;
2186
2187 switch (mode) {
2188 case MPOL_PREFERRED:
2189 /*
2190 * Insist on a nodelist of one node only
2191 */
2192 if (nodelist) {
2193 char *rest = nodelist;
2194 while (isdigit(*rest))
2195 rest++;
2196 if (!*rest)
2197 err = 0;
2198 }
2199 break;
2200 case MPOL_INTERLEAVE:
2201 /*
2202 * Default to online nodes with memory if no nodelist
2203 */
2204 if (!nodelist)
2205 nodes = node_states[N_HIGH_MEMORY];
2206 err = 0;
2207 break;
2208 case MPOL_LOCAL:
2209 /*
2210 * Don't allow a nodelist; mpol_new() checks flags
2211 */
2212 if (nodelist)
2213 goto out;
2214 mode = MPOL_PREFERRED;
2215 break;
2216
2217 /*
2218 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2219 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2220 */
2221 }
2222
2223 mode_flags = 0;
2224 if (flags) {
2225 /*
2226 * Currently, we only support two mutually exclusive
2227 * mode flags.
2228 */
2229 if (!strcmp(flags, "static"))
2230 mode_flags |= MPOL_F_STATIC_NODES;
2231 else if (!strcmp(flags, "relative"))
2232 mode_flags |= MPOL_F_RELATIVE_NODES;
2233 else
2234 err = 1;
2235 }
2236
2237 new = mpol_new(mode, mode_flags, &nodes);
2238 if (IS_ERR(new))
2239 err = 1;
2240 else {
2241 int ret;
2242 NODEMASK_SCRATCH(scratch);
2243 if (scratch) {
2244 task_lock(current);
2245 ret = mpol_set_nodemask(new, &nodes, scratch);
2246 task_unlock(current);
2247 } else
2248 ret = -ENOMEM;
2249 NODEMASK_SCRATCH_FREE(scratch);
2250 if (ret) {
2251 err = 1;
2252 mpol_put(new);
2253 } else if (no_context) {
2254 /* save for contextualization */
2255 new->w.user_nodemask = nodes;
2256 }
2257 }
2258
2259out:
2260 /* Restore string for error message */
2261 if (nodelist)
2262 *--nodelist = ':';
2263 if (flags)
2264 *--flags = '=';
2265 if (!err)
2266 *mpol = new;
2267 return err;
2268}
2269#endif /* CONFIG_TMPFS */
2270
2271/**
2272 * mpol_to_str - format a mempolicy structure for printing
2273 * @buffer: to contain formatted mempolicy string
2274 * @maxlen: length of @buffer
2275 * @pol: pointer to mempolicy to be formatted
2276 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2277 *
2278 * Convert a mempolicy into a string.
2279 * Returns the number of characters in buffer (if positive)
2280 * or an error (negative)
2281 */
2282int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2283{
2284 char *p = buffer;
2285 int l;
2286 nodemask_t nodes;
2287 unsigned short mode;
2288 unsigned short flags = pol ? pol->flags : 0;
2289
2290 /*
2291 * Sanity check: room for longest mode, flag and some nodes
2292 */
2293 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2294
2295 if (!pol || pol == &default_policy)
2296 mode = MPOL_DEFAULT;
2297 else
2298 mode = pol->mode;
2299
2300 switch (mode) {
2301 case MPOL_DEFAULT:
2302 nodes_clear(nodes);
2303 break;
2304
2305 case MPOL_PREFERRED:
2306 nodes_clear(nodes);
2307 if (flags & MPOL_F_LOCAL)
2308 mode = MPOL_LOCAL; /* pseudo-policy */
2309 else
2310 node_set(pol->v.preferred_node, nodes);
2311 break;
2312
2313 case MPOL_BIND:
2314 /* Fall through */
2315 case MPOL_INTERLEAVE:
2316 if (no_context)
2317 nodes = pol->w.user_nodemask;
2318 else
2319 nodes = pol->v.nodes;
2320 break;
2321
2322 default:
2323 BUG();
2324 }
2325
2326 l = strlen(policy_types[mode]);
2327 if (buffer + maxlen < p + l + 1)
2328 return -ENOSPC;
2329
2330 strcpy(p, policy_types[mode]);
2331 p += l;
2332
2333 if (flags & MPOL_MODE_FLAGS) {
2334 if (buffer + maxlen < p + 2)
2335 return -ENOSPC;
2336 *p++ = '=';
2337
2338 /*
2339 * Currently, the only defined flags are mutually exclusive
2340 */
2341 if (flags & MPOL_F_STATIC_NODES)
2342 p += snprintf(p, buffer + maxlen - p, "static");
2343 else if (flags & MPOL_F_RELATIVE_NODES)
2344 p += snprintf(p, buffer + maxlen - p, "relative");
2345 }
2346
2347 if (!nodes_empty(nodes)) {
2348 if (buffer + maxlen < p + 2)
2349 return -ENOSPC;
2350 *p++ = ':';
2351 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2352 }
2353 return p - buffer;
2354}
2355
2356struct numa_maps {
2357 unsigned long pages;
2358 unsigned long anon;
2359 unsigned long active;
2360 unsigned long writeback;
2361 unsigned long mapcount_max;
2362 unsigned long dirty;
2363 unsigned long swapcache;
2364 unsigned long node[MAX_NUMNODES];
2365};
2366
2367static void gather_stats(struct page *page, void *private, int pte_dirty)
2368{
2369 struct numa_maps *md = private;
2370 int count = page_mapcount(page);
2371
2372 md->pages++;
2373 if (pte_dirty || PageDirty(page))
2374 md->dirty++;
2375
2376 if (PageSwapCache(page))
2377 md->swapcache++;
2378
2379 if (PageActive(page) || PageUnevictable(page))
2380 md->active++;
2381
2382 if (PageWriteback(page))
2383 md->writeback++;
2384
2385 if (PageAnon(page))
2386 md->anon++;
2387
2388 if (count > md->mapcount_max)
2389 md->mapcount_max = count;
2390
2391 md->node[page_to_nid(page)]++;
2392}
2393
2394#ifdef CONFIG_HUGETLB_PAGE
2395static void check_huge_range(struct vm_area_struct *vma,
2396 unsigned long start, unsigned long end,
2397 struct numa_maps *md)
2398{
2399 unsigned long addr;
2400 struct page *page;
2401 struct hstate *h = hstate_vma(vma);
2402 unsigned long sz = huge_page_size(h);
2403
2404 for (addr = start; addr < end; addr += sz) {
2405 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2406 addr & huge_page_mask(h));
2407 pte_t pte;
2408
2409 if (!ptep)
2410 continue;
2411
2412 pte = *ptep;
2413 if (pte_none(pte))
2414 continue;
2415
2416 page = pte_page(pte);
2417 if (!page)
2418 continue;
2419
2420 gather_stats(page, md, pte_dirty(*ptep));
2421 }
2422}
2423#else
2424static inline void check_huge_range(struct vm_area_struct *vma,
2425 unsigned long start, unsigned long end,
2426 struct numa_maps *md)
2427{
2428}
2429#endif
2430
2431/*
2432 * Display pages allocated per node and memory policy via /proc.
2433 */
2434int show_numa_map(struct seq_file *m, void *v)
2435{
2436 struct proc_maps_private *priv = m->private;
2437 struct vm_area_struct *vma = v;
2438 struct numa_maps *md;
2439 struct file *file = vma->vm_file;
2440 struct mm_struct *mm = vma->vm_mm;
2441 struct mempolicy *pol;
2442 int n;
2443 char buffer[50];
2444
2445 if (!mm)
2446 return 0;
2447
2448 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2449 if (!md)
2450 return 0;
2451
2452 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2453 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2454 mpol_cond_put(pol);
2455
2456 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2457
2458 if (file) {
2459 seq_printf(m, " file=");
2460 seq_path(m, &file->f_path, "\n\t= ");
2461 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2462 seq_printf(m, " heap");
2463 } else if (vma->vm_start <= mm->start_stack &&
2464 vma->vm_end >= mm->start_stack) {
2465 seq_printf(m, " stack");
2466 }
2467
2468 if (is_vm_hugetlb_page(vma)) {
2469 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2470 seq_printf(m, " huge");
2471 } else {
2472 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2473 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2474 }
2475
2476 if (!md->pages)
2477 goto out;
2478
2479 if (md->anon)
2480 seq_printf(m," anon=%lu",md->anon);
2481
2482 if (md->dirty)
2483 seq_printf(m," dirty=%lu",md->dirty);
2484
2485 if (md->pages != md->anon && md->pages != md->dirty)
2486 seq_printf(m, " mapped=%lu", md->pages);
2487
2488 if (md->mapcount_max > 1)
2489 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2490
2491 if (md->swapcache)
2492 seq_printf(m," swapcache=%lu", md->swapcache);
2493
2494 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2495 seq_printf(m," active=%lu", md->active);
2496
2497 if (md->writeback)
2498 seq_printf(m," writeback=%lu", md->writeback);
2499
2500 for_each_node_state(n, N_HIGH_MEMORY)
2501 if (md->node[n])
2502 seq_printf(m, " N%d=%lu", n, md->node[n]);
2503out:
2504 seq_putc(m, '\n');
2505 kfree(md);
2506
2507 if (m->count < m->size)
2508 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2509 return 0;
2510}