]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - mm/migrate.c
mm/migrate: migrate_vma() unmap page from vma while collecting pages
[mirror_ubuntu-eoan-kernel.git] / mm / migrate.c
... / ...
CommitLineData
1/*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/backing-dev.h>
34#include <linux/compaction.h>
35#include <linux/syscalls.h>
36#include <linux/hugetlb.h>
37#include <linux/hugetlb_cgroup.h>
38#include <linux/gfp.h>
39#include <linux/balloon_compaction.h>
40#include <linux/mmu_notifier.h>
41#include <linux/page_idle.h>
42#include <linux/page_owner.h>
43#include <linux/sched/mm.h>
44#include <linux/ptrace.h>
45
46#include <asm/tlbflush.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/migrate.h>
50
51#include "internal.h"
52
53/*
54 * migrate_prep() needs to be called before we start compiling a list of pages
55 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
56 * undesirable, use migrate_prep_local()
57 */
58int migrate_prep(void)
59{
60 /*
61 * Clear the LRU lists so pages can be isolated.
62 * Note that pages may be moved off the LRU after we have
63 * drained them. Those pages will fail to migrate like other
64 * pages that may be busy.
65 */
66 lru_add_drain_all();
67
68 return 0;
69}
70
71/* Do the necessary work of migrate_prep but not if it involves other CPUs */
72int migrate_prep_local(void)
73{
74 lru_add_drain();
75
76 return 0;
77}
78
79int isolate_movable_page(struct page *page, isolate_mode_t mode)
80{
81 struct address_space *mapping;
82
83 /*
84 * Avoid burning cycles with pages that are yet under __free_pages(),
85 * or just got freed under us.
86 *
87 * In case we 'win' a race for a movable page being freed under us and
88 * raise its refcount preventing __free_pages() from doing its job
89 * the put_page() at the end of this block will take care of
90 * release this page, thus avoiding a nasty leakage.
91 */
92 if (unlikely(!get_page_unless_zero(page)))
93 goto out;
94
95 /*
96 * Check PageMovable before holding a PG_lock because page's owner
97 * assumes anybody doesn't touch PG_lock of newly allocated page
98 * so unconditionally grapping the lock ruins page's owner side.
99 */
100 if (unlikely(!__PageMovable(page)))
101 goto out_putpage;
102 /*
103 * As movable pages are not isolated from LRU lists, concurrent
104 * compaction threads can race against page migration functions
105 * as well as race against the releasing a page.
106 *
107 * In order to avoid having an already isolated movable page
108 * being (wrongly) re-isolated while it is under migration,
109 * or to avoid attempting to isolate pages being released,
110 * lets be sure we have the page lock
111 * before proceeding with the movable page isolation steps.
112 */
113 if (unlikely(!trylock_page(page)))
114 goto out_putpage;
115
116 if (!PageMovable(page) || PageIsolated(page))
117 goto out_no_isolated;
118
119 mapping = page_mapping(page);
120 VM_BUG_ON_PAGE(!mapping, page);
121
122 if (!mapping->a_ops->isolate_page(page, mode))
123 goto out_no_isolated;
124
125 /* Driver shouldn't use PG_isolated bit of page->flags */
126 WARN_ON_ONCE(PageIsolated(page));
127 __SetPageIsolated(page);
128 unlock_page(page);
129
130 return 0;
131
132out_no_isolated:
133 unlock_page(page);
134out_putpage:
135 put_page(page);
136out:
137 return -EBUSY;
138}
139
140/* It should be called on page which is PG_movable */
141void putback_movable_page(struct page *page)
142{
143 struct address_space *mapping;
144
145 VM_BUG_ON_PAGE(!PageLocked(page), page);
146 VM_BUG_ON_PAGE(!PageMovable(page), page);
147 VM_BUG_ON_PAGE(!PageIsolated(page), page);
148
149 mapping = page_mapping(page);
150 mapping->a_ops->putback_page(page);
151 __ClearPageIsolated(page);
152}
153
154/*
155 * Put previously isolated pages back onto the appropriate lists
156 * from where they were once taken off for compaction/migration.
157 *
158 * This function shall be used whenever the isolated pageset has been
159 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
160 * and isolate_huge_page().
161 */
162void putback_movable_pages(struct list_head *l)
163{
164 struct page *page;
165 struct page *page2;
166
167 list_for_each_entry_safe(page, page2, l, lru) {
168 if (unlikely(PageHuge(page))) {
169 putback_active_hugepage(page);
170 continue;
171 }
172 list_del(&page->lru);
173 /*
174 * We isolated non-lru movable page so here we can use
175 * __PageMovable because LRU page's mapping cannot have
176 * PAGE_MAPPING_MOVABLE.
177 */
178 if (unlikely(__PageMovable(page))) {
179 VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 lock_page(page);
181 if (PageMovable(page))
182 putback_movable_page(page);
183 else
184 __ClearPageIsolated(page);
185 unlock_page(page);
186 put_page(page);
187 } else {
188 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
189 page_is_file_cache(page), -hpage_nr_pages(page));
190 putback_lru_page(page);
191 }
192 }
193}
194
195/*
196 * Restore a potential migration pte to a working pte entry
197 */
198static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
199 unsigned long addr, void *old)
200{
201 struct page_vma_mapped_walk pvmw = {
202 .page = old,
203 .vma = vma,
204 .address = addr,
205 .flags = PVMW_SYNC | PVMW_MIGRATION,
206 };
207 struct page *new;
208 pte_t pte;
209 swp_entry_t entry;
210
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 while (page_vma_mapped_walk(&pvmw)) {
213 if (PageKsm(page))
214 new = page;
215 else
216 new = page - pvmw.page->index +
217 linear_page_index(vma, pvmw.address);
218
219#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
220 /* PMD-mapped THP migration entry */
221 if (!pvmw.pte) {
222 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
223 remove_migration_pmd(&pvmw, new);
224 continue;
225 }
226#endif
227
228 get_page(new);
229 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
230 if (pte_swp_soft_dirty(*pvmw.pte))
231 pte = pte_mksoft_dirty(pte);
232
233 /*
234 * Recheck VMA as permissions can change since migration started
235 */
236 entry = pte_to_swp_entry(*pvmw.pte);
237 if (is_write_migration_entry(entry))
238 pte = maybe_mkwrite(pte, vma);
239
240 flush_dcache_page(new);
241#ifdef CONFIG_HUGETLB_PAGE
242 if (PageHuge(new)) {
243 pte = pte_mkhuge(pte);
244 pte = arch_make_huge_pte(pte, vma, new, 0);
245 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
246 if (PageAnon(new))
247 hugepage_add_anon_rmap(new, vma, pvmw.address);
248 else
249 page_dup_rmap(new, true);
250 } else
251#endif
252 {
253 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
254
255 if (PageAnon(new))
256 page_add_anon_rmap(new, vma, pvmw.address, false);
257 else
258 page_add_file_rmap(new, false);
259 }
260 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
261 mlock_vma_page(new);
262
263 /* No need to invalidate - it was non-present before */
264 update_mmu_cache(vma, pvmw.address, pvmw.pte);
265 }
266
267 return true;
268}
269
270/*
271 * Get rid of all migration entries and replace them by
272 * references to the indicated page.
273 */
274void remove_migration_ptes(struct page *old, struct page *new, bool locked)
275{
276 struct rmap_walk_control rwc = {
277 .rmap_one = remove_migration_pte,
278 .arg = old,
279 };
280
281 if (locked)
282 rmap_walk_locked(new, &rwc);
283 else
284 rmap_walk(new, &rwc);
285}
286
287/*
288 * Something used the pte of a page under migration. We need to
289 * get to the page and wait until migration is finished.
290 * When we return from this function the fault will be retried.
291 */
292void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
293 spinlock_t *ptl)
294{
295 pte_t pte;
296 swp_entry_t entry;
297 struct page *page;
298
299 spin_lock(ptl);
300 pte = *ptep;
301 if (!is_swap_pte(pte))
302 goto out;
303
304 entry = pte_to_swp_entry(pte);
305 if (!is_migration_entry(entry))
306 goto out;
307
308 page = migration_entry_to_page(entry);
309
310 /*
311 * Once radix-tree replacement of page migration started, page_count
312 * *must* be zero. And, we don't want to call wait_on_page_locked()
313 * against a page without get_page().
314 * So, we use get_page_unless_zero(), here. Even failed, page fault
315 * will occur again.
316 */
317 if (!get_page_unless_zero(page))
318 goto out;
319 pte_unmap_unlock(ptep, ptl);
320 wait_on_page_locked(page);
321 put_page(page);
322 return;
323out:
324 pte_unmap_unlock(ptep, ptl);
325}
326
327void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
328 unsigned long address)
329{
330 spinlock_t *ptl = pte_lockptr(mm, pmd);
331 pte_t *ptep = pte_offset_map(pmd, address);
332 __migration_entry_wait(mm, ptep, ptl);
333}
334
335void migration_entry_wait_huge(struct vm_area_struct *vma,
336 struct mm_struct *mm, pte_t *pte)
337{
338 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
339 __migration_entry_wait(mm, pte, ptl);
340}
341
342#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
343void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
344{
345 spinlock_t *ptl;
346 struct page *page;
347
348 ptl = pmd_lock(mm, pmd);
349 if (!is_pmd_migration_entry(*pmd))
350 goto unlock;
351 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
352 if (!get_page_unless_zero(page))
353 goto unlock;
354 spin_unlock(ptl);
355 wait_on_page_locked(page);
356 put_page(page);
357 return;
358unlock:
359 spin_unlock(ptl);
360}
361#endif
362
363#ifdef CONFIG_BLOCK
364/* Returns true if all buffers are successfully locked */
365static bool buffer_migrate_lock_buffers(struct buffer_head *head,
366 enum migrate_mode mode)
367{
368 struct buffer_head *bh = head;
369
370 /* Simple case, sync compaction */
371 if (mode != MIGRATE_ASYNC) {
372 do {
373 get_bh(bh);
374 lock_buffer(bh);
375 bh = bh->b_this_page;
376
377 } while (bh != head);
378
379 return true;
380 }
381
382 /* async case, we cannot block on lock_buffer so use trylock_buffer */
383 do {
384 get_bh(bh);
385 if (!trylock_buffer(bh)) {
386 /*
387 * We failed to lock the buffer and cannot stall in
388 * async migration. Release the taken locks
389 */
390 struct buffer_head *failed_bh = bh;
391 put_bh(failed_bh);
392 bh = head;
393 while (bh != failed_bh) {
394 unlock_buffer(bh);
395 put_bh(bh);
396 bh = bh->b_this_page;
397 }
398 return false;
399 }
400
401 bh = bh->b_this_page;
402 } while (bh != head);
403 return true;
404}
405#else
406static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
407 enum migrate_mode mode)
408{
409 return true;
410}
411#endif /* CONFIG_BLOCK */
412
413/*
414 * Replace the page in the mapping.
415 *
416 * The number of remaining references must be:
417 * 1 for anonymous pages without a mapping
418 * 2 for pages with a mapping
419 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
420 */
421int migrate_page_move_mapping(struct address_space *mapping,
422 struct page *newpage, struct page *page,
423 struct buffer_head *head, enum migrate_mode mode,
424 int extra_count)
425{
426 struct zone *oldzone, *newzone;
427 int dirty;
428 int expected_count = 1 + extra_count;
429 void **pslot;
430
431 /*
432 * ZONE_DEVICE pages have 1 refcount always held by their device
433 *
434 * Note that DAX memory will never reach that point as it does not have
435 * the MEMORY_DEVICE_ALLOW_MIGRATE flag set (see memory_hotplug.h).
436 */
437 expected_count += is_zone_device_page(page);
438
439 if (!mapping) {
440 /* Anonymous page without mapping */
441 if (page_count(page) != expected_count)
442 return -EAGAIN;
443
444 /* No turning back from here */
445 newpage->index = page->index;
446 newpage->mapping = page->mapping;
447 if (PageSwapBacked(page))
448 __SetPageSwapBacked(newpage);
449
450 return MIGRATEPAGE_SUCCESS;
451 }
452
453 oldzone = page_zone(page);
454 newzone = page_zone(newpage);
455
456 spin_lock_irq(&mapping->tree_lock);
457
458 pslot = radix_tree_lookup_slot(&mapping->page_tree,
459 page_index(page));
460
461 expected_count += 1 + page_has_private(page);
462 if (page_count(page) != expected_count ||
463 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
464 spin_unlock_irq(&mapping->tree_lock);
465 return -EAGAIN;
466 }
467
468 if (!page_ref_freeze(page, expected_count)) {
469 spin_unlock_irq(&mapping->tree_lock);
470 return -EAGAIN;
471 }
472
473 /*
474 * In the async migration case of moving a page with buffers, lock the
475 * buffers using trylock before the mapping is moved. If the mapping
476 * was moved, we later failed to lock the buffers and could not move
477 * the mapping back due to an elevated page count, we would have to
478 * block waiting on other references to be dropped.
479 */
480 if (mode == MIGRATE_ASYNC && head &&
481 !buffer_migrate_lock_buffers(head, mode)) {
482 page_ref_unfreeze(page, expected_count);
483 spin_unlock_irq(&mapping->tree_lock);
484 return -EAGAIN;
485 }
486
487 /*
488 * Now we know that no one else is looking at the page:
489 * no turning back from here.
490 */
491 newpage->index = page->index;
492 newpage->mapping = page->mapping;
493 get_page(newpage); /* add cache reference */
494 if (PageSwapBacked(page)) {
495 __SetPageSwapBacked(newpage);
496 if (PageSwapCache(page)) {
497 SetPageSwapCache(newpage);
498 set_page_private(newpage, page_private(page));
499 }
500 } else {
501 VM_BUG_ON_PAGE(PageSwapCache(page), page);
502 }
503
504 /* Move dirty while page refs frozen and newpage not yet exposed */
505 dirty = PageDirty(page);
506 if (dirty) {
507 ClearPageDirty(page);
508 SetPageDirty(newpage);
509 }
510
511 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
512
513 /*
514 * Drop cache reference from old page by unfreezing
515 * to one less reference.
516 * We know this isn't the last reference.
517 */
518 page_ref_unfreeze(page, expected_count - 1);
519
520 spin_unlock(&mapping->tree_lock);
521 /* Leave irq disabled to prevent preemption while updating stats */
522
523 /*
524 * If moved to a different zone then also account
525 * the page for that zone. Other VM counters will be
526 * taken care of when we establish references to the
527 * new page and drop references to the old page.
528 *
529 * Note that anonymous pages are accounted for
530 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
531 * are mapped to swap space.
532 */
533 if (newzone != oldzone) {
534 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
535 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
536 if (PageSwapBacked(page) && !PageSwapCache(page)) {
537 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
538 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
539 }
540 if (dirty && mapping_cap_account_dirty(mapping)) {
541 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
542 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
543 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
544 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
545 }
546 }
547 local_irq_enable();
548
549 return MIGRATEPAGE_SUCCESS;
550}
551EXPORT_SYMBOL(migrate_page_move_mapping);
552
553/*
554 * The expected number of remaining references is the same as that
555 * of migrate_page_move_mapping().
556 */
557int migrate_huge_page_move_mapping(struct address_space *mapping,
558 struct page *newpage, struct page *page)
559{
560 int expected_count;
561 void **pslot;
562
563 spin_lock_irq(&mapping->tree_lock);
564
565 pslot = radix_tree_lookup_slot(&mapping->page_tree,
566 page_index(page));
567
568 expected_count = 2 + page_has_private(page);
569 if (page_count(page) != expected_count ||
570 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
571 spin_unlock_irq(&mapping->tree_lock);
572 return -EAGAIN;
573 }
574
575 if (!page_ref_freeze(page, expected_count)) {
576 spin_unlock_irq(&mapping->tree_lock);
577 return -EAGAIN;
578 }
579
580 newpage->index = page->index;
581 newpage->mapping = page->mapping;
582
583 get_page(newpage);
584
585 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
586
587 page_ref_unfreeze(page, expected_count - 1);
588
589 spin_unlock_irq(&mapping->tree_lock);
590
591 return MIGRATEPAGE_SUCCESS;
592}
593
594/*
595 * Gigantic pages are so large that we do not guarantee that page++ pointer
596 * arithmetic will work across the entire page. We need something more
597 * specialized.
598 */
599static void __copy_gigantic_page(struct page *dst, struct page *src,
600 int nr_pages)
601{
602 int i;
603 struct page *dst_base = dst;
604 struct page *src_base = src;
605
606 for (i = 0; i < nr_pages; ) {
607 cond_resched();
608 copy_highpage(dst, src);
609
610 i++;
611 dst = mem_map_next(dst, dst_base, i);
612 src = mem_map_next(src, src_base, i);
613 }
614}
615
616static void copy_huge_page(struct page *dst, struct page *src)
617{
618 int i;
619 int nr_pages;
620
621 if (PageHuge(src)) {
622 /* hugetlbfs page */
623 struct hstate *h = page_hstate(src);
624 nr_pages = pages_per_huge_page(h);
625
626 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
627 __copy_gigantic_page(dst, src, nr_pages);
628 return;
629 }
630 } else {
631 /* thp page */
632 BUG_ON(!PageTransHuge(src));
633 nr_pages = hpage_nr_pages(src);
634 }
635
636 for (i = 0; i < nr_pages; i++) {
637 cond_resched();
638 copy_highpage(dst + i, src + i);
639 }
640}
641
642/*
643 * Copy the page to its new location
644 */
645void migrate_page_states(struct page *newpage, struct page *page)
646{
647 int cpupid;
648
649 if (PageError(page))
650 SetPageError(newpage);
651 if (PageReferenced(page))
652 SetPageReferenced(newpage);
653 if (PageUptodate(page))
654 SetPageUptodate(newpage);
655 if (TestClearPageActive(page)) {
656 VM_BUG_ON_PAGE(PageUnevictable(page), page);
657 SetPageActive(newpage);
658 } else if (TestClearPageUnevictable(page))
659 SetPageUnevictable(newpage);
660 if (PageChecked(page))
661 SetPageChecked(newpage);
662 if (PageMappedToDisk(page))
663 SetPageMappedToDisk(newpage);
664
665 /* Move dirty on pages not done by migrate_page_move_mapping() */
666 if (PageDirty(page))
667 SetPageDirty(newpage);
668
669 if (page_is_young(page))
670 set_page_young(newpage);
671 if (page_is_idle(page))
672 set_page_idle(newpage);
673
674 /*
675 * Copy NUMA information to the new page, to prevent over-eager
676 * future migrations of this same page.
677 */
678 cpupid = page_cpupid_xchg_last(page, -1);
679 page_cpupid_xchg_last(newpage, cpupid);
680
681 ksm_migrate_page(newpage, page);
682 /*
683 * Please do not reorder this without considering how mm/ksm.c's
684 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
685 */
686 if (PageSwapCache(page))
687 ClearPageSwapCache(page);
688 ClearPagePrivate(page);
689 set_page_private(page, 0);
690
691 /*
692 * If any waiters have accumulated on the new page then
693 * wake them up.
694 */
695 if (PageWriteback(newpage))
696 end_page_writeback(newpage);
697
698 copy_page_owner(page, newpage);
699
700 mem_cgroup_migrate(page, newpage);
701}
702EXPORT_SYMBOL(migrate_page_states);
703
704void migrate_page_copy(struct page *newpage, struct page *page)
705{
706 if (PageHuge(page) || PageTransHuge(page))
707 copy_huge_page(newpage, page);
708 else
709 copy_highpage(newpage, page);
710
711 migrate_page_states(newpage, page);
712}
713EXPORT_SYMBOL(migrate_page_copy);
714
715/************************************************************
716 * Migration functions
717 ***********************************************************/
718
719/*
720 * Common logic to directly migrate a single LRU page suitable for
721 * pages that do not use PagePrivate/PagePrivate2.
722 *
723 * Pages are locked upon entry and exit.
724 */
725int migrate_page(struct address_space *mapping,
726 struct page *newpage, struct page *page,
727 enum migrate_mode mode)
728{
729 int rc;
730
731 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
732
733 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
734
735 if (rc != MIGRATEPAGE_SUCCESS)
736 return rc;
737
738 if (mode != MIGRATE_SYNC_NO_COPY)
739 migrate_page_copy(newpage, page);
740 else
741 migrate_page_states(newpage, page);
742 return MIGRATEPAGE_SUCCESS;
743}
744EXPORT_SYMBOL(migrate_page);
745
746#ifdef CONFIG_BLOCK
747/*
748 * Migration function for pages with buffers. This function can only be used
749 * if the underlying filesystem guarantees that no other references to "page"
750 * exist.
751 */
752int buffer_migrate_page(struct address_space *mapping,
753 struct page *newpage, struct page *page, enum migrate_mode mode)
754{
755 struct buffer_head *bh, *head;
756 int rc;
757
758 if (!page_has_buffers(page))
759 return migrate_page(mapping, newpage, page, mode);
760
761 head = page_buffers(page);
762
763 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
764
765 if (rc != MIGRATEPAGE_SUCCESS)
766 return rc;
767
768 /*
769 * In the async case, migrate_page_move_mapping locked the buffers
770 * with an IRQ-safe spinlock held. In the sync case, the buffers
771 * need to be locked now
772 */
773 if (mode != MIGRATE_ASYNC)
774 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
775
776 ClearPagePrivate(page);
777 set_page_private(newpage, page_private(page));
778 set_page_private(page, 0);
779 put_page(page);
780 get_page(newpage);
781
782 bh = head;
783 do {
784 set_bh_page(bh, newpage, bh_offset(bh));
785 bh = bh->b_this_page;
786
787 } while (bh != head);
788
789 SetPagePrivate(newpage);
790
791 if (mode != MIGRATE_SYNC_NO_COPY)
792 migrate_page_copy(newpage, page);
793 else
794 migrate_page_states(newpage, page);
795
796 bh = head;
797 do {
798 unlock_buffer(bh);
799 put_bh(bh);
800 bh = bh->b_this_page;
801
802 } while (bh != head);
803
804 return MIGRATEPAGE_SUCCESS;
805}
806EXPORT_SYMBOL(buffer_migrate_page);
807#endif
808
809/*
810 * Writeback a page to clean the dirty state
811 */
812static int writeout(struct address_space *mapping, struct page *page)
813{
814 struct writeback_control wbc = {
815 .sync_mode = WB_SYNC_NONE,
816 .nr_to_write = 1,
817 .range_start = 0,
818 .range_end = LLONG_MAX,
819 .for_reclaim = 1
820 };
821 int rc;
822
823 if (!mapping->a_ops->writepage)
824 /* No write method for the address space */
825 return -EINVAL;
826
827 if (!clear_page_dirty_for_io(page))
828 /* Someone else already triggered a write */
829 return -EAGAIN;
830
831 /*
832 * A dirty page may imply that the underlying filesystem has
833 * the page on some queue. So the page must be clean for
834 * migration. Writeout may mean we loose the lock and the
835 * page state is no longer what we checked for earlier.
836 * At this point we know that the migration attempt cannot
837 * be successful.
838 */
839 remove_migration_ptes(page, page, false);
840
841 rc = mapping->a_ops->writepage(page, &wbc);
842
843 if (rc != AOP_WRITEPAGE_ACTIVATE)
844 /* unlocked. Relock */
845 lock_page(page);
846
847 return (rc < 0) ? -EIO : -EAGAIN;
848}
849
850/*
851 * Default handling if a filesystem does not provide a migration function.
852 */
853static int fallback_migrate_page(struct address_space *mapping,
854 struct page *newpage, struct page *page, enum migrate_mode mode)
855{
856 if (PageDirty(page)) {
857 /* Only writeback pages in full synchronous migration */
858 switch (mode) {
859 case MIGRATE_SYNC:
860 case MIGRATE_SYNC_NO_COPY:
861 break;
862 default:
863 return -EBUSY;
864 }
865 return writeout(mapping, page);
866 }
867
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875
876 return migrate_page(mapping, newpage, page, mode);
877}
878
879/*
880 * Move a page to a newly allocated page
881 * The page is locked and all ptes have been successfully removed.
882 *
883 * The new page will have replaced the old page if this function
884 * is successful.
885 *
886 * Return value:
887 * < 0 - error code
888 * MIGRATEPAGE_SUCCESS - success
889 */
890static int move_to_new_page(struct page *newpage, struct page *page,
891 enum migrate_mode mode)
892{
893 struct address_space *mapping;
894 int rc = -EAGAIN;
895 bool is_lru = !__PageMovable(page);
896
897 VM_BUG_ON_PAGE(!PageLocked(page), page);
898 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
899
900 mapping = page_mapping(page);
901
902 if (likely(is_lru)) {
903 if (!mapping)
904 rc = migrate_page(mapping, newpage, page, mode);
905 else if (mapping->a_ops->migratepage)
906 /*
907 * Most pages have a mapping and most filesystems
908 * provide a migratepage callback. Anonymous pages
909 * are part of swap space which also has its own
910 * migratepage callback. This is the most common path
911 * for page migration.
912 */
913 rc = mapping->a_ops->migratepage(mapping, newpage,
914 page, mode);
915 else
916 rc = fallback_migrate_page(mapping, newpage,
917 page, mode);
918 } else {
919 /*
920 * In case of non-lru page, it could be released after
921 * isolation step. In that case, we shouldn't try migration.
922 */
923 VM_BUG_ON_PAGE(!PageIsolated(page), page);
924 if (!PageMovable(page)) {
925 rc = MIGRATEPAGE_SUCCESS;
926 __ClearPageIsolated(page);
927 goto out;
928 }
929
930 rc = mapping->a_ops->migratepage(mapping, newpage,
931 page, mode);
932 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
933 !PageIsolated(page));
934 }
935
936 /*
937 * When successful, old pagecache page->mapping must be cleared before
938 * page is freed; but stats require that PageAnon be left as PageAnon.
939 */
940 if (rc == MIGRATEPAGE_SUCCESS) {
941 if (__PageMovable(page)) {
942 VM_BUG_ON_PAGE(!PageIsolated(page), page);
943
944 /*
945 * We clear PG_movable under page_lock so any compactor
946 * cannot try to migrate this page.
947 */
948 __ClearPageIsolated(page);
949 }
950
951 /*
952 * Anonymous and movable page->mapping will be cleard by
953 * free_pages_prepare so don't reset it here for keeping
954 * the type to work PageAnon, for example.
955 */
956 if (!PageMappingFlags(page))
957 page->mapping = NULL;
958 }
959out:
960 return rc;
961}
962
963static int __unmap_and_move(struct page *page, struct page *newpage,
964 int force, enum migrate_mode mode)
965{
966 int rc = -EAGAIN;
967 int page_was_mapped = 0;
968 struct anon_vma *anon_vma = NULL;
969 bool is_lru = !__PageMovable(page);
970
971 if (!trylock_page(page)) {
972 if (!force || mode == MIGRATE_ASYNC)
973 goto out;
974
975 /*
976 * It's not safe for direct compaction to call lock_page.
977 * For example, during page readahead pages are added locked
978 * to the LRU. Later, when the IO completes the pages are
979 * marked uptodate and unlocked. However, the queueing
980 * could be merging multiple pages for one bio (e.g.
981 * mpage_readpages). If an allocation happens for the
982 * second or third page, the process can end up locking
983 * the same page twice and deadlocking. Rather than
984 * trying to be clever about what pages can be locked,
985 * avoid the use of lock_page for direct compaction
986 * altogether.
987 */
988 if (current->flags & PF_MEMALLOC)
989 goto out;
990
991 lock_page(page);
992 }
993
994 if (PageWriteback(page)) {
995 /*
996 * Only in the case of a full synchronous migration is it
997 * necessary to wait for PageWriteback. In the async case,
998 * the retry loop is too short and in the sync-light case,
999 * the overhead of stalling is too much
1000 */
1001 switch (mode) {
1002 case MIGRATE_SYNC:
1003 case MIGRATE_SYNC_NO_COPY:
1004 break;
1005 default:
1006 rc = -EBUSY;
1007 goto out_unlock;
1008 }
1009 if (!force)
1010 goto out_unlock;
1011 wait_on_page_writeback(page);
1012 }
1013
1014 /*
1015 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1016 * we cannot notice that anon_vma is freed while we migrates a page.
1017 * This get_anon_vma() delays freeing anon_vma pointer until the end
1018 * of migration. File cache pages are no problem because of page_lock()
1019 * File Caches may use write_page() or lock_page() in migration, then,
1020 * just care Anon page here.
1021 *
1022 * Only page_get_anon_vma() understands the subtleties of
1023 * getting a hold on an anon_vma from outside one of its mms.
1024 * But if we cannot get anon_vma, then we won't need it anyway,
1025 * because that implies that the anon page is no longer mapped
1026 * (and cannot be remapped so long as we hold the page lock).
1027 */
1028 if (PageAnon(page) && !PageKsm(page))
1029 anon_vma = page_get_anon_vma(page);
1030
1031 /*
1032 * Block others from accessing the new page when we get around to
1033 * establishing additional references. We are usually the only one
1034 * holding a reference to newpage at this point. We used to have a BUG
1035 * here if trylock_page(newpage) fails, but would like to allow for
1036 * cases where there might be a race with the previous use of newpage.
1037 * This is much like races on refcount of oldpage: just don't BUG().
1038 */
1039 if (unlikely(!trylock_page(newpage)))
1040 goto out_unlock;
1041
1042 if (unlikely(!is_lru)) {
1043 rc = move_to_new_page(newpage, page, mode);
1044 goto out_unlock_both;
1045 }
1046
1047 /*
1048 * Corner case handling:
1049 * 1. When a new swap-cache page is read into, it is added to the LRU
1050 * and treated as swapcache but it has no rmap yet.
1051 * Calling try_to_unmap() against a page->mapping==NULL page will
1052 * trigger a BUG. So handle it here.
1053 * 2. An orphaned page (see truncate_complete_page) might have
1054 * fs-private metadata. The page can be picked up due to memory
1055 * offlining. Everywhere else except page reclaim, the page is
1056 * invisible to the vm, so the page can not be migrated. So try to
1057 * free the metadata, so the page can be freed.
1058 */
1059 if (!page->mapping) {
1060 VM_BUG_ON_PAGE(PageAnon(page), page);
1061 if (page_has_private(page)) {
1062 try_to_free_buffers(page);
1063 goto out_unlock_both;
1064 }
1065 } else if (page_mapped(page)) {
1066 /* Establish migration ptes */
1067 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1068 page);
1069 try_to_unmap(page,
1070 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1071 page_was_mapped = 1;
1072 }
1073
1074 if (!page_mapped(page))
1075 rc = move_to_new_page(newpage, page, mode);
1076
1077 if (page_was_mapped)
1078 remove_migration_ptes(page,
1079 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1080
1081out_unlock_both:
1082 unlock_page(newpage);
1083out_unlock:
1084 /* Drop an anon_vma reference if we took one */
1085 if (anon_vma)
1086 put_anon_vma(anon_vma);
1087 unlock_page(page);
1088out:
1089 /*
1090 * If migration is successful, decrease refcount of the newpage
1091 * which will not free the page because new page owner increased
1092 * refcounter. As well, if it is LRU page, add the page to LRU
1093 * list in here.
1094 */
1095 if (rc == MIGRATEPAGE_SUCCESS) {
1096 if (unlikely(__PageMovable(newpage)))
1097 put_page(newpage);
1098 else
1099 putback_lru_page(newpage);
1100 }
1101
1102 return rc;
1103}
1104
1105/*
1106 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1107 * around it.
1108 */
1109#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1110#define ICE_noinline noinline
1111#else
1112#define ICE_noinline
1113#endif
1114
1115/*
1116 * Obtain the lock on page, remove all ptes and migrate the page
1117 * to the newly allocated page in newpage.
1118 */
1119static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1120 free_page_t put_new_page,
1121 unsigned long private, struct page *page,
1122 int force, enum migrate_mode mode,
1123 enum migrate_reason reason)
1124{
1125 int rc = MIGRATEPAGE_SUCCESS;
1126 int *result = NULL;
1127 struct page *newpage;
1128
1129 newpage = get_new_page(page, private, &result);
1130 if (!newpage)
1131 return -ENOMEM;
1132
1133 if (page_count(page) == 1) {
1134 /* page was freed from under us. So we are done. */
1135 ClearPageActive(page);
1136 ClearPageUnevictable(page);
1137 if (unlikely(__PageMovable(page))) {
1138 lock_page(page);
1139 if (!PageMovable(page))
1140 __ClearPageIsolated(page);
1141 unlock_page(page);
1142 }
1143 if (put_new_page)
1144 put_new_page(newpage, private);
1145 else
1146 put_page(newpage);
1147 goto out;
1148 }
1149
1150 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1151 lock_page(page);
1152 rc = split_huge_page(page);
1153 unlock_page(page);
1154 if (rc)
1155 goto out;
1156 }
1157
1158 rc = __unmap_and_move(page, newpage, force, mode);
1159 if (rc == MIGRATEPAGE_SUCCESS)
1160 set_page_owner_migrate_reason(newpage, reason);
1161
1162out:
1163 if (rc != -EAGAIN) {
1164 /*
1165 * A page that has been migrated has all references
1166 * removed and will be freed. A page that has not been
1167 * migrated will have kepts its references and be
1168 * restored.
1169 */
1170 list_del(&page->lru);
1171
1172 /*
1173 * Compaction can migrate also non-LRU pages which are
1174 * not accounted to NR_ISOLATED_*. They can be recognized
1175 * as __PageMovable
1176 */
1177 if (likely(!__PageMovable(page)))
1178 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1179 page_is_file_cache(page), -hpage_nr_pages(page));
1180 }
1181
1182 /*
1183 * If migration is successful, releases reference grabbed during
1184 * isolation. Otherwise, restore the page to right list unless
1185 * we want to retry.
1186 */
1187 if (rc == MIGRATEPAGE_SUCCESS) {
1188 put_page(page);
1189 if (reason == MR_MEMORY_FAILURE) {
1190 /*
1191 * Set PG_HWPoison on just freed page
1192 * intentionally. Although it's rather weird,
1193 * it's how HWPoison flag works at the moment.
1194 */
1195 if (!test_set_page_hwpoison(page))
1196 num_poisoned_pages_inc();
1197 }
1198 } else {
1199 if (rc != -EAGAIN) {
1200 if (likely(!__PageMovable(page))) {
1201 putback_lru_page(page);
1202 goto put_new;
1203 }
1204
1205 lock_page(page);
1206 if (PageMovable(page))
1207 putback_movable_page(page);
1208 else
1209 __ClearPageIsolated(page);
1210 unlock_page(page);
1211 put_page(page);
1212 }
1213put_new:
1214 if (put_new_page)
1215 put_new_page(newpage, private);
1216 else
1217 put_page(newpage);
1218 }
1219
1220 if (result) {
1221 if (rc)
1222 *result = rc;
1223 else
1224 *result = page_to_nid(newpage);
1225 }
1226 return rc;
1227}
1228
1229/*
1230 * Counterpart of unmap_and_move_page() for hugepage migration.
1231 *
1232 * This function doesn't wait the completion of hugepage I/O
1233 * because there is no race between I/O and migration for hugepage.
1234 * Note that currently hugepage I/O occurs only in direct I/O
1235 * where no lock is held and PG_writeback is irrelevant,
1236 * and writeback status of all subpages are counted in the reference
1237 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1238 * under direct I/O, the reference of the head page is 512 and a bit more.)
1239 * This means that when we try to migrate hugepage whose subpages are
1240 * doing direct I/O, some references remain after try_to_unmap() and
1241 * hugepage migration fails without data corruption.
1242 *
1243 * There is also no race when direct I/O is issued on the page under migration,
1244 * because then pte is replaced with migration swap entry and direct I/O code
1245 * will wait in the page fault for migration to complete.
1246 */
1247static int unmap_and_move_huge_page(new_page_t get_new_page,
1248 free_page_t put_new_page, unsigned long private,
1249 struct page *hpage, int force,
1250 enum migrate_mode mode, int reason)
1251{
1252 int rc = -EAGAIN;
1253 int *result = NULL;
1254 int page_was_mapped = 0;
1255 struct page *new_hpage;
1256 struct anon_vma *anon_vma = NULL;
1257
1258 /*
1259 * Movability of hugepages depends on architectures and hugepage size.
1260 * This check is necessary because some callers of hugepage migration
1261 * like soft offline and memory hotremove don't walk through page
1262 * tables or check whether the hugepage is pmd-based or not before
1263 * kicking migration.
1264 */
1265 if (!hugepage_migration_supported(page_hstate(hpage))) {
1266 putback_active_hugepage(hpage);
1267 return -ENOSYS;
1268 }
1269
1270 new_hpage = get_new_page(hpage, private, &result);
1271 if (!new_hpage)
1272 return -ENOMEM;
1273
1274 if (!trylock_page(hpage)) {
1275 if (!force)
1276 goto out;
1277 switch (mode) {
1278 case MIGRATE_SYNC:
1279 case MIGRATE_SYNC_NO_COPY:
1280 break;
1281 default:
1282 goto out;
1283 }
1284 lock_page(hpage);
1285 }
1286
1287 if (PageAnon(hpage))
1288 anon_vma = page_get_anon_vma(hpage);
1289
1290 if (unlikely(!trylock_page(new_hpage)))
1291 goto put_anon;
1292
1293 if (page_mapped(hpage)) {
1294 try_to_unmap(hpage,
1295 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1296 page_was_mapped = 1;
1297 }
1298
1299 if (!page_mapped(hpage))
1300 rc = move_to_new_page(new_hpage, hpage, mode);
1301
1302 if (page_was_mapped)
1303 remove_migration_ptes(hpage,
1304 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1305
1306 unlock_page(new_hpage);
1307
1308put_anon:
1309 if (anon_vma)
1310 put_anon_vma(anon_vma);
1311
1312 if (rc == MIGRATEPAGE_SUCCESS) {
1313 hugetlb_cgroup_migrate(hpage, new_hpage);
1314 put_new_page = NULL;
1315 set_page_owner_migrate_reason(new_hpage, reason);
1316 }
1317
1318 unlock_page(hpage);
1319out:
1320 if (rc != -EAGAIN)
1321 putback_active_hugepage(hpage);
1322 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1323 num_poisoned_pages_inc();
1324
1325 /*
1326 * If migration was not successful and there's a freeing callback, use
1327 * it. Otherwise, put_page() will drop the reference grabbed during
1328 * isolation.
1329 */
1330 if (put_new_page)
1331 put_new_page(new_hpage, private);
1332 else
1333 putback_active_hugepage(new_hpage);
1334
1335 if (result) {
1336 if (rc)
1337 *result = rc;
1338 else
1339 *result = page_to_nid(new_hpage);
1340 }
1341 return rc;
1342}
1343
1344/*
1345 * migrate_pages - migrate the pages specified in a list, to the free pages
1346 * supplied as the target for the page migration
1347 *
1348 * @from: The list of pages to be migrated.
1349 * @get_new_page: The function used to allocate free pages to be used
1350 * as the target of the page migration.
1351 * @put_new_page: The function used to free target pages if migration
1352 * fails, or NULL if no special handling is necessary.
1353 * @private: Private data to be passed on to get_new_page()
1354 * @mode: The migration mode that specifies the constraints for
1355 * page migration, if any.
1356 * @reason: The reason for page migration.
1357 *
1358 * The function returns after 10 attempts or if no pages are movable any more
1359 * because the list has become empty or no retryable pages exist any more.
1360 * The caller should call putback_movable_pages() to return pages to the LRU
1361 * or free list only if ret != 0.
1362 *
1363 * Returns the number of pages that were not migrated, or an error code.
1364 */
1365int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366 free_page_t put_new_page, unsigned long private,
1367 enum migrate_mode mode, int reason)
1368{
1369 int retry = 1;
1370 int nr_failed = 0;
1371 int nr_succeeded = 0;
1372 int pass = 0;
1373 struct page *page;
1374 struct page *page2;
1375 int swapwrite = current->flags & PF_SWAPWRITE;
1376 int rc;
1377
1378 if (!swapwrite)
1379 current->flags |= PF_SWAPWRITE;
1380
1381 for(pass = 0; pass < 10 && retry; pass++) {
1382 retry = 0;
1383
1384 list_for_each_entry_safe(page, page2, from, lru) {
1385 cond_resched();
1386
1387 if (PageHuge(page))
1388 rc = unmap_and_move_huge_page(get_new_page,
1389 put_new_page, private, page,
1390 pass > 2, mode, reason);
1391 else
1392 rc = unmap_and_move(get_new_page, put_new_page,
1393 private, page, pass > 2, mode,
1394 reason);
1395
1396 switch(rc) {
1397 case -ENOMEM:
1398 nr_failed++;
1399 goto out;
1400 case -EAGAIN:
1401 retry++;
1402 break;
1403 case MIGRATEPAGE_SUCCESS:
1404 nr_succeeded++;
1405 break;
1406 default:
1407 /*
1408 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1409 * unlike -EAGAIN case, the failed page is
1410 * removed from migration page list and not
1411 * retried in the next outer loop.
1412 */
1413 nr_failed++;
1414 break;
1415 }
1416 }
1417 }
1418 nr_failed += retry;
1419 rc = nr_failed;
1420out:
1421 if (nr_succeeded)
1422 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1423 if (nr_failed)
1424 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1425 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1426
1427 if (!swapwrite)
1428 current->flags &= ~PF_SWAPWRITE;
1429
1430 return rc;
1431}
1432
1433#ifdef CONFIG_NUMA
1434/*
1435 * Move a list of individual pages
1436 */
1437struct page_to_node {
1438 unsigned long addr;
1439 struct page *page;
1440 int node;
1441 int status;
1442};
1443
1444static struct page *new_page_node(struct page *p, unsigned long private,
1445 int **result)
1446{
1447 struct page_to_node *pm = (struct page_to_node *)private;
1448
1449 while (pm->node != MAX_NUMNODES && pm->page != p)
1450 pm++;
1451
1452 if (pm->node == MAX_NUMNODES)
1453 return NULL;
1454
1455 *result = &pm->status;
1456
1457 if (PageHuge(p))
1458 return alloc_huge_page_node(page_hstate(compound_head(p)),
1459 pm->node);
1460 else if (thp_migration_supported() && PageTransHuge(p)) {
1461 struct page *thp;
1462
1463 thp = alloc_pages_node(pm->node,
1464 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1465 HPAGE_PMD_ORDER);
1466 if (!thp)
1467 return NULL;
1468 prep_transhuge_page(thp);
1469 return thp;
1470 } else
1471 return __alloc_pages_node(pm->node,
1472 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1473}
1474
1475/*
1476 * Move a set of pages as indicated in the pm array. The addr
1477 * field must be set to the virtual address of the page to be moved
1478 * and the node number must contain a valid target node.
1479 * The pm array ends with node = MAX_NUMNODES.
1480 */
1481static int do_move_page_to_node_array(struct mm_struct *mm,
1482 struct page_to_node *pm,
1483 int migrate_all)
1484{
1485 int err;
1486 struct page_to_node *pp;
1487 LIST_HEAD(pagelist);
1488
1489 down_read(&mm->mmap_sem);
1490
1491 /*
1492 * Build a list of pages to migrate
1493 */
1494 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1495 struct vm_area_struct *vma;
1496 struct page *page;
1497 struct page *head;
1498 unsigned int follflags;
1499
1500 err = -EFAULT;
1501 vma = find_vma(mm, pp->addr);
1502 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1503 goto set_status;
1504
1505 /* FOLL_DUMP to ignore special (like zero) pages */
1506 follflags = FOLL_GET | FOLL_DUMP;
1507 if (!thp_migration_supported())
1508 follflags |= FOLL_SPLIT;
1509 page = follow_page(vma, pp->addr, follflags);
1510
1511 err = PTR_ERR(page);
1512 if (IS_ERR(page))
1513 goto set_status;
1514
1515 err = -ENOENT;
1516 if (!page)
1517 goto set_status;
1518
1519 err = page_to_nid(page);
1520
1521 if (err == pp->node)
1522 /*
1523 * Node already in the right place
1524 */
1525 goto put_and_set;
1526
1527 err = -EACCES;
1528 if (page_mapcount(page) > 1 &&
1529 !migrate_all)
1530 goto put_and_set;
1531
1532 if (PageHuge(page)) {
1533 if (PageHead(page)) {
1534 isolate_huge_page(page, &pagelist);
1535 err = 0;
1536 pp->page = page;
1537 }
1538 goto put_and_set;
1539 }
1540
1541 pp->page = compound_head(page);
1542 head = compound_head(page);
1543 err = isolate_lru_page(head);
1544 if (!err) {
1545 list_add_tail(&head->lru, &pagelist);
1546 mod_node_page_state(page_pgdat(head),
1547 NR_ISOLATED_ANON + page_is_file_cache(head),
1548 hpage_nr_pages(head));
1549 }
1550put_and_set:
1551 /*
1552 * Either remove the duplicate refcount from
1553 * isolate_lru_page() or drop the page ref if it was
1554 * not isolated.
1555 */
1556 put_page(page);
1557set_status:
1558 pp->status = err;
1559 }
1560
1561 err = 0;
1562 if (!list_empty(&pagelist)) {
1563 err = migrate_pages(&pagelist, new_page_node, NULL,
1564 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1565 if (err)
1566 putback_movable_pages(&pagelist);
1567 }
1568
1569 up_read(&mm->mmap_sem);
1570 return err;
1571}
1572
1573/*
1574 * Migrate an array of page address onto an array of nodes and fill
1575 * the corresponding array of status.
1576 */
1577static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1578 unsigned long nr_pages,
1579 const void __user * __user *pages,
1580 const int __user *nodes,
1581 int __user *status, int flags)
1582{
1583 struct page_to_node *pm;
1584 unsigned long chunk_nr_pages;
1585 unsigned long chunk_start;
1586 int err;
1587
1588 err = -ENOMEM;
1589 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1590 if (!pm)
1591 goto out;
1592
1593 migrate_prep();
1594
1595 /*
1596 * Store a chunk of page_to_node array in a page,
1597 * but keep the last one as a marker
1598 */
1599 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1600
1601 for (chunk_start = 0;
1602 chunk_start < nr_pages;
1603 chunk_start += chunk_nr_pages) {
1604 int j;
1605
1606 if (chunk_start + chunk_nr_pages > nr_pages)
1607 chunk_nr_pages = nr_pages - chunk_start;
1608
1609 /* fill the chunk pm with addrs and nodes from user-space */
1610 for (j = 0; j < chunk_nr_pages; j++) {
1611 const void __user *p;
1612 int node;
1613
1614 err = -EFAULT;
1615 if (get_user(p, pages + j + chunk_start))
1616 goto out_pm;
1617 pm[j].addr = (unsigned long) p;
1618
1619 if (get_user(node, nodes + j + chunk_start))
1620 goto out_pm;
1621
1622 err = -ENODEV;
1623 if (node < 0 || node >= MAX_NUMNODES)
1624 goto out_pm;
1625
1626 if (!node_state(node, N_MEMORY))
1627 goto out_pm;
1628
1629 err = -EACCES;
1630 if (!node_isset(node, task_nodes))
1631 goto out_pm;
1632
1633 pm[j].node = node;
1634 }
1635
1636 /* End marker for this chunk */
1637 pm[chunk_nr_pages].node = MAX_NUMNODES;
1638
1639 /* Migrate this chunk */
1640 err = do_move_page_to_node_array(mm, pm,
1641 flags & MPOL_MF_MOVE_ALL);
1642 if (err < 0)
1643 goto out_pm;
1644
1645 /* Return status information */
1646 for (j = 0; j < chunk_nr_pages; j++)
1647 if (put_user(pm[j].status, status + j + chunk_start)) {
1648 err = -EFAULT;
1649 goto out_pm;
1650 }
1651 }
1652 err = 0;
1653
1654out_pm:
1655 free_page((unsigned long)pm);
1656out:
1657 return err;
1658}
1659
1660/*
1661 * Determine the nodes of an array of pages and store it in an array of status.
1662 */
1663static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1664 const void __user **pages, int *status)
1665{
1666 unsigned long i;
1667
1668 down_read(&mm->mmap_sem);
1669
1670 for (i = 0; i < nr_pages; i++) {
1671 unsigned long addr = (unsigned long)(*pages);
1672 struct vm_area_struct *vma;
1673 struct page *page;
1674 int err = -EFAULT;
1675
1676 vma = find_vma(mm, addr);
1677 if (!vma || addr < vma->vm_start)
1678 goto set_status;
1679
1680 /* FOLL_DUMP to ignore special (like zero) pages */
1681 page = follow_page(vma, addr, FOLL_DUMP);
1682
1683 err = PTR_ERR(page);
1684 if (IS_ERR(page))
1685 goto set_status;
1686
1687 err = page ? page_to_nid(page) : -ENOENT;
1688set_status:
1689 *status = err;
1690
1691 pages++;
1692 status++;
1693 }
1694
1695 up_read(&mm->mmap_sem);
1696}
1697
1698/*
1699 * Determine the nodes of a user array of pages and store it in
1700 * a user array of status.
1701 */
1702static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1703 const void __user * __user *pages,
1704 int __user *status)
1705{
1706#define DO_PAGES_STAT_CHUNK_NR 16
1707 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1708 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1709
1710 while (nr_pages) {
1711 unsigned long chunk_nr;
1712
1713 chunk_nr = nr_pages;
1714 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1715 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1716
1717 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1718 break;
1719
1720 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1721
1722 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1723 break;
1724
1725 pages += chunk_nr;
1726 status += chunk_nr;
1727 nr_pages -= chunk_nr;
1728 }
1729 return nr_pages ? -EFAULT : 0;
1730}
1731
1732/*
1733 * Move a list of pages in the address space of the currently executing
1734 * process.
1735 */
1736SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1737 const void __user * __user *, pages,
1738 const int __user *, nodes,
1739 int __user *, status, int, flags)
1740{
1741 struct task_struct *task;
1742 struct mm_struct *mm;
1743 int err;
1744 nodemask_t task_nodes;
1745
1746 /* Check flags */
1747 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1748 return -EINVAL;
1749
1750 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1751 return -EPERM;
1752
1753 /* Find the mm_struct */
1754 rcu_read_lock();
1755 task = pid ? find_task_by_vpid(pid) : current;
1756 if (!task) {
1757 rcu_read_unlock();
1758 return -ESRCH;
1759 }
1760 get_task_struct(task);
1761
1762 /*
1763 * Check if this process has the right to modify the specified
1764 * process. Use the regular "ptrace_may_access()" checks.
1765 */
1766 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1767 rcu_read_unlock();
1768 err = -EPERM;
1769 goto out;
1770 }
1771 rcu_read_unlock();
1772
1773 err = security_task_movememory(task);
1774 if (err)
1775 goto out;
1776
1777 task_nodes = cpuset_mems_allowed(task);
1778 mm = get_task_mm(task);
1779 put_task_struct(task);
1780
1781 if (!mm)
1782 return -EINVAL;
1783
1784 if (nodes)
1785 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1786 nodes, status, flags);
1787 else
1788 err = do_pages_stat(mm, nr_pages, pages, status);
1789
1790 mmput(mm);
1791 return err;
1792
1793out:
1794 put_task_struct(task);
1795 return err;
1796}
1797
1798#ifdef CONFIG_NUMA_BALANCING
1799/*
1800 * Returns true if this is a safe migration target node for misplaced NUMA
1801 * pages. Currently it only checks the watermarks which crude
1802 */
1803static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1804 unsigned long nr_migrate_pages)
1805{
1806 int z;
1807
1808 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1809 struct zone *zone = pgdat->node_zones + z;
1810
1811 if (!populated_zone(zone))
1812 continue;
1813
1814 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1815 if (!zone_watermark_ok(zone, 0,
1816 high_wmark_pages(zone) +
1817 nr_migrate_pages,
1818 0, 0))
1819 continue;
1820 return true;
1821 }
1822 return false;
1823}
1824
1825static struct page *alloc_misplaced_dst_page(struct page *page,
1826 unsigned long data,
1827 int **result)
1828{
1829 int nid = (int) data;
1830 struct page *newpage;
1831
1832 newpage = __alloc_pages_node(nid,
1833 (GFP_HIGHUSER_MOVABLE |
1834 __GFP_THISNODE | __GFP_NOMEMALLOC |
1835 __GFP_NORETRY | __GFP_NOWARN) &
1836 ~__GFP_RECLAIM, 0);
1837
1838 return newpage;
1839}
1840
1841/*
1842 * page migration rate limiting control.
1843 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1844 * window of time. Default here says do not migrate more than 1280M per second.
1845 */
1846static unsigned int migrate_interval_millisecs __read_mostly = 100;
1847static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1848
1849/* Returns true if the node is migrate rate-limited after the update */
1850static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1851 unsigned long nr_pages)
1852{
1853 /*
1854 * Rate-limit the amount of data that is being migrated to a node.
1855 * Optimal placement is no good if the memory bus is saturated and
1856 * all the time is being spent migrating!
1857 */
1858 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1859 spin_lock(&pgdat->numabalancing_migrate_lock);
1860 pgdat->numabalancing_migrate_nr_pages = 0;
1861 pgdat->numabalancing_migrate_next_window = jiffies +
1862 msecs_to_jiffies(migrate_interval_millisecs);
1863 spin_unlock(&pgdat->numabalancing_migrate_lock);
1864 }
1865 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1866 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1867 nr_pages);
1868 return true;
1869 }
1870
1871 /*
1872 * This is an unlocked non-atomic update so errors are possible.
1873 * The consequences are failing to migrate when we potentiall should
1874 * have which is not severe enough to warrant locking. If it is ever
1875 * a problem, it can be converted to a per-cpu counter.
1876 */
1877 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1878 return false;
1879}
1880
1881static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1882{
1883 int page_lru;
1884
1885 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1886
1887 /* Avoid migrating to a node that is nearly full */
1888 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1889 return 0;
1890
1891 if (isolate_lru_page(page))
1892 return 0;
1893
1894 /*
1895 * migrate_misplaced_transhuge_page() skips page migration's usual
1896 * check on page_count(), so we must do it here, now that the page
1897 * has been isolated: a GUP pin, or any other pin, prevents migration.
1898 * The expected page count is 3: 1 for page's mapcount and 1 for the
1899 * caller's pin and 1 for the reference taken by isolate_lru_page().
1900 */
1901 if (PageTransHuge(page) && page_count(page) != 3) {
1902 putback_lru_page(page);
1903 return 0;
1904 }
1905
1906 page_lru = page_is_file_cache(page);
1907 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1908 hpage_nr_pages(page));
1909
1910 /*
1911 * Isolating the page has taken another reference, so the
1912 * caller's reference can be safely dropped without the page
1913 * disappearing underneath us during migration.
1914 */
1915 put_page(page);
1916 return 1;
1917}
1918
1919bool pmd_trans_migrating(pmd_t pmd)
1920{
1921 struct page *page = pmd_page(pmd);
1922 return PageLocked(page);
1923}
1924
1925/*
1926 * Attempt to migrate a misplaced page to the specified destination
1927 * node. Caller is expected to have an elevated reference count on
1928 * the page that will be dropped by this function before returning.
1929 */
1930int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1931 int node)
1932{
1933 pg_data_t *pgdat = NODE_DATA(node);
1934 int isolated;
1935 int nr_remaining;
1936 LIST_HEAD(migratepages);
1937
1938 /*
1939 * Don't migrate file pages that are mapped in multiple processes
1940 * with execute permissions as they are probably shared libraries.
1941 */
1942 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1943 (vma->vm_flags & VM_EXEC))
1944 goto out;
1945
1946 /*
1947 * Rate-limit the amount of data that is being migrated to a node.
1948 * Optimal placement is no good if the memory bus is saturated and
1949 * all the time is being spent migrating!
1950 */
1951 if (numamigrate_update_ratelimit(pgdat, 1))
1952 goto out;
1953
1954 isolated = numamigrate_isolate_page(pgdat, page);
1955 if (!isolated)
1956 goto out;
1957
1958 list_add(&page->lru, &migratepages);
1959 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1960 NULL, node, MIGRATE_ASYNC,
1961 MR_NUMA_MISPLACED);
1962 if (nr_remaining) {
1963 if (!list_empty(&migratepages)) {
1964 list_del(&page->lru);
1965 dec_node_page_state(page, NR_ISOLATED_ANON +
1966 page_is_file_cache(page));
1967 putback_lru_page(page);
1968 }
1969 isolated = 0;
1970 } else
1971 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1972 BUG_ON(!list_empty(&migratepages));
1973 return isolated;
1974
1975out:
1976 put_page(page);
1977 return 0;
1978}
1979#endif /* CONFIG_NUMA_BALANCING */
1980
1981#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1982/*
1983 * Migrates a THP to a given target node. page must be locked and is unlocked
1984 * before returning.
1985 */
1986int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1987 struct vm_area_struct *vma,
1988 pmd_t *pmd, pmd_t entry,
1989 unsigned long address,
1990 struct page *page, int node)
1991{
1992 spinlock_t *ptl;
1993 pg_data_t *pgdat = NODE_DATA(node);
1994 int isolated = 0;
1995 struct page *new_page = NULL;
1996 int page_lru = page_is_file_cache(page);
1997 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1998 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1999
2000 /*
2001 * Rate-limit the amount of data that is being migrated to a node.
2002 * Optimal placement is no good if the memory bus is saturated and
2003 * all the time is being spent migrating!
2004 */
2005 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2006 goto out_dropref;
2007
2008 new_page = alloc_pages_node(node,
2009 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2010 HPAGE_PMD_ORDER);
2011 if (!new_page)
2012 goto out_fail;
2013 prep_transhuge_page(new_page);
2014
2015 isolated = numamigrate_isolate_page(pgdat, page);
2016 if (!isolated) {
2017 put_page(new_page);
2018 goto out_fail;
2019 }
2020
2021 /* Prepare a page as a migration target */
2022 __SetPageLocked(new_page);
2023 if (PageSwapBacked(page))
2024 __SetPageSwapBacked(new_page);
2025
2026 /* anon mapping, we can simply copy page->mapping to the new page: */
2027 new_page->mapping = page->mapping;
2028 new_page->index = page->index;
2029 migrate_page_copy(new_page, page);
2030 WARN_ON(PageLRU(new_page));
2031
2032 /* Recheck the target PMD */
2033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2034 ptl = pmd_lock(mm, pmd);
2035 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2036 spin_unlock(ptl);
2037 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2038
2039 /* Reverse changes made by migrate_page_copy() */
2040 if (TestClearPageActive(new_page))
2041 SetPageActive(page);
2042 if (TestClearPageUnevictable(new_page))
2043 SetPageUnevictable(page);
2044
2045 unlock_page(new_page);
2046 put_page(new_page); /* Free it */
2047
2048 /* Retake the callers reference and putback on LRU */
2049 get_page(page);
2050 putback_lru_page(page);
2051 mod_node_page_state(page_pgdat(page),
2052 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2053
2054 goto out_unlock;
2055 }
2056
2057 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2058 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2059
2060 /*
2061 * Clear the old entry under pagetable lock and establish the new PTE.
2062 * Any parallel GUP will either observe the old page blocking on the
2063 * page lock, block on the page table lock or observe the new page.
2064 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2065 * guarantee the copy is visible before the pagetable update.
2066 */
2067 flush_cache_range(vma, mmun_start, mmun_end);
2068 page_add_anon_rmap(new_page, vma, mmun_start, true);
2069 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2070 set_pmd_at(mm, mmun_start, pmd, entry);
2071 update_mmu_cache_pmd(vma, address, &entry);
2072
2073 page_ref_unfreeze(page, 2);
2074 mlock_migrate_page(new_page, page);
2075 page_remove_rmap(page, true);
2076 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2077
2078 spin_unlock(ptl);
2079 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2080
2081 /* Take an "isolate" reference and put new page on the LRU. */
2082 get_page(new_page);
2083 putback_lru_page(new_page);
2084
2085 unlock_page(new_page);
2086 unlock_page(page);
2087 put_page(page); /* Drop the rmap reference */
2088 put_page(page); /* Drop the LRU isolation reference */
2089
2090 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2091 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2092
2093 mod_node_page_state(page_pgdat(page),
2094 NR_ISOLATED_ANON + page_lru,
2095 -HPAGE_PMD_NR);
2096 return isolated;
2097
2098out_fail:
2099 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2100out_dropref:
2101 ptl = pmd_lock(mm, pmd);
2102 if (pmd_same(*pmd, entry)) {
2103 entry = pmd_modify(entry, vma->vm_page_prot);
2104 set_pmd_at(mm, mmun_start, pmd, entry);
2105 update_mmu_cache_pmd(vma, address, &entry);
2106 }
2107 spin_unlock(ptl);
2108
2109out_unlock:
2110 unlock_page(page);
2111 put_page(page);
2112 return 0;
2113}
2114#endif /* CONFIG_NUMA_BALANCING */
2115
2116#endif /* CONFIG_NUMA */
2117
2118
2119struct migrate_vma {
2120 struct vm_area_struct *vma;
2121 unsigned long *dst;
2122 unsigned long *src;
2123 unsigned long cpages;
2124 unsigned long npages;
2125 unsigned long start;
2126 unsigned long end;
2127};
2128
2129static int migrate_vma_collect_hole(unsigned long start,
2130 unsigned long end,
2131 struct mm_walk *walk)
2132{
2133 struct migrate_vma *migrate = walk->private;
2134 unsigned long addr;
2135
2136 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2137 migrate->dst[migrate->npages] = 0;
2138 migrate->src[migrate->npages++] = 0;
2139 }
2140
2141 return 0;
2142}
2143
2144static int migrate_vma_collect_pmd(pmd_t *pmdp,
2145 unsigned long start,
2146 unsigned long end,
2147 struct mm_walk *walk)
2148{
2149 struct migrate_vma *migrate = walk->private;
2150 struct vm_area_struct *vma = walk->vma;
2151 struct mm_struct *mm = vma->vm_mm;
2152 unsigned long addr = start, unmapped = 0;
2153 spinlock_t *ptl;
2154 pte_t *ptep;
2155
2156again:
2157 if (pmd_none(*pmdp))
2158 return migrate_vma_collect_hole(start, end, walk);
2159
2160 if (pmd_trans_huge(*pmdp)) {
2161 struct page *page;
2162
2163 ptl = pmd_lock(mm, pmdp);
2164 if (unlikely(!pmd_trans_huge(*pmdp))) {
2165 spin_unlock(ptl);
2166 goto again;
2167 }
2168
2169 page = pmd_page(*pmdp);
2170 if (is_huge_zero_page(page)) {
2171 spin_unlock(ptl);
2172 split_huge_pmd(vma, pmdp, addr);
2173 if (pmd_trans_unstable(pmdp))
2174 return migrate_vma_collect_hole(start, end,
2175 walk);
2176 } else {
2177 int ret;
2178
2179 get_page(page);
2180 spin_unlock(ptl);
2181 if (unlikely(!trylock_page(page)))
2182 return migrate_vma_collect_hole(start, end,
2183 walk);
2184 ret = split_huge_page(page);
2185 unlock_page(page);
2186 put_page(page);
2187 if (ret || pmd_none(*pmdp))
2188 return migrate_vma_collect_hole(start, end,
2189 walk);
2190 }
2191 }
2192
2193 if (unlikely(pmd_bad(*pmdp)))
2194 return migrate_vma_collect_hole(start, end, walk);
2195
2196 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2197 arch_enter_lazy_mmu_mode();
2198
2199 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2200 unsigned long mpfn, pfn;
2201 struct page *page;
2202 swp_entry_t entry;
2203 pte_t pte;
2204
2205 pte = *ptep;
2206 pfn = pte_pfn(pte);
2207
2208 if (!pte_present(pte)) {
2209 mpfn = pfn = 0;
2210 goto next;
2211 }
2212
2213 /* FIXME support THP */
2214 page = vm_normal_page(migrate->vma, addr, pte);
2215 if (!page || !page->mapping || PageTransCompound(page)) {
2216 mpfn = pfn = 0;
2217 goto next;
2218 }
2219
2220 /*
2221 * By getting a reference on the page we pin it and that blocks
2222 * any kind of migration. Side effect is that it "freezes" the
2223 * pte.
2224 *
2225 * We drop this reference after isolating the page from the lru
2226 * for non device page (device page are not on the lru and thus
2227 * can't be dropped from it).
2228 */
2229 get_page(page);
2230 migrate->cpages++;
2231 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2232 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2233
2234 /*
2235 * Optimize for the common case where page is only mapped once
2236 * in one process. If we can lock the page, then we can safely
2237 * set up a special migration page table entry now.
2238 */
2239 if (trylock_page(page)) {
2240 pte_t swp_pte;
2241
2242 mpfn |= MIGRATE_PFN_LOCKED;
2243 ptep_get_and_clear(mm, addr, ptep);
2244
2245 /* Setup special migration page table entry */
2246 entry = make_migration_entry(page, pte_write(pte));
2247 swp_pte = swp_entry_to_pte(entry);
2248 if (pte_soft_dirty(pte))
2249 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2250 set_pte_at(mm, addr, ptep, swp_pte);
2251
2252 /*
2253 * This is like regular unmap: we remove the rmap and
2254 * drop page refcount. Page won't be freed, as we took
2255 * a reference just above.
2256 */
2257 page_remove_rmap(page, false);
2258 put_page(page);
2259 unmapped++;
2260 }
2261
2262next:
2263 migrate->src[migrate->npages++] = mpfn;
2264 }
2265 arch_leave_lazy_mmu_mode();
2266 pte_unmap_unlock(ptep - 1, ptl);
2267
2268 /* Only flush the TLB if we actually modified any entries */
2269 if (unmapped)
2270 flush_tlb_range(walk->vma, start, end);
2271
2272 return 0;
2273}
2274
2275/*
2276 * migrate_vma_collect() - collect pages over a range of virtual addresses
2277 * @migrate: migrate struct containing all migration information
2278 *
2279 * This will walk the CPU page table. For each virtual address backed by a
2280 * valid page, it updates the src array and takes a reference on the page, in
2281 * order to pin the page until we lock it and unmap it.
2282 */
2283static void migrate_vma_collect(struct migrate_vma *migrate)
2284{
2285 struct mm_walk mm_walk;
2286
2287 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2288 mm_walk.pte_entry = NULL;
2289 mm_walk.pte_hole = migrate_vma_collect_hole;
2290 mm_walk.hugetlb_entry = NULL;
2291 mm_walk.test_walk = NULL;
2292 mm_walk.vma = migrate->vma;
2293 mm_walk.mm = migrate->vma->vm_mm;
2294 mm_walk.private = migrate;
2295
2296 mmu_notifier_invalidate_range_start(mm_walk.mm,
2297 migrate->start,
2298 migrate->end);
2299 walk_page_range(migrate->start, migrate->end, &mm_walk);
2300 mmu_notifier_invalidate_range_end(mm_walk.mm,
2301 migrate->start,
2302 migrate->end);
2303
2304 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2305}
2306
2307/*
2308 * migrate_vma_check_page() - check if page is pinned or not
2309 * @page: struct page to check
2310 *
2311 * Pinned pages cannot be migrated. This is the same test as in
2312 * migrate_page_move_mapping(), except that here we allow migration of a
2313 * ZONE_DEVICE page.
2314 */
2315static bool migrate_vma_check_page(struct page *page)
2316{
2317 /*
2318 * One extra ref because caller holds an extra reference, either from
2319 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2320 * a device page.
2321 */
2322 int extra = 1;
2323
2324 /*
2325 * FIXME support THP (transparent huge page), it is bit more complex to
2326 * check them than regular pages, because they can be mapped with a pmd
2327 * or with a pte (split pte mapping).
2328 */
2329 if (PageCompound(page))
2330 return false;
2331
2332 if ((page_count(page) - extra) > page_mapcount(page))
2333 return false;
2334
2335 return true;
2336}
2337
2338/*
2339 * migrate_vma_prepare() - lock pages and isolate them from the lru
2340 * @migrate: migrate struct containing all migration information
2341 *
2342 * This locks pages that have been collected by migrate_vma_collect(). Once each
2343 * page is locked it is isolated from the lru (for non-device pages). Finally,
2344 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2345 * migrated by concurrent kernel threads.
2346 */
2347static void migrate_vma_prepare(struct migrate_vma *migrate)
2348{
2349 const unsigned long npages = migrate->npages;
2350 const unsigned long start = migrate->start;
2351 unsigned long addr, i, restore = 0;
2352 bool allow_drain = true;
2353
2354 lru_add_drain();
2355
2356 for (i = 0; (i < npages) && migrate->cpages; i++) {
2357 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2358 bool remap = true;
2359
2360 if (!page)
2361 continue;
2362
2363 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2364 /*
2365 * Because we are migrating several pages there can be
2366 * a deadlock between 2 concurrent migration where each
2367 * are waiting on each other page lock.
2368 *
2369 * Make migrate_vma() a best effort thing and backoff
2370 * for any page we can not lock right away.
2371 */
2372 if (!trylock_page(page)) {
2373 migrate->src[i] = 0;
2374 migrate->cpages--;
2375 put_page(page);
2376 continue;
2377 }
2378 remap = false;
2379 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2380 }
2381
2382 if (!PageLRU(page) && allow_drain) {
2383 /* Drain CPU's pagevec */
2384 lru_add_drain_all();
2385 allow_drain = false;
2386 }
2387
2388 if (isolate_lru_page(page)) {
2389 if (remap) {
2390 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2391 migrate->cpages--;
2392 restore++;
2393 } else {
2394 migrate->src[i] = 0;
2395 unlock_page(page);
2396 migrate->cpages--;
2397 put_page(page);
2398 }
2399 continue;
2400 }
2401
2402 if (!migrate_vma_check_page(page)) {
2403 if (remap) {
2404 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2405 migrate->cpages--;
2406 restore++;
2407
2408 get_page(page);
2409 putback_lru_page(page);
2410 } else {
2411 migrate->src[i] = 0;
2412 unlock_page(page);
2413 migrate->cpages--;
2414
2415 putback_lru_page(page);
2416 }
2417 }
2418 }
2419
2420 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2421 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2422
2423 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2424 continue;
2425
2426 remove_migration_pte(page, migrate->vma, addr, page);
2427
2428 migrate->src[i] = 0;
2429 unlock_page(page);
2430 put_page(page);
2431 restore--;
2432 }
2433}
2434
2435/*
2436 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2437 * @migrate: migrate struct containing all migration information
2438 *
2439 * Replace page mapping (CPU page table pte) with a special migration pte entry
2440 * and check again if it has been pinned. Pinned pages are restored because we
2441 * cannot migrate them.
2442 *
2443 * This is the last step before we call the device driver callback to allocate
2444 * destination memory and copy contents of original page over to new page.
2445 */
2446static void migrate_vma_unmap(struct migrate_vma *migrate)
2447{
2448 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2449 const unsigned long npages = migrate->npages;
2450 const unsigned long start = migrate->start;
2451 unsigned long addr, i, restore = 0;
2452
2453 for (i = 0; i < npages; i++) {
2454 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2455
2456 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2457 continue;
2458
2459 if (page_mapped(page)) {
2460 try_to_unmap(page, flags);
2461 if (page_mapped(page))
2462 goto restore;
2463 }
2464
2465 if (migrate_vma_check_page(page))
2466 continue;
2467
2468restore:
2469 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2470 migrate->cpages--;
2471 restore++;
2472 }
2473
2474 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2475 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476
2477 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2478 continue;
2479
2480 remove_migration_ptes(page, page, false);
2481
2482 migrate->src[i] = 0;
2483 unlock_page(page);
2484 restore--;
2485
2486 putback_lru_page(page);
2487 }
2488}
2489
2490/*
2491 * migrate_vma_pages() - migrate meta-data from src page to dst page
2492 * @migrate: migrate struct containing all migration information
2493 *
2494 * This migrates struct page meta-data from source struct page to destination
2495 * struct page. This effectively finishes the migration from source page to the
2496 * destination page.
2497 */
2498static void migrate_vma_pages(struct migrate_vma *migrate)
2499{
2500 const unsigned long npages = migrate->npages;
2501 const unsigned long start = migrate->start;
2502 unsigned long addr, i;
2503
2504 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2505 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2506 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2507 struct address_space *mapping;
2508 int r;
2509
2510 if (!page || !newpage)
2511 continue;
2512 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 continue;
2514
2515 mapping = page_mapping(page);
2516
2517 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2518 if (r != MIGRATEPAGE_SUCCESS)
2519 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2520 }
2521}
2522
2523/*
2524 * migrate_vma_finalize() - restore CPU page table entry
2525 * @migrate: migrate struct containing all migration information
2526 *
2527 * This replaces the special migration pte entry with either a mapping to the
2528 * new page if migration was successful for that page, or to the original page
2529 * otherwise.
2530 *
2531 * This also unlocks the pages and puts them back on the lru, or drops the extra
2532 * refcount, for device pages.
2533 */
2534static void migrate_vma_finalize(struct migrate_vma *migrate)
2535{
2536 const unsigned long npages = migrate->npages;
2537 unsigned long i;
2538
2539 for (i = 0; i < npages; i++) {
2540 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2541 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542
2543 if (!page)
2544 continue;
2545 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2546 if (newpage) {
2547 unlock_page(newpage);
2548 put_page(newpage);
2549 }
2550 newpage = page;
2551 }
2552
2553 remove_migration_ptes(page, newpage, false);
2554 unlock_page(page);
2555 migrate->cpages--;
2556
2557 putback_lru_page(page);
2558
2559 if (newpage != page) {
2560 unlock_page(newpage);
2561 putback_lru_page(newpage);
2562 }
2563 }
2564}
2565
2566/*
2567 * migrate_vma() - migrate a range of memory inside vma
2568 *
2569 * @ops: migration callback for allocating destination memory and copying
2570 * @vma: virtual memory area containing the range to be migrated
2571 * @start: start address of the range to migrate (inclusive)
2572 * @end: end address of the range to migrate (exclusive)
2573 * @src: array of hmm_pfn_t containing source pfns
2574 * @dst: array of hmm_pfn_t containing destination pfns
2575 * @private: pointer passed back to each of the callback
2576 * Returns: 0 on success, error code otherwise
2577 *
2578 * This function tries to migrate a range of memory virtual address range, using
2579 * callbacks to allocate and copy memory from source to destination. First it
2580 * collects all the pages backing each virtual address in the range, saving this
2581 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2582 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2583 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2584 * in the corresponding src array entry. It then restores any pages that are
2585 * pinned, by remapping and unlocking those pages.
2586 *
2587 * At this point it calls the alloc_and_copy() callback. For documentation on
2588 * what is expected from that callback, see struct migrate_vma_ops comments in
2589 * include/linux/migrate.h
2590 *
2591 * After the alloc_and_copy() callback, this function goes over each entry in
2592 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2593 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2594 * then the function tries to migrate struct page information from the source
2595 * struct page to the destination struct page. If it fails to migrate the struct
2596 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2597 * array.
2598 *
2599 * At this point all successfully migrated pages have an entry in the src
2600 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2601 * array entry with MIGRATE_PFN_VALID flag set.
2602 *
2603 * It then calls the finalize_and_map() callback. See comments for "struct
2604 * migrate_vma_ops", in include/linux/migrate.h for details about
2605 * finalize_and_map() behavior.
2606 *
2607 * After the finalize_and_map() callback, for successfully migrated pages, this
2608 * function updates the CPU page table to point to new pages, otherwise it
2609 * restores the CPU page table to point to the original source pages.
2610 *
2611 * Function returns 0 after the above steps, even if no pages were migrated
2612 * (The function only returns an error if any of the arguments are invalid.)
2613 *
2614 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2615 * unsigned long entries.
2616 */
2617int migrate_vma(const struct migrate_vma_ops *ops,
2618 struct vm_area_struct *vma,
2619 unsigned long start,
2620 unsigned long end,
2621 unsigned long *src,
2622 unsigned long *dst,
2623 void *private)
2624{
2625 struct migrate_vma migrate;
2626
2627 /* Sanity check the arguments */
2628 start &= PAGE_MASK;
2629 end &= PAGE_MASK;
2630 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2631 return -EINVAL;
2632 if (start < vma->vm_start || start >= vma->vm_end)
2633 return -EINVAL;
2634 if (end <= vma->vm_start || end > vma->vm_end)
2635 return -EINVAL;
2636 if (!ops || !src || !dst || start >= end)
2637 return -EINVAL;
2638
2639 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2640 migrate.src = src;
2641 migrate.dst = dst;
2642 migrate.start = start;
2643 migrate.npages = 0;
2644 migrate.cpages = 0;
2645 migrate.end = end;
2646 migrate.vma = vma;
2647
2648 /* Collect, and try to unmap source pages */
2649 migrate_vma_collect(&migrate);
2650 if (!migrate.cpages)
2651 return 0;
2652
2653 /* Lock and isolate page */
2654 migrate_vma_prepare(&migrate);
2655 if (!migrate.cpages)
2656 return 0;
2657
2658 /* Unmap pages */
2659 migrate_vma_unmap(&migrate);
2660 if (!migrate.cpages)
2661 return 0;
2662
2663 /*
2664 * At this point pages are locked and unmapped, and thus they have
2665 * stable content and can safely be copied to destination memory that
2666 * is allocated by the callback.
2667 *
2668 * Note that migration can fail in migrate_vma_struct_page() for each
2669 * individual page.
2670 */
2671 ops->alloc_and_copy(vma, src, dst, start, end, private);
2672
2673 /* This does the real migration of struct page */
2674 migrate_vma_pages(&migrate);
2675
2676 ops->finalize_and_map(vma, src, dst, start, end, private);
2677
2678 /* Unlock and remap pages */
2679 migrate_vma_finalize(&migrate);
2680
2681 return 0;
2682}
2683EXPORT_SYMBOL(migrate_vma);