]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/oom_kill.c
mm, oom: hide mm which is shared with kthread or global init
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
... / ...
CommitLineData
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
28#include <linux/cpuset.h>
29#include <linux/export.h>
30#include <linux/notifier.h>
31#include <linux/memcontrol.h>
32#include <linux/mempolicy.h>
33#include <linux/security.h>
34#include <linux/ptrace.h>
35#include <linux/freezer.h>
36#include <linux/ftrace.h>
37#include <linux/ratelimit.h>
38#include <linux/kthread.h>
39#include <linux/init.h>
40
41#include <asm/tlb.h>
42#include "internal.h"
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/oom.h>
46
47int sysctl_panic_on_oom;
48int sysctl_oom_kill_allocating_task;
49int sysctl_oom_dump_tasks = 1;
50
51DEFINE_MUTEX(oom_lock);
52
53#ifdef CONFIG_NUMA
54/**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65{
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92}
93#else
94static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96{
97 return true;
98}
99#endif /* CONFIG_NUMA */
100
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107struct task_struct *find_lock_task_mm(struct task_struct *p)
108{
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120found:
121 rcu_read_unlock();
122
123 return t;
124}
125
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132 return oc->order == -1;
133}
134
135/* return true if the task is not adequate as candidate victim task. */
136static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138{
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153}
154
155/**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166{
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 /*
178 * Do not even consider tasks which are explicitly marked oom
179 * unkillable or have been already oom reaped or the are in
180 * the middle of vfork
181 */
182 adj = (long)p->signal->oom_score_adj;
183 if (adj == OOM_SCORE_ADJ_MIN ||
184 test_bit(MMF_OOM_REAPED, &p->mm->flags) ||
185 in_vfork(p)) {
186 task_unlock(p);
187 return 0;
188 }
189
190 /*
191 * The baseline for the badness score is the proportion of RAM that each
192 * task's rss, pagetable and swap space use.
193 */
194 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
195 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
196 task_unlock(p);
197
198 /*
199 * Root processes get 3% bonus, just like the __vm_enough_memory()
200 * implementation used by LSMs.
201 */
202 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
203 points -= (points * 3) / 100;
204
205 /* Normalize to oom_score_adj units */
206 adj *= totalpages / 1000;
207 points += adj;
208
209 /*
210 * Never return 0 for an eligible task regardless of the root bonus and
211 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
212 */
213 return points > 0 ? points : 1;
214}
215
216/*
217 * Determine the type of allocation constraint.
218 */
219#ifdef CONFIG_NUMA
220static enum oom_constraint constrained_alloc(struct oom_control *oc,
221 unsigned long *totalpages)
222{
223 struct zone *zone;
224 struct zoneref *z;
225 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
226 bool cpuset_limited = false;
227 int nid;
228
229 /* Default to all available memory */
230 *totalpages = totalram_pages + total_swap_pages;
231
232 if (!oc->zonelist)
233 return CONSTRAINT_NONE;
234 /*
235 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
236 * to kill current.We have to random task kill in this case.
237 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
238 */
239 if (oc->gfp_mask & __GFP_THISNODE)
240 return CONSTRAINT_NONE;
241
242 /*
243 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
244 * the page allocator means a mempolicy is in effect. Cpuset policy
245 * is enforced in get_page_from_freelist().
246 */
247 if (oc->nodemask &&
248 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
249 *totalpages = total_swap_pages;
250 for_each_node_mask(nid, *oc->nodemask)
251 *totalpages += node_spanned_pages(nid);
252 return CONSTRAINT_MEMORY_POLICY;
253 }
254
255 /* Check this allocation failure is caused by cpuset's wall function */
256 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
257 high_zoneidx, oc->nodemask)
258 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
259 cpuset_limited = true;
260
261 if (cpuset_limited) {
262 *totalpages = total_swap_pages;
263 for_each_node_mask(nid, cpuset_current_mems_allowed)
264 *totalpages += node_spanned_pages(nid);
265 return CONSTRAINT_CPUSET;
266 }
267 return CONSTRAINT_NONE;
268}
269#else
270static enum oom_constraint constrained_alloc(struct oom_control *oc,
271 unsigned long *totalpages)
272{
273 *totalpages = totalram_pages + total_swap_pages;
274 return CONSTRAINT_NONE;
275}
276#endif
277
278enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
279 struct task_struct *task)
280{
281 if (oom_unkillable_task(task, NULL, oc->nodemask))
282 return OOM_SCAN_CONTINUE;
283
284 /*
285 * This task already has access to memory reserves and is being killed.
286 * Don't allow any other task to have access to the reserves unless
287 * the task has MMF_OOM_REAPED because chances that it would release
288 * any memory is quite low.
289 */
290 if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims)) {
291 struct task_struct *p = find_lock_task_mm(task);
292 enum oom_scan_t ret = OOM_SCAN_ABORT;
293
294 if (p) {
295 if (test_bit(MMF_OOM_REAPED, &p->mm->flags))
296 ret = OOM_SCAN_CONTINUE;
297 task_unlock(p);
298 }
299
300 return ret;
301 }
302
303 /*
304 * If task is allocating a lot of memory and has been marked to be
305 * killed first if it triggers an oom, then select it.
306 */
307 if (oom_task_origin(task))
308 return OOM_SCAN_SELECT;
309
310 return OOM_SCAN_OK;
311}
312
313/*
314 * Simple selection loop. We chose the process with the highest
315 * number of 'points'. Returns -1 on scan abort.
316 */
317static struct task_struct *select_bad_process(struct oom_control *oc,
318 unsigned int *ppoints, unsigned long totalpages)
319{
320 struct task_struct *p;
321 struct task_struct *chosen = NULL;
322 unsigned long chosen_points = 0;
323
324 rcu_read_lock();
325 for_each_process(p) {
326 unsigned int points;
327
328 switch (oom_scan_process_thread(oc, p)) {
329 case OOM_SCAN_SELECT:
330 chosen = p;
331 chosen_points = ULONG_MAX;
332 /* fall through */
333 case OOM_SCAN_CONTINUE:
334 continue;
335 case OOM_SCAN_ABORT:
336 rcu_read_unlock();
337 return (struct task_struct *)(-1UL);
338 case OOM_SCAN_OK:
339 break;
340 };
341 points = oom_badness(p, NULL, oc->nodemask, totalpages);
342 if (!points || points < chosen_points)
343 continue;
344
345 chosen = p;
346 chosen_points = points;
347 }
348 if (chosen)
349 get_task_struct(chosen);
350 rcu_read_unlock();
351
352 *ppoints = chosen_points * 1000 / totalpages;
353 return chosen;
354}
355
356/**
357 * dump_tasks - dump current memory state of all system tasks
358 * @memcg: current's memory controller, if constrained
359 * @nodemask: nodemask passed to page allocator for mempolicy ooms
360 *
361 * Dumps the current memory state of all eligible tasks. Tasks not in the same
362 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
363 * are not shown.
364 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
365 * swapents, oom_score_adj value, and name.
366 */
367static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
368{
369 struct task_struct *p;
370 struct task_struct *task;
371
372 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
373 rcu_read_lock();
374 for_each_process(p) {
375 if (oom_unkillable_task(p, memcg, nodemask))
376 continue;
377
378 task = find_lock_task_mm(p);
379 if (!task) {
380 /*
381 * This is a kthread or all of p's threads have already
382 * detached their mm's. There's no need to report
383 * them; they can't be oom killed anyway.
384 */
385 continue;
386 }
387
388 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
389 task->pid, from_kuid(&init_user_ns, task_uid(task)),
390 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
391 atomic_long_read(&task->mm->nr_ptes),
392 mm_nr_pmds(task->mm),
393 get_mm_counter(task->mm, MM_SWAPENTS),
394 task->signal->oom_score_adj, task->comm);
395 task_unlock(task);
396 }
397 rcu_read_unlock();
398}
399
400static void dump_header(struct oom_control *oc, struct task_struct *p)
401{
402 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
403 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
404 current->signal->oom_score_adj);
405
406 cpuset_print_current_mems_allowed();
407 dump_stack();
408 if (oc->memcg)
409 mem_cgroup_print_oom_info(oc->memcg, p);
410 else
411 show_mem(SHOW_MEM_FILTER_NODES);
412 if (sysctl_oom_dump_tasks)
413 dump_tasks(oc->memcg, oc->nodemask);
414}
415
416/*
417 * Number of OOM victims in flight
418 */
419static atomic_t oom_victims = ATOMIC_INIT(0);
420static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
421
422bool oom_killer_disabled __read_mostly;
423
424#define K(x) ((x) << (PAGE_SHIFT-10))
425
426/*
427 * task->mm can be NULL if the task is the exited group leader. So to
428 * determine whether the task is using a particular mm, we examine all the
429 * task's threads: if one of those is using this mm then this task was also
430 * using it.
431 */
432bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
433{
434 struct task_struct *t;
435
436 for_each_thread(p, t) {
437 struct mm_struct *t_mm = READ_ONCE(t->mm);
438 if (t_mm)
439 return t_mm == mm;
440 }
441 return false;
442}
443
444
445#ifdef CONFIG_MMU
446/*
447 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
448 * victim (if that is possible) to help the OOM killer to move on.
449 */
450static struct task_struct *oom_reaper_th;
451static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
452static struct task_struct *oom_reaper_list;
453static DEFINE_SPINLOCK(oom_reaper_lock);
454
455static bool __oom_reap_task(struct task_struct *tsk)
456{
457 struct mmu_gather tlb;
458 struct vm_area_struct *vma;
459 struct mm_struct *mm = NULL;
460 struct task_struct *p;
461 struct zap_details details = {.check_swap_entries = true,
462 .ignore_dirty = true};
463 bool ret = true;
464
465 /*
466 * We have to make sure to not race with the victim exit path
467 * and cause premature new oom victim selection:
468 * __oom_reap_task exit_mm
469 * mmget_not_zero
470 * mmput
471 * atomic_dec_and_test
472 * exit_oom_victim
473 * [...]
474 * out_of_memory
475 * select_bad_process
476 * # no TIF_MEMDIE task selects new victim
477 * unmap_page_range # frees some memory
478 */
479 mutex_lock(&oom_lock);
480
481 /*
482 * Make sure we find the associated mm_struct even when the particular
483 * thread has already terminated and cleared its mm.
484 * We might have race with exit path so consider our work done if there
485 * is no mm.
486 */
487 p = find_lock_task_mm(tsk);
488 if (!p)
489 goto unlock_oom;
490 mm = p->mm;
491 atomic_inc(&mm->mm_count);
492 task_unlock(p);
493
494 if (!down_read_trylock(&mm->mmap_sem)) {
495 ret = false;
496 goto mm_drop;
497 }
498
499 /*
500 * increase mm_users only after we know we will reap something so
501 * that the mmput_async is called only when we have reaped something
502 * and delayed __mmput doesn't matter that much
503 */
504 if (!mmget_not_zero(mm)) {
505 up_read(&mm->mmap_sem);
506 goto mm_drop;
507 }
508
509 tlb_gather_mmu(&tlb, mm, 0, -1);
510 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
511 if (is_vm_hugetlb_page(vma))
512 continue;
513
514 /*
515 * mlocked VMAs require explicit munlocking before unmap.
516 * Let's keep it simple here and skip such VMAs.
517 */
518 if (vma->vm_flags & VM_LOCKED)
519 continue;
520
521 /*
522 * Only anonymous pages have a good chance to be dropped
523 * without additional steps which we cannot afford as we
524 * are OOM already.
525 *
526 * We do not even care about fs backed pages because all
527 * which are reclaimable have already been reclaimed and
528 * we do not want to block exit_mmap by keeping mm ref
529 * count elevated without a good reason.
530 */
531 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
532 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
533 &details);
534 }
535 tlb_finish_mmu(&tlb, 0, -1);
536 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
537 task_pid_nr(tsk), tsk->comm,
538 K(get_mm_counter(mm, MM_ANONPAGES)),
539 K(get_mm_counter(mm, MM_FILEPAGES)),
540 K(get_mm_counter(mm, MM_SHMEMPAGES)));
541 up_read(&mm->mmap_sem);
542
543 /*
544 * This task can be safely ignored because we cannot do much more
545 * to release its memory.
546 */
547 set_bit(MMF_OOM_REAPED, &mm->flags);
548 /*
549 * Drop our reference but make sure the mmput slow path is called from a
550 * different context because we shouldn't risk we get stuck there and
551 * put the oom_reaper out of the way.
552 */
553 mmput_async(mm);
554mm_drop:
555 mmdrop(mm);
556unlock_oom:
557 mutex_unlock(&oom_lock);
558 return ret;
559}
560
561#define MAX_OOM_REAP_RETRIES 10
562static void oom_reap_task(struct task_struct *tsk)
563{
564 int attempts = 0;
565
566 /* Retry the down_read_trylock(mmap_sem) a few times */
567 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
568 schedule_timeout_idle(HZ/10);
569
570 if (attempts > MAX_OOM_REAP_RETRIES) {
571 struct task_struct *p;
572
573 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
574 task_pid_nr(tsk), tsk->comm);
575
576 /*
577 * If we've already tried to reap this task in the past and
578 * failed it probably doesn't make much sense to try yet again
579 * so hide the mm from the oom killer so that it can move on
580 * to another task with a different mm struct.
581 */
582 p = find_lock_task_mm(tsk);
583 if (p) {
584 if (test_and_set_bit(MMF_OOM_NOT_REAPABLE, &p->mm->flags)) {
585 pr_info("oom_reaper: giving up pid:%d (%s)\n",
586 task_pid_nr(tsk), tsk->comm);
587 set_bit(MMF_OOM_REAPED, &p->mm->flags);
588 }
589 task_unlock(p);
590 }
591
592 debug_show_all_locks();
593 }
594
595 /*
596 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
597 * reasonably reclaimable memory anymore or it is not a good candidate
598 * for the oom victim right now because it cannot release its memory
599 * itself nor by the oom reaper.
600 */
601 tsk->oom_reaper_list = NULL;
602 exit_oom_victim(tsk);
603
604 /* Drop a reference taken by wake_oom_reaper */
605 put_task_struct(tsk);
606}
607
608static int oom_reaper(void *unused)
609{
610 set_freezable();
611
612 while (true) {
613 struct task_struct *tsk = NULL;
614
615 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
616 spin_lock(&oom_reaper_lock);
617 if (oom_reaper_list != NULL) {
618 tsk = oom_reaper_list;
619 oom_reaper_list = tsk->oom_reaper_list;
620 }
621 spin_unlock(&oom_reaper_lock);
622
623 if (tsk)
624 oom_reap_task(tsk);
625 }
626
627 return 0;
628}
629
630void wake_oom_reaper(struct task_struct *tsk)
631{
632 if (!oom_reaper_th)
633 return;
634
635 /* tsk is already queued? */
636 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
637 return;
638
639 get_task_struct(tsk);
640
641 spin_lock(&oom_reaper_lock);
642 tsk->oom_reaper_list = oom_reaper_list;
643 oom_reaper_list = tsk;
644 spin_unlock(&oom_reaper_lock);
645 wake_up(&oom_reaper_wait);
646}
647
648static int __init oom_init(void)
649{
650 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
651 if (IS_ERR(oom_reaper_th)) {
652 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
653 PTR_ERR(oom_reaper_th));
654 oom_reaper_th = NULL;
655 }
656 return 0;
657}
658subsys_initcall(oom_init)
659#endif
660
661/**
662 * mark_oom_victim - mark the given task as OOM victim
663 * @tsk: task to mark
664 *
665 * Has to be called with oom_lock held and never after
666 * oom has been disabled already.
667 */
668void mark_oom_victim(struct task_struct *tsk)
669{
670 WARN_ON(oom_killer_disabled);
671 /* OOM killer might race with memcg OOM */
672 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
673 return;
674 atomic_inc(&tsk->signal->oom_victims);
675 /*
676 * Make sure that the task is woken up from uninterruptible sleep
677 * if it is frozen because OOM killer wouldn't be able to free
678 * any memory and livelock. freezing_slow_path will tell the freezer
679 * that TIF_MEMDIE tasks should be ignored.
680 */
681 __thaw_task(tsk);
682 atomic_inc(&oom_victims);
683}
684
685/**
686 * exit_oom_victim - note the exit of an OOM victim
687 */
688void exit_oom_victim(struct task_struct *tsk)
689{
690 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
691 return;
692 atomic_dec(&tsk->signal->oom_victims);
693
694 if (!atomic_dec_return(&oom_victims))
695 wake_up_all(&oom_victims_wait);
696}
697
698/**
699 * oom_killer_disable - disable OOM killer
700 *
701 * Forces all page allocations to fail rather than trigger OOM killer.
702 * Will block and wait until all OOM victims are killed.
703 *
704 * The function cannot be called when there are runnable user tasks because
705 * the userspace would see unexpected allocation failures as a result. Any
706 * new usage of this function should be consulted with MM people.
707 *
708 * Returns true if successful and false if the OOM killer cannot be
709 * disabled.
710 */
711bool oom_killer_disable(void)
712{
713 /*
714 * Make sure to not race with an ongoing OOM killer. Check that the
715 * current is not killed (possibly due to sharing the victim's memory).
716 */
717 if (mutex_lock_killable(&oom_lock))
718 return false;
719 oom_killer_disabled = true;
720 mutex_unlock(&oom_lock);
721
722 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
723
724 return true;
725}
726
727/**
728 * oom_killer_enable - enable OOM killer
729 */
730void oom_killer_enable(void)
731{
732 oom_killer_disabled = false;
733}
734
735static inline bool __task_will_free_mem(struct task_struct *task)
736{
737 struct signal_struct *sig = task->signal;
738
739 /*
740 * A coredumping process may sleep for an extended period in exit_mm(),
741 * so the oom killer cannot assume that the process will promptly exit
742 * and release memory.
743 */
744 if (sig->flags & SIGNAL_GROUP_COREDUMP)
745 return false;
746
747 if (sig->flags & SIGNAL_GROUP_EXIT)
748 return true;
749
750 if (thread_group_empty(task) && (task->flags & PF_EXITING))
751 return true;
752
753 return false;
754}
755
756/*
757 * Checks whether the given task is dying or exiting and likely to
758 * release its address space. This means that all threads and processes
759 * sharing the same mm have to be killed or exiting.
760 */
761bool task_will_free_mem(struct task_struct *task)
762{
763 struct mm_struct *mm;
764 struct task_struct *p;
765 bool ret;
766
767 if (!__task_will_free_mem(task))
768 return false;
769
770 /*
771 * If the process has passed exit_mm we have to skip it because
772 * we have lost a link to other tasks sharing this mm, we do not
773 * have anything to reap and the task might then get stuck waiting
774 * for parent as zombie and we do not want it to hold TIF_MEMDIE
775 */
776 p = find_lock_task_mm(task);
777 if (!p)
778 return false;
779
780 mm = p->mm;
781
782 /*
783 * This task has already been drained by the oom reaper so there are
784 * only small chances it will free some more
785 */
786 if (test_bit(MMF_OOM_REAPED, &mm->flags)) {
787 task_unlock(p);
788 return false;
789 }
790
791 if (atomic_read(&mm->mm_users) <= 1) {
792 task_unlock(p);
793 return true;
794 }
795
796 /* pin the mm to not get freed and reused */
797 atomic_inc(&mm->mm_count);
798 task_unlock(p);
799
800 /*
801 * This is really pessimistic but we do not have any reliable way
802 * to check that external processes share with our mm
803 */
804 rcu_read_lock();
805 for_each_process(p) {
806 if (!process_shares_mm(p, mm))
807 continue;
808 if (same_thread_group(task, p))
809 continue;
810 ret = __task_will_free_mem(p);
811 if (!ret)
812 break;
813 }
814 rcu_read_unlock();
815 mmdrop(mm);
816
817 return ret;
818}
819
820/*
821 * Must be called while holding a reference to p, which will be released upon
822 * returning.
823 */
824void oom_kill_process(struct oom_control *oc, struct task_struct *p,
825 unsigned int points, unsigned long totalpages,
826 const char *message)
827{
828 struct task_struct *victim = p;
829 struct task_struct *child;
830 struct task_struct *t;
831 struct mm_struct *mm;
832 unsigned int victim_points = 0;
833 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
835 bool can_oom_reap = true;
836
837 /*
838 * If the task is already exiting, don't alarm the sysadmin or kill
839 * its children or threads, just set TIF_MEMDIE so it can die quickly
840 */
841 if (task_will_free_mem(p)) {
842 mark_oom_victim(p);
843 wake_oom_reaper(p);
844 put_task_struct(p);
845 return;
846 }
847
848 if (__ratelimit(&oom_rs))
849 dump_header(oc, p);
850
851 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
852 message, task_pid_nr(p), p->comm, points);
853
854 /*
855 * If any of p's children has a different mm and is eligible for kill,
856 * the one with the highest oom_badness() score is sacrificed for its
857 * parent. This attempts to lose the minimal amount of work done while
858 * still freeing memory.
859 */
860 read_lock(&tasklist_lock);
861 for_each_thread(p, t) {
862 list_for_each_entry(child, &t->children, sibling) {
863 unsigned int child_points;
864
865 if (process_shares_mm(child, p->mm))
866 continue;
867 /*
868 * oom_badness() returns 0 if the thread is unkillable
869 */
870 child_points = oom_badness(child,
871 oc->memcg, oc->nodemask, totalpages);
872 if (child_points > victim_points) {
873 put_task_struct(victim);
874 victim = child;
875 victim_points = child_points;
876 get_task_struct(victim);
877 }
878 }
879 }
880 read_unlock(&tasklist_lock);
881
882 p = find_lock_task_mm(victim);
883 if (!p) {
884 put_task_struct(victim);
885 return;
886 } else if (victim != p) {
887 get_task_struct(p);
888 put_task_struct(victim);
889 victim = p;
890 }
891
892 /* Get a reference to safely compare mm after task_unlock(victim) */
893 mm = victim->mm;
894 atomic_inc(&mm->mm_count);
895 /*
896 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
897 * the OOM victim from depleting the memory reserves from the user
898 * space under its control.
899 */
900 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
901 mark_oom_victim(victim);
902 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
903 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
904 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
905 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
906 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
907 task_unlock(victim);
908
909 /*
910 * Kill all user processes sharing victim->mm in other thread groups, if
911 * any. They don't get access to memory reserves, though, to avoid
912 * depletion of all memory. This prevents mm->mmap_sem livelock when an
913 * oom killed thread cannot exit because it requires the semaphore and
914 * its contended by another thread trying to allocate memory itself.
915 * That thread will now get access to memory reserves since it has a
916 * pending fatal signal.
917 */
918 rcu_read_lock();
919 for_each_process(p) {
920 if (!process_shares_mm(p, mm))
921 continue;
922 if (same_thread_group(p, victim))
923 continue;
924 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p)) {
925 /*
926 * We cannot use oom_reaper for the mm shared by this
927 * process because it wouldn't get killed and so the
928 * memory might be still used. Hide the mm from the oom
929 * killer to guarantee OOM forward progress.
930 */
931 can_oom_reap = false;
932 set_bit(MMF_OOM_REAPED, &mm->flags);
933 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
934 task_pid_nr(victim), victim->comm,
935 task_pid_nr(p), p->comm);
936 continue;
937 }
938 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
939 }
940 rcu_read_unlock();
941
942 if (can_oom_reap)
943 wake_oom_reaper(victim);
944
945 mmdrop(mm);
946 put_task_struct(victim);
947}
948#undef K
949
950/*
951 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
952 */
953void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint)
954{
955 if (likely(!sysctl_panic_on_oom))
956 return;
957 if (sysctl_panic_on_oom != 2) {
958 /*
959 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
960 * does not panic for cpuset, mempolicy, or memcg allocation
961 * failures.
962 */
963 if (constraint != CONSTRAINT_NONE)
964 return;
965 }
966 /* Do not panic for oom kills triggered by sysrq */
967 if (is_sysrq_oom(oc))
968 return;
969 dump_header(oc, NULL);
970 panic("Out of memory: %s panic_on_oom is enabled\n",
971 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
972}
973
974static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
975
976int register_oom_notifier(struct notifier_block *nb)
977{
978 return blocking_notifier_chain_register(&oom_notify_list, nb);
979}
980EXPORT_SYMBOL_GPL(register_oom_notifier);
981
982int unregister_oom_notifier(struct notifier_block *nb)
983{
984 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
985}
986EXPORT_SYMBOL_GPL(unregister_oom_notifier);
987
988/**
989 * out_of_memory - kill the "best" process when we run out of memory
990 * @oc: pointer to struct oom_control
991 *
992 * If we run out of memory, we have the choice between either
993 * killing a random task (bad), letting the system crash (worse)
994 * OR try to be smart about which process to kill. Note that we
995 * don't have to be perfect here, we just have to be good.
996 */
997bool out_of_memory(struct oom_control *oc)
998{
999 struct task_struct *p;
1000 unsigned long totalpages;
1001 unsigned long freed = 0;
1002 unsigned int uninitialized_var(points);
1003 enum oom_constraint constraint = CONSTRAINT_NONE;
1004
1005 if (oom_killer_disabled)
1006 return false;
1007
1008 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1009 if (freed > 0)
1010 /* Got some memory back in the last second. */
1011 return true;
1012
1013 /*
1014 * If current has a pending SIGKILL or is exiting, then automatically
1015 * select it. The goal is to allow it to allocate so that it may
1016 * quickly exit and free its memory.
1017 *
1018 * But don't select if current has already released its mm and cleared
1019 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
1020 */
1021 if (current->mm && task_will_free_mem(current)) {
1022 mark_oom_victim(current);
1023 wake_oom_reaper(current);
1024 return true;
1025 }
1026
1027 /*
1028 * The OOM killer does not compensate for IO-less reclaim.
1029 * pagefault_out_of_memory lost its gfp context so we have to
1030 * make sure exclude 0 mask - all other users should have at least
1031 * ___GFP_DIRECT_RECLAIM to get here.
1032 */
1033 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1034 return true;
1035
1036 /*
1037 * Check if there were limitations on the allocation (only relevant for
1038 * NUMA) that may require different handling.
1039 */
1040 constraint = constrained_alloc(oc, &totalpages);
1041 if (constraint != CONSTRAINT_MEMORY_POLICY)
1042 oc->nodemask = NULL;
1043 check_panic_on_oom(oc, constraint);
1044
1045 if (sysctl_oom_kill_allocating_task && current->mm &&
1046 !oom_unkillable_task(current, NULL, oc->nodemask) &&
1047 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1048 get_task_struct(current);
1049 oom_kill_process(oc, current, 0, totalpages,
1050 "Out of memory (oom_kill_allocating_task)");
1051 return true;
1052 }
1053
1054 p = select_bad_process(oc, &points, totalpages);
1055 /* Found nothing?!?! Either we hang forever, or we panic. */
1056 if (!p && !is_sysrq_oom(oc)) {
1057 dump_header(oc, NULL);
1058 panic("Out of memory and no killable processes...\n");
1059 }
1060 if (p && p != (void *)-1UL) {
1061 oom_kill_process(oc, p, points, totalpages, "Out of memory");
1062 /*
1063 * Give the killed process a good chance to exit before trying
1064 * to allocate memory again.
1065 */
1066 schedule_timeout_killable(1);
1067 }
1068 return true;
1069}
1070
1071/*
1072 * The pagefault handler calls here because it is out of memory, so kill a
1073 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1074 * killing is already in progress so do nothing.
1075 */
1076void pagefault_out_of_memory(void)
1077{
1078 struct oom_control oc = {
1079 .zonelist = NULL,
1080 .nodemask = NULL,
1081 .memcg = NULL,
1082 .gfp_mask = 0,
1083 .order = 0,
1084 };
1085
1086 if (mem_cgroup_oom_synchronize(true))
1087 return;
1088
1089 if (!mutex_trylock(&oom_lock))
1090 return;
1091
1092 if (!out_of_memory(&oc)) {
1093 /*
1094 * There shouldn't be any user tasks runnable while the
1095 * OOM killer is disabled, so the current task has to
1096 * be a racing OOM victim for which oom_killer_disable()
1097 * is waiting for.
1098 */
1099 WARN_ON(test_thread_flag(TIF_MEMDIE));
1100 }
1101
1102 mutex_unlock(&oom_lock);
1103}