]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/oom_kill.c
oom: move OOM_DISABLE check from oom_kill_task to out_of_memory()
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
... / ...
CommitLineData
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/oom.h>
19#include <linux/mm.h>
20#include <linux/err.h>
21#include <linux/gfp.h>
22#include <linux/sched.h>
23#include <linux/swap.h>
24#include <linux/timex.h>
25#include <linux/jiffies.h>
26#include <linux/cpuset.h>
27#include <linux/module.h>
28#include <linux/notifier.h>
29#include <linux/memcontrol.h>
30#include <linux/mempolicy.h>
31#include <linux/security.h>
32
33int sysctl_panic_on_oom;
34int sysctl_oom_kill_allocating_task;
35int sysctl_oom_dump_tasks = 1;
36static DEFINE_SPINLOCK(zone_scan_lock);
37/* #define DEBUG */
38
39#ifdef CONFIG_NUMA
40/**
41 * has_intersects_mems_allowed() - check task eligiblity for kill
42 * @tsk: task struct of which task to consider
43 * @mask: nodemask passed to page allocator for mempolicy ooms
44 *
45 * Task eligibility is determined by whether or not a candidate task, @tsk,
46 * shares the same mempolicy nodes as current if it is bound by such a policy
47 * and whether or not it has the same set of allowed cpuset nodes.
48 */
49static bool has_intersects_mems_allowed(struct task_struct *tsk,
50 const nodemask_t *mask)
51{
52 struct task_struct *start = tsk;
53
54 do {
55 if (mask) {
56 /*
57 * If this is a mempolicy constrained oom, tsk's
58 * cpuset is irrelevant. Only return true if its
59 * mempolicy intersects current, otherwise it may be
60 * needlessly killed.
61 */
62 if (mempolicy_nodemask_intersects(tsk, mask))
63 return true;
64 } else {
65 /*
66 * This is not a mempolicy constrained oom, so only
67 * check the mems of tsk's cpuset.
68 */
69 if (cpuset_mems_allowed_intersects(current, tsk))
70 return true;
71 }
72 tsk = next_thread(tsk);
73 } while (tsk != start);
74 return false;
75}
76#else
77static bool has_intersects_mems_allowed(struct task_struct *tsk,
78 const nodemask_t *mask)
79{
80 return true;
81}
82#endif /* CONFIG_NUMA */
83
84/*
85 * The process p may have detached its own ->mm while exiting or through
86 * use_mm(), but one or more of its subthreads may still have a valid
87 * pointer. Return p, or any of its subthreads with a valid ->mm, with
88 * task_lock() held.
89 */
90static struct task_struct *find_lock_task_mm(struct task_struct *p)
91{
92 struct task_struct *t = p;
93
94 do {
95 task_lock(t);
96 if (likely(t->mm))
97 return t;
98 task_unlock(t);
99 } while_each_thread(p, t);
100
101 return NULL;
102}
103
104/* return true if the task is not adequate as candidate victim task. */
105static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem,
106 const nodemask_t *nodemask)
107{
108 if (is_global_init(p))
109 return true;
110 if (p->flags & PF_KTHREAD)
111 return true;
112
113 /* When mem_cgroup_out_of_memory() and p is not member of the group */
114 if (mem && !task_in_mem_cgroup(p, mem))
115 return true;
116
117 /* p may not have freeable memory in nodemask */
118 if (!has_intersects_mems_allowed(p, nodemask))
119 return true;
120
121 return false;
122}
123
124/**
125 * badness - calculate a numeric value for how bad this task has been
126 * @p: task struct of which task we should calculate
127 * @uptime: current uptime in seconds
128 *
129 * The formula used is relatively simple and documented inline in the
130 * function. The main rationale is that we want to select a good task
131 * to kill when we run out of memory.
132 *
133 * Good in this context means that:
134 * 1) we lose the minimum amount of work done
135 * 2) we recover a large amount of memory
136 * 3) we don't kill anything innocent of eating tons of memory
137 * 4) we want to kill the minimum amount of processes (one)
138 * 5) we try to kill the process the user expects us to kill, this
139 * algorithm has been meticulously tuned to meet the principle
140 * of least surprise ... (be careful when you change it)
141 */
142unsigned long badness(struct task_struct *p, struct mem_cgroup *mem,
143 const nodemask_t *nodemask, unsigned long uptime)
144{
145 unsigned long points, cpu_time, run_time;
146 struct task_struct *child;
147 struct task_struct *c, *t;
148 int oom_adj = p->signal->oom_adj;
149 struct task_cputime task_time;
150 unsigned long utime;
151 unsigned long stime;
152
153 if (oom_unkillable_task(p, mem, nodemask))
154 return 0;
155 if (oom_adj == OOM_DISABLE)
156 return 0;
157
158 p = find_lock_task_mm(p);
159 if (!p)
160 return 0;
161
162 /*
163 * The memory size of the process is the basis for the badness.
164 */
165 points = p->mm->total_vm;
166 task_unlock(p);
167
168 /*
169 * swapoff can easily use up all memory, so kill those first.
170 */
171 if (p->flags & PF_OOM_ORIGIN)
172 return ULONG_MAX;
173
174 /*
175 * Processes which fork a lot of child processes are likely
176 * a good choice. We add half the vmsize of the children if they
177 * have an own mm. This prevents forking servers to flood the
178 * machine with an endless amount of children. In case a single
179 * child is eating the vast majority of memory, adding only half
180 * to the parents will make the child our kill candidate of choice.
181 */
182 t = p;
183 do {
184 list_for_each_entry(c, &t->children, sibling) {
185 child = find_lock_task_mm(c);
186 if (child) {
187 if (child->mm != p->mm)
188 points += child->mm->total_vm/2 + 1;
189 task_unlock(child);
190 }
191 }
192 } while_each_thread(p, t);
193
194 /*
195 * CPU time is in tens of seconds and run time is in thousands
196 * of seconds. There is no particular reason for this other than
197 * that it turned out to work very well in practice.
198 */
199 thread_group_cputime(p, &task_time);
200 utime = cputime_to_jiffies(task_time.utime);
201 stime = cputime_to_jiffies(task_time.stime);
202 cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
203
204
205 if (uptime >= p->start_time.tv_sec)
206 run_time = (uptime - p->start_time.tv_sec) >> 10;
207 else
208 run_time = 0;
209
210 if (cpu_time)
211 points /= int_sqrt(cpu_time);
212 if (run_time)
213 points /= int_sqrt(int_sqrt(run_time));
214
215 /*
216 * Niced processes are most likely less important, so double
217 * their badness points.
218 */
219 if (task_nice(p) > 0)
220 points *= 2;
221
222 /*
223 * Superuser processes are usually more important, so we make it
224 * less likely that we kill those.
225 */
226 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
227 has_capability_noaudit(p, CAP_SYS_RESOURCE))
228 points /= 4;
229
230 /*
231 * We don't want to kill a process with direct hardware access.
232 * Not only could that mess up the hardware, but usually users
233 * tend to only have this flag set on applications they think
234 * of as important.
235 */
236 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
237 points /= 4;
238
239 /*
240 * Adjust the score by oom_adj.
241 */
242 if (oom_adj) {
243 if (oom_adj > 0) {
244 if (!points)
245 points = 1;
246 points <<= oom_adj;
247 } else
248 points >>= -(oom_adj);
249 }
250
251#ifdef DEBUG
252 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
253 p->pid, p->comm, points);
254#endif
255 return points;
256}
257
258/*
259 * Determine the type of allocation constraint.
260 */
261#ifdef CONFIG_NUMA
262static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
263 gfp_t gfp_mask, nodemask_t *nodemask)
264{
265 struct zone *zone;
266 struct zoneref *z;
267 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
268
269 /*
270 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
271 * to kill current.We have to random task kill in this case.
272 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
273 */
274 if (gfp_mask & __GFP_THISNODE)
275 return CONSTRAINT_NONE;
276
277 /*
278 * The nodemask here is a nodemask passed to alloc_pages(). Now,
279 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
280 * feature. mempolicy is an only user of nodemask here.
281 * check mempolicy's nodemask contains all N_HIGH_MEMORY
282 */
283 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
284 return CONSTRAINT_MEMORY_POLICY;
285
286 /* Check this allocation failure is caused by cpuset's wall function */
287 for_each_zone_zonelist_nodemask(zone, z, zonelist,
288 high_zoneidx, nodemask)
289 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
290 return CONSTRAINT_CPUSET;
291
292 return CONSTRAINT_NONE;
293}
294#else
295static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
296 gfp_t gfp_mask, nodemask_t *nodemask)
297{
298 return CONSTRAINT_NONE;
299}
300#endif
301
302/*
303 * Simple selection loop. We chose the process with the highest
304 * number of 'points'. We expect the caller will lock the tasklist.
305 *
306 * (not docbooked, we don't want this one cluttering up the manual)
307 */
308static struct task_struct *select_bad_process(unsigned long *ppoints,
309 struct mem_cgroup *mem, const nodemask_t *nodemask)
310{
311 struct task_struct *p;
312 struct task_struct *chosen = NULL;
313 struct timespec uptime;
314 *ppoints = 0;
315
316 do_posix_clock_monotonic_gettime(&uptime);
317 for_each_process(p) {
318 unsigned long points;
319
320 if (oom_unkillable_task(p, mem, nodemask))
321 continue;
322
323 /*
324 * This task already has access to memory reserves and is
325 * being killed. Don't allow any other task access to the
326 * memory reserve.
327 *
328 * Note: this may have a chance of deadlock if it gets
329 * blocked waiting for another task which itself is waiting
330 * for memory. Is there a better alternative?
331 */
332 if (test_tsk_thread_flag(p, TIF_MEMDIE))
333 return ERR_PTR(-1UL);
334
335 /*
336 * This is in the process of releasing memory so wait for it
337 * to finish before killing some other task by mistake.
338 *
339 * However, if p is the current task, we allow the 'kill' to
340 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
341 * which will allow it to gain access to memory reserves in
342 * the process of exiting and releasing its resources.
343 * Otherwise we could get an easy OOM deadlock.
344 */
345 if ((p->flags & PF_EXITING) && p->mm) {
346 if (p != current)
347 return ERR_PTR(-1UL);
348
349 chosen = p;
350 *ppoints = ULONG_MAX;
351 }
352
353 points = badness(p, mem, nodemask, uptime.tv_sec);
354 if (points > *ppoints || !chosen) {
355 chosen = p;
356 *ppoints = points;
357 }
358 }
359
360 return chosen;
361}
362
363/**
364 * dump_tasks - dump current memory state of all system tasks
365 * @mem: current's memory controller, if constrained
366 *
367 * Dumps the current memory state of all system tasks, excluding kernel threads.
368 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
369 * score, and name.
370 *
371 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
372 * shown.
373 *
374 * Call with tasklist_lock read-locked.
375 */
376static void dump_tasks(const struct mem_cgroup *mem)
377{
378 struct task_struct *p;
379 struct task_struct *task;
380
381 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
382 "name\n");
383 for_each_process(p) {
384 if (p->flags & PF_KTHREAD)
385 continue;
386 if (mem && !task_in_mem_cgroup(p, mem))
387 continue;
388
389 task = find_lock_task_mm(p);
390 if (!task) {
391 /*
392 * This is a kthread or all of p's threads have already
393 * detached their mm's. There's no need to report
394 * them; they can't be oom killed anyway.
395 */
396 continue;
397 }
398
399 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u %3d %s\n",
400 task->pid, __task_cred(task)->uid, task->tgid,
401 task->mm->total_vm, get_mm_rss(task->mm),
402 task_cpu(task), task->signal->oom_adj, task->comm);
403 task_unlock(task);
404 }
405}
406
407static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
408 struct mem_cgroup *mem)
409{
410 task_lock(current);
411 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
412 "oom_adj=%d\n",
413 current->comm, gfp_mask, order, current->signal->oom_adj);
414 cpuset_print_task_mems_allowed(current);
415 task_unlock(current);
416 dump_stack();
417 mem_cgroup_print_oom_info(mem, p);
418 show_mem();
419 if (sysctl_oom_dump_tasks)
420 dump_tasks(mem);
421}
422
423#define K(x) ((x) << (PAGE_SHIFT-10))
424static int oom_kill_task(struct task_struct *p)
425{
426 p = find_lock_task_mm(p);
427 if (!p) {
428 task_unlock(p);
429 return 1;
430 }
431 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432 task_pid_nr(p), p->comm, K(p->mm->total_vm),
433 K(get_mm_counter(p->mm, MM_ANONPAGES)),
434 K(get_mm_counter(p->mm, MM_FILEPAGES)));
435 task_unlock(p);
436
437 p->rt.time_slice = HZ;
438 set_tsk_thread_flag(p, TIF_MEMDIE);
439 force_sig(SIGKILL, p);
440 return 0;
441}
442#undef K
443
444static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
445 unsigned long points, struct mem_cgroup *mem,
446 nodemask_t *nodemask, const char *message)
447{
448 struct task_struct *victim = p;
449 struct task_struct *child;
450 struct task_struct *t = p;
451 unsigned long victim_points = 0;
452 struct timespec uptime;
453
454 if (printk_ratelimit())
455 dump_header(p, gfp_mask, order, mem);
456
457 /*
458 * If the task is already exiting, don't alarm the sysadmin or kill
459 * its children or threads, just set TIF_MEMDIE so it can die quickly
460 */
461 if (p->flags & PF_EXITING) {
462 set_tsk_thread_flag(p, TIF_MEMDIE);
463 return 0;
464 }
465
466 task_lock(p);
467 pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
468 message, task_pid_nr(p), p->comm, points);
469 task_unlock(p);
470
471 /*
472 * If any of p's children has a different mm and is eligible for kill,
473 * the one with the highest badness() score is sacrificed for its
474 * parent. This attempts to lose the minimal amount of work done while
475 * still freeing memory.
476 */
477 do_posix_clock_monotonic_gettime(&uptime);
478 do {
479 list_for_each_entry(child, &t->children, sibling) {
480 unsigned long child_points;
481
482 if (child->mm == p->mm)
483 continue;
484
485 /* badness() returns 0 if the thread is unkillable */
486 child_points = badness(child, mem, nodemask,
487 uptime.tv_sec);
488 if (child_points > victim_points) {
489 victim = child;
490 victim_points = child_points;
491 }
492 }
493 } while_each_thread(p, t);
494
495 return oom_kill_task(victim);
496}
497
498/*
499 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
500 */
501static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
502 int order)
503{
504 if (likely(!sysctl_panic_on_oom))
505 return;
506 if (sysctl_panic_on_oom != 2) {
507 /*
508 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
509 * does not panic for cpuset, mempolicy, or memcg allocation
510 * failures.
511 */
512 if (constraint != CONSTRAINT_NONE)
513 return;
514 }
515 read_lock(&tasklist_lock);
516 dump_header(NULL, gfp_mask, order, NULL);
517 read_unlock(&tasklist_lock);
518 panic("Out of memory: %s panic_on_oom is enabled\n",
519 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
520}
521
522#ifdef CONFIG_CGROUP_MEM_RES_CTLR
523void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
524{
525 unsigned long points = 0;
526 struct task_struct *p;
527
528 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
529 read_lock(&tasklist_lock);
530retry:
531 p = select_bad_process(&points, mem, NULL);
532 if (!p || PTR_ERR(p) == -1UL)
533 goto out;
534
535 if (oom_kill_process(p, gfp_mask, 0, points, mem, NULL,
536 "Memory cgroup out of memory"))
537 goto retry;
538out:
539 read_unlock(&tasklist_lock);
540}
541#endif
542
543static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
544
545int register_oom_notifier(struct notifier_block *nb)
546{
547 return blocking_notifier_chain_register(&oom_notify_list, nb);
548}
549EXPORT_SYMBOL_GPL(register_oom_notifier);
550
551int unregister_oom_notifier(struct notifier_block *nb)
552{
553 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
554}
555EXPORT_SYMBOL_GPL(unregister_oom_notifier);
556
557/*
558 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
559 * if a parallel OOM killing is already taking place that includes a zone in
560 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
561 */
562int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
563{
564 struct zoneref *z;
565 struct zone *zone;
566 int ret = 1;
567
568 spin_lock(&zone_scan_lock);
569 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
570 if (zone_is_oom_locked(zone)) {
571 ret = 0;
572 goto out;
573 }
574 }
575
576 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
577 /*
578 * Lock each zone in the zonelist under zone_scan_lock so a
579 * parallel invocation of try_set_zonelist_oom() doesn't succeed
580 * when it shouldn't.
581 */
582 zone_set_flag(zone, ZONE_OOM_LOCKED);
583 }
584
585out:
586 spin_unlock(&zone_scan_lock);
587 return ret;
588}
589
590/*
591 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
592 * allocation attempts with zonelists containing them may now recall the OOM
593 * killer, if necessary.
594 */
595void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
596{
597 struct zoneref *z;
598 struct zone *zone;
599
600 spin_lock(&zone_scan_lock);
601 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
602 zone_clear_flag(zone, ZONE_OOM_LOCKED);
603 }
604 spin_unlock(&zone_scan_lock);
605}
606
607/*
608 * Try to acquire the oom killer lock for all system zones. Returns zero if a
609 * parallel oom killing is taking place, otherwise locks all zones and returns
610 * non-zero.
611 */
612static int try_set_system_oom(void)
613{
614 struct zone *zone;
615 int ret = 1;
616
617 spin_lock(&zone_scan_lock);
618 for_each_populated_zone(zone)
619 if (zone_is_oom_locked(zone)) {
620 ret = 0;
621 goto out;
622 }
623 for_each_populated_zone(zone)
624 zone_set_flag(zone, ZONE_OOM_LOCKED);
625out:
626 spin_unlock(&zone_scan_lock);
627 return ret;
628}
629
630/*
631 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
632 * attempts or page faults may now recall the oom killer, if necessary.
633 */
634static void clear_system_oom(void)
635{
636 struct zone *zone;
637
638 spin_lock(&zone_scan_lock);
639 for_each_populated_zone(zone)
640 zone_clear_flag(zone, ZONE_OOM_LOCKED);
641 spin_unlock(&zone_scan_lock);
642}
643
644/**
645 * out_of_memory - kill the "best" process when we run out of memory
646 * @zonelist: zonelist pointer
647 * @gfp_mask: memory allocation flags
648 * @order: amount of memory being requested as a power of 2
649 * @nodemask: nodemask passed to page allocator
650 *
651 * If we run out of memory, we have the choice between either
652 * killing a random task (bad), letting the system crash (worse)
653 * OR try to be smart about which process to kill. Note that we
654 * don't have to be perfect here, we just have to be good.
655 */
656void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
657 int order, nodemask_t *nodemask)
658{
659 struct task_struct *p;
660 unsigned long freed = 0;
661 unsigned long points;
662 enum oom_constraint constraint = CONSTRAINT_NONE;
663
664 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
665 if (freed > 0)
666 /* Got some memory back in the last second. */
667 return;
668
669 /*
670 * If current has a pending SIGKILL, then automatically select it. The
671 * goal is to allow it to allocate so that it may quickly exit and free
672 * its memory.
673 */
674 if (fatal_signal_pending(current)) {
675 set_thread_flag(TIF_MEMDIE);
676 return;
677 }
678
679 /*
680 * Check if there were limitations on the allocation (only relevant for
681 * NUMA) that may require different handling.
682 */
683 if (zonelist)
684 constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
685 check_panic_on_oom(constraint, gfp_mask, order);
686
687 read_lock(&tasklist_lock);
688 if (sysctl_oom_kill_allocating_task &&
689 !oom_unkillable_task(current, NULL, nodemask) &&
690 (current->signal->oom_adj != OOM_DISABLE)) {
691 /*
692 * oom_kill_process() needs tasklist_lock held. If it returns
693 * non-zero, current could not be killed so we must fallback to
694 * the tasklist scan.
695 */
696 if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
697 nodemask,
698 "Out of memory (oom_kill_allocating_task)"))
699 return;
700 }
701
702retry:
703 p = select_bad_process(&points, NULL,
704 constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
705 NULL);
706 if (PTR_ERR(p) == -1UL)
707 return;
708
709 /* Found nothing?!?! Either we hang forever, or we panic. */
710 if (!p) {
711 dump_header(NULL, gfp_mask, order, NULL);
712 read_unlock(&tasklist_lock);
713 panic("Out of memory and no killable processes...\n");
714 }
715
716 if (oom_kill_process(p, gfp_mask, order, points, NULL, nodemask,
717 "Out of memory"))
718 goto retry;
719 read_unlock(&tasklist_lock);
720
721 /*
722 * Give "p" a good chance of killing itself before we
723 * retry to allocate memory unless "p" is current
724 */
725 if (!test_thread_flag(TIF_MEMDIE))
726 schedule_timeout_uninterruptible(1);
727}
728
729/*
730 * The pagefault handler calls here because it is out of memory, so kill a
731 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
732 * oom killing is already in progress so do nothing. If a task is found with
733 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
734 */
735void pagefault_out_of_memory(void)
736{
737 if (try_set_system_oom()) {
738 out_of_memory(NULL, 0, 0, NULL);
739 clear_system_oom();
740 }
741 if (!test_thread_flag(TIF_MEMDIE))
742 schedule_timeout_uninterruptible(1);
743}