]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - mm/page_alloc.c
[PATCH] increment pos before looking for the next cap in __pci_find_next_ht_cap
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 256,
77#ifdef CONFIG_ZONE_DMA32
78 256,
79#endif
80#ifdef CONFIG_HIGHMEM
81 32
82#endif
83};
84
85EXPORT_SYMBOL(totalram_pages);
86
87static char * const zone_names[MAX_NR_ZONES] = {
88 "DMA",
89#ifdef CONFIG_ZONE_DMA32
90 "DMA32",
91#endif
92 "Normal",
93#ifdef CONFIG_HIGHMEM
94 "HighMem"
95#endif
96};
97
98int min_free_kbytes = 1024;
99
100unsigned long __meminitdata nr_kernel_pages;
101unsigned long __meminitdata nr_all_pages;
102static unsigned long __initdata dma_reserve;
103
104#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105 /*
106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107 * ranges of memory (RAM) that may be registered with add_active_range().
108 * Ranges passed to add_active_range() will be merged if possible
109 * so the number of times add_active_range() can be called is
110 * related to the number of nodes and the number of holes
111 */
112 #ifdef CONFIG_MAX_ACTIVE_REGIONS
113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115 #else
116 #if MAX_NUMNODES >= 32
117 /* If there can be many nodes, allow up to 50 holes per node */
118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119 #else
120 /* By default, allow up to 256 distinct regions */
121 #define MAX_ACTIVE_REGIONS 256
122 #endif
123 #endif
124
125 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126 int __initdata nr_nodemap_entries;
127 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
135#ifdef CONFIG_DEBUG_VM
136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137{
138 int ret = 0;
139 unsigned seq;
140 unsigned long pfn = page_to_pfn(page);
141
142 do {
143 seq = zone_span_seqbegin(zone);
144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145 ret = 1;
146 else if (pfn < zone->zone_start_pfn)
147 ret = 1;
148 } while (zone_span_seqretry(zone, seq));
149
150 return ret;
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
155#ifdef CONFIG_HOLES_IN_ZONE
156 if (!pfn_valid(page_to_pfn(page)))
157 return 0;
158#endif
159 if (zone != page_zone(page))
160 return 0;
161
162 return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169 if (page_outside_zone_boundaries(zone, page))
170 return 1;
171 if (!page_is_consistent(zone, page))
172 return 1;
173
174 return 0;
175}
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179 return 0;
180}
181#endif
182
183static void bad_page(struct page *page)
184{
185 printk(KERN_EMERG "Bad page state in process '%s'\n"
186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188 KERN_EMERG "Backtrace:\n",
189 current->comm, page, (int)(2*sizeof(unsigned long)),
190 (unsigned long)page->flags, page->mapping,
191 page_mapcount(page), page_count(page));
192 dump_stack();
193 page->flags &= ~(1 << PG_lru |
194 1 << PG_private |
195 1 << PG_locked |
196 1 << PG_active |
197 1 << PG_dirty |
198 1 << PG_reclaim |
199 1 << PG_slab |
200 1 << PG_swapcache |
201 1 << PG_writeback |
202 1 << PG_buddy );
203 set_page_count(page, 0);
204 reset_page_mapcount(page);
205 page->mapping = NULL;
206 add_taint(TAINT_BAD_PAGE);
207}
208
209/*
210 * Higher-order pages are called "compound pages". They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set. All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function. Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
222 */
223
224static void free_compound_page(struct page *page)
225{
226 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231 int i;
232 int nr_pages = 1 << order;
233
234 set_compound_page_dtor(page, free_compound_page);
235 page[1].lru.prev = (void *)order;
236 for (i = 0; i < nr_pages; i++) {
237 struct page *p = page + i;
238
239 __SetPageCompound(p);
240 set_page_private(p, (unsigned long)page);
241 }
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246 int i;
247 int nr_pages = 1 << order;
248
249 if (unlikely((unsigned long)page[1].lru.prev != order))
250 bad_page(page);
251
252 for (i = 0; i < nr_pages; i++) {
253 struct page *p = page + i;
254
255 if (unlikely(!PageCompound(p) |
256 (page_private(p) != (unsigned long)page)))
257 bad_page(page);
258 __ClearPageCompound(p);
259 }
260}
261
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264 int i;
265
266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267 /*
268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 * and __GFP_HIGHMEM from hard or soft interrupt context.
270 */
271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272 for (i = 0; i < (1 << order); i++)
273 clear_highpage(page + i);
274}
275
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
281static inline unsigned long page_order(struct page *page)
282{
283 return page_private(page);
284}
285
286static inline void set_page_order(struct page *page, int order)
287{
288 set_page_private(page, order);
289 __SetPageBuddy(page);
290}
291
292static inline void rmv_page_order(struct page *page)
293{
294 __ClearPageBuddy(page);
295 set_page_private(page, 0);
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 * B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 * P = B & ~(1 << O)
312 *
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318 unsigned long buddy_idx = page_idx ^ (1 << order);
319
320 return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326 return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339 *
340 * For recording page's order, we use page_private(page).
341 */
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343 int order)
344{
345#ifdef CONFIG_HOLES_IN_ZONE
346 if (!pfn_valid(page_to_pfn(buddy)))
347 return 0;
348#endif
349
350 if (page_zone_id(page) != page_zone_id(buddy))
351 return 0;
352
353 if (PageBuddy(buddy) && page_order(buddy) == order) {
354 BUG_ON(page_count(buddy) != 0);
355 return 1;
356 }
357 return 0;
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384static inline void __free_one_page(struct page *page,
385 struct zone *zone, unsigned int order)
386{
387 unsigned long page_idx;
388 int order_size = 1 << order;
389
390 if (unlikely(PageCompound(page)))
391 destroy_compound_page(page, order);
392
393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395 VM_BUG_ON(page_idx & (order_size - 1));
396 VM_BUG_ON(bad_range(zone, page));
397
398 zone->free_pages += order_size;
399 while (order < MAX_ORDER-1) {
400 unsigned long combined_idx;
401 struct free_area *area;
402 struct page *buddy;
403
404 buddy = __page_find_buddy(page, page_idx, order);
405 if (!page_is_buddy(page, buddy, order))
406 break; /* Move the buddy up one level. */
407
408 list_del(&buddy->lru);
409 area = zone->free_area + order;
410 area->nr_free--;
411 rmv_page_order(buddy);
412 combined_idx = __find_combined_index(page_idx, order);
413 page = page + (combined_idx - page_idx);
414 page_idx = combined_idx;
415 order++;
416 }
417 set_page_order(page, order);
418 list_add(&page->lru, &zone->free_area[order].free_list);
419 zone->free_area[order].nr_free++;
420}
421
422static inline int free_pages_check(struct page *page)
423{
424 if (unlikely(page_mapcount(page) |
425 (page->mapping != NULL) |
426 (page_count(page) != 0) |
427 (page->flags & (
428 1 << PG_lru |
429 1 << PG_private |
430 1 << PG_locked |
431 1 << PG_active |
432 1 << PG_reclaim |
433 1 << PG_slab |
434 1 << PG_swapcache |
435 1 << PG_writeback |
436 1 << PG_reserved |
437 1 << PG_buddy ))))
438 bad_page(page);
439 if (PageDirty(page))
440 __ClearPageDirty(page);
441 /*
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
445 */
446 return PageReserved(page);
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460static void free_pages_bulk(struct zone *zone, int count,
461 struct list_head *list, int order)
462{
463 spin_lock(&zone->lock);
464 zone->all_unreclaimable = 0;
465 zone->pages_scanned = 0;
466 while (count--) {
467 struct page *page;
468
469 VM_BUG_ON(list_empty(list));
470 page = list_entry(list->prev, struct page, lru);
471 /* have to delete it as __free_one_page list manipulates */
472 list_del(&page->lru);
473 __free_one_page(page, zone, order);
474 }
475 spin_unlock(&zone->lock);
476}
477
478static void free_one_page(struct zone *zone, struct page *page, int order)
479{
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 __free_one_page(page, zone, order);
484 spin_unlock(&zone->lock);
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489 unsigned long flags;
490 int i;
491 int reserved = 0;
492
493 for (i = 0 ; i < (1 << order) ; ++i)
494 reserved += free_pages_check(page + i);
495 if (reserved)
496 return;
497
498 if (!PageHighMem(page))
499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500 arch_free_page(page, order);
501 kernel_map_pages(page, 1 << order, 0);
502
503 local_irq_save(flags);
504 __count_vm_events(PGFREE, 1 << order);
505 free_one_page(page_zone(page), page, order);
506 local_irq_restore(flags);
507}
508
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514 if (order == 0) {
515 __ClearPageReserved(page);
516 set_page_count(page, 0);
517 set_page_refcounted(page);
518 __free_page(page);
519 } else {
520 int loop;
521
522 prefetchw(page);
523 for (loop = 0; loop < BITS_PER_LONG; loop++) {
524 struct page *p = &page[loop];
525
526 if (loop + 1 < BITS_PER_LONG)
527 prefetchw(p + 1);
528 __ClearPageReserved(p);
529 set_page_count(p, 0);
530 }
531
532 set_page_refcounted(page);
533 __free_pages(page, order);
534 }
535}
536
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552static inline void expand(struct zone *zone, struct page *page,
553 int low, int high, struct free_area *area)
554{
555 unsigned long size = 1 << high;
556
557 while (high > low) {
558 area--;
559 high--;
560 size >>= 1;
561 VM_BUG_ON(bad_range(zone, &page[size]));
562 list_add(&page[size].lru, &area->free_list);
563 area->nr_free++;
564 set_page_order(&page[size], high);
565 }
566}
567
568/*
569 * This page is about to be returned from the page allocator
570 */
571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572{
573 if (unlikely(page_mapcount(page) |
574 (page->mapping != NULL) |
575 (page_count(page) != 0) |
576 (page->flags & (
577 1 << PG_lru |
578 1 << PG_private |
579 1 << PG_locked |
580 1 << PG_active |
581 1 << PG_dirty |
582 1 << PG_reclaim |
583 1 << PG_slab |
584 1 << PG_swapcache |
585 1 << PG_writeback |
586 1 << PG_reserved |
587 1 << PG_buddy ))))
588 bad_page(page);
589
590 /*
591 * For now, we report if PG_reserved was found set, but do not
592 * clear it, and do not allocate the page: as a safety net.
593 */
594 if (PageReserved(page))
595 return 1;
596
597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_arch_1 |
599 1 << PG_checked | 1 << PG_mappedtodisk);
600 set_page_private(page, 0);
601 set_page_refcounted(page);
602
603 arch_alloc_page(page, order);
604 kernel_map_pages(page, 1 << order, 1);
605
606 if (gfp_flags & __GFP_ZERO)
607 prep_zero_page(page, order, gfp_flags);
608
609 if (order && (gfp_flags & __GFP_COMP))
610 prep_compound_page(page, order);
611
612 return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621 struct free_area * area;
622 unsigned int current_order;
623 struct page *page;
624
625 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626 area = zone->free_area + current_order;
627 if (list_empty(&area->free_list))
628 continue;
629
630 page = list_entry(area->free_list.next, struct page, lru);
631 list_del(&page->lru);
632 rmv_page_order(page);
633 area->nr_free--;
634 zone->free_pages -= 1UL << order;
635 expand(zone, page, order, current_order, area);
636 return page;
637 }
638
639 return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency. Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648 unsigned long count, struct list_head *list)
649{
650 int i;
651
652 spin_lock(&zone->lock);
653 for (i = 0; i < count; ++i) {
654 struct page *page = __rmqueue(zone, order);
655 if (unlikely(page == NULL))
656 break;
657 list_add_tail(&page->lru, list);
658 }
659 spin_unlock(&zone->lock);
660 return i;
661}
662
663#ifdef CONFIG_NUMA
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670void drain_node_pages(int nodeid)
671{
672 int i;
673 enum zone_type z;
674 unsigned long flags;
675
676 for (z = 0; z < MAX_NR_ZONES; z++) {
677 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678 struct per_cpu_pageset *pset;
679
680 if (!populated_zone(zone))
681 continue;
682
683 pset = zone_pcp(zone, smp_processor_id());
684 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685 struct per_cpu_pages *pcp;
686
687 pcp = &pset->pcp[i];
688 if (pcp->count) {
689 int to_drain;
690
691 local_irq_save(flags);
692 if (pcp->count >= pcp->batch)
693 to_drain = pcp->batch;
694 else
695 to_drain = pcp->count;
696 free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 pcp->count -= to_drain;
698 local_irq_restore(flags);
699 }
700 }
701 }
702}
703#endif
704
705static void __drain_pages(unsigned int cpu)
706{
707 unsigned long flags;
708 struct zone *zone;
709 int i;
710
711 for_each_zone(zone) {
712 struct per_cpu_pageset *pset;
713
714 if (!populated_zone(zone))
715 continue;
716
717 pset = zone_pcp(zone, cpu);
718 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719 struct per_cpu_pages *pcp;
720
721 pcp = &pset->pcp[i];
722 local_irq_save(flags);
723 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724 pcp->count = 0;
725 local_irq_restore(flags);
726 }
727 }
728}
729
730#ifdef CONFIG_PM
731
732void mark_free_pages(struct zone *zone)
733{
734 unsigned long pfn, max_zone_pfn;
735 unsigned long flags;
736 int order;
737 struct list_head *curr;
738
739 if (!zone->spanned_pages)
740 return;
741
742 spin_lock_irqsave(&zone->lock, flags);
743
744 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746 if (pfn_valid(pfn)) {
747 struct page *page = pfn_to_page(pfn);
748
749 if (!PageNosave(page))
750 ClearPageNosaveFree(page);
751 }
752
753 for (order = MAX_ORDER - 1; order >= 0; --order)
754 list_for_each(curr, &zone->free_area[order].free_list) {
755 unsigned long i;
756
757 pfn = page_to_pfn(list_entry(curr, struct page, lru));
758 for (i = 0; i < (1UL << order); i++)
759 SetPageNosaveFree(pfn_to_page(pfn + i));
760 }
761
762 spin_unlock_irqrestore(&zone->lock, flags);
763}
764
765/*
766 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 */
768void drain_local_pages(void)
769{
770 unsigned long flags;
771
772 local_irq_save(flags);
773 __drain_pages(smp_processor_id());
774 local_irq_restore(flags);
775}
776#endif /* CONFIG_PM */
777
778/*
779 * Free a 0-order page
780 */
781static void fastcall free_hot_cold_page(struct page *page, int cold)
782{
783 struct zone *zone = page_zone(page);
784 struct per_cpu_pages *pcp;
785 unsigned long flags;
786
787 if (PageAnon(page))
788 page->mapping = NULL;
789 if (free_pages_check(page))
790 return;
791
792 if (!PageHighMem(page))
793 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
794 arch_free_page(page, 0);
795 kernel_map_pages(page, 1, 0);
796
797 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
798 local_irq_save(flags);
799 __count_vm_event(PGFREE);
800 list_add(&page->lru, &pcp->list);
801 pcp->count++;
802 if (pcp->count >= pcp->high) {
803 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804 pcp->count -= pcp->batch;
805 }
806 local_irq_restore(flags);
807 put_cpu();
808}
809
810void fastcall free_hot_page(struct page *page)
811{
812 free_hot_cold_page(page, 0);
813}
814
815void fastcall free_cold_page(struct page *page)
816{
817 free_hot_cold_page(page, 1);
818}
819
820/*
821 * split_page takes a non-compound higher-order page, and splits it into
822 * n (1<<order) sub-pages: page[0..n]
823 * Each sub-page must be freed individually.
824 *
825 * Note: this is probably too low level an operation for use in drivers.
826 * Please consult with lkml before using this in your driver.
827 */
828void split_page(struct page *page, unsigned int order)
829{
830 int i;
831
832 VM_BUG_ON(PageCompound(page));
833 VM_BUG_ON(!page_count(page));
834 for (i = 1; i < (1 << order); i++)
835 set_page_refcounted(page + i);
836}
837
838/*
839 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
840 * we cheat by calling it from here, in the order > 0 path. Saves a branch
841 * or two.
842 */
843static struct page *buffered_rmqueue(struct zonelist *zonelist,
844 struct zone *zone, int order, gfp_t gfp_flags)
845{
846 unsigned long flags;
847 struct page *page;
848 int cold = !!(gfp_flags & __GFP_COLD);
849 int cpu;
850
851again:
852 cpu = get_cpu();
853 if (likely(order == 0)) {
854 struct per_cpu_pages *pcp;
855
856 pcp = &zone_pcp(zone, cpu)->pcp[cold];
857 local_irq_save(flags);
858 if (!pcp->count) {
859 pcp->count = rmqueue_bulk(zone, 0,
860 pcp->batch, &pcp->list);
861 if (unlikely(!pcp->count))
862 goto failed;
863 }
864 page = list_entry(pcp->list.next, struct page, lru);
865 list_del(&page->lru);
866 pcp->count--;
867 } else {
868 spin_lock_irqsave(&zone->lock, flags);
869 page = __rmqueue(zone, order);
870 spin_unlock(&zone->lock);
871 if (!page)
872 goto failed;
873 }
874
875 __count_zone_vm_events(PGALLOC, zone, 1 << order);
876 zone_statistics(zonelist, zone);
877 local_irq_restore(flags);
878 put_cpu();
879
880 VM_BUG_ON(bad_range(zone, page));
881 if (prep_new_page(page, order, gfp_flags))
882 goto again;
883 return page;
884
885failed:
886 local_irq_restore(flags);
887 put_cpu();
888 return NULL;
889}
890
891#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
892#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
893#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
894#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
895#define ALLOC_HARDER 0x10 /* try to alloc harder */
896#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
897#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
898
899#ifdef CONFIG_FAIL_PAGE_ALLOC
900
901static struct fail_page_alloc_attr {
902 struct fault_attr attr;
903
904 u32 ignore_gfp_highmem;
905 u32 ignore_gfp_wait;
906
907#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
911
912#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913
914} fail_page_alloc = {
915 .attr = FAULT_ATTR_INITIALIZER,
916 .ignore_gfp_wait = 1,
917 .ignore_gfp_highmem = 1,
918};
919
920static int __init setup_fail_page_alloc(char *str)
921{
922 return setup_fault_attr(&fail_page_alloc.attr, str);
923}
924__setup("fail_page_alloc=", setup_fail_page_alloc);
925
926static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927{
928 if (gfp_mask & __GFP_NOFAIL)
929 return 0;
930 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931 return 0;
932 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933 return 0;
934
935 return should_fail(&fail_page_alloc.attr, 1 << order);
936}
937
938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940static int __init fail_page_alloc_debugfs(void)
941{
942 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943 struct dentry *dir;
944 int err;
945
946 err = init_fault_attr_dentries(&fail_page_alloc.attr,
947 "fail_page_alloc");
948 if (err)
949 return err;
950 dir = fail_page_alloc.attr.dentries.dir;
951
952 fail_page_alloc.ignore_gfp_wait_file =
953 debugfs_create_bool("ignore-gfp-wait", mode, dir,
954 &fail_page_alloc.ignore_gfp_wait);
955
956 fail_page_alloc.ignore_gfp_highmem_file =
957 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958 &fail_page_alloc.ignore_gfp_highmem);
959
960 if (!fail_page_alloc.ignore_gfp_wait_file ||
961 !fail_page_alloc.ignore_gfp_highmem_file) {
962 err = -ENOMEM;
963 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966 }
967
968 return err;
969}
970
971late_initcall(fail_page_alloc_debugfs);
972
973#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974
975#else /* CONFIG_FAIL_PAGE_ALLOC */
976
977static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978{
979 return 0;
980}
981
982#endif /* CONFIG_FAIL_PAGE_ALLOC */
983
984/*
985 * Return 1 if free pages are above 'mark'. This takes into account the order
986 * of the allocation.
987 */
988int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
989 int classzone_idx, int alloc_flags)
990{
991 /* free_pages my go negative - that's OK */
992 unsigned long min = mark;
993 long free_pages = z->free_pages - (1 << order) + 1;
994 int o;
995
996 if (alloc_flags & ALLOC_HIGH)
997 min -= min / 2;
998 if (alloc_flags & ALLOC_HARDER)
999 min -= min / 4;
1000
1001 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1002 return 0;
1003 for (o = 0; o < order; o++) {
1004 /* At the next order, this order's pages become unavailable */
1005 free_pages -= z->free_area[o].nr_free << o;
1006
1007 /* Require fewer higher order pages to be free */
1008 min >>= 1;
1009
1010 if (free_pages <= min)
1011 return 0;
1012 }
1013 return 1;
1014}
1015
1016#ifdef CONFIG_NUMA
1017/*
1018 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1019 * skip over zones that are not allowed by the cpuset, or that have
1020 * been recently (in last second) found to be nearly full. See further
1021 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1022 * that have to skip over alot of full or unallowed zones.
1023 *
1024 * If the zonelist cache is present in the passed in zonelist, then
1025 * returns a pointer to the allowed node mask (either the current
1026 * tasks mems_allowed, or node_online_map.)
1027 *
1028 * If the zonelist cache is not available for this zonelist, does
1029 * nothing and returns NULL.
1030 *
1031 * If the fullzones BITMAP in the zonelist cache is stale (more than
1032 * a second since last zap'd) then we zap it out (clear its bits.)
1033 *
1034 * We hold off even calling zlc_setup, until after we've checked the
1035 * first zone in the zonelist, on the theory that most allocations will
1036 * be satisfied from that first zone, so best to examine that zone as
1037 * quickly as we can.
1038 */
1039static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1040{
1041 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1042 nodemask_t *allowednodes; /* zonelist_cache approximation */
1043
1044 zlc = zonelist->zlcache_ptr;
1045 if (!zlc)
1046 return NULL;
1047
1048 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1049 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1050 zlc->last_full_zap = jiffies;
1051 }
1052
1053 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1054 &cpuset_current_mems_allowed :
1055 &node_online_map;
1056 return allowednodes;
1057}
1058
1059/*
1060 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1061 * if it is worth looking at further for free memory:
1062 * 1) Check that the zone isn't thought to be full (doesn't have its
1063 * bit set in the zonelist_cache fullzones BITMAP).
1064 * 2) Check that the zones node (obtained from the zonelist_cache
1065 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1066 * Return true (non-zero) if zone is worth looking at further, or
1067 * else return false (zero) if it is not.
1068 *
1069 * This check -ignores- the distinction between various watermarks,
1070 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1071 * found to be full for any variation of these watermarks, it will
1072 * be considered full for up to one second by all requests, unless
1073 * we are so low on memory on all allowed nodes that we are forced
1074 * into the second scan of the zonelist.
1075 *
1076 * In the second scan we ignore this zonelist cache and exactly
1077 * apply the watermarks to all zones, even it is slower to do so.
1078 * We are low on memory in the second scan, and should leave no stone
1079 * unturned looking for a free page.
1080 */
1081static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1082 nodemask_t *allowednodes)
1083{
1084 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1085 int i; /* index of *z in zonelist zones */
1086 int n; /* node that zone *z is on */
1087
1088 zlc = zonelist->zlcache_ptr;
1089 if (!zlc)
1090 return 1;
1091
1092 i = z - zonelist->zones;
1093 n = zlc->z_to_n[i];
1094
1095 /* This zone is worth trying if it is allowed but not full */
1096 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1097}
1098
1099/*
1100 * Given 'z' scanning a zonelist, set the corresponding bit in
1101 * zlc->fullzones, so that subsequent attempts to allocate a page
1102 * from that zone don't waste time re-examining it.
1103 */
1104static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1105{
1106 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1107 int i; /* index of *z in zonelist zones */
1108
1109 zlc = zonelist->zlcache_ptr;
1110 if (!zlc)
1111 return;
1112
1113 i = z - zonelist->zones;
1114
1115 set_bit(i, zlc->fullzones);
1116}
1117
1118#else /* CONFIG_NUMA */
1119
1120static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1121{
1122 return NULL;
1123}
1124
1125static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1126 nodemask_t *allowednodes)
1127{
1128 return 1;
1129}
1130
1131static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1132{
1133}
1134#endif /* CONFIG_NUMA */
1135
1136/*
1137 * get_page_from_freelist goes through the zonelist trying to allocate
1138 * a page.
1139 */
1140static struct page *
1141get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1142 struct zonelist *zonelist, int alloc_flags)
1143{
1144 struct zone **z;
1145 struct page *page = NULL;
1146 int classzone_idx = zone_idx(zonelist->zones[0]);
1147 struct zone *zone;
1148 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1149 int zlc_active = 0; /* set if using zonelist_cache */
1150 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1151
1152zonelist_scan:
1153 /*
1154 * Scan zonelist, looking for a zone with enough free.
1155 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1156 */
1157 z = zonelist->zones;
1158
1159 do {
1160 if (NUMA_BUILD && zlc_active &&
1161 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1162 continue;
1163 zone = *z;
1164 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1165 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1166 break;
1167 if ((alloc_flags & ALLOC_CPUSET) &&
1168 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1169 goto try_next_zone;
1170
1171 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1172 unsigned long mark;
1173 if (alloc_flags & ALLOC_WMARK_MIN)
1174 mark = zone->pages_min;
1175 else if (alloc_flags & ALLOC_WMARK_LOW)
1176 mark = zone->pages_low;
1177 else
1178 mark = zone->pages_high;
1179 if (!zone_watermark_ok(zone, order, mark,
1180 classzone_idx, alloc_flags)) {
1181 if (!zone_reclaim_mode ||
1182 !zone_reclaim(zone, gfp_mask, order))
1183 goto this_zone_full;
1184 }
1185 }
1186
1187 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1188 if (page)
1189 break;
1190this_zone_full:
1191 if (NUMA_BUILD)
1192 zlc_mark_zone_full(zonelist, z);
1193try_next_zone:
1194 if (NUMA_BUILD && !did_zlc_setup) {
1195 /* we do zlc_setup after the first zone is tried */
1196 allowednodes = zlc_setup(zonelist, alloc_flags);
1197 zlc_active = 1;
1198 did_zlc_setup = 1;
1199 }
1200 } while (*(++z) != NULL);
1201
1202 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1203 /* Disable zlc cache for second zonelist scan */
1204 zlc_active = 0;
1205 goto zonelist_scan;
1206 }
1207 return page;
1208}
1209
1210/*
1211 * This is the 'heart' of the zoned buddy allocator.
1212 */
1213struct page * fastcall
1214__alloc_pages(gfp_t gfp_mask, unsigned int order,
1215 struct zonelist *zonelist)
1216{
1217 const gfp_t wait = gfp_mask & __GFP_WAIT;
1218 struct zone **z;
1219 struct page *page;
1220 struct reclaim_state reclaim_state;
1221 struct task_struct *p = current;
1222 int do_retry;
1223 int alloc_flags;
1224 int did_some_progress;
1225
1226 might_sleep_if(wait);
1227
1228 if (should_fail_alloc_page(gfp_mask, order))
1229 return NULL;
1230
1231restart:
1232 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1233
1234 if (unlikely(*z == NULL)) {
1235 /* Should this ever happen?? */
1236 return NULL;
1237 }
1238
1239 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1240 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1241 if (page)
1242 goto got_pg;
1243
1244 /*
1245 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1246 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1247 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1248 * using a larger set of nodes after it has established that the
1249 * allowed per node queues are empty and that nodes are
1250 * over allocated.
1251 */
1252 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1253 goto nopage;
1254
1255 for (z = zonelist->zones; *z; z++)
1256 wakeup_kswapd(*z, order);
1257
1258 /*
1259 * OK, we're below the kswapd watermark and have kicked background
1260 * reclaim. Now things get more complex, so set up alloc_flags according
1261 * to how we want to proceed.
1262 *
1263 * The caller may dip into page reserves a bit more if the caller
1264 * cannot run direct reclaim, or if the caller has realtime scheduling
1265 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1266 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1267 */
1268 alloc_flags = ALLOC_WMARK_MIN;
1269 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1270 alloc_flags |= ALLOC_HARDER;
1271 if (gfp_mask & __GFP_HIGH)
1272 alloc_flags |= ALLOC_HIGH;
1273 if (wait)
1274 alloc_flags |= ALLOC_CPUSET;
1275
1276 /*
1277 * Go through the zonelist again. Let __GFP_HIGH and allocations
1278 * coming from realtime tasks go deeper into reserves.
1279 *
1280 * This is the last chance, in general, before the goto nopage.
1281 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1282 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1283 */
1284 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1285 if (page)
1286 goto got_pg;
1287
1288 /* This allocation should allow future memory freeing. */
1289
1290rebalance:
1291 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1292 && !in_interrupt()) {
1293 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1294nofail_alloc:
1295 /* go through the zonelist yet again, ignoring mins */
1296 page = get_page_from_freelist(gfp_mask, order,
1297 zonelist, ALLOC_NO_WATERMARKS);
1298 if (page)
1299 goto got_pg;
1300 if (gfp_mask & __GFP_NOFAIL) {
1301 congestion_wait(WRITE, HZ/50);
1302 goto nofail_alloc;
1303 }
1304 }
1305 goto nopage;
1306 }
1307
1308 /* Atomic allocations - we can't balance anything */
1309 if (!wait)
1310 goto nopage;
1311
1312 cond_resched();
1313
1314 /* We now go into synchronous reclaim */
1315 cpuset_memory_pressure_bump();
1316 p->flags |= PF_MEMALLOC;
1317 reclaim_state.reclaimed_slab = 0;
1318 p->reclaim_state = &reclaim_state;
1319
1320 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1321
1322 p->reclaim_state = NULL;
1323 p->flags &= ~PF_MEMALLOC;
1324
1325 cond_resched();
1326
1327 if (likely(did_some_progress)) {
1328 page = get_page_from_freelist(gfp_mask, order,
1329 zonelist, alloc_flags);
1330 if (page)
1331 goto got_pg;
1332 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1333 /*
1334 * Go through the zonelist yet one more time, keep
1335 * very high watermark here, this is only to catch
1336 * a parallel oom killing, we must fail if we're still
1337 * under heavy pressure.
1338 */
1339 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1340 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1341 if (page)
1342 goto got_pg;
1343
1344 out_of_memory(zonelist, gfp_mask, order);
1345 goto restart;
1346 }
1347
1348 /*
1349 * Don't let big-order allocations loop unless the caller explicitly
1350 * requests that. Wait for some write requests to complete then retry.
1351 *
1352 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1353 * <= 3, but that may not be true in other implementations.
1354 */
1355 do_retry = 0;
1356 if (!(gfp_mask & __GFP_NORETRY)) {
1357 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1358 do_retry = 1;
1359 if (gfp_mask & __GFP_NOFAIL)
1360 do_retry = 1;
1361 }
1362 if (do_retry) {
1363 congestion_wait(WRITE, HZ/50);
1364 goto rebalance;
1365 }
1366
1367nopage:
1368 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1369 printk(KERN_WARNING "%s: page allocation failure."
1370 " order:%d, mode:0x%x\n",
1371 p->comm, order, gfp_mask);
1372 dump_stack();
1373 show_mem();
1374 }
1375got_pg:
1376 return page;
1377}
1378
1379EXPORT_SYMBOL(__alloc_pages);
1380
1381/*
1382 * Common helper functions.
1383 */
1384fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1385{
1386 struct page * page;
1387 page = alloc_pages(gfp_mask, order);
1388 if (!page)
1389 return 0;
1390 return (unsigned long) page_address(page);
1391}
1392
1393EXPORT_SYMBOL(__get_free_pages);
1394
1395fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1396{
1397 struct page * page;
1398
1399 /*
1400 * get_zeroed_page() returns a 32-bit address, which cannot represent
1401 * a highmem page
1402 */
1403 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1404
1405 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1406 if (page)
1407 return (unsigned long) page_address(page);
1408 return 0;
1409}
1410
1411EXPORT_SYMBOL(get_zeroed_page);
1412
1413void __pagevec_free(struct pagevec *pvec)
1414{
1415 int i = pagevec_count(pvec);
1416
1417 while (--i >= 0)
1418 free_hot_cold_page(pvec->pages[i], pvec->cold);
1419}
1420
1421fastcall void __free_pages(struct page *page, unsigned int order)
1422{
1423 if (put_page_testzero(page)) {
1424 if (order == 0)
1425 free_hot_page(page);
1426 else
1427 __free_pages_ok(page, order);
1428 }
1429}
1430
1431EXPORT_SYMBOL(__free_pages);
1432
1433fastcall void free_pages(unsigned long addr, unsigned int order)
1434{
1435 if (addr != 0) {
1436 VM_BUG_ON(!virt_addr_valid((void *)addr));
1437 __free_pages(virt_to_page((void *)addr), order);
1438 }
1439}
1440
1441EXPORT_SYMBOL(free_pages);
1442
1443/*
1444 * Total amount of free (allocatable) RAM:
1445 */
1446unsigned int nr_free_pages(void)
1447{
1448 unsigned int sum = 0;
1449 struct zone *zone;
1450
1451 for_each_zone(zone)
1452 sum += zone->free_pages;
1453
1454 return sum;
1455}
1456
1457EXPORT_SYMBOL(nr_free_pages);
1458
1459#ifdef CONFIG_NUMA
1460unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1461{
1462 unsigned int sum = 0;
1463 enum zone_type i;
1464
1465 for (i = 0; i < MAX_NR_ZONES; i++)
1466 sum += pgdat->node_zones[i].free_pages;
1467
1468 return sum;
1469}
1470#endif
1471
1472static unsigned int nr_free_zone_pages(int offset)
1473{
1474 /* Just pick one node, since fallback list is circular */
1475 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1476 unsigned int sum = 0;
1477
1478 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1479 struct zone **zonep = zonelist->zones;
1480 struct zone *zone;
1481
1482 for (zone = *zonep++; zone; zone = *zonep++) {
1483 unsigned long size = zone->present_pages;
1484 unsigned long high = zone->pages_high;
1485 if (size > high)
1486 sum += size - high;
1487 }
1488
1489 return sum;
1490}
1491
1492/*
1493 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1494 */
1495unsigned int nr_free_buffer_pages(void)
1496{
1497 return nr_free_zone_pages(gfp_zone(GFP_USER));
1498}
1499
1500/*
1501 * Amount of free RAM allocatable within all zones
1502 */
1503unsigned int nr_free_pagecache_pages(void)
1504{
1505 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1506}
1507
1508static inline void show_node(struct zone *zone)
1509{
1510 if (NUMA_BUILD)
1511 printk("Node %d ", zone_to_nid(zone));
1512}
1513
1514void si_meminfo(struct sysinfo *val)
1515{
1516 val->totalram = totalram_pages;
1517 val->sharedram = 0;
1518 val->freeram = nr_free_pages();
1519 val->bufferram = nr_blockdev_pages();
1520 val->totalhigh = totalhigh_pages;
1521 val->freehigh = nr_free_highpages();
1522 val->mem_unit = PAGE_SIZE;
1523}
1524
1525EXPORT_SYMBOL(si_meminfo);
1526
1527#ifdef CONFIG_NUMA
1528void si_meminfo_node(struct sysinfo *val, int nid)
1529{
1530 pg_data_t *pgdat = NODE_DATA(nid);
1531
1532 val->totalram = pgdat->node_present_pages;
1533 val->freeram = nr_free_pages_pgdat(pgdat);
1534#ifdef CONFIG_HIGHMEM
1535 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1536 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1537#else
1538 val->totalhigh = 0;
1539 val->freehigh = 0;
1540#endif
1541 val->mem_unit = PAGE_SIZE;
1542}
1543#endif
1544
1545#define K(x) ((x) << (PAGE_SHIFT-10))
1546
1547/*
1548 * Show free area list (used inside shift_scroll-lock stuff)
1549 * We also calculate the percentage fragmentation. We do this by counting the
1550 * memory on each free list with the exception of the first item on the list.
1551 */
1552void show_free_areas(void)
1553{
1554 int cpu;
1555 unsigned long active;
1556 unsigned long inactive;
1557 unsigned long free;
1558 struct zone *zone;
1559
1560 for_each_zone(zone) {
1561 if (!populated_zone(zone))
1562 continue;
1563
1564 show_node(zone);
1565 printk("%s per-cpu:\n", zone->name);
1566
1567 for_each_online_cpu(cpu) {
1568 struct per_cpu_pageset *pageset;
1569
1570 pageset = zone_pcp(zone, cpu);
1571
1572 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1573 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1574 cpu, pageset->pcp[0].high,
1575 pageset->pcp[0].batch, pageset->pcp[0].count,
1576 pageset->pcp[1].high, pageset->pcp[1].batch,
1577 pageset->pcp[1].count);
1578 }
1579 }
1580
1581 get_zone_counts(&active, &inactive, &free);
1582
1583 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1584 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1585 active,
1586 inactive,
1587 global_page_state(NR_FILE_DIRTY),
1588 global_page_state(NR_WRITEBACK),
1589 global_page_state(NR_UNSTABLE_NFS),
1590 nr_free_pages(),
1591 global_page_state(NR_SLAB_RECLAIMABLE) +
1592 global_page_state(NR_SLAB_UNRECLAIMABLE),
1593 global_page_state(NR_FILE_MAPPED),
1594 global_page_state(NR_PAGETABLE));
1595
1596 for_each_zone(zone) {
1597 int i;
1598
1599 if (!populated_zone(zone))
1600 continue;
1601
1602 show_node(zone);
1603 printk("%s"
1604 " free:%lukB"
1605 " min:%lukB"
1606 " low:%lukB"
1607 " high:%lukB"
1608 " active:%lukB"
1609 " inactive:%lukB"
1610 " present:%lukB"
1611 " pages_scanned:%lu"
1612 " all_unreclaimable? %s"
1613 "\n",
1614 zone->name,
1615 K(zone->free_pages),
1616 K(zone->pages_min),
1617 K(zone->pages_low),
1618 K(zone->pages_high),
1619 K(zone->nr_active),
1620 K(zone->nr_inactive),
1621 K(zone->present_pages),
1622 zone->pages_scanned,
1623 (zone->all_unreclaimable ? "yes" : "no")
1624 );
1625 printk("lowmem_reserve[]:");
1626 for (i = 0; i < MAX_NR_ZONES; i++)
1627 printk(" %lu", zone->lowmem_reserve[i]);
1628 printk("\n");
1629 }
1630
1631 for_each_zone(zone) {
1632 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1633
1634 if (!populated_zone(zone))
1635 continue;
1636
1637 show_node(zone);
1638 printk("%s: ", zone->name);
1639
1640 spin_lock_irqsave(&zone->lock, flags);
1641 for (order = 0; order < MAX_ORDER; order++) {
1642 nr[order] = zone->free_area[order].nr_free;
1643 total += nr[order] << order;
1644 }
1645 spin_unlock_irqrestore(&zone->lock, flags);
1646 for (order = 0; order < MAX_ORDER; order++)
1647 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1648 printk("= %lukB\n", K(total));
1649 }
1650
1651 show_swap_cache_info();
1652}
1653
1654/*
1655 * Builds allocation fallback zone lists.
1656 *
1657 * Add all populated zones of a node to the zonelist.
1658 */
1659static int __meminit build_zonelists_node(pg_data_t *pgdat,
1660 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1661{
1662 struct zone *zone;
1663
1664 BUG_ON(zone_type >= MAX_NR_ZONES);
1665 zone_type++;
1666
1667 do {
1668 zone_type--;
1669 zone = pgdat->node_zones + zone_type;
1670 if (populated_zone(zone)) {
1671 zonelist->zones[nr_zones++] = zone;
1672 check_highest_zone(zone_type);
1673 }
1674
1675 } while (zone_type);
1676 return nr_zones;
1677}
1678
1679#ifdef CONFIG_NUMA
1680#define MAX_NODE_LOAD (num_online_nodes())
1681static int __meminitdata node_load[MAX_NUMNODES];
1682/**
1683 * find_next_best_node - find the next node that should appear in a given node's fallback list
1684 * @node: node whose fallback list we're appending
1685 * @used_node_mask: nodemask_t of already used nodes
1686 *
1687 * We use a number of factors to determine which is the next node that should
1688 * appear on a given node's fallback list. The node should not have appeared
1689 * already in @node's fallback list, and it should be the next closest node
1690 * according to the distance array (which contains arbitrary distance values
1691 * from each node to each node in the system), and should also prefer nodes
1692 * with no CPUs, since presumably they'll have very little allocation pressure
1693 * on them otherwise.
1694 * It returns -1 if no node is found.
1695 */
1696static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1697{
1698 int n, val;
1699 int min_val = INT_MAX;
1700 int best_node = -1;
1701
1702 /* Use the local node if we haven't already */
1703 if (!node_isset(node, *used_node_mask)) {
1704 node_set(node, *used_node_mask);
1705 return node;
1706 }
1707
1708 for_each_online_node(n) {
1709 cpumask_t tmp;
1710
1711 /* Don't want a node to appear more than once */
1712 if (node_isset(n, *used_node_mask))
1713 continue;
1714
1715 /* Use the distance array to find the distance */
1716 val = node_distance(node, n);
1717
1718 /* Penalize nodes under us ("prefer the next node") */
1719 val += (n < node);
1720
1721 /* Give preference to headless and unused nodes */
1722 tmp = node_to_cpumask(n);
1723 if (!cpus_empty(tmp))
1724 val += PENALTY_FOR_NODE_WITH_CPUS;
1725
1726 /* Slight preference for less loaded node */
1727 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1728 val += node_load[n];
1729
1730 if (val < min_val) {
1731 min_val = val;
1732 best_node = n;
1733 }
1734 }
1735
1736 if (best_node >= 0)
1737 node_set(best_node, *used_node_mask);
1738
1739 return best_node;
1740}
1741
1742static void __meminit build_zonelists(pg_data_t *pgdat)
1743{
1744 int j, node, local_node;
1745 enum zone_type i;
1746 int prev_node, load;
1747 struct zonelist *zonelist;
1748 nodemask_t used_mask;
1749
1750 /* initialize zonelists */
1751 for (i = 0; i < MAX_NR_ZONES; i++) {
1752 zonelist = pgdat->node_zonelists + i;
1753 zonelist->zones[0] = NULL;
1754 }
1755
1756 /* NUMA-aware ordering of nodes */
1757 local_node = pgdat->node_id;
1758 load = num_online_nodes();
1759 prev_node = local_node;
1760 nodes_clear(used_mask);
1761 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1762 int distance = node_distance(local_node, node);
1763
1764 /*
1765 * If another node is sufficiently far away then it is better
1766 * to reclaim pages in a zone before going off node.
1767 */
1768 if (distance > RECLAIM_DISTANCE)
1769 zone_reclaim_mode = 1;
1770
1771 /*
1772 * We don't want to pressure a particular node.
1773 * So adding penalty to the first node in same
1774 * distance group to make it round-robin.
1775 */
1776
1777 if (distance != node_distance(local_node, prev_node))
1778 node_load[node] += load;
1779 prev_node = node;
1780 load--;
1781 for (i = 0; i < MAX_NR_ZONES; i++) {
1782 zonelist = pgdat->node_zonelists + i;
1783 for (j = 0; zonelist->zones[j] != NULL; j++);
1784
1785 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1786 zonelist->zones[j] = NULL;
1787 }
1788 }
1789}
1790
1791/* Construct the zonelist performance cache - see further mmzone.h */
1792static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1793{
1794 int i;
1795
1796 for (i = 0; i < MAX_NR_ZONES; i++) {
1797 struct zonelist *zonelist;
1798 struct zonelist_cache *zlc;
1799 struct zone **z;
1800
1801 zonelist = pgdat->node_zonelists + i;
1802 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1803 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1804 for (z = zonelist->zones; *z; z++)
1805 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1806 }
1807}
1808
1809#else /* CONFIG_NUMA */
1810
1811static void __meminit build_zonelists(pg_data_t *pgdat)
1812{
1813 int node, local_node;
1814 enum zone_type i,j;
1815
1816 local_node = pgdat->node_id;
1817 for (i = 0; i < MAX_NR_ZONES; i++) {
1818 struct zonelist *zonelist;
1819
1820 zonelist = pgdat->node_zonelists + i;
1821
1822 j = build_zonelists_node(pgdat, zonelist, 0, i);
1823 /*
1824 * Now we build the zonelist so that it contains the zones
1825 * of all the other nodes.
1826 * We don't want to pressure a particular node, so when
1827 * building the zones for node N, we make sure that the
1828 * zones coming right after the local ones are those from
1829 * node N+1 (modulo N)
1830 */
1831 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1832 if (!node_online(node))
1833 continue;
1834 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1835 }
1836 for (node = 0; node < local_node; node++) {
1837 if (!node_online(node))
1838 continue;
1839 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1840 }
1841
1842 zonelist->zones[j] = NULL;
1843 }
1844}
1845
1846/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1847static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1848{
1849 int i;
1850
1851 for (i = 0; i < MAX_NR_ZONES; i++)
1852 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1853}
1854
1855#endif /* CONFIG_NUMA */
1856
1857/* return values int ....just for stop_machine_run() */
1858static int __meminit __build_all_zonelists(void *dummy)
1859{
1860 int nid;
1861
1862 for_each_online_node(nid) {
1863 build_zonelists(NODE_DATA(nid));
1864 build_zonelist_cache(NODE_DATA(nid));
1865 }
1866 return 0;
1867}
1868
1869void __meminit build_all_zonelists(void)
1870{
1871 if (system_state == SYSTEM_BOOTING) {
1872 __build_all_zonelists(NULL);
1873 cpuset_init_current_mems_allowed();
1874 } else {
1875 /* we have to stop all cpus to guaranntee there is no user
1876 of zonelist */
1877 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1878 /* cpuset refresh routine should be here */
1879 }
1880 vm_total_pages = nr_free_pagecache_pages();
1881 printk("Built %i zonelists. Total pages: %ld\n",
1882 num_online_nodes(), vm_total_pages);
1883}
1884
1885/*
1886 * Helper functions to size the waitqueue hash table.
1887 * Essentially these want to choose hash table sizes sufficiently
1888 * large so that collisions trying to wait on pages are rare.
1889 * But in fact, the number of active page waitqueues on typical
1890 * systems is ridiculously low, less than 200. So this is even
1891 * conservative, even though it seems large.
1892 *
1893 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1894 * waitqueues, i.e. the size of the waitq table given the number of pages.
1895 */
1896#define PAGES_PER_WAITQUEUE 256
1897
1898#ifndef CONFIG_MEMORY_HOTPLUG
1899static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1900{
1901 unsigned long size = 1;
1902
1903 pages /= PAGES_PER_WAITQUEUE;
1904
1905 while (size < pages)
1906 size <<= 1;
1907
1908 /*
1909 * Once we have dozens or even hundreds of threads sleeping
1910 * on IO we've got bigger problems than wait queue collision.
1911 * Limit the size of the wait table to a reasonable size.
1912 */
1913 size = min(size, 4096UL);
1914
1915 return max(size, 4UL);
1916}
1917#else
1918/*
1919 * A zone's size might be changed by hot-add, so it is not possible to determine
1920 * a suitable size for its wait_table. So we use the maximum size now.
1921 *
1922 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1923 *
1924 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1925 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1926 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1927 *
1928 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1929 * or more by the traditional way. (See above). It equals:
1930 *
1931 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1932 * ia64(16K page size) : = ( 8G + 4M)byte.
1933 * powerpc (64K page size) : = (32G +16M)byte.
1934 */
1935static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1936{
1937 return 4096UL;
1938}
1939#endif
1940
1941/*
1942 * This is an integer logarithm so that shifts can be used later
1943 * to extract the more random high bits from the multiplicative
1944 * hash function before the remainder is taken.
1945 */
1946static inline unsigned long wait_table_bits(unsigned long size)
1947{
1948 return ffz(~size);
1949}
1950
1951#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1952
1953/*
1954 * Initially all pages are reserved - free ones are freed
1955 * up by free_all_bootmem() once the early boot process is
1956 * done. Non-atomic initialization, single-pass.
1957 */
1958void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1959 unsigned long start_pfn)
1960{
1961 struct page *page;
1962 unsigned long end_pfn = start_pfn + size;
1963 unsigned long pfn;
1964
1965 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1966 if (!early_pfn_valid(pfn))
1967 continue;
1968 if (!early_pfn_in_nid(pfn, nid))
1969 continue;
1970 page = pfn_to_page(pfn);
1971 set_page_links(page, zone, nid, pfn);
1972 init_page_count(page);
1973 reset_page_mapcount(page);
1974 SetPageReserved(page);
1975 INIT_LIST_HEAD(&page->lru);
1976#ifdef WANT_PAGE_VIRTUAL
1977 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1978 if (!is_highmem_idx(zone))
1979 set_page_address(page, __va(pfn << PAGE_SHIFT));
1980#endif
1981 }
1982}
1983
1984void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1985 unsigned long size)
1986{
1987 int order;
1988 for (order = 0; order < MAX_ORDER ; order++) {
1989 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1990 zone->free_area[order].nr_free = 0;
1991 }
1992}
1993
1994#ifndef __HAVE_ARCH_MEMMAP_INIT
1995#define memmap_init(size, nid, zone, start_pfn) \
1996 memmap_init_zone((size), (nid), (zone), (start_pfn))
1997#endif
1998
1999static int __cpuinit zone_batchsize(struct zone *zone)
2000{
2001 int batch;
2002
2003 /*
2004 * The per-cpu-pages pools are set to around 1000th of the
2005 * size of the zone. But no more than 1/2 of a meg.
2006 *
2007 * OK, so we don't know how big the cache is. So guess.
2008 */
2009 batch = zone->present_pages / 1024;
2010 if (batch * PAGE_SIZE > 512 * 1024)
2011 batch = (512 * 1024) / PAGE_SIZE;
2012 batch /= 4; /* We effectively *= 4 below */
2013 if (batch < 1)
2014 batch = 1;
2015
2016 /*
2017 * Clamp the batch to a 2^n - 1 value. Having a power
2018 * of 2 value was found to be more likely to have
2019 * suboptimal cache aliasing properties in some cases.
2020 *
2021 * For example if 2 tasks are alternately allocating
2022 * batches of pages, one task can end up with a lot
2023 * of pages of one half of the possible page colors
2024 * and the other with pages of the other colors.
2025 */
2026 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2027
2028 return batch;
2029}
2030
2031inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2032{
2033 struct per_cpu_pages *pcp;
2034
2035 memset(p, 0, sizeof(*p));
2036
2037 pcp = &p->pcp[0]; /* hot */
2038 pcp->count = 0;
2039 pcp->high = 6 * batch;
2040 pcp->batch = max(1UL, 1 * batch);
2041 INIT_LIST_HEAD(&pcp->list);
2042
2043 pcp = &p->pcp[1]; /* cold*/
2044 pcp->count = 0;
2045 pcp->high = 2 * batch;
2046 pcp->batch = max(1UL, batch/2);
2047 INIT_LIST_HEAD(&pcp->list);
2048}
2049
2050/*
2051 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2052 * to the value high for the pageset p.
2053 */
2054
2055static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2056 unsigned long high)
2057{
2058 struct per_cpu_pages *pcp;
2059
2060 pcp = &p->pcp[0]; /* hot list */
2061 pcp->high = high;
2062 pcp->batch = max(1UL, high/4);
2063 if ((high/4) > (PAGE_SHIFT * 8))
2064 pcp->batch = PAGE_SHIFT * 8;
2065}
2066
2067
2068#ifdef CONFIG_NUMA
2069/*
2070 * Boot pageset table. One per cpu which is going to be used for all
2071 * zones and all nodes. The parameters will be set in such a way
2072 * that an item put on a list will immediately be handed over to
2073 * the buddy list. This is safe since pageset manipulation is done
2074 * with interrupts disabled.
2075 *
2076 * Some NUMA counter updates may also be caught by the boot pagesets.
2077 *
2078 * The boot_pagesets must be kept even after bootup is complete for
2079 * unused processors and/or zones. They do play a role for bootstrapping
2080 * hotplugged processors.
2081 *
2082 * zoneinfo_show() and maybe other functions do
2083 * not check if the processor is online before following the pageset pointer.
2084 * Other parts of the kernel may not check if the zone is available.
2085 */
2086static struct per_cpu_pageset boot_pageset[NR_CPUS];
2087
2088/*
2089 * Dynamically allocate memory for the
2090 * per cpu pageset array in struct zone.
2091 */
2092static int __cpuinit process_zones(int cpu)
2093{
2094 struct zone *zone, *dzone;
2095
2096 for_each_zone(zone) {
2097
2098 if (!populated_zone(zone))
2099 continue;
2100
2101 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2102 GFP_KERNEL, cpu_to_node(cpu));
2103 if (!zone_pcp(zone, cpu))
2104 goto bad;
2105
2106 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2107
2108 if (percpu_pagelist_fraction)
2109 setup_pagelist_highmark(zone_pcp(zone, cpu),
2110 (zone->present_pages / percpu_pagelist_fraction));
2111 }
2112
2113 return 0;
2114bad:
2115 for_each_zone(dzone) {
2116 if (dzone == zone)
2117 break;
2118 kfree(zone_pcp(dzone, cpu));
2119 zone_pcp(dzone, cpu) = NULL;
2120 }
2121 return -ENOMEM;
2122}
2123
2124static inline void free_zone_pagesets(int cpu)
2125{
2126 struct zone *zone;
2127
2128 for_each_zone(zone) {
2129 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2130
2131 /* Free per_cpu_pageset if it is slab allocated */
2132 if (pset != &boot_pageset[cpu])
2133 kfree(pset);
2134 zone_pcp(zone, cpu) = NULL;
2135 }
2136}
2137
2138static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2139 unsigned long action,
2140 void *hcpu)
2141{
2142 int cpu = (long)hcpu;
2143 int ret = NOTIFY_OK;
2144
2145 switch (action) {
2146 case CPU_UP_PREPARE:
2147 if (process_zones(cpu))
2148 ret = NOTIFY_BAD;
2149 break;
2150 case CPU_UP_CANCELED:
2151 case CPU_DEAD:
2152 free_zone_pagesets(cpu);
2153 break;
2154 default:
2155 break;
2156 }
2157 return ret;
2158}
2159
2160static struct notifier_block __cpuinitdata pageset_notifier =
2161 { &pageset_cpuup_callback, NULL, 0 };
2162
2163void __init setup_per_cpu_pageset(void)
2164{
2165 int err;
2166
2167 /* Initialize per_cpu_pageset for cpu 0.
2168 * A cpuup callback will do this for every cpu
2169 * as it comes online
2170 */
2171 err = process_zones(smp_processor_id());
2172 BUG_ON(err);
2173 register_cpu_notifier(&pageset_notifier);
2174}
2175
2176#endif
2177
2178static __meminit
2179int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2180{
2181 int i;
2182 struct pglist_data *pgdat = zone->zone_pgdat;
2183 size_t alloc_size;
2184
2185 /*
2186 * The per-page waitqueue mechanism uses hashed waitqueues
2187 * per zone.
2188 */
2189 zone->wait_table_hash_nr_entries =
2190 wait_table_hash_nr_entries(zone_size_pages);
2191 zone->wait_table_bits =
2192 wait_table_bits(zone->wait_table_hash_nr_entries);
2193 alloc_size = zone->wait_table_hash_nr_entries
2194 * sizeof(wait_queue_head_t);
2195
2196 if (system_state == SYSTEM_BOOTING) {
2197 zone->wait_table = (wait_queue_head_t *)
2198 alloc_bootmem_node(pgdat, alloc_size);
2199 } else {
2200 /*
2201 * This case means that a zone whose size was 0 gets new memory
2202 * via memory hot-add.
2203 * But it may be the case that a new node was hot-added. In
2204 * this case vmalloc() will not be able to use this new node's
2205 * memory - this wait_table must be initialized to use this new
2206 * node itself as well.
2207 * To use this new node's memory, further consideration will be
2208 * necessary.
2209 */
2210 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2211 }
2212 if (!zone->wait_table)
2213 return -ENOMEM;
2214
2215 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2216 init_waitqueue_head(zone->wait_table + i);
2217
2218 return 0;
2219}
2220
2221static __meminit void zone_pcp_init(struct zone *zone)
2222{
2223 int cpu;
2224 unsigned long batch = zone_batchsize(zone);
2225
2226 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2227#ifdef CONFIG_NUMA
2228 /* Early boot. Slab allocator not functional yet */
2229 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2230 setup_pageset(&boot_pageset[cpu],0);
2231#else
2232 setup_pageset(zone_pcp(zone,cpu), batch);
2233#endif
2234 }
2235 if (zone->present_pages)
2236 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2237 zone->name, zone->present_pages, batch);
2238}
2239
2240__meminit int init_currently_empty_zone(struct zone *zone,
2241 unsigned long zone_start_pfn,
2242 unsigned long size)
2243{
2244 struct pglist_data *pgdat = zone->zone_pgdat;
2245 int ret;
2246 ret = zone_wait_table_init(zone, size);
2247 if (ret)
2248 return ret;
2249 pgdat->nr_zones = zone_idx(zone) + 1;
2250
2251 zone->zone_start_pfn = zone_start_pfn;
2252
2253 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2254
2255 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2256
2257 return 0;
2258}
2259
2260#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2261/*
2262 * Basic iterator support. Return the first range of PFNs for a node
2263 * Note: nid == MAX_NUMNODES returns first region regardless of node
2264 */
2265static int __init first_active_region_index_in_nid(int nid)
2266{
2267 int i;
2268
2269 for (i = 0; i < nr_nodemap_entries; i++)
2270 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2271 return i;
2272
2273 return -1;
2274}
2275
2276/*
2277 * Basic iterator support. Return the next active range of PFNs for a node
2278 * Note: nid == MAX_NUMNODES returns next region regardles of node
2279 */
2280static int __init next_active_region_index_in_nid(int index, int nid)
2281{
2282 for (index = index + 1; index < nr_nodemap_entries; index++)
2283 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2284 return index;
2285
2286 return -1;
2287}
2288
2289#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2290/*
2291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2292 * Architectures may implement their own version but if add_active_range()
2293 * was used and there are no special requirements, this is a convenient
2294 * alternative
2295 */
2296int __init early_pfn_to_nid(unsigned long pfn)
2297{
2298 int i;
2299
2300 for (i = 0; i < nr_nodemap_entries; i++) {
2301 unsigned long start_pfn = early_node_map[i].start_pfn;
2302 unsigned long end_pfn = early_node_map[i].end_pfn;
2303
2304 if (start_pfn <= pfn && pfn < end_pfn)
2305 return early_node_map[i].nid;
2306 }
2307
2308 return 0;
2309}
2310#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2311
2312/* Basic iterator support to walk early_node_map[] */
2313#define for_each_active_range_index_in_nid(i, nid) \
2314 for (i = first_active_region_index_in_nid(nid); i != -1; \
2315 i = next_active_region_index_in_nid(i, nid))
2316
2317/**
2318 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2319 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2320 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2321 *
2322 * If an architecture guarantees that all ranges registered with
2323 * add_active_ranges() contain no holes and may be freed, this
2324 * this function may be used instead of calling free_bootmem() manually.
2325 */
2326void __init free_bootmem_with_active_regions(int nid,
2327 unsigned long max_low_pfn)
2328{
2329 int i;
2330
2331 for_each_active_range_index_in_nid(i, nid) {
2332 unsigned long size_pages = 0;
2333 unsigned long end_pfn = early_node_map[i].end_pfn;
2334
2335 if (early_node_map[i].start_pfn >= max_low_pfn)
2336 continue;
2337
2338 if (end_pfn > max_low_pfn)
2339 end_pfn = max_low_pfn;
2340
2341 size_pages = end_pfn - early_node_map[i].start_pfn;
2342 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2343 PFN_PHYS(early_node_map[i].start_pfn),
2344 size_pages << PAGE_SHIFT);
2345 }
2346}
2347
2348/**
2349 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2350 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2351 *
2352 * If an architecture guarantees that all ranges registered with
2353 * add_active_ranges() contain no holes and may be freed, this
2354 * function may be used instead of calling memory_present() manually.
2355 */
2356void __init sparse_memory_present_with_active_regions(int nid)
2357{
2358 int i;
2359
2360 for_each_active_range_index_in_nid(i, nid)
2361 memory_present(early_node_map[i].nid,
2362 early_node_map[i].start_pfn,
2363 early_node_map[i].end_pfn);
2364}
2365
2366/**
2367 * push_node_boundaries - Push node boundaries to at least the requested boundary
2368 * @nid: The nid of the node to push the boundary for
2369 * @start_pfn: The start pfn of the node
2370 * @end_pfn: The end pfn of the node
2371 *
2372 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2373 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2374 * be hotplugged even though no physical memory exists. This function allows
2375 * an arch to push out the node boundaries so mem_map is allocated that can
2376 * be used later.
2377 */
2378#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2379void __init push_node_boundaries(unsigned int nid,
2380 unsigned long start_pfn, unsigned long end_pfn)
2381{
2382 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2383 nid, start_pfn, end_pfn);
2384
2385 /* Initialise the boundary for this node if necessary */
2386 if (node_boundary_end_pfn[nid] == 0)
2387 node_boundary_start_pfn[nid] = -1UL;
2388
2389 /* Update the boundaries */
2390 if (node_boundary_start_pfn[nid] > start_pfn)
2391 node_boundary_start_pfn[nid] = start_pfn;
2392 if (node_boundary_end_pfn[nid] < end_pfn)
2393 node_boundary_end_pfn[nid] = end_pfn;
2394}
2395
2396/* If necessary, push the node boundary out for reserve hotadd */
2397static void __init account_node_boundary(unsigned int nid,
2398 unsigned long *start_pfn, unsigned long *end_pfn)
2399{
2400 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2401 nid, *start_pfn, *end_pfn);
2402
2403 /* Return if boundary information has not been provided */
2404 if (node_boundary_end_pfn[nid] == 0)
2405 return;
2406
2407 /* Check the boundaries and update if necessary */
2408 if (node_boundary_start_pfn[nid] < *start_pfn)
2409 *start_pfn = node_boundary_start_pfn[nid];
2410 if (node_boundary_end_pfn[nid] > *end_pfn)
2411 *end_pfn = node_boundary_end_pfn[nid];
2412}
2413#else
2414void __init push_node_boundaries(unsigned int nid,
2415 unsigned long start_pfn, unsigned long end_pfn) {}
2416
2417static void __init account_node_boundary(unsigned int nid,
2418 unsigned long *start_pfn, unsigned long *end_pfn) {}
2419#endif
2420
2421
2422/**
2423 * get_pfn_range_for_nid - Return the start and end page frames for a node
2424 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2425 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2426 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2427 *
2428 * It returns the start and end page frame of a node based on information
2429 * provided by an arch calling add_active_range(). If called for a node
2430 * with no available memory, a warning is printed and the start and end
2431 * PFNs will be 0.
2432 */
2433void __init get_pfn_range_for_nid(unsigned int nid,
2434 unsigned long *start_pfn, unsigned long *end_pfn)
2435{
2436 int i;
2437 *start_pfn = -1UL;
2438 *end_pfn = 0;
2439
2440 for_each_active_range_index_in_nid(i, nid) {
2441 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2442 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2443 }
2444
2445 if (*start_pfn == -1UL) {
2446 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2447 *start_pfn = 0;
2448 }
2449
2450 /* Push the node boundaries out if requested */
2451 account_node_boundary(nid, start_pfn, end_pfn);
2452}
2453
2454/*
2455 * Return the number of pages a zone spans in a node, including holes
2456 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2457 */
2458unsigned long __init zone_spanned_pages_in_node(int nid,
2459 unsigned long zone_type,
2460 unsigned long *ignored)
2461{
2462 unsigned long node_start_pfn, node_end_pfn;
2463 unsigned long zone_start_pfn, zone_end_pfn;
2464
2465 /* Get the start and end of the node and zone */
2466 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2467 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2468 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2469
2470 /* Check that this node has pages within the zone's required range */
2471 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2472 return 0;
2473
2474 /* Move the zone boundaries inside the node if necessary */
2475 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2476 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2477
2478 /* Return the spanned pages */
2479 return zone_end_pfn - zone_start_pfn;
2480}
2481
2482/*
2483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2484 * then all holes in the requested range will be accounted for.
2485 */
2486unsigned long __init __absent_pages_in_range(int nid,
2487 unsigned long range_start_pfn,
2488 unsigned long range_end_pfn)
2489{
2490 int i = 0;
2491 unsigned long prev_end_pfn = 0, hole_pages = 0;
2492 unsigned long start_pfn;
2493
2494 /* Find the end_pfn of the first active range of pfns in the node */
2495 i = first_active_region_index_in_nid(nid);
2496 if (i == -1)
2497 return 0;
2498
2499 /* Account for ranges before physical memory on this node */
2500 if (early_node_map[i].start_pfn > range_start_pfn)
2501 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2502
2503 prev_end_pfn = early_node_map[i].start_pfn;
2504
2505 /* Find all holes for the zone within the node */
2506 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2507
2508 /* No need to continue if prev_end_pfn is outside the zone */
2509 if (prev_end_pfn >= range_end_pfn)
2510 break;
2511
2512 /* Make sure the end of the zone is not within the hole */
2513 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2514 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2515
2516 /* Update the hole size cound and move on */
2517 if (start_pfn > range_start_pfn) {
2518 BUG_ON(prev_end_pfn > start_pfn);
2519 hole_pages += start_pfn - prev_end_pfn;
2520 }
2521 prev_end_pfn = early_node_map[i].end_pfn;
2522 }
2523
2524 /* Account for ranges past physical memory on this node */
2525 if (range_end_pfn > prev_end_pfn)
2526 hole_pages += range_end_pfn -
2527 max(range_start_pfn, prev_end_pfn);
2528
2529 return hole_pages;
2530}
2531
2532/**
2533 * absent_pages_in_range - Return number of page frames in holes within a range
2534 * @start_pfn: The start PFN to start searching for holes
2535 * @end_pfn: The end PFN to stop searching for holes
2536 *
2537 * It returns the number of pages frames in memory holes within a range.
2538 */
2539unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2540 unsigned long end_pfn)
2541{
2542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2543}
2544
2545/* Return the number of page frames in holes in a zone on a node */
2546unsigned long __init zone_absent_pages_in_node(int nid,
2547 unsigned long zone_type,
2548 unsigned long *ignored)
2549{
2550 unsigned long node_start_pfn, node_end_pfn;
2551 unsigned long zone_start_pfn, zone_end_pfn;
2552
2553 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2554 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2555 node_start_pfn);
2556 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2557 node_end_pfn);
2558
2559 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2560}
2561
2562#else
2563static inline unsigned long zone_spanned_pages_in_node(int nid,
2564 unsigned long zone_type,
2565 unsigned long *zones_size)
2566{
2567 return zones_size[zone_type];
2568}
2569
2570static inline unsigned long zone_absent_pages_in_node(int nid,
2571 unsigned long zone_type,
2572 unsigned long *zholes_size)
2573{
2574 if (!zholes_size)
2575 return 0;
2576
2577 return zholes_size[zone_type];
2578}
2579
2580#endif
2581
2582static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2583 unsigned long *zones_size, unsigned long *zholes_size)
2584{
2585 unsigned long realtotalpages, totalpages = 0;
2586 enum zone_type i;
2587
2588 for (i = 0; i < MAX_NR_ZONES; i++)
2589 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2590 zones_size);
2591 pgdat->node_spanned_pages = totalpages;
2592
2593 realtotalpages = totalpages;
2594 for (i = 0; i < MAX_NR_ZONES; i++)
2595 realtotalpages -=
2596 zone_absent_pages_in_node(pgdat->node_id, i,
2597 zholes_size);
2598 pgdat->node_present_pages = realtotalpages;
2599 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2600 realtotalpages);
2601}
2602
2603/*
2604 * Set up the zone data structures:
2605 * - mark all pages reserved
2606 * - mark all memory queues empty
2607 * - clear the memory bitmaps
2608 */
2609static void __meminit free_area_init_core(struct pglist_data *pgdat,
2610 unsigned long *zones_size, unsigned long *zholes_size)
2611{
2612 enum zone_type j;
2613 int nid = pgdat->node_id;
2614 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2615 int ret;
2616
2617 pgdat_resize_init(pgdat);
2618 pgdat->nr_zones = 0;
2619 init_waitqueue_head(&pgdat->kswapd_wait);
2620 pgdat->kswapd_max_order = 0;
2621
2622 for (j = 0; j < MAX_NR_ZONES; j++) {
2623 struct zone *zone = pgdat->node_zones + j;
2624 unsigned long size, realsize, memmap_pages;
2625
2626 size = zone_spanned_pages_in_node(nid, j, zones_size);
2627 realsize = size - zone_absent_pages_in_node(nid, j,
2628 zholes_size);
2629
2630 /*
2631 * Adjust realsize so that it accounts for how much memory
2632 * is used by this zone for memmap. This affects the watermark
2633 * and per-cpu initialisations
2634 */
2635 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2636 if (realsize >= memmap_pages) {
2637 realsize -= memmap_pages;
2638 printk(KERN_DEBUG
2639 " %s zone: %lu pages used for memmap\n",
2640 zone_names[j], memmap_pages);
2641 } else
2642 printk(KERN_WARNING
2643 " %s zone: %lu pages exceeds realsize %lu\n",
2644 zone_names[j], memmap_pages, realsize);
2645
2646 /* Account for reserved DMA pages */
2647 if (j == ZONE_DMA && realsize > dma_reserve) {
2648 realsize -= dma_reserve;
2649 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2650 dma_reserve);
2651 }
2652
2653 if (!is_highmem_idx(j))
2654 nr_kernel_pages += realsize;
2655 nr_all_pages += realsize;
2656
2657 zone->spanned_pages = size;
2658 zone->present_pages = realsize;
2659#ifdef CONFIG_NUMA
2660 zone->node = nid;
2661 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2662 / 100;
2663 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2664#endif
2665 zone->name = zone_names[j];
2666 spin_lock_init(&zone->lock);
2667 spin_lock_init(&zone->lru_lock);
2668 zone_seqlock_init(zone);
2669 zone->zone_pgdat = pgdat;
2670 zone->free_pages = 0;
2671
2672 zone->prev_priority = DEF_PRIORITY;
2673
2674 zone_pcp_init(zone);
2675 INIT_LIST_HEAD(&zone->active_list);
2676 INIT_LIST_HEAD(&zone->inactive_list);
2677 zone->nr_scan_active = 0;
2678 zone->nr_scan_inactive = 0;
2679 zone->nr_active = 0;
2680 zone->nr_inactive = 0;
2681 zap_zone_vm_stats(zone);
2682 atomic_set(&zone->reclaim_in_progress, 0);
2683 if (!size)
2684 continue;
2685
2686 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2687 BUG_ON(ret);
2688 zone_start_pfn += size;
2689 }
2690}
2691
2692static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2693{
2694 /* Skip empty nodes */
2695 if (!pgdat->node_spanned_pages)
2696 return;
2697
2698#ifdef CONFIG_FLAT_NODE_MEM_MAP
2699 /* ia64 gets its own node_mem_map, before this, without bootmem */
2700 if (!pgdat->node_mem_map) {
2701 unsigned long size, start, end;
2702 struct page *map;
2703
2704 /*
2705 * The zone's endpoints aren't required to be MAX_ORDER
2706 * aligned but the node_mem_map endpoints must be in order
2707 * for the buddy allocator to function correctly.
2708 */
2709 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2710 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2711 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2712 size = (end - start) * sizeof(struct page);
2713 map = alloc_remap(pgdat->node_id, size);
2714 if (!map)
2715 map = alloc_bootmem_node(pgdat, size);
2716 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2717 }
2718#ifdef CONFIG_FLATMEM
2719 /*
2720 * With no DISCONTIG, the global mem_map is just set as node 0's
2721 */
2722 if (pgdat == NODE_DATA(0)) {
2723 mem_map = NODE_DATA(0)->node_mem_map;
2724#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2725 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2726 mem_map -= pgdat->node_start_pfn;
2727#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2728 }
2729#endif
2730#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2731}
2732
2733void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2734 unsigned long *zones_size, unsigned long node_start_pfn,
2735 unsigned long *zholes_size)
2736{
2737 pgdat->node_id = nid;
2738 pgdat->node_start_pfn = node_start_pfn;
2739 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2740
2741 alloc_node_mem_map(pgdat);
2742
2743 free_area_init_core(pgdat, zones_size, zholes_size);
2744}
2745
2746#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2747/**
2748 * add_active_range - Register a range of PFNs backed by physical memory
2749 * @nid: The node ID the range resides on
2750 * @start_pfn: The start PFN of the available physical memory
2751 * @end_pfn: The end PFN of the available physical memory
2752 *
2753 * These ranges are stored in an early_node_map[] and later used by
2754 * free_area_init_nodes() to calculate zone sizes and holes. If the
2755 * range spans a memory hole, it is up to the architecture to ensure
2756 * the memory is not freed by the bootmem allocator. If possible
2757 * the range being registered will be merged with existing ranges.
2758 */
2759void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2760 unsigned long end_pfn)
2761{
2762 int i;
2763
2764 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2765 "%d entries of %d used\n",
2766 nid, start_pfn, end_pfn,
2767 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2768
2769 /* Merge with existing active regions if possible */
2770 for (i = 0; i < nr_nodemap_entries; i++) {
2771 if (early_node_map[i].nid != nid)
2772 continue;
2773
2774 /* Skip if an existing region covers this new one */
2775 if (start_pfn >= early_node_map[i].start_pfn &&
2776 end_pfn <= early_node_map[i].end_pfn)
2777 return;
2778
2779 /* Merge forward if suitable */
2780 if (start_pfn <= early_node_map[i].end_pfn &&
2781 end_pfn > early_node_map[i].end_pfn) {
2782 early_node_map[i].end_pfn = end_pfn;
2783 return;
2784 }
2785
2786 /* Merge backward if suitable */
2787 if (start_pfn < early_node_map[i].end_pfn &&
2788 end_pfn >= early_node_map[i].start_pfn) {
2789 early_node_map[i].start_pfn = start_pfn;
2790 return;
2791 }
2792 }
2793
2794 /* Check that early_node_map is large enough */
2795 if (i >= MAX_ACTIVE_REGIONS) {
2796 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2797 MAX_ACTIVE_REGIONS);
2798 return;
2799 }
2800
2801 early_node_map[i].nid = nid;
2802 early_node_map[i].start_pfn = start_pfn;
2803 early_node_map[i].end_pfn = end_pfn;
2804 nr_nodemap_entries = i + 1;
2805}
2806
2807/**
2808 * shrink_active_range - Shrink an existing registered range of PFNs
2809 * @nid: The node id the range is on that should be shrunk
2810 * @old_end_pfn: The old end PFN of the range
2811 * @new_end_pfn: The new PFN of the range
2812 *
2813 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2814 * The map is kept at the end physical page range that has already been
2815 * registered with add_active_range(). This function allows an arch to shrink
2816 * an existing registered range.
2817 */
2818void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2819 unsigned long new_end_pfn)
2820{
2821 int i;
2822
2823 /* Find the old active region end and shrink */
2824 for_each_active_range_index_in_nid(i, nid)
2825 if (early_node_map[i].end_pfn == old_end_pfn) {
2826 early_node_map[i].end_pfn = new_end_pfn;
2827 break;
2828 }
2829}
2830
2831/**
2832 * remove_all_active_ranges - Remove all currently registered regions
2833 *
2834 * During discovery, it may be found that a table like SRAT is invalid
2835 * and an alternative discovery method must be used. This function removes
2836 * all currently registered regions.
2837 */
2838void __init remove_all_active_ranges(void)
2839{
2840 memset(early_node_map, 0, sizeof(early_node_map));
2841 nr_nodemap_entries = 0;
2842#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2843 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2844 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2845#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2846}
2847
2848/* Compare two active node_active_regions */
2849static int __init cmp_node_active_region(const void *a, const void *b)
2850{
2851 struct node_active_region *arange = (struct node_active_region *)a;
2852 struct node_active_region *brange = (struct node_active_region *)b;
2853
2854 /* Done this way to avoid overflows */
2855 if (arange->start_pfn > brange->start_pfn)
2856 return 1;
2857 if (arange->start_pfn < brange->start_pfn)
2858 return -1;
2859
2860 return 0;
2861}
2862
2863/* sort the node_map by start_pfn */
2864static void __init sort_node_map(void)
2865{
2866 sort(early_node_map, (size_t)nr_nodemap_entries,
2867 sizeof(struct node_active_region),
2868 cmp_node_active_region, NULL);
2869}
2870
2871/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2872unsigned long __init find_min_pfn_for_node(unsigned long nid)
2873{
2874 int i;
2875
2876 /* Regions in the early_node_map can be in any order */
2877 sort_node_map();
2878
2879 /* Assuming a sorted map, the first range found has the starting pfn */
2880 for_each_active_range_index_in_nid(i, nid)
2881 return early_node_map[i].start_pfn;
2882
2883 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2884 return 0;
2885}
2886
2887/**
2888 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2889 *
2890 * It returns the minimum PFN based on information provided via
2891 * add_active_range().
2892 */
2893unsigned long __init find_min_pfn_with_active_regions(void)
2894{
2895 return find_min_pfn_for_node(MAX_NUMNODES);
2896}
2897
2898/**
2899 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2900 *
2901 * It returns the maximum PFN based on information provided via
2902 * add_active_range().
2903 */
2904unsigned long __init find_max_pfn_with_active_regions(void)
2905{
2906 int i;
2907 unsigned long max_pfn = 0;
2908
2909 for (i = 0; i < nr_nodemap_entries; i++)
2910 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2911
2912 return max_pfn;
2913}
2914
2915/**
2916 * free_area_init_nodes - Initialise all pg_data_t and zone data
2917 * @max_zone_pfn: an array of max PFNs for each zone
2918 *
2919 * This will call free_area_init_node() for each active node in the system.
2920 * Using the page ranges provided by add_active_range(), the size of each
2921 * zone in each node and their holes is calculated. If the maximum PFN
2922 * between two adjacent zones match, it is assumed that the zone is empty.
2923 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2924 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2925 * starts where the previous one ended. For example, ZONE_DMA32 starts
2926 * at arch_max_dma_pfn.
2927 */
2928void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2929{
2930 unsigned long nid;
2931 enum zone_type i;
2932
2933 /* Record where the zone boundaries are */
2934 memset(arch_zone_lowest_possible_pfn, 0,
2935 sizeof(arch_zone_lowest_possible_pfn));
2936 memset(arch_zone_highest_possible_pfn, 0,
2937 sizeof(arch_zone_highest_possible_pfn));
2938 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2939 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2940 for (i = 1; i < MAX_NR_ZONES; i++) {
2941 arch_zone_lowest_possible_pfn[i] =
2942 arch_zone_highest_possible_pfn[i-1];
2943 arch_zone_highest_possible_pfn[i] =
2944 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2945 }
2946
2947 /* Print out the zone ranges */
2948 printk("Zone PFN ranges:\n");
2949 for (i = 0; i < MAX_NR_ZONES; i++)
2950 printk(" %-8s %8lu -> %8lu\n",
2951 zone_names[i],
2952 arch_zone_lowest_possible_pfn[i],
2953 arch_zone_highest_possible_pfn[i]);
2954
2955 /* Print out the early_node_map[] */
2956 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2957 for (i = 0; i < nr_nodemap_entries; i++)
2958 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2959 early_node_map[i].start_pfn,
2960 early_node_map[i].end_pfn);
2961
2962 /* Initialise every node */
2963 for_each_online_node(nid) {
2964 pg_data_t *pgdat = NODE_DATA(nid);
2965 free_area_init_node(nid, pgdat, NULL,
2966 find_min_pfn_for_node(nid), NULL);
2967 }
2968}
2969#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2970
2971/**
2972 * set_dma_reserve - set the specified number of pages reserved in the first zone
2973 * @new_dma_reserve: The number of pages to mark reserved
2974 *
2975 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2976 * In the DMA zone, a significant percentage may be consumed by kernel image
2977 * and other unfreeable allocations which can skew the watermarks badly. This
2978 * function may optionally be used to account for unfreeable pages in the
2979 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2980 * smaller per-cpu batchsize.
2981 */
2982void __init set_dma_reserve(unsigned long new_dma_reserve)
2983{
2984 dma_reserve = new_dma_reserve;
2985}
2986
2987#ifndef CONFIG_NEED_MULTIPLE_NODES
2988static bootmem_data_t contig_bootmem_data;
2989struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2990
2991EXPORT_SYMBOL(contig_page_data);
2992#endif
2993
2994void __init free_area_init(unsigned long *zones_size)
2995{
2996 free_area_init_node(0, NODE_DATA(0), zones_size,
2997 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2998}
2999
3000static int page_alloc_cpu_notify(struct notifier_block *self,
3001 unsigned long action, void *hcpu)
3002{
3003 int cpu = (unsigned long)hcpu;
3004
3005 if (action == CPU_DEAD) {
3006 local_irq_disable();
3007 __drain_pages(cpu);
3008 vm_events_fold_cpu(cpu);
3009 local_irq_enable();
3010 refresh_cpu_vm_stats(cpu);
3011 }
3012 return NOTIFY_OK;
3013}
3014
3015void __init page_alloc_init(void)
3016{
3017 hotcpu_notifier(page_alloc_cpu_notify, 0);
3018}
3019
3020/*
3021 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3022 * or min_free_kbytes changes.
3023 */
3024static void calculate_totalreserve_pages(void)
3025{
3026 struct pglist_data *pgdat;
3027 unsigned long reserve_pages = 0;
3028 enum zone_type i, j;
3029
3030 for_each_online_pgdat(pgdat) {
3031 for (i = 0; i < MAX_NR_ZONES; i++) {
3032 struct zone *zone = pgdat->node_zones + i;
3033 unsigned long max = 0;
3034
3035 /* Find valid and maximum lowmem_reserve in the zone */
3036 for (j = i; j < MAX_NR_ZONES; j++) {
3037 if (zone->lowmem_reserve[j] > max)
3038 max = zone->lowmem_reserve[j];
3039 }
3040
3041 /* we treat pages_high as reserved pages. */
3042 max += zone->pages_high;
3043
3044 if (max > zone->present_pages)
3045 max = zone->present_pages;
3046 reserve_pages += max;
3047 }
3048 }
3049 totalreserve_pages = reserve_pages;
3050}
3051
3052/*
3053 * setup_per_zone_lowmem_reserve - called whenever
3054 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3055 * has a correct pages reserved value, so an adequate number of
3056 * pages are left in the zone after a successful __alloc_pages().
3057 */
3058static void setup_per_zone_lowmem_reserve(void)
3059{
3060 struct pglist_data *pgdat;
3061 enum zone_type j, idx;
3062
3063 for_each_online_pgdat(pgdat) {
3064 for (j = 0; j < MAX_NR_ZONES; j++) {
3065 struct zone *zone = pgdat->node_zones + j;
3066 unsigned long present_pages = zone->present_pages;
3067
3068 zone->lowmem_reserve[j] = 0;
3069
3070 idx = j;
3071 while (idx) {
3072 struct zone *lower_zone;
3073
3074 idx--;
3075
3076 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3077 sysctl_lowmem_reserve_ratio[idx] = 1;
3078
3079 lower_zone = pgdat->node_zones + idx;
3080 lower_zone->lowmem_reserve[j] = present_pages /
3081 sysctl_lowmem_reserve_ratio[idx];
3082 present_pages += lower_zone->present_pages;
3083 }
3084 }
3085 }
3086
3087 /* update totalreserve_pages */
3088 calculate_totalreserve_pages();
3089}
3090
3091/**
3092 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3093 *
3094 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3095 * with respect to min_free_kbytes.
3096 */
3097void setup_per_zone_pages_min(void)
3098{
3099 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3100 unsigned long lowmem_pages = 0;
3101 struct zone *zone;
3102 unsigned long flags;
3103
3104 /* Calculate total number of !ZONE_HIGHMEM pages */
3105 for_each_zone(zone) {
3106 if (!is_highmem(zone))
3107 lowmem_pages += zone->present_pages;
3108 }
3109
3110 for_each_zone(zone) {
3111 u64 tmp;
3112
3113 spin_lock_irqsave(&zone->lru_lock, flags);
3114 tmp = (u64)pages_min * zone->present_pages;
3115 do_div(tmp, lowmem_pages);
3116 if (is_highmem(zone)) {
3117 /*
3118 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3119 * need highmem pages, so cap pages_min to a small
3120 * value here.
3121 *
3122 * The (pages_high-pages_low) and (pages_low-pages_min)
3123 * deltas controls asynch page reclaim, and so should
3124 * not be capped for highmem.
3125 */
3126 int min_pages;
3127
3128 min_pages = zone->present_pages / 1024;
3129 if (min_pages < SWAP_CLUSTER_MAX)
3130 min_pages = SWAP_CLUSTER_MAX;
3131 if (min_pages > 128)
3132 min_pages = 128;
3133 zone->pages_min = min_pages;
3134 } else {
3135 /*
3136 * If it's a lowmem zone, reserve a number of pages
3137 * proportionate to the zone's size.
3138 */
3139 zone->pages_min = tmp;
3140 }
3141
3142 zone->pages_low = zone->pages_min + (tmp >> 2);
3143 zone->pages_high = zone->pages_min + (tmp >> 1);
3144 spin_unlock_irqrestore(&zone->lru_lock, flags);
3145 }
3146
3147 /* update totalreserve_pages */
3148 calculate_totalreserve_pages();
3149}
3150
3151/*
3152 * Initialise min_free_kbytes.
3153 *
3154 * For small machines we want it small (128k min). For large machines
3155 * we want it large (64MB max). But it is not linear, because network
3156 * bandwidth does not increase linearly with machine size. We use
3157 *
3158 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3159 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3160 *
3161 * which yields
3162 *
3163 * 16MB: 512k
3164 * 32MB: 724k
3165 * 64MB: 1024k
3166 * 128MB: 1448k
3167 * 256MB: 2048k
3168 * 512MB: 2896k
3169 * 1024MB: 4096k
3170 * 2048MB: 5792k
3171 * 4096MB: 8192k
3172 * 8192MB: 11584k
3173 * 16384MB: 16384k
3174 */
3175static int __init init_per_zone_pages_min(void)
3176{
3177 unsigned long lowmem_kbytes;
3178
3179 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3180
3181 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3182 if (min_free_kbytes < 128)
3183 min_free_kbytes = 128;
3184 if (min_free_kbytes > 65536)
3185 min_free_kbytes = 65536;
3186 setup_per_zone_pages_min();
3187 setup_per_zone_lowmem_reserve();
3188 return 0;
3189}
3190module_init(init_per_zone_pages_min)
3191
3192/*
3193 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3194 * that we can call two helper functions whenever min_free_kbytes
3195 * changes.
3196 */
3197int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3198 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3199{
3200 proc_dointvec(table, write, file, buffer, length, ppos);
3201 setup_per_zone_pages_min();
3202 return 0;
3203}
3204
3205#ifdef CONFIG_NUMA
3206int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3207 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3208{
3209 struct zone *zone;
3210 int rc;
3211
3212 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3213 if (rc)
3214 return rc;
3215
3216 for_each_zone(zone)
3217 zone->min_unmapped_pages = (zone->present_pages *
3218 sysctl_min_unmapped_ratio) / 100;
3219 return 0;
3220}
3221
3222int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3223 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3224{
3225 struct zone *zone;
3226 int rc;
3227
3228 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3229 if (rc)
3230 return rc;
3231
3232 for_each_zone(zone)
3233 zone->min_slab_pages = (zone->present_pages *
3234 sysctl_min_slab_ratio) / 100;
3235 return 0;
3236}
3237#endif
3238
3239/*
3240 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3241 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3242 * whenever sysctl_lowmem_reserve_ratio changes.
3243 *
3244 * The reserve ratio obviously has absolutely no relation with the
3245 * pages_min watermarks. The lowmem reserve ratio can only make sense
3246 * if in function of the boot time zone sizes.
3247 */
3248int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3249 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3250{
3251 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3252 setup_per_zone_lowmem_reserve();
3253 return 0;
3254}
3255
3256/*
3257 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3258 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3259 * can have before it gets flushed back to buddy allocator.
3260 */
3261
3262int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3263 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3264{
3265 struct zone *zone;
3266 unsigned int cpu;
3267 int ret;
3268
3269 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3270 if (!write || (ret == -EINVAL))
3271 return ret;
3272 for_each_zone(zone) {
3273 for_each_online_cpu(cpu) {
3274 unsigned long high;
3275 high = zone->present_pages / percpu_pagelist_fraction;
3276 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3277 }
3278 }
3279 return 0;
3280}
3281
3282int hashdist = HASHDIST_DEFAULT;
3283
3284#ifdef CONFIG_NUMA
3285static int __init set_hashdist(char *str)
3286{
3287 if (!str)
3288 return 0;
3289 hashdist = simple_strtoul(str, &str, 0);
3290 return 1;
3291}
3292__setup("hashdist=", set_hashdist);
3293#endif
3294
3295/*
3296 * allocate a large system hash table from bootmem
3297 * - it is assumed that the hash table must contain an exact power-of-2
3298 * quantity of entries
3299 * - limit is the number of hash buckets, not the total allocation size
3300 */
3301void *__init alloc_large_system_hash(const char *tablename,
3302 unsigned long bucketsize,
3303 unsigned long numentries,
3304 int scale,
3305 int flags,
3306 unsigned int *_hash_shift,
3307 unsigned int *_hash_mask,
3308 unsigned long limit)
3309{
3310 unsigned long long max = limit;
3311 unsigned long log2qty, size;
3312 void *table = NULL;
3313
3314 /* allow the kernel cmdline to have a say */
3315 if (!numentries) {
3316 /* round applicable memory size up to nearest megabyte */
3317 numentries = nr_kernel_pages;
3318 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3319 numentries >>= 20 - PAGE_SHIFT;
3320 numentries <<= 20 - PAGE_SHIFT;
3321
3322 /* limit to 1 bucket per 2^scale bytes of low memory */
3323 if (scale > PAGE_SHIFT)
3324 numentries >>= (scale - PAGE_SHIFT);
3325 else
3326 numentries <<= (PAGE_SHIFT - scale);
3327
3328 /* Make sure we've got at least a 0-order allocation.. */
3329 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3330 numentries = PAGE_SIZE / bucketsize;
3331 }
3332 numentries = roundup_pow_of_two(numentries);
3333
3334 /* limit allocation size to 1/16 total memory by default */
3335 if (max == 0) {
3336 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3337 do_div(max, bucketsize);
3338 }
3339
3340 if (numentries > max)
3341 numentries = max;
3342
3343 log2qty = ilog2(numentries);
3344
3345 do {
3346 size = bucketsize << log2qty;
3347 if (flags & HASH_EARLY)
3348 table = alloc_bootmem(size);
3349 else if (hashdist)
3350 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3351 else {
3352 unsigned long order;
3353 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3354 ;
3355 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3356 }
3357 } while (!table && size > PAGE_SIZE && --log2qty);
3358
3359 if (!table)
3360 panic("Failed to allocate %s hash table\n", tablename);
3361
3362 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3363 tablename,
3364 (1U << log2qty),
3365 ilog2(size) - PAGE_SHIFT,
3366 size);
3367
3368 if (_hash_shift)
3369 *_hash_shift = log2qty;
3370 if (_hash_mask)
3371 *_hash_mask = (1 << log2qty) - 1;
3372
3373 return table;
3374}
3375
3376#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3377struct page *pfn_to_page(unsigned long pfn)
3378{
3379 return __pfn_to_page(pfn);
3380}
3381unsigned long page_to_pfn(struct page *page)
3382{
3383 return __page_to_pfn(page);
3384}
3385EXPORT_SYMBOL(pfn_to_page);
3386EXPORT_SYMBOL(page_to_pfn);
3387#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3388
3389#if MAX_NUMNODES > 1
3390/*
3391 * Find the highest possible node id.
3392 */
3393int highest_possible_node_id(void)
3394{
3395 unsigned int node;
3396 unsigned int highest = 0;
3397
3398 for_each_node_mask(node, node_possible_map)
3399 highest = node;
3400 return highest;
3401}
3402EXPORT_SYMBOL(highest_possible_node_id);
3403#endif