]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/rmap.c
thp: increase split_huge_page() success rate
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
... / ...
CommitLineData
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
41 *
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
43 * ->tasklist_lock
44 * pte map lock
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
53#include <linux/ksm.h>
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
56#include <linux/export.h>
57#include <linux/memcontrol.h>
58#include <linux/mmu_notifier.h>
59#include <linux/migrate.h>
60#include <linux/hugetlb.h>
61#include <linux/backing-dev.h>
62#include <linux/page_idle.h>
63
64#include <asm/tlbflush.h>
65
66#include <trace/events/tlb.h>
67
68#include "internal.h"
69
70static struct kmem_cache *anon_vma_cachep;
71static struct kmem_cache *anon_vma_chain_cachep;
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
90}
91
92static inline void anon_vma_free(struct anon_vma *anon_vma)
93{
94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
95
96 /*
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104 *
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
107 * LOCK MB
108 * atomic_read() rwsem_is_locked()
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
113 might_sleep();
114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 anon_vma_lock_write(anon_vma);
116 anon_vma_unlock_write(anon_vma);
117 }
118
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120}
121
122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123{
124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125}
126
127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128{
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135{
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140}
141
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210 }
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217}
218
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
242 up_write(&root->rwsem);
243}
244
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258{
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304}
305
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312{
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
316
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
331
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
350 /*
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
354 */
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
362
363 return 0;
364
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
370}
371
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
376
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
394 }
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
411 BUG_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
419static void anon_vma_ctor(void *data)
420{
421 struct anon_vma *anon_vma = data;
422
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
435}
436
437/*
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
459 */
460struct anon_vma *page_get_anon_vma(struct page *page)
461{
462 struct anon_vma *anon_vma = NULL;
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
484 */
485 if (!page_mapped(page)) {
486 rcu_read_unlock();
487 put_anon_vma(anon_vma);
488 return NULL;
489 }
490out:
491 rcu_read_unlock();
492
493 return anon_vma;
494}
495
496/*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
503struct anon_vma *page_lock_anon_vma_read(struct page *page)
504{
505 struct anon_vma *anon_vma = NULL;
506 struct anon_vma *root_anon_vma;
507 unsigned long anon_mapping;
508
509 rcu_read_lock();
510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
517 root_anon_vma = READ_ONCE(anon_vma->root);
518 if (down_read_trylock(&root_anon_vma->rwsem)) {
519 /*
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
522 * not go away, see anon_vma_free().
523 */
524 if (!page_mapped(page)) {
525 up_read(&root_anon_vma->rwsem);
526 anon_vma = NULL;
527 }
528 goto out;
529 }
530
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
538 rcu_read_unlock();
539 put_anon_vma(anon_vma);
540 return NULL;
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
545 anon_vma_lock_read(anon_vma);
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
551 * we'll deadlock on the anon_vma_lock_write() recursion.
552 */
553 anon_vma_unlock_read(anon_vma);
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560out:
561 rcu_read_unlock();
562 return anon_vma;
563}
564
565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
566{
567 anon_vma_unlock_read(anon_vma);
568}
569
570#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571static void percpu_flush_tlb_batch_pages(void *data)
572{
573 /*
574 * All TLB entries are flushed on the assumption that it is
575 * cheaper to flush all TLBs and let them be refilled than
576 * flushing individual PFNs. Note that we do not track mm's
577 * to flush as that might simply be multiple full TLB flushes
578 * for no gain.
579 */
580 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
581 flush_tlb_local();
582}
583
584/*
585 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
586 * important if a PTE was dirty when it was unmapped that it's flushed
587 * before any IO is initiated on the page to prevent lost writes. Similarly,
588 * it must be flushed before freeing to prevent data leakage.
589 */
590void try_to_unmap_flush(void)
591{
592 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
593 int cpu;
594
595 if (!tlb_ubc->flush_required)
596 return;
597
598 cpu = get_cpu();
599
600 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
601
602 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
603 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
604
605 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
606 smp_call_function_many(&tlb_ubc->cpumask,
607 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
608 }
609 cpumask_clear(&tlb_ubc->cpumask);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
612 put_cpu();
613}
614
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
624static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
625 struct page *page, bool writable)
626{
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
630 tlb_ubc->flush_required = true;
631
632 /*
633 * If the PTE was dirty then it's best to assume it's writable. The
634 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
635 * before the page is queued for IO.
636 */
637 if (writable)
638 tlb_ubc->writable = true;
639}
640
641/*
642 * Returns true if the TLB flush should be deferred to the end of a batch of
643 * unmap operations to reduce IPIs.
644 */
645static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
646{
647 bool should_defer = false;
648
649 if (!(flags & TTU_BATCH_FLUSH))
650 return false;
651
652 /* If remote CPUs need to be flushed then defer batch the flush */
653 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
654 should_defer = true;
655 put_cpu();
656
657 return should_defer;
658}
659#else
660static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
661 struct page *page, bool writable)
662{
663}
664
665static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
666{
667 return false;
668}
669#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
670
671/*
672 * At what user virtual address is page expected in vma?
673 * Caller should check the page is actually part of the vma.
674 */
675unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
676{
677 unsigned long address;
678 if (PageAnon(page)) {
679 struct anon_vma *page__anon_vma = page_anon_vma(page);
680 /*
681 * Note: swapoff's unuse_vma() is more efficient with this
682 * check, and needs it to match anon_vma when KSM is active.
683 */
684 if (!vma->anon_vma || !page__anon_vma ||
685 vma->anon_vma->root != page__anon_vma->root)
686 return -EFAULT;
687 } else if (page->mapping) {
688 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
689 return -EFAULT;
690 } else
691 return -EFAULT;
692 address = __vma_address(page, vma);
693 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
694 return -EFAULT;
695 return address;
696}
697
698pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
699{
700 pgd_t *pgd;
701 pud_t *pud;
702 pmd_t *pmd = NULL;
703 pmd_t pmde;
704
705 pgd = pgd_offset(mm, address);
706 if (!pgd_present(*pgd))
707 goto out;
708
709 pud = pud_offset(pgd, address);
710 if (!pud_present(*pud))
711 goto out;
712
713 pmd = pmd_offset(pud, address);
714 /*
715 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
716 * without holding anon_vma lock for write. So when looking for a
717 * genuine pmde (in which to find pte), test present and !THP together.
718 */
719 pmde = *pmd;
720 barrier();
721 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
722 pmd = NULL;
723out:
724 return pmd;
725}
726
727/*
728 * Check that @page is mapped at @address into @mm.
729 *
730 * If @sync is false, page_check_address may perform a racy check to avoid
731 * the page table lock when the pte is not present (helpful when reclaiming
732 * highly shared pages).
733 *
734 * On success returns with pte mapped and locked.
735 */
736pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
737 unsigned long address, spinlock_t **ptlp, int sync)
738{
739 pmd_t *pmd;
740 pte_t *pte;
741 spinlock_t *ptl;
742
743 if (unlikely(PageHuge(page))) {
744 /* when pud is not present, pte will be NULL */
745 pte = huge_pte_offset(mm, address);
746 if (!pte)
747 return NULL;
748
749 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
750 goto check;
751 }
752
753 pmd = mm_find_pmd(mm, address);
754 if (!pmd)
755 return NULL;
756
757 pte = pte_offset_map(pmd, address);
758 /* Make a quick check before getting the lock */
759 if (!sync && !pte_present(*pte)) {
760 pte_unmap(pte);
761 return NULL;
762 }
763
764 ptl = pte_lockptr(mm, pmd);
765check:
766 spin_lock(ptl);
767 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
768 *ptlp = ptl;
769 return pte;
770 }
771 pte_unmap_unlock(pte, ptl);
772 return NULL;
773}
774
775/**
776 * page_mapped_in_vma - check whether a page is really mapped in a VMA
777 * @page: the page to test
778 * @vma: the VMA to test
779 *
780 * Returns 1 if the page is mapped into the page tables of the VMA, 0
781 * if the page is not mapped into the page tables of this VMA. Only
782 * valid for normal file or anonymous VMAs.
783 */
784int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
785{
786 unsigned long address;
787 pte_t *pte;
788 spinlock_t *ptl;
789
790 address = __vma_address(page, vma);
791 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
792 return 0;
793 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
794 if (!pte) /* the page is not in this mm */
795 return 0;
796 pte_unmap_unlock(pte, ptl);
797
798 return 1;
799}
800
801struct page_referenced_arg {
802 int mapcount;
803 int referenced;
804 unsigned long vm_flags;
805 struct mem_cgroup *memcg;
806};
807/*
808 * arg: page_referenced_arg will be passed
809 */
810static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
811 unsigned long address, void *arg)
812{
813 struct mm_struct *mm = vma->vm_mm;
814 spinlock_t *ptl;
815 int referenced = 0;
816 struct page_referenced_arg *pra = arg;
817 pgd_t *pgd;
818 pud_t *pud;
819 pmd_t *pmd;
820 pte_t *pte;
821
822 if (unlikely(PageHuge(page))) {
823 /* when pud is not present, pte will be NULL */
824 pte = huge_pte_offset(mm, address);
825 if (!pte)
826 return SWAP_AGAIN;
827
828 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
829 goto check_pte;
830 }
831
832 pgd = pgd_offset(mm, address);
833 if (!pgd_present(*pgd))
834 return SWAP_AGAIN;
835 pud = pud_offset(pgd, address);
836 if (!pud_present(*pud))
837 return SWAP_AGAIN;
838 pmd = pmd_offset(pud, address);
839
840 if (pmd_trans_huge(*pmd)) {
841 int ret = SWAP_AGAIN;
842
843 ptl = pmd_lock(mm, pmd);
844 if (!pmd_present(*pmd))
845 goto unlock_pmd;
846 if (unlikely(!pmd_trans_huge(*pmd))) {
847 spin_unlock(ptl);
848 goto map_pte;
849 }
850
851 if (pmd_page(*pmd) != page)
852 goto unlock_pmd;
853
854 if (vma->vm_flags & VM_LOCKED) {
855 pra->vm_flags |= VM_LOCKED;
856 ret = SWAP_FAIL; /* To break the loop */
857 goto unlock_pmd;
858 }
859
860 if (pmdp_clear_flush_young_notify(vma, address, pmd))
861 referenced++;
862 spin_unlock(ptl);
863 goto found;
864unlock_pmd:
865 spin_unlock(ptl);
866 return ret;
867 } else {
868 pmd_t pmde = *pmd;
869
870 barrier();
871 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
872 return SWAP_AGAIN;
873 }
874map_pte:
875 pte = pte_offset_map(pmd, address);
876 if (!pte_present(*pte)) {
877 pte_unmap(pte);
878 return SWAP_AGAIN;
879 }
880
881 ptl = pte_lockptr(mm, pmd);
882check_pte:
883 spin_lock(ptl);
884
885 if (!pte_present(*pte)) {
886 pte_unmap_unlock(pte, ptl);
887 return SWAP_AGAIN;
888 }
889
890 /* THP can be referenced by any subpage */
891 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
892 pte_unmap_unlock(pte, ptl);
893 return SWAP_AGAIN;
894 }
895
896 if (vma->vm_flags & VM_LOCKED) {
897 pte_unmap_unlock(pte, ptl);
898 pra->vm_flags |= VM_LOCKED;
899 return SWAP_FAIL; /* To break the loop */
900 }
901
902 if (ptep_clear_flush_young_notify(vma, address, pte)) {
903 /*
904 * Don't treat a reference through a sequentially read
905 * mapping as such. If the page has been used in
906 * another mapping, we will catch it; if this other
907 * mapping is already gone, the unmap path will have
908 * set PG_referenced or activated the page.
909 */
910 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
911 referenced++;
912 }
913 pte_unmap_unlock(pte, ptl);
914
915found:
916 if (referenced)
917 clear_page_idle(page);
918 if (test_and_clear_page_young(page))
919 referenced++;
920
921 if (referenced) {
922 pra->referenced++;
923 pra->vm_flags |= vma->vm_flags;
924 }
925
926 pra->mapcount--;
927 if (!pra->mapcount)
928 return SWAP_SUCCESS; /* To break the loop */
929
930 return SWAP_AGAIN;
931}
932
933static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
934{
935 struct page_referenced_arg *pra = arg;
936 struct mem_cgroup *memcg = pra->memcg;
937
938 if (!mm_match_cgroup(vma->vm_mm, memcg))
939 return true;
940
941 return false;
942}
943
944/**
945 * page_referenced - test if the page was referenced
946 * @page: the page to test
947 * @is_locked: caller holds lock on the page
948 * @memcg: target memory cgroup
949 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
950 *
951 * Quick test_and_clear_referenced for all mappings to a page,
952 * returns the number of ptes which referenced the page.
953 */
954int page_referenced(struct page *page,
955 int is_locked,
956 struct mem_cgroup *memcg,
957 unsigned long *vm_flags)
958{
959 int ret;
960 int we_locked = 0;
961 struct page_referenced_arg pra = {
962 .mapcount = total_mapcount(page),
963 .memcg = memcg,
964 };
965 struct rmap_walk_control rwc = {
966 .rmap_one = page_referenced_one,
967 .arg = (void *)&pra,
968 .anon_lock = page_lock_anon_vma_read,
969 };
970
971 *vm_flags = 0;
972 if (!page_mapped(page))
973 return 0;
974
975 if (!page_rmapping(page))
976 return 0;
977
978 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
979 we_locked = trylock_page(page);
980 if (!we_locked)
981 return 1;
982 }
983
984 /*
985 * If we are reclaiming on behalf of a cgroup, skip
986 * counting on behalf of references from different
987 * cgroups
988 */
989 if (memcg) {
990 rwc.invalid_vma = invalid_page_referenced_vma;
991 }
992
993 ret = rmap_walk(page, &rwc);
994 *vm_flags = pra.vm_flags;
995
996 if (we_locked)
997 unlock_page(page);
998
999 return pra.referenced;
1000}
1001
1002static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1003 unsigned long address, void *arg)
1004{
1005 struct mm_struct *mm = vma->vm_mm;
1006 pte_t *pte;
1007 spinlock_t *ptl;
1008 int ret = 0;
1009 int *cleaned = arg;
1010
1011 pte = page_check_address(page, mm, address, &ptl, 1);
1012 if (!pte)
1013 goto out;
1014
1015 if (pte_dirty(*pte) || pte_write(*pte)) {
1016 pte_t entry;
1017
1018 flush_cache_page(vma, address, pte_pfn(*pte));
1019 entry = ptep_clear_flush(vma, address, pte);
1020 entry = pte_wrprotect(entry);
1021 entry = pte_mkclean(entry);
1022 set_pte_at(mm, address, pte, entry);
1023 ret = 1;
1024 }
1025
1026 pte_unmap_unlock(pte, ptl);
1027
1028 if (ret) {
1029 mmu_notifier_invalidate_page(mm, address);
1030 (*cleaned)++;
1031 }
1032out:
1033 return SWAP_AGAIN;
1034}
1035
1036static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1037{
1038 if (vma->vm_flags & VM_SHARED)
1039 return false;
1040
1041 return true;
1042}
1043
1044int page_mkclean(struct page *page)
1045{
1046 int cleaned = 0;
1047 struct address_space *mapping;
1048 struct rmap_walk_control rwc = {
1049 .arg = (void *)&cleaned,
1050 .rmap_one = page_mkclean_one,
1051 .invalid_vma = invalid_mkclean_vma,
1052 };
1053
1054 BUG_ON(!PageLocked(page));
1055
1056 if (!page_mapped(page))
1057 return 0;
1058
1059 mapping = page_mapping(page);
1060 if (!mapping)
1061 return 0;
1062
1063 rmap_walk(page, &rwc);
1064
1065 return cleaned;
1066}
1067EXPORT_SYMBOL_GPL(page_mkclean);
1068
1069/**
1070 * page_move_anon_rmap - move a page to our anon_vma
1071 * @page: the page to move to our anon_vma
1072 * @vma: the vma the page belongs to
1073 * @address: the user virtual address mapped
1074 *
1075 * When a page belongs exclusively to one process after a COW event,
1076 * that page can be moved into the anon_vma that belongs to just that
1077 * process, so the rmap code will not search the parent or sibling
1078 * processes.
1079 */
1080void page_move_anon_rmap(struct page *page,
1081 struct vm_area_struct *vma, unsigned long address)
1082{
1083 struct anon_vma *anon_vma = vma->anon_vma;
1084
1085 VM_BUG_ON_PAGE(!PageLocked(page), page);
1086 VM_BUG_ON_VMA(!anon_vma, vma);
1087 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1088
1089 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1090 /*
1091 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1092 * simultaneously, so a concurrent reader (eg page_referenced()'s
1093 * PageAnon()) will not see one without the other.
1094 */
1095 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1096}
1097
1098/**
1099 * __page_set_anon_rmap - set up new anonymous rmap
1100 * @page: Page to add to rmap
1101 * @vma: VM area to add page to.
1102 * @address: User virtual address of the mapping
1103 * @exclusive: the page is exclusively owned by the current process
1104 */
1105static void __page_set_anon_rmap(struct page *page,
1106 struct vm_area_struct *vma, unsigned long address, int exclusive)
1107{
1108 struct anon_vma *anon_vma = vma->anon_vma;
1109
1110 BUG_ON(!anon_vma);
1111
1112 if (PageAnon(page))
1113 return;
1114
1115 /*
1116 * If the page isn't exclusively mapped into this vma,
1117 * we must use the _oldest_ possible anon_vma for the
1118 * page mapping!
1119 */
1120 if (!exclusive)
1121 anon_vma = anon_vma->root;
1122
1123 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1124 page->mapping = (struct address_space *) anon_vma;
1125 page->index = linear_page_index(vma, address);
1126}
1127
1128/**
1129 * __page_check_anon_rmap - sanity check anonymous rmap addition
1130 * @page: the page to add the mapping to
1131 * @vma: the vm area in which the mapping is added
1132 * @address: the user virtual address mapped
1133 */
1134static void __page_check_anon_rmap(struct page *page,
1135 struct vm_area_struct *vma, unsigned long address)
1136{
1137#ifdef CONFIG_DEBUG_VM
1138 /*
1139 * The page's anon-rmap details (mapping and index) are guaranteed to
1140 * be set up correctly at this point.
1141 *
1142 * We have exclusion against page_add_anon_rmap because the caller
1143 * always holds the page locked, except if called from page_dup_rmap,
1144 * in which case the page is already known to be setup.
1145 *
1146 * We have exclusion against page_add_new_anon_rmap because those pages
1147 * are initially only visible via the pagetables, and the pte is locked
1148 * over the call to page_add_new_anon_rmap.
1149 */
1150 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1151 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1152#endif
1153}
1154
1155/**
1156 * page_add_anon_rmap - add pte mapping to an anonymous page
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 * @compound: charge the page as compound or small page
1161 *
1162 * The caller needs to hold the pte lock, and the page must be locked in
1163 * the anon_vma case: to serialize mapping,index checking after setting,
1164 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1165 * (but PageKsm is never downgraded to PageAnon).
1166 */
1167void page_add_anon_rmap(struct page *page,
1168 struct vm_area_struct *vma, unsigned long address, bool compound)
1169{
1170 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1171}
1172
1173/*
1174 * Special version of the above for do_swap_page, which often runs
1175 * into pages that are exclusively owned by the current process.
1176 * Everybody else should continue to use page_add_anon_rmap above.
1177 */
1178void do_page_add_anon_rmap(struct page *page,
1179 struct vm_area_struct *vma, unsigned long address, int flags)
1180{
1181 bool compound = flags & RMAP_COMPOUND;
1182 bool first;
1183
1184 if (compound) {
1185 atomic_t *mapcount;
1186 VM_BUG_ON_PAGE(!PageLocked(page), page);
1187 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1188 mapcount = compound_mapcount_ptr(page);
1189 first = atomic_inc_and_test(mapcount);
1190 } else {
1191 first = atomic_inc_and_test(&page->_mapcount);
1192 }
1193
1194 if (first) {
1195 int nr = compound ? hpage_nr_pages(page) : 1;
1196 /*
1197 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1198 * these counters are not modified in interrupt context, and
1199 * pte lock(a spinlock) is held, which implies preemption
1200 * disabled.
1201 */
1202 if (compound) {
1203 __inc_zone_page_state(page,
1204 NR_ANON_TRANSPARENT_HUGEPAGES);
1205 }
1206 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1207 }
1208 if (unlikely(PageKsm(page)))
1209 return;
1210
1211 VM_BUG_ON_PAGE(!PageLocked(page), page);
1212
1213 /* address might be in next vma when migration races vma_adjust */
1214 if (first)
1215 __page_set_anon_rmap(page, vma, address,
1216 flags & RMAP_EXCLUSIVE);
1217 else
1218 __page_check_anon_rmap(page, vma, address);
1219}
1220
1221/**
1222 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1223 * @page: the page to add the mapping to
1224 * @vma: the vm area in which the mapping is added
1225 * @address: the user virtual address mapped
1226 * @compound: charge the page as compound or small page
1227 *
1228 * Same as page_add_anon_rmap but must only be called on *new* pages.
1229 * This means the inc-and-test can be bypassed.
1230 * Page does not have to be locked.
1231 */
1232void page_add_new_anon_rmap(struct page *page,
1233 struct vm_area_struct *vma, unsigned long address, bool compound)
1234{
1235 int nr = compound ? hpage_nr_pages(page) : 1;
1236
1237 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1238 SetPageSwapBacked(page);
1239 if (compound) {
1240 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1241 /* increment count (starts at -1) */
1242 atomic_set(compound_mapcount_ptr(page), 0);
1243 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1244 } else {
1245 /* Anon THP always mapped first with PMD */
1246 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1247 /* increment count (starts at -1) */
1248 atomic_set(&page->_mapcount, 0);
1249 }
1250 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1251 __page_set_anon_rmap(page, vma, address, 1);
1252}
1253
1254/**
1255 * page_add_file_rmap - add pte mapping to a file page
1256 * @page: the page to add the mapping to
1257 *
1258 * The caller needs to hold the pte lock.
1259 */
1260void page_add_file_rmap(struct page *page)
1261{
1262 struct mem_cgroup *memcg;
1263
1264 memcg = mem_cgroup_begin_page_stat(page);
1265 if (atomic_inc_and_test(&page->_mapcount)) {
1266 __inc_zone_page_state(page, NR_FILE_MAPPED);
1267 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1268 }
1269 mem_cgroup_end_page_stat(memcg);
1270}
1271
1272static void page_remove_file_rmap(struct page *page)
1273{
1274 struct mem_cgroup *memcg;
1275
1276 memcg = mem_cgroup_begin_page_stat(page);
1277
1278 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1279 if (unlikely(PageHuge(page))) {
1280 /* hugetlb pages are always mapped with pmds */
1281 atomic_dec(compound_mapcount_ptr(page));
1282 goto out;
1283 }
1284
1285 /* page still mapped by someone else? */
1286 if (!atomic_add_negative(-1, &page->_mapcount))
1287 goto out;
1288
1289 /*
1290 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1291 * these counters are not modified in interrupt context, and
1292 * pte lock(a spinlock) is held, which implies preemption disabled.
1293 */
1294 __dec_zone_page_state(page, NR_FILE_MAPPED);
1295 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1296
1297 if (unlikely(PageMlocked(page)))
1298 clear_page_mlock(page);
1299out:
1300 mem_cgroup_end_page_stat(memcg);
1301}
1302
1303static void page_remove_anon_compound_rmap(struct page *page)
1304{
1305 int i, nr;
1306
1307 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1308 return;
1309
1310 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1311 if (unlikely(PageHuge(page)))
1312 return;
1313
1314 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1315 return;
1316
1317 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1318
1319 if (TestClearPageDoubleMap(page)) {
1320 /*
1321 * Subpages can be mapped with PTEs too. Check how many of
1322 * themi are still mapped.
1323 */
1324 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1325 if (atomic_add_negative(-1, &page[i]._mapcount))
1326 nr++;
1327 }
1328 } else {
1329 nr = HPAGE_PMD_NR;
1330 }
1331
1332 if (unlikely(PageMlocked(page)))
1333 clear_page_mlock(page);
1334
1335 if (nr) {
1336 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1337 deferred_split_huge_page(page);
1338 }
1339}
1340
1341/**
1342 * page_remove_rmap - take down pte mapping from a page
1343 * @page: page to remove mapping from
1344 * @compound: uncharge the page as compound or small page
1345 *
1346 * The caller needs to hold the pte lock.
1347 */
1348void page_remove_rmap(struct page *page, bool compound)
1349{
1350 if (!PageAnon(page)) {
1351 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1352 page_remove_file_rmap(page);
1353 return;
1354 }
1355
1356 if (compound)
1357 return page_remove_anon_compound_rmap(page);
1358
1359 /* page still mapped by someone else? */
1360 if (!atomic_add_negative(-1, &page->_mapcount))
1361 return;
1362
1363 /*
1364 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1365 * these counters are not modified in interrupt context, and
1366 * pte lock(a spinlock) is held, which implies preemption disabled.
1367 */
1368 __dec_zone_page_state(page, NR_ANON_PAGES);
1369
1370 if (unlikely(PageMlocked(page)))
1371 clear_page_mlock(page);
1372
1373 if (PageTransCompound(page))
1374 deferred_split_huge_page(compound_head(page));
1375
1376 /*
1377 * It would be tidy to reset the PageAnon mapping here,
1378 * but that might overwrite a racing page_add_anon_rmap
1379 * which increments mapcount after us but sets mapping
1380 * before us: so leave the reset to free_hot_cold_page,
1381 * and remember that it's only reliable while mapped.
1382 * Leaving it set also helps swapoff to reinstate ptes
1383 * faster for those pages still in swapcache.
1384 */
1385}
1386
1387/*
1388 * @arg: enum ttu_flags will be passed to this argument
1389 */
1390static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1391 unsigned long address, void *arg)
1392{
1393 struct mm_struct *mm = vma->vm_mm;
1394 pte_t *pte;
1395 pte_t pteval;
1396 spinlock_t *ptl;
1397 int ret = SWAP_AGAIN;
1398 enum ttu_flags flags = (enum ttu_flags)arg;
1399
1400 /* munlock has nothing to gain from examining un-locked vmas */
1401 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1402 goto out;
1403
1404 pte = page_check_address(page, mm, address, &ptl, 0);
1405 if (!pte)
1406 goto out;
1407
1408 /*
1409 * If the page is mlock()d, we cannot swap it out.
1410 * If it's recently referenced (perhaps page_referenced
1411 * skipped over this mm) then we should reactivate it.
1412 */
1413 if (!(flags & TTU_IGNORE_MLOCK)) {
1414 if (vma->vm_flags & VM_LOCKED) {
1415 /* Holding pte lock, we do *not* need mmap_sem here */
1416 mlock_vma_page(page);
1417 ret = SWAP_MLOCK;
1418 goto out_unmap;
1419 }
1420 if (flags & TTU_MUNLOCK)
1421 goto out_unmap;
1422 }
1423 if (!(flags & TTU_IGNORE_ACCESS)) {
1424 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1425 ret = SWAP_FAIL;
1426 goto out_unmap;
1427 }
1428 }
1429
1430 /* Nuke the page table entry. */
1431 flush_cache_page(vma, address, page_to_pfn(page));
1432 if (should_defer_flush(mm, flags)) {
1433 /*
1434 * We clear the PTE but do not flush so potentially a remote
1435 * CPU could still be writing to the page. If the entry was
1436 * previously clean then the architecture must guarantee that
1437 * a clear->dirty transition on a cached TLB entry is written
1438 * through and traps if the PTE is unmapped.
1439 */
1440 pteval = ptep_get_and_clear(mm, address, pte);
1441
1442 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1443 } else {
1444 pteval = ptep_clear_flush(vma, address, pte);
1445 }
1446
1447 /* Move the dirty bit to the physical page now the pte is gone. */
1448 if (pte_dirty(pteval))
1449 set_page_dirty(page);
1450
1451 /* Update high watermark before we lower rss */
1452 update_hiwater_rss(mm);
1453
1454 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1455 if (PageHuge(page)) {
1456 hugetlb_count_sub(1 << compound_order(page), mm);
1457 } else {
1458 dec_mm_counter(mm, mm_counter(page));
1459 }
1460 set_pte_at(mm, address, pte,
1461 swp_entry_to_pte(make_hwpoison_entry(page)));
1462 } else if (pte_unused(pteval)) {
1463 /*
1464 * The guest indicated that the page content is of no
1465 * interest anymore. Simply discard the pte, vmscan
1466 * will take care of the rest.
1467 */
1468 dec_mm_counter(mm, mm_counter(page));
1469 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1470 swp_entry_t entry;
1471 pte_t swp_pte;
1472 /*
1473 * Store the pfn of the page in a special migration
1474 * pte. do_swap_page() will wait until the migration
1475 * pte is removed and then restart fault handling.
1476 */
1477 entry = make_migration_entry(page, pte_write(pteval));
1478 swp_pte = swp_entry_to_pte(entry);
1479 if (pte_soft_dirty(pteval))
1480 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1481 set_pte_at(mm, address, pte, swp_pte);
1482 } else if (PageAnon(page)) {
1483 swp_entry_t entry = { .val = page_private(page) };
1484 pte_t swp_pte;
1485 /*
1486 * Store the swap location in the pte.
1487 * See handle_pte_fault() ...
1488 */
1489 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1490 if (swap_duplicate(entry) < 0) {
1491 set_pte_at(mm, address, pte, pteval);
1492 ret = SWAP_FAIL;
1493 goto out_unmap;
1494 }
1495 if (list_empty(&mm->mmlist)) {
1496 spin_lock(&mmlist_lock);
1497 if (list_empty(&mm->mmlist))
1498 list_add(&mm->mmlist, &init_mm.mmlist);
1499 spin_unlock(&mmlist_lock);
1500 }
1501 dec_mm_counter(mm, MM_ANONPAGES);
1502 inc_mm_counter(mm, MM_SWAPENTS);
1503 swp_pte = swp_entry_to_pte(entry);
1504 if (pte_soft_dirty(pteval))
1505 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1506 set_pte_at(mm, address, pte, swp_pte);
1507 } else
1508 dec_mm_counter(mm, mm_counter_file(page));
1509
1510 page_remove_rmap(page, PageHuge(page));
1511 page_cache_release(page);
1512
1513out_unmap:
1514 pte_unmap_unlock(pte, ptl);
1515 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1516 mmu_notifier_invalidate_page(mm, address);
1517out:
1518 return ret;
1519}
1520
1521bool is_vma_temporary_stack(struct vm_area_struct *vma)
1522{
1523 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1524
1525 if (!maybe_stack)
1526 return false;
1527
1528 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1529 VM_STACK_INCOMPLETE_SETUP)
1530 return true;
1531
1532 return false;
1533}
1534
1535static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1536{
1537 return is_vma_temporary_stack(vma);
1538}
1539
1540static int page_not_mapped(struct page *page)
1541{
1542 return !page_mapped(page);
1543};
1544
1545/**
1546 * try_to_unmap - try to remove all page table mappings to a page
1547 * @page: the page to get unmapped
1548 * @flags: action and flags
1549 *
1550 * Tries to remove all the page table entries which are mapping this
1551 * page, used in the pageout path. Caller must hold the page lock.
1552 * Return values are:
1553 *
1554 * SWAP_SUCCESS - we succeeded in removing all mappings
1555 * SWAP_AGAIN - we missed a mapping, try again later
1556 * SWAP_FAIL - the page is unswappable
1557 * SWAP_MLOCK - page is mlocked.
1558 */
1559int try_to_unmap(struct page *page, enum ttu_flags flags)
1560{
1561 int ret;
1562 struct rmap_walk_control rwc = {
1563 .rmap_one = try_to_unmap_one,
1564 .arg = (void *)flags,
1565 .done = page_not_mapped,
1566 .anon_lock = page_lock_anon_vma_read,
1567 };
1568
1569 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1570
1571 /*
1572 * During exec, a temporary VMA is setup and later moved.
1573 * The VMA is moved under the anon_vma lock but not the
1574 * page tables leading to a race where migration cannot
1575 * find the migration ptes. Rather than increasing the
1576 * locking requirements of exec(), migration skips
1577 * temporary VMAs until after exec() completes.
1578 */
1579 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1580 rwc.invalid_vma = invalid_migration_vma;
1581
1582 ret = rmap_walk(page, &rwc);
1583
1584 if (ret != SWAP_MLOCK && !page_mapped(page))
1585 ret = SWAP_SUCCESS;
1586 return ret;
1587}
1588
1589/**
1590 * try_to_munlock - try to munlock a page
1591 * @page: the page to be munlocked
1592 *
1593 * Called from munlock code. Checks all of the VMAs mapping the page
1594 * to make sure nobody else has this page mlocked. The page will be
1595 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1596 *
1597 * Return values are:
1598 *
1599 * SWAP_AGAIN - no vma is holding page mlocked, or,
1600 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1601 * SWAP_FAIL - page cannot be located at present
1602 * SWAP_MLOCK - page is now mlocked.
1603 */
1604int try_to_munlock(struct page *page)
1605{
1606 int ret;
1607 struct rmap_walk_control rwc = {
1608 .rmap_one = try_to_unmap_one,
1609 .arg = (void *)TTU_MUNLOCK,
1610 .done = page_not_mapped,
1611 .anon_lock = page_lock_anon_vma_read,
1612
1613 };
1614
1615 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1616
1617 ret = rmap_walk(page, &rwc);
1618 return ret;
1619}
1620
1621void __put_anon_vma(struct anon_vma *anon_vma)
1622{
1623 struct anon_vma *root = anon_vma->root;
1624
1625 anon_vma_free(anon_vma);
1626 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1627 anon_vma_free(root);
1628}
1629
1630static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1631 struct rmap_walk_control *rwc)
1632{
1633 struct anon_vma *anon_vma;
1634
1635 if (rwc->anon_lock)
1636 return rwc->anon_lock(page);
1637
1638 /*
1639 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1640 * because that depends on page_mapped(); but not all its usages
1641 * are holding mmap_sem. Users without mmap_sem are required to
1642 * take a reference count to prevent the anon_vma disappearing
1643 */
1644 anon_vma = page_anon_vma(page);
1645 if (!anon_vma)
1646 return NULL;
1647
1648 anon_vma_lock_read(anon_vma);
1649 return anon_vma;
1650}
1651
1652/*
1653 * rmap_walk_anon - do something to anonymous page using the object-based
1654 * rmap method
1655 * @page: the page to be handled
1656 * @rwc: control variable according to each walk type
1657 *
1658 * Find all the mappings of a page using the mapping pointer and the vma chains
1659 * contained in the anon_vma struct it points to.
1660 *
1661 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1662 * where the page was found will be held for write. So, we won't recheck
1663 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1664 * LOCKED.
1665 */
1666static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1667{
1668 struct anon_vma *anon_vma;
1669 pgoff_t pgoff;
1670 struct anon_vma_chain *avc;
1671 int ret = SWAP_AGAIN;
1672
1673 anon_vma = rmap_walk_anon_lock(page, rwc);
1674 if (!anon_vma)
1675 return ret;
1676
1677 pgoff = page_to_pgoff(page);
1678 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1679 struct vm_area_struct *vma = avc->vma;
1680 unsigned long address = vma_address(page, vma);
1681
1682 cond_resched();
1683
1684 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1685 continue;
1686
1687 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1688 if (ret != SWAP_AGAIN)
1689 break;
1690 if (rwc->done && rwc->done(page))
1691 break;
1692 }
1693 anon_vma_unlock_read(anon_vma);
1694 return ret;
1695}
1696
1697/*
1698 * rmap_walk_file - do something to file page using the object-based rmap method
1699 * @page: the page to be handled
1700 * @rwc: control variable according to each walk type
1701 *
1702 * Find all the mappings of a page using the mapping pointer and the vma chains
1703 * contained in the address_space struct it points to.
1704 *
1705 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1706 * where the page was found will be held for write. So, we won't recheck
1707 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1708 * LOCKED.
1709 */
1710static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1711{
1712 struct address_space *mapping = page->mapping;
1713 pgoff_t pgoff;
1714 struct vm_area_struct *vma;
1715 int ret = SWAP_AGAIN;
1716
1717 /*
1718 * The page lock not only makes sure that page->mapping cannot
1719 * suddenly be NULLified by truncation, it makes sure that the
1720 * structure at mapping cannot be freed and reused yet,
1721 * so we can safely take mapping->i_mmap_rwsem.
1722 */
1723 VM_BUG_ON_PAGE(!PageLocked(page), page);
1724
1725 if (!mapping)
1726 return ret;
1727
1728 pgoff = page_to_pgoff(page);
1729 i_mmap_lock_read(mapping);
1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731 unsigned long address = vma_address(page, vma);
1732
1733 cond_resched();
1734
1735 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1736 continue;
1737
1738 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1739 if (ret != SWAP_AGAIN)
1740 goto done;
1741 if (rwc->done && rwc->done(page))
1742 goto done;
1743 }
1744
1745done:
1746 i_mmap_unlock_read(mapping);
1747 return ret;
1748}
1749
1750int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1751{
1752 if (unlikely(PageKsm(page)))
1753 return rmap_walk_ksm(page, rwc);
1754 else if (PageAnon(page))
1755 return rmap_walk_anon(page, rwc);
1756 else
1757 return rmap_walk_file(page, rwc);
1758}
1759
1760#ifdef CONFIG_HUGETLB_PAGE
1761/*
1762 * The following three functions are for anonymous (private mapped) hugepages.
1763 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1764 * and no lru code, because we handle hugepages differently from common pages.
1765 */
1766static void __hugepage_set_anon_rmap(struct page *page,
1767 struct vm_area_struct *vma, unsigned long address, int exclusive)
1768{
1769 struct anon_vma *anon_vma = vma->anon_vma;
1770
1771 BUG_ON(!anon_vma);
1772
1773 if (PageAnon(page))
1774 return;
1775 if (!exclusive)
1776 anon_vma = anon_vma->root;
1777
1778 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1779 page->mapping = (struct address_space *) anon_vma;
1780 page->index = linear_page_index(vma, address);
1781}
1782
1783void hugepage_add_anon_rmap(struct page *page,
1784 struct vm_area_struct *vma, unsigned long address)
1785{
1786 struct anon_vma *anon_vma = vma->anon_vma;
1787 int first;
1788
1789 BUG_ON(!PageLocked(page));
1790 BUG_ON(!anon_vma);
1791 /* address might be in next vma when migration races vma_adjust */
1792 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1793 if (first)
1794 __hugepage_set_anon_rmap(page, vma, address, 0);
1795}
1796
1797void hugepage_add_new_anon_rmap(struct page *page,
1798 struct vm_area_struct *vma, unsigned long address)
1799{
1800 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1801 atomic_set(compound_mapcount_ptr(page), 0);
1802 __hugepage_set_anon_rmap(page, vma, address, 1);
1803}
1804#endif /* CONFIG_HUGETLB_PAGE */