]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/rmap.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
... / ...
CommitLineData
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48#include <linux/mm.h>
49#include <linux/sched/mm.h>
50#include <linux/pagemap.h>
51#include <linux/swap.h>
52#include <linux/swapops.h>
53#include <linux/slab.h>
54#include <linux/init.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/rcupdate.h>
58#include <linux/export.h>
59#include <linux/memcontrol.h>
60#include <linux/mmu_notifier.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/backing-dev.h>
64#include <linux/page_idle.h>
65
66#include <asm/tlbflush.h>
67
68#include <trace/events/tlb.h>
69
70#include "internal.h"
71
72static struct kmem_cache *anon_vma_cachep;
73static struct kmem_cache *anon_vma_chain_cachep;
74
75static inline struct anon_vma *anon_vma_alloc(void)
76{
77 struct anon_vma *anon_vma;
78
79 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
80 if (anon_vma) {
81 atomic_set(&anon_vma->refcount, 1);
82 anon_vma->degree = 1; /* Reference for first vma */
83 anon_vma->parent = anon_vma;
84 /*
85 * Initialise the anon_vma root to point to itself. If called
86 * from fork, the root will be reset to the parents anon_vma.
87 */
88 anon_vma->root = anon_vma;
89 }
90
91 return anon_vma;
92}
93
94static inline void anon_vma_free(struct anon_vma *anon_vma)
95{
96 VM_BUG_ON(atomic_read(&anon_vma->refcount));
97
98 /*
99 * Synchronize against page_lock_anon_vma_read() such that
100 * we can safely hold the lock without the anon_vma getting
101 * freed.
102 *
103 * Relies on the full mb implied by the atomic_dec_and_test() from
104 * put_anon_vma() against the acquire barrier implied by
105 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
106 *
107 * page_lock_anon_vma_read() VS put_anon_vma()
108 * down_read_trylock() atomic_dec_and_test()
109 * LOCK MB
110 * atomic_read() rwsem_is_locked()
111 *
112 * LOCK should suffice since the actual taking of the lock must
113 * happen _before_ what follows.
114 */
115 might_sleep();
116 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
117 anon_vma_lock_write(anon_vma);
118 anon_vma_unlock_write(anon_vma);
119 }
120
121 kmem_cache_free(anon_vma_cachep, anon_vma);
122}
123
124static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
125{
126 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
127}
128
129static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
130{
131 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
132}
133
134static void anon_vma_chain_link(struct vm_area_struct *vma,
135 struct anon_vma_chain *avc,
136 struct anon_vma *anon_vma)
137{
138 avc->vma = vma;
139 avc->anon_vma = anon_vma;
140 list_add(&avc->same_vma, &vma->anon_vma_chain);
141 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
142}
143
144/**
145 * __anon_vma_prepare - attach an anon_vma to a memory region
146 * @vma: the memory region in question
147 *
148 * This makes sure the memory mapping described by 'vma' has
149 * an 'anon_vma' attached to it, so that we can associate the
150 * anonymous pages mapped into it with that anon_vma.
151 *
152 * The common case will be that we already have one, which
153 * is handled inline by anon_vma_prepare(). But if
154 * not we either need to find an adjacent mapping that we
155 * can re-use the anon_vma from (very common when the only
156 * reason for splitting a vma has been mprotect()), or we
157 * allocate a new one.
158 *
159 * Anon-vma allocations are very subtle, because we may have
160 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
161 * and that may actually touch the spinlock even in the newly
162 * allocated vma (it depends on RCU to make sure that the
163 * anon_vma isn't actually destroyed).
164 *
165 * As a result, we need to do proper anon_vma locking even
166 * for the new allocation. At the same time, we do not want
167 * to do any locking for the common case of already having
168 * an anon_vma.
169 *
170 * This must be called with the mmap_sem held for reading.
171 */
172int __anon_vma_prepare(struct vm_area_struct *vma)
173{
174 struct mm_struct *mm = vma->vm_mm;
175 struct anon_vma *anon_vma, *allocated;
176 struct anon_vma_chain *avc;
177
178 might_sleep();
179
180 avc = anon_vma_chain_alloc(GFP_KERNEL);
181 if (!avc)
182 goto out_enomem;
183
184 anon_vma = find_mergeable_anon_vma(vma);
185 allocated = NULL;
186 if (!anon_vma) {
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
189 goto out_enomem_free_avc;
190 allocated = anon_vma;
191 }
192
193 anon_vma_lock_write(anon_vma);
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
198 anon_vma_chain_link(vma, avc, anon_vma);
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
201 allocated = NULL;
202 avc = NULL;
203 }
204 spin_unlock(&mm->page_table_lock);
205 anon_vma_unlock_write(anon_vma);
206
207 if (unlikely(allocated))
208 put_anon_vma(allocated);
209 if (unlikely(avc))
210 anon_vma_chain_free(avc);
211
212 return 0;
213
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
218}
219
220/*
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
224 *
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
227 */
228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229{
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
233 up_write(&root->rwsem);
234 root = new_root;
235 down_write(&root->rwsem);
236 }
237 return root;
238}
239
240static inline void unlock_anon_vma_root(struct anon_vma *root)
241{
242 if (root)
243 up_write(&root->rwsem);
244}
245
246/*
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
249 *
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
257 */
258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259{
260 struct anon_vma_chain *avc, *pavc;
261 struct anon_vma *root = NULL;
262
263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 struct anon_vma *anon_vma;
265
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
273 }
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
277
278 /*
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
281 *
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
285 */
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
289 }
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
292 unlock_anon_vma_root(root);
293 return 0;
294
295 enomem_failure:
296 /*
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
301 */
302 dst->anon_vma = NULL;
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
305}
306
307/*
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
311 */
312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313{
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
316 int error;
317
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
321
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
324
325 /*
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
328 */
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
332
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
336
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
341 avc = anon_vma_chain_alloc(GFP_KERNEL);
342 if (!avc)
343 goto out_error_free_anon_vma;
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
350 anon_vma->parent = pvma->anon_vma;
351 /*
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
355 */
356 get_anon_vma(anon_vma->root);
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
359 anon_vma_lock_write(anon_vma);
360 anon_vma_chain_link(vma, avc, anon_vma);
361 anon_vma->parent->degree++;
362 anon_vma_unlock_write(anon_vma);
363
364 return 0;
365
366 out_error_free_anon_vma:
367 put_anon_vma(anon_vma);
368 out_error:
369 unlink_anon_vmas(vma);
370 return -ENOMEM;
371}
372
373void unlink_anon_vmas(struct vm_area_struct *vma)
374{
375 struct anon_vma_chain *avc, *next;
376 struct anon_vma *root = NULL;
377
378 /*
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 */
382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 struct anon_vma *anon_vma = avc->anon_vma;
384
385 root = lock_anon_vma_root(root, anon_vma);
386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387
388 /*
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
391 */
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
394 continue;
395 }
396
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
399 }
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
402 unlock_anon_vma_root(root);
403
404 /*
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 * needing to write-acquire the anon_vma->root->rwsem.
408 */
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
411
412 VM_WARN_ON(anon_vma->degree);
413 put_anon_vma(anon_vma);
414
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418}
419
420static void anon_vma_ctor(void *data)
421{
422 struct anon_vma *anon_vma = data;
423
424 init_rwsem(&anon_vma->rwsem);
425 atomic_set(&anon_vma->refcount, 0);
426 anon_vma->rb_root = RB_ROOT;
427}
428
429void __init anon_vma_init(void)
430{
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
436}
437
438/*
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 *
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
444 *
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
447 *
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 *
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
456 *
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
460 */
461struct anon_vma *page_get_anon_vma(struct page *page)
462{
463 struct anon_vma *anon_vma = NULL;
464 unsigned long anon_mapping;
465
466 rcu_read_lock();
467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 goto out;
470 if (!page_mapped(page))
471 goto out;
472
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 /*
480 * If this page is still mapped, then its anon_vma cannot have been
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
485 */
486 if (!page_mapped(page)) {
487 rcu_read_unlock();
488 put_anon_vma(anon_vma);
489 return NULL;
490 }
491out:
492 rcu_read_unlock();
493
494 return anon_vma;
495}
496
497/*
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 *
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
503 */
504struct anon_vma *page_lock_anon_vma_read(struct page *page)
505{
506 struct anon_vma *anon_vma = NULL;
507 struct anon_vma *root_anon_vma;
508 unsigned long anon_mapping;
509
510 rcu_read_lock();
511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 root_anon_vma = READ_ONCE(anon_vma->root);
519 if (down_read_trylock(&root_anon_vma->rwsem)) {
520 /*
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
523 * not go away, see anon_vma_free().
524 */
525 if (!page_mapped(page)) {
526 up_read(&root_anon_vma->rwsem);
527 anon_vma = NULL;
528 }
529 goto out;
530 }
531
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
536 }
537
538 if (!page_mapped(page)) {
539 rcu_read_unlock();
540 put_anon_vma(anon_vma);
541 return NULL;
542 }
543
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
546 anon_vma_lock_read(anon_vma);
547
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 /*
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
552 * we'll deadlock on the anon_vma_lock_write() recursion.
553 */
554 anon_vma_unlock_read(anon_vma);
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
557 }
558
559 return anon_vma;
560
561out:
562 rcu_read_unlock();
563 return anon_vma;
564}
565
566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567{
568 anon_vma_unlock_read(anon_vma);
569}
570
571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572/*
573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574 * important if a PTE was dirty when it was unmapped that it's flushed
575 * before any IO is initiated on the page to prevent lost writes. Similarly,
576 * it must be flushed before freeing to prevent data leakage.
577 */
578void try_to_unmap_flush(void)
579{
580 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 int cpu;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 cpu = get_cpu();
587
588 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 local_flush_tlb();
591 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
592 }
593
594 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
596 cpumask_clear(&tlb_ubc->cpumask);
597 tlb_ubc->flush_required = false;
598 tlb_ubc->writable = false;
599 put_cpu();
600}
601
602/* Flush iff there are potentially writable TLB entries that can race with IO */
603void try_to_unmap_flush_dirty(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
607 if (tlb_ubc->writable)
608 try_to_unmap_flush();
609}
610
611static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
612{
613 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614
615 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
616 tlb_ubc->flush_required = true;
617
618 /*
619 * If the PTE was dirty then it's best to assume it's writable. The
620 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
621 * before the page is queued for IO.
622 */
623 if (writable)
624 tlb_ubc->writable = true;
625}
626
627/*
628 * Returns true if the TLB flush should be deferred to the end of a batch of
629 * unmap operations to reduce IPIs.
630 */
631static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
632{
633 bool should_defer = false;
634
635 if (!(flags & TTU_BATCH_FLUSH))
636 return false;
637
638 /* If remote CPUs need to be flushed then defer batch the flush */
639 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
640 should_defer = true;
641 put_cpu();
642
643 return should_defer;
644}
645#else
646static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
647{
648}
649
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 return false;
653}
654#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
655
656/*
657 * At what user virtual address is page expected in vma?
658 * Caller should check the page is actually part of the vma.
659 */
660unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
661{
662 unsigned long address;
663 if (PageAnon(page)) {
664 struct anon_vma *page__anon_vma = page_anon_vma(page);
665 /*
666 * Note: swapoff's unuse_vma() is more efficient with this
667 * check, and needs it to match anon_vma when KSM is active.
668 */
669 if (!vma->anon_vma || !page__anon_vma ||
670 vma->anon_vma->root != page__anon_vma->root)
671 return -EFAULT;
672 } else if (page->mapping) {
673 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
674 return -EFAULT;
675 } else
676 return -EFAULT;
677 address = __vma_address(page, vma);
678 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
679 return -EFAULT;
680 return address;
681}
682
683pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
684{
685 pgd_t *pgd;
686 pud_t *pud;
687 pmd_t *pmd = NULL;
688 pmd_t pmde;
689
690 pgd = pgd_offset(mm, address);
691 if (!pgd_present(*pgd))
692 goto out;
693
694 pud = pud_offset(pgd, address);
695 if (!pud_present(*pud))
696 goto out;
697
698 pmd = pmd_offset(pud, address);
699 /*
700 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
701 * without holding anon_vma lock for write. So when looking for a
702 * genuine pmde (in which to find pte), test present and !THP together.
703 */
704 pmde = *pmd;
705 barrier();
706 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
707 pmd = NULL;
708out:
709 return pmd;
710}
711
712struct page_referenced_arg {
713 int mapcount;
714 int referenced;
715 unsigned long vm_flags;
716 struct mem_cgroup *memcg;
717};
718/*
719 * arg: page_referenced_arg will be passed
720 */
721static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
722 unsigned long address, void *arg)
723{
724 struct page_referenced_arg *pra = arg;
725 struct page_vma_mapped_walk pvmw = {
726 .page = page,
727 .vma = vma,
728 .address = address,
729 };
730 int referenced = 0;
731
732 while (page_vma_mapped_walk(&pvmw)) {
733 address = pvmw.address;
734
735 if (vma->vm_flags & VM_LOCKED) {
736 page_vma_mapped_walk_done(&pvmw);
737 pra->vm_flags |= VM_LOCKED;
738 return SWAP_FAIL; /* To break the loop */
739 }
740
741 if (pvmw.pte) {
742 if (ptep_clear_flush_young_notify(vma, address,
743 pvmw.pte)) {
744 /*
745 * Don't treat a reference through
746 * a sequentially read mapping as such.
747 * If the page has been used in another mapping,
748 * we will catch it; if this other mapping is
749 * already gone, the unmap path will have set
750 * PG_referenced or activated the page.
751 */
752 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
753 referenced++;
754 }
755 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
756 if (pmdp_clear_flush_young_notify(vma, address,
757 pvmw.pmd))
758 referenced++;
759 } else {
760 /* unexpected pmd-mapped page? */
761 WARN_ON_ONCE(1);
762 }
763
764 pra->mapcount--;
765 }
766
767 if (referenced)
768 clear_page_idle(page);
769 if (test_and_clear_page_young(page))
770 referenced++;
771
772 if (referenced) {
773 pra->referenced++;
774 pra->vm_flags |= vma->vm_flags;
775 }
776
777 if (!pra->mapcount)
778 return SWAP_SUCCESS; /* To break the loop */
779
780 return SWAP_AGAIN;
781}
782
783static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
784{
785 struct page_referenced_arg *pra = arg;
786 struct mem_cgroup *memcg = pra->memcg;
787
788 if (!mm_match_cgroup(vma->vm_mm, memcg))
789 return true;
790
791 return false;
792}
793
794/**
795 * page_referenced - test if the page was referenced
796 * @page: the page to test
797 * @is_locked: caller holds lock on the page
798 * @memcg: target memory cgroup
799 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
800 *
801 * Quick test_and_clear_referenced for all mappings to a page,
802 * returns the number of ptes which referenced the page.
803 */
804int page_referenced(struct page *page,
805 int is_locked,
806 struct mem_cgroup *memcg,
807 unsigned long *vm_flags)
808{
809 int ret;
810 int we_locked = 0;
811 struct page_referenced_arg pra = {
812 .mapcount = total_mapcount(page),
813 .memcg = memcg,
814 };
815 struct rmap_walk_control rwc = {
816 .rmap_one = page_referenced_one,
817 .arg = (void *)&pra,
818 .anon_lock = page_lock_anon_vma_read,
819 };
820
821 *vm_flags = 0;
822 if (!page_mapped(page))
823 return 0;
824
825 if (!page_rmapping(page))
826 return 0;
827
828 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
829 we_locked = trylock_page(page);
830 if (!we_locked)
831 return 1;
832 }
833
834 /*
835 * If we are reclaiming on behalf of a cgroup, skip
836 * counting on behalf of references from different
837 * cgroups
838 */
839 if (memcg) {
840 rwc.invalid_vma = invalid_page_referenced_vma;
841 }
842
843 ret = rmap_walk(page, &rwc);
844 *vm_flags = pra.vm_flags;
845
846 if (we_locked)
847 unlock_page(page);
848
849 return pra.referenced;
850}
851
852static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
853 unsigned long address, void *arg)
854{
855 struct page_vma_mapped_walk pvmw = {
856 .page = page,
857 .vma = vma,
858 .address = address,
859 .flags = PVMW_SYNC,
860 };
861 int *cleaned = arg;
862
863 while (page_vma_mapped_walk(&pvmw)) {
864 int ret = 0;
865 address = pvmw.address;
866 if (pvmw.pte) {
867 pte_t entry;
868 pte_t *pte = pvmw.pte;
869
870 if (!pte_dirty(*pte) && !pte_write(*pte))
871 continue;
872
873 flush_cache_page(vma, address, pte_pfn(*pte));
874 entry = ptep_clear_flush(vma, address, pte);
875 entry = pte_wrprotect(entry);
876 entry = pte_mkclean(entry);
877 set_pte_at(vma->vm_mm, address, pte, entry);
878 ret = 1;
879 } else {
880#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
881 pmd_t *pmd = pvmw.pmd;
882 pmd_t entry;
883
884 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
885 continue;
886
887 flush_cache_page(vma, address, page_to_pfn(page));
888 entry = pmdp_huge_clear_flush(vma, address, pmd);
889 entry = pmd_wrprotect(entry);
890 entry = pmd_mkclean(entry);
891 set_pmd_at(vma->vm_mm, address, pmd, entry);
892 ret = 1;
893#else
894 /* unexpected pmd-mapped page? */
895 WARN_ON_ONCE(1);
896#endif
897 }
898
899 if (ret) {
900 mmu_notifier_invalidate_page(vma->vm_mm, address);
901 (*cleaned)++;
902 }
903 }
904
905 return SWAP_AGAIN;
906}
907
908static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
909{
910 if (vma->vm_flags & VM_SHARED)
911 return false;
912
913 return true;
914}
915
916int page_mkclean(struct page *page)
917{
918 int cleaned = 0;
919 struct address_space *mapping;
920 struct rmap_walk_control rwc = {
921 .arg = (void *)&cleaned,
922 .rmap_one = page_mkclean_one,
923 .invalid_vma = invalid_mkclean_vma,
924 };
925
926 BUG_ON(!PageLocked(page));
927
928 if (!page_mapped(page))
929 return 0;
930
931 mapping = page_mapping(page);
932 if (!mapping)
933 return 0;
934
935 rmap_walk(page, &rwc);
936
937 return cleaned;
938}
939EXPORT_SYMBOL_GPL(page_mkclean);
940
941/**
942 * page_move_anon_rmap - move a page to our anon_vma
943 * @page: the page to move to our anon_vma
944 * @vma: the vma the page belongs to
945 *
946 * When a page belongs exclusively to one process after a COW event,
947 * that page can be moved into the anon_vma that belongs to just that
948 * process, so the rmap code will not search the parent or sibling
949 * processes.
950 */
951void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
952{
953 struct anon_vma *anon_vma = vma->anon_vma;
954
955 page = compound_head(page);
956
957 VM_BUG_ON_PAGE(!PageLocked(page), page);
958 VM_BUG_ON_VMA(!anon_vma, vma);
959
960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 /*
962 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
963 * simultaneously, so a concurrent reader (eg page_referenced()'s
964 * PageAnon()) will not see one without the other.
965 */
966 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
967}
968
969/**
970 * __page_set_anon_rmap - set up new anonymous rmap
971 * @page: Page to add to rmap
972 * @vma: VM area to add page to.
973 * @address: User virtual address of the mapping
974 * @exclusive: the page is exclusively owned by the current process
975 */
976static void __page_set_anon_rmap(struct page *page,
977 struct vm_area_struct *vma, unsigned long address, int exclusive)
978{
979 struct anon_vma *anon_vma = vma->anon_vma;
980
981 BUG_ON(!anon_vma);
982
983 if (PageAnon(page))
984 return;
985
986 /*
987 * If the page isn't exclusively mapped into this vma,
988 * we must use the _oldest_ possible anon_vma for the
989 * page mapping!
990 */
991 if (!exclusive)
992 anon_vma = anon_vma->root;
993
994 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
995 page->mapping = (struct address_space *) anon_vma;
996 page->index = linear_page_index(vma, address);
997}
998
999/**
1000 * __page_check_anon_rmap - sanity check anonymous rmap addition
1001 * @page: the page to add the mapping to
1002 * @vma: the vm area in which the mapping is added
1003 * @address: the user virtual address mapped
1004 */
1005static void __page_check_anon_rmap(struct page *page,
1006 struct vm_area_struct *vma, unsigned long address)
1007{
1008#ifdef CONFIG_DEBUG_VM
1009 /*
1010 * The page's anon-rmap details (mapping and index) are guaranteed to
1011 * be set up correctly at this point.
1012 *
1013 * We have exclusion against page_add_anon_rmap because the caller
1014 * always holds the page locked, except if called from page_dup_rmap,
1015 * in which case the page is already known to be setup.
1016 *
1017 * We have exclusion against page_add_new_anon_rmap because those pages
1018 * are initially only visible via the pagetables, and the pte is locked
1019 * over the call to page_add_new_anon_rmap.
1020 */
1021 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1022 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1023#endif
1024}
1025
1026/**
1027 * page_add_anon_rmap - add pte mapping to an anonymous page
1028 * @page: the page to add the mapping to
1029 * @vma: the vm area in which the mapping is added
1030 * @address: the user virtual address mapped
1031 * @compound: charge the page as compound or small page
1032 *
1033 * The caller needs to hold the pte lock, and the page must be locked in
1034 * the anon_vma case: to serialize mapping,index checking after setting,
1035 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1036 * (but PageKsm is never downgraded to PageAnon).
1037 */
1038void page_add_anon_rmap(struct page *page,
1039 struct vm_area_struct *vma, unsigned long address, bool compound)
1040{
1041 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1042}
1043
1044/*
1045 * Special version of the above for do_swap_page, which often runs
1046 * into pages that are exclusively owned by the current process.
1047 * Everybody else should continue to use page_add_anon_rmap above.
1048 */
1049void do_page_add_anon_rmap(struct page *page,
1050 struct vm_area_struct *vma, unsigned long address, int flags)
1051{
1052 bool compound = flags & RMAP_COMPOUND;
1053 bool first;
1054
1055 if (compound) {
1056 atomic_t *mapcount;
1057 VM_BUG_ON_PAGE(!PageLocked(page), page);
1058 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1059 mapcount = compound_mapcount_ptr(page);
1060 first = atomic_inc_and_test(mapcount);
1061 } else {
1062 first = atomic_inc_and_test(&page->_mapcount);
1063 }
1064
1065 if (first) {
1066 int nr = compound ? hpage_nr_pages(page) : 1;
1067 /*
1068 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1069 * these counters are not modified in interrupt context, and
1070 * pte lock(a spinlock) is held, which implies preemption
1071 * disabled.
1072 */
1073 if (compound)
1074 __inc_node_page_state(page, NR_ANON_THPS);
1075 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1076 }
1077 if (unlikely(PageKsm(page)))
1078 return;
1079
1080 VM_BUG_ON_PAGE(!PageLocked(page), page);
1081
1082 /* address might be in next vma when migration races vma_adjust */
1083 if (first)
1084 __page_set_anon_rmap(page, vma, address,
1085 flags & RMAP_EXCLUSIVE);
1086 else
1087 __page_check_anon_rmap(page, vma, address);
1088}
1089
1090/**
1091 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1092 * @page: the page to add the mapping to
1093 * @vma: the vm area in which the mapping is added
1094 * @address: the user virtual address mapped
1095 * @compound: charge the page as compound or small page
1096 *
1097 * Same as page_add_anon_rmap but must only be called on *new* pages.
1098 * This means the inc-and-test can be bypassed.
1099 * Page does not have to be locked.
1100 */
1101void page_add_new_anon_rmap(struct page *page,
1102 struct vm_area_struct *vma, unsigned long address, bool compound)
1103{
1104 int nr = compound ? hpage_nr_pages(page) : 1;
1105
1106 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1107 __SetPageSwapBacked(page);
1108 if (compound) {
1109 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1110 /* increment count (starts at -1) */
1111 atomic_set(compound_mapcount_ptr(page), 0);
1112 __inc_node_page_state(page, NR_ANON_THPS);
1113 } else {
1114 /* Anon THP always mapped first with PMD */
1115 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1116 /* increment count (starts at -1) */
1117 atomic_set(&page->_mapcount, 0);
1118 }
1119 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1120 __page_set_anon_rmap(page, vma, address, 1);
1121}
1122
1123/**
1124 * page_add_file_rmap - add pte mapping to a file page
1125 * @page: the page to add the mapping to
1126 *
1127 * The caller needs to hold the pte lock.
1128 */
1129void page_add_file_rmap(struct page *page, bool compound)
1130{
1131 int i, nr = 1;
1132
1133 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1134 lock_page_memcg(page);
1135 if (compound && PageTransHuge(page)) {
1136 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1137 if (atomic_inc_and_test(&page[i]._mapcount))
1138 nr++;
1139 }
1140 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1141 goto out;
1142 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1143 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1144 } else {
1145 if (PageTransCompound(page) && page_mapping(page)) {
1146 VM_WARN_ON_ONCE(!PageLocked(page));
1147
1148 SetPageDoubleMap(compound_head(page));
1149 if (PageMlocked(page))
1150 clear_page_mlock(compound_head(page));
1151 }
1152 if (!atomic_inc_and_test(&page->_mapcount))
1153 goto out;
1154 }
1155 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1156 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1157out:
1158 unlock_page_memcg(page);
1159}
1160
1161static void page_remove_file_rmap(struct page *page, bool compound)
1162{
1163 int i, nr = 1;
1164
1165 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1166 lock_page_memcg(page);
1167
1168 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1169 if (unlikely(PageHuge(page))) {
1170 /* hugetlb pages are always mapped with pmds */
1171 atomic_dec(compound_mapcount_ptr(page));
1172 goto out;
1173 }
1174
1175 /* page still mapped by someone else? */
1176 if (compound && PageTransHuge(page)) {
1177 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1178 if (atomic_add_negative(-1, &page[i]._mapcount))
1179 nr++;
1180 }
1181 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1182 goto out;
1183 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1184 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1185 } else {
1186 if (!atomic_add_negative(-1, &page->_mapcount))
1187 goto out;
1188 }
1189
1190 /*
1191 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1192 * these counters are not modified in interrupt context, and
1193 * pte lock(a spinlock) is held, which implies preemption disabled.
1194 */
1195 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1196 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1197
1198 if (unlikely(PageMlocked(page)))
1199 clear_page_mlock(page);
1200out:
1201 unlock_page_memcg(page);
1202}
1203
1204static void page_remove_anon_compound_rmap(struct page *page)
1205{
1206 int i, nr;
1207
1208 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1209 return;
1210
1211 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1212 if (unlikely(PageHuge(page)))
1213 return;
1214
1215 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1216 return;
1217
1218 __dec_node_page_state(page, NR_ANON_THPS);
1219
1220 if (TestClearPageDoubleMap(page)) {
1221 /*
1222 * Subpages can be mapped with PTEs too. Check how many of
1223 * themi are still mapped.
1224 */
1225 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226 if (atomic_add_negative(-1, &page[i]._mapcount))
1227 nr++;
1228 }
1229 } else {
1230 nr = HPAGE_PMD_NR;
1231 }
1232
1233 if (unlikely(PageMlocked(page)))
1234 clear_page_mlock(page);
1235
1236 if (nr) {
1237 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1238 deferred_split_huge_page(page);
1239 }
1240}
1241
1242/**
1243 * page_remove_rmap - take down pte mapping from a page
1244 * @page: page to remove mapping from
1245 * @compound: uncharge the page as compound or small page
1246 *
1247 * The caller needs to hold the pte lock.
1248 */
1249void page_remove_rmap(struct page *page, bool compound)
1250{
1251 if (!PageAnon(page))
1252 return page_remove_file_rmap(page, compound);
1253
1254 if (compound)
1255 return page_remove_anon_compound_rmap(page);
1256
1257 /* page still mapped by someone else? */
1258 if (!atomic_add_negative(-1, &page->_mapcount))
1259 return;
1260
1261 /*
1262 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1263 * these counters are not modified in interrupt context, and
1264 * pte lock(a spinlock) is held, which implies preemption disabled.
1265 */
1266 __dec_node_page_state(page, NR_ANON_MAPPED);
1267
1268 if (unlikely(PageMlocked(page)))
1269 clear_page_mlock(page);
1270
1271 if (PageTransCompound(page))
1272 deferred_split_huge_page(compound_head(page));
1273
1274 /*
1275 * It would be tidy to reset the PageAnon mapping here,
1276 * but that might overwrite a racing page_add_anon_rmap
1277 * which increments mapcount after us but sets mapping
1278 * before us: so leave the reset to free_hot_cold_page,
1279 * and remember that it's only reliable while mapped.
1280 * Leaving it set also helps swapoff to reinstate ptes
1281 * faster for those pages still in swapcache.
1282 */
1283}
1284
1285struct rmap_private {
1286 enum ttu_flags flags;
1287 int lazyfreed;
1288};
1289
1290/*
1291 * @arg: enum ttu_flags will be passed to this argument
1292 */
1293static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1294 unsigned long address, void *arg)
1295{
1296 struct mm_struct *mm = vma->vm_mm;
1297 struct page_vma_mapped_walk pvmw = {
1298 .page = page,
1299 .vma = vma,
1300 .address = address,
1301 };
1302 pte_t pteval;
1303 struct page *subpage;
1304 int ret = SWAP_AGAIN;
1305 struct rmap_private *rp = arg;
1306 enum ttu_flags flags = rp->flags;
1307
1308 /* munlock has nothing to gain from examining un-locked vmas */
1309 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1310 return SWAP_AGAIN;
1311
1312 if (flags & TTU_SPLIT_HUGE_PMD) {
1313 split_huge_pmd_address(vma, address,
1314 flags & TTU_MIGRATION, page);
1315 }
1316
1317 while (page_vma_mapped_walk(&pvmw)) {
1318 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1319 address = pvmw.address;
1320
1321 /* Unexpected PMD-mapped THP? */
1322 VM_BUG_ON_PAGE(!pvmw.pte, page);
1323
1324 /*
1325 * If the page is mlock()d, we cannot swap it out.
1326 * If it's recently referenced (perhaps page_referenced
1327 * skipped over this mm) then we should reactivate it.
1328 */
1329 if (!(flags & TTU_IGNORE_MLOCK)) {
1330 if (vma->vm_flags & VM_LOCKED) {
1331 /* PTE-mapped THP are never mlocked */
1332 if (!PageTransCompound(page)) {
1333 /*
1334 * Holding pte lock, we do *not* need
1335 * mmap_sem here
1336 */
1337 mlock_vma_page(page);
1338 }
1339 ret = SWAP_MLOCK;
1340 page_vma_mapped_walk_done(&pvmw);
1341 break;
1342 }
1343 if (flags & TTU_MUNLOCK)
1344 continue;
1345 }
1346
1347 if (!(flags & TTU_IGNORE_ACCESS)) {
1348 if (ptep_clear_flush_young_notify(vma, address,
1349 pvmw.pte)) {
1350 ret = SWAP_FAIL;
1351 page_vma_mapped_walk_done(&pvmw);
1352 break;
1353 }
1354 }
1355
1356 /* Nuke the page table entry. */
1357 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358 if (should_defer_flush(mm, flags)) {
1359 /*
1360 * We clear the PTE but do not flush so potentially
1361 * a remote CPU could still be writing to the page.
1362 * If the entry was previously clean then the
1363 * architecture must guarantee that a clear->dirty
1364 * transition on a cached TLB entry is written through
1365 * and traps if the PTE is unmapped.
1366 */
1367 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368
1369 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370 } else {
1371 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372 }
1373
1374 /* Move the dirty bit to the page. Now the pte is gone. */
1375 if (pte_dirty(pteval))
1376 set_page_dirty(page);
1377
1378 /* Update high watermark before we lower rss */
1379 update_hiwater_rss(mm);
1380
1381 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382 if (PageHuge(page)) {
1383 int nr = 1 << compound_order(page);
1384 hugetlb_count_sub(nr, mm);
1385 } else {
1386 dec_mm_counter(mm, mm_counter(page));
1387 }
1388
1389 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390 set_pte_at(mm, address, pvmw.pte, pteval);
1391 } else if (pte_unused(pteval)) {
1392 /*
1393 * The guest indicated that the page content is of no
1394 * interest anymore. Simply discard the pte, vmscan
1395 * will take care of the rest.
1396 */
1397 dec_mm_counter(mm, mm_counter(page));
1398 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399 (flags & TTU_MIGRATION)) {
1400 swp_entry_t entry;
1401 pte_t swp_pte;
1402 /*
1403 * Store the pfn of the page in a special migration
1404 * pte. do_swap_page() will wait until the migration
1405 * pte is removed and then restart fault handling.
1406 */
1407 entry = make_migration_entry(subpage,
1408 pte_write(pteval));
1409 swp_pte = swp_entry_to_pte(entry);
1410 if (pte_soft_dirty(pteval))
1411 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412 set_pte_at(mm, address, pvmw.pte, swp_pte);
1413 } else if (PageAnon(page)) {
1414 swp_entry_t entry = { .val = page_private(subpage) };
1415 pte_t swp_pte;
1416 /*
1417 * Store the swap location in the pte.
1418 * See handle_pte_fault() ...
1419 */
1420 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1421
1422 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1423 /* It's a freeable page by MADV_FREE */
1424 dec_mm_counter(mm, MM_ANONPAGES);
1425 rp->lazyfreed++;
1426 goto discard;
1427 }
1428
1429 if (swap_duplicate(entry) < 0) {
1430 set_pte_at(mm, address, pvmw.pte, pteval);
1431 ret = SWAP_FAIL;
1432 page_vma_mapped_walk_done(&pvmw);
1433 break;
1434 }
1435 if (list_empty(&mm->mmlist)) {
1436 spin_lock(&mmlist_lock);
1437 if (list_empty(&mm->mmlist))
1438 list_add(&mm->mmlist, &init_mm.mmlist);
1439 spin_unlock(&mmlist_lock);
1440 }
1441 dec_mm_counter(mm, MM_ANONPAGES);
1442 inc_mm_counter(mm, MM_SWAPENTS);
1443 swp_pte = swp_entry_to_pte(entry);
1444 if (pte_soft_dirty(pteval))
1445 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1446 set_pte_at(mm, address, pvmw.pte, swp_pte);
1447 } else
1448 dec_mm_counter(mm, mm_counter_file(page));
1449discard:
1450 page_remove_rmap(subpage, PageHuge(page));
1451 put_page(page);
1452 mmu_notifier_invalidate_page(mm, address);
1453 }
1454 return ret;
1455}
1456
1457bool is_vma_temporary_stack(struct vm_area_struct *vma)
1458{
1459 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1460
1461 if (!maybe_stack)
1462 return false;
1463
1464 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1465 VM_STACK_INCOMPLETE_SETUP)
1466 return true;
1467
1468 return false;
1469}
1470
1471static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1472{
1473 return is_vma_temporary_stack(vma);
1474}
1475
1476static int page_mapcount_is_zero(struct page *page)
1477{
1478 return !total_mapcount(page);
1479}
1480
1481/**
1482 * try_to_unmap - try to remove all page table mappings to a page
1483 * @page: the page to get unmapped
1484 * @flags: action and flags
1485 *
1486 * Tries to remove all the page table entries which are mapping this
1487 * page, used in the pageout path. Caller must hold the page lock.
1488 * Return values are:
1489 *
1490 * SWAP_SUCCESS - we succeeded in removing all mappings
1491 * SWAP_AGAIN - we missed a mapping, try again later
1492 * SWAP_FAIL - the page is unswappable
1493 * SWAP_MLOCK - page is mlocked.
1494 */
1495int try_to_unmap(struct page *page, enum ttu_flags flags)
1496{
1497 int ret;
1498 struct rmap_private rp = {
1499 .flags = flags,
1500 .lazyfreed = 0,
1501 };
1502
1503 struct rmap_walk_control rwc = {
1504 .rmap_one = try_to_unmap_one,
1505 .arg = &rp,
1506 .done = page_mapcount_is_zero,
1507 .anon_lock = page_lock_anon_vma_read,
1508 };
1509
1510 /*
1511 * During exec, a temporary VMA is setup and later moved.
1512 * The VMA is moved under the anon_vma lock but not the
1513 * page tables leading to a race where migration cannot
1514 * find the migration ptes. Rather than increasing the
1515 * locking requirements of exec(), migration skips
1516 * temporary VMAs until after exec() completes.
1517 */
1518 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1519 rwc.invalid_vma = invalid_migration_vma;
1520
1521 if (flags & TTU_RMAP_LOCKED)
1522 ret = rmap_walk_locked(page, &rwc);
1523 else
1524 ret = rmap_walk(page, &rwc);
1525
1526 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1527 ret = SWAP_SUCCESS;
1528 if (rp.lazyfreed && !PageDirty(page))
1529 ret = SWAP_LZFREE;
1530 }
1531 return ret;
1532}
1533
1534static int page_not_mapped(struct page *page)
1535{
1536 return !page_mapped(page);
1537};
1538
1539/**
1540 * try_to_munlock - try to munlock a page
1541 * @page: the page to be munlocked
1542 *
1543 * Called from munlock code. Checks all of the VMAs mapping the page
1544 * to make sure nobody else has this page mlocked. The page will be
1545 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1546 *
1547 * Return values are:
1548 *
1549 * SWAP_AGAIN - no vma is holding page mlocked, or,
1550 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1551 * SWAP_FAIL - page cannot be located at present
1552 * SWAP_MLOCK - page is now mlocked.
1553 */
1554int try_to_munlock(struct page *page)
1555{
1556 int ret;
1557 struct rmap_private rp = {
1558 .flags = TTU_MUNLOCK,
1559 .lazyfreed = 0,
1560 };
1561
1562 struct rmap_walk_control rwc = {
1563 .rmap_one = try_to_unmap_one,
1564 .arg = &rp,
1565 .done = page_not_mapped,
1566 .anon_lock = page_lock_anon_vma_read,
1567
1568 };
1569
1570 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1571
1572 ret = rmap_walk(page, &rwc);
1573 return ret;
1574}
1575
1576void __put_anon_vma(struct anon_vma *anon_vma)
1577{
1578 struct anon_vma *root = anon_vma->root;
1579
1580 anon_vma_free(anon_vma);
1581 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1582 anon_vma_free(root);
1583}
1584
1585static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1586 struct rmap_walk_control *rwc)
1587{
1588 struct anon_vma *anon_vma;
1589
1590 if (rwc->anon_lock)
1591 return rwc->anon_lock(page);
1592
1593 /*
1594 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1595 * because that depends on page_mapped(); but not all its usages
1596 * are holding mmap_sem. Users without mmap_sem are required to
1597 * take a reference count to prevent the anon_vma disappearing
1598 */
1599 anon_vma = page_anon_vma(page);
1600 if (!anon_vma)
1601 return NULL;
1602
1603 anon_vma_lock_read(anon_vma);
1604 return anon_vma;
1605}
1606
1607/*
1608 * rmap_walk_anon - do something to anonymous page using the object-based
1609 * rmap method
1610 * @page: the page to be handled
1611 * @rwc: control variable according to each walk type
1612 *
1613 * Find all the mappings of a page using the mapping pointer and the vma chains
1614 * contained in the anon_vma struct it points to.
1615 *
1616 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1617 * where the page was found will be held for write. So, we won't recheck
1618 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1619 * LOCKED.
1620 */
1621static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1622 bool locked)
1623{
1624 struct anon_vma *anon_vma;
1625 pgoff_t pgoff_start, pgoff_end;
1626 struct anon_vma_chain *avc;
1627 int ret = SWAP_AGAIN;
1628
1629 if (locked) {
1630 anon_vma = page_anon_vma(page);
1631 /* anon_vma disappear under us? */
1632 VM_BUG_ON_PAGE(!anon_vma, page);
1633 } else {
1634 anon_vma = rmap_walk_anon_lock(page, rwc);
1635 }
1636 if (!anon_vma)
1637 return ret;
1638
1639 pgoff_start = page_to_pgoff(page);
1640 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1641 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1642 pgoff_start, pgoff_end) {
1643 struct vm_area_struct *vma = avc->vma;
1644 unsigned long address = vma_address(page, vma);
1645
1646 cond_resched();
1647
1648 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1649 continue;
1650
1651 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1652 if (ret != SWAP_AGAIN)
1653 break;
1654 if (rwc->done && rwc->done(page))
1655 break;
1656 }
1657
1658 if (!locked)
1659 anon_vma_unlock_read(anon_vma);
1660 return ret;
1661}
1662
1663/*
1664 * rmap_walk_file - do something to file page using the object-based rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the address_space struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
1676static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1677 bool locked)
1678{
1679 struct address_space *mapping = page_mapping(page);
1680 pgoff_t pgoff_start, pgoff_end;
1681 struct vm_area_struct *vma;
1682 int ret = SWAP_AGAIN;
1683
1684 /*
1685 * The page lock not only makes sure that page->mapping cannot
1686 * suddenly be NULLified by truncation, it makes sure that the
1687 * structure at mapping cannot be freed and reused yet,
1688 * so we can safely take mapping->i_mmap_rwsem.
1689 */
1690 VM_BUG_ON_PAGE(!PageLocked(page), page);
1691
1692 if (!mapping)
1693 return ret;
1694
1695 pgoff_start = page_to_pgoff(page);
1696 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1697 if (!locked)
1698 i_mmap_lock_read(mapping);
1699 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1700 pgoff_start, pgoff_end) {
1701 unsigned long address = vma_address(page, vma);
1702
1703 cond_resched();
1704
1705 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1706 continue;
1707
1708 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1709 if (ret != SWAP_AGAIN)
1710 goto done;
1711 if (rwc->done && rwc->done(page))
1712 goto done;
1713 }
1714
1715done:
1716 if (!locked)
1717 i_mmap_unlock_read(mapping);
1718 return ret;
1719}
1720
1721int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1722{
1723 if (unlikely(PageKsm(page)))
1724 return rmap_walk_ksm(page, rwc);
1725 else if (PageAnon(page))
1726 return rmap_walk_anon(page, rwc, false);
1727 else
1728 return rmap_walk_file(page, rwc, false);
1729}
1730
1731/* Like rmap_walk, but caller holds relevant rmap lock */
1732int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1733{
1734 /* no ksm support for now */
1735 VM_BUG_ON_PAGE(PageKsm(page), page);
1736 if (PageAnon(page))
1737 return rmap_walk_anon(page, rwc, true);
1738 else
1739 return rmap_walk_file(page, rwc, true);
1740}
1741
1742#ifdef CONFIG_HUGETLB_PAGE
1743/*
1744 * The following three functions are for anonymous (private mapped) hugepages.
1745 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1746 * and no lru code, because we handle hugepages differently from common pages.
1747 */
1748static void __hugepage_set_anon_rmap(struct page *page,
1749 struct vm_area_struct *vma, unsigned long address, int exclusive)
1750{
1751 struct anon_vma *anon_vma = vma->anon_vma;
1752
1753 BUG_ON(!anon_vma);
1754
1755 if (PageAnon(page))
1756 return;
1757 if (!exclusive)
1758 anon_vma = anon_vma->root;
1759
1760 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1761 page->mapping = (struct address_space *) anon_vma;
1762 page->index = linear_page_index(vma, address);
1763}
1764
1765void hugepage_add_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address)
1767{
1768 struct anon_vma *anon_vma = vma->anon_vma;
1769 int first;
1770
1771 BUG_ON(!PageLocked(page));
1772 BUG_ON(!anon_vma);
1773 /* address might be in next vma when migration races vma_adjust */
1774 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1775 if (first)
1776 __hugepage_set_anon_rmap(page, vma, address, 0);
1777}
1778
1779void hugepage_add_new_anon_rmap(struct page *page,
1780 struct vm_area_struct *vma, unsigned long address)
1781{
1782 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1783 atomic_set(compound_mapcount_ptr(page), 0);
1784 __hugepage_set_anon_rmap(page, vma, address, 1);
1785}
1786#endif /* CONFIG_HUGETLB_PAGE */