]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/shmem.c
mempolicy: document {set|get}_policy() vm_ops APIs
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
... / ...
CommitLineData
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC 0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN VM_READ
72#define SHMEM_TRUNCATE VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
86};
87
88#ifdef CONFIG_TMPFS
89static unsigned long shmem_default_max_blocks(void)
90{
91 return totalram_pages / 2;
92}
93
94static unsigned long shmem_default_max_inodes(void)
95{
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97}
98#endif
99
100static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type);
102
103static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104{
105 /*
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
109 *
110 * Mobility flags are masked out as swap vectors cannot move
111 */
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114}
115
116static inline void shmem_dir_free(struct page *page)
117{
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119}
120
121static struct page **shmem_dir_map(struct page *page)
122{
123 return (struct page **)kmap_atomic(page, KM_USER0);
124}
125
126static inline void shmem_dir_unmap(struct page **dir)
127{
128 kunmap_atomic(dir, KM_USER0);
129}
130
131static swp_entry_t *shmem_swp_map(struct page *page)
132{
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134}
135
136static inline void shmem_swp_balance_unmap(void)
137{
138 /*
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
144 */
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146}
147
148static inline void shmem_swp_unmap(swp_entry_t *entry)
149{
150 kunmap_atomic(entry, KM_USER1);
151}
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155 return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0;
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size));
174}
175
176/*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182static inline int shmem_acct_block(unsigned long flags)
183{
184 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186}
187
188static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189{
190 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192}
193
194static const struct super_operations shmem_ops;
195static const struct address_space_operations shmem_aops;
196static const struct file_operations shmem_file_operations;
197static const struct inode_operations shmem_inode_operations;
198static const struct inode_operations shmem_dir_inode_operations;
199static const struct inode_operations shmem_special_inode_operations;
200static struct vm_operations_struct shmem_vm_ops;
201
202static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn,
206};
207
208static LIST_HEAD(shmem_swaplist);
209static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211static void shmem_free_blocks(struct inode *inode, long pages)
212{
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220}
221
222static int shmem_reserve_inode(struct super_block *sb)
223{
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock);
229 return -ENOSPC;
230 }
231 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock);
233 }
234 return 0;
235}
236
237static void shmem_free_inode(struct super_block *sb)
238{
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock);
244 }
245}
246
247/**
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
250 *
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
253 *
254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256 *
257 * It has to be called with the spinlock held.
258 */
259static void shmem_recalc_inode(struct inode *inode)
260{
261 struct shmem_inode_info *info = SHMEM_I(inode);
262 long freed;
263
264 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265 if (freed > 0) {
266 info->alloced -= freed;
267 shmem_unacct_blocks(info->flags, freed);
268 shmem_free_blocks(inode, freed);
269 }
270}
271
272/**
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info: info structure for the inode
275 * @index: index of the page to find
276 * @page: optional page to add to the structure. Has to be preset to
277 * all zeros
278 *
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
282 *
283 * The swap vector is organized the following way:
284 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
287 * allocation.
288 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
292 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
295 *
296 * i_indirect -> dir --> 16-19
297 * | +-> 20-23
298 * |
299 * +-->dir2 --> 24-27
300 * | +-> 28-31
301 * | +-> 32-35
302 * | +-> 36-39
303 * |
304 * +-->dir3 --> 40-43
305 * +-> 44-47
306 * +-> 48-51
307 * +-> 52-55
308 */
309static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310{
311 unsigned long offset;
312 struct page **dir;
313 struct page *subdir;
314
315 if (index < SHMEM_NR_DIRECT) {
316 shmem_swp_balance_unmap();
317 return info->i_direct+index;
318 }
319 if (!info->i_indirect) {
320 if (page) {
321 info->i_indirect = *page;
322 *page = NULL;
323 }
324 return NULL; /* need another page */
325 }
326
327 index -= SHMEM_NR_DIRECT;
328 offset = index % ENTRIES_PER_PAGE;
329 index /= ENTRIES_PER_PAGE;
330 dir = shmem_dir_map(info->i_indirect);
331
332 if (index >= ENTRIES_PER_PAGE/2) {
333 index -= ENTRIES_PER_PAGE/2;
334 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335 index %= ENTRIES_PER_PAGE;
336 subdir = *dir;
337 if (!subdir) {
338 if (page) {
339 *dir = *page;
340 *page = NULL;
341 }
342 shmem_dir_unmap(dir);
343 return NULL; /* need another page */
344 }
345 shmem_dir_unmap(dir);
346 dir = shmem_dir_map(subdir);
347 }
348
349 dir += index;
350 subdir = *dir;
351 if (!subdir) {
352 if (!page || !(subdir = *page)) {
353 shmem_dir_unmap(dir);
354 return NULL; /* need a page */
355 }
356 *dir = subdir;
357 *page = NULL;
358 }
359 shmem_dir_unmap(dir);
360 return shmem_swp_map(subdir) + offset;
361}
362
363static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364{
365 long incdec = value? 1: -1;
366
367 entry->val = value;
368 info->swapped += incdec;
369 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370 struct page *page = kmap_atomic_to_page(entry);
371 set_page_private(page, page_private(page) + incdec);
372 }
373}
374
375/**
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info: info structure for the inode
378 * @index: index of the page to find
379 * @sgp: check and recheck i_size? skip allocation?
380 *
381 * If the entry does not exist, allocate it.
382 */
383static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384{
385 struct inode *inode = &info->vfs_inode;
386 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387 struct page *page = NULL;
388 swp_entry_t *entry;
389
390 if (sgp != SGP_WRITE &&
391 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392 return ERR_PTR(-EINVAL);
393
394 while (!(entry = shmem_swp_entry(info, index, &page))) {
395 if (sgp == SGP_READ)
396 return shmem_swp_map(ZERO_PAGE(0));
397 /*
398 * Test free_blocks against 1 not 0, since we have 1 data
399 * page (and perhaps indirect index pages) yet to allocate:
400 * a waste to allocate index if we cannot allocate data.
401 */
402 if (sbinfo->max_blocks) {
403 spin_lock(&sbinfo->stat_lock);
404 if (sbinfo->free_blocks <= 1) {
405 spin_unlock(&sbinfo->stat_lock);
406 return ERR_PTR(-ENOSPC);
407 }
408 sbinfo->free_blocks--;
409 inode->i_blocks += BLOCKS_PER_PAGE;
410 spin_unlock(&sbinfo->stat_lock);
411 }
412
413 spin_unlock(&info->lock);
414 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415 if (page)
416 set_page_private(page, 0);
417 spin_lock(&info->lock);
418
419 if (!page) {
420 shmem_free_blocks(inode, 1);
421 return ERR_PTR(-ENOMEM);
422 }
423 if (sgp != SGP_WRITE &&
424 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425 entry = ERR_PTR(-EINVAL);
426 break;
427 }
428 if (info->next_index <= index)
429 info->next_index = index + 1;
430 }
431 if (page) {
432 /* another task gave its page, or truncated the file */
433 shmem_free_blocks(inode, 1);
434 shmem_dir_free(page);
435 }
436 if (info->next_index <= index && !IS_ERR(entry))
437 info->next_index = index + 1;
438 return entry;
439}
440
441/**
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir: pointer to the directory
444 * @edir: pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
446 */
447static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448 spinlock_t *punch_lock)
449{
450 spinlock_t *punch_unlock = NULL;
451 swp_entry_t *ptr;
452 int freed = 0;
453
454 for (ptr = dir; ptr < edir; ptr++) {
455 if (ptr->val) {
456 if (unlikely(punch_lock)) {
457 punch_unlock = punch_lock;
458 punch_lock = NULL;
459 spin_lock(punch_unlock);
460 if (!ptr->val)
461 continue;
462 }
463 free_swap_and_cache(*ptr);
464 *ptr = (swp_entry_t){0};
465 freed++;
466 }
467 }
468 if (punch_unlock)
469 spin_unlock(punch_unlock);
470 return freed;
471}
472
473static int shmem_map_and_free_swp(struct page *subdir, int offset,
474 int limit, struct page ***dir, spinlock_t *punch_lock)
475{
476 swp_entry_t *ptr;
477 int freed = 0;
478
479 ptr = shmem_swp_map(subdir);
480 for (; offset < limit; offset += LATENCY_LIMIT) {
481 int size = limit - offset;
482 if (size > LATENCY_LIMIT)
483 size = LATENCY_LIMIT;
484 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485 punch_lock);
486 if (need_resched()) {
487 shmem_swp_unmap(ptr);
488 if (*dir) {
489 shmem_dir_unmap(*dir);
490 *dir = NULL;
491 }
492 cond_resched();
493 ptr = shmem_swp_map(subdir);
494 }
495 }
496 shmem_swp_unmap(ptr);
497 return freed;
498}
499
500static void shmem_free_pages(struct list_head *next)
501{
502 struct page *page;
503 int freed = 0;
504
505 do {
506 page = container_of(next, struct page, lru);
507 next = next->next;
508 shmem_dir_free(page);
509 freed++;
510 if (freed >= LATENCY_LIMIT) {
511 cond_resched();
512 freed = 0;
513 }
514 } while (next);
515}
516
517static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518{
519 struct shmem_inode_info *info = SHMEM_I(inode);
520 unsigned long idx;
521 unsigned long size;
522 unsigned long limit;
523 unsigned long stage;
524 unsigned long diroff;
525 struct page **dir;
526 struct page *topdir;
527 struct page *middir;
528 struct page *subdir;
529 swp_entry_t *ptr;
530 LIST_HEAD(pages_to_free);
531 long nr_pages_to_free = 0;
532 long nr_swaps_freed = 0;
533 int offset;
534 int freed;
535 int punch_hole;
536 spinlock_t *needs_lock;
537 spinlock_t *punch_lock;
538 unsigned long upper_limit;
539
540 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542 if (idx >= info->next_index)
543 return;
544
545 spin_lock(&info->lock);
546 info->flags |= SHMEM_TRUNCATE;
547 if (likely(end == (loff_t) -1)) {
548 limit = info->next_index;
549 upper_limit = SHMEM_MAX_INDEX;
550 info->next_index = idx;
551 needs_lock = NULL;
552 punch_hole = 0;
553 } else {
554 if (end + 1 >= inode->i_size) { /* we may free a little more */
555 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556 PAGE_CACHE_SHIFT;
557 upper_limit = SHMEM_MAX_INDEX;
558 } else {
559 limit = (end + 1) >> PAGE_CACHE_SHIFT;
560 upper_limit = limit;
561 }
562 needs_lock = &info->lock;
563 punch_hole = 1;
564 }
565
566 topdir = info->i_indirect;
567 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568 info->i_indirect = NULL;
569 nr_pages_to_free++;
570 list_add(&topdir->lru, &pages_to_free);
571 }
572 spin_unlock(&info->lock);
573
574 if (info->swapped && idx < SHMEM_NR_DIRECT) {
575 ptr = info->i_direct;
576 size = limit;
577 if (size > SHMEM_NR_DIRECT)
578 size = SHMEM_NR_DIRECT;
579 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580 }
581
582 /*
583 * If there are no indirect blocks or we are punching a hole
584 * below indirect blocks, nothing to be done.
585 */
586 if (!topdir || limit <= SHMEM_NR_DIRECT)
587 goto done2;
588
589 /*
590 * The truncation case has already dropped info->lock, and we're safe
591 * because i_size and next_index have already been lowered, preventing
592 * access beyond. But in the punch_hole case, we still need to take
593 * the lock when updating the swap directory, because there might be
594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 * shmem_writepage. However, whenever we find we can remove a whole
596 * directory page (not at the misaligned start or end of the range),
597 * we first NULLify its pointer in the level above, and then have no
598 * need to take the lock when updating its contents: needs_lock and
599 * punch_lock (either pointing to info->lock or NULL) manage this.
600 */
601
602 upper_limit -= SHMEM_NR_DIRECT;
603 limit -= SHMEM_NR_DIRECT;
604 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605 offset = idx % ENTRIES_PER_PAGE;
606 idx -= offset;
607
608 dir = shmem_dir_map(topdir);
609 stage = ENTRIES_PER_PAGEPAGE/2;
610 if (idx < ENTRIES_PER_PAGEPAGE/2) {
611 middir = topdir;
612 diroff = idx/ENTRIES_PER_PAGE;
613 } else {
614 dir += ENTRIES_PER_PAGE/2;
615 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616 while (stage <= idx)
617 stage += ENTRIES_PER_PAGEPAGE;
618 middir = *dir;
619 if (*dir) {
620 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622 if (!diroff && !offset && upper_limit >= stage) {
623 if (needs_lock) {
624 spin_lock(needs_lock);
625 *dir = NULL;
626 spin_unlock(needs_lock);
627 needs_lock = NULL;
628 } else
629 *dir = NULL;
630 nr_pages_to_free++;
631 list_add(&middir->lru, &pages_to_free);
632 }
633 shmem_dir_unmap(dir);
634 dir = shmem_dir_map(middir);
635 } else {
636 diroff = 0;
637 offset = 0;
638 idx = stage;
639 }
640 }
641
642 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643 if (unlikely(idx == stage)) {
644 shmem_dir_unmap(dir);
645 dir = shmem_dir_map(topdir) +
646 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647 while (!*dir) {
648 dir++;
649 idx += ENTRIES_PER_PAGEPAGE;
650 if (idx >= limit)
651 goto done1;
652 }
653 stage = idx + ENTRIES_PER_PAGEPAGE;
654 middir = *dir;
655 if (punch_hole)
656 needs_lock = &info->lock;
657 if (upper_limit >= stage) {
658 if (needs_lock) {
659 spin_lock(needs_lock);
660 *dir = NULL;
661 spin_unlock(needs_lock);
662 needs_lock = NULL;
663 } else
664 *dir = NULL;
665 nr_pages_to_free++;
666 list_add(&middir->lru, &pages_to_free);
667 }
668 shmem_dir_unmap(dir);
669 cond_resched();
670 dir = shmem_dir_map(middir);
671 diroff = 0;
672 }
673 punch_lock = needs_lock;
674 subdir = dir[diroff];
675 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 dir[diroff] = NULL;
679 spin_unlock(needs_lock);
680 punch_lock = NULL;
681 } else
682 dir[diroff] = NULL;
683 nr_pages_to_free++;
684 list_add(&subdir->lru, &pages_to_free);
685 }
686 if (subdir && page_private(subdir) /* has swap entries */) {
687 size = limit - idx;
688 if (size > ENTRIES_PER_PAGE)
689 size = ENTRIES_PER_PAGE;
690 freed = shmem_map_and_free_swp(subdir,
691 offset, size, &dir, punch_lock);
692 if (!dir)
693 dir = shmem_dir_map(middir);
694 nr_swaps_freed += freed;
695 if (offset || punch_lock) {
696 spin_lock(&info->lock);
697 set_page_private(subdir,
698 page_private(subdir) - freed);
699 spin_unlock(&info->lock);
700 } else
701 BUG_ON(page_private(subdir) != freed);
702 }
703 offset = 0;
704 }
705done1:
706 shmem_dir_unmap(dir);
707done2:
708 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709 /*
710 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 * may have swizzled a page in from swap since vmtruncate or
712 * generic_delete_inode did it, before we lowered next_index.
713 * Also, though shmem_getpage checks i_size before adding to
714 * cache, no recheck after: so fix the narrow window there too.
715 *
716 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 * every time for punch_hole (which never got a chance to clear
718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 * yet hardly ever necessary: try to optimize them out later.
720 */
721 truncate_inode_pages_range(inode->i_mapping, start, end);
722 if (punch_hole)
723 unmap_mapping_range(inode->i_mapping, start,
724 end - start, 1);
725 }
726
727 spin_lock(&info->lock);
728 info->flags &= ~SHMEM_TRUNCATE;
729 info->swapped -= nr_swaps_freed;
730 if (nr_pages_to_free)
731 shmem_free_blocks(inode, nr_pages_to_free);
732 shmem_recalc_inode(inode);
733 spin_unlock(&info->lock);
734
735 /*
736 * Empty swap vector directory pages to be freed?
737 */
738 if (!list_empty(&pages_to_free)) {
739 pages_to_free.prev->next = NULL;
740 shmem_free_pages(pages_to_free.next);
741 }
742}
743
744static void shmem_truncate(struct inode *inode)
745{
746 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747}
748
749static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750{
751 struct inode *inode = dentry->d_inode;
752 struct page *page = NULL;
753 int error;
754
755 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756 if (attr->ia_size < inode->i_size) {
757 /*
758 * If truncating down to a partial page, then
759 * if that page is already allocated, hold it
760 * in memory until the truncation is over, so
761 * truncate_partial_page cannnot miss it were
762 * it assigned to swap.
763 */
764 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765 (void) shmem_getpage(inode,
766 attr->ia_size>>PAGE_CACHE_SHIFT,
767 &page, SGP_READ, NULL);
768 if (page)
769 unlock_page(page);
770 }
771 /*
772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 * detect if any pages might have been added to cache
774 * after truncate_inode_pages. But we needn't bother
775 * if it's being fully truncated to zero-length: the
776 * nrpages check is efficient enough in that case.
777 */
778 if (attr->ia_size) {
779 struct shmem_inode_info *info = SHMEM_I(inode);
780 spin_lock(&info->lock);
781 info->flags &= ~SHMEM_PAGEIN;
782 spin_unlock(&info->lock);
783 }
784 }
785 }
786
787 error = inode_change_ok(inode, attr);
788 if (!error)
789 error = inode_setattr(inode, attr);
790#ifdef CONFIG_TMPFS_POSIX_ACL
791 if (!error && (attr->ia_valid & ATTR_MODE))
792 error = generic_acl_chmod(inode, &shmem_acl_ops);
793#endif
794 if (page)
795 page_cache_release(page);
796 return error;
797}
798
799static void shmem_delete_inode(struct inode *inode)
800{
801 struct shmem_inode_info *info = SHMEM_I(inode);
802
803 if (inode->i_op->truncate == shmem_truncate) {
804 truncate_inode_pages(inode->i_mapping, 0);
805 shmem_unacct_size(info->flags, inode->i_size);
806 inode->i_size = 0;
807 shmem_truncate(inode);
808 if (!list_empty(&info->swaplist)) {
809 mutex_lock(&shmem_swaplist_mutex);
810 list_del_init(&info->swaplist);
811 mutex_unlock(&shmem_swaplist_mutex);
812 }
813 }
814 BUG_ON(inode->i_blocks);
815 shmem_free_inode(inode->i_sb);
816 clear_inode(inode);
817}
818
819static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820{
821 swp_entry_t *ptr;
822
823 for (ptr = dir; ptr < edir; ptr++) {
824 if (ptr->val == entry.val)
825 return ptr - dir;
826 }
827 return -1;
828}
829
830static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831{
832 struct inode *inode;
833 unsigned long idx;
834 unsigned long size;
835 unsigned long limit;
836 unsigned long stage;
837 struct page **dir;
838 struct page *subdir;
839 swp_entry_t *ptr;
840 int offset;
841 int error;
842
843 idx = 0;
844 ptr = info->i_direct;
845 spin_lock(&info->lock);
846 if (!info->swapped) {
847 list_del_init(&info->swaplist);
848 goto lost2;
849 }
850 limit = info->next_index;
851 size = limit;
852 if (size > SHMEM_NR_DIRECT)
853 size = SHMEM_NR_DIRECT;
854 offset = shmem_find_swp(entry, ptr, ptr+size);
855 if (offset >= 0)
856 goto found;
857 if (!info->i_indirect)
858 goto lost2;
859
860 dir = shmem_dir_map(info->i_indirect);
861 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862
863 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864 if (unlikely(idx == stage)) {
865 shmem_dir_unmap(dir-1);
866 if (cond_resched_lock(&info->lock)) {
867 /* check it has not been truncated */
868 if (limit > info->next_index) {
869 limit = info->next_index;
870 if (idx >= limit)
871 goto lost2;
872 }
873 }
874 dir = shmem_dir_map(info->i_indirect) +
875 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876 while (!*dir) {
877 dir++;
878 idx += ENTRIES_PER_PAGEPAGE;
879 if (idx >= limit)
880 goto lost1;
881 }
882 stage = idx + ENTRIES_PER_PAGEPAGE;
883 subdir = *dir;
884 shmem_dir_unmap(dir);
885 dir = shmem_dir_map(subdir);
886 }
887 subdir = *dir;
888 if (subdir && page_private(subdir)) {
889 ptr = shmem_swp_map(subdir);
890 size = limit - idx;
891 if (size > ENTRIES_PER_PAGE)
892 size = ENTRIES_PER_PAGE;
893 offset = shmem_find_swp(entry, ptr, ptr+size);
894 shmem_swp_unmap(ptr);
895 if (offset >= 0) {
896 shmem_dir_unmap(dir);
897 goto found;
898 }
899 }
900 }
901lost1:
902 shmem_dir_unmap(dir-1);
903lost2:
904 spin_unlock(&info->lock);
905 return 0;
906found:
907 idx += offset;
908 inode = igrab(&info->vfs_inode);
909 spin_unlock(&info->lock);
910
911 /*
912 * Move _head_ to start search for next from here.
913 * But be careful: shmem_delete_inode checks list_empty without taking
914 * mutex, and there's an instant in list_move_tail when info->swaplist
915 * would appear empty, if it were the only one on shmem_swaplist. We
916 * could avoid doing it if inode NULL; or use this minor optimization.
917 */
918 if (shmem_swaplist.next != &info->swaplist)
919 list_move_tail(&shmem_swaplist, &info->swaplist);
920 mutex_unlock(&shmem_swaplist_mutex);
921
922 error = 1;
923 if (!inode)
924 goto out;
925 /* Precharge page while we can wait, compensate afterwards */
926 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927 if (error)
928 goto out;
929 error = radix_tree_preload(GFP_KERNEL);
930 if (error)
931 goto uncharge;
932 error = 1;
933
934 spin_lock(&info->lock);
935 ptr = shmem_swp_entry(info, idx, NULL);
936 if (ptr && ptr->val == entry.val)
937 error = add_to_page_cache(page, inode->i_mapping,
938 idx, GFP_NOWAIT);
939 if (error == -EEXIST) {
940 struct page *filepage = find_get_page(inode->i_mapping, idx);
941 error = 1;
942 if (filepage) {
943 /*
944 * There might be a more uptodate page coming down
945 * from a stacked writepage: forget our swappage if so.
946 */
947 if (PageUptodate(filepage))
948 error = 0;
949 page_cache_release(filepage);
950 }
951 }
952 if (!error) {
953 delete_from_swap_cache(page);
954 set_page_dirty(page);
955 info->flags |= SHMEM_PAGEIN;
956 shmem_swp_set(info, ptr, 0);
957 swap_free(entry);
958 error = 1; /* not an error, but entry was found */
959 }
960 if (ptr)
961 shmem_swp_unmap(ptr);
962 spin_unlock(&info->lock);
963 radix_tree_preload_end();
964uncharge:
965 mem_cgroup_uncharge_page(page);
966out:
967 unlock_page(page);
968 page_cache_release(page);
969 iput(inode); /* allows for NULL */
970 return error;
971}
972
973/*
974 * shmem_unuse() search for an eventually swapped out shmem page.
975 */
976int shmem_unuse(swp_entry_t entry, struct page *page)
977{
978 struct list_head *p, *next;
979 struct shmem_inode_info *info;
980 int found = 0;
981
982 mutex_lock(&shmem_swaplist_mutex);
983 list_for_each_safe(p, next, &shmem_swaplist) {
984 info = list_entry(p, struct shmem_inode_info, swaplist);
985 found = shmem_unuse_inode(info, entry, page);
986 cond_resched();
987 if (found)
988 goto out;
989 }
990 mutex_unlock(&shmem_swaplist_mutex);
991out: return found; /* 0 or 1 or -ENOMEM */
992}
993
994/*
995 * Move the page from the page cache to the swap cache.
996 */
997static int shmem_writepage(struct page *page, struct writeback_control *wbc)
998{
999 struct shmem_inode_info *info;
1000 swp_entry_t *entry, swap;
1001 struct address_space *mapping;
1002 unsigned long index;
1003 struct inode *inode;
1004
1005 BUG_ON(!PageLocked(page));
1006 mapping = page->mapping;
1007 index = page->index;
1008 inode = mapping->host;
1009 info = SHMEM_I(inode);
1010 if (info->flags & VM_LOCKED)
1011 goto redirty;
1012 if (!total_swap_pages)
1013 goto redirty;
1014
1015 /*
1016 * shmem_backing_dev_info's capabilities prevent regular writeback or
1017 * sync from ever calling shmem_writepage; but a stacking filesystem
1018 * may use the ->writepage of its underlying filesystem, in which case
1019 * tmpfs should write out to swap only in response to memory pressure,
1020 * and not for pdflush or sync. However, in those cases, we do still
1021 * want to check if there's a redundant swappage to be discarded.
1022 */
1023 if (wbc->for_reclaim)
1024 swap = get_swap_page();
1025 else
1026 swap.val = 0;
1027
1028 spin_lock(&info->lock);
1029 if (index >= info->next_index) {
1030 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1031 goto unlock;
1032 }
1033 entry = shmem_swp_entry(info, index, NULL);
1034 if (entry->val) {
1035 /*
1036 * The more uptodate page coming down from a stacked
1037 * writepage should replace our old swappage.
1038 */
1039 free_swap_and_cache(*entry);
1040 shmem_swp_set(info, entry, 0);
1041 }
1042 shmem_recalc_inode(inode);
1043
1044 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1045 remove_from_page_cache(page);
1046 shmem_swp_set(info, entry, swap.val);
1047 shmem_swp_unmap(entry);
1048 if (list_empty(&info->swaplist))
1049 inode = igrab(inode);
1050 else
1051 inode = NULL;
1052 spin_unlock(&info->lock);
1053 swap_duplicate(swap);
1054 BUG_ON(page_mapped(page));
1055 page_cache_release(page); /* pagecache ref */
1056 set_page_dirty(page);
1057 unlock_page(page);
1058 if (inode) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 /* move instead of add in case we're racing */
1061 list_move_tail(&info->swaplist, &shmem_swaplist);
1062 mutex_unlock(&shmem_swaplist_mutex);
1063 iput(inode);
1064 }
1065 return 0;
1066 }
1067
1068 shmem_swp_unmap(entry);
1069unlock:
1070 spin_unlock(&info->lock);
1071 swap_free(swap);
1072redirty:
1073 set_page_dirty(page);
1074 if (wbc->for_reclaim)
1075 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1076 unlock_page(page);
1077 return 0;
1078}
1079
1080#ifdef CONFIG_NUMA
1081#ifdef CONFIG_TMPFS
1082static int shmem_parse_mpol(char *value, unsigned short *policy,
1083 unsigned short *mode_flags, nodemask_t *policy_nodes)
1084{
1085 char *nodelist = strchr(value, ':');
1086 char *flags = strchr(value, '=');
1087 int err = 1;
1088
1089 if (nodelist) {
1090 /* NUL-terminate policy string */
1091 *nodelist++ = '\0';
1092 if (nodelist_parse(nodelist, *policy_nodes))
1093 goto out;
1094 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1095 goto out;
1096 }
1097 if (flags)
1098 *flags++ = '\0';
1099 if (!strcmp(value, "default")) {
1100 *policy = MPOL_DEFAULT;
1101 /* Don't allow a nodelist */
1102 if (!nodelist)
1103 err = 0;
1104 } else if (!strcmp(value, "prefer")) {
1105 *policy = MPOL_PREFERRED;
1106 /* Insist on a nodelist of one node only */
1107 if (nodelist) {
1108 char *rest = nodelist;
1109 while (isdigit(*rest))
1110 rest++;
1111 if (!*rest)
1112 err = 0;
1113 }
1114 } else if (!strcmp(value, "bind")) {
1115 *policy = MPOL_BIND;
1116 /* Insist on a nodelist */
1117 if (nodelist)
1118 err = 0;
1119 } else if (!strcmp(value, "interleave")) {
1120 *policy = MPOL_INTERLEAVE;
1121 /*
1122 * Default to online nodes with memory if no nodelist
1123 */
1124 if (!nodelist)
1125 *policy_nodes = node_states[N_HIGH_MEMORY];
1126 err = 0;
1127 }
1128
1129 *mode_flags = 0;
1130 if (flags) {
1131 /*
1132 * Currently, we only support two mutually exclusive
1133 * mode flags.
1134 */
1135 if (!strcmp(flags, "static"))
1136 *mode_flags |= MPOL_F_STATIC_NODES;
1137 else if (!strcmp(flags, "relative"))
1138 *mode_flags |= MPOL_F_RELATIVE_NODES;
1139 else
1140 err = 1; /* unrecognized flag */
1141 }
1142out:
1143 /* Restore string for error message */
1144 if (nodelist)
1145 *--nodelist = ':';
1146 if (flags)
1147 *--flags = '=';
1148 return err;
1149}
1150
1151static void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1152 unsigned short flags, const nodemask_t policy_nodes)
1153{
1154 char *policy_string;
1155
1156 switch (policy) {
1157 case MPOL_PREFERRED:
1158 policy_string = "prefer";
1159 break;
1160 case MPOL_BIND:
1161 policy_string = "bind";
1162 break;
1163 case MPOL_INTERLEAVE:
1164 policy_string = "interleave";
1165 break;
1166 default:
1167 /* MPOL_DEFAULT */
1168 return;
1169 }
1170
1171 seq_printf(seq, ",mpol=%s", policy_string);
1172
1173 if (policy != MPOL_INTERLEAVE ||
1174 !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1175 char buffer[64];
1176 int len;
1177
1178 len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1179 if (len < sizeof(buffer))
1180 seq_printf(seq, ":%s", buffer);
1181 else
1182 seq_printf(seq, ":?");
1183 }
1184}
1185#endif /* CONFIG_TMPFS */
1186
1187static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1188 struct shmem_inode_info *info, unsigned long idx)
1189{
1190 struct vm_area_struct pvma;
1191 struct page *page;
1192
1193 /* Create a pseudo vma that just contains the policy */
1194 pvma.vm_start = 0;
1195 pvma.vm_pgoff = idx;
1196 pvma.vm_ops = NULL;
1197 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1198 page = swapin_readahead(entry, gfp, &pvma, 0);
1199 mpol_put(pvma.vm_policy);
1200 return page;
1201}
1202
1203static struct page *shmem_alloc_page(gfp_t gfp,
1204 struct shmem_inode_info *info, unsigned long idx)
1205{
1206 struct vm_area_struct pvma;
1207 struct page *page;
1208
1209 /* Create a pseudo vma that just contains the policy */
1210 pvma.vm_start = 0;
1211 pvma.vm_pgoff = idx;
1212 pvma.vm_ops = NULL;
1213 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1214 page = alloc_page_vma(gfp, &pvma, 0);
1215 mpol_put(pvma.vm_policy);
1216 return page;
1217}
1218#else /* !CONFIG_NUMA */
1219#ifdef CONFIG_TMPFS
1220static inline int shmem_parse_mpol(char *value, unsigned short *policy,
1221 unsigned short *mode_flags, nodemask_t *policy_nodes)
1222{
1223 return 1;
1224}
1225
1226static inline void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1227 unsigned short flags, const nodemask_t policy_nodes)
1228{
1229}
1230#endif /* CONFIG_TMPFS */
1231
1232static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1233 struct shmem_inode_info *info, unsigned long idx)
1234{
1235 return swapin_readahead(entry, gfp, NULL, 0);
1236}
1237
1238static inline struct page *shmem_alloc_page(gfp_t gfp,
1239 struct shmem_inode_info *info, unsigned long idx)
1240{
1241 return alloc_page(gfp);
1242}
1243#endif /* CONFIG_NUMA */
1244
1245/*
1246 * shmem_getpage - either get the page from swap or allocate a new one
1247 *
1248 * If we allocate a new one we do not mark it dirty. That's up to the
1249 * vm. If we swap it in we mark it dirty since we also free the swap
1250 * entry since a page cannot live in both the swap and page cache
1251 */
1252static int shmem_getpage(struct inode *inode, unsigned long idx,
1253 struct page **pagep, enum sgp_type sgp, int *type)
1254{
1255 struct address_space *mapping = inode->i_mapping;
1256 struct shmem_inode_info *info = SHMEM_I(inode);
1257 struct shmem_sb_info *sbinfo;
1258 struct page *filepage = *pagep;
1259 struct page *swappage;
1260 swp_entry_t *entry;
1261 swp_entry_t swap;
1262 gfp_t gfp;
1263 int error;
1264
1265 if (idx >= SHMEM_MAX_INDEX)
1266 return -EFBIG;
1267
1268 if (type)
1269 *type = 0;
1270
1271 /*
1272 * Normally, filepage is NULL on entry, and either found
1273 * uptodate immediately, or allocated and zeroed, or read
1274 * in under swappage, which is then assigned to filepage.
1275 * But shmem_readpage (required for splice) passes in a locked
1276 * filepage, which may be found not uptodate by other callers
1277 * too, and may need to be copied from the swappage read in.
1278 */
1279repeat:
1280 if (!filepage)
1281 filepage = find_lock_page(mapping, idx);
1282 if (filepage && PageUptodate(filepage))
1283 goto done;
1284 error = 0;
1285 gfp = mapping_gfp_mask(mapping);
1286 if (!filepage) {
1287 /*
1288 * Try to preload while we can wait, to not make a habit of
1289 * draining atomic reserves; but don't latch on to this cpu.
1290 */
1291 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1292 if (error)
1293 goto failed;
1294 radix_tree_preload_end();
1295 }
1296
1297 spin_lock(&info->lock);
1298 shmem_recalc_inode(inode);
1299 entry = shmem_swp_alloc(info, idx, sgp);
1300 if (IS_ERR(entry)) {
1301 spin_unlock(&info->lock);
1302 error = PTR_ERR(entry);
1303 goto failed;
1304 }
1305 swap = *entry;
1306
1307 if (swap.val) {
1308 /* Look it up and read it in.. */
1309 swappage = lookup_swap_cache(swap);
1310 if (!swappage) {
1311 shmem_swp_unmap(entry);
1312 /* here we actually do the io */
1313 if (type && !(*type & VM_FAULT_MAJOR)) {
1314 __count_vm_event(PGMAJFAULT);
1315 *type |= VM_FAULT_MAJOR;
1316 }
1317 spin_unlock(&info->lock);
1318 swappage = shmem_swapin(swap, gfp, info, idx);
1319 if (!swappage) {
1320 spin_lock(&info->lock);
1321 entry = shmem_swp_alloc(info, idx, sgp);
1322 if (IS_ERR(entry))
1323 error = PTR_ERR(entry);
1324 else {
1325 if (entry->val == swap.val)
1326 error = -ENOMEM;
1327 shmem_swp_unmap(entry);
1328 }
1329 spin_unlock(&info->lock);
1330 if (error)
1331 goto failed;
1332 goto repeat;
1333 }
1334 wait_on_page_locked(swappage);
1335 page_cache_release(swappage);
1336 goto repeat;
1337 }
1338
1339 /* We have to do this with page locked to prevent races */
1340 if (TestSetPageLocked(swappage)) {
1341 shmem_swp_unmap(entry);
1342 spin_unlock(&info->lock);
1343 wait_on_page_locked(swappage);
1344 page_cache_release(swappage);
1345 goto repeat;
1346 }
1347 if (PageWriteback(swappage)) {
1348 shmem_swp_unmap(entry);
1349 spin_unlock(&info->lock);
1350 wait_on_page_writeback(swappage);
1351 unlock_page(swappage);
1352 page_cache_release(swappage);
1353 goto repeat;
1354 }
1355 if (!PageUptodate(swappage)) {
1356 shmem_swp_unmap(entry);
1357 spin_unlock(&info->lock);
1358 unlock_page(swappage);
1359 page_cache_release(swappage);
1360 error = -EIO;
1361 goto failed;
1362 }
1363
1364 if (filepage) {
1365 shmem_swp_set(info, entry, 0);
1366 shmem_swp_unmap(entry);
1367 delete_from_swap_cache(swappage);
1368 spin_unlock(&info->lock);
1369 copy_highpage(filepage, swappage);
1370 unlock_page(swappage);
1371 page_cache_release(swappage);
1372 flush_dcache_page(filepage);
1373 SetPageUptodate(filepage);
1374 set_page_dirty(filepage);
1375 swap_free(swap);
1376 } else if (!(error = add_to_page_cache(
1377 swappage, mapping, idx, GFP_NOWAIT))) {
1378 info->flags |= SHMEM_PAGEIN;
1379 shmem_swp_set(info, entry, 0);
1380 shmem_swp_unmap(entry);
1381 delete_from_swap_cache(swappage);
1382 spin_unlock(&info->lock);
1383 filepage = swappage;
1384 set_page_dirty(filepage);
1385 swap_free(swap);
1386 } else {
1387 shmem_swp_unmap(entry);
1388 spin_unlock(&info->lock);
1389 unlock_page(swappage);
1390 if (error == -ENOMEM) {
1391 /* allow reclaim from this memory cgroup */
1392 error = mem_cgroup_cache_charge(swappage,
1393 current->mm, gfp & ~__GFP_HIGHMEM);
1394 if (error) {
1395 page_cache_release(swappage);
1396 goto failed;
1397 }
1398 mem_cgroup_uncharge_page(swappage);
1399 }
1400 page_cache_release(swappage);
1401 goto repeat;
1402 }
1403 } else if (sgp == SGP_READ && !filepage) {
1404 shmem_swp_unmap(entry);
1405 filepage = find_get_page(mapping, idx);
1406 if (filepage &&
1407 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1408 spin_unlock(&info->lock);
1409 wait_on_page_locked(filepage);
1410 page_cache_release(filepage);
1411 filepage = NULL;
1412 goto repeat;
1413 }
1414 spin_unlock(&info->lock);
1415 } else {
1416 shmem_swp_unmap(entry);
1417 sbinfo = SHMEM_SB(inode->i_sb);
1418 if (sbinfo->max_blocks) {
1419 spin_lock(&sbinfo->stat_lock);
1420 if (sbinfo->free_blocks == 0 ||
1421 shmem_acct_block(info->flags)) {
1422 spin_unlock(&sbinfo->stat_lock);
1423 spin_unlock(&info->lock);
1424 error = -ENOSPC;
1425 goto failed;
1426 }
1427 sbinfo->free_blocks--;
1428 inode->i_blocks += BLOCKS_PER_PAGE;
1429 spin_unlock(&sbinfo->stat_lock);
1430 } else if (shmem_acct_block(info->flags)) {
1431 spin_unlock(&info->lock);
1432 error = -ENOSPC;
1433 goto failed;
1434 }
1435
1436 if (!filepage) {
1437 spin_unlock(&info->lock);
1438 filepage = shmem_alloc_page(gfp, info, idx);
1439 if (!filepage) {
1440 shmem_unacct_blocks(info->flags, 1);
1441 shmem_free_blocks(inode, 1);
1442 error = -ENOMEM;
1443 goto failed;
1444 }
1445
1446 /* Precharge page while we can wait, compensate after */
1447 error = mem_cgroup_cache_charge(filepage, current->mm,
1448 gfp & ~__GFP_HIGHMEM);
1449 if (error) {
1450 page_cache_release(filepage);
1451 shmem_unacct_blocks(info->flags, 1);
1452 shmem_free_blocks(inode, 1);
1453 filepage = NULL;
1454 goto failed;
1455 }
1456
1457 spin_lock(&info->lock);
1458 entry = shmem_swp_alloc(info, idx, sgp);
1459 if (IS_ERR(entry))
1460 error = PTR_ERR(entry);
1461 else {
1462 swap = *entry;
1463 shmem_swp_unmap(entry);
1464 }
1465 if (error || swap.val || 0 != add_to_page_cache_lru(
1466 filepage, mapping, idx, GFP_NOWAIT)) {
1467 spin_unlock(&info->lock);
1468 mem_cgroup_uncharge_page(filepage);
1469 page_cache_release(filepage);
1470 shmem_unacct_blocks(info->flags, 1);
1471 shmem_free_blocks(inode, 1);
1472 filepage = NULL;
1473 if (error)
1474 goto failed;
1475 goto repeat;
1476 }
1477 mem_cgroup_uncharge_page(filepage);
1478 info->flags |= SHMEM_PAGEIN;
1479 }
1480
1481 info->alloced++;
1482 spin_unlock(&info->lock);
1483 clear_highpage(filepage);
1484 flush_dcache_page(filepage);
1485 SetPageUptodate(filepage);
1486 if (sgp == SGP_DIRTY)
1487 set_page_dirty(filepage);
1488 }
1489done:
1490 *pagep = filepage;
1491 return 0;
1492
1493failed:
1494 if (*pagep != filepage) {
1495 unlock_page(filepage);
1496 page_cache_release(filepage);
1497 }
1498 return error;
1499}
1500
1501static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1502{
1503 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1504 int error;
1505 int ret;
1506
1507 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1508 return VM_FAULT_SIGBUS;
1509
1510 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1511 if (error)
1512 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513
1514 mark_page_accessed(vmf->page);
1515 return ret | VM_FAULT_LOCKED;
1516}
1517
1518#ifdef CONFIG_NUMA
1519static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1520{
1521 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1522 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1523}
1524
1525static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1526 unsigned long addr)
1527{
1528 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529 unsigned long idx;
1530
1531 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1532 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1533}
1534#endif
1535
1536int shmem_lock(struct file *file, int lock, struct user_struct *user)
1537{
1538 struct inode *inode = file->f_path.dentry->d_inode;
1539 struct shmem_inode_info *info = SHMEM_I(inode);
1540 int retval = -ENOMEM;
1541
1542 spin_lock(&info->lock);
1543 if (lock && !(info->flags & VM_LOCKED)) {
1544 if (!user_shm_lock(inode->i_size, user))
1545 goto out_nomem;
1546 info->flags |= VM_LOCKED;
1547 }
1548 if (!lock && (info->flags & VM_LOCKED) && user) {
1549 user_shm_unlock(inode->i_size, user);
1550 info->flags &= ~VM_LOCKED;
1551 }
1552 retval = 0;
1553out_nomem:
1554 spin_unlock(&info->lock);
1555 return retval;
1556}
1557
1558static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1559{
1560 file_accessed(file);
1561 vma->vm_ops = &shmem_vm_ops;
1562 vma->vm_flags |= VM_CAN_NONLINEAR;
1563 return 0;
1564}
1565
1566static struct inode *
1567shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1568{
1569 struct inode *inode;
1570 struct shmem_inode_info *info;
1571 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1572
1573 if (shmem_reserve_inode(sb))
1574 return NULL;
1575
1576 inode = new_inode(sb);
1577 if (inode) {
1578 inode->i_mode = mode;
1579 inode->i_uid = current->fsuid;
1580 inode->i_gid = current->fsgid;
1581 inode->i_blocks = 0;
1582 inode->i_mapping->a_ops = &shmem_aops;
1583 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1584 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1585 inode->i_generation = get_seconds();
1586 info = SHMEM_I(inode);
1587 memset(info, 0, (char *)inode - (char *)info);
1588 spin_lock_init(&info->lock);
1589 INIT_LIST_HEAD(&info->swaplist);
1590
1591 switch (mode & S_IFMT) {
1592 default:
1593 inode->i_op = &shmem_special_inode_operations;
1594 init_special_inode(inode, mode, dev);
1595 break;
1596 case S_IFREG:
1597 inode->i_op = &shmem_inode_operations;
1598 inode->i_fop = &shmem_file_operations;
1599 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1600 sbinfo->flags, &sbinfo->policy_nodes);
1601 break;
1602 case S_IFDIR:
1603 inc_nlink(inode);
1604 /* Some things misbehave if size == 0 on a directory */
1605 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1606 inode->i_op = &shmem_dir_inode_operations;
1607 inode->i_fop = &simple_dir_operations;
1608 break;
1609 case S_IFLNK:
1610 /*
1611 * Must not load anything in the rbtree,
1612 * mpol_free_shared_policy will not be called.
1613 */
1614 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, 0,
1615 NULL);
1616 break;
1617 }
1618 } else
1619 shmem_free_inode(sb);
1620 return inode;
1621}
1622
1623#ifdef CONFIG_TMPFS
1624static const struct inode_operations shmem_symlink_inode_operations;
1625static const struct inode_operations shmem_symlink_inline_operations;
1626
1627/*
1628 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1629 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1630 * below the loop driver, in the generic fashion that many filesystems support.
1631 */
1632static int shmem_readpage(struct file *file, struct page *page)
1633{
1634 struct inode *inode = page->mapping->host;
1635 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1636 unlock_page(page);
1637 return error;
1638}
1639
1640static int
1641shmem_write_begin(struct file *file, struct address_space *mapping,
1642 loff_t pos, unsigned len, unsigned flags,
1643 struct page **pagep, void **fsdata)
1644{
1645 struct inode *inode = mapping->host;
1646 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1647 *pagep = NULL;
1648 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1649}
1650
1651static int
1652shmem_write_end(struct file *file, struct address_space *mapping,
1653 loff_t pos, unsigned len, unsigned copied,
1654 struct page *page, void *fsdata)
1655{
1656 struct inode *inode = mapping->host;
1657
1658 if (pos + copied > inode->i_size)
1659 i_size_write(inode, pos + copied);
1660
1661 unlock_page(page);
1662 set_page_dirty(page);
1663 page_cache_release(page);
1664
1665 return copied;
1666}
1667
1668static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1669{
1670 struct inode *inode = filp->f_path.dentry->d_inode;
1671 struct address_space *mapping = inode->i_mapping;
1672 unsigned long index, offset;
1673 enum sgp_type sgp = SGP_READ;
1674
1675 /*
1676 * Might this read be for a stacking filesystem? Then when reading
1677 * holes of a sparse file, we actually need to allocate those pages,
1678 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1679 */
1680 if (segment_eq(get_fs(), KERNEL_DS))
1681 sgp = SGP_DIRTY;
1682
1683 index = *ppos >> PAGE_CACHE_SHIFT;
1684 offset = *ppos & ~PAGE_CACHE_MASK;
1685
1686 for (;;) {
1687 struct page *page = NULL;
1688 unsigned long end_index, nr, ret;
1689 loff_t i_size = i_size_read(inode);
1690
1691 end_index = i_size >> PAGE_CACHE_SHIFT;
1692 if (index > end_index)
1693 break;
1694 if (index == end_index) {
1695 nr = i_size & ~PAGE_CACHE_MASK;
1696 if (nr <= offset)
1697 break;
1698 }
1699
1700 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1701 if (desc->error) {
1702 if (desc->error == -EINVAL)
1703 desc->error = 0;
1704 break;
1705 }
1706 if (page)
1707 unlock_page(page);
1708
1709 /*
1710 * We must evaluate after, since reads (unlike writes)
1711 * are called without i_mutex protection against truncate
1712 */
1713 nr = PAGE_CACHE_SIZE;
1714 i_size = i_size_read(inode);
1715 end_index = i_size >> PAGE_CACHE_SHIFT;
1716 if (index == end_index) {
1717 nr = i_size & ~PAGE_CACHE_MASK;
1718 if (nr <= offset) {
1719 if (page)
1720 page_cache_release(page);
1721 break;
1722 }
1723 }
1724 nr -= offset;
1725
1726 if (page) {
1727 /*
1728 * If users can be writing to this page using arbitrary
1729 * virtual addresses, take care about potential aliasing
1730 * before reading the page on the kernel side.
1731 */
1732 if (mapping_writably_mapped(mapping))
1733 flush_dcache_page(page);
1734 /*
1735 * Mark the page accessed if we read the beginning.
1736 */
1737 if (!offset)
1738 mark_page_accessed(page);
1739 } else {
1740 page = ZERO_PAGE(0);
1741 page_cache_get(page);
1742 }
1743
1744 /*
1745 * Ok, we have the page, and it's up-to-date, so
1746 * now we can copy it to user space...
1747 *
1748 * The actor routine returns how many bytes were actually used..
1749 * NOTE! This may not be the same as how much of a user buffer
1750 * we filled up (we may be padding etc), so we can only update
1751 * "pos" here (the actor routine has to update the user buffer
1752 * pointers and the remaining count).
1753 */
1754 ret = actor(desc, page, offset, nr);
1755 offset += ret;
1756 index += offset >> PAGE_CACHE_SHIFT;
1757 offset &= ~PAGE_CACHE_MASK;
1758
1759 page_cache_release(page);
1760 if (ret != nr || !desc->count)
1761 break;
1762
1763 cond_resched();
1764 }
1765
1766 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1767 file_accessed(filp);
1768}
1769
1770static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1771{
1772 read_descriptor_t desc;
1773
1774 if ((ssize_t) count < 0)
1775 return -EINVAL;
1776 if (!access_ok(VERIFY_WRITE, buf, count))
1777 return -EFAULT;
1778 if (!count)
1779 return 0;
1780
1781 desc.written = 0;
1782 desc.count = count;
1783 desc.arg.buf = buf;
1784 desc.error = 0;
1785
1786 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1787 if (desc.written)
1788 return desc.written;
1789 return desc.error;
1790}
1791
1792static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1793{
1794 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1795
1796 buf->f_type = TMPFS_MAGIC;
1797 buf->f_bsize = PAGE_CACHE_SIZE;
1798 buf->f_namelen = NAME_MAX;
1799 spin_lock(&sbinfo->stat_lock);
1800 if (sbinfo->max_blocks) {
1801 buf->f_blocks = sbinfo->max_blocks;
1802 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1803 }
1804 if (sbinfo->max_inodes) {
1805 buf->f_files = sbinfo->max_inodes;
1806 buf->f_ffree = sbinfo->free_inodes;
1807 }
1808 /* else leave those fields 0 like simple_statfs */
1809 spin_unlock(&sbinfo->stat_lock);
1810 return 0;
1811}
1812
1813/*
1814 * File creation. Allocate an inode, and we're done..
1815 */
1816static int
1817shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1818{
1819 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1820 int error = -ENOSPC;
1821
1822 if (inode) {
1823 error = security_inode_init_security(inode, dir, NULL, NULL,
1824 NULL);
1825 if (error) {
1826 if (error != -EOPNOTSUPP) {
1827 iput(inode);
1828 return error;
1829 }
1830 }
1831 error = shmem_acl_init(inode, dir);
1832 if (error) {
1833 iput(inode);
1834 return error;
1835 }
1836 if (dir->i_mode & S_ISGID) {
1837 inode->i_gid = dir->i_gid;
1838 if (S_ISDIR(mode))
1839 inode->i_mode |= S_ISGID;
1840 }
1841 dir->i_size += BOGO_DIRENT_SIZE;
1842 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1843 d_instantiate(dentry, inode);
1844 dget(dentry); /* Extra count - pin the dentry in core */
1845 }
1846 return error;
1847}
1848
1849static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1850{
1851 int error;
1852
1853 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1854 return error;
1855 inc_nlink(dir);
1856 return 0;
1857}
1858
1859static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1860 struct nameidata *nd)
1861{
1862 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1863}
1864
1865/*
1866 * Link a file..
1867 */
1868static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1869{
1870 struct inode *inode = old_dentry->d_inode;
1871 int ret;
1872
1873 /*
1874 * No ordinary (disk based) filesystem counts links as inodes;
1875 * but each new link needs a new dentry, pinning lowmem, and
1876 * tmpfs dentries cannot be pruned until they are unlinked.
1877 */
1878 ret = shmem_reserve_inode(inode->i_sb);
1879 if (ret)
1880 goto out;
1881
1882 dir->i_size += BOGO_DIRENT_SIZE;
1883 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1884 inc_nlink(inode);
1885 atomic_inc(&inode->i_count); /* New dentry reference */
1886 dget(dentry); /* Extra pinning count for the created dentry */
1887 d_instantiate(dentry, inode);
1888out:
1889 return ret;
1890}
1891
1892static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1893{
1894 struct inode *inode = dentry->d_inode;
1895
1896 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1897 shmem_free_inode(inode->i_sb);
1898
1899 dir->i_size -= BOGO_DIRENT_SIZE;
1900 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1901 drop_nlink(inode);
1902 dput(dentry); /* Undo the count from "create" - this does all the work */
1903 return 0;
1904}
1905
1906static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1907{
1908 if (!simple_empty(dentry))
1909 return -ENOTEMPTY;
1910
1911 drop_nlink(dentry->d_inode);
1912 drop_nlink(dir);
1913 return shmem_unlink(dir, dentry);
1914}
1915
1916/*
1917 * The VFS layer already does all the dentry stuff for rename,
1918 * we just have to decrement the usage count for the target if
1919 * it exists so that the VFS layer correctly free's it when it
1920 * gets overwritten.
1921 */
1922static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1923{
1924 struct inode *inode = old_dentry->d_inode;
1925 int they_are_dirs = S_ISDIR(inode->i_mode);
1926
1927 if (!simple_empty(new_dentry))
1928 return -ENOTEMPTY;
1929
1930 if (new_dentry->d_inode) {
1931 (void) shmem_unlink(new_dir, new_dentry);
1932 if (they_are_dirs)
1933 drop_nlink(old_dir);
1934 } else if (they_are_dirs) {
1935 drop_nlink(old_dir);
1936 inc_nlink(new_dir);
1937 }
1938
1939 old_dir->i_size -= BOGO_DIRENT_SIZE;
1940 new_dir->i_size += BOGO_DIRENT_SIZE;
1941 old_dir->i_ctime = old_dir->i_mtime =
1942 new_dir->i_ctime = new_dir->i_mtime =
1943 inode->i_ctime = CURRENT_TIME;
1944 return 0;
1945}
1946
1947static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1948{
1949 int error;
1950 int len;
1951 struct inode *inode;
1952 struct page *page = NULL;
1953 char *kaddr;
1954 struct shmem_inode_info *info;
1955
1956 len = strlen(symname) + 1;
1957 if (len > PAGE_CACHE_SIZE)
1958 return -ENAMETOOLONG;
1959
1960 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1961 if (!inode)
1962 return -ENOSPC;
1963
1964 error = security_inode_init_security(inode, dir, NULL, NULL,
1965 NULL);
1966 if (error) {
1967 if (error != -EOPNOTSUPP) {
1968 iput(inode);
1969 return error;
1970 }
1971 error = 0;
1972 }
1973
1974 info = SHMEM_I(inode);
1975 inode->i_size = len-1;
1976 if (len <= (char *)inode - (char *)info) {
1977 /* do it inline */
1978 memcpy(info, symname, len);
1979 inode->i_op = &shmem_symlink_inline_operations;
1980 } else {
1981 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1982 if (error) {
1983 iput(inode);
1984 return error;
1985 }
1986 unlock_page(page);
1987 inode->i_op = &shmem_symlink_inode_operations;
1988 kaddr = kmap_atomic(page, KM_USER0);
1989 memcpy(kaddr, symname, len);
1990 kunmap_atomic(kaddr, KM_USER0);
1991 set_page_dirty(page);
1992 page_cache_release(page);
1993 }
1994 if (dir->i_mode & S_ISGID)
1995 inode->i_gid = dir->i_gid;
1996 dir->i_size += BOGO_DIRENT_SIZE;
1997 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1998 d_instantiate(dentry, inode);
1999 dget(dentry);
2000 return 0;
2001}
2002
2003static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2004{
2005 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2006 return NULL;
2007}
2008
2009static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2010{
2011 struct page *page = NULL;
2012 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2013 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2014 if (page)
2015 unlock_page(page);
2016 return page;
2017}
2018
2019static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2020{
2021 if (!IS_ERR(nd_get_link(nd))) {
2022 struct page *page = cookie;
2023 kunmap(page);
2024 mark_page_accessed(page);
2025 page_cache_release(page);
2026 }
2027}
2028
2029static const struct inode_operations shmem_symlink_inline_operations = {
2030 .readlink = generic_readlink,
2031 .follow_link = shmem_follow_link_inline,
2032};
2033
2034static const struct inode_operations shmem_symlink_inode_operations = {
2035 .truncate = shmem_truncate,
2036 .readlink = generic_readlink,
2037 .follow_link = shmem_follow_link,
2038 .put_link = shmem_put_link,
2039};
2040
2041#ifdef CONFIG_TMPFS_POSIX_ACL
2042/*
2043 * Superblocks without xattr inode operations will get security.* xattr
2044 * support from the VFS "for free". As soon as we have any other xattrs
2045 * like ACLs, we also need to implement the security.* handlers at
2046 * filesystem level, though.
2047 */
2048
2049static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2050 size_t list_len, const char *name,
2051 size_t name_len)
2052{
2053 return security_inode_listsecurity(inode, list, list_len);
2054}
2055
2056static int shmem_xattr_security_get(struct inode *inode, const char *name,
2057 void *buffer, size_t size)
2058{
2059 if (strcmp(name, "") == 0)
2060 return -EINVAL;
2061 return xattr_getsecurity(inode, name, buffer, size);
2062}
2063
2064static int shmem_xattr_security_set(struct inode *inode, const char *name,
2065 const void *value, size_t size, int flags)
2066{
2067 if (strcmp(name, "") == 0)
2068 return -EINVAL;
2069 return security_inode_setsecurity(inode, name, value, size, flags);
2070}
2071
2072static struct xattr_handler shmem_xattr_security_handler = {
2073 .prefix = XATTR_SECURITY_PREFIX,
2074 .list = shmem_xattr_security_list,
2075 .get = shmem_xattr_security_get,
2076 .set = shmem_xattr_security_set,
2077};
2078
2079static struct xattr_handler *shmem_xattr_handlers[] = {
2080 &shmem_xattr_acl_access_handler,
2081 &shmem_xattr_acl_default_handler,
2082 &shmem_xattr_security_handler,
2083 NULL
2084};
2085#endif
2086
2087static struct dentry *shmem_get_parent(struct dentry *child)
2088{
2089 return ERR_PTR(-ESTALE);
2090}
2091
2092static int shmem_match(struct inode *ino, void *vfh)
2093{
2094 __u32 *fh = vfh;
2095 __u64 inum = fh[2];
2096 inum = (inum << 32) | fh[1];
2097 return ino->i_ino == inum && fh[0] == ino->i_generation;
2098}
2099
2100static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2101 struct fid *fid, int fh_len, int fh_type)
2102{
2103 struct inode *inode;
2104 struct dentry *dentry = NULL;
2105 u64 inum = fid->raw[2];
2106 inum = (inum << 32) | fid->raw[1];
2107
2108 if (fh_len < 3)
2109 return NULL;
2110
2111 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2112 shmem_match, fid->raw);
2113 if (inode) {
2114 dentry = d_find_alias(inode);
2115 iput(inode);
2116 }
2117
2118 return dentry;
2119}
2120
2121static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2122 int connectable)
2123{
2124 struct inode *inode = dentry->d_inode;
2125
2126 if (*len < 3)
2127 return 255;
2128
2129 if (hlist_unhashed(&inode->i_hash)) {
2130 /* Unfortunately insert_inode_hash is not idempotent,
2131 * so as we hash inodes here rather than at creation
2132 * time, we need a lock to ensure we only try
2133 * to do it once
2134 */
2135 static DEFINE_SPINLOCK(lock);
2136 spin_lock(&lock);
2137 if (hlist_unhashed(&inode->i_hash))
2138 __insert_inode_hash(inode,
2139 inode->i_ino + inode->i_generation);
2140 spin_unlock(&lock);
2141 }
2142
2143 fh[0] = inode->i_generation;
2144 fh[1] = inode->i_ino;
2145 fh[2] = ((__u64)inode->i_ino) >> 32;
2146
2147 *len = 3;
2148 return 1;
2149}
2150
2151static const struct export_operations shmem_export_ops = {
2152 .get_parent = shmem_get_parent,
2153 .encode_fh = shmem_encode_fh,
2154 .fh_to_dentry = shmem_fh_to_dentry,
2155};
2156
2157static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2158 bool remount)
2159{
2160 char *this_char, *value, *rest;
2161
2162 while (options != NULL) {
2163 this_char = options;
2164 for (;;) {
2165 /*
2166 * NUL-terminate this option: unfortunately,
2167 * mount options form a comma-separated list,
2168 * but mpol's nodelist may also contain commas.
2169 */
2170 options = strchr(options, ',');
2171 if (options == NULL)
2172 break;
2173 options++;
2174 if (!isdigit(*options)) {
2175 options[-1] = '\0';
2176 break;
2177 }
2178 }
2179 if (!*this_char)
2180 continue;
2181 if ((value = strchr(this_char,'=')) != NULL) {
2182 *value++ = 0;
2183 } else {
2184 printk(KERN_ERR
2185 "tmpfs: No value for mount option '%s'\n",
2186 this_char);
2187 return 1;
2188 }
2189
2190 if (!strcmp(this_char,"size")) {
2191 unsigned long long size;
2192 size = memparse(value,&rest);
2193 if (*rest == '%') {
2194 size <<= PAGE_SHIFT;
2195 size *= totalram_pages;
2196 do_div(size, 100);
2197 rest++;
2198 }
2199 if (*rest)
2200 goto bad_val;
2201 sbinfo->max_blocks =
2202 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2203 } else if (!strcmp(this_char,"nr_blocks")) {
2204 sbinfo->max_blocks = memparse(value, &rest);
2205 if (*rest)
2206 goto bad_val;
2207 } else if (!strcmp(this_char,"nr_inodes")) {
2208 sbinfo->max_inodes = memparse(value, &rest);
2209 if (*rest)
2210 goto bad_val;
2211 } else if (!strcmp(this_char,"mode")) {
2212 if (remount)
2213 continue;
2214 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2215 if (*rest)
2216 goto bad_val;
2217 } else if (!strcmp(this_char,"uid")) {
2218 if (remount)
2219 continue;
2220 sbinfo->uid = simple_strtoul(value, &rest, 0);
2221 if (*rest)
2222 goto bad_val;
2223 } else if (!strcmp(this_char,"gid")) {
2224 if (remount)
2225 continue;
2226 sbinfo->gid = simple_strtoul(value, &rest, 0);
2227 if (*rest)
2228 goto bad_val;
2229 } else if (!strcmp(this_char,"mpol")) {
2230 if (shmem_parse_mpol(value, &sbinfo->policy,
2231 &sbinfo->flags, &sbinfo->policy_nodes))
2232 goto bad_val;
2233 } else {
2234 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2235 this_char);
2236 return 1;
2237 }
2238 }
2239 return 0;
2240
2241bad_val:
2242 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2243 value, this_char);
2244 return 1;
2245
2246}
2247
2248static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2249{
2250 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2251 struct shmem_sb_info config = *sbinfo;
2252 unsigned long blocks;
2253 unsigned long inodes;
2254 int error = -EINVAL;
2255
2256 if (shmem_parse_options(data, &config, true))
2257 return error;
2258
2259 spin_lock(&sbinfo->stat_lock);
2260 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2261 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2262 if (config.max_blocks < blocks)
2263 goto out;
2264 if (config.max_inodes < inodes)
2265 goto out;
2266 /*
2267 * Those tests also disallow limited->unlimited while any are in
2268 * use, so i_blocks will always be zero when max_blocks is zero;
2269 * but we must separately disallow unlimited->limited, because
2270 * in that case we have no record of how much is already in use.
2271 */
2272 if (config.max_blocks && !sbinfo->max_blocks)
2273 goto out;
2274 if (config.max_inodes && !sbinfo->max_inodes)
2275 goto out;
2276
2277 error = 0;
2278 sbinfo->max_blocks = config.max_blocks;
2279 sbinfo->free_blocks = config.max_blocks - blocks;
2280 sbinfo->max_inodes = config.max_inodes;
2281 sbinfo->free_inodes = config.max_inodes - inodes;
2282 sbinfo->policy = config.policy;
2283 sbinfo->flags = config.flags;
2284 sbinfo->policy_nodes = config.policy_nodes;
2285out:
2286 spin_unlock(&sbinfo->stat_lock);
2287 return error;
2288}
2289
2290static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2291{
2292 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2293
2294 if (sbinfo->max_blocks != shmem_default_max_blocks())
2295 seq_printf(seq, ",size=%luk",
2296 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2297 if (sbinfo->max_inodes != shmem_default_max_inodes())
2298 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2299 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2300 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2301 if (sbinfo->uid != 0)
2302 seq_printf(seq, ",uid=%u", sbinfo->uid);
2303 if (sbinfo->gid != 0)
2304 seq_printf(seq, ",gid=%u", sbinfo->gid);
2305 shmem_show_mpol(seq, sbinfo->policy, sbinfo->flags,
2306 sbinfo->policy_nodes);
2307 return 0;
2308}
2309#endif /* CONFIG_TMPFS */
2310
2311static void shmem_put_super(struct super_block *sb)
2312{
2313 kfree(sb->s_fs_info);
2314 sb->s_fs_info = NULL;
2315}
2316
2317static int shmem_fill_super(struct super_block *sb,
2318 void *data, int silent)
2319{
2320 struct inode *inode;
2321 struct dentry *root;
2322 struct shmem_sb_info *sbinfo;
2323 int err = -ENOMEM;
2324
2325 /* Round up to L1_CACHE_BYTES to resist false sharing */
2326 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2327 L1_CACHE_BYTES), GFP_KERNEL);
2328 if (!sbinfo)
2329 return -ENOMEM;
2330
2331 sbinfo->max_blocks = 0;
2332 sbinfo->max_inodes = 0;
2333 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2334 sbinfo->uid = current->fsuid;
2335 sbinfo->gid = current->fsgid;
2336 sbinfo->policy = MPOL_DEFAULT;
2337 sbinfo->flags = 0;
2338 sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2339 sb->s_fs_info = sbinfo;
2340
2341#ifdef CONFIG_TMPFS
2342 /*
2343 * Per default we only allow half of the physical ram per
2344 * tmpfs instance, limiting inodes to one per page of lowmem;
2345 * but the internal instance is left unlimited.
2346 */
2347 if (!(sb->s_flags & MS_NOUSER)) {
2348 sbinfo->max_blocks = shmem_default_max_blocks();
2349 sbinfo->max_inodes = shmem_default_max_inodes();
2350 if (shmem_parse_options(data, sbinfo, false)) {
2351 err = -EINVAL;
2352 goto failed;
2353 }
2354 }
2355 sb->s_export_op = &shmem_export_ops;
2356#else
2357 sb->s_flags |= MS_NOUSER;
2358#endif
2359
2360 spin_lock_init(&sbinfo->stat_lock);
2361 sbinfo->free_blocks = sbinfo->max_blocks;
2362 sbinfo->free_inodes = sbinfo->max_inodes;
2363
2364 sb->s_maxbytes = SHMEM_MAX_BYTES;
2365 sb->s_blocksize = PAGE_CACHE_SIZE;
2366 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2367 sb->s_magic = TMPFS_MAGIC;
2368 sb->s_op = &shmem_ops;
2369 sb->s_time_gran = 1;
2370#ifdef CONFIG_TMPFS_POSIX_ACL
2371 sb->s_xattr = shmem_xattr_handlers;
2372 sb->s_flags |= MS_POSIXACL;
2373#endif
2374
2375 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2376 if (!inode)
2377 goto failed;
2378 inode->i_uid = sbinfo->uid;
2379 inode->i_gid = sbinfo->gid;
2380 root = d_alloc_root(inode);
2381 if (!root)
2382 goto failed_iput;
2383 sb->s_root = root;
2384 return 0;
2385
2386failed_iput:
2387 iput(inode);
2388failed:
2389 shmem_put_super(sb);
2390 return err;
2391}
2392
2393static struct kmem_cache *shmem_inode_cachep;
2394
2395static struct inode *shmem_alloc_inode(struct super_block *sb)
2396{
2397 struct shmem_inode_info *p;
2398 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2399 if (!p)
2400 return NULL;
2401 return &p->vfs_inode;
2402}
2403
2404static void shmem_destroy_inode(struct inode *inode)
2405{
2406 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2407 /* only struct inode is valid if it's an inline symlink */
2408 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2409 }
2410 shmem_acl_destroy_inode(inode);
2411 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2412}
2413
2414static void init_once(struct kmem_cache *cachep, void *foo)
2415{
2416 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2417
2418 inode_init_once(&p->vfs_inode);
2419#ifdef CONFIG_TMPFS_POSIX_ACL
2420 p->i_acl = NULL;
2421 p->i_default_acl = NULL;
2422#endif
2423}
2424
2425static int init_inodecache(void)
2426{
2427 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2428 sizeof(struct shmem_inode_info),
2429 0, SLAB_PANIC, init_once);
2430 return 0;
2431}
2432
2433static void destroy_inodecache(void)
2434{
2435 kmem_cache_destroy(shmem_inode_cachep);
2436}
2437
2438static const struct address_space_operations shmem_aops = {
2439 .writepage = shmem_writepage,
2440 .set_page_dirty = __set_page_dirty_no_writeback,
2441#ifdef CONFIG_TMPFS
2442 .readpage = shmem_readpage,
2443 .write_begin = shmem_write_begin,
2444 .write_end = shmem_write_end,
2445#endif
2446 .migratepage = migrate_page,
2447};
2448
2449static const struct file_operations shmem_file_operations = {
2450 .mmap = shmem_mmap,
2451#ifdef CONFIG_TMPFS
2452 .llseek = generic_file_llseek,
2453 .read = shmem_file_read,
2454 .write = do_sync_write,
2455 .aio_write = generic_file_aio_write,
2456 .fsync = simple_sync_file,
2457 .splice_read = generic_file_splice_read,
2458 .splice_write = generic_file_splice_write,
2459#endif
2460};
2461
2462static const struct inode_operations shmem_inode_operations = {
2463 .truncate = shmem_truncate,
2464 .setattr = shmem_notify_change,
2465 .truncate_range = shmem_truncate_range,
2466#ifdef CONFIG_TMPFS_POSIX_ACL
2467 .setxattr = generic_setxattr,
2468 .getxattr = generic_getxattr,
2469 .listxattr = generic_listxattr,
2470 .removexattr = generic_removexattr,
2471 .permission = shmem_permission,
2472#endif
2473
2474};
2475
2476static const struct inode_operations shmem_dir_inode_operations = {
2477#ifdef CONFIG_TMPFS
2478 .create = shmem_create,
2479 .lookup = simple_lookup,
2480 .link = shmem_link,
2481 .unlink = shmem_unlink,
2482 .symlink = shmem_symlink,
2483 .mkdir = shmem_mkdir,
2484 .rmdir = shmem_rmdir,
2485 .mknod = shmem_mknod,
2486 .rename = shmem_rename,
2487#endif
2488#ifdef CONFIG_TMPFS_POSIX_ACL
2489 .setattr = shmem_notify_change,
2490 .setxattr = generic_setxattr,
2491 .getxattr = generic_getxattr,
2492 .listxattr = generic_listxattr,
2493 .removexattr = generic_removexattr,
2494 .permission = shmem_permission,
2495#endif
2496};
2497
2498static const struct inode_operations shmem_special_inode_operations = {
2499#ifdef CONFIG_TMPFS_POSIX_ACL
2500 .setattr = shmem_notify_change,
2501 .setxattr = generic_setxattr,
2502 .getxattr = generic_getxattr,
2503 .listxattr = generic_listxattr,
2504 .removexattr = generic_removexattr,
2505 .permission = shmem_permission,
2506#endif
2507};
2508
2509static const struct super_operations shmem_ops = {
2510 .alloc_inode = shmem_alloc_inode,
2511 .destroy_inode = shmem_destroy_inode,
2512#ifdef CONFIG_TMPFS
2513 .statfs = shmem_statfs,
2514 .remount_fs = shmem_remount_fs,
2515 .show_options = shmem_show_options,
2516#endif
2517 .delete_inode = shmem_delete_inode,
2518 .drop_inode = generic_delete_inode,
2519 .put_super = shmem_put_super,
2520};
2521
2522static struct vm_operations_struct shmem_vm_ops = {
2523 .fault = shmem_fault,
2524#ifdef CONFIG_NUMA
2525 .set_policy = shmem_set_policy,
2526 .get_policy = shmem_get_policy,
2527#endif
2528};
2529
2530
2531static int shmem_get_sb(struct file_system_type *fs_type,
2532 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2533{
2534 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2535}
2536
2537static struct file_system_type tmpfs_fs_type = {
2538 .owner = THIS_MODULE,
2539 .name = "tmpfs",
2540 .get_sb = shmem_get_sb,
2541 .kill_sb = kill_litter_super,
2542};
2543static struct vfsmount *shm_mnt;
2544
2545static int __init init_tmpfs(void)
2546{
2547 int error;
2548
2549 error = bdi_init(&shmem_backing_dev_info);
2550 if (error)
2551 goto out4;
2552
2553 error = init_inodecache();
2554 if (error)
2555 goto out3;
2556
2557 error = register_filesystem(&tmpfs_fs_type);
2558 if (error) {
2559 printk(KERN_ERR "Could not register tmpfs\n");
2560 goto out2;
2561 }
2562
2563 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2564 tmpfs_fs_type.name, NULL);
2565 if (IS_ERR(shm_mnt)) {
2566 error = PTR_ERR(shm_mnt);
2567 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2568 goto out1;
2569 }
2570 return 0;
2571
2572out1:
2573 unregister_filesystem(&tmpfs_fs_type);
2574out2:
2575 destroy_inodecache();
2576out3:
2577 bdi_destroy(&shmem_backing_dev_info);
2578out4:
2579 shm_mnt = ERR_PTR(error);
2580 return error;
2581}
2582module_init(init_tmpfs)
2583
2584/**
2585 * shmem_file_setup - get an unlinked file living in tmpfs
2586 * @name: name for dentry (to be seen in /proc/<pid>/maps
2587 * @size: size to be set for the file
2588 * @flags: vm_flags
2589 */
2590struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2591{
2592 int error;
2593 struct file *file;
2594 struct inode *inode;
2595 struct dentry *dentry, *root;
2596 struct qstr this;
2597
2598 if (IS_ERR(shm_mnt))
2599 return (void *)shm_mnt;
2600
2601 if (size < 0 || size > SHMEM_MAX_BYTES)
2602 return ERR_PTR(-EINVAL);
2603
2604 if (shmem_acct_size(flags, size))
2605 return ERR_PTR(-ENOMEM);
2606
2607 error = -ENOMEM;
2608 this.name = name;
2609 this.len = strlen(name);
2610 this.hash = 0; /* will go */
2611 root = shm_mnt->mnt_root;
2612 dentry = d_alloc(root, &this);
2613 if (!dentry)
2614 goto put_memory;
2615
2616 error = -ENFILE;
2617 file = get_empty_filp();
2618 if (!file)
2619 goto put_dentry;
2620
2621 error = -ENOSPC;
2622 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2623 if (!inode)
2624 goto close_file;
2625
2626 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2627 d_instantiate(dentry, inode);
2628 inode->i_size = size;
2629 inode->i_nlink = 0; /* It is unlinked */
2630 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2631 &shmem_file_operations);
2632 return file;
2633
2634close_file:
2635 put_filp(file);
2636put_dentry:
2637 dput(dentry);
2638put_memory:
2639 shmem_unacct_size(flags, size);
2640 return ERR_PTR(error);
2641}
2642
2643/**
2644 * shmem_zero_setup - setup a shared anonymous mapping
2645 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2646 */
2647int shmem_zero_setup(struct vm_area_struct *vma)
2648{
2649 struct file *file;
2650 loff_t size = vma->vm_end - vma->vm_start;
2651
2652 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2653 if (IS_ERR(file))
2654 return PTR_ERR(file);
2655
2656 if (vma->vm_file)
2657 fput(vma->vm_file);
2658 vma->vm_file = file;
2659 vma->vm_ops = &shmem_vm_ops;
2660 return 0;
2661}