]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/shmem.c
mm, oom: add comment for why oom_adj exists
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
... / ...
CommitLineData
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/uio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69#include <linux/syscalls.h>
70#include <linux/fcntl.h>
71#include <uapi/linux/memfd.h>
72
73#include <asm/uaccess.h>
74#include <asm/pgtable.h>
75
76#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
85/*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90struct shmem_falloc {
91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96};
97
98/* Flag allocation requirements to shmem_getpage */
99enum sgp_type {
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105};
106
107#ifdef CONFIG_TMPFS
108static unsigned long shmem_default_max_blocks(void)
109{
110 return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
117#endif
118
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130}
131
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134 return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
145 return (flags & VM_NORESERVE) ?
146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
151 if (!(flags & VM_NORESERVE))
152 vm_unacct_memory(VM_ACCT(size));
153}
154
155static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157{
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166}
167
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
176 return (flags & VM_NORESERVE) ?
177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
182 if (flags & VM_NORESERVE)
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static const struct super_operations shmem_ops;
187static const struct address_space_operations shmem_aops;
188static const struct file_operations shmem_file_operations;
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
192static const struct vm_operations_struct shmem_vm_ops;
193
194static LIST_HEAD(shmem_swaplist);
195static DEFINE_MUTEX(shmem_swaplist_mutex);
196
197static int shmem_reserve_inode(struct super_block *sb)
198{
199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 if (sbinfo->max_inodes) {
201 spin_lock(&sbinfo->stat_lock);
202 if (!sbinfo->free_inodes) {
203 spin_unlock(&sbinfo->stat_lock);
204 return -ENOSPC;
205 }
206 sbinfo->free_inodes--;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 return 0;
210}
211
212static void shmem_free_inode(struct super_block *sb)
213{
214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 if (sbinfo->max_inodes) {
216 spin_lock(&sbinfo->stat_lock);
217 sbinfo->free_inodes++;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220}
221
222/**
223 * shmem_recalc_inode - recalculate the block usage of an inode
224 * @inode: inode to recalc
225 *
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
228 *
229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 *
232 * It has to be called with the spinlock held.
233 */
234static void shmem_recalc_inode(struct inode *inode)
235{
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 long freed;
238
239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 if (freed > 0) {
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_add(&sbinfo->used_blocks, -freed);
244 info->alloced -= freed;
245 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246 shmem_unacct_blocks(info->flags, freed);
247 }
248}
249
250/*
251 * Replace item expected in radix tree by a new item, while holding tree lock.
252 */
253static int shmem_radix_tree_replace(struct address_space *mapping,
254 pgoff_t index, void *expected, void *replacement)
255{
256 void **pslot;
257 void *item;
258
259 VM_BUG_ON(!expected);
260 VM_BUG_ON(!replacement);
261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262 if (!pslot)
263 return -ENOENT;
264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265 if (item != expected)
266 return -ENOENT;
267 radix_tree_replace_slot(pslot, replacement);
268 return 0;
269}
270
271/*
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
274 *
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
277 */
278static bool shmem_confirm_swap(struct address_space *mapping,
279 pgoff_t index, swp_entry_t swap)
280{
281 void *item;
282
283 rcu_read_lock();
284 item = radix_tree_lookup(&mapping->page_tree, index);
285 rcu_read_unlock();
286 return item == swp_to_radix_entry(swap);
287}
288
289/*
290 * Like add_to_page_cache_locked, but error if expected item has gone.
291 */
292static int shmem_add_to_page_cache(struct page *page,
293 struct address_space *mapping,
294 pgoff_t index, void *expected)
295{
296 int error;
297
298 VM_BUG_ON_PAGE(!PageLocked(page), page);
299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300
301 page_cache_get(page);
302 page->mapping = mapping;
303 page->index = index;
304
305 spin_lock_irq(&mapping->tree_lock);
306 if (!expected)
307 error = radix_tree_insert(&mapping->page_tree, index, page);
308 else
309 error = shmem_radix_tree_replace(mapping, index, expected,
310 page);
311 if (!error) {
312 mapping->nrpages++;
313 __inc_zone_page_state(page, NR_FILE_PAGES);
314 __inc_zone_page_state(page, NR_SHMEM);
315 spin_unlock_irq(&mapping->tree_lock);
316 } else {
317 page->mapping = NULL;
318 spin_unlock_irq(&mapping->tree_lock);
319 page_cache_release(page);
320 }
321 return error;
322}
323
324/*
325 * Like delete_from_page_cache, but substitutes swap for page.
326 */
327static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328{
329 struct address_space *mapping = page->mapping;
330 int error;
331
332 spin_lock_irq(&mapping->tree_lock);
333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 page->mapping = NULL;
335 mapping->nrpages--;
336 __dec_zone_page_state(page, NR_FILE_PAGES);
337 __dec_zone_page_state(page, NR_SHMEM);
338 spin_unlock_irq(&mapping->tree_lock);
339 page_cache_release(page);
340 BUG_ON(error);
341}
342
343/*
344 * Remove swap entry from radix tree, free the swap and its page cache.
345 */
346static int shmem_free_swap(struct address_space *mapping,
347 pgoff_t index, void *radswap)
348{
349 void *old;
350
351 spin_lock_irq(&mapping->tree_lock);
352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353 spin_unlock_irq(&mapping->tree_lock);
354 if (old != radswap)
355 return -ENOENT;
356 free_swap_and_cache(radix_to_swp_entry(radswap));
357 return 0;
358}
359
360/*
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362 */
363void shmem_unlock_mapping(struct address_space *mapping)
364{
365 struct pagevec pvec;
366 pgoff_t indices[PAGEVEC_SIZE];
367 pgoff_t index = 0;
368
369 pagevec_init(&pvec, 0);
370 /*
371 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 */
373 while (!mapping_unevictable(mapping)) {
374 /*
375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 */
378 pvec.nr = find_get_entries(mapping, index,
379 PAGEVEC_SIZE, pvec.pages, indices);
380 if (!pvec.nr)
381 break;
382 index = indices[pvec.nr - 1] + 1;
383 pagevec_remove_exceptionals(&pvec);
384 check_move_unevictable_pages(pvec.pages, pvec.nr);
385 pagevec_release(&pvec);
386 cond_resched();
387 }
388}
389
390/*
391 * Remove range of pages and swap entries from radix tree, and free them.
392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393 */
394static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 bool unfalloc)
396{
397 struct address_space *mapping = inode->i_mapping;
398 struct shmem_inode_info *info = SHMEM_I(inode);
399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403 struct pagevec pvec;
404 pgoff_t indices[PAGEVEC_SIZE];
405 long nr_swaps_freed = 0;
406 pgoff_t index;
407 int i;
408
409 if (lend == -1)
410 end = -1; /* unsigned, so actually very big */
411
412 pagevec_init(&pvec, 0);
413 index = start;
414 while (index < end) {
415 pvec.nr = find_get_entries(mapping, index,
416 min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 pvec.pages, indices);
418 if (!pvec.nr)
419 break;
420 for (i = 0; i < pagevec_count(&pvec); i++) {
421 struct page *page = pvec.pages[i];
422
423 index = indices[i];
424 if (index >= end)
425 break;
426
427 if (radix_tree_exceptional_entry(page)) {
428 if (unfalloc)
429 continue;
430 nr_swaps_freed += !shmem_free_swap(mapping,
431 index, page);
432 continue;
433 }
434
435 if (!trylock_page(page))
436 continue;
437 if (!unfalloc || !PageUptodate(page)) {
438 if (page->mapping == mapping) {
439 VM_BUG_ON_PAGE(PageWriteback(page), page);
440 truncate_inode_page(mapping, page);
441 }
442 }
443 unlock_page(page);
444 }
445 pagevec_remove_exceptionals(&pvec);
446 pagevec_release(&pvec);
447 cond_resched();
448 index++;
449 }
450
451 if (partial_start) {
452 struct page *page = NULL;
453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 if (page) {
455 unsigned int top = PAGE_CACHE_SIZE;
456 if (start > end) {
457 top = partial_end;
458 partial_end = 0;
459 }
460 zero_user_segment(page, partial_start, top);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (partial_end) {
467 struct page *page = NULL;
468 shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 if (page) {
470 zero_user_segment(page, 0, partial_end);
471 set_page_dirty(page);
472 unlock_page(page);
473 page_cache_release(page);
474 }
475 }
476 if (start >= end)
477 return;
478
479 index = start;
480 while (index < end) {
481 cond_resched();
482
483 pvec.nr = find_get_entries(mapping, index,
484 min(end - index, (pgoff_t)PAGEVEC_SIZE),
485 pvec.pages, indices);
486 if (!pvec.nr) {
487 /* If all gone or hole-punch or unfalloc, we're done */
488 if (index == start || end != -1)
489 break;
490 /* But if truncating, restart to make sure all gone */
491 index = start;
492 continue;
493 }
494 for (i = 0; i < pagevec_count(&pvec); i++) {
495 struct page *page = pvec.pages[i];
496
497 index = indices[i];
498 if (index >= end)
499 break;
500
501 if (radix_tree_exceptional_entry(page)) {
502 if (unfalloc)
503 continue;
504 if (shmem_free_swap(mapping, index, page)) {
505 /* Swap was replaced by page: retry */
506 index--;
507 break;
508 }
509 nr_swaps_freed++;
510 continue;
511 }
512
513 lock_page(page);
514 if (!unfalloc || !PageUptodate(page)) {
515 if (page->mapping == mapping) {
516 VM_BUG_ON_PAGE(PageWriteback(page), page);
517 truncate_inode_page(mapping, page);
518 } else {
519 /* Page was replaced by swap: retry */
520 unlock_page(page);
521 index--;
522 break;
523 }
524 }
525 unlock_page(page);
526 }
527 pagevec_remove_exceptionals(&pvec);
528 pagevec_release(&pvec);
529 index++;
530 }
531
532 spin_lock(&info->lock);
533 info->swapped -= nr_swaps_freed;
534 shmem_recalc_inode(inode);
535 spin_unlock(&info->lock);
536}
537
538void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539{
540 shmem_undo_range(inode, lstart, lend, false);
541 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542}
543EXPORT_SYMBOL_GPL(shmem_truncate_range);
544
545static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
546 struct kstat *stat)
547{
548 struct inode *inode = dentry->d_inode;
549 struct shmem_inode_info *info = SHMEM_I(inode);
550
551 spin_lock(&info->lock);
552 shmem_recalc_inode(inode);
553 spin_unlock(&info->lock);
554
555 generic_fillattr(inode, stat);
556
557 return 0;
558}
559
560static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
561{
562 struct inode *inode = d_inode(dentry);
563 struct shmem_inode_info *info = SHMEM_I(inode);
564 int error;
565
566 error = inode_change_ok(inode, attr);
567 if (error)
568 return error;
569
570 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
571 loff_t oldsize = inode->i_size;
572 loff_t newsize = attr->ia_size;
573
574 /* protected by i_mutex */
575 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
576 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
577 return -EPERM;
578
579 if (newsize != oldsize) {
580 error = shmem_reacct_size(SHMEM_I(inode)->flags,
581 oldsize, newsize);
582 if (error)
583 return error;
584 i_size_write(inode, newsize);
585 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
586 }
587 if (newsize <= oldsize) {
588 loff_t holebegin = round_up(newsize, PAGE_SIZE);
589 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
590 shmem_truncate_range(inode, newsize, (loff_t)-1);
591 /* unmap again to remove racily COWed private pages */
592 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
593 }
594 }
595
596 setattr_copy(inode, attr);
597 if (attr->ia_valid & ATTR_MODE)
598 error = posix_acl_chmod(inode, inode->i_mode);
599 return error;
600}
601
602static void shmem_evict_inode(struct inode *inode)
603{
604 struct shmem_inode_info *info = SHMEM_I(inode);
605
606 if (inode->i_mapping->a_ops == &shmem_aops) {
607 shmem_unacct_size(info->flags, inode->i_size);
608 inode->i_size = 0;
609 shmem_truncate_range(inode, 0, (loff_t)-1);
610 if (!list_empty(&info->swaplist)) {
611 mutex_lock(&shmem_swaplist_mutex);
612 list_del_init(&info->swaplist);
613 mutex_unlock(&shmem_swaplist_mutex);
614 }
615 } else
616 kfree(info->symlink);
617
618 simple_xattrs_free(&info->xattrs);
619 WARN_ON(inode->i_blocks);
620 shmem_free_inode(inode->i_sb);
621 clear_inode(inode);
622}
623
624/*
625 * If swap found in inode, free it and move page from swapcache to filecache.
626 */
627static int shmem_unuse_inode(struct shmem_inode_info *info,
628 swp_entry_t swap, struct page **pagep)
629{
630 struct address_space *mapping = info->vfs_inode.i_mapping;
631 void *radswap;
632 pgoff_t index;
633 gfp_t gfp;
634 int error = 0;
635
636 radswap = swp_to_radix_entry(swap);
637 index = radix_tree_locate_item(&mapping->page_tree, radswap);
638 if (index == -1)
639 return -EAGAIN; /* tell shmem_unuse we found nothing */
640
641 /*
642 * Move _head_ to start search for next from here.
643 * But be careful: shmem_evict_inode checks list_empty without taking
644 * mutex, and there's an instant in list_move_tail when info->swaplist
645 * would appear empty, if it were the only one on shmem_swaplist.
646 */
647 if (shmem_swaplist.next != &info->swaplist)
648 list_move_tail(&shmem_swaplist, &info->swaplist);
649
650 gfp = mapping_gfp_mask(mapping);
651 if (shmem_should_replace_page(*pagep, gfp)) {
652 mutex_unlock(&shmem_swaplist_mutex);
653 error = shmem_replace_page(pagep, gfp, info, index);
654 mutex_lock(&shmem_swaplist_mutex);
655 /*
656 * We needed to drop mutex to make that restrictive page
657 * allocation, but the inode might have been freed while we
658 * dropped it: although a racing shmem_evict_inode() cannot
659 * complete without emptying the radix_tree, our page lock
660 * on this swapcache page is not enough to prevent that -
661 * free_swap_and_cache() of our swap entry will only
662 * trylock_page(), removing swap from radix_tree whatever.
663 *
664 * We must not proceed to shmem_add_to_page_cache() if the
665 * inode has been freed, but of course we cannot rely on
666 * inode or mapping or info to check that. However, we can
667 * safely check if our swap entry is still in use (and here
668 * it can't have got reused for another page): if it's still
669 * in use, then the inode cannot have been freed yet, and we
670 * can safely proceed (if it's no longer in use, that tells
671 * nothing about the inode, but we don't need to unuse swap).
672 */
673 if (!page_swapcount(*pagep))
674 error = -ENOENT;
675 }
676
677 /*
678 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
679 * but also to hold up shmem_evict_inode(): so inode cannot be freed
680 * beneath us (pagelock doesn't help until the page is in pagecache).
681 */
682 if (!error)
683 error = shmem_add_to_page_cache(*pagep, mapping, index,
684 radswap);
685 if (error != -ENOMEM) {
686 /*
687 * Truncation and eviction use free_swap_and_cache(), which
688 * only does trylock page: if we raced, best clean up here.
689 */
690 delete_from_swap_cache(*pagep);
691 set_page_dirty(*pagep);
692 if (!error) {
693 spin_lock(&info->lock);
694 info->swapped--;
695 spin_unlock(&info->lock);
696 swap_free(swap);
697 }
698 }
699 return error;
700}
701
702/*
703 * Search through swapped inodes to find and replace swap by page.
704 */
705int shmem_unuse(swp_entry_t swap, struct page *page)
706{
707 struct list_head *this, *next;
708 struct shmem_inode_info *info;
709 struct mem_cgroup *memcg;
710 int error = 0;
711
712 /*
713 * There's a faint possibility that swap page was replaced before
714 * caller locked it: caller will come back later with the right page.
715 */
716 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
717 goto out;
718
719 /*
720 * Charge page using GFP_KERNEL while we can wait, before taking
721 * the shmem_swaplist_mutex which might hold up shmem_writepage().
722 * Charged back to the user (not to caller) when swap account is used.
723 */
724 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
725 if (error)
726 goto out;
727 /* No radix_tree_preload: swap entry keeps a place for page in tree */
728 error = -EAGAIN;
729
730 mutex_lock(&shmem_swaplist_mutex);
731 list_for_each_safe(this, next, &shmem_swaplist) {
732 info = list_entry(this, struct shmem_inode_info, swaplist);
733 if (info->swapped)
734 error = shmem_unuse_inode(info, swap, &page);
735 else
736 list_del_init(&info->swaplist);
737 cond_resched();
738 if (error != -EAGAIN)
739 break;
740 /* found nothing in this: move on to search the next */
741 }
742 mutex_unlock(&shmem_swaplist_mutex);
743
744 if (error) {
745 if (error != -ENOMEM)
746 error = 0;
747 mem_cgroup_cancel_charge(page, memcg);
748 } else
749 mem_cgroup_commit_charge(page, memcg, true);
750out:
751 unlock_page(page);
752 page_cache_release(page);
753 return error;
754}
755
756/*
757 * Move the page from the page cache to the swap cache.
758 */
759static int shmem_writepage(struct page *page, struct writeback_control *wbc)
760{
761 struct shmem_inode_info *info;
762 struct address_space *mapping;
763 struct inode *inode;
764 swp_entry_t swap;
765 pgoff_t index;
766
767 BUG_ON(!PageLocked(page));
768 mapping = page->mapping;
769 index = page->index;
770 inode = mapping->host;
771 info = SHMEM_I(inode);
772 if (info->flags & VM_LOCKED)
773 goto redirty;
774 if (!total_swap_pages)
775 goto redirty;
776
777 /*
778 * Our capabilities prevent regular writeback or sync from ever calling
779 * shmem_writepage; but a stacking filesystem might use ->writepage of
780 * its underlying filesystem, in which case tmpfs should write out to
781 * swap only in response to memory pressure, and not for the writeback
782 * threads or sync.
783 */
784 if (!wbc->for_reclaim) {
785 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
786 goto redirty;
787 }
788
789 /*
790 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
791 * value into swapfile.c, the only way we can correctly account for a
792 * fallocated page arriving here is now to initialize it and write it.
793 *
794 * That's okay for a page already fallocated earlier, but if we have
795 * not yet completed the fallocation, then (a) we want to keep track
796 * of this page in case we have to undo it, and (b) it may not be a
797 * good idea to continue anyway, once we're pushing into swap. So
798 * reactivate the page, and let shmem_fallocate() quit when too many.
799 */
800 if (!PageUptodate(page)) {
801 if (inode->i_private) {
802 struct shmem_falloc *shmem_falloc;
803 spin_lock(&inode->i_lock);
804 shmem_falloc = inode->i_private;
805 if (shmem_falloc &&
806 !shmem_falloc->waitq &&
807 index >= shmem_falloc->start &&
808 index < shmem_falloc->next)
809 shmem_falloc->nr_unswapped++;
810 else
811 shmem_falloc = NULL;
812 spin_unlock(&inode->i_lock);
813 if (shmem_falloc)
814 goto redirty;
815 }
816 clear_highpage(page);
817 flush_dcache_page(page);
818 SetPageUptodate(page);
819 }
820
821 swap = get_swap_page();
822 if (!swap.val)
823 goto redirty;
824
825 /*
826 * Add inode to shmem_unuse()'s list of swapped-out inodes,
827 * if it's not already there. Do it now before the page is
828 * moved to swap cache, when its pagelock no longer protects
829 * the inode from eviction. But don't unlock the mutex until
830 * we've incremented swapped, because shmem_unuse_inode() will
831 * prune a !swapped inode from the swaplist under this mutex.
832 */
833 mutex_lock(&shmem_swaplist_mutex);
834 if (list_empty(&info->swaplist))
835 list_add_tail(&info->swaplist, &shmem_swaplist);
836
837 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
838 swap_shmem_alloc(swap);
839 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
840
841 spin_lock(&info->lock);
842 info->swapped++;
843 shmem_recalc_inode(inode);
844 spin_unlock(&info->lock);
845
846 mutex_unlock(&shmem_swaplist_mutex);
847 BUG_ON(page_mapped(page));
848 swap_writepage(page, wbc);
849 return 0;
850 }
851
852 mutex_unlock(&shmem_swaplist_mutex);
853 swapcache_free(swap);
854redirty:
855 set_page_dirty(page);
856 if (wbc->for_reclaim)
857 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
858 unlock_page(page);
859 return 0;
860}
861
862#ifdef CONFIG_NUMA
863#ifdef CONFIG_TMPFS
864static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
865{
866 char buffer[64];
867
868 if (!mpol || mpol->mode == MPOL_DEFAULT)
869 return; /* show nothing */
870
871 mpol_to_str(buffer, sizeof(buffer), mpol);
872
873 seq_printf(seq, ",mpol=%s", buffer);
874}
875
876static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
877{
878 struct mempolicy *mpol = NULL;
879 if (sbinfo->mpol) {
880 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
881 mpol = sbinfo->mpol;
882 mpol_get(mpol);
883 spin_unlock(&sbinfo->stat_lock);
884 }
885 return mpol;
886}
887#endif /* CONFIG_TMPFS */
888
889static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
890 struct shmem_inode_info *info, pgoff_t index)
891{
892 struct vm_area_struct pvma;
893 struct page *page;
894
895 /* Create a pseudo vma that just contains the policy */
896 pvma.vm_start = 0;
897 /* Bias interleave by inode number to distribute better across nodes */
898 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
899 pvma.vm_ops = NULL;
900 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
901
902 page = swapin_readahead(swap, gfp, &pvma, 0);
903
904 /* Drop reference taken by mpol_shared_policy_lookup() */
905 mpol_cond_put(pvma.vm_policy);
906
907 return page;
908}
909
910static struct page *shmem_alloc_page(gfp_t gfp,
911 struct shmem_inode_info *info, pgoff_t index)
912{
913 struct vm_area_struct pvma;
914 struct page *page;
915
916 /* Create a pseudo vma that just contains the policy */
917 pvma.vm_start = 0;
918 /* Bias interleave by inode number to distribute better across nodes */
919 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920 pvma.vm_ops = NULL;
921 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922
923 page = alloc_page_vma(gfp, &pvma, 0);
924
925 /* Drop reference taken by mpol_shared_policy_lookup() */
926 mpol_cond_put(pvma.vm_policy);
927
928 return page;
929}
930#else /* !CONFIG_NUMA */
931#ifdef CONFIG_TMPFS
932static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
933{
934}
935#endif /* CONFIG_TMPFS */
936
937static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
938 struct shmem_inode_info *info, pgoff_t index)
939{
940 return swapin_readahead(swap, gfp, NULL, 0);
941}
942
943static inline struct page *shmem_alloc_page(gfp_t gfp,
944 struct shmem_inode_info *info, pgoff_t index)
945{
946 return alloc_page(gfp);
947}
948#endif /* CONFIG_NUMA */
949
950#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
951static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
952{
953 return NULL;
954}
955#endif
956
957/*
958 * When a page is moved from swapcache to shmem filecache (either by the
959 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
960 * shmem_unuse_inode()), it may have been read in earlier from swap, in
961 * ignorance of the mapping it belongs to. If that mapping has special
962 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
963 * we may need to copy to a suitable page before moving to filecache.
964 *
965 * In a future release, this may well be extended to respect cpuset and
966 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
967 * but for now it is a simple matter of zone.
968 */
969static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
970{
971 return page_zonenum(page) > gfp_zone(gfp);
972}
973
974static int shmem_replace_page(struct page **pagep, gfp_t gfp,
975 struct shmem_inode_info *info, pgoff_t index)
976{
977 struct page *oldpage, *newpage;
978 struct address_space *swap_mapping;
979 pgoff_t swap_index;
980 int error;
981
982 oldpage = *pagep;
983 swap_index = page_private(oldpage);
984 swap_mapping = page_mapping(oldpage);
985
986 /*
987 * We have arrived here because our zones are constrained, so don't
988 * limit chance of success by further cpuset and node constraints.
989 */
990 gfp &= ~GFP_CONSTRAINT_MASK;
991 newpage = shmem_alloc_page(gfp, info, index);
992 if (!newpage)
993 return -ENOMEM;
994
995 page_cache_get(newpage);
996 copy_highpage(newpage, oldpage);
997 flush_dcache_page(newpage);
998
999 __set_page_locked(newpage);
1000 SetPageUptodate(newpage);
1001 SetPageSwapBacked(newpage);
1002 set_page_private(newpage, swap_index);
1003 SetPageSwapCache(newpage);
1004
1005 /*
1006 * Our caller will very soon move newpage out of swapcache, but it's
1007 * a nice clean interface for us to replace oldpage by newpage there.
1008 */
1009 spin_lock_irq(&swap_mapping->tree_lock);
1010 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1011 newpage);
1012 if (!error) {
1013 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1014 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1015 }
1016 spin_unlock_irq(&swap_mapping->tree_lock);
1017
1018 if (unlikely(error)) {
1019 /*
1020 * Is this possible? I think not, now that our callers check
1021 * both PageSwapCache and page_private after getting page lock;
1022 * but be defensive. Reverse old to newpage for clear and free.
1023 */
1024 oldpage = newpage;
1025 } else {
1026 mem_cgroup_replace_page(oldpage, newpage);
1027 lru_cache_add_anon(newpage);
1028 *pagep = newpage;
1029 }
1030
1031 ClearPageSwapCache(oldpage);
1032 set_page_private(oldpage, 0);
1033
1034 unlock_page(oldpage);
1035 page_cache_release(oldpage);
1036 page_cache_release(oldpage);
1037 return error;
1038}
1039
1040/*
1041 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1042 *
1043 * If we allocate a new one we do not mark it dirty. That's up to the
1044 * vm. If we swap it in we mark it dirty since we also free the swap
1045 * entry since a page cannot live in both the swap and page cache
1046 */
1047static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1048 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1049{
1050 struct address_space *mapping = inode->i_mapping;
1051 struct shmem_inode_info *info;
1052 struct shmem_sb_info *sbinfo;
1053 struct mem_cgroup *memcg;
1054 struct page *page;
1055 swp_entry_t swap;
1056 int error;
1057 int once = 0;
1058 int alloced = 0;
1059
1060 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1061 return -EFBIG;
1062repeat:
1063 swap.val = 0;
1064 page = find_lock_entry(mapping, index);
1065 if (radix_tree_exceptional_entry(page)) {
1066 swap = radix_to_swp_entry(page);
1067 page = NULL;
1068 }
1069
1070 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1071 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1072 error = -EINVAL;
1073 goto failed;
1074 }
1075
1076 if (page && sgp == SGP_WRITE)
1077 mark_page_accessed(page);
1078
1079 /* fallocated page? */
1080 if (page && !PageUptodate(page)) {
1081 if (sgp != SGP_READ)
1082 goto clear;
1083 unlock_page(page);
1084 page_cache_release(page);
1085 page = NULL;
1086 }
1087 if (page || (sgp == SGP_READ && !swap.val)) {
1088 *pagep = page;
1089 return 0;
1090 }
1091
1092 /*
1093 * Fast cache lookup did not find it:
1094 * bring it back from swap or allocate.
1095 */
1096 info = SHMEM_I(inode);
1097 sbinfo = SHMEM_SB(inode->i_sb);
1098
1099 if (swap.val) {
1100 /* Look it up and read it in.. */
1101 page = lookup_swap_cache(swap);
1102 if (!page) {
1103 /* here we actually do the io */
1104 if (fault_type)
1105 *fault_type |= VM_FAULT_MAJOR;
1106 page = shmem_swapin(swap, gfp, info, index);
1107 if (!page) {
1108 error = -ENOMEM;
1109 goto failed;
1110 }
1111 }
1112
1113 /* We have to do this with page locked to prevent races */
1114 lock_page(page);
1115 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1116 !shmem_confirm_swap(mapping, index, swap)) {
1117 error = -EEXIST; /* try again */
1118 goto unlock;
1119 }
1120 if (!PageUptodate(page)) {
1121 error = -EIO;
1122 goto failed;
1123 }
1124 wait_on_page_writeback(page);
1125
1126 if (shmem_should_replace_page(page, gfp)) {
1127 error = shmem_replace_page(&page, gfp, info, index);
1128 if (error)
1129 goto failed;
1130 }
1131
1132 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1133 if (!error) {
1134 error = shmem_add_to_page_cache(page, mapping, index,
1135 swp_to_radix_entry(swap));
1136 /*
1137 * We already confirmed swap under page lock, and make
1138 * no memory allocation here, so usually no possibility
1139 * of error; but free_swap_and_cache() only trylocks a
1140 * page, so it is just possible that the entry has been
1141 * truncated or holepunched since swap was confirmed.
1142 * shmem_undo_range() will have done some of the
1143 * unaccounting, now delete_from_swap_cache() will do
1144 * the rest.
1145 * Reset swap.val? No, leave it so "failed" goes back to
1146 * "repeat": reading a hole and writing should succeed.
1147 */
1148 if (error) {
1149 mem_cgroup_cancel_charge(page, memcg);
1150 delete_from_swap_cache(page);
1151 }
1152 }
1153 if (error)
1154 goto failed;
1155
1156 mem_cgroup_commit_charge(page, memcg, true);
1157
1158 spin_lock(&info->lock);
1159 info->swapped--;
1160 shmem_recalc_inode(inode);
1161 spin_unlock(&info->lock);
1162
1163 if (sgp == SGP_WRITE)
1164 mark_page_accessed(page);
1165
1166 delete_from_swap_cache(page);
1167 set_page_dirty(page);
1168 swap_free(swap);
1169
1170 } else {
1171 if (shmem_acct_block(info->flags)) {
1172 error = -ENOSPC;
1173 goto failed;
1174 }
1175 if (sbinfo->max_blocks) {
1176 if (percpu_counter_compare(&sbinfo->used_blocks,
1177 sbinfo->max_blocks) >= 0) {
1178 error = -ENOSPC;
1179 goto unacct;
1180 }
1181 percpu_counter_inc(&sbinfo->used_blocks);
1182 }
1183
1184 page = shmem_alloc_page(gfp, info, index);
1185 if (!page) {
1186 error = -ENOMEM;
1187 goto decused;
1188 }
1189
1190 __SetPageSwapBacked(page);
1191 __set_page_locked(page);
1192 if (sgp == SGP_WRITE)
1193 __SetPageReferenced(page);
1194
1195 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1196 if (error)
1197 goto decused;
1198 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1199 if (!error) {
1200 error = shmem_add_to_page_cache(page, mapping, index,
1201 NULL);
1202 radix_tree_preload_end();
1203 }
1204 if (error) {
1205 mem_cgroup_cancel_charge(page, memcg);
1206 goto decused;
1207 }
1208 mem_cgroup_commit_charge(page, memcg, false);
1209 lru_cache_add_anon(page);
1210
1211 spin_lock(&info->lock);
1212 info->alloced++;
1213 inode->i_blocks += BLOCKS_PER_PAGE;
1214 shmem_recalc_inode(inode);
1215 spin_unlock(&info->lock);
1216 alloced = true;
1217
1218 /*
1219 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1220 */
1221 if (sgp == SGP_FALLOC)
1222 sgp = SGP_WRITE;
1223clear:
1224 /*
1225 * Let SGP_WRITE caller clear ends if write does not fill page;
1226 * but SGP_FALLOC on a page fallocated earlier must initialize
1227 * it now, lest undo on failure cancel our earlier guarantee.
1228 */
1229 if (sgp != SGP_WRITE) {
1230 clear_highpage(page);
1231 flush_dcache_page(page);
1232 SetPageUptodate(page);
1233 }
1234 if (sgp == SGP_DIRTY)
1235 set_page_dirty(page);
1236 }
1237
1238 /* Perhaps the file has been truncated since we checked */
1239 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1240 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1241 error = -EINVAL;
1242 if (alloced)
1243 goto trunc;
1244 else
1245 goto failed;
1246 }
1247 *pagep = page;
1248 return 0;
1249
1250 /*
1251 * Error recovery.
1252 */
1253trunc:
1254 info = SHMEM_I(inode);
1255 ClearPageDirty(page);
1256 delete_from_page_cache(page);
1257 spin_lock(&info->lock);
1258 info->alloced--;
1259 inode->i_blocks -= BLOCKS_PER_PAGE;
1260 spin_unlock(&info->lock);
1261decused:
1262 sbinfo = SHMEM_SB(inode->i_sb);
1263 if (sbinfo->max_blocks)
1264 percpu_counter_add(&sbinfo->used_blocks, -1);
1265unacct:
1266 shmem_unacct_blocks(info->flags, 1);
1267failed:
1268 if (swap.val && error != -EINVAL &&
1269 !shmem_confirm_swap(mapping, index, swap))
1270 error = -EEXIST;
1271unlock:
1272 if (page) {
1273 unlock_page(page);
1274 page_cache_release(page);
1275 }
1276 if (error == -ENOSPC && !once++) {
1277 info = SHMEM_I(inode);
1278 spin_lock(&info->lock);
1279 shmem_recalc_inode(inode);
1280 spin_unlock(&info->lock);
1281 goto repeat;
1282 }
1283 if (error == -EEXIST) /* from above or from radix_tree_insert */
1284 goto repeat;
1285 return error;
1286}
1287
1288static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1289{
1290 struct inode *inode = file_inode(vma->vm_file);
1291 int error;
1292 int ret = VM_FAULT_LOCKED;
1293
1294 /*
1295 * Trinity finds that probing a hole which tmpfs is punching can
1296 * prevent the hole-punch from ever completing: which in turn
1297 * locks writers out with its hold on i_mutex. So refrain from
1298 * faulting pages into the hole while it's being punched. Although
1299 * shmem_undo_range() does remove the additions, it may be unable to
1300 * keep up, as each new page needs its own unmap_mapping_range() call,
1301 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1302 *
1303 * It does not matter if we sometimes reach this check just before the
1304 * hole-punch begins, so that one fault then races with the punch:
1305 * we just need to make racing faults a rare case.
1306 *
1307 * The implementation below would be much simpler if we just used a
1308 * standard mutex or completion: but we cannot take i_mutex in fault,
1309 * and bloating every shmem inode for this unlikely case would be sad.
1310 */
1311 if (unlikely(inode->i_private)) {
1312 struct shmem_falloc *shmem_falloc;
1313
1314 spin_lock(&inode->i_lock);
1315 shmem_falloc = inode->i_private;
1316 if (shmem_falloc &&
1317 shmem_falloc->waitq &&
1318 vmf->pgoff >= shmem_falloc->start &&
1319 vmf->pgoff < shmem_falloc->next) {
1320 wait_queue_head_t *shmem_falloc_waitq;
1321 DEFINE_WAIT(shmem_fault_wait);
1322
1323 ret = VM_FAULT_NOPAGE;
1324 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1325 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1326 /* It's polite to up mmap_sem if we can */
1327 up_read(&vma->vm_mm->mmap_sem);
1328 ret = VM_FAULT_RETRY;
1329 }
1330
1331 shmem_falloc_waitq = shmem_falloc->waitq;
1332 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1333 TASK_UNINTERRUPTIBLE);
1334 spin_unlock(&inode->i_lock);
1335 schedule();
1336
1337 /*
1338 * shmem_falloc_waitq points into the shmem_fallocate()
1339 * stack of the hole-punching task: shmem_falloc_waitq
1340 * is usually invalid by the time we reach here, but
1341 * finish_wait() does not dereference it in that case;
1342 * though i_lock needed lest racing with wake_up_all().
1343 */
1344 spin_lock(&inode->i_lock);
1345 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1346 spin_unlock(&inode->i_lock);
1347 return ret;
1348 }
1349 spin_unlock(&inode->i_lock);
1350 }
1351
1352 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1353 if (error)
1354 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1355
1356 if (ret & VM_FAULT_MAJOR) {
1357 count_vm_event(PGMAJFAULT);
1358 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1359 }
1360 return ret;
1361}
1362
1363#ifdef CONFIG_NUMA
1364static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1365{
1366 struct inode *inode = file_inode(vma->vm_file);
1367 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1368}
1369
1370static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1371 unsigned long addr)
1372{
1373 struct inode *inode = file_inode(vma->vm_file);
1374 pgoff_t index;
1375
1376 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1377 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1378}
1379#endif
1380
1381int shmem_lock(struct file *file, int lock, struct user_struct *user)
1382{
1383 struct inode *inode = file_inode(file);
1384 struct shmem_inode_info *info = SHMEM_I(inode);
1385 int retval = -ENOMEM;
1386
1387 spin_lock(&info->lock);
1388 if (lock && !(info->flags & VM_LOCKED)) {
1389 if (!user_shm_lock(inode->i_size, user))
1390 goto out_nomem;
1391 info->flags |= VM_LOCKED;
1392 mapping_set_unevictable(file->f_mapping);
1393 }
1394 if (!lock && (info->flags & VM_LOCKED) && user) {
1395 user_shm_unlock(inode->i_size, user);
1396 info->flags &= ~VM_LOCKED;
1397 mapping_clear_unevictable(file->f_mapping);
1398 }
1399 retval = 0;
1400
1401out_nomem:
1402 spin_unlock(&info->lock);
1403 return retval;
1404}
1405
1406static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1407{
1408 file_accessed(file);
1409 vma->vm_ops = &shmem_vm_ops;
1410 return 0;
1411}
1412
1413static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1414 umode_t mode, dev_t dev, unsigned long flags)
1415{
1416 struct inode *inode;
1417 struct shmem_inode_info *info;
1418 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1419
1420 if (shmem_reserve_inode(sb))
1421 return NULL;
1422
1423 inode = new_inode(sb);
1424 if (inode) {
1425 inode->i_ino = get_next_ino();
1426 inode_init_owner(inode, dir, mode);
1427 inode->i_blocks = 0;
1428 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1429 inode->i_generation = get_seconds();
1430 info = SHMEM_I(inode);
1431 memset(info, 0, (char *)inode - (char *)info);
1432 spin_lock_init(&info->lock);
1433 info->seals = F_SEAL_SEAL;
1434 info->flags = flags & VM_NORESERVE;
1435 INIT_LIST_HEAD(&info->swaplist);
1436 simple_xattrs_init(&info->xattrs);
1437 cache_no_acl(inode);
1438
1439 switch (mode & S_IFMT) {
1440 default:
1441 inode->i_op = &shmem_special_inode_operations;
1442 init_special_inode(inode, mode, dev);
1443 break;
1444 case S_IFREG:
1445 inode->i_mapping->a_ops = &shmem_aops;
1446 inode->i_op = &shmem_inode_operations;
1447 inode->i_fop = &shmem_file_operations;
1448 mpol_shared_policy_init(&info->policy,
1449 shmem_get_sbmpol(sbinfo));
1450 break;
1451 case S_IFDIR:
1452 inc_nlink(inode);
1453 /* Some things misbehave if size == 0 on a directory */
1454 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1455 inode->i_op = &shmem_dir_inode_operations;
1456 inode->i_fop = &simple_dir_operations;
1457 break;
1458 case S_IFLNK:
1459 /*
1460 * Must not load anything in the rbtree,
1461 * mpol_free_shared_policy will not be called.
1462 */
1463 mpol_shared_policy_init(&info->policy, NULL);
1464 break;
1465 }
1466 } else
1467 shmem_free_inode(sb);
1468 return inode;
1469}
1470
1471bool shmem_mapping(struct address_space *mapping)
1472{
1473 if (!mapping->host)
1474 return false;
1475
1476 return mapping->host->i_sb->s_op == &shmem_ops;
1477}
1478
1479#ifdef CONFIG_TMPFS
1480static const struct inode_operations shmem_symlink_inode_operations;
1481static const struct inode_operations shmem_short_symlink_operations;
1482
1483#ifdef CONFIG_TMPFS_XATTR
1484static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1485#else
1486#define shmem_initxattrs NULL
1487#endif
1488
1489static int
1490shmem_write_begin(struct file *file, struct address_space *mapping,
1491 loff_t pos, unsigned len, unsigned flags,
1492 struct page **pagep, void **fsdata)
1493{
1494 struct inode *inode = mapping->host;
1495 struct shmem_inode_info *info = SHMEM_I(inode);
1496 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1497
1498 /* i_mutex is held by caller */
1499 if (unlikely(info->seals)) {
1500 if (info->seals & F_SEAL_WRITE)
1501 return -EPERM;
1502 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1503 return -EPERM;
1504 }
1505
1506 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1507}
1508
1509static int
1510shmem_write_end(struct file *file, struct address_space *mapping,
1511 loff_t pos, unsigned len, unsigned copied,
1512 struct page *page, void *fsdata)
1513{
1514 struct inode *inode = mapping->host;
1515
1516 if (pos + copied > inode->i_size)
1517 i_size_write(inode, pos + copied);
1518
1519 if (!PageUptodate(page)) {
1520 if (copied < PAGE_CACHE_SIZE) {
1521 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1522 zero_user_segments(page, 0, from,
1523 from + copied, PAGE_CACHE_SIZE);
1524 }
1525 SetPageUptodate(page);
1526 }
1527 set_page_dirty(page);
1528 unlock_page(page);
1529 page_cache_release(page);
1530
1531 return copied;
1532}
1533
1534static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1535{
1536 struct file *file = iocb->ki_filp;
1537 struct inode *inode = file_inode(file);
1538 struct address_space *mapping = inode->i_mapping;
1539 pgoff_t index;
1540 unsigned long offset;
1541 enum sgp_type sgp = SGP_READ;
1542 int error = 0;
1543 ssize_t retval = 0;
1544 loff_t *ppos = &iocb->ki_pos;
1545
1546 /*
1547 * Might this read be for a stacking filesystem? Then when reading
1548 * holes of a sparse file, we actually need to allocate those pages,
1549 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1550 */
1551 if (!iter_is_iovec(to))
1552 sgp = SGP_DIRTY;
1553
1554 index = *ppos >> PAGE_CACHE_SHIFT;
1555 offset = *ppos & ~PAGE_CACHE_MASK;
1556
1557 for (;;) {
1558 struct page *page = NULL;
1559 pgoff_t end_index;
1560 unsigned long nr, ret;
1561 loff_t i_size = i_size_read(inode);
1562
1563 end_index = i_size >> PAGE_CACHE_SHIFT;
1564 if (index > end_index)
1565 break;
1566 if (index == end_index) {
1567 nr = i_size & ~PAGE_CACHE_MASK;
1568 if (nr <= offset)
1569 break;
1570 }
1571
1572 error = shmem_getpage(inode, index, &page, sgp, NULL);
1573 if (error) {
1574 if (error == -EINVAL)
1575 error = 0;
1576 break;
1577 }
1578 if (page)
1579 unlock_page(page);
1580
1581 /*
1582 * We must evaluate after, since reads (unlike writes)
1583 * are called without i_mutex protection against truncate
1584 */
1585 nr = PAGE_CACHE_SIZE;
1586 i_size = i_size_read(inode);
1587 end_index = i_size >> PAGE_CACHE_SHIFT;
1588 if (index == end_index) {
1589 nr = i_size & ~PAGE_CACHE_MASK;
1590 if (nr <= offset) {
1591 if (page)
1592 page_cache_release(page);
1593 break;
1594 }
1595 }
1596 nr -= offset;
1597
1598 if (page) {
1599 /*
1600 * If users can be writing to this page using arbitrary
1601 * virtual addresses, take care about potential aliasing
1602 * before reading the page on the kernel side.
1603 */
1604 if (mapping_writably_mapped(mapping))
1605 flush_dcache_page(page);
1606 /*
1607 * Mark the page accessed if we read the beginning.
1608 */
1609 if (!offset)
1610 mark_page_accessed(page);
1611 } else {
1612 page = ZERO_PAGE(0);
1613 page_cache_get(page);
1614 }
1615
1616 /*
1617 * Ok, we have the page, and it's up-to-date, so
1618 * now we can copy it to user space...
1619 */
1620 ret = copy_page_to_iter(page, offset, nr, to);
1621 retval += ret;
1622 offset += ret;
1623 index += offset >> PAGE_CACHE_SHIFT;
1624 offset &= ~PAGE_CACHE_MASK;
1625
1626 page_cache_release(page);
1627 if (!iov_iter_count(to))
1628 break;
1629 if (ret < nr) {
1630 error = -EFAULT;
1631 break;
1632 }
1633 cond_resched();
1634 }
1635
1636 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1637 file_accessed(file);
1638 return retval ? retval : error;
1639}
1640
1641static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1642 struct pipe_inode_info *pipe, size_t len,
1643 unsigned int flags)
1644{
1645 struct address_space *mapping = in->f_mapping;
1646 struct inode *inode = mapping->host;
1647 unsigned int loff, nr_pages, req_pages;
1648 struct page *pages[PIPE_DEF_BUFFERS];
1649 struct partial_page partial[PIPE_DEF_BUFFERS];
1650 struct page *page;
1651 pgoff_t index, end_index;
1652 loff_t isize, left;
1653 int error, page_nr;
1654 struct splice_pipe_desc spd = {
1655 .pages = pages,
1656 .partial = partial,
1657 .nr_pages_max = PIPE_DEF_BUFFERS,
1658 .flags = flags,
1659 .ops = &page_cache_pipe_buf_ops,
1660 .spd_release = spd_release_page,
1661 };
1662
1663 isize = i_size_read(inode);
1664 if (unlikely(*ppos >= isize))
1665 return 0;
1666
1667 left = isize - *ppos;
1668 if (unlikely(left < len))
1669 len = left;
1670
1671 if (splice_grow_spd(pipe, &spd))
1672 return -ENOMEM;
1673
1674 index = *ppos >> PAGE_CACHE_SHIFT;
1675 loff = *ppos & ~PAGE_CACHE_MASK;
1676 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1677 nr_pages = min(req_pages, spd.nr_pages_max);
1678
1679 spd.nr_pages = find_get_pages_contig(mapping, index,
1680 nr_pages, spd.pages);
1681 index += spd.nr_pages;
1682 error = 0;
1683
1684 while (spd.nr_pages < nr_pages) {
1685 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1686 if (error)
1687 break;
1688 unlock_page(page);
1689 spd.pages[spd.nr_pages++] = page;
1690 index++;
1691 }
1692
1693 index = *ppos >> PAGE_CACHE_SHIFT;
1694 nr_pages = spd.nr_pages;
1695 spd.nr_pages = 0;
1696
1697 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1698 unsigned int this_len;
1699
1700 if (!len)
1701 break;
1702
1703 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1704 page = spd.pages[page_nr];
1705
1706 if (!PageUptodate(page) || page->mapping != mapping) {
1707 error = shmem_getpage(inode, index, &page,
1708 SGP_CACHE, NULL);
1709 if (error)
1710 break;
1711 unlock_page(page);
1712 page_cache_release(spd.pages[page_nr]);
1713 spd.pages[page_nr] = page;
1714 }
1715
1716 isize = i_size_read(inode);
1717 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1718 if (unlikely(!isize || index > end_index))
1719 break;
1720
1721 if (end_index == index) {
1722 unsigned int plen;
1723
1724 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1725 if (plen <= loff)
1726 break;
1727
1728 this_len = min(this_len, plen - loff);
1729 len = this_len;
1730 }
1731
1732 spd.partial[page_nr].offset = loff;
1733 spd.partial[page_nr].len = this_len;
1734 len -= this_len;
1735 loff = 0;
1736 spd.nr_pages++;
1737 index++;
1738 }
1739
1740 while (page_nr < nr_pages)
1741 page_cache_release(spd.pages[page_nr++]);
1742
1743 if (spd.nr_pages)
1744 error = splice_to_pipe(pipe, &spd);
1745
1746 splice_shrink_spd(&spd);
1747
1748 if (error > 0) {
1749 *ppos += error;
1750 file_accessed(in);
1751 }
1752 return error;
1753}
1754
1755/*
1756 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1757 */
1758static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1759 pgoff_t index, pgoff_t end, int whence)
1760{
1761 struct page *page;
1762 struct pagevec pvec;
1763 pgoff_t indices[PAGEVEC_SIZE];
1764 bool done = false;
1765 int i;
1766
1767 pagevec_init(&pvec, 0);
1768 pvec.nr = 1; /* start small: we may be there already */
1769 while (!done) {
1770 pvec.nr = find_get_entries(mapping, index,
1771 pvec.nr, pvec.pages, indices);
1772 if (!pvec.nr) {
1773 if (whence == SEEK_DATA)
1774 index = end;
1775 break;
1776 }
1777 for (i = 0; i < pvec.nr; i++, index++) {
1778 if (index < indices[i]) {
1779 if (whence == SEEK_HOLE) {
1780 done = true;
1781 break;
1782 }
1783 index = indices[i];
1784 }
1785 page = pvec.pages[i];
1786 if (page && !radix_tree_exceptional_entry(page)) {
1787 if (!PageUptodate(page))
1788 page = NULL;
1789 }
1790 if (index >= end ||
1791 (page && whence == SEEK_DATA) ||
1792 (!page && whence == SEEK_HOLE)) {
1793 done = true;
1794 break;
1795 }
1796 }
1797 pagevec_remove_exceptionals(&pvec);
1798 pagevec_release(&pvec);
1799 pvec.nr = PAGEVEC_SIZE;
1800 cond_resched();
1801 }
1802 return index;
1803}
1804
1805static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1806{
1807 struct address_space *mapping = file->f_mapping;
1808 struct inode *inode = mapping->host;
1809 pgoff_t start, end;
1810 loff_t new_offset;
1811
1812 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1813 return generic_file_llseek_size(file, offset, whence,
1814 MAX_LFS_FILESIZE, i_size_read(inode));
1815 mutex_lock(&inode->i_mutex);
1816 /* We're holding i_mutex so we can access i_size directly */
1817
1818 if (offset < 0)
1819 offset = -EINVAL;
1820 else if (offset >= inode->i_size)
1821 offset = -ENXIO;
1822 else {
1823 start = offset >> PAGE_CACHE_SHIFT;
1824 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1825 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1826 new_offset <<= PAGE_CACHE_SHIFT;
1827 if (new_offset > offset) {
1828 if (new_offset < inode->i_size)
1829 offset = new_offset;
1830 else if (whence == SEEK_DATA)
1831 offset = -ENXIO;
1832 else
1833 offset = inode->i_size;
1834 }
1835 }
1836
1837 if (offset >= 0)
1838 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1839 mutex_unlock(&inode->i_mutex);
1840 return offset;
1841}
1842
1843/*
1844 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1845 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1846 */
1847#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1848#define LAST_SCAN 4 /* about 150ms max */
1849
1850static void shmem_tag_pins(struct address_space *mapping)
1851{
1852 struct radix_tree_iter iter;
1853 void **slot;
1854 pgoff_t start;
1855 struct page *page;
1856
1857 lru_add_drain();
1858 start = 0;
1859 rcu_read_lock();
1860
1861restart:
1862 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1863 page = radix_tree_deref_slot(slot);
1864 if (!page || radix_tree_exception(page)) {
1865 if (radix_tree_deref_retry(page))
1866 goto restart;
1867 } else if (page_count(page) - page_mapcount(page) > 1) {
1868 spin_lock_irq(&mapping->tree_lock);
1869 radix_tree_tag_set(&mapping->page_tree, iter.index,
1870 SHMEM_TAG_PINNED);
1871 spin_unlock_irq(&mapping->tree_lock);
1872 }
1873
1874 if (need_resched()) {
1875 cond_resched_rcu();
1876 start = iter.index + 1;
1877 goto restart;
1878 }
1879 }
1880 rcu_read_unlock();
1881}
1882
1883/*
1884 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1885 * via get_user_pages(), drivers might have some pending I/O without any active
1886 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1887 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1888 * them to be dropped.
1889 * The caller must guarantee that no new user will acquire writable references
1890 * to those pages to avoid races.
1891 */
1892static int shmem_wait_for_pins(struct address_space *mapping)
1893{
1894 struct radix_tree_iter iter;
1895 void **slot;
1896 pgoff_t start;
1897 struct page *page;
1898 int error, scan;
1899
1900 shmem_tag_pins(mapping);
1901
1902 error = 0;
1903 for (scan = 0; scan <= LAST_SCAN; scan++) {
1904 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1905 break;
1906
1907 if (!scan)
1908 lru_add_drain_all();
1909 else if (schedule_timeout_killable((HZ << scan) / 200))
1910 scan = LAST_SCAN;
1911
1912 start = 0;
1913 rcu_read_lock();
1914restart:
1915 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1916 start, SHMEM_TAG_PINNED) {
1917
1918 page = radix_tree_deref_slot(slot);
1919 if (radix_tree_exception(page)) {
1920 if (radix_tree_deref_retry(page))
1921 goto restart;
1922
1923 page = NULL;
1924 }
1925
1926 if (page &&
1927 page_count(page) - page_mapcount(page) != 1) {
1928 if (scan < LAST_SCAN)
1929 goto continue_resched;
1930
1931 /*
1932 * On the last scan, we clean up all those tags
1933 * we inserted; but make a note that we still
1934 * found pages pinned.
1935 */
1936 error = -EBUSY;
1937 }
1938
1939 spin_lock_irq(&mapping->tree_lock);
1940 radix_tree_tag_clear(&mapping->page_tree,
1941 iter.index, SHMEM_TAG_PINNED);
1942 spin_unlock_irq(&mapping->tree_lock);
1943continue_resched:
1944 if (need_resched()) {
1945 cond_resched_rcu();
1946 start = iter.index + 1;
1947 goto restart;
1948 }
1949 }
1950 rcu_read_unlock();
1951 }
1952
1953 return error;
1954}
1955
1956#define F_ALL_SEALS (F_SEAL_SEAL | \
1957 F_SEAL_SHRINK | \
1958 F_SEAL_GROW | \
1959 F_SEAL_WRITE)
1960
1961int shmem_add_seals(struct file *file, unsigned int seals)
1962{
1963 struct inode *inode = file_inode(file);
1964 struct shmem_inode_info *info = SHMEM_I(inode);
1965 int error;
1966
1967 /*
1968 * SEALING
1969 * Sealing allows multiple parties to share a shmem-file but restrict
1970 * access to a specific subset of file operations. Seals can only be
1971 * added, but never removed. This way, mutually untrusted parties can
1972 * share common memory regions with a well-defined policy. A malicious
1973 * peer can thus never perform unwanted operations on a shared object.
1974 *
1975 * Seals are only supported on special shmem-files and always affect
1976 * the whole underlying inode. Once a seal is set, it may prevent some
1977 * kinds of access to the file. Currently, the following seals are
1978 * defined:
1979 * SEAL_SEAL: Prevent further seals from being set on this file
1980 * SEAL_SHRINK: Prevent the file from shrinking
1981 * SEAL_GROW: Prevent the file from growing
1982 * SEAL_WRITE: Prevent write access to the file
1983 *
1984 * As we don't require any trust relationship between two parties, we
1985 * must prevent seals from being removed. Therefore, sealing a file
1986 * only adds a given set of seals to the file, it never touches
1987 * existing seals. Furthermore, the "setting seals"-operation can be
1988 * sealed itself, which basically prevents any further seal from being
1989 * added.
1990 *
1991 * Semantics of sealing are only defined on volatile files. Only
1992 * anonymous shmem files support sealing. More importantly, seals are
1993 * never written to disk. Therefore, there's no plan to support it on
1994 * other file types.
1995 */
1996
1997 if (file->f_op != &shmem_file_operations)
1998 return -EINVAL;
1999 if (!(file->f_mode & FMODE_WRITE))
2000 return -EPERM;
2001 if (seals & ~(unsigned int)F_ALL_SEALS)
2002 return -EINVAL;
2003
2004 mutex_lock(&inode->i_mutex);
2005
2006 if (info->seals & F_SEAL_SEAL) {
2007 error = -EPERM;
2008 goto unlock;
2009 }
2010
2011 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2012 error = mapping_deny_writable(file->f_mapping);
2013 if (error)
2014 goto unlock;
2015
2016 error = shmem_wait_for_pins(file->f_mapping);
2017 if (error) {
2018 mapping_allow_writable(file->f_mapping);
2019 goto unlock;
2020 }
2021 }
2022
2023 info->seals |= seals;
2024 error = 0;
2025
2026unlock:
2027 mutex_unlock(&inode->i_mutex);
2028 return error;
2029}
2030EXPORT_SYMBOL_GPL(shmem_add_seals);
2031
2032int shmem_get_seals(struct file *file)
2033{
2034 if (file->f_op != &shmem_file_operations)
2035 return -EINVAL;
2036
2037 return SHMEM_I(file_inode(file))->seals;
2038}
2039EXPORT_SYMBOL_GPL(shmem_get_seals);
2040
2041long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2042{
2043 long error;
2044
2045 switch (cmd) {
2046 case F_ADD_SEALS:
2047 /* disallow upper 32bit */
2048 if (arg > UINT_MAX)
2049 return -EINVAL;
2050
2051 error = shmem_add_seals(file, arg);
2052 break;
2053 case F_GET_SEALS:
2054 error = shmem_get_seals(file);
2055 break;
2056 default:
2057 error = -EINVAL;
2058 break;
2059 }
2060
2061 return error;
2062}
2063
2064static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2065 loff_t len)
2066{
2067 struct inode *inode = file_inode(file);
2068 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2069 struct shmem_inode_info *info = SHMEM_I(inode);
2070 struct shmem_falloc shmem_falloc;
2071 pgoff_t start, index, end;
2072 int error;
2073
2074 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2075 return -EOPNOTSUPP;
2076
2077 mutex_lock(&inode->i_mutex);
2078
2079 if (mode & FALLOC_FL_PUNCH_HOLE) {
2080 struct address_space *mapping = file->f_mapping;
2081 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2082 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2083 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2084
2085 /* protected by i_mutex */
2086 if (info->seals & F_SEAL_WRITE) {
2087 error = -EPERM;
2088 goto out;
2089 }
2090
2091 shmem_falloc.waitq = &shmem_falloc_waitq;
2092 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2093 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2094 spin_lock(&inode->i_lock);
2095 inode->i_private = &shmem_falloc;
2096 spin_unlock(&inode->i_lock);
2097
2098 if ((u64)unmap_end > (u64)unmap_start)
2099 unmap_mapping_range(mapping, unmap_start,
2100 1 + unmap_end - unmap_start, 0);
2101 shmem_truncate_range(inode, offset, offset + len - 1);
2102 /* No need to unmap again: hole-punching leaves COWed pages */
2103
2104 spin_lock(&inode->i_lock);
2105 inode->i_private = NULL;
2106 wake_up_all(&shmem_falloc_waitq);
2107 spin_unlock(&inode->i_lock);
2108 error = 0;
2109 goto out;
2110 }
2111
2112 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2113 error = inode_newsize_ok(inode, offset + len);
2114 if (error)
2115 goto out;
2116
2117 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2118 error = -EPERM;
2119 goto out;
2120 }
2121
2122 start = offset >> PAGE_CACHE_SHIFT;
2123 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2124 /* Try to avoid a swapstorm if len is impossible to satisfy */
2125 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2126 error = -ENOSPC;
2127 goto out;
2128 }
2129
2130 shmem_falloc.waitq = NULL;
2131 shmem_falloc.start = start;
2132 shmem_falloc.next = start;
2133 shmem_falloc.nr_falloced = 0;
2134 shmem_falloc.nr_unswapped = 0;
2135 spin_lock(&inode->i_lock);
2136 inode->i_private = &shmem_falloc;
2137 spin_unlock(&inode->i_lock);
2138
2139 for (index = start; index < end; index++) {
2140 struct page *page;
2141
2142 /*
2143 * Good, the fallocate(2) manpage permits EINTR: we may have
2144 * been interrupted because we are using up too much memory.
2145 */
2146 if (signal_pending(current))
2147 error = -EINTR;
2148 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2149 error = -ENOMEM;
2150 else
2151 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2152 NULL);
2153 if (error) {
2154 /* Remove the !PageUptodate pages we added */
2155 shmem_undo_range(inode,
2156 (loff_t)start << PAGE_CACHE_SHIFT,
2157 (loff_t)index << PAGE_CACHE_SHIFT, true);
2158 goto undone;
2159 }
2160
2161 /*
2162 * Inform shmem_writepage() how far we have reached.
2163 * No need for lock or barrier: we have the page lock.
2164 */
2165 shmem_falloc.next++;
2166 if (!PageUptodate(page))
2167 shmem_falloc.nr_falloced++;
2168
2169 /*
2170 * If !PageUptodate, leave it that way so that freeable pages
2171 * can be recognized if we need to rollback on error later.
2172 * But set_page_dirty so that memory pressure will swap rather
2173 * than free the pages we are allocating (and SGP_CACHE pages
2174 * might still be clean: we now need to mark those dirty too).
2175 */
2176 set_page_dirty(page);
2177 unlock_page(page);
2178 page_cache_release(page);
2179 cond_resched();
2180 }
2181
2182 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2183 i_size_write(inode, offset + len);
2184 inode->i_ctime = CURRENT_TIME;
2185undone:
2186 spin_lock(&inode->i_lock);
2187 inode->i_private = NULL;
2188 spin_unlock(&inode->i_lock);
2189out:
2190 mutex_unlock(&inode->i_mutex);
2191 return error;
2192}
2193
2194static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2195{
2196 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2197
2198 buf->f_type = TMPFS_MAGIC;
2199 buf->f_bsize = PAGE_CACHE_SIZE;
2200 buf->f_namelen = NAME_MAX;
2201 if (sbinfo->max_blocks) {
2202 buf->f_blocks = sbinfo->max_blocks;
2203 buf->f_bavail =
2204 buf->f_bfree = sbinfo->max_blocks -
2205 percpu_counter_sum(&sbinfo->used_blocks);
2206 }
2207 if (sbinfo->max_inodes) {
2208 buf->f_files = sbinfo->max_inodes;
2209 buf->f_ffree = sbinfo->free_inodes;
2210 }
2211 /* else leave those fields 0 like simple_statfs */
2212 return 0;
2213}
2214
2215/*
2216 * File creation. Allocate an inode, and we're done..
2217 */
2218static int
2219shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2220{
2221 struct inode *inode;
2222 int error = -ENOSPC;
2223
2224 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2225 if (inode) {
2226 error = simple_acl_create(dir, inode);
2227 if (error)
2228 goto out_iput;
2229 error = security_inode_init_security(inode, dir,
2230 &dentry->d_name,
2231 shmem_initxattrs, NULL);
2232 if (error && error != -EOPNOTSUPP)
2233 goto out_iput;
2234
2235 error = 0;
2236 dir->i_size += BOGO_DIRENT_SIZE;
2237 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2238 d_instantiate(dentry, inode);
2239 dget(dentry); /* Extra count - pin the dentry in core */
2240 }
2241 return error;
2242out_iput:
2243 iput(inode);
2244 return error;
2245}
2246
2247static int
2248shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2249{
2250 struct inode *inode;
2251 int error = -ENOSPC;
2252
2253 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2254 if (inode) {
2255 error = security_inode_init_security(inode, dir,
2256 NULL,
2257 shmem_initxattrs, NULL);
2258 if (error && error != -EOPNOTSUPP)
2259 goto out_iput;
2260 error = simple_acl_create(dir, inode);
2261 if (error)
2262 goto out_iput;
2263 d_tmpfile(dentry, inode);
2264 }
2265 return error;
2266out_iput:
2267 iput(inode);
2268 return error;
2269}
2270
2271static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2272{
2273 int error;
2274
2275 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2276 return error;
2277 inc_nlink(dir);
2278 return 0;
2279}
2280
2281static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2282 bool excl)
2283{
2284 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2285}
2286
2287/*
2288 * Link a file..
2289 */
2290static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2291{
2292 struct inode *inode = d_inode(old_dentry);
2293 int ret;
2294
2295 /*
2296 * No ordinary (disk based) filesystem counts links as inodes;
2297 * but each new link needs a new dentry, pinning lowmem, and
2298 * tmpfs dentries cannot be pruned until they are unlinked.
2299 */
2300 ret = shmem_reserve_inode(inode->i_sb);
2301 if (ret)
2302 goto out;
2303
2304 dir->i_size += BOGO_DIRENT_SIZE;
2305 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2306 inc_nlink(inode);
2307 ihold(inode); /* New dentry reference */
2308 dget(dentry); /* Extra pinning count for the created dentry */
2309 d_instantiate(dentry, inode);
2310out:
2311 return ret;
2312}
2313
2314static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2315{
2316 struct inode *inode = d_inode(dentry);
2317
2318 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2319 shmem_free_inode(inode->i_sb);
2320
2321 dir->i_size -= BOGO_DIRENT_SIZE;
2322 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2323 drop_nlink(inode);
2324 dput(dentry); /* Undo the count from "create" - this does all the work */
2325 return 0;
2326}
2327
2328static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2329{
2330 if (!simple_empty(dentry))
2331 return -ENOTEMPTY;
2332
2333 drop_nlink(d_inode(dentry));
2334 drop_nlink(dir);
2335 return shmem_unlink(dir, dentry);
2336}
2337
2338static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2339{
2340 bool old_is_dir = d_is_dir(old_dentry);
2341 bool new_is_dir = d_is_dir(new_dentry);
2342
2343 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2344 if (old_is_dir) {
2345 drop_nlink(old_dir);
2346 inc_nlink(new_dir);
2347 } else {
2348 drop_nlink(new_dir);
2349 inc_nlink(old_dir);
2350 }
2351 }
2352 old_dir->i_ctime = old_dir->i_mtime =
2353 new_dir->i_ctime = new_dir->i_mtime =
2354 d_inode(old_dentry)->i_ctime =
2355 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2356
2357 return 0;
2358}
2359
2360static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2361{
2362 struct dentry *whiteout;
2363 int error;
2364
2365 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2366 if (!whiteout)
2367 return -ENOMEM;
2368
2369 error = shmem_mknod(old_dir, whiteout,
2370 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2371 dput(whiteout);
2372 if (error)
2373 return error;
2374
2375 /*
2376 * Cheat and hash the whiteout while the old dentry is still in
2377 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2378 *
2379 * d_lookup() will consistently find one of them at this point,
2380 * not sure which one, but that isn't even important.
2381 */
2382 d_rehash(whiteout);
2383 return 0;
2384}
2385
2386/*
2387 * The VFS layer already does all the dentry stuff for rename,
2388 * we just have to decrement the usage count for the target if
2389 * it exists so that the VFS layer correctly free's it when it
2390 * gets overwritten.
2391 */
2392static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2393{
2394 struct inode *inode = d_inode(old_dentry);
2395 int they_are_dirs = S_ISDIR(inode->i_mode);
2396
2397 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2398 return -EINVAL;
2399
2400 if (flags & RENAME_EXCHANGE)
2401 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2402
2403 if (!simple_empty(new_dentry))
2404 return -ENOTEMPTY;
2405
2406 if (flags & RENAME_WHITEOUT) {
2407 int error;
2408
2409 error = shmem_whiteout(old_dir, old_dentry);
2410 if (error)
2411 return error;
2412 }
2413
2414 if (d_really_is_positive(new_dentry)) {
2415 (void) shmem_unlink(new_dir, new_dentry);
2416 if (they_are_dirs) {
2417 drop_nlink(d_inode(new_dentry));
2418 drop_nlink(old_dir);
2419 }
2420 } else if (they_are_dirs) {
2421 drop_nlink(old_dir);
2422 inc_nlink(new_dir);
2423 }
2424
2425 old_dir->i_size -= BOGO_DIRENT_SIZE;
2426 new_dir->i_size += BOGO_DIRENT_SIZE;
2427 old_dir->i_ctime = old_dir->i_mtime =
2428 new_dir->i_ctime = new_dir->i_mtime =
2429 inode->i_ctime = CURRENT_TIME;
2430 return 0;
2431}
2432
2433static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2434{
2435 int error;
2436 int len;
2437 struct inode *inode;
2438 struct page *page;
2439 char *kaddr;
2440 struct shmem_inode_info *info;
2441
2442 len = strlen(symname) + 1;
2443 if (len > PAGE_CACHE_SIZE)
2444 return -ENAMETOOLONG;
2445
2446 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2447 if (!inode)
2448 return -ENOSPC;
2449
2450 error = security_inode_init_security(inode, dir, &dentry->d_name,
2451 shmem_initxattrs, NULL);
2452 if (error) {
2453 if (error != -EOPNOTSUPP) {
2454 iput(inode);
2455 return error;
2456 }
2457 error = 0;
2458 }
2459
2460 info = SHMEM_I(inode);
2461 inode->i_size = len-1;
2462 if (len <= SHORT_SYMLINK_LEN) {
2463 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2464 if (!info->symlink) {
2465 iput(inode);
2466 return -ENOMEM;
2467 }
2468 inode->i_op = &shmem_short_symlink_operations;
2469 inode->i_link = info->symlink;
2470 } else {
2471 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2472 if (error) {
2473 iput(inode);
2474 return error;
2475 }
2476 inode->i_mapping->a_ops = &shmem_aops;
2477 inode->i_op = &shmem_symlink_inode_operations;
2478 kaddr = kmap_atomic(page);
2479 memcpy(kaddr, symname, len);
2480 kunmap_atomic(kaddr);
2481 SetPageUptodate(page);
2482 set_page_dirty(page);
2483 unlock_page(page);
2484 page_cache_release(page);
2485 }
2486 dir->i_size += BOGO_DIRENT_SIZE;
2487 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2488 d_instantiate(dentry, inode);
2489 dget(dentry);
2490 return 0;
2491}
2492
2493static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2494{
2495 struct page *page = NULL;
2496 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2497 if (error)
2498 return ERR_PTR(error);
2499 unlock_page(page);
2500 *cookie = page;
2501 return kmap(page);
2502}
2503
2504static void shmem_put_link(struct inode *unused, void *cookie)
2505{
2506 struct page *page = cookie;
2507 kunmap(page);
2508 mark_page_accessed(page);
2509 page_cache_release(page);
2510}
2511
2512#ifdef CONFIG_TMPFS_XATTR
2513/*
2514 * Superblocks without xattr inode operations may get some security.* xattr
2515 * support from the LSM "for free". As soon as we have any other xattrs
2516 * like ACLs, we also need to implement the security.* handlers at
2517 * filesystem level, though.
2518 */
2519
2520/*
2521 * Callback for security_inode_init_security() for acquiring xattrs.
2522 */
2523static int shmem_initxattrs(struct inode *inode,
2524 const struct xattr *xattr_array,
2525 void *fs_info)
2526{
2527 struct shmem_inode_info *info = SHMEM_I(inode);
2528 const struct xattr *xattr;
2529 struct simple_xattr *new_xattr;
2530 size_t len;
2531
2532 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2533 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2534 if (!new_xattr)
2535 return -ENOMEM;
2536
2537 len = strlen(xattr->name) + 1;
2538 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2539 GFP_KERNEL);
2540 if (!new_xattr->name) {
2541 kfree(new_xattr);
2542 return -ENOMEM;
2543 }
2544
2545 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2546 XATTR_SECURITY_PREFIX_LEN);
2547 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2548 xattr->name, len);
2549
2550 simple_xattr_list_add(&info->xattrs, new_xattr);
2551 }
2552
2553 return 0;
2554}
2555
2556static const struct xattr_handler *shmem_xattr_handlers[] = {
2557#ifdef CONFIG_TMPFS_POSIX_ACL
2558 &posix_acl_access_xattr_handler,
2559 &posix_acl_default_xattr_handler,
2560#endif
2561 NULL
2562};
2563
2564static int shmem_xattr_validate(const char *name)
2565{
2566 struct { const char *prefix; size_t len; } arr[] = {
2567 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2568 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2569 };
2570 int i;
2571
2572 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2573 size_t preflen = arr[i].len;
2574 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2575 if (!name[preflen])
2576 return -EINVAL;
2577 return 0;
2578 }
2579 }
2580 return -EOPNOTSUPP;
2581}
2582
2583static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2584 void *buffer, size_t size)
2585{
2586 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2587 int err;
2588
2589 /*
2590 * If this is a request for a synthetic attribute in the system.*
2591 * namespace use the generic infrastructure to resolve a handler
2592 * for it via sb->s_xattr.
2593 */
2594 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2595 return generic_getxattr(dentry, name, buffer, size);
2596
2597 err = shmem_xattr_validate(name);
2598 if (err)
2599 return err;
2600
2601 return simple_xattr_get(&info->xattrs, name, buffer, size);
2602}
2603
2604static int shmem_setxattr(struct dentry *dentry, const char *name,
2605 const void *value, size_t size, int flags)
2606{
2607 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2608 int err;
2609
2610 /*
2611 * If this is a request for a synthetic attribute in the system.*
2612 * namespace use the generic infrastructure to resolve a handler
2613 * for it via sb->s_xattr.
2614 */
2615 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2616 return generic_setxattr(dentry, name, value, size, flags);
2617
2618 err = shmem_xattr_validate(name);
2619 if (err)
2620 return err;
2621
2622 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2623}
2624
2625static int shmem_removexattr(struct dentry *dentry, const char *name)
2626{
2627 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2628 int err;
2629
2630 /*
2631 * If this is a request for a synthetic attribute in the system.*
2632 * namespace use the generic infrastructure to resolve a handler
2633 * for it via sb->s_xattr.
2634 */
2635 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2636 return generic_removexattr(dentry, name);
2637
2638 err = shmem_xattr_validate(name);
2639 if (err)
2640 return err;
2641
2642 return simple_xattr_remove(&info->xattrs, name);
2643}
2644
2645static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2646{
2647 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2648 return simple_xattr_list(&info->xattrs, buffer, size);
2649}
2650#endif /* CONFIG_TMPFS_XATTR */
2651
2652static const struct inode_operations shmem_short_symlink_operations = {
2653 .readlink = generic_readlink,
2654 .follow_link = simple_follow_link,
2655#ifdef CONFIG_TMPFS_XATTR
2656 .setxattr = shmem_setxattr,
2657 .getxattr = shmem_getxattr,
2658 .listxattr = shmem_listxattr,
2659 .removexattr = shmem_removexattr,
2660#endif
2661};
2662
2663static const struct inode_operations shmem_symlink_inode_operations = {
2664 .readlink = generic_readlink,
2665 .follow_link = shmem_follow_link,
2666 .put_link = shmem_put_link,
2667#ifdef CONFIG_TMPFS_XATTR
2668 .setxattr = shmem_setxattr,
2669 .getxattr = shmem_getxattr,
2670 .listxattr = shmem_listxattr,
2671 .removexattr = shmem_removexattr,
2672#endif
2673};
2674
2675static struct dentry *shmem_get_parent(struct dentry *child)
2676{
2677 return ERR_PTR(-ESTALE);
2678}
2679
2680static int shmem_match(struct inode *ino, void *vfh)
2681{
2682 __u32 *fh = vfh;
2683 __u64 inum = fh[2];
2684 inum = (inum << 32) | fh[1];
2685 return ino->i_ino == inum && fh[0] == ino->i_generation;
2686}
2687
2688static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2689 struct fid *fid, int fh_len, int fh_type)
2690{
2691 struct inode *inode;
2692 struct dentry *dentry = NULL;
2693 u64 inum;
2694
2695 if (fh_len < 3)
2696 return NULL;
2697
2698 inum = fid->raw[2];
2699 inum = (inum << 32) | fid->raw[1];
2700
2701 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2702 shmem_match, fid->raw);
2703 if (inode) {
2704 dentry = d_find_alias(inode);
2705 iput(inode);
2706 }
2707
2708 return dentry;
2709}
2710
2711static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2712 struct inode *parent)
2713{
2714 if (*len < 3) {
2715 *len = 3;
2716 return FILEID_INVALID;
2717 }
2718
2719 if (inode_unhashed(inode)) {
2720 /* Unfortunately insert_inode_hash is not idempotent,
2721 * so as we hash inodes here rather than at creation
2722 * time, we need a lock to ensure we only try
2723 * to do it once
2724 */
2725 static DEFINE_SPINLOCK(lock);
2726 spin_lock(&lock);
2727 if (inode_unhashed(inode))
2728 __insert_inode_hash(inode,
2729 inode->i_ino + inode->i_generation);
2730 spin_unlock(&lock);
2731 }
2732
2733 fh[0] = inode->i_generation;
2734 fh[1] = inode->i_ino;
2735 fh[2] = ((__u64)inode->i_ino) >> 32;
2736
2737 *len = 3;
2738 return 1;
2739}
2740
2741static const struct export_operations shmem_export_ops = {
2742 .get_parent = shmem_get_parent,
2743 .encode_fh = shmem_encode_fh,
2744 .fh_to_dentry = shmem_fh_to_dentry,
2745};
2746
2747static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2748 bool remount)
2749{
2750 char *this_char, *value, *rest;
2751 struct mempolicy *mpol = NULL;
2752 uid_t uid;
2753 gid_t gid;
2754
2755 while (options != NULL) {
2756 this_char = options;
2757 for (;;) {
2758 /*
2759 * NUL-terminate this option: unfortunately,
2760 * mount options form a comma-separated list,
2761 * but mpol's nodelist may also contain commas.
2762 */
2763 options = strchr(options, ',');
2764 if (options == NULL)
2765 break;
2766 options++;
2767 if (!isdigit(*options)) {
2768 options[-1] = '\0';
2769 break;
2770 }
2771 }
2772 if (!*this_char)
2773 continue;
2774 if ((value = strchr(this_char,'=')) != NULL) {
2775 *value++ = 0;
2776 } else {
2777 printk(KERN_ERR
2778 "tmpfs: No value for mount option '%s'\n",
2779 this_char);
2780 goto error;
2781 }
2782
2783 if (!strcmp(this_char,"size")) {
2784 unsigned long long size;
2785 size = memparse(value,&rest);
2786 if (*rest == '%') {
2787 size <<= PAGE_SHIFT;
2788 size *= totalram_pages;
2789 do_div(size, 100);
2790 rest++;
2791 }
2792 if (*rest)
2793 goto bad_val;
2794 sbinfo->max_blocks =
2795 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2796 } else if (!strcmp(this_char,"nr_blocks")) {
2797 sbinfo->max_blocks = memparse(value, &rest);
2798 if (*rest)
2799 goto bad_val;
2800 } else if (!strcmp(this_char,"nr_inodes")) {
2801 sbinfo->max_inodes = memparse(value, &rest);
2802 if (*rest)
2803 goto bad_val;
2804 } else if (!strcmp(this_char,"mode")) {
2805 if (remount)
2806 continue;
2807 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2808 if (*rest)
2809 goto bad_val;
2810 } else if (!strcmp(this_char,"uid")) {
2811 if (remount)
2812 continue;
2813 uid = simple_strtoul(value, &rest, 0);
2814 if (*rest)
2815 goto bad_val;
2816 sbinfo->uid = make_kuid(current_user_ns(), uid);
2817 if (!uid_valid(sbinfo->uid))
2818 goto bad_val;
2819 } else if (!strcmp(this_char,"gid")) {
2820 if (remount)
2821 continue;
2822 gid = simple_strtoul(value, &rest, 0);
2823 if (*rest)
2824 goto bad_val;
2825 sbinfo->gid = make_kgid(current_user_ns(), gid);
2826 if (!gid_valid(sbinfo->gid))
2827 goto bad_val;
2828 } else if (!strcmp(this_char,"mpol")) {
2829 mpol_put(mpol);
2830 mpol = NULL;
2831 if (mpol_parse_str(value, &mpol))
2832 goto bad_val;
2833 } else {
2834 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2835 this_char);
2836 goto error;
2837 }
2838 }
2839 sbinfo->mpol = mpol;
2840 return 0;
2841
2842bad_val:
2843 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2844 value, this_char);
2845error:
2846 mpol_put(mpol);
2847 return 1;
2848
2849}
2850
2851static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2852{
2853 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2854 struct shmem_sb_info config = *sbinfo;
2855 unsigned long inodes;
2856 int error = -EINVAL;
2857
2858 config.mpol = NULL;
2859 if (shmem_parse_options(data, &config, true))
2860 return error;
2861
2862 spin_lock(&sbinfo->stat_lock);
2863 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2864 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2865 goto out;
2866 if (config.max_inodes < inodes)
2867 goto out;
2868 /*
2869 * Those tests disallow limited->unlimited while any are in use;
2870 * but we must separately disallow unlimited->limited, because
2871 * in that case we have no record of how much is already in use.
2872 */
2873 if (config.max_blocks && !sbinfo->max_blocks)
2874 goto out;
2875 if (config.max_inodes && !sbinfo->max_inodes)
2876 goto out;
2877
2878 error = 0;
2879 sbinfo->max_blocks = config.max_blocks;
2880 sbinfo->max_inodes = config.max_inodes;
2881 sbinfo->free_inodes = config.max_inodes - inodes;
2882
2883 /*
2884 * Preserve previous mempolicy unless mpol remount option was specified.
2885 */
2886 if (config.mpol) {
2887 mpol_put(sbinfo->mpol);
2888 sbinfo->mpol = config.mpol; /* transfers initial ref */
2889 }
2890out:
2891 spin_unlock(&sbinfo->stat_lock);
2892 return error;
2893}
2894
2895static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2896{
2897 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2898
2899 if (sbinfo->max_blocks != shmem_default_max_blocks())
2900 seq_printf(seq, ",size=%luk",
2901 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2902 if (sbinfo->max_inodes != shmem_default_max_inodes())
2903 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2904 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2905 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2906 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2907 seq_printf(seq, ",uid=%u",
2908 from_kuid_munged(&init_user_ns, sbinfo->uid));
2909 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2910 seq_printf(seq, ",gid=%u",
2911 from_kgid_munged(&init_user_ns, sbinfo->gid));
2912 shmem_show_mpol(seq, sbinfo->mpol);
2913 return 0;
2914}
2915
2916#define MFD_NAME_PREFIX "memfd:"
2917#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2918#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2919
2920#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2921
2922SYSCALL_DEFINE2(memfd_create,
2923 const char __user *, uname,
2924 unsigned int, flags)
2925{
2926 struct shmem_inode_info *info;
2927 struct file *file;
2928 int fd, error;
2929 char *name;
2930 long len;
2931
2932 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2933 return -EINVAL;
2934
2935 /* length includes terminating zero */
2936 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2937 if (len <= 0)
2938 return -EFAULT;
2939 if (len > MFD_NAME_MAX_LEN + 1)
2940 return -EINVAL;
2941
2942 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2943 if (!name)
2944 return -ENOMEM;
2945
2946 strcpy(name, MFD_NAME_PREFIX);
2947 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2948 error = -EFAULT;
2949 goto err_name;
2950 }
2951
2952 /* terminating-zero may have changed after strnlen_user() returned */
2953 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2954 error = -EFAULT;
2955 goto err_name;
2956 }
2957
2958 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2959 if (fd < 0) {
2960 error = fd;
2961 goto err_name;
2962 }
2963
2964 file = shmem_file_setup(name, 0, VM_NORESERVE);
2965 if (IS_ERR(file)) {
2966 error = PTR_ERR(file);
2967 goto err_fd;
2968 }
2969 info = SHMEM_I(file_inode(file));
2970 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2971 file->f_flags |= O_RDWR | O_LARGEFILE;
2972 if (flags & MFD_ALLOW_SEALING)
2973 info->seals &= ~F_SEAL_SEAL;
2974
2975 fd_install(fd, file);
2976 kfree(name);
2977 return fd;
2978
2979err_fd:
2980 put_unused_fd(fd);
2981err_name:
2982 kfree(name);
2983 return error;
2984}
2985
2986#endif /* CONFIG_TMPFS */
2987
2988static void shmem_put_super(struct super_block *sb)
2989{
2990 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2991
2992 percpu_counter_destroy(&sbinfo->used_blocks);
2993 mpol_put(sbinfo->mpol);
2994 kfree(sbinfo);
2995 sb->s_fs_info = NULL;
2996}
2997
2998int shmem_fill_super(struct super_block *sb, void *data, int silent)
2999{
3000 struct inode *inode;
3001 struct shmem_sb_info *sbinfo;
3002 int err = -ENOMEM;
3003
3004 /* Round up to L1_CACHE_BYTES to resist false sharing */
3005 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3006 L1_CACHE_BYTES), GFP_KERNEL);
3007 if (!sbinfo)
3008 return -ENOMEM;
3009
3010 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3011 sbinfo->uid = current_fsuid();
3012 sbinfo->gid = current_fsgid();
3013 sb->s_fs_info = sbinfo;
3014
3015#ifdef CONFIG_TMPFS
3016 /*
3017 * Per default we only allow half of the physical ram per
3018 * tmpfs instance, limiting inodes to one per page of lowmem;
3019 * but the internal instance is left unlimited.
3020 */
3021 if (!(sb->s_flags & MS_KERNMOUNT)) {
3022 sbinfo->max_blocks = shmem_default_max_blocks();
3023 sbinfo->max_inodes = shmem_default_max_inodes();
3024 if (shmem_parse_options(data, sbinfo, false)) {
3025 err = -EINVAL;
3026 goto failed;
3027 }
3028 } else {
3029 sb->s_flags |= MS_NOUSER;
3030 }
3031 sb->s_export_op = &shmem_export_ops;
3032 sb->s_flags |= MS_NOSEC;
3033#else
3034 sb->s_flags |= MS_NOUSER;
3035#endif
3036
3037 spin_lock_init(&sbinfo->stat_lock);
3038 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3039 goto failed;
3040 sbinfo->free_inodes = sbinfo->max_inodes;
3041
3042 sb->s_maxbytes = MAX_LFS_FILESIZE;
3043 sb->s_blocksize = PAGE_CACHE_SIZE;
3044 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3045 sb->s_magic = TMPFS_MAGIC;
3046 sb->s_op = &shmem_ops;
3047 sb->s_time_gran = 1;
3048#ifdef CONFIG_TMPFS_XATTR
3049 sb->s_xattr = shmem_xattr_handlers;
3050#endif
3051#ifdef CONFIG_TMPFS_POSIX_ACL
3052 sb->s_flags |= MS_POSIXACL;
3053#endif
3054
3055 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3056 if (!inode)
3057 goto failed;
3058 inode->i_uid = sbinfo->uid;
3059 inode->i_gid = sbinfo->gid;
3060 sb->s_root = d_make_root(inode);
3061 if (!sb->s_root)
3062 goto failed;
3063 return 0;
3064
3065failed:
3066 shmem_put_super(sb);
3067 return err;
3068}
3069
3070static struct kmem_cache *shmem_inode_cachep;
3071
3072static struct inode *shmem_alloc_inode(struct super_block *sb)
3073{
3074 struct shmem_inode_info *info;
3075 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3076 if (!info)
3077 return NULL;
3078 return &info->vfs_inode;
3079}
3080
3081static void shmem_destroy_callback(struct rcu_head *head)
3082{
3083 struct inode *inode = container_of(head, struct inode, i_rcu);
3084 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3085}
3086
3087static void shmem_destroy_inode(struct inode *inode)
3088{
3089 if (S_ISREG(inode->i_mode))
3090 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3091 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3092}
3093
3094static void shmem_init_inode(void *foo)
3095{
3096 struct shmem_inode_info *info = foo;
3097 inode_init_once(&info->vfs_inode);
3098}
3099
3100static int shmem_init_inodecache(void)
3101{
3102 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3103 sizeof(struct shmem_inode_info),
3104 0, SLAB_PANIC, shmem_init_inode);
3105 return 0;
3106}
3107
3108static void shmem_destroy_inodecache(void)
3109{
3110 kmem_cache_destroy(shmem_inode_cachep);
3111}
3112
3113static const struct address_space_operations shmem_aops = {
3114 .writepage = shmem_writepage,
3115 .set_page_dirty = __set_page_dirty_no_writeback,
3116#ifdef CONFIG_TMPFS
3117 .write_begin = shmem_write_begin,
3118 .write_end = shmem_write_end,
3119#endif
3120#ifdef CONFIG_MIGRATION
3121 .migratepage = migrate_page,
3122#endif
3123 .error_remove_page = generic_error_remove_page,
3124};
3125
3126static const struct file_operations shmem_file_operations = {
3127 .mmap = shmem_mmap,
3128#ifdef CONFIG_TMPFS
3129 .llseek = shmem_file_llseek,
3130 .read_iter = shmem_file_read_iter,
3131 .write_iter = generic_file_write_iter,
3132 .fsync = noop_fsync,
3133 .splice_read = shmem_file_splice_read,
3134 .splice_write = iter_file_splice_write,
3135 .fallocate = shmem_fallocate,
3136#endif
3137};
3138
3139static const struct inode_operations shmem_inode_operations = {
3140 .getattr = shmem_getattr,
3141 .setattr = shmem_setattr,
3142#ifdef CONFIG_TMPFS_XATTR
3143 .setxattr = shmem_setxattr,
3144 .getxattr = shmem_getxattr,
3145 .listxattr = shmem_listxattr,
3146 .removexattr = shmem_removexattr,
3147 .set_acl = simple_set_acl,
3148#endif
3149};
3150
3151static const struct inode_operations shmem_dir_inode_operations = {
3152#ifdef CONFIG_TMPFS
3153 .create = shmem_create,
3154 .lookup = simple_lookup,
3155 .link = shmem_link,
3156 .unlink = shmem_unlink,
3157 .symlink = shmem_symlink,
3158 .mkdir = shmem_mkdir,
3159 .rmdir = shmem_rmdir,
3160 .mknod = shmem_mknod,
3161 .rename2 = shmem_rename2,
3162 .tmpfile = shmem_tmpfile,
3163#endif
3164#ifdef CONFIG_TMPFS_XATTR
3165 .setxattr = shmem_setxattr,
3166 .getxattr = shmem_getxattr,
3167 .listxattr = shmem_listxattr,
3168 .removexattr = shmem_removexattr,
3169#endif
3170#ifdef CONFIG_TMPFS_POSIX_ACL
3171 .setattr = shmem_setattr,
3172 .set_acl = simple_set_acl,
3173#endif
3174};
3175
3176static const struct inode_operations shmem_special_inode_operations = {
3177#ifdef CONFIG_TMPFS_XATTR
3178 .setxattr = shmem_setxattr,
3179 .getxattr = shmem_getxattr,
3180 .listxattr = shmem_listxattr,
3181 .removexattr = shmem_removexattr,
3182#endif
3183#ifdef CONFIG_TMPFS_POSIX_ACL
3184 .setattr = shmem_setattr,
3185 .set_acl = simple_set_acl,
3186#endif
3187};
3188
3189static const struct super_operations shmem_ops = {
3190 .alloc_inode = shmem_alloc_inode,
3191 .destroy_inode = shmem_destroy_inode,
3192#ifdef CONFIG_TMPFS
3193 .statfs = shmem_statfs,
3194 .remount_fs = shmem_remount_fs,
3195 .show_options = shmem_show_options,
3196#endif
3197 .evict_inode = shmem_evict_inode,
3198 .drop_inode = generic_delete_inode,
3199 .put_super = shmem_put_super,
3200};
3201
3202static const struct vm_operations_struct shmem_vm_ops = {
3203 .fault = shmem_fault,
3204 .map_pages = filemap_map_pages,
3205#ifdef CONFIG_NUMA
3206 .set_policy = shmem_set_policy,
3207 .get_policy = shmem_get_policy,
3208#endif
3209};
3210
3211static struct dentry *shmem_mount(struct file_system_type *fs_type,
3212 int flags, const char *dev_name, void *data)
3213{
3214 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3215}
3216
3217static struct file_system_type shmem_fs_type = {
3218 .owner = THIS_MODULE,
3219 .name = "tmpfs",
3220 .mount = shmem_mount,
3221 .kill_sb = kill_litter_super,
3222 .fs_flags = FS_USERNS_MOUNT,
3223};
3224
3225int __init shmem_init(void)
3226{
3227 int error;
3228
3229 /* If rootfs called this, don't re-init */
3230 if (shmem_inode_cachep)
3231 return 0;
3232
3233 error = shmem_init_inodecache();
3234 if (error)
3235 goto out3;
3236
3237 error = register_filesystem(&shmem_fs_type);
3238 if (error) {
3239 printk(KERN_ERR "Could not register tmpfs\n");
3240 goto out2;
3241 }
3242
3243 shm_mnt = kern_mount(&shmem_fs_type);
3244 if (IS_ERR(shm_mnt)) {
3245 error = PTR_ERR(shm_mnt);
3246 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247 goto out1;
3248 }
3249 return 0;
3250
3251out1:
3252 unregister_filesystem(&shmem_fs_type);
3253out2:
3254 shmem_destroy_inodecache();
3255out3:
3256 shm_mnt = ERR_PTR(error);
3257 return error;
3258}
3259
3260#else /* !CONFIG_SHMEM */
3261
3262/*
3263 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3264 *
3265 * This is intended for small system where the benefits of the full
3266 * shmem code (swap-backed and resource-limited) are outweighed by
3267 * their complexity. On systems without swap this code should be
3268 * effectively equivalent, but much lighter weight.
3269 */
3270
3271static struct file_system_type shmem_fs_type = {
3272 .name = "tmpfs",
3273 .mount = ramfs_mount,
3274 .kill_sb = kill_litter_super,
3275 .fs_flags = FS_USERNS_MOUNT,
3276};
3277
3278int __init shmem_init(void)
3279{
3280 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3281
3282 shm_mnt = kern_mount(&shmem_fs_type);
3283 BUG_ON(IS_ERR(shm_mnt));
3284
3285 return 0;
3286}
3287
3288int shmem_unuse(swp_entry_t swap, struct page *page)
3289{
3290 return 0;
3291}
3292
3293int shmem_lock(struct file *file, int lock, struct user_struct *user)
3294{
3295 return 0;
3296}
3297
3298void shmem_unlock_mapping(struct address_space *mapping)
3299{
3300}
3301
3302void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3303{
3304 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3305}
3306EXPORT_SYMBOL_GPL(shmem_truncate_range);
3307
3308#define shmem_vm_ops generic_file_vm_ops
3309#define shmem_file_operations ramfs_file_operations
3310#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3311#define shmem_acct_size(flags, size) 0
3312#define shmem_unacct_size(flags, size) do {} while (0)
3313
3314#endif /* CONFIG_SHMEM */
3315
3316/* common code */
3317
3318static struct dentry_operations anon_ops = {
3319 .d_dname = simple_dname
3320};
3321
3322static struct file *__shmem_file_setup(const char *name, loff_t size,
3323 unsigned long flags, unsigned int i_flags)
3324{
3325 struct file *res;
3326 struct inode *inode;
3327 struct path path;
3328 struct super_block *sb;
3329 struct qstr this;
3330
3331 if (IS_ERR(shm_mnt))
3332 return ERR_CAST(shm_mnt);
3333
3334 if (size < 0 || size > MAX_LFS_FILESIZE)
3335 return ERR_PTR(-EINVAL);
3336
3337 if (shmem_acct_size(flags, size))
3338 return ERR_PTR(-ENOMEM);
3339
3340 res = ERR_PTR(-ENOMEM);
3341 this.name = name;
3342 this.len = strlen(name);
3343 this.hash = 0; /* will go */
3344 sb = shm_mnt->mnt_sb;
3345 path.mnt = mntget(shm_mnt);
3346 path.dentry = d_alloc_pseudo(sb, &this);
3347 if (!path.dentry)
3348 goto put_memory;
3349 d_set_d_op(path.dentry, &anon_ops);
3350
3351 res = ERR_PTR(-ENOSPC);
3352 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3353 if (!inode)
3354 goto put_memory;
3355
3356 inode->i_flags |= i_flags;
3357 d_instantiate(path.dentry, inode);
3358 inode->i_size = size;
3359 clear_nlink(inode); /* It is unlinked */
3360 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3361 if (IS_ERR(res))
3362 goto put_path;
3363
3364 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3365 &shmem_file_operations);
3366 if (IS_ERR(res))
3367 goto put_path;
3368
3369 return res;
3370
3371put_memory:
3372 shmem_unacct_size(flags, size);
3373put_path:
3374 path_put(&path);
3375 return res;
3376}
3377
3378/**
3379 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3380 * kernel internal. There will be NO LSM permission checks against the
3381 * underlying inode. So users of this interface must do LSM checks at a
3382 * higher layer. The users are the big_key and shm implementations. LSM
3383 * checks are provided at the key or shm level rather than the inode.
3384 * @name: name for dentry (to be seen in /proc/<pid>/maps
3385 * @size: size to be set for the file
3386 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3387 */
3388struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3389{
3390 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3391}
3392
3393/**
3394 * shmem_file_setup - get an unlinked file living in tmpfs
3395 * @name: name for dentry (to be seen in /proc/<pid>/maps
3396 * @size: size to be set for the file
3397 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3398 */
3399struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3400{
3401 return __shmem_file_setup(name, size, flags, 0);
3402}
3403EXPORT_SYMBOL_GPL(shmem_file_setup);
3404
3405/**
3406 * shmem_zero_setup - setup a shared anonymous mapping
3407 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3408 */
3409int shmem_zero_setup(struct vm_area_struct *vma)
3410{
3411 struct file *file;
3412 loff_t size = vma->vm_end - vma->vm_start;
3413
3414 /*
3415 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3416 * between XFS directory reading and selinux: since this file is only
3417 * accessible to the user through its mapping, use S_PRIVATE flag to
3418 * bypass file security, in the same way as shmem_kernel_file_setup().
3419 */
3420 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3421 if (IS_ERR(file))
3422 return PTR_ERR(file);
3423
3424 if (vma->vm_file)
3425 fput(vma->vm_file);
3426 vma->vm_file = file;
3427 vma->vm_ops = &shmem_vm_ops;
3428 return 0;
3429}
3430
3431/**
3432 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3433 * @mapping: the page's address_space
3434 * @index: the page index
3435 * @gfp: the page allocator flags to use if allocating
3436 *
3437 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3438 * with any new page allocations done using the specified allocation flags.
3439 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3440 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3441 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3442 *
3443 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3444 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3445 */
3446struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3447 pgoff_t index, gfp_t gfp)
3448{
3449#ifdef CONFIG_SHMEM
3450 struct inode *inode = mapping->host;
3451 struct page *page;
3452 int error;
3453
3454 BUG_ON(mapping->a_ops != &shmem_aops);
3455 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3456 if (error)
3457 page = ERR_PTR(error);
3458 else
3459 unlock_page(page);
3460 return page;
3461#else
3462 /*
3463 * The tiny !SHMEM case uses ramfs without swap
3464 */
3465 return read_cache_page_gfp(mapping, index, gfp);
3466#endif
3467}
3468EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);