]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/slob.c
slob: No need to zero mapping since it is no longer in use
[mirror_ubuntu-artful-kernel.git] / mm / slob.c
... / ...
CommitLineData
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60#include <linux/kernel.h>
61#include <linux/slab.h>
62#include <linux/mm.h>
63#include <linux/swap.h> /* struct reclaim_state */
64#include <linux/cache.h>
65#include <linux/init.h>
66#include <linux/export.h>
67#include <linux/rcupdate.h>
68#include <linux/list.h>
69#include <linux/kmemleak.h>
70
71#include <trace/events/kmem.h>
72
73#include <linux/atomic.h>
74
75/*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
83#if PAGE_SIZE <= (32767 * 2)
84typedef s16 slobidx_t;
85#else
86typedef s32 slobidx_t;
87#endif
88
89struct slob_block {
90 slobidx_t units;
91};
92typedef struct slob_block slob_t;
93
94/*
95 * free_slob_page: call before a slob_page is returned to the page allocator.
96 */
97static inline void free_slob_page(struct page *sp)
98{
99 reset_page_mapcount(sp);
100}
101
102/*
103 * All partially free slob pages go on these lists.
104 */
105#define SLOB_BREAK1 256
106#define SLOB_BREAK2 1024
107static LIST_HEAD(free_slob_small);
108static LIST_HEAD(free_slob_medium);
109static LIST_HEAD(free_slob_large);
110
111/*
112 * is_slob_page: True for all slob pages (false for bigblock pages)
113 */
114static inline int is_slob_page(struct page *sp)
115{
116 return PageSlab(sp);
117}
118
119static inline void set_slob_page(struct page *sp)
120{
121 __SetPageSlab(sp);
122}
123
124static inline void clear_slob_page(struct page *sp)
125{
126 __ClearPageSlab(sp);
127}
128
129static inline struct page *slob_page(const void *addr)
130{
131 return virt_to_page(addr);
132}
133
134/*
135 * slob_page_free: true for pages on free_slob_pages list.
136 */
137static inline int slob_page_free(struct page *sp)
138{
139 return PageSlobFree(sp);
140}
141
142static void set_slob_page_free(struct page *sp, struct list_head *list)
143{
144 list_add(&sp->list, list);
145 __SetPageSlobFree(sp);
146}
147
148static inline void clear_slob_page_free(struct page *sp)
149{
150 list_del(&sp->list);
151 __ClearPageSlobFree(sp);
152}
153
154#define SLOB_UNIT sizeof(slob_t)
155#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
156#define SLOB_ALIGN L1_CACHE_BYTES
157
158/*
159 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
160 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
161 * the block using call_rcu.
162 */
163struct slob_rcu {
164 struct rcu_head head;
165 int size;
166};
167
168/*
169 * slob_lock protects all slob allocator structures.
170 */
171static DEFINE_SPINLOCK(slob_lock);
172
173/*
174 * Encode the given size and next info into a free slob block s.
175 */
176static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
177{
178 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
179 slobidx_t offset = next - base;
180
181 if (size > 1) {
182 s[0].units = size;
183 s[1].units = offset;
184 } else
185 s[0].units = -offset;
186}
187
188/*
189 * Return the size of a slob block.
190 */
191static slobidx_t slob_units(slob_t *s)
192{
193 if (s->units > 0)
194 return s->units;
195 return 1;
196}
197
198/*
199 * Return the next free slob block pointer after this one.
200 */
201static slob_t *slob_next(slob_t *s)
202{
203 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
204 slobidx_t next;
205
206 if (s[0].units < 0)
207 next = -s[0].units;
208 else
209 next = s[1].units;
210 return base+next;
211}
212
213/*
214 * Returns true if s is the last free block in its page.
215 */
216static int slob_last(slob_t *s)
217{
218 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
219}
220
221static void *slob_new_pages(gfp_t gfp, int order, int node)
222{
223 void *page;
224
225#ifdef CONFIG_NUMA
226 if (node != -1)
227 page = alloc_pages_exact_node(node, gfp, order);
228 else
229#endif
230 page = alloc_pages(gfp, order);
231
232 if (!page)
233 return NULL;
234
235 return page_address(page);
236}
237
238static void slob_free_pages(void *b, int order)
239{
240 if (current->reclaim_state)
241 current->reclaim_state->reclaimed_slab += 1 << order;
242 free_pages((unsigned long)b, order);
243}
244
245/*
246 * Allocate a slob block within a given slob_page sp.
247 */
248static void *slob_page_alloc(struct page *sp, size_t size, int align)
249{
250 slob_t *prev, *cur, *aligned = NULL;
251 int delta = 0, units = SLOB_UNITS(size);
252
253 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
254 slobidx_t avail = slob_units(cur);
255
256 if (align) {
257 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
258 delta = aligned - cur;
259 }
260 if (avail >= units + delta) { /* room enough? */
261 slob_t *next;
262
263 if (delta) { /* need to fragment head to align? */
264 next = slob_next(cur);
265 set_slob(aligned, avail - delta, next);
266 set_slob(cur, delta, aligned);
267 prev = cur;
268 cur = aligned;
269 avail = slob_units(cur);
270 }
271
272 next = slob_next(cur);
273 if (avail == units) { /* exact fit? unlink. */
274 if (prev)
275 set_slob(prev, slob_units(prev), next);
276 else
277 sp->freelist = next;
278 } else { /* fragment */
279 if (prev)
280 set_slob(prev, slob_units(prev), cur + units);
281 else
282 sp->freelist = cur + units;
283 set_slob(cur + units, avail - units, next);
284 }
285
286 sp->units -= units;
287 if (!sp->units)
288 clear_slob_page_free(sp);
289 return cur;
290 }
291 if (slob_last(cur))
292 return NULL;
293 }
294}
295
296/*
297 * slob_alloc: entry point into the slob allocator.
298 */
299static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
300{
301 struct page *sp;
302 struct list_head *prev;
303 struct list_head *slob_list;
304 slob_t *b = NULL;
305 unsigned long flags;
306
307 if (size < SLOB_BREAK1)
308 slob_list = &free_slob_small;
309 else if (size < SLOB_BREAK2)
310 slob_list = &free_slob_medium;
311 else
312 slob_list = &free_slob_large;
313
314 spin_lock_irqsave(&slob_lock, flags);
315 /* Iterate through each partially free page, try to find room */
316 list_for_each_entry(sp, slob_list, list) {
317#ifdef CONFIG_NUMA
318 /*
319 * If there's a node specification, search for a partial
320 * page with a matching node id in the freelist.
321 */
322 if (node != -1 && page_to_nid(sp) != node)
323 continue;
324#endif
325 /* Enough room on this page? */
326 if (sp->units < SLOB_UNITS(size))
327 continue;
328
329 /* Attempt to alloc */
330 prev = sp->list.prev;
331 b = slob_page_alloc(sp, size, align);
332 if (!b)
333 continue;
334
335 /* Improve fragment distribution and reduce our average
336 * search time by starting our next search here. (see
337 * Knuth vol 1, sec 2.5, pg 449) */
338 if (prev != slob_list->prev &&
339 slob_list->next != prev->next)
340 list_move_tail(slob_list, prev->next);
341 break;
342 }
343 spin_unlock_irqrestore(&slob_lock, flags);
344
345 /* Not enough space: must allocate a new page */
346 if (!b) {
347 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
348 if (!b)
349 return NULL;
350 sp = slob_page(b);
351 set_slob_page(sp);
352
353 spin_lock_irqsave(&slob_lock, flags);
354 sp->units = SLOB_UNITS(PAGE_SIZE);
355 sp->freelist = b;
356 INIT_LIST_HEAD(&sp->list);
357 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
358 set_slob_page_free(sp, slob_list);
359 b = slob_page_alloc(sp, size, align);
360 BUG_ON(!b);
361 spin_unlock_irqrestore(&slob_lock, flags);
362 }
363 if (unlikely((gfp & __GFP_ZERO) && b))
364 memset(b, 0, size);
365 return b;
366}
367
368/*
369 * slob_free: entry point into the slob allocator.
370 */
371static void slob_free(void *block, int size)
372{
373 struct page *sp;
374 slob_t *prev, *next, *b = (slob_t *)block;
375 slobidx_t units;
376 unsigned long flags;
377 struct list_head *slob_list;
378
379 if (unlikely(ZERO_OR_NULL_PTR(block)))
380 return;
381 BUG_ON(!size);
382
383 sp = slob_page(block);
384 units = SLOB_UNITS(size);
385
386 spin_lock_irqsave(&slob_lock, flags);
387
388 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
389 /* Go directly to page allocator. Do not pass slob allocator */
390 if (slob_page_free(sp))
391 clear_slob_page_free(sp);
392 spin_unlock_irqrestore(&slob_lock, flags);
393 clear_slob_page(sp);
394 free_slob_page(sp);
395 slob_free_pages(b, 0);
396 return;
397 }
398
399 if (!slob_page_free(sp)) {
400 /* This slob page is about to become partially free. Easy! */
401 sp->units = units;
402 sp->freelist = b;
403 set_slob(b, units,
404 (void *)((unsigned long)(b +
405 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
406 if (size < SLOB_BREAK1)
407 slob_list = &free_slob_small;
408 else if (size < SLOB_BREAK2)
409 slob_list = &free_slob_medium;
410 else
411 slob_list = &free_slob_large;
412 set_slob_page_free(sp, slob_list);
413 goto out;
414 }
415
416 /*
417 * Otherwise the page is already partially free, so find reinsertion
418 * point.
419 */
420 sp->units += units;
421
422 if (b < (slob_t *)sp->freelist) {
423 if (b + units == sp->freelist) {
424 units += slob_units(sp->freelist);
425 sp->freelist = slob_next(sp->freelist);
426 }
427 set_slob(b, units, sp->freelist);
428 sp->freelist = b;
429 } else {
430 prev = sp->freelist;
431 next = slob_next(prev);
432 while (b > next) {
433 prev = next;
434 next = slob_next(prev);
435 }
436
437 if (!slob_last(prev) && b + units == next) {
438 units += slob_units(next);
439 set_slob(b, units, slob_next(next));
440 } else
441 set_slob(b, units, next);
442
443 if (prev + slob_units(prev) == b) {
444 units = slob_units(b) + slob_units(prev);
445 set_slob(prev, units, slob_next(b));
446 } else
447 set_slob(prev, slob_units(prev), b);
448 }
449out:
450 spin_unlock_irqrestore(&slob_lock, flags);
451}
452
453/*
454 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
455 */
456
457void *__kmalloc_node(size_t size, gfp_t gfp, int node)
458{
459 unsigned int *m;
460 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
461 void *ret;
462
463 gfp &= gfp_allowed_mask;
464
465 lockdep_trace_alloc(gfp);
466
467 if (size < PAGE_SIZE - align) {
468 if (!size)
469 return ZERO_SIZE_PTR;
470
471 m = slob_alloc(size + align, gfp, align, node);
472
473 if (!m)
474 return NULL;
475 *m = size;
476 ret = (void *)m + align;
477
478 trace_kmalloc_node(_RET_IP_, ret,
479 size, size + align, gfp, node);
480 } else {
481 unsigned int order = get_order(size);
482
483 if (likely(order))
484 gfp |= __GFP_COMP;
485 ret = slob_new_pages(gfp, order, node);
486 if (ret) {
487 struct page *page;
488 page = virt_to_page(ret);
489 page->private = size;
490 }
491
492 trace_kmalloc_node(_RET_IP_, ret,
493 size, PAGE_SIZE << order, gfp, node);
494 }
495
496 kmemleak_alloc(ret, size, 1, gfp);
497 return ret;
498}
499EXPORT_SYMBOL(__kmalloc_node);
500
501void kfree(const void *block)
502{
503 struct page *sp;
504
505 trace_kfree(_RET_IP_, block);
506
507 if (unlikely(ZERO_OR_NULL_PTR(block)))
508 return;
509 kmemleak_free(block);
510
511 sp = slob_page(block);
512 if (is_slob_page(sp)) {
513 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
514 unsigned int *m = (unsigned int *)(block - align);
515 slob_free(m, *m + align);
516 } else
517 put_page(sp);
518}
519EXPORT_SYMBOL(kfree);
520
521/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
522size_t ksize(const void *block)
523{
524 struct page *sp;
525
526 BUG_ON(!block);
527 if (unlikely(block == ZERO_SIZE_PTR))
528 return 0;
529
530 sp = slob_page(block);
531 if (is_slob_page(sp)) {
532 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
533 unsigned int *m = (unsigned int *)(block - align);
534 return SLOB_UNITS(*m) * SLOB_UNIT;
535 } else
536 return sp->private;
537}
538EXPORT_SYMBOL(ksize);
539
540struct kmem_cache {
541 unsigned int size, align;
542 unsigned long flags;
543 const char *name;
544 void (*ctor)(void *);
545};
546
547struct kmem_cache *kmem_cache_create(const char *name, size_t size,
548 size_t align, unsigned long flags, void (*ctor)(void *))
549{
550 struct kmem_cache *c;
551
552 c = slob_alloc(sizeof(struct kmem_cache),
553 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
554
555 if (c) {
556 c->name = name;
557 c->size = size;
558 if (flags & SLAB_DESTROY_BY_RCU) {
559 /* leave room for rcu footer at the end of object */
560 c->size += sizeof(struct slob_rcu);
561 }
562 c->flags = flags;
563 c->ctor = ctor;
564 /* ignore alignment unless it's forced */
565 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
566 if (c->align < ARCH_SLAB_MINALIGN)
567 c->align = ARCH_SLAB_MINALIGN;
568 if (c->align < align)
569 c->align = align;
570 } else if (flags & SLAB_PANIC)
571 panic("Cannot create slab cache %s\n", name);
572
573 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
574 return c;
575}
576EXPORT_SYMBOL(kmem_cache_create);
577
578void kmem_cache_destroy(struct kmem_cache *c)
579{
580 kmemleak_free(c);
581 if (c->flags & SLAB_DESTROY_BY_RCU)
582 rcu_barrier();
583 slob_free(c, sizeof(struct kmem_cache));
584}
585EXPORT_SYMBOL(kmem_cache_destroy);
586
587void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
588{
589 void *b;
590
591 flags &= gfp_allowed_mask;
592
593 lockdep_trace_alloc(flags);
594
595 if (c->size < PAGE_SIZE) {
596 b = slob_alloc(c->size, flags, c->align, node);
597 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
598 SLOB_UNITS(c->size) * SLOB_UNIT,
599 flags, node);
600 } else {
601 b = slob_new_pages(flags, get_order(c->size), node);
602 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
603 PAGE_SIZE << get_order(c->size),
604 flags, node);
605 }
606
607 if (c->ctor)
608 c->ctor(b);
609
610 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
611 return b;
612}
613EXPORT_SYMBOL(kmem_cache_alloc_node);
614
615static void __kmem_cache_free(void *b, int size)
616{
617 if (size < PAGE_SIZE)
618 slob_free(b, size);
619 else
620 slob_free_pages(b, get_order(size));
621}
622
623static void kmem_rcu_free(struct rcu_head *head)
624{
625 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
626 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
627
628 __kmem_cache_free(b, slob_rcu->size);
629}
630
631void kmem_cache_free(struct kmem_cache *c, void *b)
632{
633 kmemleak_free_recursive(b, c->flags);
634 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
635 struct slob_rcu *slob_rcu;
636 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
637 slob_rcu->size = c->size;
638 call_rcu(&slob_rcu->head, kmem_rcu_free);
639 } else {
640 __kmem_cache_free(b, c->size);
641 }
642
643 trace_kmem_cache_free(_RET_IP_, b);
644}
645EXPORT_SYMBOL(kmem_cache_free);
646
647unsigned int kmem_cache_size(struct kmem_cache *c)
648{
649 return c->size;
650}
651EXPORT_SYMBOL(kmem_cache_size);
652
653int kmem_cache_shrink(struct kmem_cache *d)
654{
655 return 0;
656}
657EXPORT_SYMBOL(kmem_cache_shrink);
658
659static unsigned int slob_ready __read_mostly;
660
661int slab_is_available(void)
662{
663 return slob_ready;
664}
665
666void __init kmem_cache_init(void)
667{
668 slob_ready = 1;
669}
670
671void __init kmem_cache_init_late(void)
672{
673 /* Nothing to do */
674}