]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - mm/slub.c
slub: Simplify any_slab_object checks
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
... / ...
CommitLineData
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23#include <linux/memory.h>
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
111static inline int SlabFrozen(struct page *page)
112{
113 return page->flags & FROZEN;
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
118 page->flags |= FROZEN;
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
123 page->flags &= ~FROZEN;
124}
125
126static inline int SlabDebug(struct page *page)
127{
128 return page->flags & SLABDEBUG;
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
133 page->flags |= SLABDEBUG;
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
138 page->flags &= ~SLABDEBUG;
139}
140
141/*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175#define MIN_PARTIAL 5
176
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202#endif
203
204/* Internal SLUB flags */
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207
208/* Not all arches define cache_line_size */
209#ifndef cache_line_size
210#define cache_line_size() L1_CACHE_BYTES
211#endif
212
213static int kmem_size = sizeof(struct kmem_cache);
214
215#ifdef CONFIG_SMP
216static struct notifier_block slab_notifier;
217#endif
218
219static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
222 UP, /* Everything works but does not show up in sysfs */
223 SYSFS /* Sysfs up */
224} slab_state = DOWN;
225
226/* A list of all slab caches on the system */
227static DECLARE_RWSEM(slub_lock);
228static LIST_HEAD(slab_caches);
229
230/*
231 * Tracking user of a slab.
232 */
233struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
238};
239
240enum track_item { TRACK_ALLOC, TRACK_FREE };
241
242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243static int sysfs_slab_add(struct kmem_cache *);
244static int sysfs_slab_alias(struct kmem_cache *, const char *);
245static void sysfs_slab_remove(struct kmem_cache *);
246
247#else
248static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
249static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
250 { return 0; }
251static inline void sysfs_slab_remove(struct kmem_cache *s)
252{
253 kfree(s);
254}
255
256#endif
257
258static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
259{
260#ifdef CONFIG_SLUB_STATS
261 c->stat[si]++;
262#endif
263}
264
265/********************************************************************
266 * Core slab cache functions
267 *******************************************************************/
268
269int slab_is_available(void)
270{
271 return slab_state >= UP;
272}
273
274static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
275{
276#ifdef CONFIG_NUMA
277 return s->node[node];
278#else
279 return &s->local_node;
280#endif
281}
282
283static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
284{
285#ifdef CONFIG_SMP
286 return s->cpu_slab[cpu];
287#else
288 return &s->cpu_slab;
289#endif
290}
291
292/* Verify that a pointer has an address that is valid within a slab page */
293static inline int check_valid_pointer(struct kmem_cache *s,
294 struct page *page, const void *object)
295{
296 void *base;
297
298 if (!object)
299 return 1;
300
301 base = page_address(page);
302 if (object < base || object >= base + page->objects * s->size ||
303 (object - base) % s->size) {
304 return 0;
305 }
306
307 return 1;
308}
309
310/*
311 * Slow version of get and set free pointer.
312 *
313 * This version requires touching the cache lines of kmem_cache which
314 * we avoid to do in the fast alloc free paths. There we obtain the offset
315 * from the page struct.
316 */
317static inline void *get_freepointer(struct kmem_cache *s, void *object)
318{
319 return *(void **)(object + s->offset);
320}
321
322static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
323{
324 *(void **)(object + s->offset) = fp;
325}
326
327/* Loop over all objects in a slab */
328#define for_each_object(__p, __s, __addr, __objects) \
329 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
330 __p += (__s)->size)
331
332/* Scan freelist */
333#define for_each_free_object(__p, __s, __free) \
334 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
335
336/* Determine object index from a given position */
337static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
338{
339 return (p - addr) / s->size;
340}
341
342static inline struct kmem_cache_order_objects oo_make(int order,
343 unsigned long size)
344{
345 struct kmem_cache_order_objects x = {
346 (order << 16) + (PAGE_SIZE << order) / size
347 };
348
349 return x;
350}
351
352static inline int oo_order(struct kmem_cache_order_objects x)
353{
354 return x.x >> 16;
355}
356
357static inline int oo_objects(struct kmem_cache_order_objects x)
358{
359 return x.x & ((1 << 16) - 1);
360}
361
362#ifdef CONFIG_SLUB_DEBUG
363/*
364 * Debug settings:
365 */
366#ifdef CONFIG_SLUB_DEBUG_ON
367static int slub_debug = DEBUG_DEFAULT_FLAGS;
368#else
369static int slub_debug;
370#endif
371
372static char *slub_debug_slabs;
373
374/*
375 * Object debugging
376 */
377static void print_section(char *text, u8 *addr, unsigned int length)
378{
379 int i, offset;
380 int newline = 1;
381 char ascii[17];
382
383 ascii[16] = 0;
384
385 for (i = 0; i < length; i++) {
386 if (newline) {
387 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
388 newline = 0;
389 }
390 printk(KERN_CONT " %02x", addr[i]);
391 offset = i % 16;
392 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
393 if (offset == 15) {
394 printk(KERN_CONT " %s\n", ascii);
395 newline = 1;
396 }
397 }
398 if (!newline) {
399 i %= 16;
400 while (i < 16) {
401 printk(KERN_CONT " ");
402 ascii[i] = ' ';
403 i++;
404 }
405 printk(KERN_CONT " %s\n", ascii);
406 }
407}
408
409static struct track *get_track(struct kmem_cache *s, void *object,
410 enum track_item alloc)
411{
412 struct track *p;
413
414 if (s->offset)
415 p = object + s->offset + sizeof(void *);
416 else
417 p = object + s->inuse;
418
419 return p + alloc;
420}
421
422static void set_track(struct kmem_cache *s, void *object,
423 enum track_item alloc, void *addr)
424{
425 struct track *p;
426
427 if (s->offset)
428 p = object + s->offset + sizeof(void *);
429 else
430 p = object + s->inuse;
431
432 p += alloc;
433 if (addr) {
434 p->addr = addr;
435 p->cpu = smp_processor_id();
436 p->pid = current ? current->pid : -1;
437 p->when = jiffies;
438 } else
439 memset(p, 0, sizeof(struct track));
440}
441
442static void init_tracking(struct kmem_cache *s, void *object)
443{
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 set_track(s, object, TRACK_FREE, NULL);
448 set_track(s, object, TRACK_ALLOC, NULL);
449}
450
451static void print_track(const char *s, struct track *t)
452{
453 if (!t->addr)
454 return;
455
456 printk(KERN_ERR "INFO: %s in ", s);
457 __print_symbol("%s", (unsigned long)t->addr);
458 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
459}
460
461static void print_tracking(struct kmem_cache *s, void *object)
462{
463 if (!(s->flags & SLAB_STORE_USER))
464 return;
465
466 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
467 print_track("Freed", get_track(s, object, TRACK_FREE));
468}
469
470static void print_page_info(struct page *page)
471{
472 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
473 page, page->objects, page->inuse, page->freelist, page->flags);
474
475}
476
477static void slab_bug(struct kmem_cache *s, char *fmt, ...)
478{
479 va_list args;
480 char buf[100];
481
482 va_start(args, fmt);
483 vsnprintf(buf, sizeof(buf), fmt, args);
484 va_end(args);
485 printk(KERN_ERR "========================================"
486 "=====================================\n");
487 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
488 printk(KERN_ERR "----------------------------------------"
489 "-------------------------------------\n\n");
490}
491
492static void slab_fix(struct kmem_cache *s, char *fmt, ...)
493{
494 va_list args;
495 char buf[100];
496
497 va_start(args, fmt);
498 vsnprintf(buf, sizeof(buf), fmt, args);
499 va_end(args);
500 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
501}
502
503static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
504{
505 unsigned int off; /* Offset of last byte */
506 u8 *addr = page_address(page);
507
508 print_tracking(s, p);
509
510 print_page_info(page);
511
512 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
513 p, p - addr, get_freepointer(s, p));
514
515 if (p > addr + 16)
516 print_section("Bytes b4", p - 16, 16);
517
518 print_section("Object", p, min(s->objsize, 128));
519
520 if (s->flags & SLAB_RED_ZONE)
521 print_section("Redzone", p + s->objsize,
522 s->inuse - s->objsize);
523
524 if (s->offset)
525 off = s->offset + sizeof(void *);
526 else
527 off = s->inuse;
528
529 if (s->flags & SLAB_STORE_USER)
530 off += 2 * sizeof(struct track);
531
532 if (off != s->size)
533 /* Beginning of the filler is the free pointer */
534 print_section("Padding", p + off, s->size - off);
535
536 dump_stack();
537}
538
539static void object_err(struct kmem_cache *s, struct page *page,
540 u8 *object, char *reason)
541{
542 slab_bug(s, "%s", reason);
543 print_trailer(s, page, object);
544}
545
546static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
547{
548 va_list args;
549 char buf[100];
550
551 va_start(args, fmt);
552 vsnprintf(buf, sizeof(buf), fmt, args);
553 va_end(args);
554 slab_bug(s, "%s", buf);
555 print_page_info(page);
556 dump_stack();
557}
558
559static void init_object(struct kmem_cache *s, void *object, int active)
560{
561 u8 *p = object;
562
563 if (s->flags & __OBJECT_POISON) {
564 memset(p, POISON_FREE, s->objsize - 1);
565 p[s->objsize - 1] = POISON_END;
566 }
567
568 if (s->flags & SLAB_RED_ZONE)
569 memset(p + s->objsize,
570 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
571 s->inuse - s->objsize);
572}
573
574static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
575{
576 while (bytes) {
577 if (*start != (u8)value)
578 return start;
579 start++;
580 bytes--;
581 }
582 return NULL;
583}
584
585static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
586 void *from, void *to)
587{
588 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
589 memset(from, data, to - from);
590}
591
592static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
593 u8 *object, char *what,
594 u8 *start, unsigned int value, unsigned int bytes)
595{
596 u8 *fault;
597 u8 *end;
598
599 fault = check_bytes(start, value, bytes);
600 if (!fault)
601 return 1;
602
603 end = start + bytes;
604 while (end > fault && end[-1] == value)
605 end--;
606
607 slab_bug(s, "%s overwritten", what);
608 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
609 fault, end - 1, fault[0], value);
610 print_trailer(s, page, object);
611
612 restore_bytes(s, what, value, fault, end);
613 return 0;
614}
615
616/*
617 * Object layout:
618 *
619 * object address
620 * Bytes of the object to be managed.
621 * If the freepointer may overlay the object then the free
622 * pointer is the first word of the object.
623 *
624 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
625 * 0xa5 (POISON_END)
626 *
627 * object + s->objsize
628 * Padding to reach word boundary. This is also used for Redzoning.
629 * Padding is extended by another word if Redzoning is enabled and
630 * objsize == inuse.
631 *
632 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
633 * 0xcc (RED_ACTIVE) for objects in use.
634 *
635 * object + s->inuse
636 * Meta data starts here.
637 *
638 * A. Free pointer (if we cannot overwrite object on free)
639 * B. Tracking data for SLAB_STORE_USER
640 * C. Padding to reach required alignment boundary or at mininum
641 * one word if debugging is on to be able to detect writes
642 * before the word boundary.
643 *
644 * Padding is done using 0x5a (POISON_INUSE)
645 *
646 * object + s->size
647 * Nothing is used beyond s->size.
648 *
649 * If slabcaches are merged then the objsize and inuse boundaries are mostly
650 * ignored. And therefore no slab options that rely on these boundaries
651 * may be used with merged slabcaches.
652 */
653
654static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
655{
656 unsigned long off = s->inuse; /* The end of info */
657
658 if (s->offset)
659 /* Freepointer is placed after the object. */
660 off += sizeof(void *);
661
662 if (s->flags & SLAB_STORE_USER)
663 /* We also have user information there */
664 off += 2 * sizeof(struct track);
665
666 if (s->size == off)
667 return 1;
668
669 return check_bytes_and_report(s, page, p, "Object padding",
670 p + off, POISON_INUSE, s->size - off);
671}
672
673/* Check the pad bytes at the end of a slab page */
674static int slab_pad_check(struct kmem_cache *s, struct page *page)
675{
676 u8 *start;
677 u8 *fault;
678 u8 *end;
679 int length;
680 int remainder;
681
682 if (!(s->flags & SLAB_POISON))
683 return 1;
684
685 start = page_address(page);
686 length = (PAGE_SIZE << compound_order(page));
687 end = start + length;
688 remainder = length % s->size;
689 if (!remainder)
690 return 1;
691
692 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
693 if (!fault)
694 return 1;
695 while (end > fault && end[-1] == POISON_INUSE)
696 end--;
697
698 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
699 print_section("Padding", end - remainder, remainder);
700
701 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
702 return 0;
703}
704
705static int check_object(struct kmem_cache *s, struct page *page,
706 void *object, int active)
707{
708 u8 *p = object;
709 u8 *endobject = object + s->objsize;
710
711 if (s->flags & SLAB_RED_ZONE) {
712 unsigned int red =
713 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
714
715 if (!check_bytes_and_report(s, page, object, "Redzone",
716 endobject, red, s->inuse - s->objsize))
717 return 0;
718 } else {
719 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
720 check_bytes_and_report(s, page, p, "Alignment padding",
721 endobject, POISON_INUSE, s->inuse - s->objsize);
722 }
723 }
724
725 if (s->flags & SLAB_POISON) {
726 if (!active && (s->flags & __OBJECT_POISON) &&
727 (!check_bytes_and_report(s, page, p, "Poison", p,
728 POISON_FREE, s->objsize - 1) ||
729 !check_bytes_and_report(s, page, p, "Poison",
730 p + s->objsize - 1, POISON_END, 1)))
731 return 0;
732 /*
733 * check_pad_bytes cleans up on its own.
734 */
735 check_pad_bytes(s, page, p);
736 }
737
738 if (!s->offset && active)
739 /*
740 * Object and freepointer overlap. Cannot check
741 * freepointer while object is allocated.
742 */
743 return 1;
744
745 /* Check free pointer validity */
746 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
747 object_err(s, page, p, "Freepointer corrupt");
748 /*
749 * No choice but to zap it and thus loose the remainder
750 * of the free objects in this slab. May cause
751 * another error because the object count is now wrong.
752 */
753 set_freepointer(s, p, NULL);
754 return 0;
755 }
756 return 1;
757}
758
759static int check_slab(struct kmem_cache *s, struct page *page)
760{
761 int maxobj;
762
763 VM_BUG_ON(!irqs_disabled());
764
765 if (!PageSlab(page)) {
766 slab_err(s, page, "Not a valid slab page");
767 return 0;
768 }
769
770 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
771 if (page->objects > maxobj) {
772 slab_err(s, page, "objects %u > max %u",
773 s->name, page->objects, maxobj);
774 return 0;
775 }
776 if (page->inuse > page->objects) {
777 slab_err(s, page, "inuse %u > max %u",
778 s->name, page->inuse, page->objects);
779 return 0;
780 }
781 /* Slab_pad_check fixes things up after itself */
782 slab_pad_check(s, page);
783 return 1;
784}
785
786/*
787 * Determine if a certain object on a page is on the freelist. Must hold the
788 * slab lock to guarantee that the chains are in a consistent state.
789 */
790static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
791{
792 int nr = 0;
793 void *fp = page->freelist;
794 void *object = NULL;
795 unsigned long max_objects;
796
797 while (fp && nr <= page->objects) {
798 if (fp == search)
799 return 1;
800 if (!check_valid_pointer(s, page, fp)) {
801 if (object) {
802 object_err(s, page, object,
803 "Freechain corrupt");
804 set_freepointer(s, object, NULL);
805 break;
806 } else {
807 slab_err(s, page, "Freepointer corrupt");
808 page->freelist = NULL;
809 page->inuse = page->objects;
810 slab_fix(s, "Freelist cleared");
811 return 0;
812 }
813 break;
814 }
815 object = fp;
816 fp = get_freepointer(s, object);
817 nr++;
818 }
819
820 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
821 if (max_objects > 65535)
822 max_objects = 65535;
823
824 if (page->objects != max_objects) {
825 slab_err(s, page, "Wrong number of objects. Found %d but "
826 "should be %d", page->objects, max_objects);
827 page->objects = max_objects;
828 slab_fix(s, "Number of objects adjusted.");
829 }
830 if (page->inuse != page->objects - nr) {
831 slab_err(s, page, "Wrong object count. Counter is %d but "
832 "counted were %d", page->inuse, page->objects - nr);
833 page->inuse = page->objects - nr;
834 slab_fix(s, "Object count adjusted.");
835 }
836 return search == NULL;
837}
838
839static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
840{
841 if (s->flags & SLAB_TRACE) {
842 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
843 s->name,
844 alloc ? "alloc" : "free",
845 object, page->inuse,
846 page->freelist);
847
848 if (!alloc)
849 print_section("Object", (void *)object, s->objsize);
850
851 dump_stack();
852 }
853}
854
855/*
856 * Tracking of fully allocated slabs for debugging purposes.
857 */
858static void add_full(struct kmem_cache_node *n, struct page *page)
859{
860 spin_lock(&n->list_lock);
861 list_add(&page->lru, &n->full);
862 spin_unlock(&n->list_lock);
863}
864
865static void remove_full(struct kmem_cache *s, struct page *page)
866{
867 struct kmem_cache_node *n;
868
869 if (!(s->flags & SLAB_STORE_USER))
870 return;
871
872 n = get_node(s, page_to_nid(page));
873
874 spin_lock(&n->list_lock);
875 list_del(&page->lru);
876 spin_unlock(&n->list_lock);
877}
878
879/* Tracking of the number of slabs for debugging purposes */
880static inline unsigned long slabs_node(struct kmem_cache *s, int node)
881{
882 struct kmem_cache_node *n = get_node(s, node);
883
884 return atomic_long_read(&n->nr_slabs);
885}
886
887static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
888{
889 struct kmem_cache_node *n = get_node(s, node);
890
891 /*
892 * May be called early in order to allocate a slab for the
893 * kmem_cache_node structure. Solve the chicken-egg
894 * dilemma by deferring the increment of the count during
895 * bootstrap (see early_kmem_cache_node_alloc).
896 */
897 if (!NUMA_BUILD || n) {
898 atomic_long_inc(&n->nr_slabs);
899 atomic_long_add(objects, &n->total_objects);
900 }
901}
902static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
903{
904 struct kmem_cache_node *n = get_node(s, node);
905
906 atomic_long_dec(&n->nr_slabs);
907 atomic_long_sub(objects, &n->total_objects);
908}
909
910/* Object debug checks for alloc/free paths */
911static void setup_object_debug(struct kmem_cache *s, struct page *page,
912 void *object)
913{
914 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
915 return;
916
917 init_object(s, object, 0);
918 init_tracking(s, object);
919}
920
921static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
922 void *object, void *addr)
923{
924 if (!check_slab(s, page))
925 goto bad;
926
927 if (!on_freelist(s, page, object)) {
928 object_err(s, page, object, "Object already allocated");
929 goto bad;
930 }
931
932 if (!check_valid_pointer(s, page, object)) {
933 object_err(s, page, object, "Freelist Pointer check fails");
934 goto bad;
935 }
936
937 if (!check_object(s, page, object, 0))
938 goto bad;
939
940 /* Success perform special debug activities for allocs */
941 if (s->flags & SLAB_STORE_USER)
942 set_track(s, object, TRACK_ALLOC, addr);
943 trace(s, page, object, 1);
944 init_object(s, object, 1);
945 return 1;
946
947bad:
948 if (PageSlab(page)) {
949 /*
950 * If this is a slab page then lets do the best we can
951 * to avoid issues in the future. Marking all objects
952 * as used avoids touching the remaining objects.
953 */
954 slab_fix(s, "Marking all objects used");
955 page->inuse = page->objects;
956 page->freelist = NULL;
957 }
958 return 0;
959}
960
961static int free_debug_processing(struct kmem_cache *s, struct page *page,
962 void *object, void *addr)
963{
964 if (!check_slab(s, page))
965 goto fail;
966
967 if (!check_valid_pointer(s, page, object)) {
968 slab_err(s, page, "Invalid object pointer 0x%p", object);
969 goto fail;
970 }
971
972 if (on_freelist(s, page, object)) {
973 object_err(s, page, object, "Object already free");
974 goto fail;
975 }
976
977 if (!check_object(s, page, object, 1))
978 return 0;
979
980 if (unlikely(s != page->slab)) {
981 if (!PageSlab(page)) {
982 slab_err(s, page, "Attempt to free object(0x%p) "
983 "outside of slab", object);
984 } else if (!page->slab) {
985 printk(KERN_ERR
986 "SLUB <none>: no slab for object 0x%p.\n",
987 object);
988 dump_stack();
989 } else
990 object_err(s, page, object,
991 "page slab pointer corrupt.");
992 goto fail;
993 }
994
995 /* Special debug activities for freeing objects */
996 if (!SlabFrozen(page) && !page->freelist)
997 remove_full(s, page);
998 if (s->flags & SLAB_STORE_USER)
999 set_track(s, object, TRACK_FREE, addr);
1000 trace(s, page, object, 0);
1001 init_object(s, object, 0);
1002 return 1;
1003
1004fail:
1005 slab_fix(s, "Object at 0x%p not freed", object);
1006 return 0;
1007}
1008
1009static int __init setup_slub_debug(char *str)
1010{
1011 slub_debug = DEBUG_DEFAULT_FLAGS;
1012 if (*str++ != '=' || !*str)
1013 /*
1014 * No options specified. Switch on full debugging.
1015 */
1016 goto out;
1017
1018 if (*str == ',')
1019 /*
1020 * No options but restriction on slabs. This means full
1021 * debugging for slabs matching a pattern.
1022 */
1023 goto check_slabs;
1024
1025 slub_debug = 0;
1026 if (*str == '-')
1027 /*
1028 * Switch off all debugging measures.
1029 */
1030 goto out;
1031
1032 /*
1033 * Determine which debug features should be switched on
1034 */
1035 for (; *str && *str != ','; str++) {
1036 switch (tolower(*str)) {
1037 case 'f':
1038 slub_debug |= SLAB_DEBUG_FREE;
1039 break;
1040 case 'z':
1041 slub_debug |= SLAB_RED_ZONE;
1042 break;
1043 case 'p':
1044 slub_debug |= SLAB_POISON;
1045 break;
1046 case 'u':
1047 slub_debug |= SLAB_STORE_USER;
1048 break;
1049 case 't':
1050 slub_debug |= SLAB_TRACE;
1051 break;
1052 default:
1053 printk(KERN_ERR "slub_debug option '%c' "
1054 "unknown. skipped\n", *str);
1055 }
1056 }
1057
1058check_slabs:
1059 if (*str == ',')
1060 slub_debug_slabs = str + 1;
1061out:
1062 return 1;
1063}
1064
1065__setup("slub_debug", setup_slub_debug);
1066
1067static unsigned long kmem_cache_flags(unsigned long objsize,
1068 unsigned long flags, const char *name,
1069 void (*ctor)(struct kmem_cache *, void *))
1070{
1071 /*
1072 * Enable debugging if selected on the kernel commandline.
1073 */
1074 if (slub_debug && (!slub_debug_slabs ||
1075 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1076 flags |= slub_debug;
1077
1078 return flags;
1079}
1080#else
1081static inline void setup_object_debug(struct kmem_cache *s,
1082 struct page *page, void *object) {}
1083
1084static inline int alloc_debug_processing(struct kmem_cache *s,
1085 struct page *page, void *object, void *addr) { return 0; }
1086
1087static inline int free_debug_processing(struct kmem_cache *s,
1088 struct page *page, void *object, void *addr) { return 0; }
1089
1090static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1091 { return 1; }
1092static inline int check_object(struct kmem_cache *s, struct page *page,
1093 void *object, int active) { return 1; }
1094static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1095static inline unsigned long kmem_cache_flags(unsigned long objsize,
1096 unsigned long flags, const char *name,
1097 void (*ctor)(struct kmem_cache *, void *))
1098{
1099 return flags;
1100}
1101#define slub_debug 0
1102
1103static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1104 { return 0; }
1105static inline void inc_slabs_node(struct kmem_cache *s, int node,
1106 int objects) {}
1107static inline void dec_slabs_node(struct kmem_cache *s, int node,
1108 int objects) {}
1109#endif
1110
1111/*
1112 * Slab allocation and freeing
1113 */
1114static inline struct page *alloc_slab_page(gfp_t flags, int node,
1115 struct kmem_cache_order_objects oo)
1116{
1117 int order = oo_order(oo);
1118
1119 if (node == -1)
1120 return alloc_pages(flags, order);
1121 else
1122 return alloc_pages_node(node, flags, order);
1123}
1124
1125static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1126{
1127 struct page *page;
1128 struct kmem_cache_order_objects oo = s->oo;
1129
1130 flags |= s->allocflags;
1131
1132 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1133 oo);
1134 if (unlikely(!page)) {
1135 oo = s->min;
1136 /*
1137 * Allocation may have failed due to fragmentation.
1138 * Try a lower order alloc if possible
1139 */
1140 page = alloc_slab_page(flags, node, oo);
1141 if (!page)
1142 return NULL;
1143
1144 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1145 }
1146 page->objects = oo_objects(oo);
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 1 << oo_order(oo));
1151
1152 return page;
1153}
1154
1155static void setup_object(struct kmem_cache *s, struct page *page,
1156 void *object)
1157{
1158 setup_object_debug(s, page, object);
1159 if (unlikely(s->ctor))
1160 s->ctor(s, object);
1161}
1162
1163static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164{
1165 struct page *page;
1166 void *start;
1167 void *last;
1168 void *p;
1169
1170 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1171
1172 page = allocate_slab(s,
1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174 if (!page)
1175 goto out;
1176
1177 inc_slabs_node(s, page_to_nid(page), page->objects);
1178 page->slab = s;
1179 page->flags |= 1 << PG_slab;
1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 SLAB_STORE_USER | SLAB_TRACE))
1182 SetSlabDebug(page);
1183
1184 start = page_address(page);
1185
1186 if (unlikely(s->flags & SLAB_POISON))
1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1188
1189 last = start;
1190 for_each_object(p, s, start, page->objects) {
1191 setup_object(s, page, last);
1192 set_freepointer(s, last, p);
1193 last = p;
1194 }
1195 setup_object(s, page, last);
1196 set_freepointer(s, last, NULL);
1197
1198 page->freelist = start;
1199 page->inuse = 0;
1200out:
1201 return page;
1202}
1203
1204static void __free_slab(struct kmem_cache *s, struct page *page)
1205{
1206 int order = compound_order(page);
1207 int pages = 1 << order;
1208
1209 if (unlikely(SlabDebug(page))) {
1210 void *p;
1211
1212 slab_pad_check(s, page);
1213 for_each_object(p, s, page_address(page),
1214 page->objects)
1215 check_object(s, page, p, 0);
1216 ClearSlabDebug(page);
1217 }
1218
1219 mod_zone_page_state(page_zone(page),
1220 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1221 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1222 -pages);
1223
1224 __ClearPageSlab(page);
1225 reset_page_mapcount(page);
1226 __free_pages(page, order);
1227}
1228
1229static void rcu_free_slab(struct rcu_head *h)
1230{
1231 struct page *page;
1232
1233 page = container_of((struct list_head *)h, struct page, lru);
1234 __free_slab(page->slab, page);
1235}
1236
1237static void free_slab(struct kmem_cache *s, struct page *page)
1238{
1239 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1240 /*
1241 * RCU free overloads the RCU head over the LRU
1242 */
1243 struct rcu_head *head = (void *)&page->lru;
1244
1245 call_rcu(head, rcu_free_slab);
1246 } else
1247 __free_slab(s, page);
1248}
1249
1250static void discard_slab(struct kmem_cache *s, struct page *page)
1251{
1252 dec_slabs_node(s, page_to_nid(page), page->objects);
1253 free_slab(s, page);
1254}
1255
1256/*
1257 * Per slab locking using the pagelock
1258 */
1259static __always_inline void slab_lock(struct page *page)
1260{
1261 bit_spin_lock(PG_locked, &page->flags);
1262}
1263
1264static __always_inline void slab_unlock(struct page *page)
1265{
1266 __bit_spin_unlock(PG_locked, &page->flags);
1267}
1268
1269static __always_inline int slab_trylock(struct page *page)
1270{
1271 int rc = 1;
1272
1273 rc = bit_spin_trylock(PG_locked, &page->flags);
1274 return rc;
1275}
1276
1277/*
1278 * Management of partially allocated slabs
1279 */
1280static void add_partial(struct kmem_cache_node *n,
1281 struct page *page, int tail)
1282{
1283 spin_lock(&n->list_lock);
1284 n->nr_partial++;
1285 if (tail)
1286 list_add_tail(&page->lru, &n->partial);
1287 else
1288 list_add(&page->lru, &n->partial);
1289 spin_unlock(&n->list_lock);
1290}
1291
1292static void remove_partial(struct kmem_cache *s,
1293 struct page *page)
1294{
1295 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1296
1297 spin_lock(&n->list_lock);
1298 list_del(&page->lru);
1299 n->nr_partial--;
1300 spin_unlock(&n->list_lock);
1301}
1302
1303/*
1304 * Lock slab and remove from the partial list.
1305 *
1306 * Must hold list_lock.
1307 */
1308static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1309{
1310 if (slab_trylock(page)) {
1311 list_del(&page->lru);
1312 n->nr_partial--;
1313 SetSlabFrozen(page);
1314 return 1;
1315 }
1316 return 0;
1317}
1318
1319/*
1320 * Try to allocate a partial slab from a specific node.
1321 */
1322static struct page *get_partial_node(struct kmem_cache_node *n)
1323{
1324 struct page *page;
1325
1326 /*
1327 * Racy check. If we mistakenly see no partial slabs then we
1328 * just allocate an empty slab. If we mistakenly try to get a
1329 * partial slab and there is none available then get_partials()
1330 * will return NULL.
1331 */
1332 if (!n || !n->nr_partial)
1333 return NULL;
1334
1335 spin_lock(&n->list_lock);
1336 list_for_each_entry(page, &n->partial, lru)
1337 if (lock_and_freeze_slab(n, page))
1338 goto out;
1339 page = NULL;
1340out:
1341 spin_unlock(&n->list_lock);
1342 return page;
1343}
1344
1345/*
1346 * Get a page from somewhere. Search in increasing NUMA distances.
1347 */
1348static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1349{
1350#ifdef CONFIG_NUMA
1351 struct zonelist *zonelist;
1352 struct zone **z;
1353 struct page *page;
1354
1355 /*
1356 * The defrag ratio allows a configuration of the tradeoffs between
1357 * inter node defragmentation and node local allocations. A lower
1358 * defrag_ratio increases the tendency to do local allocations
1359 * instead of attempting to obtain partial slabs from other nodes.
1360 *
1361 * If the defrag_ratio is set to 0 then kmalloc() always
1362 * returns node local objects. If the ratio is higher then kmalloc()
1363 * may return off node objects because partial slabs are obtained
1364 * from other nodes and filled up.
1365 *
1366 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1367 * defrag_ratio = 1000) then every (well almost) allocation will
1368 * first attempt to defrag slab caches on other nodes. This means
1369 * scanning over all nodes to look for partial slabs which may be
1370 * expensive if we do it every time we are trying to find a slab
1371 * with available objects.
1372 */
1373 if (!s->remote_node_defrag_ratio ||
1374 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1375 return NULL;
1376
1377 zonelist = &NODE_DATA(
1378 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1379 for (z = zonelist->zones; *z; z++) {
1380 struct kmem_cache_node *n;
1381
1382 n = get_node(s, zone_to_nid(*z));
1383
1384 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1385 n->nr_partial > MIN_PARTIAL) {
1386 page = get_partial_node(n);
1387 if (page)
1388 return page;
1389 }
1390 }
1391#endif
1392 return NULL;
1393}
1394
1395/*
1396 * Get a partial page, lock it and return it.
1397 */
1398static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1399{
1400 struct page *page;
1401 int searchnode = (node == -1) ? numa_node_id() : node;
1402
1403 page = get_partial_node(get_node(s, searchnode));
1404 if (page || (flags & __GFP_THISNODE))
1405 return page;
1406
1407 return get_any_partial(s, flags);
1408}
1409
1410/*
1411 * Move a page back to the lists.
1412 *
1413 * Must be called with the slab lock held.
1414 *
1415 * On exit the slab lock will have been dropped.
1416 */
1417static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1418{
1419 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1420 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1421
1422 ClearSlabFrozen(page);
1423 if (page->inuse) {
1424
1425 if (page->freelist) {
1426 add_partial(n, page, tail);
1427 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1428 } else {
1429 stat(c, DEACTIVATE_FULL);
1430 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1431 add_full(n, page);
1432 }
1433 slab_unlock(page);
1434 } else {
1435 stat(c, DEACTIVATE_EMPTY);
1436 if (n->nr_partial < MIN_PARTIAL) {
1437 /*
1438 * Adding an empty slab to the partial slabs in order
1439 * to avoid page allocator overhead. This slab needs
1440 * to come after the other slabs with objects in
1441 * so that the others get filled first. That way the
1442 * size of the partial list stays small.
1443 *
1444 * kmem_cache_shrink can reclaim any empty slabs from the
1445 * partial list.
1446 */
1447 add_partial(n, page, 1);
1448 slab_unlock(page);
1449 } else {
1450 slab_unlock(page);
1451 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1452 discard_slab(s, page);
1453 }
1454 }
1455}
1456
1457/*
1458 * Remove the cpu slab
1459 */
1460static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1461{
1462 struct page *page = c->page;
1463 int tail = 1;
1464
1465 if (page->freelist)
1466 stat(c, DEACTIVATE_REMOTE_FREES);
1467 /*
1468 * Merge cpu freelist into slab freelist. Typically we get here
1469 * because both freelists are empty. So this is unlikely
1470 * to occur.
1471 */
1472 while (unlikely(c->freelist)) {
1473 void **object;
1474
1475 tail = 0; /* Hot objects. Put the slab first */
1476
1477 /* Retrieve object from cpu_freelist */
1478 object = c->freelist;
1479 c->freelist = c->freelist[c->offset];
1480
1481 /* And put onto the regular freelist */
1482 object[c->offset] = page->freelist;
1483 page->freelist = object;
1484 page->inuse--;
1485 }
1486 c->page = NULL;
1487 unfreeze_slab(s, page, tail);
1488}
1489
1490static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1491{
1492 stat(c, CPUSLAB_FLUSH);
1493 slab_lock(c->page);
1494 deactivate_slab(s, c);
1495}
1496
1497/*
1498 * Flush cpu slab.
1499 *
1500 * Called from IPI handler with interrupts disabled.
1501 */
1502static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1503{
1504 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1505
1506 if (likely(c && c->page))
1507 flush_slab(s, c);
1508}
1509
1510static void flush_cpu_slab(void *d)
1511{
1512 struct kmem_cache *s = d;
1513
1514 __flush_cpu_slab(s, smp_processor_id());
1515}
1516
1517static void flush_all(struct kmem_cache *s)
1518{
1519#ifdef CONFIG_SMP
1520 on_each_cpu(flush_cpu_slab, s, 1, 1);
1521#else
1522 unsigned long flags;
1523
1524 local_irq_save(flags);
1525 flush_cpu_slab(s);
1526 local_irq_restore(flags);
1527#endif
1528}
1529
1530/*
1531 * Check if the objects in a per cpu structure fit numa
1532 * locality expectations.
1533 */
1534static inline int node_match(struct kmem_cache_cpu *c, int node)
1535{
1536#ifdef CONFIG_NUMA
1537 if (node != -1 && c->node != node)
1538 return 0;
1539#endif
1540 return 1;
1541}
1542
1543/*
1544 * Slow path. The lockless freelist is empty or we need to perform
1545 * debugging duties.
1546 *
1547 * Interrupts are disabled.
1548 *
1549 * Processing is still very fast if new objects have been freed to the
1550 * regular freelist. In that case we simply take over the regular freelist
1551 * as the lockless freelist and zap the regular freelist.
1552 *
1553 * If that is not working then we fall back to the partial lists. We take the
1554 * first element of the freelist as the object to allocate now and move the
1555 * rest of the freelist to the lockless freelist.
1556 *
1557 * And if we were unable to get a new slab from the partial slab lists then
1558 * we need to allocate a new slab. This is the slowest path since it involves
1559 * a call to the page allocator and the setup of a new slab.
1560 */
1561static void *__slab_alloc(struct kmem_cache *s,
1562 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1563{
1564 void **object;
1565 struct page *new;
1566
1567 /* We handle __GFP_ZERO in the caller */
1568 gfpflags &= ~__GFP_ZERO;
1569
1570 if (!c->page)
1571 goto new_slab;
1572
1573 slab_lock(c->page);
1574 if (unlikely(!node_match(c, node)))
1575 goto another_slab;
1576
1577 stat(c, ALLOC_REFILL);
1578
1579load_freelist:
1580 object = c->page->freelist;
1581 if (unlikely(!object))
1582 goto another_slab;
1583 if (unlikely(SlabDebug(c->page)))
1584 goto debug;
1585
1586 c->freelist = object[c->offset];
1587 c->page->inuse = c->page->objects;
1588 c->page->freelist = NULL;
1589 c->node = page_to_nid(c->page);
1590unlock_out:
1591 slab_unlock(c->page);
1592 stat(c, ALLOC_SLOWPATH);
1593 return object;
1594
1595another_slab:
1596 deactivate_slab(s, c);
1597
1598new_slab:
1599 new = get_partial(s, gfpflags, node);
1600 if (new) {
1601 c->page = new;
1602 stat(c, ALLOC_FROM_PARTIAL);
1603 goto load_freelist;
1604 }
1605
1606 if (gfpflags & __GFP_WAIT)
1607 local_irq_enable();
1608
1609 new = new_slab(s, gfpflags, node);
1610
1611 if (gfpflags & __GFP_WAIT)
1612 local_irq_disable();
1613
1614 if (new) {
1615 c = get_cpu_slab(s, smp_processor_id());
1616 stat(c, ALLOC_SLAB);
1617 if (c->page)
1618 flush_slab(s, c);
1619 slab_lock(new);
1620 SetSlabFrozen(new);
1621 c->page = new;
1622 goto load_freelist;
1623 }
1624 return NULL;
1625debug:
1626 if (!alloc_debug_processing(s, c->page, object, addr))
1627 goto another_slab;
1628
1629 c->page->inuse++;
1630 c->page->freelist = object[c->offset];
1631 c->node = -1;
1632 goto unlock_out;
1633}
1634
1635/*
1636 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1637 * have the fastpath folded into their functions. So no function call
1638 * overhead for requests that can be satisfied on the fastpath.
1639 *
1640 * The fastpath works by first checking if the lockless freelist can be used.
1641 * If not then __slab_alloc is called for slow processing.
1642 *
1643 * Otherwise we can simply pick the next object from the lockless free list.
1644 */
1645static __always_inline void *slab_alloc(struct kmem_cache *s,
1646 gfp_t gfpflags, int node, void *addr)
1647{
1648 void **object;
1649 struct kmem_cache_cpu *c;
1650 unsigned long flags;
1651
1652 local_irq_save(flags);
1653 c = get_cpu_slab(s, smp_processor_id());
1654 if (unlikely(!c->freelist || !node_match(c, node)))
1655
1656 object = __slab_alloc(s, gfpflags, node, addr, c);
1657
1658 else {
1659 object = c->freelist;
1660 c->freelist = object[c->offset];
1661 stat(c, ALLOC_FASTPATH);
1662 }
1663 local_irq_restore(flags);
1664
1665 if (unlikely((gfpflags & __GFP_ZERO) && object))
1666 memset(object, 0, c->objsize);
1667
1668 return object;
1669}
1670
1671void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1672{
1673 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1674}
1675EXPORT_SYMBOL(kmem_cache_alloc);
1676
1677#ifdef CONFIG_NUMA
1678void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1679{
1680 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1681}
1682EXPORT_SYMBOL(kmem_cache_alloc_node);
1683#endif
1684
1685/*
1686 * Slow patch handling. This may still be called frequently since objects
1687 * have a longer lifetime than the cpu slabs in most processing loads.
1688 *
1689 * So we still attempt to reduce cache line usage. Just take the slab
1690 * lock and free the item. If there is no additional partial page
1691 * handling required then we can return immediately.
1692 */
1693static void __slab_free(struct kmem_cache *s, struct page *page,
1694 void *x, void *addr, unsigned int offset)
1695{
1696 void *prior;
1697 void **object = (void *)x;
1698 struct kmem_cache_cpu *c;
1699
1700 c = get_cpu_slab(s, raw_smp_processor_id());
1701 stat(c, FREE_SLOWPATH);
1702 slab_lock(page);
1703
1704 if (unlikely(SlabDebug(page)))
1705 goto debug;
1706
1707checks_ok:
1708 prior = object[offset] = page->freelist;
1709 page->freelist = object;
1710 page->inuse--;
1711
1712 if (unlikely(SlabFrozen(page))) {
1713 stat(c, FREE_FROZEN);
1714 goto out_unlock;
1715 }
1716
1717 if (unlikely(!page->inuse))
1718 goto slab_empty;
1719
1720 /*
1721 * Objects left in the slab. If it was not on the partial list before
1722 * then add it.
1723 */
1724 if (unlikely(!prior)) {
1725 add_partial(get_node(s, page_to_nid(page)), page, 1);
1726 stat(c, FREE_ADD_PARTIAL);
1727 }
1728
1729out_unlock:
1730 slab_unlock(page);
1731 return;
1732
1733slab_empty:
1734 if (prior) {
1735 /*
1736 * Slab still on the partial list.
1737 */
1738 remove_partial(s, page);
1739 stat(c, FREE_REMOVE_PARTIAL);
1740 }
1741 slab_unlock(page);
1742 stat(c, FREE_SLAB);
1743 discard_slab(s, page);
1744 return;
1745
1746debug:
1747 if (!free_debug_processing(s, page, x, addr))
1748 goto out_unlock;
1749 goto checks_ok;
1750}
1751
1752/*
1753 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1754 * can perform fastpath freeing without additional function calls.
1755 *
1756 * The fastpath is only possible if we are freeing to the current cpu slab
1757 * of this processor. This typically the case if we have just allocated
1758 * the item before.
1759 *
1760 * If fastpath is not possible then fall back to __slab_free where we deal
1761 * with all sorts of special processing.
1762 */
1763static __always_inline void slab_free(struct kmem_cache *s,
1764 struct page *page, void *x, void *addr)
1765{
1766 void **object = (void *)x;
1767 struct kmem_cache_cpu *c;
1768 unsigned long flags;
1769
1770 local_irq_save(flags);
1771 c = get_cpu_slab(s, smp_processor_id());
1772 debug_check_no_locks_freed(object, c->objsize);
1773 if (likely(page == c->page && c->node >= 0)) {
1774 object[c->offset] = c->freelist;
1775 c->freelist = object;
1776 stat(c, FREE_FASTPATH);
1777 } else
1778 __slab_free(s, page, x, addr, c->offset);
1779
1780 local_irq_restore(flags);
1781}
1782
1783void kmem_cache_free(struct kmem_cache *s, void *x)
1784{
1785 struct page *page;
1786
1787 page = virt_to_head_page(x);
1788
1789 slab_free(s, page, x, __builtin_return_address(0));
1790}
1791EXPORT_SYMBOL(kmem_cache_free);
1792
1793/* Figure out on which slab object the object resides */
1794static struct page *get_object_page(const void *x)
1795{
1796 struct page *page = virt_to_head_page(x);
1797
1798 if (!PageSlab(page))
1799 return NULL;
1800
1801 return page;
1802}
1803
1804/*
1805 * Object placement in a slab is made very easy because we always start at
1806 * offset 0. If we tune the size of the object to the alignment then we can
1807 * get the required alignment by putting one properly sized object after
1808 * another.
1809 *
1810 * Notice that the allocation order determines the sizes of the per cpu
1811 * caches. Each processor has always one slab available for allocations.
1812 * Increasing the allocation order reduces the number of times that slabs
1813 * must be moved on and off the partial lists and is therefore a factor in
1814 * locking overhead.
1815 */
1816
1817/*
1818 * Mininum / Maximum order of slab pages. This influences locking overhead
1819 * and slab fragmentation. A higher order reduces the number of partial slabs
1820 * and increases the number of allocations possible without having to
1821 * take the list_lock.
1822 */
1823static int slub_min_order;
1824static int slub_max_order = DEFAULT_MAX_ORDER;
1825static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1826
1827/*
1828 * Merge control. If this is set then no merging of slab caches will occur.
1829 * (Could be removed. This was introduced to pacify the merge skeptics.)
1830 */
1831static int slub_nomerge;
1832
1833/*
1834 * Calculate the order of allocation given an slab object size.
1835 *
1836 * The order of allocation has significant impact on performance and other
1837 * system components. Generally order 0 allocations should be preferred since
1838 * order 0 does not cause fragmentation in the page allocator. Larger objects
1839 * be problematic to put into order 0 slabs because there may be too much
1840 * unused space left. We go to a higher order if more than 1/8th of the slab
1841 * would be wasted.
1842 *
1843 * In order to reach satisfactory performance we must ensure that a minimum
1844 * number of objects is in one slab. Otherwise we may generate too much
1845 * activity on the partial lists which requires taking the list_lock. This is
1846 * less a concern for large slabs though which are rarely used.
1847 *
1848 * slub_max_order specifies the order where we begin to stop considering the
1849 * number of objects in a slab as critical. If we reach slub_max_order then
1850 * we try to keep the page order as low as possible. So we accept more waste
1851 * of space in favor of a small page order.
1852 *
1853 * Higher order allocations also allow the placement of more objects in a
1854 * slab and thereby reduce object handling overhead. If the user has
1855 * requested a higher mininum order then we start with that one instead of
1856 * the smallest order which will fit the object.
1857 */
1858static inline int slab_order(int size, int min_objects,
1859 int max_order, int fract_leftover)
1860{
1861 int order;
1862 int rem;
1863 int min_order = slub_min_order;
1864
1865 if ((PAGE_SIZE << min_order) / size > 65535)
1866 return get_order(size * 65535) - 1;
1867
1868 for (order = max(min_order,
1869 fls(min_objects * size - 1) - PAGE_SHIFT);
1870 order <= max_order; order++) {
1871
1872 unsigned long slab_size = PAGE_SIZE << order;
1873
1874 if (slab_size < min_objects * size)
1875 continue;
1876
1877 rem = slab_size % size;
1878
1879 if (rem <= slab_size / fract_leftover)
1880 break;
1881
1882 }
1883
1884 return order;
1885}
1886
1887static inline int calculate_order(int size)
1888{
1889 int order;
1890 int min_objects;
1891 int fraction;
1892
1893 /*
1894 * Attempt to find best configuration for a slab. This
1895 * works by first attempting to generate a layout with
1896 * the best configuration and backing off gradually.
1897 *
1898 * First we reduce the acceptable waste in a slab. Then
1899 * we reduce the minimum objects required in a slab.
1900 */
1901 min_objects = slub_min_objects;
1902 while (min_objects > 1) {
1903 fraction = 8;
1904 while (fraction >= 4) {
1905 order = slab_order(size, min_objects,
1906 slub_max_order, fraction);
1907 if (order <= slub_max_order)
1908 return order;
1909 fraction /= 2;
1910 }
1911 min_objects /= 2;
1912 }
1913
1914 /*
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1917 */
1918 order = slab_order(size, 1, slub_max_order, 1);
1919 if (order <= slub_max_order)
1920 return order;
1921
1922 /*
1923 * Doh this slab cannot be placed using slub_max_order.
1924 */
1925 order = slab_order(size, 1, MAX_ORDER, 1);
1926 if (order <= MAX_ORDER)
1927 return order;
1928 return -ENOSYS;
1929}
1930
1931/*
1932 * Figure out what the alignment of the objects will be.
1933 */
1934static unsigned long calculate_alignment(unsigned long flags,
1935 unsigned long align, unsigned long size)
1936{
1937 /*
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
1940 *
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
1943 */
1944 if (flags & SLAB_HWCACHE_ALIGN) {
1945 unsigned long ralign = cache_line_size();
1946 while (size <= ralign / 2)
1947 ralign /= 2;
1948 align = max(align, ralign);
1949 }
1950
1951 if (align < ARCH_SLAB_MINALIGN)
1952 align = ARCH_SLAB_MINALIGN;
1953
1954 return ALIGN(align, sizeof(void *));
1955}
1956
1957static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1959{
1960 c->page = NULL;
1961 c->freelist = NULL;
1962 c->node = 0;
1963 c->offset = s->offset / sizeof(void *);
1964 c->objsize = s->objsize;
1965#ifdef CONFIG_SLUB_STATS
1966 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967#endif
1968}
1969
1970static void init_kmem_cache_node(struct kmem_cache_node *n)
1971{
1972 n->nr_partial = 0;
1973 spin_lock_init(&n->list_lock);
1974 INIT_LIST_HEAD(&n->partial);
1975#ifdef CONFIG_SLUB_DEBUG
1976 atomic_long_set(&n->nr_slabs, 0);
1977 INIT_LIST_HEAD(&n->full);
1978#endif
1979}
1980
1981#ifdef CONFIG_SMP
1982/*
1983 * Per cpu array for per cpu structures.
1984 *
1985 * The per cpu array places all kmem_cache_cpu structures from one processor
1986 * close together meaning that it becomes possible that multiple per cpu
1987 * structures are contained in one cacheline. This may be particularly
1988 * beneficial for the kmalloc caches.
1989 *
1990 * A desktop system typically has around 60-80 slabs. With 100 here we are
1991 * likely able to get per cpu structures for all caches from the array defined
1992 * here. We must be able to cover all kmalloc caches during bootstrap.
1993 *
1994 * If the per cpu array is exhausted then fall back to kmalloc
1995 * of individual cachelines. No sharing is possible then.
1996 */
1997#define NR_KMEM_CACHE_CPU 100
1998
1999static DEFINE_PER_CPU(struct kmem_cache_cpu,
2000 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2001
2002static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2003static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2004
2005static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2006 int cpu, gfp_t flags)
2007{
2008 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2009
2010 if (c)
2011 per_cpu(kmem_cache_cpu_free, cpu) =
2012 (void *)c->freelist;
2013 else {
2014 /* Table overflow: So allocate ourselves */
2015 c = kmalloc_node(
2016 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2017 flags, cpu_to_node(cpu));
2018 if (!c)
2019 return NULL;
2020 }
2021
2022 init_kmem_cache_cpu(s, c);
2023 return c;
2024}
2025
2026static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2027{
2028 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2029 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2030 kfree(c);
2031 return;
2032 }
2033 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2034 per_cpu(kmem_cache_cpu_free, cpu) = c;
2035}
2036
2037static void free_kmem_cache_cpus(struct kmem_cache *s)
2038{
2039 int cpu;
2040
2041 for_each_online_cpu(cpu) {
2042 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2043
2044 if (c) {
2045 s->cpu_slab[cpu] = NULL;
2046 free_kmem_cache_cpu(c, cpu);
2047 }
2048 }
2049}
2050
2051static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2052{
2053 int cpu;
2054
2055 for_each_online_cpu(cpu) {
2056 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2057
2058 if (c)
2059 continue;
2060
2061 c = alloc_kmem_cache_cpu(s, cpu, flags);
2062 if (!c) {
2063 free_kmem_cache_cpus(s);
2064 return 0;
2065 }
2066 s->cpu_slab[cpu] = c;
2067 }
2068 return 1;
2069}
2070
2071/*
2072 * Initialize the per cpu array.
2073 */
2074static void init_alloc_cpu_cpu(int cpu)
2075{
2076 int i;
2077
2078 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2079 return;
2080
2081 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2082 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2083
2084 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2085}
2086
2087static void __init init_alloc_cpu(void)
2088{
2089 int cpu;
2090
2091 for_each_online_cpu(cpu)
2092 init_alloc_cpu_cpu(cpu);
2093 }
2094
2095#else
2096static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2097static inline void init_alloc_cpu(void) {}
2098
2099static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2100{
2101 init_kmem_cache_cpu(s, &s->cpu_slab);
2102 return 1;
2103}
2104#endif
2105
2106#ifdef CONFIG_NUMA
2107/*
2108 * No kmalloc_node yet so do it by hand. We know that this is the first
2109 * slab on the node for this slabcache. There are no concurrent accesses
2110 * possible.
2111 *
2112 * Note that this function only works on the kmalloc_node_cache
2113 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2114 * memory on a fresh node that has no slab structures yet.
2115 */
2116static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2117 int node)
2118{
2119 struct page *page;
2120 struct kmem_cache_node *n;
2121 unsigned long flags;
2122
2123 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2124
2125 page = new_slab(kmalloc_caches, gfpflags, node);
2126
2127 BUG_ON(!page);
2128 if (page_to_nid(page) != node) {
2129 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2130 "node %d\n", node);
2131 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2132 "in order to be able to continue\n");
2133 }
2134
2135 n = page->freelist;
2136 BUG_ON(!n);
2137 page->freelist = get_freepointer(kmalloc_caches, n);
2138 page->inuse++;
2139 kmalloc_caches->node[node] = n;
2140#ifdef CONFIG_SLUB_DEBUG
2141 init_object(kmalloc_caches, n, 1);
2142 init_tracking(kmalloc_caches, n);
2143#endif
2144 init_kmem_cache_node(n);
2145 inc_slabs_node(kmalloc_caches, node, page->objects);
2146
2147 /*
2148 * lockdep requires consistent irq usage for each lock
2149 * so even though there cannot be a race this early in
2150 * the boot sequence, we still disable irqs.
2151 */
2152 local_irq_save(flags);
2153 add_partial(n, page, 0);
2154 local_irq_restore(flags);
2155 return n;
2156}
2157
2158static void free_kmem_cache_nodes(struct kmem_cache *s)
2159{
2160 int node;
2161
2162 for_each_node_state(node, N_NORMAL_MEMORY) {
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2167 }
2168}
2169
2170static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171{
2172 int node;
2173 int local_node;
2174
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2179
2180 for_each_node_state(node, N_NORMAL_MEMORY) {
2181 struct kmem_cache_node *n;
2182
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
2187 n = early_kmem_cache_node_alloc(gfpflags,
2188 node);
2189 continue;
2190 }
2191 n = kmem_cache_alloc_node(kmalloc_caches,
2192 gfpflags, node);
2193
2194 if (!n) {
2195 free_kmem_cache_nodes(s);
2196 return 0;
2197 }
2198
2199 }
2200 s->node[node] = n;
2201 init_kmem_cache_node(n);
2202 }
2203 return 1;
2204}
2205#else
2206static void free_kmem_cache_nodes(struct kmem_cache *s)
2207{
2208}
2209
2210static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2211{
2212 init_kmem_cache_node(&s->local_node);
2213 return 1;
2214}
2215#endif
2216
2217/*
2218 * calculate_sizes() determines the order and the distribution of data within
2219 * a slab object.
2220 */
2221static int calculate_sizes(struct kmem_cache *s, int forced_order)
2222{
2223 unsigned long flags = s->flags;
2224 unsigned long size = s->objsize;
2225 unsigned long align = s->align;
2226 int order;
2227
2228 /*
2229 * Round up object size to the next word boundary. We can only
2230 * place the free pointer at word boundaries and this determines
2231 * the possible location of the free pointer.
2232 */
2233 size = ALIGN(size, sizeof(void *));
2234
2235#ifdef CONFIG_SLUB_DEBUG
2236 /*
2237 * Determine if we can poison the object itself. If the user of
2238 * the slab may touch the object after free or before allocation
2239 * then we should never poison the object itself.
2240 */
2241 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2242 !s->ctor)
2243 s->flags |= __OBJECT_POISON;
2244 else
2245 s->flags &= ~__OBJECT_POISON;
2246
2247
2248 /*
2249 * If we are Redzoning then check if there is some space between the
2250 * end of the object and the free pointer. If not then add an
2251 * additional word to have some bytes to store Redzone information.
2252 */
2253 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254 size += sizeof(void *);
2255#endif
2256
2257 /*
2258 * With that we have determined the number of bytes in actual use
2259 * by the object. This is the potential offset to the free pointer.
2260 */
2261 s->inuse = size;
2262
2263 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2264 s->ctor)) {
2265 /*
2266 * Relocate free pointer after the object if it is not
2267 * permitted to overwrite the first word of the object on
2268 * kmem_cache_free.
2269 *
2270 * This is the case if we do RCU, have a constructor or
2271 * destructor or are poisoning the objects.
2272 */
2273 s->offset = size;
2274 size += sizeof(void *);
2275 }
2276
2277#ifdef CONFIG_SLUB_DEBUG
2278 if (flags & SLAB_STORE_USER)
2279 /*
2280 * Need to store information about allocs and frees after
2281 * the object.
2282 */
2283 size += 2 * sizeof(struct track);
2284
2285 if (flags & SLAB_RED_ZONE)
2286 /*
2287 * Add some empty padding so that we can catch
2288 * overwrites from earlier objects rather than let
2289 * tracking information or the free pointer be
2290 * corrupted if an user writes before the start
2291 * of the object.
2292 */
2293 size += sizeof(void *);
2294#endif
2295
2296 /*
2297 * Determine the alignment based on various parameters that the
2298 * user specified and the dynamic determination of cache line size
2299 * on bootup.
2300 */
2301 align = calculate_alignment(flags, align, s->objsize);
2302
2303 /*
2304 * SLUB stores one object immediately after another beginning from
2305 * offset 0. In order to align the objects we have to simply size
2306 * each object to conform to the alignment.
2307 */
2308 size = ALIGN(size, align);
2309 s->size = size;
2310 if (forced_order >= 0)
2311 order = forced_order;
2312 else
2313 order = calculate_order(size);
2314
2315 if (order < 0)
2316 return 0;
2317
2318 s->allocflags = 0;
2319 if (order)
2320 s->allocflags |= __GFP_COMP;
2321
2322 if (s->flags & SLAB_CACHE_DMA)
2323 s->allocflags |= SLUB_DMA;
2324
2325 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2326 s->allocflags |= __GFP_RECLAIMABLE;
2327
2328 /*
2329 * Determine the number of objects per slab
2330 */
2331 s->oo = oo_make(order, size);
2332 s->min = oo_make(get_order(size), size);
2333 if (oo_objects(s->oo) > oo_objects(s->max))
2334 s->max = s->oo;
2335
2336 return !!oo_objects(s->oo);
2337
2338}
2339
2340static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2341 const char *name, size_t size,
2342 size_t align, unsigned long flags,
2343 void (*ctor)(struct kmem_cache *, void *))
2344{
2345 memset(s, 0, kmem_size);
2346 s->name = name;
2347 s->ctor = ctor;
2348 s->objsize = size;
2349 s->align = align;
2350 s->flags = kmem_cache_flags(size, flags, name, ctor);
2351
2352 if (!calculate_sizes(s, -1))
2353 goto error;
2354
2355 s->refcount = 1;
2356#ifdef CONFIG_NUMA
2357 s->remote_node_defrag_ratio = 100;
2358#endif
2359 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2360 goto error;
2361
2362 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2363 return 1;
2364 free_kmem_cache_nodes(s);
2365error:
2366 if (flags & SLAB_PANIC)
2367 panic("Cannot create slab %s size=%lu realsize=%u "
2368 "order=%u offset=%u flags=%lx\n",
2369 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2370 s->offset, flags);
2371 return 0;
2372}
2373
2374/*
2375 * Check if a given pointer is valid
2376 */
2377int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2378{
2379 struct page *page;
2380
2381 page = get_object_page(object);
2382
2383 if (!page || s != page->slab)
2384 /* No slab or wrong slab */
2385 return 0;
2386
2387 if (!check_valid_pointer(s, page, object))
2388 return 0;
2389
2390 /*
2391 * We could also check if the object is on the slabs freelist.
2392 * But this would be too expensive and it seems that the main
2393 * purpose of kmem_ptr_valid() is to check if the object belongs
2394 * to a certain slab.
2395 */
2396 return 1;
2397}
2398EXPORT_SYMBOL(kmem_ptr_validate);
2399
2400/*
2401 * Determine the size of a slab object
2402 */
2403unsigned int kmem_cache_size(struct kmem_cache *s)
2404{
2405 return s->objsize;
2406}
2407EXPORT_SYMBOL(kmem_cache_size);
2408
2409const char *kmem_cache_name(struct kmem_cache *s)
2410{
2411 return s->name;
2412}
2413EXPORT_SYMBOL(kmem_cache_name);
2414
2415static void list_slab_objects(struct kmem_cache *s, struct page *page,
2416 const char *text)
2417{
2418#ifdef CONFIG_SLUB_DEBUG
2419 void *addr = page_address(page);
2420 void *p;
2421 DECLARE_BITMAP(map, page->objects);
2422
2423 bitmap_zero(map, page->objects);
2424 slab_err(s, page, "%s", text);
2425 slab_lock(page);
2426 for_each_free_object(p, s, page->freelist)
2427 set_bit(slab_index(p, s, addr), map);
2428
2429 for_each_object(p, s, addr, page->objects) {
2430
2431 if (!test_bit(slab_index(p, s, addr), map)) {
2432 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2433 p, p - addr);
2434 print_tracking(s, p);
2435 }
2436 }
2437 slab_unlock(page);
2438#endif
2439}
2440
2441/*
2442 * Attempt to free all partial slabs on a node.
2443 */
2444static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445{
2446 unsigned long flags;
2447 struct page *page, *h;
2448
2449 spin_lock_irqsave(&n->list_lock, flags);
2450 list_for_each_entry_safe(page, h, &n->partial, lru) {
2451 if (!page->inuse) {
2452 list_del(&page->lru);
2453 discard_slab(s, page);
2454 n->nr_partial--;
2455 } else {
2456 list_slab_objects(s, page,
2457 "Objects remaining on kmem_cache_close()");
2458 }
2459 }
2460 spin_unlock_irqrestore(&n->list_lock, flags);
2461}
2462
2463/*
2464 * Release all resources used by a slab cache.
2465 */
2466static inline int kmem_cache_close(struct kmem_cache *s)
2467{
2468 int node;
2469
2470 flush_all(s);
2471
2472 /* Attempt to free all objects */
2473 free_kmem_cache_cpus(s);
2474 for_each_node_state(node, N_NORMAL_MEMORY) {
2475 struct kmem_cache_node *n = get_node(s, node);
2476
2477 free_partial(s, n);
2478 if (n->nr_partial || slabs_node(s, node))
2479 return 1;
2480 }
2481 free_kmem_cache_nodes(s);
2482 return 0;
2483}
2484
2485/*
2486 * Close a cache and release the kmem_cache structure
2487 * (must be used for caches created using kmem_cache_create)
2488 */
2489void kmem_cache_destroy(struct kmem_cache *s)
2490{
2491 down_write(&slub_lock);
2492 s->refcount--;
2493 if (!s->refcount) {
2494 list_del(&s->list);
2495 up_write(&slub_lock);
2496 if (kmem_cache_close(s)) {
2497 printk(KERN_ERR "SLUB %s: %s called for cache that "
2498 "still has objects.\n", s->name, __func__);
2499 dump_stack();
2500 }
2501 sysfs_slab_remove(s);
2502 } else
2503 up_write(&slub_lock);
2504}
2505EXPORT_SYMBOL(kmem_cache_destroy);
2506
2507/********************************************************************
2508 * Kmalloc subsystem
2509 *******************************************************************/
2510
2511struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2512EXPORT_SYMBOL(kmalloc_caches);
2513
2514static int __init setup_slub_min_order(char *str)
2515{
2516 get_option(&str, &slub_min_order);
2517
2518 return 1;
2519}
2520
2521__setup("slub_min_order=", setup_slub_min_order);
2522
2523static int __init setup_slub_max_order(char *str)
2524{
2525 get_option(&str, &slub_max_order);
2526
2527 return 1;
2528}
2529
2530__setup("slub_max_order=", setup_slub_max_order);
2531
2532static int __init setup_slub_min_objects(char *str)
2533{
2534 get_option(&str, &slub_min_objects);
2535
2536 return 1;
2537}
2538
2539__setup("slub_min_objects=", setup_slub_min_objects);
2540
2541static int __init setup_slub_nomerge(char *str)
2542{
2543 slub_nomerge = 1;
2544 return 1;
2545}
2546
2547__setup("slub_nomerge", setup_slub_nomerge);
2548
2549static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 const char *name, int size, gfp_t gfp_flags)
2551{
2552 unsigned int flags = 0;
2553
2554 if (gfp_flags & SLUB_DMA)
2555 flags = SLAB_CACHE_DMA;
2556
2557 down_write(&slub_lock);
2558 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2559 flags, NULL))
2560 goto panic;
2561
2562 list_add(&s->list, &slab_caches);
2563 up_write(&slub_lock);
2564 if (sysfs_slab_add(s))
2565 goto panic;
2566 return s;
2567
2568panic:
2569 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2570}
2571
2572#ifdef CONFIG_ZONE_DMA
2573static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2574
2575static void sysfs_add_func(struct work_struct *w)
2576{
2577 struct kmem_cache *s;
2578
2579 down_write(&slub_lock);
2580 list_for_each_entry(s, &slab_caches, list) {
2581 if (s->flags & __SYSFS_ADD_DEFERRED) {
2582 s->flags &= ~__SYSFS_ADD_DEFERRED;
2583 sysfs_slab_add(s);
2584 }
2585 }
2586 up_write(&slub_lock);
2587}
2588
2589static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2590
2591static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2592{
2593 struct kmem_cache *s;
2594 char *text;
2595 size_t realsize;
2596
2597 s = kmalloc_caches_dma[index];
2598 if (s)
2599 return s;
2600
2601 /* Dynamically create dma cache */
2602 if (flags & __GFP_WAIT)
2603 down_write(&slub_lock);
2604 else {
2605 if (!down_write_trylock(&slub_lock))
2606 goto out;
2607 }
2608
2609 if (kmalloc_caches_dma[index])
2610 goto unlock_out;
2611
2612 realsize = kmalloc_caches[index].objsize;
2613 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2614 (unsigned int)realsize);
2615 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2616
2617 if (!s || !text || !kmem_cache_open(s, flags, text,
2618 realsize, ARCH_KMALLOC_MINALIGN,
2619 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2620 kfree(s);
2621 kfree(text);
2622 goto unlock_out;
2623 }
2624
2625 list_add(&s->list, &slab_caches);
2626 kmalloc_caches_dma[index] = s;
2627
2628 schedule_work(&sysfs_add_work);
2629
2630unlock_out:
2631 up_write(&slub_lock);
2632out:
2633 return kmalloc_caches_dma[index];
2634}
2635#endif
2636
2637/*
2638 * Conversion table for small slabs sizes / 8 to the index in the
2639 * kmalloc array. This is necessary for slabs < 192 since we have non power
2640 * of two cache sizes there. The size of larger slabs can be determined using
2641 * fls.
2642 */
2643static s8 size_index[24] = {
2644 3, /* 8 */
2645 4, /* 16 */
2646 5, /* 24 */
2647 5, /* 32 */
2648 6, /* 40 */
2649 6, /* 48 */
2650 6, /* 56 */
2651 6, /* 64 */
2652 1, /* 72 */
2653 1, /* 80 */
2654 1, /* 88 */
2655 1, /* 96 */
2656 7, /* 104 */
2657 7, /* 112 */
2658 7, /* 120 */
2659 7, /* 128 */
2660 2, /* 136 */
2661 2, /* 144 */
2662 2, /* 152 */
2663 2, /* 160 */
2664 2, /* 168 */
2665 2, /* 176 */
2666 2, /* 184 */
2667 2 /* 192 */
2668};
2669
2670static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2671{
2672 int index;
2673
2674 if (size <= 192) {
2675 if (!size)
2676 return ZERO_SIZE_PTR;
2677
2678 index = size_index[(size - 1) / 8];
2679 } else
2680 index = fls(size - 1);
2681
2682#ifdef CONFIG_ZONE_DMA
2683 if (unlikely((flags & SLUB_DMA)))
2684 return dma_kmalloc_cache(index, flags);
2685
2686#endif
2687 return &kmalloc_caches[index];
2688}
2689
2690void *__kmalloc(size_t size, gfp_t flags)
2691{
2692 struct kmem_cache *s;
2693
2694 if (unlikely(size > PAGE_SIZE))
2695 return kmalloc_large(size, flags);
2696
2697 s = get_slab(size, flags);
2698
2699 if (unlikely(ZERO_OR_NULL_PTR(s)))
2700 return s;
2701
2702 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2703}
2704EXPORT_SYMBOL(__kmalloc);
2705
2706static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2707{
2708 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2709 get_order(size));
2710
2711 if (page)
2712 return page_address(page);
2713 else
2714 return NULL;
2715}
2716
2717#ifdef CONFIG_NUMA
2718void *__kmalloc_node(size_t size, gfp_t flags, int node)
2719{
2720 struct kmem_cache *s;
2721
2722 if (unlikely(size > PAGE_SIZE))
2723 return kmalloc_large_node(size, flags, node);
2724
2725 s = get_slab(size, flags);
2726
2727 if (unlikely(ZERO_OR_NULL_PTR(s)))
2728 return s;
2729
2730 return slab_alloc(s, flags, node, __builtin_return_address(0));
2731}
2732EXPORT_SYMBOL(__kmalloc_node);
2733#endif
2734
2735size_t ksize(const void *object)
2736{
2737 struct page *page;
2738 struct kmem_cache *s;
2739
2740 if (unlikely(object == ZERO_SIZE_PTR))
2741 return 0;
2742
2743 page = virt_to_head_page(object);
2744
2745 if (unlikely(!PageSlab(page)))
2746 return PAGE_SIZE << compound_order(page);
2747
2748 s = page->slab;
2749
2750#ifdef CONFIG_SLUB_DEBUG
2751 /*
2752 * Debugging requires use of the padding between object
2753 * and whatever may come after it.
2754 */
2755 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2756 return s->objsize;
2757
2758#endif
2759 /*
2760 * If we have the need to store the freelist pointer
2761 * back there or track user information then we can
2762 * only use the space before that information.
2763 */
2764 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2765 return s->inuse;
2766 /*
2767 * Else we can use all the padding etc for the allocation
2768 */
2769 return s->size;
2770}
2771EXPORT_SYMBOL(ksize);
2772
2773void kfree(const void *x)
2774{
2775 struct page *page;
2776 void *object = (void *)x;
2777
2778 if (unlikely(ZERO_OR_NULL_PTR(x)))
2779 return;
2780
2781 page = virt_to_head_page(x);
2782 if (unlikely(!PageSlab(page))) {
2783 put_page(page);
2784 return;
2785 }
2786 slab_free(page->slab, page, object, __builtin_return_address(0));
2787}
2788EXPORT_SYMBOL(kfree);
2789
2790/*
2791 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2792 * the remaining slabs by the number of items in use. The slabs with the
2793 * most items in use come first. New allocations will then fill those up
2794 * and thus they can be removed from the partial lists.
2795 *
2796 * The slabs with the least items are placed last. This results in them
2797 * being allocated from last increasing the chance that the last objects
2798 * are freed in them.
2799 */
2800int kmem_cache_shrink(struct kmem_cache *s)
2801{
2802 int node;
2803 int i;
2804 struct kmem_cache_node *n;
2805 struct page *page;
2806 struct page *t;
2807 int objects = oo_objects(s->max);
2808 struct list_head *slabs_by_inuse =
2809 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2810 unsigned long flags;
2811
2812 if (!slabs_by_inuse)
2813 return -ENOMEM;
2814
2815 flush_all(s);
2816 for_each_node_state(node, N_NORMAL_MEMORY) {
2817 n = get_node(s, node);
2818
2819 if (!n->nr_partial)
2820 continue;
2821
2822 for (i = 0; i < objects; i++)
2823 INIT_LIST_HEAD(slabs_by_inuse + i);
2824
2825 spin_lock_irqsave(&n->list_lock, flags);
2826
2827 /*
2828 * Build lists indexed by the items in use in each slab.
2829 *
2830 * Note that concurrent frees may occur while we hold the
2831 * list_lock. page->inuse here is the upper limit.
2832 */
2833 list_for_each_entry_safe(page, t, &n->partial, lru) {
2834 if (!page->inuse && slab_trylock(page)) {
2835 /*
2836 * Must hold slab lock here because slab_free
2837 * may have freed the last object and be
2838 * waiting to release the slab.
2839 */
2840 list_del(&page->lru);
2841 n->nr_partial--;
2842 slab_unlock(page);
2843 discard_slab(s, page);
2844 } else {
2845 list_move(&page->lru,
2846 slabs_by_inuse + page->inuse);
2847 }
2848 }
2849
2850 /*
2851 * Rebuild the partial list with the slabs filled up most
2852 * first and the least used slabs at the end.
2853 */
2854 for (i = objects - 1; i >= 0; i--)
2855 list_splice(slabs_by_inuse + i, n->partial.prev);
2856
2857 spin_unlock_irqrestore(&n->list_lock, flags);
2858 }
2859
2860 kfree(slabs_by_inuse);
2861 return 0;
2862}
2863EXPORT_SYMBOL(kmem_cache_shrink);
2864
2865#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2866static int slab_mem_going_offline_callback(void *arg)
2867{
2868 struct kmem_cache *s;
2869
2870 down_read(&slub_lock);
2871 list_for_each_entry(s, &slab_caches, list)
2872 kmem_cache_shrink(s);
2873 up_read(&slub_lock);
2874
2875 return 0;
2876}
2877
2878static void slab_mem_offline_callback(void *arg)
2879{
2880 struct kmem_cache_node *n;
2881 struct kmem_cache *s;
2882 struct memory_notify *marg = arg;
2883 int offline_node;
2884
2885 offline_node = marg->status_change_nid;
2886
2887 /*
2888 * If the node still has available memory. we need kmem_cache_node
2889 * for it yet.
2890 */
2891 if (offline_node < 0)
2892 return;
2893
2894 down_read(&slub_lock);
2895 list_for_each_entry(s, &slab_caches, list) {
2896 n = get_node(s, offline_node);
2897 if (n) {
2898 /*
2899 * if n->nr_slabs > 0, slabs still exist on the node
2900 * that is going down. We were unable to free them,
2901 * and offline_pages() function shoudn't call this
2902 * callback. So, we must fail.
2903 */
2904 BUG_ON(slabs_node(s, offline_node));
2905
2906 s->node[offline_node] = NULL;
2907 kmem_cache_free(kmalloc_caches, n);
2908 }
2909 }
2910 up_read(&slub_lock);
2911}
2912
2913static int slab_mem_going_online_callback(void *arg)
2914{
2915 struct kmem_cache_node *n;
2916 struct kmem_cache *s;
2917 struct memory_notify *marg = arg;
2918 int nid = marg->status_change_nid;
2919 int ret = 0;
2920
2921 /*
2922 * If the node's memory is already available, then kmem_cache_node is
2923 * already created. Nothing to do.
2924 */
2925 if (nid < 0)
2926 return 0;
2927
2928 /*
2929 * We are bringing a node online. No memory is availabe yet. We must
2930 * allocate a kmem_cache_node structure in order to bring the node
2931 * online.
2932 */
2933 down_read(&slub_lock);
2934 list_for_each_entry(s, &slab_caches, list) {
2935 /*
2936 * XXX: kmem_cache_alloc_node will fallback to other nodes
2937 * since memory is not yet available from the node that
2938 * is brought up.
2939 */
2940 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2941 if (!n) {
2942 ret = -ENOMEM;
2943 goto out;
2944 }
2945 init_kmem_cache_node(n);
2946 s->node[nid] = n;
2947 }
2948out:
2949 up_read(&slub_lock);
2950 return ret;
2951}
2952
2953static int slab_memory_callback(struct notifier_block *self,
2954 unsigned long action, void *arg)
2955{
2956 int ret = 0;
2957
2958 switch (action) {
2959 case MEM_GOING_ONLINE:
2960 ret = slab_mem_going_online_callback(arg);
2961 break;
2962 case MEM_GOING_OFFLINE:
2963 ret = slab_mem_going_offline_callback(arg);
2964 break;
2965 case MEM_OFFLINE:
2966 case MEM_CANCEL_ONLINE:
2967 slab_mem_offline_callback(arg);
2968 break;
2969 case MEM_ONLINE:
2970 case MEM_CANCEL_OFFLINE:
2971 break;
2972 }
2973
2974 ret = notifier_from_errno(ret);
2975 return ret;
2976}
2977
2978#endif /* CONFIG_MEMORY_HOTPLUG */
2979
2980/********************************************************************
2981 * Basic setup of slabs
2982 *******************************************************************/
2983
2984void __init kmem_cache_init(void)
2985{
2986 int i;
2987 int caches = 0;
2988
2989 init_alloc_cpu();
2990
2991#ifdef CONFIG_NUMA
2992 /*
2993 * Must first have the slab cache available for the allocations of the
2994 * struct kmem_cache_node's. There is special bootstrap code in
2995 * kmem_cache_open for slab_state == DOWN.
2996 */
2997 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2998 sizeof(struct kmem_cache_node), GFP_KERNEL);
2999 kmalloc_caches[0].refcount = -1;
3000 caches++;
3001
3002 hotplug_memory_notifier(slab_memory_callback, 1);
3003#endif
3004
3005 /* Able to allocate the per node structures */
3006 slab_state = PARTIAL;
3007
3008 /* Caches that are not of the two-to-the-power-of size */
3009 if (KMALLOC_MIN_SIZE <= 64) {
3010 create_kmalloc_cache(&kmalloc_caches[1],
3011 "kmalloc-96", 96, GFP_KERNEL);
3012 caches++;
3013 }
3014 if (KMALLOC_MIN_SIZE <= 128) {
3015 create_kmalloc_cache(&kmalloc_caches[2],
3016 "kmalloc-192", 192, GFP_KERNEL);
3017 caches++;
3018 }
3019
3020 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3021 create_kmalloc_cache(&kmalloc_caches[i],
3022 "kmalloc", 1 << i, GFP_KERNEL);
3023 caches++;
3024 }
3025
3026
3027 /*
3028 * Patch up the size_index table if we have strange large alignment
3029 * requirements for the kmalloc array. This is only the case for
3030 * MIPS it seems. The standard arches will not generate any code here.
3031 *
3032 * Largest permitted alignment is 256 bytes due to the way we
3033 * handle the index determination for the smaller caches.
3034 *
3035 * Make sure that nothing crazy happens if someone starts tinkering
3036 * around with ARCH_KMALLOC_MINALIGN
3037 */
3038 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3039 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3040
3041 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3042 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3043
3044 slab_state = UP;
3045
3046 /* Provide the correct kmalloc names now that the caches are up */
3047 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3048 kmalloc_caches[i]. name =
3049 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3050
3051#ifdef CONFIG_SMP
3052 register_cpu_notifier(&slab_notifier);
3053 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3054 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3055#else
3056 kmem_size = sizeof(struct kmem_cache);
3057#endif
3058
3059 printk(KERN_INFO
3060 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3061 " CPUs=%d, Nodes=%d\n",
3062 caches, cache_line_size(),
3063 slub_min_order, slub_max_order, slub_min_objects,
3064 nr_cpu_ids, nr_node_ids);
3065}
3066
3067/*
3068 * Find a mergeable slab cache
3069 */
3070static int slab_unmergeable(struct kmem_cache *s)
3071{
3072 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3073 return 1;
3074
3075 if (s->ctor)
3076 return 1;
3077
3078 /*
3079 * We may have set a slab to be unmergeable during bootstrap.
3080 */
3081 if (s->refcount < 0)
3082 return 1;
3083
3084 return 0;
3085}
3086
3087static struct kmem_cache *find_mergeable(size_t size,
3088 size_t align, unsigned long flags, const char *name,
3089 void (*ctor)(struct kmem_cache *, void *))
3090{
3091 struct kmem_cache *s;
3092
3093 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3094 return NULL;
3095
3096 if (ctor)
3097 return NULL;
3098
3099 size = ALIGN(size, sizeof(void *));
3100 align = calculate_alignment(flags, align, size);
3101 size = ALIGN(size, align);
3102 flags = kmem_cache_flags(size, flags, name, NULL);
3103
3104 list_for_each_entry(s, &slab_caches, list) {
3105 if (slab_unmergeable(s))
3106 continue;
3107
3108 if (size > s->size)
3109 continue;
3110
3111 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3112 continue;
3113 /*
3114 * Check if alignment is compatible.
3115 * Courtesy of Adrian Drzewiecki
3116 */
3117 if ((s->size & ~(align - 1)) != s->size)
3118 continue;
3119
3120 if (s->size - size >= sizeof(void *))
3121 continue;
3122
3123 return s;
3124 }
3125 return NULL;
3126}
3127
3128struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3129 size_t align, unsigned long flags,
3130 void (*ctor)(struct kmem_cache *, void *))
3131{
3132 struct kmem_cache *s;
3133
3134 down_write(&slub_lock);
3135 s = find_mergeable(size, align, flags, name, ctor);
3136 if (s) {
3137 int cpu;
3138
3139 s->refcount++;
3140 /*
3141 * Adjust the object sizes so that we clear
3142 * the complete object on kzalloc.
3143 */
3144 s->objsize = max(s->objsize, (int)size);
3145
3146 /*
3147 * And then we need to update the object size in the
3148 * per cpu structures
3149 */
3150 for_each_online_cpu(cpu)
3151 get_cpu_slab(s, cpu)->objsize = s->objsize;
3152
3153 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3154 up_write(&slub_lock);
3155
3156 if (sysfs_slab_alias(s, name))
3157 goto err;
3158 return s;
3159 }
3160
3161 s = kmalloc(kmem_size, GFP_KERNEL);
3162 if (s) {
3163 if (kmem_cache_open(s, GFP_KERNEL, name,
3164 size, align, flags, ctor)) {
3165 list_add(&s->list, &slab_caches);
3166 up_write(&slub_lock);
3167 if (sysfs_slab_add(s))
3168 goto err;
3169 return s;
3170 }
3171 kfree(s);
3172 }
3173 up_write(&slub_lock);
3174
3175err:
3176 if (flags & SLAB_PANIC)
3177 panic("Cannot create slabcache %s\n", name);
3178 else
3179 s = NULL;
3180 return s;
3181}
3182EXPORT_SYMBOL(kmem_cache_create);
3183
3184#ifdef CONFIG_SMP
3185/*
3186 * Use the cpu notifier to insure that the cpu slabs are flushed when
3187 * necessary.
3188 */
3189static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3190 unsigned long action, void *hcpu)
3191{
3192 long cpu = (long)hcpu;
3193 struct kmem_cache *s;
3194 unsigned long flags;
3195
3196 switch (action) {
3197 case CPU_UP_PREPARE:
3198 case CPU_UP_PREPARE_FROZEN:
3199 init_alloc_cpu_cpu(cpu);
3200 down_read(&slub_lock);
3201 list_for_each_entry(s, &slab_caches, list)
3202 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3203 GFP_KERNEL);
3204 up_read(&slub_lock);
3205 break;
3206
3207 case CPU_UP_CANCELED:
3208 case CPU_UP_CANCELED_FROZEN:
3209 case CPU_DEAD:
3210 case CPU_DEAD_FROZEN:
3211 down_read(&slub_lock);
3212 list_for_each_entry(s, &slab_caches, list) {
3213 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3214
3215 local_irq_save(flags);
3216 __flush_cpu_slab(s, cpu);
3217 local_irq_restore(flags);
3218 free_kmem_cache_cpu(c, cpu);
3219 s->cpu_slab[cpu] = NULL;
3220 }
3221 up_read(&slub_lock);
3222 break;
3223 default:
3224 break;
3225 }
3226 return NOTIFY_OK;
3227}
3228
3229static struct notifier_block __cpuinitdata slab_notifier = {
3230 .notifier_call = slab_cpuup_callback
3231};
3232
3233#endif
3234
3235void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3236{
3237 struct kmem_cache *s;
3238
3239 if (unlikely(size > PAGE_SIZE))
3240 return kmalloc_large(size, gfpflags);
3241
3242 s = get_slab(size, gfpflags);
3243
3244 if (unlikely(ZERO_OR_NULL_PTR(s)))
3245 return s;
3246
3247 return slab_alloc(s, gfpflags, -1, caller);
3248}
3249
3250void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3251 int node, void *caller)
3252{
3253 struct kmem_cache *s;
3254
3255 if (unlikely(size > PAGE_SIZE))
3256 return kmalloc_large_node(size, gfpflags, node);
3257
3258 s = get_slab(size, gfpflags);
3259
3260 if (unlikely(ZERO_OR_NULL_PTR(s)))
3261 return s;
3262
3263 return slab_alloc(s, gfpflags, node, caller);
3264}
3265
3266#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3267static unsigned long count_partial(struct kmem_cache_node *n,
3268 int (*get_count)(struct page *))
3269{
3270 unsigned long flags;
3271 unsigned long x = 0;
3272 struct page *page;
3273
3274 spin_lock_irqsave(&n->list_lock, flags);
3275 list_for_each_entry(page, &n->partial, lru)
3276 x += get_count(page);
3277 spin_unlock_irqrestore(&n->list_lock, flags);
3278 return x;
3279}
3280
3281static int count_inuse(struct page *page)
3282{
3283 return page->inuse;
3284}
3285
3286static int count_total(struct page *page)
3287{
3288 return page->objects;
3289}
3290
3291static int count_free(struct page *page)
3292{
3293 return page->objects - page->inuse;
3294}
3295#endif
3296
3297#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3298static int validate_slab(struct kmem_cache *s, struct page *page,
3299 unsigned long *map)
3300{
3301 void *p;
3302 void *addr = page_address(page);
3303
3304 if (!check_slab(s, page) ||
3305 !on_freelist(s, page, NULL))
3306 return 0;
3307
3308 /* Now we know that a valid freelist exists */
3309 bitmap_zero(map, page->objects);
3310
3311 for_each_free_object(p, s, page->freelist) {
3312 set_bit(slab_index(p, s, addr), map);
3313 if (!check_object(s, page, p, 0))
3314 return 0;
3315 }
3316
3317 for_each_object(p, s, addr, page->objects)
3318 if (!test_bit(slab_index(p, s, addr), map))
3319 if (!check_object(s, page, p, 1))
3320 return 0;
3321 return 1;
3322}
3323
3324static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3325 unsigned long *map)
3326{
3327 if (slab_trylock(page)) {
3328 validate_slab(s, page, map);
3329 slab_unlock(page);
3330 } else
3331 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3332 s->name, page);
3333
3334 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3335 if (!SlabDebug(page))
3336 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3337 "on slab 0x%p\n", s->name, page);
3338 } else {
3339 if (SlabDebug(page))
3340 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3341 "slab 0x%p\n", s->name, page);
3342 }
3343}
3344
3345static int validate_slab_node(struct kmem_cache *s,
3346 struct kmem_cache_node *n, unsigned long *map)
3347{
3348 unsigned long count = 0;
3349 struct page *page;
3350 unsigned long flags;
3351
3352 spin_lock_irqsave(&n->list_lock, flags);
3353
3354 list_for_each_entry(page, &n->partial, lru) {
3355 validate_slab_slab(s, page, map);
3356 count++;
3357 }
3358 if (count != n->nr_partial)
3359 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3360 "counter=%ld\n", s->name, count, n->nr_partial);
3361
3362 if (!(s->flags & SLAB_STORE_USER))
3363 goto out;
3364
3365 list_for_each_entry(page, &n->full, lru) {
3366 validate_slab_slab(s, page, map);
3367 count++;
3368 }
3369 if (count != atomic_long_read(&n->nr_slabs))
3370 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3371 "counter=%ld\n", s->name, count,
3372 atomic_long_read(&n->nr_slabs));
3373
3374out:
3375 spin_unlock_irqrestore(&n->list_lock, flags);
3376 return count;
3377}
3378
3379static long validate_slab_cache(struct kmem_cache *s)
3380{
3381 int node;
3382 unsigned long count = 0;
3383 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3384 sizeof(unsigned long), GFP_KERNEL);
3385
3386 if (!map)
3387 return -ENOMEM;
3388
3389 flush_all(s);
3390 for_each_node_state(node, N_NORMAL_MEMORY) {
3391 struct kmem_cache_node *n = get_node(s, node);
3392
3393 count += validate_slab_node(s, n, map);
3394 }
3395 kfree(map);
3396 return count;
3397}
3398
3399#ifdef SLUB_RESILIENCY_TEST
3400static void resiliency_test(void)
3401{
3402 u8 *p;
3403
3404 printk(KERN_ERR "SLUB resiliency testing\n");
3405 printk(KERN_ERR "-----------------------\n");
3406 printk(KERN_ERR "A. Corruption after allocation\n");
3407
3408 p = kzalloc(16, GFP_KERNEL);
3409 p[16] = 0x12;
3410 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3411 " 0x12->0x%p\n\n", p + 16);
3412
3413 validate_slab_cache(kmalloc_caches + 4);
3414
3415 /* Hmmm... The next two are dangerous */
3416 p = kzalloc(32, GFP_KERNEL);
3417 p[32 + sizeof(void *)] = 0x34;
3418 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3419 " 0x34 -> -0x%p\n", p);
3420 printk(KERN_ERR
3421 "If allocated object is overwritten then not detectable\n\n");
3422
3423 validate_slab_cache(kmalloc_caches + 5);
3424 p = kzalloc(64, GFP_KERNEL);
3425 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3426 *p = 0x56;
3427 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3428 p);
3429 printk(KERN_ERR
3430 "If allocated object is overwritten then not detectable\n\n");
3431 validate_slab_cache(kmalloc_caches + 6);
3432
3433 printk(KERN_ERR "\nB. Corruption after free\n");
3434 p = kzalloc(128, GFP_KERNEL);
3435 kfree(p);
3436 *p = 0x78;
3437 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3438 validate_slab_cache(kmalloc_caches + 7);
3439
3440 p = kzalloc(256, GFP_KERNEL);
3441 kfree(p);
3442 p[50] = 0x9a;
3443 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3444 p);
3445 validate_slab_cache(kmalloc_caches + 8);
3446
3447 p = kzalloc(512, GFP_KERNEL);
3448 kfree(p);
3449 p[512] = 0xab;
3450 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3451 validate_slab_cache(kmalloc_caches + 9);
3452}
3453#else
3454static void resiliency_test(void) {};
3455#endif
3456
3457/*
3458 * Generate lists of code addresses where slabcache objects are allocated
3459 * and freed.
3460 */
3461
3462struct location {
3463 unsigned long count;
3464 void *addr;
3465 long long sum_time;
3466 long min_time;
3467 long max_time;
3468 long min_pid;
3469 long max_pid;
3470 cpumask_t cpus;
3471 nodemask_t nodes;
3472};
3473
3474struct loc_track {
3475 unsigned long max;
3476 unsigned long count;
3477 struct location *loc;
3478};
3479
3480static void free_loc_track(struct loc_track *t)
3481{
3482 if (t->max)
3483 free_pages((unsigned long)t->loc,
3484 get_order(sizeof(struct location) * t->max));
3485}
3486
3487static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3488{
3489 struct location *l;
3490 int order;
3491
3492 order = get_order(sizeof(struct location) * max);
3493
3494 l = (void *)__get_free_pages(flags, order);
3495 if (!l)
3496 return 0;
3497
3498 if (t->count) {
3499 memcpy(l, t->loc, sizeof(struct location) * t->count);
3500 free_loc_track(t);
3501 }
3502 t->max = max;
3503 t->loc = l;
3504 return 1;
3505}
3506
3507static int add_location(struct loc_track *t, struct kmem_cache *s,
3508 const struct track *track)
3509{
3510 long start, end, pos;
3511 struct location *l;
3512 void *caddr;
3513 unsigned long age = jiffies - track->when;
3514
3515 start = -1;
3516 end = t->count;
3517
3518 for ( ; ; ) {
3519 pos = start + (end - start + 1) / 2;
3520
3521 /*
3522 * There is nothing at "end". If we end up there
3523 * we need to add something to before end.
3524 */
3525 if (pos == end)
3526 break;
3527
3528 caddr = t->loc[pos].addr;
3529 if (track->addr == caddr) {
3530
3531 l = &t->loc[pos];
3532 l->count++;
3533 if (track->when) {
3534 l->sum_time += age;
3535 if (age < l->min_time)
3536 l->min_time = age;
3537 if (age > l->max_time)
3538 l->max_time = age;
3539
3540 if (track->pid < l->min_pid)
3541 l->min_pid = track->pid;
3542 if (track->pid > l->max_pid)
3543 l->max_pid = track->pid;
3544
3545 cpu_set(track->cpu, l->cpus);
3546 }
3547 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3548 return 1;
3549 }
3550
3551 if (track->addr < caddr)
3552 end = pos;
3553 else
3554 start = pos;
3555 }
3556
3557 /*
3558 * Not found. Insert new tracking element.
3559 */
3560 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3561 return 0;
3562
3563 l = t->loc + pos;
3564 if (pos < t->count)
3565 memmove(l + 1, l,
3566 (t->count - pos) * sizeof(struct location));
3567 t->count++;
3568 l->count = 1;
3569 l->addr = track->addr;
3570 l->sum_time = age;
3571 l->min_time = age;
3572 l->max_time = age;
3573 l->min_pid = track->pid;
3574 l->max_pid = track->pid;
3575 cpus_clear(l->cpus);
3576 cpu_set(track->cpu, l->cpus);
3577 nodes_clear(l->nodes);
3578 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3579 return 1;
3580}
3581
3582static void process_slab(struct loc_track *t, struct kmem_cache *s,
3583 struct page *page, enum track_item alloc)
3584{
3585 void *addr = page_address(page);
3586 DECLARE_BITMAP(map, page->objects);
3587 void *p;
3588
3589 bitmap_zero(map, page->objects);
3590 for_each_free_object(p, s, page->freelist)
3591 set_bit(slab_index(p, s, addr), map);
3592
3593 for_each_object(p, s, addr, page->objects)
3594 if (!test_bit(slab_index(p, s, addr), map))
3595 add_location(t, s, get_track(s, p, alloc));
3596}
3597
3598static int list_locations(struct kmem_cache *s, char *buf,
3599 enum track_item alloc)
3600{
3601 int len = 0;
3602 unsigned long i;
3603 struct loc_track t = { 0, 0, NULL };
3604 int node;
3605
3606 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3607 GFP_TEMPORARY))
3608 return sprintf(buf, "Out of memory\n");
3609
3610 /* Push back cpu slabs */
3611 flush_all(s);
3612
3613 for_each_node_state(node, N_NORMAL_MEMORY) {
3614 struct kmem_cache_node *n = get_node(s, node);
3615 unsigned long flags;
3616 struct page *page;
3617
3618 if (!atomic_long_read(&n->nr_slabs))
3619 continue;
3620
3621 spin_lock_irqsave(&n->list_lock, flags);
3622 list_for_each_entry(page, &n->partial, lru)
3623 process_slab(&t, s, page, alloc);
3624 list_for_each_entry(page, &n->full, lru)
3625 process_slab(&t, s, page, alloc);
3626 spin_unlock_irqrestore(&n->list_lock, flags);
3627 }
3628
3629 for (i = 0; i < t.count; i++) {
3630 struct location *l = &t.loc[i];
3631
3632 if (len > PAGE_SIZE - 100)
3633 break;
3634 len += sprintf(buf + len, "%7ld ", l->count);
3635
3636 if (l->addr)
3637 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3638 else
3639 len += sprintf(buf + len, "<not-available>");
3640
3641 if (l->sum_time != l->min_time) {
3642 unsigned long remainder;
3643
3644 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3645 l->min_time,
3646 div_long_long_rem(l->sum_time, l->count, &remainder),
3647 l->max_time);
3648 } else
3649 len += sprintf(buf + len, " age=%ld",
3650 l->min_time);
3651
3652 if (l->min_pid != l->max_pid)
3653 len += sprintf(buf + len, " pid=%ld-%ld",
3654 l->min_pid, l->max_pid);
3655 else
3656 len += sprintf(buf + len, " pid=%ld",
3657 l->min_pid);
3658
3659 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3660 len < PAGE_SIZE - 60) {
3661 len += sprintf(buf + len, " cpus=");
3662 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3663 l->cpus);
3664 }
3665
3666 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3667 len < PAGE_SIZE - 60) {
3668 len += sprintf(buf + len, " nodes=");
3669 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3670 l->nodes);
3671 }
3672
3673 len += sprintf(buf + len, "\n");
3674 }
3675
3676 free_loc_track(&t);
3677 if (!t.count)
3678 len += sprintf(buf, "No data\n");
3679 return len;
3680}
3681
3682enum slab_stat_type {
3683 SL_ALL, /* All slabs */
3684 SL_PARTIAL, /* Only partially allocated slabs */
3685 SL_CPU, /* Only slabs used for cpu caches */
3686 SL_OBJECTS, /* Determine allocated objects not slabs */
3687 SL_TOTAL /* Determine object capacity not slabs */
3688};
3689
3690#define SO_ALL (1 << SL_ALL)
3691#define SO_PARTIAL (1 << SL_PARTIAL)
3692#define SO_CPU (1 << SL_CPU)
3693#define SO_OBJECTS (1 << SL_OBJECTS)
3694#define SO_TOTAL (1 << SL_TOTAL)
3695
3696static ssize_t show_slab_objects(struct kmem_cache *s,
3697 char *buf, unsigned long flags)
3698{
3699 unsigned long total = 0;
3700 int node;
3701 int x;
3702 unsigned long *nodes;
3703 unsigned long *per_cpu;
3704
3705 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3706 if (!nodes)
3707 return -ENOMEM;
3708 per_cpu = nodes + nr_node_ids;
3709
3710 if (flags & SO_CPU) {
3711 int cpu;
3712
3713 for_each_possible_cpu(cpu) {
3714 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3715
3716 if (!c || c->node < 0)
3717 continue;
3718
3719 if (c->page) {
3720 if (flags & SO_TOTAL)
3721 x = c->page->objects;
3722 else if (flags & SO_OBJECTS)
3723 x = c->page->inuse;
3724 else
3725 x = 1;
3726
3727 total += x;
3728 nodes[c->node] += x;
3729 }
3730 per_cpu[c->node]++;
3731 }
3732 }
3733
3734 if (flags & SO_ALL) {
3735 for_each_node_state(node, N_NORMAL_MEMORY) {
3736 struct kmem_cache_node *n = get_node(s, node);
3737
3738 if (flags & SO_TOTAL)
3739 x = atomic_long_read(&n->total_objects);
3740 else if (flags & SO_OBJECTS)
3741 x = atomic_long_read(&n->total_objects) -
3742 count_partial(n, count_free);
3743
3744 else
3745 x = atomic_long_read(&n->nr_slabs);
3746 total += x;
3747 nodes[node] += x;
3748 }
3749
3750 } else if (flags & SO_PARTIAL) {
3751 for_each_node_state(node, N_NORMAL_MEMORY) {
3752 struct kmem_cache_node *n = get_node(s, node);
3753
3754 if (flags & SO_TOTAL)
3755 x = count_partial(n, count_total);
3756 else if (flags & SO_OBJECTS)
3757 x = count_partial(n, count_inuse);
3758 else
3759 x = n->nr_partial;
3760 total += x;
3761 nodes[node] += x;
3762 }
3763 }
3764 x = sprintf(buf, "%lu", total);
3765#ifdef CONFIG_NUMA
3766 for_each_node_state(node, N_NORMAL_MEMORY)
3767 if (nodes[node])
3768 x += sprintf(buf + x, " N%d=%lu",
3769 node, nodes[node]);
3770#endif
3771 kfree(nodes);
3772 return x + sprintf(buf + x, "\n");
3773}
3774
3775static int any_slab_objects(struct kmem_cache *s)
3776{
3777 int node;
3778
3779 for_each_online_node(node) {
3780 struct kmem_cache_node *n = get_node(s, node);
3781
3782 if (!n)
3783 continue;
3784
3785 if (atomic_read(&n->total_objects))
3786 return 1;
3787 }
3788 return 0;
3789}
3790
3791#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3792#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3793
3794struct slab_attribute {
3795 struct attribute attr;
3796 ssize_t (*show)(struct kmem_cache *s, char *buf);
3797 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3798};
3799
3800#define SLAB_ATTR_RO(_name) \
3801 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3802
3803#define SLAB_ATTR(_name) \
3804 static struct slab_attribute _name##_attr = \
3805 __ATTR(_name, 0644, _name##_show, _name##_store)
3806
3807static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3808{
3809 return sprintf(buf, "%d\n", s->size);
3810}
3811SLAB_ATTR_RO(slab_size);
3812
3813static ssize_t align_show(struct kmem_cache *s, char *buf)
3814{
3815 return sprintf(buf, "%d\n", s->align);
3816}
3817SLAB_ATTR_RO(align);
3818
3819static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3820{
3821 return sprintf(buf, "%d\n", s->objsize);
3822}
3823SLAB_ATTR_RO(object_size);
3824
3825static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3826{
3827 return sprintf(buf, "%d\n", oo_objects(s->oo));
3828}
3829SLAB_ATTR_RO(objs_per_slab);
3830
3831static ssize_t order_store(struct kmem_cache *s,
3832 const char *buf, size_t length)
3833{
3834 int order = simple_strtoul(buf, NULL, 10);
3835
3836 if (order > slub_max_order || order < slub_min_order)
3837 return -EINVAL;
3838
3839 calculate_sizes(s, order);
3840 return length;
3841}
3842
3843static ssize_t order_show(struct kmem_cache *s, char *buf)
3844{
3845 return sprintf(buf, "%d\n", oo_order(s->oo));
3846}
3847SLAB_ATTR(order);
3848
3849static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3850{
3851 if (s->ctor) {
3852 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3853
3854 return n + sprintf(buf + n, "\n");
3855 }
3856 return 0;
3857}
3858SLAB_ATTR_RO(ctor);
3859
3860static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3861{
3862 return sprintf(buf, "%d\n", s->refcount - 1);
3863}
3864SLAB_ATTR_RO(aliases);
3865
3866static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3867{
3868 return show_slab_objects(s, buf, SO_ALL);
3869}
3870SLAB_ATTR_RO(slabs);
3871
3872static ssize_t partial_show(struct kmem_cache *s, char *buf)
3873{
3874 return show_slab_objects(s, buf, SO_PARTIAL);
3875}
3876SLAB_ATTR_RO(partial);
3877
3878static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3879{
3880 return show_slab_objects(s, buf, SO_CPU);
3881}
3882SLAB_ATTR_RO(cpu_slabs);
3883
3884static ssize_t objects_show(struct kmem_cache *s, char *buf)
3885{
3886 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3887}
3888SLAB_ATTR_RO(objects);
3889
3890static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3891{
3892 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3893}
3894SLAB_ATTR_RO(objects_partial);
3895
3896static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3897{
3898 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3899}
3900SLAB_ATTR_RO(total_objects);
3901
3902static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3903{
3904 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3905}
3906
3907static ssize_t sanity_checks_store(struct kmem_cache *s,
3908 const char *buf, size_t length)
3909{
3910 s->flags &= ~SLAB_DEBUG_FREE;
3911 if (buf[0] == '1')
3912 s->flags |= SLAB_DEBUG_FREE;
3913 return length;
3914}
3915SLAB_ATTR(sanity_checks);
3916
3917static ssize_t trace_show(struct kmem_cache *s, char *buf)
3918{
3919 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3920}
3921
3922static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3923 size_t length)
3924{
3925 s->flags &= ~SLAB_TRACE;
3926 if (buf[0] == '1')
3927 s->flags |= SLAB_TRACE;
3928 return length;
3929}
3930SLAB_ATTR(trace);
3931
3932static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3933{
3934 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3935}
3936
3937static ssize_t reclaim_account_store(struct kmem_cache *s,
3938 const char *buf, size_t length)
3939{
3940 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3941 if (buf[0] == '1')
3942 s->flags |= SLAB_RECLAIM_ACCOUNT;
3943 return length;
3944}
3945SLAB_ATTR(reclaim_account);
3946
3947static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3948{
3949 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3950}
3951SLAB_ATTR_RO(hwcache_align);
3952
3953#ifdef CONFIG_ZONE_DMA
3954static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3955{
3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3957}
3958SLAB_ATTR_RO(cache_dma);
3959#endif
3960
3961static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3962{
3963 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3964}
3965SLAB_ATTR_RO(destroy_by_rcu);
3966
3967static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3968{
3969 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3970}
3971
3972static ssize_t red_zone_store(struct kmem_cache *s,
3973 const char *buf, size_t length)
3974{
3975 if (any_slab_objects(s))
3976 return -EBUSY;
3977
3978 s->flags &= ~SLAB_RED_ZONE;
3979 if (buf[0] == '1')
3980 s->flags |= SLAB_RED_ZONE;
3981 calculate_sizes(s, -1);
3982 return length;
3983}
3984SLAB_ATTR(red_zone);
3985
3986static ssize_t poison_show(struct kmem_cache *s, char *buf)
3987{
3988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3989}
3990
3991static ssize_t poison_store(struct kmem_cache *s,
3992 const char *buf, size_t length)
3993{
3994 if (any_slab_objects(s))
3995 return -EBUSY;
3996
3997 s->flags &= ~SLAB_POISON;
3998 if (buf[0] == '1')
3999 s->flags |= SLAB_POISON;
4000 calculate_sizes(s, -1);
4001 return length;
4002}
4003SLAB_ATTR(poison);
4004
4005static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4006{
4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4008}
4009
4010static ssize_t store_user_store(struct kmem_cache *s,
4011 const char *buf, size_t length)
4012{
4013 if (any_slab_objects(s))
4014 return -EBUSY;
4015
4016 s->flags &= ~SLAB_STORE_USER;
4017 if (buf[0] == '1')
4018 s->flags |= SLAB_STORE_USER;
4019 calculate_sizes(s, -1);
4020 return length;
4021}
4022SLAB_ATTR(store_user);
4023
4024static ssize_t validate_show(struct kmem_cache *s, char *buf)
4025{
4026 return 0;
4027}
4028
4029static ssize_t validate_store(struct kmem_cache *s,
4030 const char *buf, size_t length)
4031{
4032 int ret = -EINVAL;
4033
4034 if (buf[0] == '1') {
4035 ret = validate_slab_cache(s);
4036 if (ret >= 0)
4037 ret = length;
4038 }
4039 return ret;
4040}
4041SLAB_ATTR(validate);
4042
4043static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4044{
4045 return 0;
4046}
4047
4048static ssize_t shrink_store(struct kmem_cache *s,
4049 const char *buf, size_t length)
4050{
4051 if (buf[0] == '1') {
4052 int rc = kmem_cache_shrink(s);
4053
4054 if (rc)
4055 return rc;
4056 } else
4057 return -EINVAL;
4058 return length;
4059}
4060SLAB_ATTR(shrink);
4061
4062static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4063{
4064 if (!(s->flags & SLAB_STORE_USER))
4065 return -ENOSYS;
4066 return list_locations(s, buf, TRACK_ALLOC);
4067}
4068SLAB_ATTR_RO(alloc_calls);
4069
4070static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4071{
4072 if (!(s->flags & SLAB_STORE_USER))
4073 return -ENOSYS;
4074 return list_locations(s, buf, TRACK_FREE);
4075}
4076SLAB_ATTR_RO(free_calls);
4077
4078#ifdef CONFIG_NUMA
4079static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4082}
4083
4084static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4085 const char *buf, size_t length)
4086{
4087 int n = simple_strtoul(buf, NULL, 10);
4088
4089 if (n < 100)
4090 s->remote_node_defrag_ratio = n * 10;
4091 return length;
4092}
4093SLAB_ATTR(remote_node_defrag_ratio);
4094#endif
4095
4096#ifdef CONFIG_SLUB_STATS
4097static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4098{
4099 unsigned long sum = 0;
4100 int cpu;
4101 int len;
4102 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4103
4104 if (!data)
4105 return -ENOMEM;
4106
4107 for_each_online_cpu(cpu) {
4108 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4109
4110 data[cpu] = x;
4111 sum += x;
4112 }
4113
4114 len = sprintf(buf, "%lu", sum);
4115
4116#ifdef CONFIG_SMP
4117 for_each_online_cpu(cpu) {
4118 if (data[cpu] && len < PAGE_SIZE - 20)
4119 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4120 }
4121#endif
4122 kfree(data);
4123 return len + sprintf(buf + len, "\n");
4124}
4125
4126#define STAT_ATTR(si, text) \
4127static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4128{ \
4129 return show_stat(s, buf, si); \
4130} \
4131SLAB_ATTR_RO(text); \
4132
4133STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4134STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4135STAT_ATTR(FREE_FASTPATH, free_fastpath);
4136STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4137STAT_ATTR(FREE_FROZEN, free_frozen);
4138STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4139STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4140STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4141STAT_ATTR(ALLOC_SLAB, alloc_slab);
4142STAT_ATTR(ALLOC_REFILL, alloc_refill);
4143STAT_ATTR(FREE_SLAB, free_slab);
4144STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4145STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4146STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4147STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4148STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4149STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4150STAT_ATTR(ORDER_FALLBACK, order_fallback);
4151#endif
4152
4153static struct attribute *slab_attrs[] = {
4154 &slab_size_attr.attr,
4155 &object_size_attr.attr,
4156 &objs_per_slab_attr.attr,
4157 &order_attr.attr,
4158 &objects_attr.attr,
4159 &objects_partial_attr.attr,
4160 &total_objects_attr.attr,
4161 &slabs_attr.attr,
4162 &partial_attr.attr,
4163 &cpu_slabs_attr.attr,
4164 &ctor_attr.attr,
4165 &aliases_attr.attr,
4166 &align_attr.attr,
4167 &sanity_checks_attr.attr,
4168 &trace_attr.attr,
4169 &hwcache_align_attr.attr,
4170 &reclaim_account_attr.attr,
4171 &destroy_by_rcu_attr.attr,
4172 &red_zone_attr.attr,
4173 &poison_attr.attr,
4174 &store_user_attr.attr,
4175 &validate_attr.attr,
4176 &shrink_attr.attr,
4177 &alloc_calls_attr.attr,
4178 &free_calls_attr.attr,
4179#ifdef CONFIG_ZONE_DMA
4180 &cache_dma_attr.attr,
4181#endif
4182#ifdef CONFIG_NUMA
4183 &remote_node_defrag_ratio_attr.attr,
4184#endif
4185#ifdef CONFIG_SLUB_STATS
4186 &alloc_fastpath_attr.attr,
4187 &alloc_slowpath_attr.attr,
4188 &free_fastpath_attr.attr,
4189 &free_slowpath_attr.attr,
4190 &free_frozen_attr.attr,
4191 &free_add_partial_attr.attr,
4192 &free_remove_partial_attr.attr,
4193 &alloc_from_partial_attr.attr,
4194 &alloc_slab_attr.attr,
4195 &alloc_refill_attr.attr,
4196 &free_slab_attr.attr,
4197 &cpuslab_flush_attr.attr,
4198 &deactivate_full_attr.attr,
4199 &deactivate_empty_attr.attr,
4200 &deactivate_to_head_attr.attr,
4201 &deactivate_to_tail_attr.attr,
4202 &deactivate_remote_frees_attr.attr,
4203 &order_fallback_attr.attr,
4204#endif
4205 NULL
4206};
4207
4208static struct attribute_group slab_attr_group = {
4209 .attrs = slab_attrs,
4210};
4211
4212static ssize_t slab_attr_show(struct kobject *kobj,
4213 struct attribute *attr,
4214 char *buf)
4215{
4216 struct slab_attribute *attribute;
4217 struct kmem_cache *s;
4218 int err;
4219
4220 attribute = to_slab_attr(attr);
4221 s = to_slab(kobj);
4222
4223 if (!attribute->show)
4224 return -EIO;
4225
4226 err = attribute->show(s, buf);
4227
4228 return err;
4229}
4230
4231static ssize_t slab_attr_store(struct kobject *kobj,
4232 struct attribute *attr,
4233 const char *buf, size_t len)
4234{
4235 struct slab_attribute *attribute;
4236 struct kmem_cache *s;
4237 int err;
4238
4239 attribute = to_slab_attr(attr);
4240 s = to_slab(kobj);
4241
4242 if (!attribute->store)
4243 return -EIO;
4244
4245 err = attribute->store(s, buf, len);
4246
4247 return err;
4248}
4249
4250static void kmem_cache_release(struct kobject *kobj)
4251{
4252 struct kmem_cache *s = to_slab(kobj);
4253
4254 kfree(s);
4255}
4256
4257static struct sysfs_ops slab_sysfs_ops = {
4258 .show = slab_attr_show,
4259 .store = slab_attr_store,
4260};
4261
4262static struct kobj_type slab_ktype = {
4263 .sysfs_ops = &slab_sysfs_ops,
4264 .release = kmem_cache_release
4265};
4266
4267static int uevent_filter(struct kset *kset, struct kobject *kobj)
4268{
4269 struct kobj_type *ktype = get_ktype(kobj);
4270
4271 if (ktype == &slab_ktype)
4272 return 1;
4273 return 0;
4274}
4275
4276static struct kset_uevent_ops slab_uevent_ops = {
4277 .filter = uevent_filter,
4278};
4279
4280static struct kset *slab_kset;
4281
4282#define ID_STR_LENGTH 64
4283
4284/* Create a unique string id for a slab cache:
4285 *
4286 * Format :[flags-]size
4287 */
4288static char *create_unique_id(struct kmem_cache *s)
4289{
4290 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4291 char *p = name;
4292
4293 BUG_ON(!name);
4294
4295 *p++ = ':';
4296 /*
4297 * First flags affecting slabcache operations. We will only
4298 * get here for aliasable slabs so we do not need to support
4299 * too many flags. The flags here must cover all flags that
4300 * are matched during merging to guarantee that the id is
4301 * unique.
4302 */
4303 if (s->flags & SLAB_CACHE_DMA)
4304 *p++ = 'd';
4305 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4306 *p++ = 'a';
4307 if (s->flags & SLAB_DEBUG_FREE)
4308 *p++ = 'F';
4309 if (p != name + 1)
4310 *p++ = '-';
4311 p += sprintf(p, "%07d", s->size);
4312 BUG_ON(p > name + ID_STR_LENGTH - 1);
4313 return name;
4314}
4315
4316static int sysfs_slab_add(struct kmem_cache *s)
4317{
4318 int err;
4319 const char *name;
4320 int unmergeable;
4321
4322 if (slab_state < SYSFS)
4323 /* Defer until later */
4324 return 0;
4325
4326 unmergeable = slab_unmergeable(s);
4327 if (unmergeable) {
4328 /*
4329 * Slabcache can never be merged so we can use the name proper.
4330 * This is typically the case for debug situations. In that
4331 * case we can catch duplicate names easily.
4332 */
4333 sysfs_remove_link(&slab_kset->kobj, s->name);
4334 name = s->name;
4335 } else {
4336 /*
4337 * Create a unique name for the slab as a target
4338 * for the symlinks.
4339 */
4340 name = create_unique_id(s);
4341 }
4342
4343 s->kobj.kset = slab_kset;
4344 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4345 if (err) {
4346 kobject_put(&s->kobj);
4347 return err;
4348 }
4349
4350 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4351 if (err)
4352 return err;
4353 kobject_uevent(&s->kobj, KOBJ_ADD);
4354 if (!unmergeable) {
4355 /* Setup first alias */
4356 sysfs_slab_alias(s, s->name);
4357 kfree(name);
4358 }
4359 return 0;
4360}
4361
4362static void sysfs_slab_remove(struct kmem_cache *s)
4363{
4364 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4365 kobject_del(&s->kobj);
4366 kobject_put(&s->kobj);
4367}
4368
4369/*
4370 * Need to buffer aliases during bootup until sysfs becomes
4371 * available lest we loose that information.
4372 */
4373struct saved_alias {
4374 struct kmem_cache *s;
4375 const char *name;
4376 struct saved_alias *next;
4377};
4378
4379static struct saved_alias *alias_list;
4380
4381static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4382{
4383 struct saved_alias *al;
4384
4385 if (slab_state == SYSFS) {
4386 /*
4387 * If we have a leftover link then remove it.
4388 */
4389 sysfs_remove_link(&slab_kset->kobj, name);
4390 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4391 }
4392
4393 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4394 if (!al)
4395 return -ENOMEM;
4396
4397 al->s = s;
4398 al->name = name;
4399 al->next = alias_list;
4400 alias_list = al;
4401 return 0;
4402}
4403
4404static int __init slab_sysfs_init(void)
4405{
4406 struct kmem_cache *s;
4407 int err;
4408
4409 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4410 if (!slab_kset) {
4411 printk(KERN_ERR "Cannot register slab subsystem.\n");
4412 return -ENOSYS;
4413 }
4414
4415 slab_state = SYSFS;
4416
4417 list_for_each_entry(s, &slab_caches, list) {
4418 err = sysfs_slab_add(s);
4419 if (err)
4420 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4421 " to sysfs\n", s->name);
4422 }
4423
4424 while (alias_list) {
4425 struct saved_alias *al = alias_list;
4426
4427 alias_list = alias_list->next;
4428 err = sysfs_slab_alias(al->s, al->name);
4429 if (err)
4430 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4431 " %s to sysfs\n", s->name);
4432 kfree(al);
4433 }
4434
4435 resiliency_test();
4436 return 0;
4437}
4438
4439__initcall(slab_sysfs_init);
4440#endif
4441
4442/*
4443 * The /proc/slabinfo ABI
4444 */
4445#ifdef CONFIG_SLABINFO
4446
4447ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4448 size_t count, loff_t *ppos)
4449{
4450 return -EINVAL;
4451}
4452
4453
4454static void print_slabinfo_header(struct seq_file *m)
4455{
4456 seq_puts(m, "slabinfo - version: 2.1\n");
4457 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4458 "<objperslab> <pagesperslab>");
4459 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4460 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4461 seq_putc(m, '\n');
4462}
4463
4464static void *s_start(struct seq_file *m, loff_t *pos)
4465{
4466 loff_t n = *pos;
4467
4468 down_read(&slub_lock);
4469 if (!n)
4470 print_slabinfo_header(m);
4471
4472 return seq_list_start(&slab_caches, *pos);
4473}
4474
4475static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4476{
4477 return seq_list_next(p, &slab_caches, pos);
4478}
4479
4480static void s_stop(struct seq_file *m, void *p)
4481{
4482 up_read(&slub_lock);
4483}
4484
4485static int s_show(struct seq_file *m, void *p)
4486{
4487 unsigned long nr_partials = 0;
4488 unsigned long nr_slabs = 0;
4489 unsigned long nr_inuse = 0;
4490 unsigned long nr_objs = 0;
4491 unsigned long nr_free = 0;
4492 struct kmem_cache *s;
4493 int node;
4494
4495 s = list_entry(p, struct kmem_cache, list);
4496
4497 for_each_online_node(node) {
4498 struct kmem_cache_node *n = get_node(s, node);
4499
4500 if (!n)
4501 continue;
4502
4503 nr_partials += n->nr_partial;
4504 nr_slabs += atomic_long_read(&n->nr_slabs);
4505 nr_objs += atomic_long_read(&n->total_objects);
4506 nr_free += count_partial(n, count_free);
4507 }
4508
4509 nr_inuse = nr_objs - nr_free;
4510
4511 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4512 nr_objs, s->size, oo_objects(s->oo),
4513 (1 << oo_order(s->oo)));
4514 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4515 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4516 0UL);
4517 seq_putc(m, '\n');
4518 return 0;
4519}
4520
4521const struct seq_operations slabinfo_op = {
4522 .start = s_start,
4523 .next = s_next,
4524 .stop = s_stop,
4525 .show = s_show,
4526};
4527
4528#endif /* CONFIG_SLABINFO */