]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/slub.c
mm/slub.c: update comments
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
20#include "slab.h"
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/kasan.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
28#include <linux/debugobjects.h>
29#include <linux/kallsyms.h>
30#include <linux/memory.h>
31#include <linux/math64.h>
32#include <linux/fault-inject.h>
33#include <linux/stacktrace.h>
34#include <linux/prefetch.h>
35#include <linux/memcontrol.h>
36#include <linux/random.h>
37
38#include <trace/events/kmem.h>
39
40#include "internal.h"
41
42/*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
119#ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121#else
122 return 0;
123#endif
124}
125
126void *fixup_red_left(struct kmem_cache *s, void *p)
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
143/*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
161#define MIN_PARTIAL 5
162
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
167 */
168#define MAX_PARTIAL 10
169
170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
172
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
181/*
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
185 */
186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
191
192/* Internal SLUB flags */
193/* Poison object */
194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195/* Use cmpxchg_double */
196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
197
198/*
199 * Tracking user of a slab.
200 */
201#define TRACK_ADDRS_COUNT 16
202struct track {
203 unsigned long addr; /* Called from address */
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
214#ifdef CONFIG_SYSFS
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218static void sysfs_slab_remove(struct kmem_cache *s);
219#else
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225#endif
226
227static inline void stat(const struct kmem_cache *s, enum stat_item si)
228{
229#ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235#endif
236}
237
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
278 return freelist_dereference(s, object + s->offset);
279}
280
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
283 prefetch(object + s->offset);
284}
285
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
288 unsigned long freepointer_addr;
289 void *p;
290
291 if (!debug_pagealloc_enabled())
292 return get_freepointer(s, object);
293
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
297}
298
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308}
309
310/* Loop over all objects in a slab */
311#define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
315
316/* Determine object index from a given position */
317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318{
319 return (kasan_reset_tag(p) - addr) / s->size;
320}
321
322static inline unsigned int order_objects(unsigned int order, unsigned int size)
323{
324 return ((unsigned int)PAGE_SIZE << order) / size;
325}
326
327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 unsigned int size)
329{
330 struct kmem_cache_order_objects x = {
331 (order << OO_SHIFT) + order_objects(order, size)
332 };
333
334 return x;
335}
336
337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338{
339 return x.x >> OO_SHIFT;
340}
341
342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343{
344 return x.x & OO_MASK;
345}
346
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
358 VM_BUG_ON_PAGE(PageTail(page), page);
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return true;
376 } else
377#endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
382 page->freelist = freelist_new;
383 page->counters = counters_new;
384 slab_unlock(page);
385 return true;
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
395#endif
396
397 return false;
398}
399
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s->flags & __CMPXCHG_DOUBLE) {
408 if (cmpxchg_double(&page->freelist, &page->counters,
409 freelist_old, counters_old,
410 freelist_new, counters_new))
411 return true;
412 } else
413#endif
414 {
415 unsigned long flags;
416
417 local_irq_save(flags);
418 slab_lock(page);
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
421 page->freelist = freelist_new;
422 page->counters = counters_new;
423 slab_unlock(page);
424 local_irq_restore(flags);
425 return true;
426 }
427 slab_unlock(page);
428 local_irq_restore(flags);
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
436#endif
437
438 return false;
439}
440
441#ifdef CONFIG_SLUB_DEBUG
442/*
443 * Determine a map of object in use on a page.
444 *
445 * Node listlock must be held to guarantee that the page does
446 * not vanish from under us.
447 */
448static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
449{
450 void *p;
451 void *addr = page_address(page);
452
453 for (p = page->freelist; p; p = get_freepointer(s, p))
454 set_bit(slab_index(p, s, addr), map);
455}
456
457static inline unsigned int size_from_object(struct kmem_cache *s)
458{
459 if (s->flags & SLAB_RED_ZONE)
460 return s->size - s->red_left_pad;
461
462 return s->size;
463}
464
465static inline void *restore_red_left(struct kmem_cache *s, void *p)
466{
467 if (s->flags & SLAB_RED_ZONE)
468 p -= s->red_left_pad;
469
470 return p;
471}
472
473/*
474 * Debug settings:
475 */
476#if defined(CONFIG_SLUB_DEBUG_ON)
477static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
478#else
479static slab_flags_t slub_debug;
480#endif
481
482static char *slub_debug_slabs;
483static int disable_higher_order_debug;
484
485/*
486 * slub is about to manipulate internal object metadata. This memory lies
487 * outside the range of the allocated object, so accessing it would normally
488 * be reported by kasan as a bounds error. metadata_access_enable() is used
489 * to tell kasan that these accesses are OK.
490 */
491static inline void metadata_access_enable(void)
492{
493 kasan_disable_current();
494}
495
496static inline void metadata_access_disable(void)
497{
498 kasan_enable_current();
499}
500
501/*
502 * Object debugging
503 */
504
505/* Verify that a pointer has an address that is valid within a slab page */
506static inline int check_valid_pointer(struct kmem_cache *s,
507 struct page *page, void *object)
508{
509 void *base;
510
511 if (!object)
512 return 1;
513
514 base = page_address(page);
515 object = kasan_reset_tag(object);
516 object = restore_red_left(s, object);
517 if (object < base || object >= base + page->objects * s->size ||
518 (object - base) % s->size) {
519 return 0;
520 }
521
522 return 1;
523}
524
525static void print_section(char *level, char *text, u8 *addr,
526 unsigned int length)
527{
528 metadata_access_enable();
529 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
530 length, 1);
531 metadata_access_disable();
532}
533
534static struct track *get_track(struct kmem_cache *s, void *object,
535 enum track_item alloc)
536{
537 struct track *p;
538
539 if (s->offset)
540 p = object + s->offset + sizeof(void *);
541 else
542 p = object + s->inuse;
543
544 return p + alloc;
545}
546
547static void set_track(struct kmem_cache *s, void *object,
548 enum track_item alloc, unsigned long addr)
549{
550 struct track *p = get_track(s, object, alloc);
551
552 if (addr) {
553#ifdef CONFIG_STACKTRACE
554 unsigned int nr_entries;
555
556 metadata_access_enable();
557 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
558 metadata_access_disable();
559
560 if (nr_entries < TRACK_ADDRS_COUNT)
561 p->addrs[nr_entries] = 0;
562#endif
563 p->addr = addr;
564 p->cpu = smp_processor_id();
565 p->pid = current->pid;
566 p->when = jiffies;
567 } else {
568 memset(p, 0, sizeof(struct track));
569 }
570}
571
572static void init_tracking(struct kmem_cache *s, void *object)
573{
574 if (!(s->flags & SLAB_STORE_USER))
575 return;
576
577 set_track(s, object, TRACK_FREE, 0UL);
578 set_track(s, object, TRACK_ALLOC, 0UL);
579}
580
581static void print_track(const char *s, struct track *t, unsigned long pr_time)
582{
583 if (!t->addr)
584 return;
585
586 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
587 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
588#ifdef CONFIG_STACKTRACE
589 {
590 int i;
591 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
592 if (t->addrs[i])
593 pr_err("\t%pS\n", (void *)t->addrs[i]);
594 else
595 break;
596 }
597#endif
598}
599
600static void print_tracking(struct kmem_cache *s, void *object)
601{
602 unsigned long pr_time = jiffies;
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
606 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
607 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
608}
609
610static void print_page_info(struct page *page)
611{
612 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
613 page, page->objects, page->inuse, page->freelist, page->flags);
614
615}
616
617static void slab_bug(struct kmem_cache *s, char *fmt, ...)
618{
619 struct va_format vaf;
620 va_list args;
621
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("=============================================================================\n");
626 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
627 pr_err("-----------------------------------------------------------------------------\n\n");
628
629 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
630 va_end(args);
631}
632
633static void slab_fix(struct kmem_cache *s, char *fmt, ...)
634{
635 struct va_format vaf;
636 va_list args;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 pr_err("FIX %s: %pV\n", s->name, &vaf);
642 va_end(args);
643}
644
645static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
646{
647 unsigned int off; /* Offset of last byte */
648 u8 *addr = page_address(page);
649
650 print_tracking(s, p);
651
652 print_page_info(page);
653
654 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
655 p, p - addr, get_freepointer(s, p));
656
657 if (s->flags & SLAB_RED_ZONE)
658 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
659 s->red_left_pad);
660 else if (p > addr + 16)
661 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
662
663 print_section(KERN_ERR, "Object ", p,
664 min_t(unsigned int, s->object_size, PAGE_SIZE));
665 if (s->flags & SLAB_RED_ZONE)
666 print_section(KERN_ERR, "Redzone ", p + s->object_size,
667 s->inuse - s->object_size);
668
669 if (s->offset)
670 off = s->offset + sizeof(void *);
671 else
672 off = s->inuse;
673
674 if (s->flags & SLAB_STORE_USER)
675 off += 2 * sizeof(struct track);
676
677 off += kasan_metadata_size(s);
678
679 if (off != size_from_object(s))
680 /* Beginning of the filler is the free pointer */
681 print_section(KERN_ERR, "Padding ", p + off,
682 size_from_object(s) - off);
683
684 dump_stack();
685}
686
687void object_err(struct kmem_cache *s, struct page *page,
688 u8 *object, char *reason)
689{
690 slab_bug(s, "%s", reason);
691 print_trailer(s, page, object);
692}
693
694static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
695 const char *fmt, ...)
696{
697 va_list args;
698 char buf[100];
699
700 va_start(args, fmt);
701 vsnprintf(buf, sizeof(buf), fmt, args);
702 va_end(args);
703 slab_bug(s, "%s", buf);
704 print_page_info(page);
705 dump_stack();
706}
707
708static void init_object(struct kmem_cache *s, void *object, u8 val)
709{
710 u8 *p = object;
711
712 if (s->flags & SLAB_RED_ZONE)
713 memset(p - s->red_left_pad, val, s->red_left_pad);
714
715 if (s->flags & __OBJECT_POISON) {
716 memset(p, POISON_FREE, s->object_size - 1);
717 p[s->object_size - 1] = POISON_END;
718 }
719
720 if (s->flags & SLAB_RED_ZONE)
721 memset(p + s->object_size, val, s->inuse - s->object_size);
722}
723
724static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
725 void *from, void *to)
726{
727 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
728 memset(from, data, to - from);
729}
730
731static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
732 u8 *object, char *what,
733 u8 *start, unsigned int value, unsigned int bytes)
734{
735 u8 *fault;
736 u8 *end;
737 u8 *addr = page_address(page);
738
739 metadata_access_enable();
740 fault = memchr_inv(start, value, bytes);
741 metadata_access_disable();
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault - addr,
752 fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
757}
758
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
766 *
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
770 * object + s->object_size
771 * Padding to reach word boundary. This is also used for Redzoning.
772 * Padding is extended by another word if Redzoning is enabled and
773 * object_size == inuse.
774 *
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
779 * Meta data starts here.
780 *
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
783 * C. Padding to reach required alignment boundary or at mininum
784 * one word if debugging is on to be able to detect writes
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
788 *
789 * object + s->size
790 * Nothing is used beyond s->size.
791 *
792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
793 * ignored. And therefore no slab options that rely on these boundaries
794 * may be used with merged slabcaches.
795 */
796
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
809 off += kasan_metadata_size(s);
810
811 if (size_from_object(s) == off)
812 return 1;
813
814 return check_bytes_and_report(s, page, p, "Object padding",
815 p + off, POISON_INUSE, size_from_object(s) - off);
816}
817
818/* Check the pad bytes at the end of a slab page */
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
821 u8 *start;
822 u8 *fault;
823 u8 *end;
824 u8 *pad;
825 int length;
826 int remainder;
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
831 start = page_address(page);
832 length = page_size(page);
833 end = start + length;
834 remainder = length % s->size;
835 if (!remainder)
836 return 1;
837
838 pad = end - remainder;
839 metadata_access_enable();
840 fault = memchr_inv(pad, POISON_INUSE, remainder);
841 metadata_access_disable();
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
848 fault, end - 1, fault - start);
849 print_section(KERN_ERR, "Padding ", pad, remainder);
850
851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 return 0;
853}
854
855static int check_object(struct kmem_cache *s, struct page *page,
856 void *object, u8 val)
857{
858 u8 *p = object;
859 u8 *endobject = object + s->object_size;
860
861 if (s->flags & SLAB_RED_ZONE) {
862 if (!check_bytes_and_report(s, page, object, "Redzone",
863 object - s->red_left_pad, val, s->red_left_pad))
864 return 0;
865
866 if (!check_bytes_and_report(s, page, object, "Redzone",
867 endobject, val, s->inuse - s->object_size))
868 return 0;
869 } else {
870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 check_bytes_and_report(s, page, p, "Alignment padding",
872 endobject, POISON_INUSE,
873 s->inuse - s->object_size);
874 }
875 }
876
877 if (s->flags & SLAB_POISON) {
878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 (!check_bytes_and_report(s, page, p, "Poison", p,
880 POISON_FREE, s->object_size - 1) ||
881 !check_bytes_and_report(s, page, p, "Poison",
882 p + s->object_size - 1, POISON_END, 1)))
883 return 0;
884 /*
885 * check_pad_bytes cleans up on its own.
886 */
887 check_pad_bytes(s, page, p);
888 }
889
890 if (!s->offset && val == SLUB_RED_ACTIVE)
891 /*
892 * Object and freepointer overlap. Cannot check
893 * freepointer while object is allocated.
894 */
895 return 1;
896
897 /* Check free pointer validity */
898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 object_err(s, page, p, "Freepointer corrupt");
900 /*
901 * No choice but to zap it and thus lose the remainder
902 * of the free objects in this slab. May cause
903 * another error because the object count is now wrong.
904 */
905 set_freepointer(s, p, NULL);
906 return 0;
907 }
908 return 1;
909}
910
911static int check_slab(struct kmem_cache *s, struct page *page)
912{
913 int maxobj;
914
915 VM_BUG_ON(!irqs_disabled());
916
917 if (!PageSlab(page)) {
918 slab_err(s, page, "Not a valid slab page");
919 return 0;
920 }
921
922 maxobj = order_objects(compound_order(page), s->size);
923 if (page->objects > maxobj) {
924 slab_err(s, page, "objects %u > max %u",
925 page->objects, maxobj);
926 return 0;
927 }
928 if (page->inuse > page->objects) {
929 slab_err(s, page, "inuse %u > max %u",
930 page->inuse, page->objects);
931 return 0;
932 }
933 /* Slab_pad_check fixes things up after itself */
934 slab_pad_check(s, page);
935 return 1;
936}
937
938/*
939 * Determine if a certain object on a page is on the freelist. Must hold the
940 * slab lock to guarantee that the chains are in a consistent state.
941 */
942static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943{
944 int nr = 0;
945 void *fp;
946 void *object = NULL;
947 int max_objects;
948
949 fp = page->freelist;
950 while (fp && nr <= page->objects) {
951 if (fp == search)
952 return 1;
953 if (!check_valid_pointer(s, page, fp)) {
954 if (object) {
955 object_err(s, page, object,
956 "Freechain corrupt");
957 set_freepointer(s, object, NULL);
958 } else {
959 slab_err(s, page, "Freepointer corrupt");
960 page->freelist = NULL;
961 page->inuse = page->objects;
962 slab_fix(s, "Freelist cleared");
963 return 0;
964 }
965 break;
966 }
967 object = fp;
968 fp = get_freepointer(s, object);
969 nr++;
970 }
971
972 max_objects = order_objects(compound_order(page), s->size);
973 if (max_objects > MAX_OBJS_PER_PAGE)
974 max_objects = MAX_OBJS_PER_PAGE;
975
976 if (page->objects != max_objects) {
977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 page->objects, max_objects);
979 page->objects = max_objects;
980 slab_fix(s, "Number of objects adjusted.");
981 }
982 if (page->inuse != page->objects - nr) {
983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 page->inuse, page->objects - nr);
985 page->inuse = page->objects - nr;
986 slab_fix(s, "Object count adjusted.");
987 }
988 return search == NULL;
989}
990
991static void trace(struct kmem_cache *s, struct page *page, void *object,
992 int alloc)
993{
994 if (s->flags & SLAB_TRACE) {
995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 s->name,
997 alloc ? "alloc" : "free",
998 object, page->inuse,
999 page->freelist);
1000
1001 if (!alloc)
1002 print_section(KERN_INFO, "Object ", (void *)object,
1003 s->object_size);
1004
1005 dump_stack();
1006 }
1007}
1008
1009/*
1010 * Tracking of fully allocated slabs for debugging purposes.
1011 */
1012static void add_full(struct kmem_cache *s,
1013 struct kmem_cache_node *n, struct page *page)
1014{
1015 if (!(s->flags & SLAB_STORE_USER))
1016 return;
1017
1018 lockdep_assert_held(&n->list_lock);
1019 list_add(&page->slab_list, &n->full);
1020}
1021
1022static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023{
1024 if (!(s->flags & SLAB_STORE_USER))
1025 return;
1026
1027 lockdep_assert_held(&n->list_lock);
1028 list_del(&page->slab_list);
1029}
1030
1031/* Tracking of the number of slabs for debugging purposes */
1032static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033{
1034 struct kmem_cache_node *n = get_node(s, node);
1035
1036 return atomic_long_read(&n->nr_slabs);
1037}
1038
1039static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040{
1041 return atomic_long_read(&n->nr_slabs);
1042}
1043
1044static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045{
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 /*
1049 * May be called early in order to allocate a slab for the
1050 * kmem_cache_node structure. Solve the chicken-egg
1051 * dilemma by deferring the increment of the count during
1052 * bootstrap (see early_kmem_cache_node_alloc).
1053 */
1054 if (likely(n)) {
1055 atomic_long_inc(&n->nr_slabs);
1056 atomic_long_add(objects, &n->total_objects);
1057 }
1058}
1059static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060{
1061 struct kmem_cache_node *n = get_node(s, node);
1062
1063 atomic_long_dec(&n->nr_slabs);
1064 atomic_long_sub(objects, &n->total_objects);
1065}
1066
1067/* Object debug checks for alloc/free paths */
1068static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 void *object)
1070{
1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 return;
1073
1074 init_object(s, object, SLUB_RED_INACTIVE);
1075 init_tracking(s, object);
1076}
1077
1078static
1079void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1080{
1081 if (!(s->flags & SLAB_POISON))
1082 return;
1083
1084 metadata_access_enable();
1085 memset(addr, POISON_INUSE, page_size(page));
1086 metadata_access_disable();
1087}
1088
1089static inline int alloc_consistency_checks(struct kmem_cache *s,
1090 struct page *page, void *object)
1091{
1092 if (!check_slab(s, page))
1093 return 0;
1094
1095 if (!check_valid_pointer(s, page, object)) {
1096 object_err(s, page, object, "Freelist Pointer check fails");
1097 return 0;
1098 }
1099
1100 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1101 return 0;
1102
1103 return 1;
1104}
1105
1106static noinline int alloc_debug_processing(struct kmem_cache *s,
1107 struct page *page,
1108 void *object, unsigned long addr)
1109{
1110 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1111 if (!alloc_consistency_checks(s, page, object))
1112 goto bad;
1113 }
1114
1115 /* Success perform special debug activities for allocs */
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_ALLOC, addr);
1118 trace(s, page, object, 1);
1119 init_object(s, object, SLUB_RED_ACTIVE);
1120 return 1;
1121
1122bad:
1123 if (PageSlab(page)) {
1124 /*
1125 * If this is a slab page then lets do the best we can
1126 * to avoid issues in the future. Marking all objects
1127 * as used avoids touching the remaining objects.
1128 */
1129 slab_fix(s, "Marking all objects used");
1130 page->inuse = page->objects;
1131 page->freelist = NULL;
1132 }
1133 return 0;
1134}
1135
1136static inline int free_consistency_checks(struct kmem_cache *s,
1137 struct page *page, void *object, unsigned long addr)
1138{
1139 if (!check_valid_pointer(s, page, object)) {
1140 slab_err(s, page, "Invalid object pointer 0x%p", object);
1141 return 0;
1142 }
1143
1144 if (on_freelist(s, page, object)) {
1145 object_err(s, page, object, "Object already free");
1146 return 0;
1147 }
1148
1149 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1150 return 0;
1151
1152 if (unlikely(s != page->slab_cache)) {
1153 if (!PageSlab(page)) {
1154 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1155 object);
1156 } else if (!page->slab_cache) {
1157 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1158 object);
1159 dump_stack();
1160 } else
1161 object_err(s, page, object,
1162 "page slab pointer corrupt.");
1163 return 0;
1164 }
1165 return 1;
1166}
1167
1168/* Supports checking bulk free of a constructed freelist */
1169static noinline int free_debug_processing(
1170 struct kmem_cache *s, struct page *page,
1171 void *head, void *tail, int bulk_cnt,
1172 unsigned long addr)
1173{
1174 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1175 void *object = head;
1176 int cnt = 0;
1177 unsigned long uninitialized_var(flags);
1178 int ret = 0;
1179
1180 spin_lock_irqsave(&n->list_lock, flags);
1181 slab_lock(page);
1182
1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 if (!check_slab(s, page))
1185 goto out;
1186 }
1187
1188next_object:
1189 cnt++;
1190
1191 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1192 if (!free_consistency_checks(s, page, object, addr))
1193 goto out;
1194 }
1195
1196 if (s->flags & SLAB_STORE_USER)
1197 set_track(s, object, TRACK_FREE, addr);
1198 trace(s, page, object, 0);
1199 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1200 init_object(s, object, SLUB_RED_INACTIVE);
1201
1202 /* Reached end of constructed freelist yet? */
1203 if (object != tail) {
1204 object = get_freepointer(s, object);
1205 goto next_object;
1206 }
1207 ret = 1;
1208
1209out:
1210 if (cnt != bulk_cnt)
1211 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1212 bulk_cnt, cnt);
1213
1214 slab_unlock(page);
1215 spin_unlock_irqrestore(&n->list_lock, flags);
1216 if (!ret)
1217 slab_fix(s, "Object at 0x%p not freed", object);
1218 return ret;
1219}
1220
1221static int __init setup_slub_debug(char *str)
1222{
1223 slub_debug = DEBUG_DEFAULT_FLAGS;
1224 if (*str++ != '=' || !*str)
1225 /*
1226 * No options specified. Switch on full debugging.
1227 */
1228 goto out;
1229
1230 if (*str == ',')
1231 /*
1232 * No options but restriction on slabs. This means full
1233 * debugging for slabs matching a pattern.
1234 */
1235 goto check_slabs;
1236
1237 slub_debug = 0;
1238 if (*str == '-')
1239 /*
1240 * Switch off all debugging measures.
1241 */
1242 goto out;
1243
1244 /*
1245 * Determine which debug features should be switched on
1246 */
1247 for (; *str && *str != ','; str++) {
1248 switch (tolower(*str)) {
1249 case 'f':
1250 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1251 break;
1252 case 'z':
1253 slub_debug |= SLAB_RED_ZONE;
1254 break;
1255 case 'p':
1256 slub_debug |= SLAB_POISON;
1257 break;
1258 case 'u':
1259 slub_debug |= SLAB_STORE_USER;
1260 break;
1261 case 't':
1262 slub_debug |= SLAB_TRACE;
1263 break;
1264 case 'a':
1265 slub_debug |= SLAB_FAILSLAB;
1266 break;
1267 case 'o':
1268 /*
1269 * Avoid enabling debugging on caches if its minimum
1270 * order would increase as a result.
1271 */
1272 disable_higher_order_debug = 1;
1273 break;
1274 default:
1275 pr_err("slub_debug option '%c' unknown. skipped\n",
1276 *str);
1277 }
1278 }
1279
1280check_slabs:
1281 if (*str == ',')
1282 slub_debug_slabs = str + 1;
1283out:
1284 if ((static_branch_unlikely(&init_on_alloc) ||
1285 static_branch_unlikely(&init_on_free)) &&
1286 (slub_debug & SLAB_POISON))
1287 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1288 return 1;
1289}
1290
1291__setup("slub_debug", setup_slub_debug);
1292
1293/*
1294 * kmem_cache_flags - apply debugging options to the cache
1295 * @object_size: the size of an object without meta data
1296 * @flags: flags to set
1297 * @name: name of the cache
1298 * @ctor: constructor function
1299 *
1300 * Debug option(s) are applied to @flags. In addition to the debug
1301 * option(s), if a slab name (or multiple) is specified i.e.
1302 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1303 * then only the select slabs will receive the debug option(s).
1304 */
1305slab_flags_t kmem_cache_flags(unsigned int object_size,
1306 slab_flags_t flags, const char *name,
1307 void (*ctor)(void *))
1308{
1309 char *iter;
1310 size_t len;
1311
1312 /* If slub_debug = 0, it folds into the if conditional. */
1313 if (!slub_debug_slabs)
1314 return flags | slub_debug;
1315
1316 len = strlen(name);
1317 iter = slub_debug_slabs;
1318 while (*iter) {
1319 char *end, *glob;
1320 size_t cmplen;
1321
1322 end = strchrnul(iter, ',');
1323
1324 glob = strnchr(iter, end - iter, '*');
1325 if (glob)
1326 cmplen = glob - iter;
1327 else
1328 cmplen = max_t(size_t, len, (end - iter));
1329
1330 if (!strncmp(name, iter, cmplen)) {
1331 flags |= slub_debug;
1332 break;
1333 }
1334
1335 if (!*end)
1336 break;
1337 iter = end + 1;
1338 }
1339
1340 return flags;
1341}
1342#else /* !CONFIG_SLUB_DEBUG */
1343static inline void setup_object_debug(struct kmem_cache *s,
1344 struct page *page, void *object) {}
1345static inline
1346void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1347
1348static inline int alloc_debug_processing(struct kmem_cache *s,
1349 struct page *page, void *object, unsigned long addr) { return 0; }
1350
1351static inline int free_debug_processing(
1352 struct kmem_cache *s, struct page *page,
1353 void *head, void *tail, int bulk_cnt,
1354 unsigned long addr) { return 0; }
1355
1356static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1357 { return 1; }
1358static inline int check_object(struct kmem_cache *s, struct page *page,
1359 void *object, u8 val) { return 1; }
1360static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 struct page *page) {}
1362static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1363 struct page *page) {}
1364slab_flags_t kmem_cache_flags(unsigned int object_size,
1365 slab_flags_t flags, const char *name,
1366 void (*ctor)(void *))
1367{
1368 return flags;
1369}
1370#define slub_debug 0
1371
1372#define disable_higher_order_debug 0
1373
1374static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1375 { return 0; }
1376static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 { return 0; }
1378static inline void inc_slabs_node(struct kmem_cache *s, int node,
1379 int objects) {}
1380static inline void dec_slabs_node(struct kmem_cache *s, int node,
1381 int objects) {}
1382
1383#endif /* CONFIG_SLUB_DEBUG */
1384
1385/*
1386 * Hooks for other subsystems that check memory allocations. In a typical
1387 * production configuration these hooks all should produce no code at all.
1388 */
1389static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1390{
1391 ptr = kasan_kmalloc_large(ptr, size, flags);
1392 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1393 kmemleak_alloc(ptr, size, 1, flags);
1394 return ptr;
1395}
1396
1397static __always_inline void kfree_hook(void *x)
1398{
1399 kmemleak_free(x);
1400 kasan_kfree_large(x, _RET_IP_);
1401}
1402
1403static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1404{
1405 kmemleak_free_recursive(x, s->flags);
1406
1407 /*
1408 * Trouble is that we may no longer disable interrupts in the fast path
1409 * So in order to make the debug calls that expect irqs to be
1410 * disabled we need to disable interrupts temporarily.
1411 */
1412#ifdef CONFIG_LOCKDEP
1413 {
1414 unsigned long flags;
1415
1416 local_irq_save(flags);
1417 debug_check_no_locks_freed(x, s->object_size);
1418 local_irq_restore(flags);
1419 }
1420#endif
1421 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1422 debug_check_no_obj_freed(x, s->object_size);
1423
1424 /* KASAN might put x into memory quarantine, delaying its reuse */
1425 return kasan_slab_free(s, x, _RET_IP_);
1426}
1427
1428static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1429 void **head, void **tail)
1430{
1431
1432 void *object;
1433 void *next = *head;
1434 void *old_tail = *tail ? *tail : *head;
1435 int rsize;
1436
1437 /* Head and tail of the reconstructed freelist */
1438 *head = NULL;
1439 *tail = NULL;
1440
1441 do {
1442 object = next;
1443 next = get_freepointer(s, object);
1444
1445 if (slab_want_init_on_free(s)) {
1446 /*
1447 * Clear the object and the metadata, but don't touch
1448 * the redzone.
1449 */
1450 memset(object, 0, s->object_size);
1451 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1452 : 0;
1453 memset((char *)object + s->inuse, 0,
1454 s->size - s->inuse - rsize);
1455
1456 }
1457 /* If object's reuse doesn't have to be delayed */
1458 if (!slab_free_hook(s, object)) {
1459 /* Move object to the new freelist */
1460 set_freepointer(s, object, *head);
1461 *head = object;
1462 if (!*tail)
1463 *tail = object;
1464 }
1465 } while (object != old_tail);
1466
1467 if (*head == *tail)
1468 *tail = NULL;
1469
1470 return *head != NULL;
1471}
1472
1473static void *setup_object(struct kmem_cache *s, struct page *page,
1474 void *object)
1475{
1476 setup_object_debug(s, page, object);
1477 object = kasan_init_slab_obj(s, object);
1478 if (unlikely(s->ctor)) {
1479 kasan_unpoison_object_data(s, object);
1480 s->ctor(object);
1481 kasan_poison_object_data(s, object);
1482 }
1483 return object;
1484}
1485
1486/*
1487 * Slab allocation and freeing
1488 */
1489static inline struct page *alloc_slab_page(struct kmem_cache *s,
1490 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1491{
1492 struct page *page;
1493 unsigned int order = oo_order(oo);
1494
1495 if (node == NUMA_NO_NODE)
1496 page = alloc_pages(flags, order);
1497 else
1498 page = __alloc_pages_node(node, flags, order);
1499
1500 if (page && charge_slab_page(page, flags, order, s)) {
1501 __free_pages(page, order);
1502 page = NULL;
1503 }
1504
1505 return page;
1506}
1507
1508#ifdef CONFIG_SLAB_FREELIST_RANDOM
1509/* Pre-initialize the random sequence cache */
1510static int init_cache_random_seq(struct kmem_cache *s)
1511{
1512 unsigned int count = oo_objects(s->oo);
1513 int err;
1514
1515 /* Bailout if already initialised */
1516 if (s->random_seq)
1517 return 0;
1518
1519 err = cache_random_seq_create(s, count, GFP_KERNEL);
1520 if (err) {
1521 pr_err("SLUB: Unable to initialize free list for %s\n",
1522 s->name);
1523 return err;
1524 }
1525
1526 /* Transform to an offset on the set of pages */
1527 if (s->random_seq) {
1528 unsigned int i;
1529
1530 for (i = 0; i < count; i++)
1531 s->random_seq[i] *= s->size;
1532 }
1533 return 0;
1534}
1535
1536/* Initialize each random sequence freelist per cache */
1537static void __init init_freelist_randomization(void)
1538{
1539 struct kmem_cache *s;
1540
1541 mutex_lock(&slab_mutex);
1542
1543 list_for_each_entry(s, &slab_caches, list)
1544 init_cache_random_seq(s);
1545
1546 mutex_unlock(&slab_mutex);
1547}
1548
1549/* Get the next entry on the pre-computed freelist randomized */
1550static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1551 unsigned long *pos, void *start,
1552 unsigned long page_limit,
1553 unsigned long freelist_count)
1554{
1555 unsigned int idx;
1556
1557 /*
1558 * If the target page allocation failed, the number of objects on the
1559 * page might be smaller than the usual size defined by the cache.
1560 */
1561 do {
1562 idx = s->random_seq[*pos];
1563 *pos += 1;
1564 if (*pos >= freelist_count)
1565 *pos = 0;
1566 } while (unlikely(idx >= page_limit));
1567
1568 return (char *)start + idx;
1569}
1570
1571/* Shuffle the single linked freelist based on a random pre-computed sequence */
1572static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1573{
1574 void *start;
1575 void *cur;
1576 void *next;
1577 unsigned long idx, pos, page_limit, freelist_count;
1578
1579 if (page->objects < 2 || !s->random_seq)
1580 return false;
1581
1582 freelist_count = oo_objects(s->oo);
1583 pos = get_random_int() % freelist_count;
1584
1585 page_limit = page->objects * s->size;
1586 start = fixup_red_left(s, page_address(page));
1587
1588 /* First entry is used as the base of the freelist */
1589 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1590 freelist_count);
1591 cur = setup_object(s, page, cur);
1592 page->freelist = cur;
1593
1594 for (idx = 1; idx < page->objects; idx++) {
1595 next = next_freelist_entry(s, page, &pos, start, page_limit,
1596 freelist_count);
1597 next = setup_object(s, page, next);
1598 set_freepointer(s, cur, next);
1599 cur = next;
1600 }
1601 set_freepointer(s, cur, NULL);
1602
1603 return true;
1604}
1605#else
1606static inline int init_cache_random_seq(struct kmem_cache *s)
1607{
1608 return 0;
1609}
1610static inline void init_freelist_randomization(void) { }
1611static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1612{
1613 return false;
1614}
1615#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1616
1617static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1618{
1619 struct page *page;
1620 struct kmem_cache_order_objects oo = s->oo;
1621 gfp_t alloc_gfp;
1622 void *start, *p, *next;
1623 int idx;
1624 bool shuffle;
1625
1626 flags &= gfp_allowed_mask;
1627
1628 if (gfpflags_allow_blocking(flags))
1629 local_irq_enable();
1630
1631 flags |= s->allocflags;
1632
1633 /*
1634 * Let the initial higher-order allocation fail under memory pressure
1635 * so we fall-back to the minimum order allocation.
1636 */
1637 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1638 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1639 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1640
1641 page = alloc_slab_page(s, alloc_gfp, node, oo);
1642 if (unlikely(!page)) {
1643 oo = s->min;
1644 alloc_gfp = flags;
1645 /*
1646 * Allocation may have failed due to fragmentation.
1647 * Try a lower order alloc if possible
1648 */
1649 page = alloc_slab_page(s, alloc_gfp, node, oo);
1650 if (unlikely(!page))
1651 goto out;
1652 stat(s, ORDER_FALLBACK);
1653 }
1654
1655 page->objects = oo_objects(oo);
1656
1657 page->slab_cache = s;
1658 __SetPageSlab(page);
1659 if (page_is_pfmemalloc(page))
1660 SetPageSlabPfmemalloc(page);
1661
1662 kasan_poison_slab(page);
1663
1664 start = page_address(page);
1665
1666 setup_page_debug(s, page, start);
1667
1668 shuffle = shuffle_freelist(s, page);
1669
1670 if (!shuffle) {
1671 start = fixup_red_left(s, start);
1672 start = setup_object(s, page, start);
1673 page->freelist = start;
1674 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1675 next = p + s->size;
1676 next = setup_object(s, page, next);
1677 set_freepointer(s, p, next);
1678 p = next;
1679 }
1680 set_freepointer(s, p, NULL);
1681 }
1682
1683 page->inuse = page->objects;
1684 page->frozen = 1;
1685
1686out:
1687 if (gfpflags_allow_blocking(flags))
1688 local_irq_disable();
1689 if (!page)
1690 return NULL;
1691
1692 inc_slabs_node(s, page_to_nid(page), page->objects);
1693
1694 return page;
1695}
1696
1697static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1698{
1699 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1700 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1701 flags &= ~GFP_SLAB_BUG_MASK;
1702 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1703 invalid_mask, &invalid_mask, flags, &flags);
1704 dump_stack();
1705 }
1706
1707 return allocate_slab(s,
1708 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1709}
1710
1711static void __free_slab(struct kmem_cache *s, struct page *page)
1712{
1713 int order = compound_order(page);
1714 int pages = 1 << order;
1715
1716 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1717 void *p;
1718
1719 slab_pad_check(s, page);
1720 for_each_object(p, s, page_address(page),
1721 page->objects)
1722 check_object(s, page, p, SLUB_RED_INACTIVE);
1723 }
1724
1725 __ClearPageSlabPfmemalloc(page);
1726 __ClearPageSlab(page);
1727
1728 page->mapping = NULL;
1729 if (current->reclaim_state)
1730 current->reclaim_state->reclaimed_slab += pages;
1731 uncharge_slab_page(page, order, s);
1732 __free_pages(page, order);
1733}
1734
1735static void rcu_free_slab(struct rcu_head *h)
1736{
1737 struct page *page = container_of(h, struct page, rcu_head);
1738
1739 __free_slab(page->slab_cache, page);
1740}
1741
1742static void free_slab(struct kmem_cache *s, struct page *page)
1743{
1744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1745 call_rcu(&page->rcu_head, rcu_free_slab);
1746 } else
1747 __free_slab(s, page);
1748}
1749
1750static void discard_slab(struct kmem_cache *s, struct page *page)
1751{
1752 dec_slabs_node(s, page_to_nid(page), page->objects);
1753 free_slab(s, page);
1754}
1755
1756/*
1757 * Management of partially allocated slabs.
1758 */
1759static inline void
1760__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1761{
1762 n->nr_partial++;
1763 if (tail == DEACTIVATE_TO_TAIL)
1764 list_add_tail(&page->slab_list, &n->partial);
1765 else
1766 list_add(&page->slab_list, &n->partial);
1767}
1768
1769static inline void add_partial(struct kmem_cache_node *n,
1770 struct page *page, int tail)
1771{
1772 lockdep_assert_held(&n->list_lock);
1773 __add_partial(n, page, tail);
1774}
1775
1776static inline void remove_partial(struct kmem_cache_node *n,
1777 struct page *page)
1778{
1779 lockdep_assert_held(&n->list_lock);
1780 list_del(&page->slab_list);
1781 n->nr_partial--;
1782}
1783
1784/*
1785 * Remove slab from the partial list, freeze it and
1786 * return the pointer to the freelist.
1787 *
1788 * Returns a list of objects or NULL if it fails.
1789 */
1790static inline void *acquire_slab(struct kmem_cache *s,
1791 struct kmem_cache_node *n, struct page *page,
1792 int mode, int *objects)
1793{
1794 void *freelist;
1795 unsigned long counters;
1796 struct page new;
1797
1798 lockdep_assert_held(&n->list_lock);
1799
1800 /*
1801 * Zap the freelist and set the frozen bit.
1802 * The old freelist is the list of objects for the
1803 * per cpu allocation list.
1804 */
1805 freelist = page->freelist;
1806 counters = page->counters;
1807 new.counters = counters;
1808 *objects = new.objects - new.inuse;
1809 if (mode) {
1810 new.inuse = page->objects;
1811 new.freelist = NULL;
1812 } else {
1813 new.freelist = freelist;
1814 }
1815
1816 VM_BUG_ON(new.frozen);
1817 new.frozen = 1;
1818
1819 if (!__cmpxchg_double_slab(s, page,
1820 freelist, counters,
1821 new.freelist, new.counters,
1822 "acquire_slab"))
1823 return NULL;
1824
1825 remove_partial(n, page);
1826 WARN_ON(!freelist);
1827 return freelist;
1828}
1829
1830static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1831static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1832
1833/*
1834 * Try to allocate a partial slab from a specific node.
1835 */
1836static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1837 struct kmem_cache_cpu *c, gfp_t flags)
1838{
1839 struct page *page, *page2;
1840 void *object = NULL;
1841 unsigned int available = 0;
1842 int objects;
1843
1844 /*
1845 * Racy check. If we mistakenly see no partial slabs then we
1846 * just allocate an empty slab. If we mistakenly try to get a
1847 * partial slab and there is none available then get_partials()
1848 * will return NULL.
1849 */
1850 if (!n || !n->nr_partial)
1851 return NULL;
1852
1853 spin_lock(&n->list_lock);
1854 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1855 void *t;
1856
1857 if (!pfmemalloc_match(page, flags))
1858 continue;
1859
1860 t = acquire_slab(s, n, page, object == NULL, &objects);
1861 if (!t)
1862 break;
1863
1864 available += objects;
1865 if (!object) {
1866 c->page = page;
1867 stat(s, ALLOC_FROM_PARTIAL);
1868 object = t;
1869 } else {
1870 put_cpu_partial(s, page, 0);
1871 stat(s, CPU_PARTIAL_NODE);
1872 }
1873 if (!kmem_cache_has_cpu_partial(s)
1874 || available > slub_cpu_partial(s) / 2)
1875 break;
1876
1877 }
1878 spin_unlock(&n->list_lock);
1879 return object;
1880}
1881
1882/*
1883 * Get a page from somewhere. Search in increasing NUMA distances.
1884 */
1885static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1886 struct kmem_cache_cpu *c)
1887{
1888#ifdef CONFIG_NUMA
1889 struct zonelist *zonelist;
1890 struct zoneref *z;
1891 struct zone *zone;
1892 enum zone_type high_zoneidx = gfp_zone(flags);
1893 void *object;
1894 unsigned int cpuset_mems_cookie;
1895
1896 /*
1897 * The defrag ratio allows a configuration of the tradeoffs between
1898 * inter node defragmentation and node local allocations. A lower
1899 * defrag_ratio increases the tendency to do local allocations
1900 * instead of attempting to obtain partial slabs from other nodes.
1901 *
1902 * If the defrag_ratio is set to 0 then kmalloc() always
1903 * returns node local objects. If the ratio is higher then kmalloc()
1904 * may return off node objects because partial slabs are obtained
1905 * from other nodes and filled up.
1906 *
1907 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1908 * (which makes defrag_ratio = 1000) then every (well almost)
1909 * allocation will first attempt to defrag slab caches on other nodes.
1910 * This means scanning over all nodes to look for partial slabs which
1911 * may be expensive if we do it every time we are trying to find a slab
1912 * with available objects.
1913 */
1914 if (!s->remote_node_defrag_ratio ||
1915 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1916 return NULL;
1917
1918 do {
1919 cpuset_mems_cookie = read_mems_allowed_begin();
1920 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1921 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1922 struct kmem_cache_node *n;
1923
1924 n = get_node(s, zone_to_nid(zone));
1925
1926 if (n && cpuset_zone_allowed(zone, flags) &&
1927 n->nr_partial > s->min_partial) {
1928 object = get_partial_node(s, n, c, flags);
1929 if (object) {
1930 /*
1931 * Don't check read_mems_allowed_retry()
1932 * here - if mems_allowed was updated in
1933 * parallel, that was a harmless race
1934 * between allocation and the cpuset
1935 * update
1936 */
1937 return object;
1938 }
1939 }
1940 }
1941 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1942#endif /* CONFIG_NUMA */
1943 return NULL;
1944}
1945
1946/*
1947 * Get a partial page, lock it and return it.
1948 */
1949static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1950 struct kmem_cache_cpu *c)
1951{
1952 void *object;
1953 int searchnode = node;
1954
1955 if (node == NUMA_NO_NODE)
1956 searchnode = numa_mem_id();
1957 else if (!node_present_pages(node))
1958 searchnode = node_to_mem_node(node);
1959
1960 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1961 if (object || node != NUMA_NO_NODE)
1962 return object;
1963
1964 return get_any_partial(s, flags, c);
1965}
1966
1967#ifdef CONFIG_PREEMPT
1968/*
1969 * Calculate the next globally unique transaction for disambiguiation
1970 * during cmpxchg. The transactions start with the cpu number and are then
1971 * incremented by CONFIG_NR_CPUS.
1972 */
1973#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1974#else
1975/*
1976 * No preemption supported therefore also no need to check for
1977 * different cpus.
1978 */
1979#define TID_STEP 1
1980#endif
1981
1982static inline unsigned long next_tid(unsigned long tid)
1983{
1984 return tid + TID_STEP;
1985}
1986
1987#ifdef SLUB_DEBUG_CMPXCHG
1988static inline unsigned int tid_to_cpu(unsigned long tid)
1989{
1990 return tid % TID_STEP;
1991}
1992
1993static inline unsigned long tid_to_event(unsigned long tid)
1994{
1995 return tid / TID_STEP;
1996}
1997#endif
1998
1999static inline unsigned int init_tid(int cpu)
2000{
2001 return cpu;
2002}
2003
2004static inline void note_cmpxchg_failure(const char *n,
2005 const struct kmem_cache *s, unsigned long tid)
2006{
2007#ifdef SLUB_DEBUG_CMPXCHG
2008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2009
2010 pr_info("%s %s: cmpxchg redo ", n, s->name);
2011
2012#ifdef CONFIG_PREEMPT
2013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2014 pr_warn("due to cpu change %d -> %d\n",
2015 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2016 else
2017#endif
2018 if (tid_to_event(tid) != tid_to_event(actual_tid))
2019 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2020 tid_to_event(tid), tid_to_event(actual_tid));
2021 else
2022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2023 actual_tid, tid, next_tid(tid));
2024#endif
2025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2026}
2027
2028static void init_kmem_cache_cpus(struct kmem_cache *s)
2029{
2030 int cpu;
2031
2032 for_each_possible_cpu(cpu)
2033 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2034}
2035
2036/*
2037 * Remove the cpu slab
2038 */
2039static void deactivate_slab(struct kmem_cache *s, struct page *page,
2040 void *freelist, struct kmem_cache_cpu *c)
2041{
2042 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2043 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2044 int lock = 0;
2045 enum slab_modes l = M_NONE, m = M_NONE;
2046 void *nextfree;
2047 int tail = DEACTIVATE_TO_HEAD;
2048 struct page new;
2049 struct page old;
2050
2051 if (page->freelist) {
2052 stat(s, DEACTIVATE_REMOTE_FREES);
2053 tail = DEACTIVATE_TO_TAIL;
2054 }
2055
2056 /*
2057 * Stage one: Free all available per cpu objects back
2058 * to the page freelist while it is still frozen. Leave the
2059 * last one.
2060 *
2061 * There is no need to take the list->lock because the page
2062 * is still frozen.
2063 */
2064 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2065 void *prior;
2066 unsigned long counters;
2067
2068 do {
2069 prior = page->freelist;
2070 counters = page->counters;
2071 set_freepointer(s, freelist, prior);
2072 new.counters = counters;
2073 new.inuse--;
2074 VM_BUG_ON(!new.frozen);
2075
2076 } while (!__cmpxchg_double_slab(s, page,
2077 prior, counters,
2078 freelist, new.counters,
2079 "drain percpu freelist"));
2080
2081 freelist = nextfree;
2082 }
2083
2084 /*
2085 * Stage two: Ensure that the page is unfrozen while the
2086 * list presence reflects the actual number of objects
2087 * during unfreeze.
2088 *
2089 * We setup the list membership and then perform a cmpxchg
2090 * with the count. If there is a mismatch then the page
2091 * is not unfrozen but the page is on the wrong list.
2092 *
2093 * Then we restart the process which may have to remove
2094 * the page from the list that we just put it on again
2095 * because the number of objects in the slab may have
2096 * changed.
2097 */
2098redo:
2099
2100 old.freelist = page->freelist;
2101 old.counters = page->counters;
2102 VM_BUG_ON(!old.frozen);
2103
2104 /* Determine target state of the slab */
2105 new.counters = old.counters;
2106 if (freelist) {
2107 new.inuse--;
2108 set_freepointer(s, freelist, old.freelist);
2109 new.freelist = freelist;
2110 } else
2111 new.freelist = old.freelist;
2112
2113 new.frozen = 0;
2114
2115 if (!new.inuse && n->nr_partial >= s->min_partial)
2116 m = M_FREE;
2117 else if (new.freelist) {
2118 m = M_PARTIAL;
2119 if (!lock) {
2120 lock = 1;
2121 /*
2122 * Taking the spinlock removes the possibility
2123 * that acquire_slab() will see a slab page that
2124 * is frozen
2125 */
2126 spin_lock(&n->list_lock);
2127 }
2128 } else {
2129 m = M_FULL;
2130 if (kmem_cache_debug(s) && !lock) {
2131 lock = 1;
2132 /*
2133 * This also ensures that the scanning of full
2134 * slabs from diagnostic functions will not see
2135 * any frozen slabs.
2136 */
2137 spin_lock(&n->list_lock);
2138 }
2139 }
2140
2141 if (l != m) {
2142 if (l == M_PARTIAL)
2143 remove_partial(n, page);
2144 else if (l == M_FULL)
2145 remove_full(s, n, page);
2146
2147 if (m == M_PARTIAL)
2148 add_partial(n, page, tail);
2149 else if (m == M_FULL)
2150 add_full(s, n, page);
2151 }
2152
2153 l = m;
2154 if (!__cmpxchg_double_slab(s, page,
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2159
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2162
2163 if (m == M_PARTIAL)
2164 stat(s, tail);
2165 else if (m == M_FULL)
2166 stat(s, DEACTIVATE_FULL);
2167 else if (m == M_FREE) {
2168 stat(s, DEACTIVATE_EMPTY);
2169 discard_slab(s, page);
2170 stat(s, FREE_SLAB);
2171 }
2172
2173 c->page = NULL;
2174 c->freelist = NULL;
2175}
2176
2177/*
2178 * Unfreeze all the cpu partial slabs.
2179 *
2180 * This function must be called with interrupts disabled
2181 * for the cpu using c (or some other guarantee must be there
2182 * to guarantee no concurrent accesses).
2183 */
2184static void unfreeze_partials(struct kmem_cache *s,
2185 struct kmem_cache_cpu *c)
2186{
2187#ifdef CONFIG_SLUB_CPU_PARTIAL
2188 struct kmem_cache_node *n = NULL, *n2 = NULL;
2189 struct page *page, *discard_page = NULL;
2190
2191 while ((page = c->partial)) {
2192 struct page new;
2193 struct page old;
2194
2195 c->partial = page->next;
2196
2197 n2 = get_node(s, page_to_nid(page));
2198 if (n != n2) {
2199 if (n)
2200 spin_unlock(&n->list_lock);
2201
2202 n = n2;
2203 spin_lock(&n->list_lock);
2204 }
2205
2206 do {
2207
2208 old.freelist = page->freelist;
2209 old.counters = page->counters;
2210 VM_BUG_ON(!old.frozen);
2211
2212 new.counters = old.counters;
2213 new.freelist = old.freelist;
2214
2215 new.frozen = 0;
2216
2217 } while (!__cmpxchg_double_slab(s, page,
2218 old.freelist, old.counters,
2219 new.freelist, new.counters,
2220 "unfreezing slab"));
2221
2222 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2223 page->next = discard_page;
2224 discard_page = page;
2225 } else {
2226 add_partial(n, page, DEACTIVATE_TO_TAIL);
2227 stat(s, FREE_ADD_PARTIAL);
2228 }
2229 }
2230
2231 if (n)
2232 spin_unlock(&n->list_lock);
2233
2234 while (discard_page) {
2235 page = discard_page;
2236 discard_page = discard_page->next;
2237
2238 stat(s, DEACTIVATE_EMPTY);
2239 discard_slab(s, page);
2240 stat(s, FREE_SLAB);
2241 }
2242#endif /* CONFIG_SLUB_CPU_PARTIAL */
2243}
2244
2245/*
2246 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2247 * partial page slot if available.
2248 *
2249 * If we did not find a slot then simply move all the partials to the
2250 * per node partial list.
2251 */
2252static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2253{
2254#ifdef CONFIG_SLUB_CPU_PARTIAL
2255 struct page *oldpage;
2256 int pages;
2257 int pobjects;
2258
2259 preempt_disable();
2260 do {
2261 pages = 0;
2262 pobjects = 0;
2263 oldpage = this_cpu_read(s->cpu_slab->partial);
2264
2265 if (oldpage) {
2266 pobjects = oldpage->pobjects;
2267 pages = oldpage->pages;
2268 if (drain && pobjects > s->cpu_partial) {
2269 unsigned long flags;
2270 /*
2271 * partial array is full. Move the existing
2272 * set to the per node partial list.
2273 */
2274 local_irq_save(flags);
2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 local_irq_restore(flags);
2277 oldpage = NULL;
2278 pobjects = 0;
2279 pages = 0;
2280 stat(s, CPU_PARTIAL_DRAIN);
2281 }
2282 }
2283
2284 pages++;
2285 pobjects += page->objects - page->inuse;
2286
2287 page->pages = pages;
2288 page->pobjects = pobjects;
2289 page->next = oldpage;
2290
2291 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2292 != oldpage);
2293 if (unlikely(!s->cpu_partial)) {
2294 unsigned long flags;
2295
2296 local_irq_save(flags);
2297 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2298 local_irq_restore(flags);
2299 }
2300 preempt_enable();
2301#endif /* CONFIG_SLUB_CPU_PARTIAL */
2302}
2303
2304static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2305{
2306 stat(s, CPUSLAB_FLUSH);
2307 deactivate_slab(s, c->page, c->freelist, c);
2308
2309 c->tid = next_tid(c->tid);
2310}
2311
2312/*
2313 * Flush cpu slab.
2314 *
2315 * Called from IPI handler with interrupts disabled.
2316 */
2317static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2318{
2319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2320
2321 if (c->page)
2322 flush_slab(s, c);
2323
2324 unfreeze_partials(s, c);
2325}
2326
2327static void flush_cpu_slab(void *d)
2328{
2329 struct kmem_cache *s = d;
2330
2331 __flush_cpu_slab(s, smp_processor_id());
2332}
2333
2334static bool has_cpu_slab(int cpu, void *info)
2335{
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338
2339 return c->page || slub_percpu_partial(c);
2340}
2341
2342static void flush_all(struct kmem_cache *s)
2343{
2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2345}
2346
2347/*
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2350 */
2351static int slub_cpu_dead(unsigned int cpu)
2352{
2353 struct kmem_cache *s;
2354 unsigned long flags;
2355
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2361 }
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2364}
2365
2366/*
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2369 */
2370static inline int node_match(struct page *page, int node)
2371{
2372#ifdef CONFIG_NUMA
2373 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2374 return 0;
2375#endif
2376 return 1;
2377}
2378
2379#ifdef CONFIG_SLUB_DEBUG
2380static int count_free(struct page *page)
2381{
2382 return page->objects - page->inuse;
2383}
2384
2385static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386{
2387 return atomic_long_read(&n->total_objects);
2388}
2389#endif /* CONFIG_SLUB_DEBUG */
2390
2391#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2392static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2394{
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2398
2399 spin_lock_irqsave(&n->list_lock, flags);
2400 list_for_each_entry(page, &n->partial, slab_list)
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2404}
2405#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2406
2407static noinline void
2408slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409{
2410#ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
2413 int node;
2414 struct kmem_cache_node *n;
2415
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2418
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
2421 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
2424
2425 if (oo_order(s->min) > get_order(s->object_size))
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
2428
2429 for_each_kmem_cache_node(s, node, n) {
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2433
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
2437
2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2439 node, nr_slabs, nr_objs, nr_free);
2440 }
2441#endif
2442}
2443
2444static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2446{
2447 void *freelist;
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
2450
2451 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2452
2453 freelist = get_partial(s, flags, node, c);
2454
2455 if (freelist)
2456 return freelist;
2457
2458 page = new_slab(s, flags, node);
2459 if (page) {
2460 c = raw_cpu_ptr(s->cpu_slab);
2461 if (c->page)
2462 flush_slab(s, c);
2463
2464 /*
2465 * No other reference to the page yet so we can
2466 * muck around with it freely without cmpxchg
2467 */
2468 freelist = page->freelist;
2469 page->freelist = NULL;
2470
2471 stat(s, ALLOC_SLAB);
2472 c->page = page;
2473 *pc = c;
2474 }
2475
2476 return freelist;
2477}
2478
2479static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480{
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2483
2484 return true;
2485}
2486
2487/*
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
2490 *
2491 * The page is still frozen if the return value is not NULL.
2492 *
2493 * If this function returns NULL then the page has been unfrozen.
2494 *
2495 * This function must be called with interrupt disabled.
2496 */
2497static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498{
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2502
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
2506
2507 new.counters = counters;
2508 VM_BUG_ON(!new.frozen);
2509
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2512
2513 } while (!__cmpxchg_double_slab(s, page,
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2517
2518 return freelist;
2519}
2520
2521/*
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2524 *
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
2528 *
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
2532 *
2533 * And if we were unable to get a new slab from the partial slab lists then
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
2536 *
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
2539 */
2540static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541 unsigned long addr, struct kmem_cache_cpu *c)
2542{
2543 void *freelist;
2544 struct page *page;
2545
2546 page = c->page;
2547 if (!page)
2548 goto new_slab;
2549redo:
2550
2551 if (unlikely(!node_match(page, node))) {
2552 int searchnode = node;
2553
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2556
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
2559 deactivate_slab(s, page, c->freelist, c);
2560 goto new_slab;
2561 }
2562 }
2563
2564 /*
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2568 */
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570 deactivate_slab(s, page, c->freelist, c);
2571 goto new_slab;
2572 }
2573
2574 /* must check again c->freelist in case of cpu migration or IRQ */
2575 freelist = c->freelist;
2576 if (freelist)
2577 goto load_freelist;
2578
2579 freelist = get_freelist(s, page);
2580
2581 if (!freelist) {
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
2584 goto new_slab;
2585 }
2586
2587 stat(s, ALLOC_REFILL);
2588
2589load_freelist:
2590 /*
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2594 */
2595 VM_BUG_ON(!c->page->frozen);
2596 c->freelist = get_freepointer(s, freelist);
2597 c->tid = next_tid(c->tid);
2598 return freelist;
2599
2600new_slab:
2601
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
2605 stat(s, CPU_PARTIAL_ALLOC);
2606 goto redo;
2607 }
2608
2609 freelist = new_slab_objects(s, gfpflags, node, &c);
2610
2611 if (unlikely(!freelist)) {
2612 slab_out_of_memory(s, gfpflags, node);
2613 return NULL;
2614 }
2615
2616 page = c->page;
2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618 goto load_freelist;
2619
2620 /* Only entered in the debug case */
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
2623 goto new_slab; /* Slab failed checks. Next slab needed */
2624
2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626 return freelist;
2627}
2628
2629/*
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2632 */
2633static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2635{
2636 void *p;
2637 unsigned long flags;
2638
2639 local_irq_save(flags);
2640#ifdef CONFIG_PREEMPT
2641 /*
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2645 */
2646 c = this_cpu_ptr(s->cpu_slab);
2647#endif
2648
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2652}
2653
2654/*
2655 * If the object has been wiped upon free, make sure it's fully initialized by
2656 * zeroing out freelist pointer.
2657 */
2658static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2659 void *obj)
2660{
2661 if (unlikely(slab_want_init_on_free(s)) && obj)
2662 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2663}
2664
2665/*
2666 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2667 * have the fastpath folded into their functions. So no function call
2668 * overhead for requests that can be satisfied on the fastpath.
2669 *
2670 * The fastpath works by first checking if the lockless freelist can be used.
2671 * If not then __slab_alloc is called for slow processing.
2672 *
2673 * Otherwise we can simply pick the next object from the lockless free list.
2674 */
2675static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2676 gfp_t gfpflags, int node, unsigned long addr)
2677{
2678 void *object;
2679 struct kmem_cache_cpu *c;
2680 struct page *page;
2681 unsigned long tid;
2682
2683 s = slab_pre_alloc_hook(s, gfpflags);
2684 if (!s)
2685 return NULL;
2686redo:
2687 /*
2688 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2689 * enabled. We may switch back and forth between cpus while
2690 * reading from one cpu area. That does not matter as long
2691 * as we end up on the original cpu again when doing the cmpxchg.
2692 *
2693 * We should guarantee that tid and kmem_cache are retrieved on
2694 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2695 * to check if it is matched or not.
2696 */
2697 do {
2698 tid = this_cpu_read(s->cpu_slab->tid);
2699 c = raw_cpu_ptr(s->cpu_slab);
2700 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2701 unlikely(tid != READ_ONCE(c->tid)));
2702
2703 /*
2704 * Irqless object alloc/free algorithm used here depends on sequence
2705 * of fetching cpu_slab's data. tid should be fetched before anything
2706 * on c to guarantee that object and page associated with previous tid
2707 * won't be used with current tid. If we fetch tid first, object and
2708 * page could be one associated with next tid and our alloc/free
2709 * request will be failed. In this case, we will retry. So, no problem.
2710 */
2711 barrier();
2712
2713 /*
2714 * The transaction ids are globally unique per cpu and per operation on
2715 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2716 * occurs on the right processor and that there was no operation on the
2717 * linked list in between.
2718 */
2719
2720 object = c->freelist;
2721 page = c->page;
2722 if (unlikely(!object || !node_match(page, node))) {
2723 object = __slab_alloc(s, gfpflags, node, addr, c);
2724 stat(s, ALLOC_SLOWPATH);
2725 } else {
2726 void *next_object = get_freepointer_safe(s, object);
2727
2728 /*
2729 * The cmpxchg will only match if there was no additional
2730 * operation and if we are on the right processor.
2731 *
2732 * The cmpxchg does the following atomically (without lock
2733 * semantics!)
2734 * 1. Relocate first pointer to the current per cpu area.
2735 * 2. Verify that tid and freelist have not been changed
2736 * 3. If they were not changed replace tid and freelist
2737 *
2738 * Since this is without lock semantics the protection is only
2739 * against code executing on this cpu *not* from access by
2740 * other cpus.
2741 */
2742 if (unlikely(!this_cpu_cmpxchg_double(
2743 s->cpu_slab->freelist, s->cpu_slab->tid,
2744 object, tid,
2745 next_object, next_tid(tid)))) {
2746
2747 note_cmpxchg_failure("slab_alloc", s, tid);
2748 goto redo;
2749 }
2750 prefetch_freepointer(s, next_object);
2751 stat(s, ALLOC_FASTPATH);
2752 }
2753
2754 maybe_wipe_obj_freeptr(s, object);
2755
2756 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2757 memset(object, 0, s->object_size);
2758
2759 slab_post_alloc_hook(s, gfpflags, 1, &object);
2760
2761 return object;
2762}
2763
2764static __always_inline void *slab_alloc(struct kmem_cache *s,
2765 gfp_t gfpflags, unsigned long addr)
2766{
2767 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2768}
2769
2770void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2771{
2772 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2773
2774 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2775 s->size, gfpflags);
2776
2777 return ret;
2778}
2779EXPORT_SYMBOL(kmem_cache_alloc);
2780
2781#ifdef CONFIG_TRACING
2782void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2783{
2784 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2785 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2786 ret = kasan_kmalloc(s, ret, size, gfpflags);
2787 return ret;
2788}
2789EXPORT_SYMBOL(kmem_cache_alloc_trace);
2790#endif
2791
2792#ifdef CONFIG_NUMA
2793void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2794{
2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2796
2797 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2798 s->object_size, s->size, gfpflags, node);
2799
2800 return ret;
2801}
2802EXPORT_SYMBOL(kmem_cache_alloc_node);
2803
2804#ifdef CONFIG_TRACING
2805void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2806 gfp_t gfpflags,
2807 int node, size_t size)
2808{
2809 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2810
2811 trace_kmalloc_node(_RET_IP_, ret,
2812 size, s->size, gfpflags, node);
2813
2814 ret = kasan_kmalloc(s, ret, size, gfpflags);
2815 return ret;
2816}
2817EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2818#endif
2819#endif /* CONFIG_NUMA */
2820
2821/*
2822 * Slow path handling. This may still be called frequently since objects
2823 * have a longer lifetime than the cpu slabs in most processing loads.
2824 *
2825 * So we still attempt to reduce cache line usage. Just take the slab
2826 * lock and free the item. If there is no additional partial page
2827 * handling required then we can return immediately.
2828 */
2829static void __slab_free(struct kmem_cache *s, struct page *page,
2830 void *head, void *tail, int cnt,
2831 unsigned long addr)
2832
2833{
2834 void *prior;
2835 int was_frozen;
2836 struct page new;
2837 unsigned long counters;
2838 struct kmem_cache_node *n = NULL;
2839 unsigned long uninitialized_var(flags);
2840
2841 stat(s, FREE_SLOWPATH);
2842
2843 if (kmem_cache_debug(s) &&
2844 !free_debug_processing(s, page, head, tail, cnt, addr))
2845 return;
2846
2847 do {
2848 if (unlikely(n)) {
2849 spin_unlock_irqrestore(&n->list_lock, flags);
2850 n = NULL;
2851 }
2852 prior = page->freelist;
2853 counters = page->counters;
2854 set_freepointer(s, tail, prior);
2855 new.counters = counters;
2856 was_frozen = new.frozen;
2857 new.inuse -= cnt;
2858 if ((!new.inuse || !prior) && !was_frozen) {
2859
2860 if (kmem_cache_has_cpu_partial(s) && !prior) {
2861
2862 /*
2863 * Slab was on no list before and will be
2864 * partially empty
2865 * We can defer the list move and instead
2866 * freeze it.
2867 */
2868 new.frozen = 1;
2869
2870 } else { /* Needs to be taken off a list */
2871
2872 n = get_node(s, page_to_nid(page));
2873 /*
2874 * Speculatively acquire the list_lock.
2875 * If the cmpxchg does not succeed then we may
2876 * drop the list_lock without any processing.
2877 *
2878 * Otherwise the list_lock will synchronize with
2879 * other processors updating the list of slabs.
2880 */
2881 spin_lock_irqsave(&n->list_lock, flags);
2882
2883 }
2884 }
2885
2886 } while (!cmpxchg_double_slab(s, page,
2887 prior, counters,
2888 head, new.counters,
2889 "__slab_free"));
2890
2891 if (likely(!n)) {
2892
2893 /*
2894 * If we just froze the page then put it onto the
2895 * per cpu partial list.
2896 */
2897 if (new.frozen && !was_frozen) {
2898 put_cpu_partial(s, page, 1);
2899 stat(s, CPU_PARTIAL_FREE);
2900 }
2901 /*
2902 * The list lock was not taken therefore no list
2903 * activity can be necessary.
2904 */
2905 if (was_frozen)
2906 stat(s, FREE_FROZEN);
2907 return;
2908 }
2909
2910 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2911 goto slab_empty;
2912
2913 /*
2914 * Objects left in the slab. If it was not on the partial list before
2915 * then add it.
2916 */
2917 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2918 remove_full(s, n, page);
2919 add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 stat(s, FREE_ADD_PARTIAL);
2921 }
2922 spin_unlock_irqrestore(&n->list_lock, flags);
2923 return;
2924
2925slab_empty:
2926 if (prior) {
2927 /*
2928 * Slab on the partial list.
2929 */
2930 remove_partial(n, page);
2931 stat(s, FREE_REMOVE_PARTIAL);
2932 } else {
2933 /* Slab must be on the full list */
2934 remove_full(s, n, page);
2935 }
2936
2937 spin_unlock_irqrestore(&n->list_lock, flags);
2938 stat(s, FREE_SLAB);
2939 discard_slab(s, page);
2940}
2941
2942/*
2943 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944 * can perform fastpath freeing without additional function calls.
2945 *
2946 * The fastpath is only possible if we are freeing to the current cpu slab
2947 * of this processor. This typically the case if we have just allocated
2948 * the item before.
2949 *
2950 * If fastpath is not possible then fall back to __slab_free where we deal
2951 * with all sorts of special processing.
2952 *
2953 * Bulk free of a freelist with several objects (all pointing to the
2954 * same page) possible by specifying head and tail ptr, plus objects
2955 * count (cnt). Bulk free indicated by tail pointer being set.
2956 */
2957static __always_inline void do_slab_free(struct kmem_cache *s,
2958 struct page *page, void *head, void *tail,
2959 int cnt, unsigned long addr)
2960{
2961 void *tail_obj = tail ? : head;
2962 struct kmem_cache_cpu *c;
2963 unsigned long tid;
2964redo:
2965 /*
2966 * Determine the currently cpus per cpu slab.
2967 * The cpu may change afterward. However that does not matter since
2968 * data is retrieved via this pointer. If we are on the same cpu
2969 * during the cmpxchg then the free will succeed.
2970 */
2971 do {
2972 tid = this_cpu_read(s->cpu_slab->tid);
2973 c = raw_cpu_ptr(s->cpu_slab);
2974 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 unlikely(tid != READ_ONCE(c->tid)));
2976
2977 /* Same with comment on barrier() in slab_alloc_node() */
2978 barrier();
2979
2980 if (likely(page == c->page)) {
2981 set_freepointer(s, tail_obj, c->freelist);
2982
2983 if (unlikely(!this_cpu_cmpxchg_double(
2984 s->cpu_slab->freelist, s->cpu_slab->tid,
2985 c->freelist, tid,
2986 head, next_tid(tid)))) {
2987
2988 note_cmpxchg_failure("slab_free", s, tid);
2989 goto redo;
2990 }
2991 stat(s, FREE_FASTPATH);
2992 } else
2993 __slab_free(s, page, head, tail_obj, cnt, addr);
2994
2995}
2996
2997static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 void *head, void *tail, int cnt,
2999 unsigned long addr)
3000{
3001 /*
3002 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 * to remove objects, whose reuse must be delayed.
3004 */
3005 if (slab_free_freelist_hook(s, &head, &tail))
3006 do_slab_free(s, page, head, tail, cnt, addr);
3007}
3008
3009#ifdef CONFIG_KASAN_GENERIC
3010void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3011{
3012 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3013}
3014#endif
3015
3016void kmem_cache_free(struct kmem_cache *s, void *x)
3017{
3018 s = cache_from_obj(s, x);
3019 if (!s)
3020 return;
3021 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022 trace_kmem_cache_free(_RET_IP_, x);
3023}
3024EXPORT_SYMBOL(kmem_cache_free);
3025
3026struct detached_freelist {
3027 struct page *page;
3028 void *tail;
3029 void *freelist;
3030 int cnt;
3031 struct kmem_cache *s;
3032};
3033
3034/*
3035 * This function progressively scans the array with free objects (with
3036 * a limited look ahead) and extract objects belonging to the same
3037 * page. It builds a detached freelist directly within the given
3038 * page/objects. This can happen without any need for
3039 * synchronization, because the objects are owned by running process.
3040 * The freelist is build up as a single linked list in the objects.
3041 * The idea is, that this detached freelist can then be bulk
3042 * transferred to the real freelist(s), but only requiring a single
3043 * synchronization primitive. Look ahead in the array is limited due
3044 * to performance reasons.
3045 */
3046static inline
3047int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 void **p, struct detached_freelist *df)
3049{
3050 size_t first_skipped_index = 0;
3051 int lookahead = 3;
3052 void *object;
3053 struct page *page;
3054
3055 /* Always re-init detached_freelist */
3056 df->page = NULL;
3057
3058 do {
3059 object = p[--size];
3060 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061 } while (!object && size);
3062
3063 if (!object)
3064 return 0;
3065
3066 page = virt_to_head_page(object);
3067 if (!s) {
3068 /* Handle kalloc'ed objects */
3069 if (unlikely(!PageSlab(page))) {
3070 BUG_ON(!PageCompound(page));
3071 kfree_hook(object);
3072 __free_pages(page, compound_order(page));
3073 p[size] = NULL; /* mark object processed */
3074 return size;
3075 }
3076 /* Derive kmem_cache from object */
3077 df->s = page->slab_cache;
3078 } else {
3079 df->s = cache_from_obj(s, object); /* Support for memcg */
3080 }
3081
3082 /* Start new detached freelist */
3083 df->page = page;
3084 set_freepointer(df->s, object, NULL);
3085 df->tail = object;
3086 df->freelist = object;
3087 p[size] = NULL; /* mark object processed */
3088 df->cnt = 1;
3089
3090 while (size) {
3091 object = p[--size];
3092 if (!object)
3093 continue; /* Skip processed objects */
3094
3095 /* df->page is always set at this point */
3096 if (df->page == virt_to_head_page(object)) {
3097 /* Opportunity build freelist */
3098 set_freepointer(df->s, object, df->freelist);
3099 df->freelist = object;
3100 df->cnt++;
3101 p[size] = NULL; /* mark object processed */
3102
3103 continue;
3104 }
3105
3106 /* Limit look ahead search */
3107 if (!--lookahead)
3108 break;
3109
3110 if (!first_skipped_index)
3111 first_skipped_index = size + 1;
3112 }
3113
3114 return first_skipped_index;
3115}
3116
3117/* Note that interrupts must be enabled when calling this function. */
3118void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3119{
3120 if (WARN_ON(!size))
3121 return;
3122
3123 do {
3124 struct detached_freelist df;
3125
3126 size = build_detached_freelist(s, size, p, &df);
3127 if (!df.page)
3128 continue;
3129
3130 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131 } while (likely(size));
3132}
3133EXPORT_SYMBOL(kmem_cache_free_bulk);
3134
3135/* Note that interrupts must be enabled when calling this function. */
3136int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 void **p)
3138{
3139 struct kmem_cache_cpu *c;
3140 int i;
3141
3142 /* memcg and kmem_cache debug support */
3143 s = slab_pre_alloc_hook(s, flags);
3144 if (unlikely(!s))
3145 return false;
3146 /*
3147 * Drain objects in the per cpu slab, while disabling local
3148 * IRQs, which protects against PREEMPT and interrupts
3149 * handlers invoking normal fastpath.
3150 */
3151 local_irq_disable();
3152 c = this_cpu_ptr(s->cpu_slab);
3153
3154 for (i = 0; i < size; i++) {
3155 void *object = c->freelist;
3156
3157 if (unlikely(!object)) {
3158 /*
3159 * Invoking slow path likely have side-effect
3160 * of re-populating per CPU c->freelist
3161 */
3162 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163 _RET_IP_, c);
3164 if (unlikely(!p[i]))
3165 goto error;
3166
3167 c = this_cpu_ptr(s->cpu_slab);
3168 maybe_wipe_obj_freeptr(s, p[i]);
3169
3170 continue; /* goto for-loop */
3171 }
3172 c->freelist = get_freepointer(s, object);
3173 p[i] = object;
3174 maybe_wipe_obj_freeptr(s, p[i]);
3175 }
3176 c->tid = next_tid(c->tid);
3177 local_irq_enable();
3178
3179 /* Clear memory outside IRQ disabled fastpath loop */
3180 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3181 int j;
3182
3183 for (j = 0; j < i; j++)
3184 memset(p[j], 0, s->object_size);
3185 }
3186
3187 /* memcg and kmem_cache debug support */
3188 slab_post_alloc_hook(s, flags, size, p);
3189 return i;
3190error:
3191 local_irq_enable();
3192 slab_post_alloc_hook(s, flags, i, p);
3193 __kmem_cache_free_bulk(s, i, p);
3194 return 0;
3195}
3196EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3197
3198
3199/*
3200 * Object placement in a slab is made very easy because we always start at
3201 * offset 0. If we tune the size of the object to the alignment then we can
3202 * get the required alignment by putting one properly sized object after
3203 * another.
3204 *
3205 * Notice that the allocation order determines the sizes of the per cpu
3206 * caches. Each processor has always one slab available for allocations.
3207 * Increasing the allocation order reduces the number of times that slabs
3208 * must be moved on and off the partial lists and is therefore a factor in
3209 * locking overhead.
3210 */
3211
3212/*
3213 * Mininum / Maximum order of slab pages. This influences locking overhead
3214 * and slab fragmentation. A higher order reduces the number of partial slabs
3215 * and increases the number of allocations possible without having to
3216 * take the list_lock.
3217 */
3218static unsigned int slub_min_order;
3219static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3220static unsigned int slub_min_objects;
3221
3222/*
3223 * Calculate the order of allocation given an slab object size.
3224 *
3225 * The order of allocation has significant impact on performance and other
3226 * system components. Generally order 0 allocations should be preferred since
3227 * order 0 does not cause fragmentation in the page allocator. Larger objects
3228 * be problematic to put into order 0 slabs because there may be too much
3229 * unused space left. We go to a higher order if more than 1/16th of the slab
3230 * would be wasted.
3231 *
3232 * In order to reach satisfactory performance we must ensure that a minimum
3233 * number of objects is in one slab. Otherwise we may generate too much
3234 * activity on the partial lists which requires taking the list_lock. This is
3235 * less a concern for large slabs though which are rarely used.
3236 *
3237 * slub_max_order specifies the order where we begin to stop considering the
3238 * number of objects in a slab as critical. If we reach slub_max_order then
3239 * we try to keep the page order as low as possible. So we accept more waste
3240 * of space in favor of a small page order.
3241 *
3242 * Higher order allocations also allow the placement of more objects in a
3243 * slab and thereby reduce object handling overhead. If the user has
3244 * requested a higher mininum order then we start with that one instead of
3245 * the smallest order which will fit the object.
3246 */
3247static inline unsigned int slab_order(unsigned int size,
3248 unsigned int min_objects, unsigned int max_order,
3249 unsigned int fract_leftover)
3250{
3251 unsigned int min_order = slub_min_order;
3252 unsigned int order;
3253
3254 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3255 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3256
3257 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3258 order <= max_order; order++) {
3259
3260 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3261 unsigned int rem;
3262
3263 rem = slab_size % size;
3264
3265 if (rem <= slab_size / fract_leftover)
3266 break;
3267 }
3268
3269 return order;
3270}
3271
3272static inline int calculate_order(unsigned int size)
3273{
3274 unsigned int order;
3275 unsigned int min_objects;
3276 unsigned int max_objects;
3277
3278 /*
3279 * Attempt to find best configuration for a slab. This
3280 * works by first attempting to generate a layout with
3281 * the best configuration and backing off gradually.
3282 *
3283 * First we increase the acceptable waste in a slab. Then
3284 * we reduce the minimum objects required in a slab.
3285 */
3286 min_objects = slub_min_objects;
3287 if (!min_objects)
3288 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3289 max_objects = order_objects(slub_max_order, size);
3290 min_objects = min(min_objects, max_objects);
3291
3292 while (min_objects > 1) {
3293 unsigned int fraction;
3294
3295 fraction = 16;
3296 while (fraction >= 4) {
3297 order = slab_order(size, min_objects,
3298 slub_max_order, fraction);
3299 if (order <= slub_max_order)
3300 return order;
3301 fraction /= 2;
3302 }
3303 min_objects--;
3304 }
3305
3306 /*
3307 * We were unable to place multiple objects in a slab. Now
3308 * lets see if we can place a single object there.
3309 */
3310 order = slab_order(size, 1, slub_max_order, 1);
3311 if (order <= slub_max_order)
3312 return order;
3313
3314 /*
3315 * Doh this slab cannot be placed using slub_max_order.
3316 */
3317 order = slab_order(size, 1, MAX_ORDER, 1);
3318 if (order < MAX_ORDER)
3319 return order;
3320 return -ENOSYS;
3321}
3322
3323static void
3324init_kmem_cache_node(struct kmem_cache_node *n)
3325{
3326 n->nr_partial = 0;
3327 spin_lock_init(&n->list_lock);
3328 INIT_LIST_HEAD(&n->partial);
3329#ifdef CONFIG_SLUB_DEBUG
3330 atomic_long_set(&n->nr_slabs, 0);
3331 atomic_long_set(&n->total_objects, 0);
3332 INIT_LIST_HEAD(&n->full);
3333#endif
3334}
3335
3336static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3337{
3338 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3339 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3340
3341 /*
3342 * Must align to double word boundary for the double cmpxchg
3343 * instructions to work; see __pcpu_double_call_return_bool().
3344 */
3345 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3346 2 * sizeof(void *));
3347
3348 if (!s->cpu_slab)
3349 return 0;
3350
3351 init_kmem_cache_cpus(s);
3352
3353 return 1;
3354}
3355
3356static struct kmem_cache *kmem_cache_node;
3357
3358/*
3359 * No kmalloc_node yet so do it by hand. We know that this is the first
3360 * slab on the node for this slabcache. There are no concurrent accesses
3361 * possible.
3362 *
3363 * Note that this function only works on the kmem_cache_node
3364 * when allocating for the kmem_cache_node. This is used for bootstrapping
3365 * memory on a fresh node that has no slab structures yet.
3366 */
3367static void early_kmem_cache_node_alloc(int node)
3368{
3369 struct page *page;
3370 struct kmem_cache_node *n;
3371
3372 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3373
3374 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3375
3376 BUG_ON(!page);
3377 if (page_to_nid(page) != node) {
3378 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3379 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3380 }
3381
3382 n = page->freelist;
3383 BUG_ON(!n);
3384#ifdef CONFIG_SLUB_DEBUG
3385 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3386 init_tracking(kmem_cache_node, n);
3387#endif
3388 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3389 GFP_KERNEL);
3390 page->freelist = get_freepointer(kmem_cache_node, n);
3391 page->inuse = 1;
3392 page->frozen = 0;
3393 kmem_cache_node->node[node] = n;
3394 init_kmem_cache_node(n);
3395 inc_slabs_node(kmem_cache_node, node, page->objects);
3396
3397 /*
3398 * No locks need to be taken here as it has just been
3399 * initialized and there is no concurrent access.
3400 */
3401 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3402}
3403
3404static void free_kmem_cache_nodes(struct kmem_cache *s)
3405{
3406 int node;
3407 struct kmem_cache_node *n;
3408
3409 for_each_kmem_cache_node(s, node, n) {
3410 s->node[node] = NULL;
3411 kmem_cache_free(kmem_cache_node, n);
3412 }
3413}
3414
3415void __kmem_cache_release(struct kmem_cache *s)
3416{
3417 cache_random_seq_destroy(s);
3418 free_percpu(s->cpu_slab);
3419 free_kmem_cache_nodes(s);
3420}
3421
3422static int init_kmem_cache_nodes(struct kmem_cache *s)
3423{
3424 int node;
3425
3426 for_each_node_state(node, N_NORMAL_MEMORY) {
3427 struct kmem_cache_node *n;
3428
3429 if (slab_state == DOWN) {
3430 early_kmem_cache_node_alloc(node);
3431 continue;
3432 }
3433 n = kmem_cache_alloc_node(kmem_cache_node,
3434 GFP_KERNEL, node);
3435
3436 if (!n) {
3437 free_kmem_cache_nodes(s);
3438 return 0;
3439 }
3440
3441 init_kmem_cache_node(n);
3442 s->node[node] = n;
3443 }
3444 return 1;
3445}
3446
3447static void set_min_partial(struct kmem_cache *s, unsigned long min)
3448{
3449 if (min < MIN_PARTIAL)
3450 min = MIN_PARTIAL;
3451 else if (min > MAX_PARTIAL)
3452 min = MAX_PARTIAL;
3453 s->min_partial = min;
3454}
3455
3456static void set_cpu_partial(struct kmem_cache *s)
3457{
3458#ifdef CONFIG_SLUB_CPU_PARTIAL
3459 /*
3460 * cpu_partial determined the maximum number of objects kept in the
3461 * per cpu partial lists of a processor.
3462 *
3463 * Per cpu partial lists mainly contain slabs that just have one
3464 * object freed. If they are used for allocation then they can be
3465 * filled up again with minimal effort. The slab will never hit the
3466 * per node partial lists and therefore no locking will be required.
3467 *
3468 * This setting also determines
3469 *
3470 * A) The number of objects from per cpu partial slabs dumped to the
3471 * per node list when we reach the limit.
3472 * B) The number of objects in cpu partial slabs to extract from the
3473 * per node list when we run out of per cpu objects. We only fetch
3474 * 50% to keep some capacity around for frees.
3475 */
3476 if (!kmem_cache_has_cpu_partial(s))
3477 s->cpu_partial = 0;
3478 else if (s->size >= PAGE_SIZE)
3479 s->cpu_partial = 2;
3480 else if (s->size >= 1024)
3481 s->cpu_partial = 6;
3482 else if (s->size >= 256)
3483 s->cpu_partial = 13;
3484 else
3485 s->cpu_partial = 30;
3486#endif
3487}
3488
3489/*
3490 * calculate_sizes() determines the order and the distribution of data within
3491 * a slab object.
3492 */
3493static int calculate_sizes(struct kmem_cache *s, int forced_order)
3494{
3495 slab_flags_t flags = s->flags;
3496 unsigned int size = s->object_size;
3497 unsigned int order;
3498
3499 /*
3500 * Round up object size to the next word boundary. We can only
3501 * place the free pointer at word boundaries and this determines
3502 * the possible location of the free pointer.
3503 */
3504 size = ALIGN(size, sizeof(void *));
3505
3506#ifdef CONFIG_SLUB_DEBUG
3507 /*
3508 * Determine if we can poison the object itself. If the user of
3509 * the slab may touch the object after free or before allocation
3510 * then we should never poison the object itself.
3511 */
3512 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3513 !s->ctor)
3514 s->flags |= __OBJECT_POISON;
3515 else
3516 s->flags &= ~__OBJECT_POISON;
3517
3518
3519 /*
3520 * If we are Redzoning then check if there is some space between the
3521 * end of the object and the free pointer. If not then add an
3522 * additional word to have some bytes to store Redzone information.
3523 */
3524 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3525 size += sizeof(void *);
3526#endif
3527
3528 /*
3529 * With that we have determined the number of bytes in actual use
3530 * by the object. This is the potential offset to the free pointer.
3531 */
3532 s->inuse = size;
3533
3534 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3535 s->ctor)) {
3536 /*
3537 * Relocate free pointer after the object if it is not
3538 * permitted to overwrite the first word of the object on
3539 * kmem_cache_free.
3540 *
3541 * This is the case if we do RCU, have a constructor or
3542 * destructor or are poisoning the objects.
3543 */
3544 s->offset = size;
3545 size += sizeof(void *);
3546 }
3547
3548#ifdef CONFIG_SLUB_DEBUG
3549 if (flags & SLAB_STORE_USER)
3550 /*
3551 * Need to store information about allocs and frees after
3552 * the object.
3553 */
3554 size += 2 * sizeof(struct track);
3555#endif
3556
3557 kasan_cache_create(s, &size, &s->flags);
3558#ifdef CONFIG_SLUB_DEBUG
3559 if (flags & SLAB_RED_ZONE) {
3560 /*
3561 * Add some empty padding so that we can catch
3562 * overwrites from earlier objects rather than let
3563 * tracking information or the free pointer be
3564 * corrupted if a user writes before the start
3565 * of the object.
3566 */
3567 size += sizeof(void *);
3568
3569 s->red_left_pad = sizeof(void *);
3570 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3571 size += s->red_left_pad;
3572 }
3573#endif
3574
3575 /*
3576 * SLUB stores one object immediately after another beginning from
3577 * offset 0. In order to align the objects we have to simply size
3578 * each object to conform to the alignment.
3579 */
3580 size = ALIGN(size, s->align);
3581 s->size = size;
3582 if (forced_order >= 0)
3583 order = forced_order;
3584 else
3585 order = calculate_order(size);
3586
3587 if ((int)order < 0)
3588 return 0;
3589
3590 s->allocflags = 0;
3591 if (order)
3592 s->allocflags |= __GFP_COMP;
3593
3594 if (s->flags & SLAB_CACHE_DMA)
3595 s->allocflags |= GFP_DMA;
3596
3597 if (s->flags & SLAB_CACHE_DMA32)
3598 s->allocflags |= GFP_DMA32;
3599
3600 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3601 s->allocflags |= __GFP_RECLAIMABLE;
3602
3603 /*
3604 * Determine the number of objects per slab
3605 */
3606 s->oo = oo_make(order, size);
3607 s->min = oo_make(get_order(size), size);
3608 if (oo_objects(s->oo) > oo_objects(s->max))
3609 s->max = s->oo;
3610
3611 return !!oo_objects(s->oo);
3612}
3613
3614static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3615{
3616 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3617#ifdef CONFIG_SLAB_FREELIST_HARDENED
3618 s->random = get_random_long();
3619#endif
3620
3621 if (!calculate_sizes(s, -1))
3622 goto error;
3623 if (disable_higher_order_debug) {
3624 /*
3625 * Disable debugging flags that store metadata if the min slab
3626 * order increased.
3627 */
3628 if (get_order(s->size) > get_order(s->object_size)) {
3629 s->flags &= ~DEBUG_METADATA_FLAGS;
3630 s->offset = 0;
3631 if (!calculate_sizes(s, -1))
3632 goto error;
3633 }
3634 }
3635
3636#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3637 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3638 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3639 /* Enable fast mode */
3640 s->flags |= __CMPXCHG_DOUBLE;
3641#endif
3642
3643 /*
3644 * The larger the object size is, the more pages we want on the partial
3645 * list to avoid pounding the page allocator excessively.
3646 */
3647 set_min_partial(s, ilog2(s->size) / 2);
3648
3649 set_cpu_partial(s);
3650
3651#ifdef CONFIG_NUMA
3652 s->remote_node_defrag_ratio = 1000;
3653#endif
3654
3655 /* Initialize the pre-computed randomized freelist if slab is up */
3656 if (slab_state >= UP) {
3657 if (init_cache_random_seq(s))
3658 goto error;
3659 }
3660
3661 if (!init_kmem_cache_nodes(s))
3662 goto error;
3663
3664 if (alloc_kmem_cache_cpus(s))
3665 return 0;
3666
3667 free_kmem_cache_nodes(s);
3668error:
3669 return -EINVAL;
3670}
3671
3672static void list_slab_objects(struct kmem_cache *s, struct page *page,
3673 const char *text)
3674{
3675#ifdef CONFIG_SLUB_DEBUG
3676 void *addr = page_address(page);
3677 void *p;
3678 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3679 if (!map)
3680 return;
3681 slab_err(s, page, text, s->name);
3682 slab_lock(page);
3683
3684 get_map(s, page, map);
3685 for_each_object(p, s, addr, page->objects) {
3686
3687 if (!test_bit(slab_index(p, s, addr), map)) {
3688 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3689 print_tracking(s, p);
3690 }
3691 }
3692 slab_unlock(page);
3693 bitmap_free(map);
3694#endif
3695}
3696
3697/*
3698 * Attempt to free all partial slabs on a node.
3699 * This is called from __kmem_cache_shutdown(). We must take list_lock
3700 * because sysfs file might still access partial list after the shutdowning.
3701 */
3702static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3703{
3704 LIST_HEAD(discard);
3705 struct page *page, *h;
3706
3707 BUG_ON(irqs_disabled());
3708 spin_lock_irq(&n->list_lock);
3709 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3710 if (!page->inuse) {
3711 remove_partial(n, page);
3712 list_add(&page->slab_list, &discard);
3713 } else {
3714 list_slab_objects(s, page,
3715 "Objects remaining in %s on __kmem_cache_shutdown()");
3716 }
3717 }
3718 spin_unlock_irq(&n->list_lock);
3719
3720 list_for_each_entry_safe(page, h, &discard, slab_list)
3721 discard_slab(s, page);
3722}
3723
3724bool __kmem_cache_empty(struct kmem_cache *s)
3725{
3726 int node;
3727 struct kmem_cache_node *n;
3728
3729 for_each_kmem_cache_node(s, node, n)
3730 if (n->nr_partial || slabs_node(s, node))
3731 return false;
3732 return true;
3733}
3734
3735/*
3736 * Release all resources used by a slab cache.
3737 */
3738int __kmem_cache_shutdown(struct kmem_cache *s)
3739{
3740 int node;
3741 struct kmem_cache_node *n;
3742
3743 flush_all(s);
3744 /* Attempt to free all objects */
3745 for_each_kmem_cache_node(s, node, n) {
3746 free_partial(s, n);
3747 if (n->nr_partial || slabs_node(s, node))
3748 return 1;
3749 }
3750 sysfs_slab_remove(s);
3751 return 0;
3752}
3753
3754/********************************************************************
3755 * Kmalloc subsystem
3756 *******************************************************************/
3757
3758static int __init setup_slub_min_order(char *str)
3759{
3760 get_option(&str, (int *)&slub_min_order);
3761
3762 return 1;
3763}
3764
3765__setup("slub_min_order=", setup_slub_min_order);
3766
3767static int __init setup_slub_max_order(char *str)
3768{
3769 get_option(&str, (int *)&slub_max_order);
3770 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3771
3772 return 1;
3773}
3774
3775__setup("slub_max_order=", setup_slub_max_order);
3776
3777static int __init setup_slub_min_objects(char *str)
3778{
3779 get_option(&str, (int *)&slub_min_objects);
3780
3781 return 1;
3782}
3783
3784__setup("slub_min_objects=", setup_slub_min_objects);
3785
3786void *__kmalloc(size_t size, gfp_t flags)
3787{
3788 struct kmem_cache *s;
3789 void *ret;
3790
3791 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792 return kmalloc_large(size, flags);
3793
3794 s = kmalloc_slab(size, flags);
3795
3796 if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 return s;
3798
3799 ret = slab_alloc(s, flags, _RET_IP_);
3800
3801 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3802
3803 ret = kasan_kmalloc(s, ret, size, flags);
3804
3805 return ret;
3806}
3807EXPORT_SYMBOL(__kmalloc);
3808
3809#ifdef CONFIG_NUMA
3810static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3811{
3812 struct page *page;
3813 void *ptr = NULL;
3814 unsigned int order = get_order(size);
3815
3816 flags |= __GFP_COMP;
3817 page = alloc_pages_node(node, flags, order);
3818 if (page) {
3819 ptr = page_address(page);
3820 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3821 1 << order);
3822 }
3823
3824 return kmalloc_large_node_hook(ptr, size, flags);
3825}
3826
3827void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828{
3829 struct kmem_cache *s;
3830 void *ret;
3831
3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3833 ret = kmalloc_large_node(size, flags, node);
3834
3835 trace_kmalloc_node(_RET_IP_, ret,
3836 size, PAGE_SIZE << get_order(size),
3837 flags, node);
3838
3839 return ret;
3840 }
3841
3842 s = kmalloc_slab(size, flags);
3843
3844 if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 return s;
3846
3847 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3848
3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3850
3851 ret = kasan_kmalloc(s, ret, size, flags);
3852
3853 return ret;
3854}
3855EXPORT_SYMBOL(__kmalloc_node);
3856#endif /* CONFIG_NUMA */
3857
3858#ifdef CONFIG_HARDENED_USERCOPY
3859/*
3860 * Rejects incorrectly sized objects and objects that are to be copied
3861 * to/from userspace but do not fall entirely within the containing slab
3862 * cache's usercopy region.
3863 *
3864 * Returns NULL if check passes, otherwise const char * to name of cache
3865 * to indicate an error.
3866 */
3867void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 bool to_user)
3869{
3870 struct kmem_cache *s;
3871 unsigned int offset;
3872 size_t object_size;
3873
3874 ptr = kasan_reset_tag(ptr);
3875
3876 /* Find object and usable object size. */
3877 s = page->slab_cache;
3878
3879 /* Reject impossible pointers. */
3880 if (ptr < page_address(page))
3881 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 to_user, 0, n);
3883
3884 /* Find offset within object. */
3885 offset = (ptr - page_address(page)) % s->size;
3886
3887 /* Adjust for redzone and reject if within the redzone. */
3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 if (offset < s->red_left_pad)
3890 usercopy_abort("SLUB object in left red zone",
3891 s->name, to_user, offset, n);
3892 offset -= s->red_left_pad;
3893 }
3894
3895 /* Allow address range falling entirely within usercopy region. */
3896 if (offset >= s->useroffset &&
3897 offset - s->useroffset <= s->usersize &&
3898 n <= s->useroffset - offset + s->usersize)
3899 return;
3900
3901 /*
3902 * If the copy is still within the allocated object, produce
3903 * a warning instead of rejecting the copy. This is intended
3904 * to be a temporary method to find any missing usercopy
3905 * whitelists.
3906 */
3907 object_size = slab_ksize(s);
3908 if (usercopy_fallback &&
3909 offset <= object_size && n <= object_size - offset) {
3910 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 return;
3912 }
3913
3914 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3915}
3916#endif /* CONFIG_HARDENED_USERCOPY */
3917
3918size_t __ksize(const void *object)
3919{
3920 struct page *page;
3921
3922 if (unlikely(object == ZERO_SIZE_PTR))
3923 return 0;
3924
3925 page = virt_to_head_page(object);
3926
3927 if (unlikely(!PageSlab(page))) {
3928 WARN_ON(!PageCompound(page));
3929 return page_size(page);
3930 }
3931
3932 return slab_ksize(page->slab_cache);
3933}
3934EXPORT_SYMBOL(__ksize);
3935
3936void kfree(const void *x)
3937{
3938 struct page *page;
3939 void *object = (void *)x;
3940
3941 trace_kfree(_RET_IP_, x);
3942
3943 if (unlikely(ZERO_OR_NULL_PTR(x)))
3944 return;
3945
3946 page = virt_to_head_page(x);
3947 if (unlikely(!PageSlab(page))) {
3948 unsigned int order = compound_order(page);
3949
3950 BUG_ON(!PageCompound(page));
3951 kfree_hook(object);
3952 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3953 -(1 << order));
3954 __free_pages(page, order);
3955 return;
3956 }
3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3958}
3959EXPORT_SYMBOL(kfree);
3960
3961#define SHRINK_PROMOTE_MAX 32
3962
3963/*
3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965 * up most to the head of the partial lists. New allocations will then
3966 * fill those up and thus they can be removed from the partial lists.
3967 *
3968 * The slabs with the least items are placed last. This results in them
3969 * being allocated from last increasing the chance that the last objects
3970 * are freed in them.
3971 */
3972int __kmem_cache_shrink(struct kmem_cache *s)
3973{
3974 int node;
3975 int i;
3976 struct kmem_cache_node *n;
3977 struct page *page;
3978 struct page *t;
3979 struct list_head discard;
3980 struct list_head promote[SHRINK_PROMOTE_MAX];
3981 unsigned long flags;
3982 int ret = 0;
3983
3984 flush_all(s);
3985 for_each_kmem_cache_node(s, node, n) {
3986 INIT_LIST_HEAD(&discard);
3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 INIT_LIST_HEAD(promote + i);
3989
3990 spin_lock_irqsave(&n->list_lock, flags);
3991
3992 /*
3993 * Build lists of slabs to discard or promote.
3994 *
3995 * Note that concurrent frees may occur while we hold the
3996 * list_lock. page->inuse here is the upper limit.
3997 */
3998 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3999 int free = page->objects - page->inuse;
4000
4001 /* Do not reread page->inuse */
4002 barrier();
4003
4004 /* We do not keep full slabs on the list */
4005 BUG_ON(free <= 0);
4006
4007 if (free == page->objects) {
4008 list_move(&page->slab_list, &discard);
4009 n->nr_partial--;
4010 } else if (free <= SHRINK_PROMOTE_MAX)
4011 list_move(&page->slab_list, promote + free - 1);
4012 }
4013
4014 /*
4015 * Promote the slabs filled up most to the head of the
4016 * partial list.
4017 */
4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 list_splice(promote + i, &n->partial);
4020
4021 spin_unlock_irqrestore(&n->list_lock, flags);
4022
4023 /* Release empty slabs */
4024 list_for_each_entry_safe(page, t, &discard, slab_list)
4025 discard_slab(s, page);
4026
4027 if (slabs_node(s, node))
4028 ret = 1;
4029 }
4030
4031 return ret;
4032}
4033
4034#ifdef CONFIG_MEMCG
4035void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4036{
4037 /*
4038 * Called with all the locks held after a sched RCU grace period.
4039 * Even if @s becomes empty after shrinking, we can't know that @s
4040 * doesn't have allocations already in-flight and thus can't
4041 * destroy @s until the associated memcg is released.
4042 *
4043 * However, let's remove the sysfs files for empty caches here.
4044 * Each cache has a lot of interface files which aren't
4045 * particularly useful for empty draining caches; otherwise, we can
4046 * easily end up with millions of unnecessary sysfs files on
4047 * systems which have a lot of memory and transient cgroups.
4048 */
4049 if (!__kmem_cache_shrink(s))
4050 sysfs_slab_remove(s);
4051}
4052
4053void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054{
4055 /*
4056 * Disable empty slabs caching. Used to avoid pinning offline
4057 * memory cgroups by kmem pages that can be freed.
4058 */
4059 slub_set_cpu_partial(s, 0);
4060 s->min_partial = 0;
4061}
4062#endif /* CONFIG_MEMCG */
4063
4064static int slab_mem_going_offline_callback(void *arg)
4065{
4066 struct kmem_cache *s;
4067
4068 mutex_lock(&slab_mutex);
4069 list_for_each_entry(s, &slab_caches, list)
4070 __kmem_cache_shrink(s);
4071 mutex_unlock(&slab_mutex);
4072
4073 return 0;
4074}
4075
4076static void slab_mem_offline_callback(void *arg)
4077{
4078 struct kmem_cache_node *n;
4079 struct kmem_cache *s;
4080 struct memory_notify *marg = arg;
4081 int offline_node;
4082
4083 offline_node = marg->status_change_nid_normal;
4084
4085 /*
4086 * If the node still has available memory. we need kmem_cache_node
4087 * for it yet.
4088 */
4089 if (offline_node < 0)
4090 return;
4091
4092 mutex_lock(&slab_mutex);
4093 list_for_each_entry(s, &slab_caches, list) {
4094 n = get_node(s, offline_node);
4095 if (n) {
4096 /*
4097 * if n->nr_slabs > 0, slabs still exist on the node
4098 * that is going down. We were unable to free them,
4099 * and offline_pages() function shouldn't call this
4100 * callback. So, we must fail.
4101 */
4102 BUG_ON(slabs_node(s, offline_node));
4103
4104 s->node[offline_node] = NULL;
4105 kmem_cache_free(kmem_cache_node, n);
4106 }
4107 }
4108 mutex_unlock(&slab_mutex);
4109}
4110
4111static int slab_mem_going_online_callback(void *arg)
4112{
4113 struct kmem_cache_node *n;
4114 struct kmem_cache *s;
4115 struct memory_notify *marg = arg;
4116 int nid = marg->status_change_nid_normal;
4117 int ret = 0;
4118
4119 /*
4120 * If the node's memory is already available, then kmem_cache_node is
4121 * already created. Nothing to do.
4122 */
4123 if (nid < 0)
4124 return 0;
4125
4126 /*
4127 * We are bringing a node online. No memory is available yet. We must
4128 * allocate a kmem_cache_node structure in order to bring the node
4129 * online.
4130 */
4131 mutex_lock(&slab_mutex);
4132 list_for_each_entry(s, &slab_caches, list) {
4133 /*
4134 * XXX: kmem_cache_alloc_node will fallback to other nodes
4135 * since memory is not yet available from the node that
4136 * is brought up.
4137 */
4138 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4139 if (!n) {
4140 ret = -ENOMEM;
4141 goto out;
4142 }
4143 init_kmem_cache_node(n);
4144 s->node[nid] = n;
4145 }
4146out:
4147 mutex_unlock(&slab_mutex);
4148 return ret;
4149}
4150
4151static int slab_memory_callback(struct notifier_block *self,
4152 unsigned long action, void *arg)
4153{
4154 int ret = 0;
4155
4156 switch (action) {
4157 case MEM_GOING_ONLINE:
4158 ret = slab_mem_going_online_callback(arg);
4159 break;
4160 case MEM_GOING_OFFLINE:
4161 ret = slab_mem_going_offline_callback(arg);
4162 break;
4163 case MEM_OFFLINE:
4164 case MEM_CANCEL_ONLINE:
4165 slab_mem_offline_callback(arg);
4166 break;
4167 case MEM_ONLINE:
4168 case MEM_CANCEL_OFFLINE:
4169 break;
4170 }
4171 if (ret)
4172 ret = notifier_from_errno(ret);
4173 else
4174 ret = NOTIFY_OK;
4175 return ret;
4176}
4177
4178static struct notifier_block slab_memory_callback_nb = {
4179 .notifier_call = slab_memory_callback,
4180 .priority = SLAB_CALLBACK_PRI,
4181};
4182
4183/********************************************************************
4184 * Basic setup of slabs
4185 *******************************************************************/
4186
4187/*
4188 * Used for early kmem_cache structures that were allocated using
4189 * the page allocator. Allocate them properly then fix up the pointers
4190 * that may be pointing to the wrong kmem_cache structure.
4191 */
4192
4193static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4194{
4195 int node;
4196 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4197 struct kmem_cache_node *n;
4198
4199 memcpy(s, static_cache, kmem_cache->object_size);
4200
4201 /*
4202 * This runs very early, and only the boot processor is supposed to be
4203 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4204 * IPIs around.
4205 */
4206 __flush_cpu_slab(s, smp_processor_id());
4207 for_each_kmem_cache_node(s, node, n) {
4208 struct page *p;
4209
4210 list_for_each_entry(p, &n->partial, slab_list)
4211 p->slab_cache = s;
4212
4213#ifdef CONFIG_SLUB_DEBUG
4214 list_for_each_entry(p, &n->full, slab_list)
4215 p->slab_cache = s;
4216#endif
4217 }
4218 slab_init_memcg_params(s);
4219 list_add(&s->list, &slab_caches);
4220 memcg_link_cache(s, NULL);
4221 return s;
4222}
4223
4224void __init kmem_cache_init(void)
4225{
4226 static __initdata struct kmem_cache boot_kmem_cache,
4227 boot_kmem_cache_node;
4228
4229 if (debug_guardpage_minorder())
4230 slub_max_order = 0;
4231
4232 kmem_cache_node = &boot_kmem_cache_node;
4233 kmem_cache = &boot_kmem_cache;
4234
4235 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4236 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4237
4238 register_hotmemory_notifier(&slab_memory_callback_nb);
4239
4240 /* Able to allocate the per node structures */
4241 slab_state = PARTIAL;
4242
4243 create_boot_cache(kmem_cache, "kmem_cache",
4244 offsetof(struct kmem_cache, node) +
4245 nr_node_ids * sizeof(struct kmem_cache_node *),
4246 SLAB_HWCACHE_ALIGN, 0, 0);
4247
4248 kmem_cache = bootstrap(&boot_kmem_cache);
4249 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4250
4251 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4252 setup_kmalloc_cache_index_table();
4253 create_kmalloc_caches(0);
4254
4255 /* Setup random freelists for each cache */
4256 init_freelist_randomization();
4257
4258 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4259 slub_cpu_dead);
4260
4261 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4262 cache_line_size(),
4263 slub_min_order, slub_max_order, slub_min_objects,
4264 nr_cpu_ids, nr_node_ids);
4265}
4266
4267void __init kmem_cache_init_late(void)
4268{
4269}
4270
4271struct kmem_cache *
4272__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4273 slab_flags_t flags, void (*ctor)(void *))
4274{
4275 struct kmem_cache *s, *c;
4276
4277 s = find_mergeable(size, align, flags, name, ctor);
4278 if (s) {
4279 s->refcount++;
4280
4281 /*
4282 * Adjust the object sizes so that we clear
4283 * the complete object on kzalloc.
4284 */
4285 s->object_size = max(s->object_size, size);
4286 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4287
4288 for_each_memcg_cache(c, s) {
4289 c->object_size = s->object_size;
4290 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4291 }
4292
4293 if (sysfs_slab_alias(s, name)) {
4294 s->refcount--;
4295 s = NULL;
4296 }
4297 }
4298
4299 return s;
4300}
4301
4302int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4303{
4304 int err;
4305
4306 err = kmem_cache_open(s, flags);
4307 if (err)
4308 return err;
4309
4310 /* Mutex is not taken during early boot */
4311 if (slab_state <= UP)
4312 return 0;
4313
4314 memcg_propagate_slab_attrs(s);
4315 err = sysfs_slab_add(s);
4316 if (err)
4317 __kmem_cache_release(s);
4318
4319 return err;
4320}
4321
4322void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4323{
4324 struct kmem_cache *s;
4325 void *ret;
4326
4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4328 return kmalloc_large(size, gfpflags);
4329
4330 s = kmalloc_slab(size, gfpflags);
4331
4332 if (unlikely(ZERO_OR_NULL_PTR(s)))
4333 return s;
4334
4335 ret = slab_alloc(s, gfpflags, caller);
4336
4337 /* Honor the call site pointer we received. */
4338 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4339
4340 return ret;
4341}
4342
4343#ifdef CONFIG_NUMA
4344void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4345 int node, unsigned long caller)
4346{
4347 struct kmem_cache *s;
4348 void *ret;
4349
4350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4351 ret = kmalloc_large_node(size, gfpflags, node);
4352
4353 trace_kmalloc_node(caller, ret,
4354 size, PAGE_SIZE << get_order(size),
4355 gfpflags, node);
4356
4357 return ret;
4358 }
4359
4360 s = kmalloc_slab(size, gfpflags);
4361
4362 if (unlikely(ZERO_OR_NULL_PTR(s)))
4363 return s;
4364
4365 ret = slab_alloc_node(s, gfpflags, node, caller);
4366
4367 /* Honor the call site pointer we received. */
4368 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4369
4370 return ret;
4371}
4372#endif
4373
4374#ifdef CONFIG_SYSFS
4375static int count_inuse(struct page *page)
4376{
4377 return page->inuse;
4378}
4379
4380static int count_total(struct page *page)
4381{
4382 return page->objects;
4383}
4384#endif
4385
4386#ifdef CONFIG_SLUB_DEBUG
4387static int validate_slab(struct kmem_cache *s, struct page *page,
4388 unsigned long *map)
4389{
4390 void *p;
4391 void *addr = page_address(page);
4392
4393 if (!check_slab(s, page) ||
4394 !on_freelist(s, page, NULL))
4395 return 0;
4396
4397 /* Now we know that a valid freelist exists */
4398 bitmap_zero(map, page->objects);
4399
4400 get_map(s, page, map);
4401 for_each_object(p, s, addr, page->objects) {
4402 if (test_bit(slab_index(p, s, addr), map))
4403 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4404 return 0;
4405 }
4406
4407 for_each_object(p, s, addr, page->objects)
4408 if (!test_bit(slab_index(p, s, addr), map))
4409 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4410 return 0;
4411 return 1;
4412}
4413
4414static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4415 unsigned long *map)
4416{
4417 slab_lock(page);
4418 validate_slab(s, page, map);
4419 slab_unlock(page);
4420}
4421
4422static int validate_slab_node(struct kmem_cache *s,
4423 struct kmem_cache_node *n, unsigned long *map)
4424{
4425 unsigned long count = 0;
4426 struct page *page;
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&n->list_lock, flags);
4430
4431 list_for_each_entry(page, &n->partial, slab_list) {
4432 validate_slab_slab(s, page, map);
4433 count++;
4434 }
4435 if (count != n->nr_partial)
4436 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4437 s->name, count, n->nr_partial);
4438
4439 if (!(s->flags & SLAB_STORE_USER))
4440 goto out;
4441
4442 list_for_each_entry(page, &n->full, slab_list) {
4443 validate_slab_slab(s, page, map);
4444 count++;
4445 }
4446 if (count != atomic_long_read(&n->nr_slabs))
4447 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4448 s->name, count, atomic_long_read(&n->nr_slabs));
4449
4450out:
4451 spin_unlock_irqrestore(&n->list_lock, flags);
4452 return count;
4453}
4454
4455static long validate_slab_cache(struct kmem_cache *s)
4456{
4457 int node;
4458 unsigned long count = 0;
4459 struct kmem_cache_node *n;
4460 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4461
4462 if (!map)
4463 return -ENOMEM;
4464
4465 flush_all(s);
4466 for_each_kmem_cache_node(s, node, n)
4467 count += validate_slab_node(s, n, map);
4468 bitmap_free(map);
4469 return count;
4470}
4471/*
4472 * Generate lists of code addresses where slabcache objects are allocated
4473 * and freed.
4474 */
4475
4476struct location {
4477 unsigned long count;
4478 unsigned long addr;
4479 long long sum_time;
4480 long min_time;
4481 long max_time;
4482 long min_pid;
4483 long max_pid;
4484 DECLARE_BITMAP(cpus, NR_CPUS);
4485 nodemask_t nodes;
4486};
4487
4488struct loc_track {
4489 unsigned long max;
4490 unsigned long count;
4491 struct location *loc;
4492};
4493
4494static void free_loc_track(struct loc_track *t)
4495{
4496 if (t->max)
4497 free_pages((unsigned long)t->loc,
4498 get_order(sizeof(struct location) * t->max));
4499}
4500
4501static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502{
4503 struct location *l;
4504 int order;
4505
4506 order = get_order(sizeof(struct location) * max);
4507
4508 l = (void *)__get_free_pages(flags, order);
4509 if (!l)
4510 return 0;
4511
4512 if (t->count) {
4513 memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 free_loc_track(t);
4515 }
4516 t->max = max;
4517 t->loc = l;
4518 return 1;
4519}
4520
4521static int add_location(struct loc_track *t, struct kmem_cache *s,
4522 const struct track *track)
4523{
4524 long start, end, pos;
4525 struct location *l;
4526 unsigned long caddr;
4527 unsigned long age = jiffies - track->when;
4528
4529 start = -1;
4530 end = t->count;
4531
4532 for ( ; ; ) {
4533 pos = start + (end - start + 1) / 2;
4534
4535 /*
4536 * There is nothing at "end". If we end up there
4537 * we need to add something to before end.
4538 */
4539 if (pos == end)
4540 break;
4541
4542 caddr = t->loc[pos].addr;
4543 if (track->addr == caddr) {
4544
4545 l = &t->loc[pos];
4546 l->count++;
4547 if (track->when) {
4548 l->sum_time += age;
4549 if (age < l->min_time)
4550 l->min_time = age;
4551 if (age > l->max_time)
4552 l->max_time = age;
4553
4554 if (track->pid < l->min_pid)
4555 l->min_pid = track->pid;
4556 if (track->pid > l->max_pid)
4557 l->max_pid = track->pid;
4558
4559 cpumask_set_cpu(track->cpu,
4560 to_cpumask(l->cpus));
4561 }
4562 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563 return 1;
4564 }
4565
4566 if (track->addr < caddr)
4567 end = pos;
4568 else
4569 start = pos;
4570 }
4571
4572 /*
4573 * Not found. Insert new tracking element.
4574 */
4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576 return 0;
4577
4578 l = t->loc + pos;
4579 if (pos < t->count)
4580 memmove(l + 1, l,
4581 (t->count - pos) * sizeof(struct location));
4582 t->count++;
4583 l->count = 1;
4584 l->addr = track->addr;
4585 l->sum_time = age;
4586 l->min_time = age;
4587 l->max_time = age;
4588 l->min_pid = track->pid;
4589 l->max_pid = track->pid;
4590 cpumask_clear(to_cpumask(l->cpus));
4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592 nodes_clear(l->nodes);
4593 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594 return 1;
4595}
4596
4597static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598 struct page *page, enum track_item alloc,
4599 unsigned long *map)
4600{
4601 void *addr = page_address(page);
4602 void *p;
4603
4604 bitmap_zero(map, page->objects);
4605 get_map(s, page, map);
4606
4607 for_each_object(p, s, addr, page->objects)
4608 if (!test_bit(slab_index(p, s, addr), map))
4609 add_location(t, s, get_track(s, p, alloc));
4610}
4611
4612static int list_locations(struct kmem_cache *s, char *buf,
4613 enum track_item alloc)
4614{
4615 int len = 0;
4616 unsigned long i;
4617 struct loc_track t = { 0, 0, NULL };
4618 int node;
4619 struct kmem_cache_node *n;
4620 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4621
4622 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4623 GFP_KERNEL)) {
4624 bitmap_free(map);
4625 return sprintf(buf, "Out of memory\n");
4626 }
4627 /* Push back cpu slabs */
4628 flush_all(s);
4629
4630 for_each_kmem_cache_node(s, node, n) {
4631 unsigned long flags;
4632 struct page *page;
4633
4634 if (!atomic_long_read(&n->nr_slabs))
4635 continue;
4636
4637 spin_lock_irqsave(&n->list_lock, flags);
4638 list_for_each_entry(page, &n->partial, slab_list)
4639 process_slab(&t, s, page, alloc, map);
4640 list_for_each_entry(page, &n->full, slab_list)
4641 process_slab(&t, s, page, alloc, map);
4642 spin_unlock_irqrestore(&n->list_lock, flags);
4643 }
4644
4645 for (i = 0; i < t.count; i++) {
4646 struct location *l = &t.loc[i];
4647
4648 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4649 break;
4650 len += sprintf(buf + len, "%7ld ", l->count);
4651
4652 if (l->addr)
4653 len += sprintf(buf + len, "%pS", (void *)l->addr);
4654 else
4655 len += sprintf(buf + len, "<not-available>");
4656
4657 if (l->sum_time != l->min_time) {
4658 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4659 l->min_time,
4660 (long)div_u64(l->sum_time, l->count),
4661 l->max_time);
4662 } else
4663 len += sprintf(buf + len, " age=%ld",
4664 l->min_time);
4665
4666 if (l->min_pid != l->max_pid)
4667 len += sprintf(buf + len, " pid=%ld-%ld",
4668 l->min_pid, l->max_pid);
4669 else
4670 len += sprintf(buf + len, " pid=%ld",
4671 l->min_pid);
4672
4673 if (num_online_cpus() > 1 &&
4674 !cpumask_empty(to_cpumask(l->cpus)) &&
4675 len < PAGE_SIZE - 60)
4676 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4677 " cpus=%*pbl",
4678 cpumask_pr_args(to_cpumask(l->cpus)));
4679
4680 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4681 len < PAGE_SIZE - 60)
4682 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4683 " nodes=%*pbl",
4684 nodemask_pr_args(&l->nodes));
4685
4686 len += sprintf(buf + len, "\n");
4687 }
4688
4689 free_loc_track(&t);
4690 bitmap_free(map);
4691 if (!t.count)
4692 len += sprintf(buf, "No data\n");
4693 return len;
4694}
4695#endif /* CONFIG_SLUB_DEBUG */
4696
4697#ifdef SLUB_RESILIENCY_TEST
4698static void __init resiliency_test(void)
4699{
4700 u8 *p;
4701 int type = KMALLOC_NORMAL;
4702
4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704
4705 pr_err("SLUB resiliency testing\n");
4706 pr_err("-----------------------\n");
4707 pr_err("A. Corruption after allocation\n");
4708
4709 p = kzalloc(16, GFP_KERNEL);
4710 p[16] = 0x12;
4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 p + 16);
4713
4714 validate_slab_cache(kmalloc_caches[type][4]);
4715
4716 /* Hmmm... The next two are dangerous */
4717 p = kzalloc(32, GFP_KERNEL);
4718 p[32 + sizeof(void *)] = 0x34;
4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720 p);
4721 pr_err("If allocated object is overwritten then not detectable\n\n");
4722
4723 validate_slab_cache(kmalloc_caches[type][5]);
4724 p = kzalloc(64, GFP_KERNEL);
4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 *p = 0x56;
4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728 p);
4729 pr_err("If allocated object is overwritten then not detectable\n\n");
4730 validate_slab_cache(kmalloc_caches[type][6]);
4731
4732 pr_err("\nB. Corruption after free\n");
4733 p = kzalloc(128, GFP_KERNEL);
4734 kfree(p);
4735 *p = 0x78;
4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737 validate_slab_cache(kmalloc_caches[type][7]);
4738
4739 p = kzalloc(256, GFP_KERNEL);
4740 kfree(p);
4741 p[50] = 0x9a;
4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743 validate_slab_cache(kmalloc_caches[type][8]);
4744
4745 p = kzalloc(512, GFP_KERNEL);
4746 kfree(p);
4747 p[512] = 0xab;
4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749 validate_slab_cache(kmalloc_caches[type][9]);
4750}
4751#else
4752#ifdef CONFIG_SYSFS
4753static void resiliency_test(void) {};
4754#endif
4755#endif /* SLUB_RESILIENCY_TEST */
4756
4757#ifdef CONFIG_SYSFS
4758enum slab_stat_type {
4759 SL_ALL, /* All slabs */
4760 SL_PARTIAL, /* Only partially allocated slabs */
4761 SL_CPU, /* Only slabs used for cpu caches */
4762 SL_OBJECTS, /* Determine allocated objects not slabs */
4763 SL_TOTAL /* Determine object capacity not slabs */
4764};
4765
4766#define SO_ALL (1 << SL_ALL)
4767#define SO_PARTIAL (1 << SL_PARTIAL)
4768#define SO_CPU (1 << SL_CPU)
4769#define SO_OBJECTS (1 << SL_OBJECTS)
4770#define SO_TOTAL (1 << SL_TOTAL)
4771
4772#ifdef CONFIG_MEMCG
4773static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774
4775static int __init setup_slub_memcg_sysfs(char *str)
4776{
4777 int v;
4778
4779 if (get_option(&str, &v) > 0)
4780 memcg_sysfs_enabled = v;
4781
4782 return 1;
4783}
4784
4785__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786#endif
4787
4788static ssize_t show_slab_objects(struct kmem_cache *s,
4789 char *buf, unsigned long flags)
4790{
4791 unsigned long total = 0;
4792 int node;
4793 int x;
4794 unsigned long *nodes;
4795
4796 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4797 if (!nodes)
4798 return -ENOMEM;
4799
4800 if (flags & SO_CPU) {
4801 int cpu;
4802
4803 for_each_possible_cpu(cpu) {
4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 cpu);
4806 int node;
4807 struct page *page;
4808
4809 page = READ_ONCE(c->page);
4810 if (!page)
4811 continue;
4812
4813 node = page_to_nid(page);
4814 if (flags & SO_TOTAL)
4815 x = page->objects;
4816 else if (flags & SO_OBJECTS)
4817 x = page->inuse;
4818 else
4819 x = 1;
4820
4821 total += x;
4822 nodes[node] += x;
4823
4824 page = slub_percpu_partial_read_once(c);
4825 if (page) {
4826 node = page_to_nid(page);
4827 if (flags & SO_TOTAL)
4828 WARN_ON_ONCE(1);
4829 else if (flags & SO_OBJECTS)
4830 WARN_ON_ONCE(1);
4831 else
4832 x = page->pages;
4833 total += x;
4834 nodes[node] += x;
4835 }
4836 }
4837 }
4838
4839 /*
4840 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4841 * already held which will conflict with an existing lock order:
4842 *
4843 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4844 *
4845 * We don't really need mem_hotplug_lock (to hold off
4846 * slab_mem_going_offline_callback) here because slab's memory hot
4847 * unplug code doesn't destroy the kmem_cache->node[] data.
4848 */
4849
4850#ifdef CONFIG_SLUB_DEBUG
4851 if (flags & SO_ALL) {
4852 struct kmem_cache_node *n;
4853
4854 for_each_kmem_cache_node(s, node, n) {
4855
4856 if (flags & SO_TOTAL)
4857 x = atomic_long_read(&n->total_objects);
4858 else if (flags & SO_OBJECTS)
4859 x = atomic_long_read(&n->total_objects) -
4860 count_partial(n, count_free);
4861 else
4862 x = atomic_long_read(&n->nr_slabs);
4863 total += x;
4864 nodes[node] += x;
4865 }
4866
4867 } else
4868#endif
4869 if (flags & SO_PARTIAL) {
4870 struct kmem_cache_node *n;
4871
4872 for_each_kmem_cache_node(s, node, n) {
4873 if (flags & SO_TOTAL)
4874 x = count_partial(n, count_total);
4875 else if (flags & SO_OBJECTS)
4876 x = count_partial(n, count_inuse);
4877 else
4878 x = n->nr_partial;
4879 total += x;
4880 nodes[node] += x;
4881 }
4882 }
4883 x = sprintf(buf, "%lu", total);
4884#ifdef CONFIG_NUMA
4885 for (node = 0; node < nr_node_ids; node++)
4886 if (nodes[node])
4887 x += sprintf(buf + x, " N%d=%lu",
4888 node, nodes[node]);
4889#endif
4890 kfree(nodes);
4891 return x + sprintf(buf + x, "\n");
4892}
4893
4894#ifdef CONFIG_SLUB_DEBUG
4895static int any_slab_objects(struct kmem_cache *s)
4896{
4897 int node;
4898 struct kmem_cache_node *n;
4899
4900 for_each_kmem_cache_node(s, node, n)
4901 if (atomic_long_read(&n->total_objects))
4902 return 1;
4903
4904 return 0;
4905}
4906#endif
4907
4908#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4909#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4910
4911struct slab_attribute {
4912 struct attribute attr;
4913 ssize_t (*show)(struct kmem_cache *s, char *buf);
4914 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4915};
4916
4917#define SLAB_ATTR_RO(_name) \
4918 static struct slab_attribute _name##_attr = \
4919 __ATTR(_name, 0400, _name##_show, NULL)
4920
4921#define SLAB_ATTR(_name) \
4922 static struct slab_attribute _name##_attr = \
4923 __ATTR(_name, 0600, _name##_show, _name##_store)
4924
4925static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4926{
4927 return sprintf(buf, "%u\n", s->size);
4928}
4929SLAB_ATTR_RO(slab_size);
4930
4931static ssize_t align_show(struct kmem_cache *s, char *buf)
4932{
4933 return sprintf(buf, "%u\n", s->align);
4934}
4935SLAB_ATTR_RO(align);
4936
4937static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4938{
4939 return sprintf(buf, "%u\n", s->object_size);
4940}
4941SLAB_ATTR_RO(object_size);
4942
4943static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4944{
4945 return sprintf(buf, "%u\n", oo_objects(s->oo));
4946}
4947SLAB_ATTR_RO(objs_per_slab);
4948
4949static ssize_t order_store(struct kmem_cache *s,
4950 const char *buf, size_t length)
4951{
4952 unsigned int order;
4953 int err;
4954
4955 err = kstrtouint(buf, 10, &order);
4956 if (err)
4957 return err;
4958
4959 if (order > slub_max_order || order < slub_min_order)
4960 return -EINVAL;
4961
4962 calculate_sizes(s, order);
4963 return length;
4964}
4965
4966static ssize_t order_show(struct kmem_cache *s, char *buf)
4967{
4968 return sprintf(buf, "%u\n", oo_order(s->oo));
4969}
4970SLAB_ATTR(order);
4971
4972static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4973{
4974 return sprintf(buf, "%lu\n", s->min_partial);
4975}
4976
4977static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4978 size_t length)
4979{
4980 unsigned long min;
4981 int err;
4982
4983 err = kstrtoul(buf, 10, &min);
4984 if (err)
4985 return err;
4986
4987 set_min_partial(s, min);
4988 return length;
4989}
4990SLAB_ATTR(min_partial);
4991
4992static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4993{
4994 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4995}
4996
4997static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4998 size_t length)
4999{
5000 unsigned int objects;
5001 int err;
5002
5003 err = kstrtouint(buf, 10, &objects);
5004 if (err)
5005 return err;
5006 if (objects && !kmem_cache_has_cpu_partial(s))
5007 return -EINVAL;
5008
5009 slub_set_cpu_partial(s, objects);
5010 flush_all(s);
5011 return length;
5012}
5013SLAB_ATTR(cpu_partial);
5014
5015static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5016{
5017 if (!s->ctor)
5018 return 0;
5019 return sprintf(buf, "%pS\n", s->ctor);
5020}
5021SLAB_ATTR_RO(ctor);
5022
5023static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5024{
5025 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5026}
5027SLAB_ATTR_RO(aliases);
5028
5029static ssize_t partial_show(struct kmem_cache *s, char *buf)
5030{
5031 return show_slab_objects(s, buf, SO_PARTIAL);
5032}
5033SLAB_ATTR_RO(partial);
5034
5035static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5036{
5037 return show_slab_objects(s, buf, SO_CPU);
5038}
5039SLAB_ATTR_RO(cpu_slabs);
5040
5041static ssize_t objects_show(struct kmem_cache *s, char *buf)
5042{
5043 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5044}
5045SLAB_ATTR_RO(objects);
5046
5047static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5048{
5049 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5050}
5051SLAB_ATTR_RO(objects_partial);
5052
5053static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5054{
5055 int objects = 0;
5056 int pages = 0;
5057 int cpu;
5058 int len;
5059
5060 for_each_online_cpu(cpu) {
5061 struct page *page;
5062
5063 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5064
5065 if (page) {
5066 pages += page->pages;
5067 objects += page->pobjects;
5068 }
5069 }
5070
5071 len = sprintf(buf, "%d(%d)", objects, pages);
5072
5073#ifdef CONFIG_SMP
5074 for_each_online_cpu(cpu) {
5075 struct page *page;
5076
5077 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5078
5079 if (page && len < PAGE_SIZE - 20)
5080 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5081 page->pobjects, page->pages);
5082 }
5083#endif
5084 return len + sprintf(buf + len, "\n");
5085}
5086SLAB_ATTR_RO(slabs_cpu_partial);
5087
5088static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5089{
5090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5091}
5092
5093static ssize_t reclaim_account_store(struct kmem_cache *s,
5094 const char *buf, size_t length)
5095{
5096 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5097 if (buf[0] == '1')
5098 s->flags |= SLAB_RECLAIM_ACCOUNT;
5099 return length;
5100}
5101SLAB_ATTR(reclaim_account);
5102
5103static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5104{
5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5106}
5107SLAB_ATTR_RO(hwcache_align);
5108
5109#ifdef CONFIG_ZONE_DMA
5110static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5111{
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5113}
5114SLAB_ATTR_RO(cache_dma);
5115#endif
5116
5117static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5118{
5119 return sprintf(buf, "%u\n", s->usersize);
5120}
5121SLAB_ATTR_RO(usersize);
5122
5123static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5124{
5125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5126}
5127SLAB_ATTR_RO(destroy_by_rcu);
5128
5129#ifdef CONFIG_SLUB_DEBUG
5130static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5131{
5132 return show_slab_objects(s, buf, SO_ALL);
5133}
5134SLAB_ATTR_RO(slabs);
5135
5136static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5137{
5138 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5139}
5140SLAB_ATTR_RO(total_objects);
5141
5142static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5143{
5144 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5145}
5146
5147static ssize_t sanity_checks_store(struct kmem_cache *s,
5148 const char *buf, size_t length)
5149{
5150 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5151 if (buf[0] == '1') {
5152 s->flags &= ~__CMPXCHG_DOUBLE;
5153 s->flags |= SLAB_CONSISTENCY_CHECKS;
5154 }
5155 return length;
5156}
5157SLAB_ATTR(sanity_checks);
5158
5159static ssize_t trace_show(struct kmem_cache *s, char *buf)
5160{
5161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5162}
5163
5164static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5165 size_t length)
5166{
5167 /*
5168 * Tracing a merged cache is going to give confusing results
5169 * as well as cause other issues like converting a mergeable
5170 * cache into an umergeable one.
5171 */
5172 if (s->refcount > 1)
5173 return -EINVAL;
5174
5175 s->flags &= ~SLAB_TRACE;
5176 if (buf[0] == '1') {
5177 s->flags &= ~__CMPXCHG_DOUBLE;
5178 s->flags |= SLAB_TRACE;
5179 }
5180 return length;
5181}
5182SLAB_ATTR(trace);
5183
5184static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5185{
5186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5187}
5188
5189static ssize_t red_zone_store(struct kmem_cache *s,
5190 const char *buf, size_t length)
5191{
5192 if (any_slab_objects(s))
5193 return -EBUSY;
5194
5195 s->flags &= ~SLAB_RED_ZONE;
5196 if (buf[0] == '1') {
5197 s->flags |= SLAB_RED_ZONE;
5198 }
5199 calculate_sizes(s, -1);
5200 return length;
5201}
5202SLAB_ATTR(red_zone);
5203
5204static ssize_t poison_show(struct kmem_cache *s, char *buf)
5205{
5206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5207}
5208
5209static ssize_t poison_store(struct kmem_cache *s,
5210 const char *buf, size_t length)
5211{
5212 if (any_slab_objects(s))
5213 return -EBUSY;
5214
5215 s->flags &= ~SLAB_POISON;
5216 if (buf[0] == '1') {
5217 s->flags |= SLAB_POISON;
5218 }
5219 calculate_sizes(s, -1);
5220 return length;
5221}
5222SLAB_ATTR(poison);
5223
5224static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5225{
5226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5227}
5228
5229static ssize_t store_user_store(struct kmem_cache *s,
5230 const char *buf, size_t length)
5231{
5232 if (any_slab_objects(s))
5233 return -EBUSY;
5234
5235 s->flags &= ~SLAB_STORE_USER;
5236 if (buf[0] == '1') {
5237 s->flags &= ~__CMPXCHG_DOUBLE;
5238 s->flags |= SLAB_STORE_USER;
5239 }
5240 calculate_sizes(s, -1);
5241 return length;
5242}
5243SLAB_ATTR(store_user);
5244
5245static ssize_t validate_show(struct kmem_cache *s, char *buf)
5246{
5247 return 0;
5248}
5249
5250static ssize_t validate_store(struct kmem_cache *s,
5251 const char *buf, size_t length)
5252{
5253 int ret = -EINVAL;
5254
5255 if (buf[0] == '1') {
5256 ret = validate_slab_cache(s);
5257 if (ret >= 0)
5258 ret = length;
5259 }
5260 return ret;
5261}
5262SLAB_ATTR(validate);
5263
5264static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5265{
5266 if (!(s->flags & SLAB_STORE_USER))
5267 return -ENOSYS;
5268 return list_locations(s, buf, TRACK_ALLOC);
5269}
5270SLAB_ATTR_RO(alloc_calls);
5271
5272static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5273{
5274 if (!(s->flags & SLAB_STORE_USER))
5275 return -ENOSYS;
5276 return list_locations(s, buf, TRACK_FREE);
5277}
5278SLAB_ATTR_RO(free_calls);
5279#endif /* CONFIG_SLUB_DEBUG */
5280
5281#ifdef CONFIG_FAILSLAB
5282static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5283{
5284 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5285}
5286
5287static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5288 size_t length)
5289{
5290 if (s->refcount > 1)
5291 return -EINVAL;
5292
5293 s->flags &= ~SLAB_FAILSLAB;
5294 if (buf[0] == '1')
5295 s->flags |= SLAB_FAILSLAB;
5296 return length;
5297}
5298SLAB_ATTR(failslab);
5299#endif
5300
5301static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5302{
5303 return 0;
5304}
5305
5306static ssize_t shrink_store(struct kmem_cache *s,
5307 const char *buf, size_t length)
5308{
5309 if (buf[0] == '1')
5310 kmem_cache_shrink_all(s);
5311 else
5312 return -EINVAL;
5313 return length;
5314}
5315SLAB_ATTR(shrink);
5316
5317#ifdef CONFIG_NUMA
5318static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5319{
5320 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5321}
5322
5323static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5324 const char *buf, size_t length)
5325{
5326 unsigned int ratio;
5327 int err;
5328
5329 err = kstrtouint(buf, 10, &ratio);
5330 if (err)
5331 return err;
5332 if (ratio > 100)
5333 return -ERANGE;
5334
5335 s->remote_node_defrag_ratio = ratio * 10;
5336
5337 return length;
5338}
5339SLAB_ATTR(remote_node_defrag_ratio);
5340#endif
5341
5342#ifdef CONFIG_SLUB_STATS
5343static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5344{
5345 unsigned long sum = 0;
5346 int cpu;
5347 int len;
5348 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5349
5350 if (!data)
5351 return -ENOMEM;
5352
5353 for_each_online_cpu(cpu) {
5354 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5355
5356 data[cpu] = x;
5357 sum += x;
5358 }
5359
5360 len = sprintf(buf, "%lu", sum);
5361
5362#ifdef CONFIG_SMP
5363 for_each_online_cpu(cpu) {
5364 if (data[cpu] && len < PAGE_SIZE - 20)
5365 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5366 }
5367#endif
5368 kfree(data);
5369 return len + sprintf(buf + len, "\n");
5370}
5371
5372static void clear_stat(struct kmem_cache *s, enum stat_item si)
5373{
5374 int cpu;
5375
5376 for_each_online_cpu(cpu)
5377 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5378}
5379
5380#define STAT_ATTR(si, text) \
5381static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5382{ \
5383 return show_stat(s, buf, si); \
5384} \
5385static ssize_t text##_store(struct kmem_cache *s, \
5386 const char *buf, size_t length) \
5387{ \
5388 if (buf[0] != '0') \
5389 return -EINVAL; \
5390 clear_stat(s, si); \
5391 return length; \
5392} \
5393SLAB_ATTR(text); \
5394
5395STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5396STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5397STAT_ATTR(FREE_FASTPATH, free_fastpath);
5398STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5399STAT_ATTR(FREE_FROZEN, free_frozen);
5400STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5401STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5402STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5403STAT_ATTR(ALLOC_SLAB, alloc_slab);
5404STAT_ATTR(ALLOC_REFILL, alloc_refill);
5405STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5406STAT_ATTR(FREE_SLAB, free_slab);
5407STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5408STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5409STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5410STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5411STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5412STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5413STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5414STAT_ATTR(ORDER_FALLBACK, order_fallback);
5415STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5416STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5417STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5418STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5419STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5420STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5421#endif /* CONFIG_SLUB_STATS */
5422
5423static struct attribute *slab_attrs[] = {
5424 &slab_size_attr.attr,
5425 &object_size_attr.attr,
5426 &objs_per_slab_attr.attr,
5427 &order_attr.attr,
5428 &min_partial_attr.attr,
5429 &cpu_partial_attr.attr,
5430 &objects_attr.attr,
5431 &objects_partial_attr.attr,
5432 &partial_attr.attr,
5433 &cpu_slabs_attr.attr,
5434 &ctor_attr.attr,
5435 &aliases_attr.attr,
5436 &align_attr.attr,
5437 &hwcache_align_attr.attr,
5438 &reclaim_account_attr.attr,
5439 &destroy_by_rcu_attr.attr,
5440 &shrink_attr.attr,
5441 &slabs_cpu_partial_attr.attr,
5442#ifdef CONFIG_SLUB_DEBUG
5443 &total_objects_attr.attr,
5444 &slabs_attr.attr,
5445 &sanity_checks_attr.attr,
5446 &trace_attr.attr,
5447 &red_zone_attr.attr,
5448 &poison_attr.attr,
5449 &store_user_attr.attr,
5450 &validate_attr.attr,
5451 &alloc_calls_attr.attr,
5452 &free_calls_attr.attr,
5453#endif
5454#ifdef CONFIG_ZONE_DMA
5455 &cache_dma_attr.attr,
5456#endif
5457#ifdef CONFIG_NUMA
5458 &remote_node_defrag_ratio_attr.attr,
5459#endif
5460#ifdef CONFIG_SLUB_STATS
5461 &alloc_fastpath_attr.attr,
5462 &alloc_slowpath_attr.attr,
5463 &free_fastpath_attr.attr,
5464 &free_slowpath_attr.attr,
5465 &free_frozen_attr.attr,
5466 &free_add_partial_attr.attr,
5467 &free_remove_partial_attr.attr,
5468 &alloc_from_partial_attr.attr,
5469 &alloc_slab_attr.attr,
5470 &alloc_refill_attr.attr,
5471 &alloc_node_mismatch_attr.attr,
5472 &free_slab_attr.attr,
5473 &cpuslab_flush_attr.attr,
5474 &deactivate_full_attr.attr,
5475 &deactivate_empty_attr.attr,
5476 &deactivate_to_head_attr.attr,
5477 &deactivate_to_tail_attr.attr,
5478 &deactivate_remote_frees_attr.attr,
5479 &deactivate_bypass_attr.attr,
5480 &order_fallback_attr.attr,
5481 &cmpxchg_double_fail_attr.attr,
5482 &cmpxchg_double_cpu_fail_attr.attr,
5483 &cpu_partial_alloc_attr.attr,
5484 &cpu_partial_free_attr.attr,
5485 &cpu_partial_node_attr.attr,
5486 &cpu_partial_drain_attr.attr,
5487#endif
5488#ifdef CONFIG_FAILSLAB
5489 &failslab_attr.attr,
5490#endif
5491 &usersize_attr.attr,
5492
5493 NULL
5494};
5495
5496static const struct attribute_group slab_attr_group = {
5497 .attrs = slab_attrs,
5498};
5499
5500static ssize_t slab_attr_show(struct kobject *kobj,
5501 struct attribute *attr,
5502 char *buf)
5503{
5504 struct slab_attribute *attribute;
5505 struct kmem_cache *s;
5506 int err;
5507
5508 attribute = to_slab_attr(attr);
5509 s = to_slab(kobj);
5510
5511 if (!attribute->show)
5512 return -EIO;
5513
5514 err = attribute->show(s, buf);
5515
5516 return err;
5517}
5518
5519static ssize_t slab_attr_store(struct kobject *kobj,
5520 struct attribute *attr,
5521 const char *buf, size_t len)
5522{
5523 struct slab_attribute *attribute;
5524 struct kmem_cache *s;
5525 int err;
5526
5527 attribute = to_slab_attr(attr);
5528 s = to_slab(kobj);
5529
5530 if (!attribute->store)
5531 return -EIO;
5532
5533 err = attribute->store(s, buf, len);
5534#ifdef CONFIG_MEMCG
5535 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5536 struct kmem_cache *c;
5537
5538 mutex_lock(&slab_mutex);
5539 if (s->max_attr_size < len)
5540 s->max_attr_size = len;
5541
5542 /*
5543 * This is a best effort propagation, so this function's return
5544 * value will be determined by the parent cache only. This is
5545 * basically because not all attributes will have a well
5546 * defined semantics for rollbacks - most of the actions will
5547 * have permanent effects.
5548 *
5549 * Returning the error value of any of the children that fail
5550 * is not 100 % defined, in the sense that users seeing the
5551 * error code won't be able to know anything about the state of
5552 * the cache.
5553 *
5554 * Only returning the error code for the parent cache at least
5555 * has well defined semantics. The cache being written to
5556 * directly either failed or succeeded, in which case we loop
5557 * through the descendants with best-effort propagation.
5558 */
5559 for_each_memcg_cache(c, s)
5560 attribute->store(c, buf, len);
5561 mutex_unlock(&slab_mutex);
5562 }
5563#endif
5564 return err;
5565}
5566
5567static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5568{
5569#ifdef CONFIG_MEMCG
5570 int i;
5571 char *buffer = NULL;
5572 struct kmem_cache *root_cache;
5573
5574 if (is_root_cache(s))
5575 return;
5576
5577 root_cache = s->memcg_params.root_cache;
5578
5579 /*
5580 * This mean this cache had no attribute written. Therefore, no point
5581 * in copying default values around
5582 */
5583 if (!root_cache->max_attr_size)
5584 return;
5585
5586 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5587 char mbuf[64];
5588 char *buf;
5589 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5590 ssize_t len;
5591
5592 if (!attr || !attr->store || !attr->show)
5593 continue;
5594
5595 /*
5596 * It is really bad that we have to allocate here, so we will
5597 * do it only as a fallback. If we actually allocate, though,
5598 * we can just use the allocated buffer until the end.
5599 *
5600 * Most of the slub attributes will tend to be very small in
5601 * size, but sysfs allows buffers up to a page, so they can
5602 * theoretically happen.
5603 */
5604 if (buffer)
5605 buf = buffer;
5606 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5607 buf = mbuf;
5608 else {
5609 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5610 if (WARN_ON(!buffer))
5611 continue;
5612 buf = buffer;
5613 }
5614
5615 len = attr->show(root_cache, buf);
5616 if (len > 0)
5617 attr->store(s, buf, len);
5618 }
5619
5620 if (buffer)
5621 free_page((unsigned long)buffer);
5622#endif /* CONFIG_MEMCG */
5623}
5624
5625static void kmem_cache_release(struct kobject *k)
5626{
5627 slab_kmem_cache_release(to_slab(k));
5628}
5629
5630static const struct sysfs_ops slab_sysfs_ops = {
5631 .show = slab_attr_show,
5632 .store = slab_attr_store,
5633};
5634
5635static struct kobj_type slab_ktype = {
5636 .sysfs_ops = &slab_sysfs_ops,
5637 .release = kmem_cache_release,
5638};
5639
5640static int uevent_filter(struct kset *kset, struct kobject *kobj)
5641{
5642 struct kobj_type *ktype = get_ktype(kobj);
5643
5644 if (ktype == &slab_ktype)
5645 return 1;
5646 return 0;
5647}
5648
5649static const struct kset_uevent_ops slab_uevent_ops = {
5650 .filter = uevent_filter,
5651};
5652
5653static struct kset *slab_kset;
5654
5655static inline struct kset *cache_kset(struct kmem_cache *s)
5656{
5657#ifdef CONFIG_MEMCG
5658 if (!is_root_cache(s))
5659 return s->memcg_params.root_cache->memcg_kset;
5660#endif
5661 return slab_kset;
5662}
5663
5664#define ID_STR_LENGTH 64
5665
5666/* Create a unique string id for a slab cache:
5667 *
5668 * Format :[flags-]size
5669 */
5670static char *create_unique_id(struct kmem_cache *s)
5671{
5672 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5673 char *p = name;
5674
5675 BUG_ON(!name);
5676
5677 *p++ = ':';
5678 /*
5679 * First flags affecting slabcache operations. We will only
5680 * get here for aliasable slabs so we do not need to support
5681 * too many flags. The flags here must cover all flags that
5682 * are matched during merging to guarantee that the id is
5683 * unique.
5684 */
5685 if (s->flags & SLAB_CACHE_DMA)
5686 *p++ = 'd';
5687 if (s->flags & SLAB_CACHE_DMA32)
5688 *p++ = 'D';
5689 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5690 *p++ = 'a';
5691 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5692 *p++ = 'F';
5693 if (s->flags & SLAB_ACCOUNT)
5694 *p++ = 'A';
5695 if (p != name + 1)
5696 *p++ = '-';
5697 p += sprintf(p, "%07u", s->size);
5698
5699 BUG_ON(p > name + ID_STR_LENGTH - 1);
5700 return name;
5701}
5702
5703static void sysfs_slab_remove_workfn(struct work_struct *work)
5704{
5705 struct kmem_cache *s =
5706 container_of(work, struct kmem_cache, kobj_remove_work);
5707
5708 if (!s->kobj.state_in_sysfs)
5709 /*
5710 * For a memcg cache, this may be called during
5711 * deactivation and again on shutdown. Remove only once.
5712 * A cache is never shut down before deactivation is
5713 * complete, so no need to worry about synchronization.
5714 */
5715 goto out;
5716
5717#ifdef CONFIG_MEMCG
5718 kset_unregister(s->memcg_kset);
5719#endif
5720 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5721out:
5722 kobject_put(&s->kobj);
5723}
5724
5725static int sysfs_slab_add(struct kmem_cache *s)
5726{
5727 int err;
5728 const char *name;
5729 struct kset *kset = cache_kset(s);
5730 int unmergeable = slab_unmergeable(s);
5731
5732 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5733
5734 if (!kset) {
5735 kobject_init(&s->kobj, &slab_ktype);
5736 return 0;
5737 }
5738
5739 if (!unmergeable && disable_higher_order_debug &&
5740 (slub_debug & DEBUG_METADATA_FLAGS))
5741 unmergeable = 1;
5742
5743 if (unmergeable) {
5744 /*
5745 * Slabcache can never be merged so we can use the name proper.
5746 * This is typically the case for debug situations. In that
5747 * case we can catch duplicate names easily.
5748 */
5749 sysfs_remove_link(&slab_kset->kobj, s->name);
5750 name = s->name;
5751 } else {
5752 /*
5753 * Create a unique name for the slab as a target
5754 * for the symlinks.
5755 */
5756 name = create_unique_id(s);
5757 }
5758
5759 s->kobj.kset = kset;
5760 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5761 if (err)
5762 goto out;
5763
5764 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5765 if (err)
5766 goto out_del_kobj;
5767
5768#ifdef CONFIG_MEMCG
5769 if (is_root_cache(s) && memcg_sysfs_enabled) {
5770 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5771 if (!s->memcg_kset) {
5772 err = -ENOMEM;
5773 goto out_del_kobj;
5774 }
5775 }
5776#endif
5777
5778 kobject_uevent(&s->kobj, KOBJ_ADD);
5779 if (!unmergeable) {
5780 /* Setup first alias */
5781 sysfs_slab_alias(s, s->name);
5782 }
5783out:
5784 if (!unmergeable)
5785 kfree(name);
5786 return err;
5787out_del_kobj:
5788 kobject_del(&s->kobj);
5789 goto out;
5790}
5791
5792static void sysfs_slab_remove(struct kmem_cache *s)
5793{
5794 if (slab_state < FULL)
5795 /*
5796 * Sysfs has not been setup yet so no need to remove the
5797 * cache from sysfs.
5798 */
5799 return;
5800
5801 kobject_get(&s->kobj);
5802 schedule_work(&s->kobj_remove_work);
5803}
5804
5805void sysfs_slab_unlink(struct kmem_cache *s)
5806{
5807 if (slab_state >= FULL)
5808 kobject_del(&s->kobj);
5809}
5810
5811void sysfs_slab_release(struct kmem_cache *s)
5812{
5813 if (slab_state >= FULL)
5814 kobject_put(&s->kobj);
5815}
5816
5817/*
5818 * Need to buffer aliases during bootup until sysfs becomes
5819 * available lest we lose that information.
5820 */
5821struct saved_alias {
5822 struct kmem_cache *s;
5823 const char *name;
5824 struct saved_alias *next;
5825};
5826
5827static struct saved_alias *alias_list;
5828
5829static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5830{
5831 struct saved_alias *al;
5832
5833 if (slab_state == FULL) {
5834 /*
5835 * If we have a leftover link then remove it.
5836 */
5837 sysfs_remove_link(&slab_kset->kobj, name);
5838 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5839 }
5840
5841 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5842 if (!al)
5843 return -ENOMEM;
5844
5845 al->s = s;
5846 al->name = name;
5847 al->next = alias_list;
5848 alias_list = al;
5849 return 0;
5850}
5851
5852static int __init slab_sysfs_init(void)
5853{
5854 struct kmem_cache *s;
5855 int err;
5856
5857 mutex_lock(&slab_mutex);
5858
5859 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5860 if (!slab_kset) {
5861 mutex_unlock(&slab_mutex);
5862 pr_err("Cannot register slab subsystem.\n");
5863 return -ENOSYS;
5864 }
5865
5866 slab_state = FULL;
5867
5868 list_for_each_entry(s, &slab_caches, list) {
5869 err = sysfs_slab_add(s);
5870 if (err)
5871 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5872 s->name);
5873 }
5874
5875 while (alias_list) {
5876 struct saved_alias *al = alias_list;
5877
5878 alias_list = alias_list->next;
5879 err = sysfs_slab_alias(al->s, al->name);
5880 if (err)
5881 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5882 al->name);
5883 kfree(al);
5884 }
5885
5886 mutex_unlock(&slab_mutex);
5887 resiliency_test();
5888 return 0;
5889}
5890
5891__initcall(slab_sysfs_init);
5892#endif /* CONFIG_SYSFS */
5893
5894/*
5895 * The /proc/slabinfo ABI
5896 */
5897#ifdef CONFIG_SLUB_DEBUG
5898void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5899{
5900 unsigned long nr_slabs = 0;
5901 unsigned long nr_objs = 0;
5902 unsigned long nr_free = 0;
5903 int node;
5904 struct kmem_cache_node *n;
5905
5906 for_each_kmem_cache_node(s, node, n) {
5907 nr_slabs += node_nr_slabs(n);
5908 nr_objs += node_nr_objs(n);
5909 nr_free += count_partial(n, count_free);
5910 }
5911
5912 sinfo->active_objs = nr_objs - nr_free;
5913 sinfo->num_objs = nr_objs;
5914 sinfo->active_slabs = nr_slabs;
5915 sinfo->num_slabs = nr_slabs;
5916 sinfo->objects_per_slab = oo_objects(s->oo);
5917 sinfo->cache_order = oo_order(s->oo);
5918}
5919
5920void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5921{
5922}
5923
5924ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5925 size_t count, loff_t *ppos)
5926{
5927 return -EIO;
5928}
5929#endif /* CONFIG_SLUB_DEBUG */