]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - mm/vmalloc.c
mm/sparse: cleanup the code surrounding memory_present()
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12#include <linux/vmalloc.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/sched/signal.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/set_memory.h>
23#include <linux/debugobjects.h>
24#include <linux/kallsyms.h>
25#include <linux/list.h>
26#include <linux/notifier.h>
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
30#include <linux/pfn.h>
31#include <linux/kmemleak.h>
32#include <linux/atomic.h>
33#include <linux/compiler.h>
34#include <linux/llist.h>
35#include <linux/bitops.h>
36#include <linux/rbtree_augmented.h>
37#include <linux/overflow.h>
38
39#include <linux/uaccess.h>
40#include <asm/tlbflush.h>
41#include <asm/shmparam.h>
42
43#include "internal.h"
44#include "pgalloc-track.h"
45
46bool is_vmalloc_addr(const void *x)
47{
48 unsigned long addr = (unsigned long)x;
49
50 return addr >= VMALLOC_START && addr < VMALLOC_END;
51}
52EXPORT_SYMBOL(is_vmalloc_addr);
53
54struct vfree_deferred {
55 struct llist_head list;
56 struct work_struct wq;
57};
58static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
59
60static void __vunmap(const void *, int);
61
62static void free_work(struct work_struct *w)
63{
64 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 struct llist_node *t, *llnode;
66
67 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
68 __vunmap((void *)llnode, 1);
69}
70
71/*** Page table manipulation functions ***/
72
73static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
74 pgtbl_mod_mask *mask)
75{
76 pte_t *pte;
77
78 pte = pte_offset_kernel(pmd, addr);
79 do {
80 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
81 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
82 } while (pte++, addr += PAGE_SIZE, addr != end);
83 *mask |= PGTBL_PTE_MODIFIED;
84}
85
86static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
87 pgtbl_mod_mask *mask)
88{
89 pmd_t *pmd;
90 unsigned long next;
91 int cleared;
92
93 pmd = pmd_offset(pud, addr);
94 do {
95 next = pmd_addr_end(addr, end);
96
97 cleared = pmd_clear_huge(pmd);
98 if (cleared || pmd_bad(*pmd))
99 *mask |= PGTBL_PMD_MODIFIED;
100
101 if (cleared)
102 continue;
103 if (pmd_none_or_clear_bad(pmd))
104 continue;
105 vunmap_pte_range(pmd, addr, next, mask);
106 } while (pmd++, addr = next, addr != end);
107}
108
109static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
110 pgtbl_mod_mask *mask)
111{
112 pud_t *pud;
113 unsigned long next;
114 int cleared;
115
116 pud = pud_offset(p4d, addr);
117 do {
118 next = pud_addr_end(addr, end);
119
120 cleared = pud_clear_huge(pud);
121 if (cleared || pud_bad(*pud))
122 *mask |= PGTBL_PUD_MODIFIED;
123
124 if (cleared)
125 continue;
126 if (pud_none_or_clear_bad(pud))
127 continue;
128 vunmap_pmd_range(pud, addr, next, mask);
129 } while (pud++, addr = next, addr != end);
130}
131
132static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
133 pgtbl_mod_mask *mask)
134{
135 p4d_t *p4d;
136 unsigned long next;
137 int cleared;
138
139 p4d = p4d_offset(pgd, addr);
140 do {
141 next = p4d_addr_end(addr, end);
142
143 cleared = p4d_clear_huge(p4d);
144 if (cleared || p4d_bad(*p4d))
145 *mask |= PGTBL_P4D_MODIFIED;
146
147 if (cleared)
148 continue;
149 if (p4d_none_or_clear_bad(p4d))
150 continue;
151 vunmap_pud_range(p4d, addr, next, mask);
152 } while (p4d++, addr = next, addr != end);
153}
154
155/**
156 * unmap_kernel_range_noflush - unmap kernel VM area
157 * @start: start of the VM area to unmap
158 * @size: size of the VM area to unmap
159 *
160 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
161 * should have been allocated using get_vm_area() and its friends.
162 *
163 * NOTE:
164 * This function does NOT do any cache flushing. The caller is responsible
165 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
166 * function and flush_tlb_kernel_range() after.
167 */
168void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
169{
170 unsigned long end = start + size;
171 unsigned long next;
172 pgd_t *pgd;
173 unsigned long addr = start;
174 pgtbl_mod_mask mask = 0;
175
176 BUG_ON(addr >= end);
177 start = addr;
178 pgd = pgd_offset_k(addr);
179 do {
180 next = pgd_addr_end(addr, end);
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
185 vunmap_p4d_range(pgd, addr, next, &mask);
186 } while (pgd++, addr = next, addr != end);
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
190}
191
192static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
195{
196 pte_t *pte;
197
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
203 pte = pte_alloc_kernel_track(pmd, addr, mask);
204 if (!pte)
205 return -ENOMEM;
206 do {
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 (*nr)++;
215 } while (pte++, addr += PAGE_SIZE, addr != end);
216 *mask |= PGTBL_PTE_MODIFIED;
217 return 0;
218}
219
220static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
223{
224 pmd_t *pmd;
225 unsigned long next;
226
227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236}
237
238static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
241{
242 pud_t *pud;
243 unsigned long next;
244
245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254}
255
256static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
259{
260 p4d_t *p4d;
261 unsigned long next;
262
263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272}
273
274/**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
280 *
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
290 * 0 on success, -errno on failure.
291 */
292int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
294{
295 unsigned long start = addr;
296 unsigned long end = addr + size;
297 unsigned long next;
298 pgd_t *pgd;
299 int err = 0;
300 int nr = 0;
301 pgtbl_mod_mask mask = 0;
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
305 do {
306 next = pgd_addr_end(addr, end);
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 if (err)
311 return err;
312 } while (pgd++, addr = next, addr != end);
313
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
317 return 0;
318}
319
320int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 struct page **pages)
322{
323 int ret;
324
325 ret = map_kernel_range_noflush(start, size, prot, pages);
326 flush_cache_vmap(start, start + size);
327 return ret;
328}
329
330int is_vmalloc_or_module_addr(const void *x)
331{
332 /*
333 * ARM, x86-64 and sparc64 put modules in a special place,
334 * and fall back on vmalloc() if that fails. Others
335 * just put it in the vmalloc space.
336 */
337#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 unsigned long addr = (unsigned long)x;
339 if (addr >= MODULES_VADDR && addr < MODULES_END)
340 return 1;
341#endif
342 return is_vmalloc_addr(x);
343}
344
345/*
346 * Walk a vmap address to the struct page it maps.
347 */
348struct page *vmalloc_to_page(const void *vmalloc_addr)
349{
350 unsigned long addr = (unsigned long) vmalloc_addr;
351 struct page *page = NULL;
352 pgd_t *pgd = pgd_offset_k(addr);
353 p4d_t *p4d;
354 pud_t *pud;
355 pmd_t *pmd;
356 pte_t *ptep, pte;
357
358 /*
359 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 * architectures that do not vmalloc module space
361 */
362 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
363
364 if (pgd_none(*pgd))
365 return NULL;
366 p4d = p4d_offset(pgd, addr);
367 if (p4d_none(*p4d))
368 return NULL;
369 pud = pud_offset(p4d, addr);
370
371 /*
372 * Don't dereference bad PUD or PMD (below) entries. This will also
373 * identify huge mappings, which we may encounter on architectures
374 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 * not [unambiguously] associated with a struct page, so there is
377 * no correct value to return for them.
378 */
379 WARN_ON_ONCE(pud_bad(*pud));
380 if (pud_none(*pud) || pud_bad(*pud))
381 return NULL;
382 pmd = pmd_offset(pud, addr);
383 WARN_ON_ONCE(pmd_bad(*pmd));
384 if (pmd_none(*pmd) || pmd_bad(*pmd))
385 return NULL;
386
387 ptep = pte_offset_map(pmd, addr);
388 pte = *ptep;
389 if (pte_present(pte))
390 page = pte_page(pte);
391 pte_unmap(ptep);
392 return page;
393}
394EXPORT_SYMBOL(vmalloc_to_page);
395
396/*
397 * Map a vmalloc()-space virtual address to the physical page frame number.
398 */
399unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400{
401 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402}
403EXPORT_SYMBOL(vmalloc_to_pfn);
404
405
406/*** Global kva allocator ***/
407
408#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410
411
412static DEFINE_SPINLOCK(vmap_area_lock);
413static DEFINE_SPINLOCK(free_vmap_area_lock);
414/* Export for kexec only */
415LIST_HEAD(vmap_area_list);
416static LLIST_HEAD(vmap_purge_list);
417static struct rb_root vmap_area_root = RB_ROOT;
418static bool vmap_initialized __read_mostly;
419
420/*
421 * This kmem_cache is used for vmap_area objects. Instead of
422 * allocating from slab we reuse an object from this cache to
423 * make things faster. Especially in "no edge" splitting of
424 * free block.
425 */
426static struct kmem_cache *vmap_area_cachep;
427
428/*
429 * This linked list is used in pair with free_vmap_area_root.
430 * It gives O(1) access to prev/next to perform fast coalescing.
431 */
432static LIST_HEAD(free_vmap_area_list);
433
434/*
435 * This augment red-black tree represents the free vmap space.
436 * All vmap_area objects in this tree are sorted by va->va_start
437 * address. It is used for allocation and merging when a vmap
438 * object is released.
439 *
440 * Each vmap_area node contains a maximum available free block
441 * of its sub-tree, right or left. Therefore it is possible to
442 * find a lowest match of free area.
443 */
444static struct rb_root free_vmap_area_root = RB_ROOT;
445
446/*
447 * Preload a CPU with one object for "no edge" split case. The
448 * aim is to get rid of allocations from the atomic context, thus
449 * to use more permissive allocation masks.
450 */
451static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
452
453static __always_inline unsigned long
454va_size(struct vmap_area *va)
455{
456 return (va->va_end - va->va_start);
457}
458
459static __always_inline unsigned long
460get_subtree_max_size(struct rb_node *node)
461{
462 struct vmap_area *va;
463
464 va = rb_entry_safe(node, struct vmap_area, rb_node);
465 return va ? va->subtree_max_size : 0;
466}
467
468/*
469 * Gets called when remove the node and rotate.
470 */
471static __always_inline unsigned long
472compute_subtree_max_size(struct vmap_area *va)
473{
474 return max3(va_size(va),
475 get_subtree_max_size(va->rb_node.rb_left),
476 get_subtree_max_size(va->rb_node.rb_right));
477}
478
479RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
480 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481
482static void purge_vmap_area_lazy(void);
483static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
484static unsigned long lazy_max_pages(void);
485
486static atomic_long_t nr_vmalloc_pages;
487
488unsigned long vmalloc_nr_pages(void)
489{
490 return atomic_long_read(&nr_vmalloc_pages);
491}
492
493static struct vmap_area *__find_vmap_area(unsigned long addr)
494{
495 struct rb_node *n = vmap_area_root.rb_node;
496
497 while (n) {
498 struct vmap_area *va;
499
500 va = rb_entry(n, struct vmap_area, rb_node);
501 if (addr < va->va_start)
502 n = n->rb_left;
503 else if (addr >= va->va_end)
504 n = n->rb_right;
505 else
506 return va;
507 }
508
509 return NULL;
510}
511
512/*
513 * This function returns back addresses of parent node
514 * and its left or right link for further processing.
515 */
516static __always_inline struct rb_node **
517find_va_links(struct vmap_area *va,
518 struct rb_root *root, struct rb_node *from,
519 struct rb_node **parent)
520{
521 struct vmap_area *tmp_va;
522 struct rb_node **link;
523
524 if (root) {
525 link = &root->rb_node;
526 if (unlikely(!*link)) {
527 *parent = NULL;
528 return link;
529 }
530 } else {
531 link = &from;
532 }
533
534 /*
535 * Go to the bottom of the tree. When we hit the last point
536 * we end up with parent rb_node and correct direction, i name
537 * it link, where the new va->rb_node will be attached to.
538 */
539 do {
540 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
541
542 /*
543 * During the traversal we also do some sanity check.
544 * Trigger the BUG() if there are sides(left/right)
545 * or full overlaps.
546 */
547 if (va->va_start < tmp_va->va_end &&
548 va->va_end <= tmp_va->va_start)
549 link = &(*link)->rb_left;
550 else if (va->va_end > tmp_va->va_start &&
551 va->va_start >= tmp_va->va_end)
552 link = &(*link)->rb_right;
553 else
554 BUG();
555 } while (*link);
556
557 *parent = &tmp_va->rb_node;
558 return link;
559}
560
561static __always_inline struct list_head *
562get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
563{
564 struct list_head *list;
565
566 if (unlikely(!parent))
567 /*
568 * The red-black tree where we try to find VA neighbors
569 * before merging or inserting is empty, i.e. it means
570 * there is no free vmap space. Normally it does not
571 * happen but we handle this case anyway.
572 */
573 return NULL;
574
575 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
576 return (&parent->rb_right == link ? list->next : list);
577}
578
579static __always_inline void
580link_va(struct vmap_area *va, struct rb_root *root,
581 struct rb_node *parent, struct rb_node **link, struct list_head *head)
582{
583 /*
584 * VA is still not in the list, but we can
585 * identify its future previous list_head node.
586 */
587 if (likely(parent)) {
588 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
589 if (&parent->rb_right != link)
590 head = head->prev;
591 }
592
593 /* Insert to the rb-tree */
594 rb_link_node(&va->rb_node, parent, link);
595 if (root == &free_vmap_area_root) {
596 /*
597 * Some explanation here. Just perform simple insertion
598 * to the tree. We do not set va->subtree_max_size to
599 * its current size before calling rb_insert_augmented().
600 * It is because of we populate the tree from the bottom
601 * to parent levels when the node _is_ in the tree.
602 *
603 * Therefore we set subtree_max_size to zero after insertion,
604 * to let __augment_tree_propagate_from() puts everything to
605 * the correct order later on.
606 */
607 rb_insert_augmented(&va->rb_node,
608 root, &free_vmap_area_rb_augment_cb);
609 va->subtree_max_size = 0;
610 } else {
611 rb_insert_color(&va->rb_node, root);
612 }
613
614 /* Address-sort this list */
615 list_add(&va->list, head);
616}
617
618static __always_inline void
619unlink_va(struct vmap_area *va, struct rb_root *root)
620{
621 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
622 return;
623
624 if (root == &free_vmap_area_root)
625 rb_erase_augmented(&va->rb_node,
626 root, &free_vmap_area_rb_augment_cb);
627 else
628 rb_erase(&va->rb_node, root);
629
630 list_del(&va->list);
631 RB_CLEAR_NODE(&va->rb_node);
632}
633
634#if DEBUG_AUGMENT_PROPAGATE_CHECK
635static void
636augment_tree_propagate_check(struct rb_node *n)
637{
638 struct vmap_area *va;
639 struct rb_node *node;
640 unsigned long size;
641 bool found = false;
642
643 if (n == NULL)
644 return;
645
646 va = rb_entry(n, struct vmap_area, rb_node);
647 size = va->subtree_max_size;
648 node = n;
649
650 while (node) {
651 va = rb_entry(node, struct vmap_area, rb_node);
652
653 if (get_subtree_max_size(node->rb_left) == size) {
654 node = node->rb_left;
655 } else {
656 if (va_size(va) == size) {
657 found = true;
658 break;
659 }
660
661 node = node->rb_right;
662 }
663 }
664
665 if (!found) {
666 va = rb_entry(n, struct vmap_area, rb_node);
667 pr_emerg("tree is corrupted: %lu, %lu\n",
668 va_size(va), va->subtree_max_size);
669 }
670
671 augment_tree_propagate_check(n->rb_left);
672 augment_tree_propagate_check(n->rb_right);
673}
674#endif
675
676/*
677 * This function populates subtree_max_size from bottom to upper
678 * levels starting from VA point. The propagation must be done
679 * when VA size is modified by changing its va_start/va_end. Or
680 * in case of newly inserting of VA to the tree.
681 *
682 * It means that __augment_tree_propagate_from() must be called:
683 * - After VA has been inserted to the tree(free path);
684 * - After VA has been shrunk(allocation path);
685 * - After VA has been increased(merging path).
686 *
687 * Please note that, it does not mean that upper parent nodes
688 * and their subtree_max_size are recalculated all the time up
689 * to the root node.
690 *
691 * 4--8
692 * /\
693 * / \
694 * / \
695 * 2--2 8--8
696 *
697 * For example if we modify the node 4, shrinking it to 2, then
698 * no any modification is required. If we shrink the node 2 to 1
699 * its subtree_max_size is updated only, and set to 1. If we shrink
700 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
701 * node becomes 4--6.
702 */
703static __always_inline void
704augment_tree_propagate_from(struct vmap_area *va)
705{
706 struct rb_node *node = &va->rb_node;
707 unsigned long new_va_sub_max_size;
708
709 while (node) {
710 va = rb_entry(node, struct vmap_area, rb_node);
711 new_va_sub_max_size = compute_subtree_max_size(va);
712
713 /*
714 * If the newly calculated maximum available size of the
715 * subtree is equal to the current one, then it means that
716 * the tree is propagated correctly. So we have to stop at
717 * this point to save cycles.
718 */
719 if (va->subtree_max_size == new_va_sub_max_size)
720 break;
721
722 va->subtree_max_size = new_va_sub_max_size;
723 node = rb_parent(&va->rb_node);
724 }
725
726#if DEBUG_AUGMENT_PROPAGATE_CHECK
727 augment_tree_propagate_check(free_vmap_area_root.rb_node);
728#endif
729}
730
731static void
732insert_vmap_area(struct vmap_area *va,
733 struct rb_root *root, struct list_head *head)
734{
735 struct rb_node **link;
736 struct rb_node *parent;
737
738 link = find_va_links(va, root, NULL, &parent);
739 link_va(va, root, parent, link, head);
740}
741
742static void
743insert_vmap_area_augment(struct vmap_area *va,
744 struct rb_node *from, struct rb_root *root,
745 struct list_head *head)
746{
747 struct rb_node **link;
748 struct rb_node *parent;
749
750 if (from)
751 link = find_va_links(va, NULL, from, &parent);
752 else
753 link = find_va_links(va, root, NULL, &parent);
754
755 link_va(va, root, parent, link, head);
756 augment_tree_propagate_from(va);
757}
758
759/*
760 * Merge de-allocated chunk of VA memory with previous
761 * and next free blocks. If coalesce is not done a new
762 * free area is inserted. If VA has been merged, it is
763 * freed.
764 */
765static __always_inline struct vmap_area *
766merge_or_add_vmap_area(struct vmap_area *va,
767 struct rb_root *root, struct list_head *head)
768{
769 struct vmap_area *sibling;
770 struct list_head *next;
771 struct rb_node **link;
772 struct rb_node *parent;
773 bool merged = false;
774
775 /*
776 * Find a place in the tree where VA potentially will be
777 * inserted, unless it is merged with its sibling/siblings.
778 */
779 link = find_va_links(va, root, NULL, &parent);
780
781 /*
782 * Get next node of VA to check if merging can be done.
783 */
784 next = get_va_next_sibling(parent, link);
785 if (unlikely(next == NULL))
786 goto insert;
787
788 /*
789 * start end
790 * | |
791 * |<------VA------>|<-----Next----->|
792 * | |
793 * start end
794 */
795 if (next != head) {
796 sibling = list_entry(next, struct vmap_area, list);
797 if (sibling->va_start == va->va_end) {
798 sibling->va_start = va->va_start;
799
800 /* Check and update the tree if needed. */
801 augment_tree_propagate_from(sibling);
802
803 /* Free vmap_area object. */
804 kmem_cache_free(vmap_area_cachep, va);
805
806 /* Point to the new merged area. */
807 va = sibling;
808 merged = true;
809 }
810 }
811
812 /*
813 * start end
814 * | |
815 * |<-----Prev----->|<------VA------>|
816 * | |
817 * start end
818 */
819 if (next->prev != head) {
820 sibling = list_entry(next->prev, struct vmap_area, list);
821 if (sibling->va_end == va->va_start) {
822 sibling->va_end = va->va_end;
823
824 /* Check and update the tree if needed. */
825 augment_tree_propagate_from(sibling);
826
827 if (merged)
828 unlink_va(va, root);
829
830 /* Free vmap_area object. */
831 kmem_cache_free(vmap_area_cachep, va);
832
833 /* Point to the new merged area. */
834 va = sibling;
835 merged = true;
836 }
837 }
838
839insert:
840 if (!merged) {
841 link_va(va, root, parent, link, head);
842 augment_tree_propagate_from(va);
843 }
844
845 return va;
846}
847
848static __always_inline bool
849is_within_this_va(struct vmap_area *va, unsigned long size,
850 unsigned long align, unsigned long vstart)
851{
852 unsigned long nva_start_addr;
853
854 if (va->va_start > vstart)
855 nva_start_addr = ALIGN(va->va_start, align);
856 else
857 nva_start_addr = ALIGN(vstart, align);
858
859 /* Can be overflowed due to big size or alignment. */
860 if (nva_start_addr + size < nva_start_addr ||
861 nva_start_addr < vstart)
862 return false;
863
864 return (nva_start_addr + size <= va->va_end);
865}
866
867/*
868 * Find the first free block(lowest start address) in the tree,
869 * that will accomplish the request corresponding to passing
870 * parameters.
871 */
872static __always_inline struct vmap_area *
873find_vmap_lowest_match(unsigned long size,
874 unsigned long align, unsigned long vstart)
875{
876 struct vmap_area *va;
877 struct rb_node *node;
878 unsigned long length;
879
880 /* Start from the root. */
881 node = free_vmap_area_root.rb_node;
882
883 /* Adjust the search size for alignment overhead. */
884 length = size + align - 1;
885
886 while (node) {
887 va = rb_entry(node, struct vmap_area, rb_node);
888
889 if (get_subtree_max_size(node->rb_left) >= length &&
890 vstart < va->va_start) {
891 node = node->rb_left;
892 } else {
893 if (is_within_this_va(va, size, align, vstart))
894 return va;
895
896 /*
897 * Does not make sense to go deeper towards the right
898 * sub-tree if it does not have a free block that is
899 * equal or bigger to the requested search length.
900 */
901 if (get_subtree_max_size(node->rb_right) >= length) {
902 node = node->rb_right;
903 continue;
904 }
905
906 /*
907 * OK. We roll back and find the first right sub-tree,
908 * that will satisfy the search criteria. It can happen
909 * only once due to "vstart" restriction.
910 */
911 while ((node = rb_parent(node))) {
912 va = rb_entry(node, struct vmap_area, rb_node);
913 if (is_within_this_va(va, size, align, vstart))
914 return va;
915
916 if (get_subtree_max_size(node->rb_right) >= length &&
917 vstart <= va->va_start) {
918 node = node->rb_right;
919 break;
920 }
921 }
922 }
923 }
924
925 return NULL;
926}
927
928#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
929#include <linux/random.h>
930
931static struct vmap_area *
932find_vmap_lowest_linear_match(unsigned long size,
933 unsigned long align, unsigned long vstart)
934{
935 struct vmap_area *va;
936
937 list_for_each_entry(va, &free_vmap_area_list, list) {
938 if (!is_within_this_va(va, size, align, vstart))
939 continue;
940
941 return va;
942 }
943
944 return NULL;
945}
946
947static void
948find_vmap_lowest_match_check(unsigned long size)
949{
950 struct vmap_area *va_1, *va_2;
951 unsigned long vstart;
952 unsigned int rnd;
953
954 get_random_bytes(&rnd, sizeof(rnd));
955 vstart = VMALLOC_START + rnd;
956
957 va_1 = find_vmap_lowest_match(size, 1, vstart);
958 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
959
960 if (va_1 != va_2)
961 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
962 va_1, va_2, vstart);
963}
964#endif
965
966enum fit_type {
967 NOTHING_FIT = 0,
968 FL_FIT_TYPE = 1, /* full fit */
969 LE_FIT_TYPE = 2, /* left edge fit */
970 RE_FIT_TYPE = 3, /* right edge fit */
971 NE_FIT_TYPE = 4 /* no edge fit */
972};
973
974static __always_inline enum fit_type
975classify_va_fit_type(struct vmap_area *va,
976 unsigned long nva_start_addr, unsigned long size)
977{
978 enum fit_type type;
979
980 /* Check if it is within VA. */
981 if (nva_start_addr < va->va_start ||
982 nva_start_addr + size > va->va_end)
983 return NOTHING_FIT;
984
985 /* Now classify. */
986 if (va->va_start == nva_start_addr) {
987 if (va->va_end == nva_start_addr + size)
988 type = FL_FIT_TYPE;
989 else
990 type = LE_FIT_TYPE;
991 } else if (va->va_end == nva_start_addr + size) {
992 type = RE_FIT_TYPE;
993 } else {
994 type = NE_FIT_TYPE;
995 }
996
997 return type;
998}
999
1000static __always_inline int
1001adjust_va_to_fit_type(struct vmap_area *va,
1002 unsigned long nva_start_addr, unsigned long size,
1003 enum fit_type type)
1004{
1005 struct vmap_area *lva = NULL;
1006
1007 if (type == FL_FIT_TYPE) {
1008 /*
1009 * No need to split VA, it fully fits.
1010 *
1011 * | |
1012 * V NVA V
1013 * |---------------|
1014 */
1015 unlink_va(va, &free_vmap_area_root);
1016 kmem_cache_free(vmap_area_cachep, va);
1017 } else if (type == LE_FIT_TYPE) {
1018 /*
1019 * Split left edge of fit VA.
1020 *
1021 * | |
1022 * V NVA V R
1023 * |-------|-------|
1024 */
1025 va->va_start += size;
1026 } else if (type == RE_FIT_TYPE) {
1027 /*
1028 * Split right edge of fit VA.
1029 *
1030 * | |
1031 * L V NVA V
1032 * |-------|-------|
1033 */
1034 va->va_end = nva_start_addr;
1035 } else if (type == NE_FIT_TYPE) {
1036 /*
1037 * Split no edge of fit VA.
1038 *
1039 * | |
1040 * L V NVA V R
1041 * |---|-------|---|
1042 */
1043 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1044 if (unlikely(!lva)) {
1045 /*
1046 * For percpu allocator we do not do any pre-allocation
1047 * and leave it as it is. The reason is it most likely
1048 * never ends up with NE_FIT_TYPE splitting. In case of
1049 * percpu allocations offsets and sizes are aligned to
1050 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1051 * are its main fitting cases.
1052 *
1053 * There are a few exceptions though, as an example it is
1054 * a first allocation (early boot up) when we have "one"
1055 * big free space that has to be split.
1056 *
1057 * Also we can hit this path in case of regular "vmap"
1058 * allocations, if "this" current CPU was not preloaded.
1059 * See the comment in alloc_vmap_area() why. If so, then
1060 * GFP_NOWAIT is used instead to get an extra object for
1061 * split purpose. That is rare and most time does not
1062 * occur.
1063 *
1064 * What happens if an allocation gets failed. Basically,
1065 * an "overflow" path is triggered to purge lazily freed
1066 * areas to free some memory, then, the "retry" path is
1067 * triggered to repeat one more time. See more details
1068 * in alloc_vmap_area() function.
1069 */
1070 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1071 if (!lva)
1072 return -1;
1073 }
1074
1075 /*
1076 * Build the remainder.
1077 */
1078 lva->va_start = va->va_start;
1079 lva->va_end = nva_start_addr;
1080
1081 /*
1082 * Shrink this VA to remaining size.
1083 */
1084 va->va_start = nva_start_addr + size;
1085 } else {
1086 return -1;
1087 }
1088
1089 if (type != FL_FIT_TYPE) {
1090 augment_tree_propagate_from(va);
1091
1092 if (lva) /* type == NE_FIT_TYPE */
1093 insert_vmap_area_augment(lva, &va->rb_node,
1094 &free_vmap_area_root, &free_vmap_area_list);
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Returns a start address of the newly allocated area, if success.
1102 * Otherwise a vend is returned that indicates failure.
1103 */
1104static __always_inline unsigned long
1105__alloc_vmap_area(unsigned long size, unsigned long align,
1106 unsigned long vstart, unsigned long vend)
1107{
1108 unsigned long nva_start_addr;
1109 struct vmap_area *va;
1110 enum fit_type type;
1111 int ret;
1112
1113 va = find_vmap_lowest_match(size, align, vstart);
1114 if (unlikely(!va))
1115 return vend;
1116
1117 if (va->va_start > vstart)
1118 nva_start_addr = ALIGN(va->va_start, align);
1119 else
1120 nva_start_addr = ALIGN(vstart, align);
1121
1122 /* Check the "vend" restriction. */
1123 if (nva_start_addr + size > vend)
1124 return vend;
1125
1126 /* Classify what we have found. */
1127 type = classify_va_fit_type(va, nva_start_addr, size);
1128 if (WARN_ON_ONCE(type == NOTHING_FIT))
1129 return vend;
1130
1131 /* Update the free vmap_area. */
1132 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1133 if (ret)
1134 return vend;
1135
1136#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1137 find_vmap_lowest_match_check(size);
1138#endif
1139
1140 return nva_start_addr;
1141}
1142
1143/*
1144 * Free a region of KVA allocated by alloc_vmap_area
1145 */
1146static void free_vmap_area(struct vmap_area *va)
1147{
1148 /*
1149 * Remove from the busy tree/list.
1150 */
1151 spin_lock(&vmap_area_lock);
1152 unlink_va(va, &vmap_area_root);
1153 spin_unlock(&vmap_area_lock);
1154
1155 /*
1156 * Insert/Merge it back to the free tree/list.
1157 */
1158 spin_lock(&free_vmap_area_lock);
1159 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1160 spin_unlock(&free_vmap_area_lock);
1161}
1162
1163/*
1164 * Allocate a region of KVA of the specified size and alignment, within the
1165 * vstart and vend.
1166 */
1167static struct vmap_area *alloc_vmap_area(unsigned long size,
1168 unsigned long align,
1169 unsigned long vstart, unsigned long vend,
1170 int node, gfp_t gfp_mask)
1171{
1172 struct vmap_area *va, *pva;
1173 unsigned long addr;
1174 int purged = 0;
1175 int ret;
1176
1177 BUG_ON(!size);
1178 BUG_ON(offset_in_page(size));
1179 BUG_ON(!is_power_of_2(align));
1180
1181 if (unlikely(!vmap_initialized))
1182 return ERR_PTR(-EBUSY);
1183
1184 might_sleep();
1185 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1186
1187 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1188 if (unlikely(!va))
1189 return ERR_PTR(-ENOMEM);
1190
1191 /*
1192 * Only scan the relevant parts containing pointers to other objects
1193 * to avoid false negatives.
1194 */
1195 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1196
1197retry:
1198 /*
1199 * Preload this CPU with one extra vmap_area object. It is used
1200 * when fit type of free area is NE_FIT_TYPE. Please note, it
1201 * does not guarantee that an allocation occurs on a CPU that
1202 * is preloaded, instead we minimize the case when it is not.
1203 * It can happen because of cpu migration, because there is a
1204 * race until the below spinlock is taken.
1205 *
1206 * The preload is done in non-atomic context, thus it allows us
1207 * to use more permissive allocation masks to be more stable under
1208 * low memory condition and high memory pressure. In rare case,
1209 * if not preloaded, GFP_NOWAIT is used.
1210 *
1211 * Set "pva" to NULL here, because of "retry" path.
1212 */
1213 pva = NULL;
1214
1215 if (!this_cpu_read(ne_fit_preload_node))
1216 /*
1217 * Even if it fails we do not really care about that.
1218 * Just proceed as it is. If needed "overflow" path
1219 * will refill the cache we allocate from.
1220 */
1221 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1222
1223 spin_lock(&free_vmap_area_lock);
1224
1225 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1226 kmem_cache_free(vmap_area_cachep, pva);
1227
1228 /*
1229 * If an allocation fails, the "vend" address is
1230 * returned. Therefore trigger the overflow path.
1231 */
1232 addr = __alloc_vmap_area(size, align, vstart, vend);
1233 spin_unlock(&free_vmap_area_lock);
1234
1235 if (unlikely(addr == vend))
1236 goto overflow;
1237
1238 va->va_start = addr;
1239 va->va_end = addr + size;
1240 va->vm = NULL;
1241
1242
1243 spin_lock(&vmap_area_lock);
1244 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1245 spin_unlock(&vmap_area_lock);
1246
1247 BUG_ON(!IS_ALIGNED(va->va_start, align));
1248 BUG_ON(va->va_start < vstart);
1249 BUG_ON(va->va_end > vend);
1250
1251 ret = kasan_populate_vmalloc(addr, size);
1252 if (ret) {
1253 free_vmap_area(va);
1254 return ERR_PTR(ret);
1255 }
1256
1257 return va;
1258
1259overflow:
1260 if (!purged) {
1261 purge_vmap_area_lazy();
1262 purged = 1;
1263 goto retry;
1264 }
1265
1266 if (gfpflags_allow_blocking(gfp_mask)) {
1267 unsigned long freed = 0;
1268 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1269 if (freed > 0) {
1270 purged = 0;
1271 goto retry;
1272 }
1273 }
1274
1275 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1276 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1277 size);
1278
1279 kmem_cache_free(vmap_area_cachep, va);
1280 return ERR_PTR(-EBUSY);
1281}
1282
1283int register_vmap_purge_notifier(struct notifier_block *nb)
1284{
1285 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1286}
1287EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1288
1289int unregister_vmap_purge_notifier(struct notifier_block *nb)
1290{
1291 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1292}
1293EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1294
1295/*
1296 * lazy_max_pages is the maximum amount of virtual address space we gather up
1297 * before attempting to purge with a TLB flush.
1298 *
1299 * There is a tradeoff here: a larger number will cover more kernel page tables
1300 * and take slightly longer to purge, but it will linearly reduce the number of
1301 * global TLB flushes that must be performed. It would seem natural to scale
1302 * this number up linearly with the number of CPUs (because vmapping activity
1303 * could also scale linearly with the number of CPUs), however it is likely
1304 * that in practice, workloads might be constrained in other ways that mean
1305 * vmap activity will not scale linearly with CPUs. Also, I want to be
1306 * conservative and not introduce a big latency on huge systems, so go with
1307 * a less aggressive log scale. It will still be an improvement over the old
1308 * code, and it will be simple to change the scale factor if we find that it
1309 * becomes a problem on bigger systems.
1310 */
1311static unsigned long lazy_max_pages(void)
1312{
1313 unsigned int log;
1314
1315 log = fls(num_online_cpus());
1316
1317 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1318}
1319
1320static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1321
1322/*
1323 * Serialize vmap purging. There is no actual criticial section protected
1324 * by this look, but we want to avoid concurrent calls for performance
1325 * reasons and to make the pcpu_get_vm_areas more deterministic.
1326 */
1327static DEFINE_MUTEX(vmap_purge_lock);
1328
1329/* for per-CPU blocks */
1330static void purge_fragmented_blocks_allcpus(void);
1331
1332/*
1333 * called before a call to iounmap() if the caller wants vm_area_struct's
1334 * immediately freed.
1335 */
1336void set_iounmap_nonlazy(void)
1337{
1338 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1339}
1340
1341/*
1342 * Purges all lazily-freed vmap areas.
1343 */
1344static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1345{
1346 unsigned long resched_threshold;
1347 struct llist_node *valist;
1348 struct vmap_area *va;
1349 struct vmap_area *n_va;
1350
1351 lockdep_assert_held(&vmap_purge_lock);
1352
1353 valist = llist_del_all(&vmap_purge_list);
1354 if (unlikely(valist == NULL))
1355 return false;
1356
1357 /*
1358 * TODO: to calculate a flush range without looping.
1359 * The list can be up to lazy_max_pages() elements.
1360 */
1361 llist_for_each_entry(va, valist, purge_list) {
1362 if (va->va_start < start)
1363 start = va->va_start;
1364 if (va->va_end > end)
1365 end = va->va_end;
1366 }
1367
1368 flush_tlb_kernel_range(start, end);
1369 resched_threshold = lazy_max_pages() << 1;
1370
1371 spin_lock(&free_vmap_area_lock);
1372 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1373 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1374 unsigned long orig_start = va->va_start;
1375 unsigned long orig_end = va->va_end;
1376
1377 /*
1378 * Finally insert or merge lazily-freed area. It is
1379 * detached and there is no need to "unlink" it from
1380 * anything.
1381 */
1382 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1383 &free_vmap_area_list);
1384
1385 if (is_vmalloc_or_module_addr((void *)orig_start))
1386 kasan_release_vmalloc(orig_start, orig_end,
1387 va->va_start, va->va_end);
1388
1389 atomic_long_sub(nr, &vmap_lazy_nr);
1390
1391 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1392 cond_resched_lock(&free_vmap_area_lock);
1393 }
1394 spin_unlock(&free_vmap_area_lock);
1395 return true;
1396}
1397
1398/*
1399 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1400 * is already purging.
1401 */
1402static void try_purge_vmap_area_lazy(void)
1403{
1404 if (mutex_trylock(&vmap_purge_lock)) {
1405 __purge_vmap_area_lazy(ULONG_MAX, 0);
1406 mutex_unlock(&vmap_purge_lock);
1407 }
1408}
1409
1410/*
1411 * Kick off a purge of the outstanding lazy areas.
1412 */
1413static void purge_vmap_area_lazy(void)
1414{
1415 mutex_lock(&vmap_purge_lock);
1416 purge_fragmented_blocks_allcpus();
1417 __purge_vmap_area_lazy(ULONG_MAX, 0);
1418 mutex_unlock(&vmap_purge_lock);
1419}
1420
1421/*
1422 * Free a vmap area, caller ensuring that the area has been unmapped
1423 * and flush_cache_vunmap had been called for the correct range
1424 * previously.
1425 */
1426static void free_vmap_area_noflush(struct vmap_area *va)
1427{
1428 unsigned long nr_lazy;
1429
1430 spin_lock(&vmap_area_lock);
1431 unlink_va(va, &vmap_area_root);
1432 spin_unlock(&vmap_area_lock);
1433
1434 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1435 PAGE_SHIFT, &vmap_lazy_nr);
1436
1437 /* After this point, we may free va at any time */
1438 llist_add(&va->purge_list, &vmap_purge_list);
1439
1440 if (unlikely(nr_lazy > lazy_max_pages()))
1441 try_purge_vmap_area_lazy();
1442}
1443
1444/*
1445 * Free and unmap a vmap area
1446 */
1447static void free_unmap_vmap_area(struct vmap_area *va)
1448{
1449 flush_cache_vunmap(va->va_start, va->va_end);
1450 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1451 if (debug_pagealloc_enabled_static())
1452 flush_tlb_kernel_range(va->va_start, va->va_end);
1453
1454 free_vmap_area_noflush(va);
1455}
1456
1457static struct vmap_area *find_vmap_area(unsigned long addr)
1458{
1459 struct vmap_area *va;
1460
1461 spin_lock(&vmap_area_lock);
1462 va = __find_vmap_area(addr);
1463 spin_unlock(&vmap_area_lock);
1464
1465 return va;
1466}
1467
1468/*** Per cpu kva allocator ***/
1469
1470/*
1471 * vmap space is limited especially on 32 bit architectures. Ensure there is
1472 * room for at least 16 percpu vmap blocks per CPU.
1473 */
1474/*
1475 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1476 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1477 * instead (we just need a rough idea)
1478 */
1479#if BITS_PER_LONG == 32
1480#define VMALLOC_SPACE (128UL*1024*1024)
1481#else
1482#define VMALLOC_SPACE (128UL*1024*1024*1024)
1483#endif
1484
1485#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1486#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1487#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1488#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1489#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1490#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1491#define VMAP_BBMAP_BITS \
1492 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1493 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1494 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1495
1496#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1497
1498struct vmap_block_queue {
1499 spinlock_t lock;
1500 struct list_head free;
1501};
1502
1503struct vmap_block {
1504 spinlock_t lock;
1505 struct vmap_area *va;
1506 unsigned long free, dirty;
1507 unsigned long dirty_min, dirty_max; /*< dirty range */
1508 struct list_head free_list;
1509 struct rcu_head rcu_head;
1510 struct list_head purge;
1511};
1512
1513/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1514static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1515
1516/*
1517 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1518 * in the free path. Could get rid of this if we change the API to return a
1519 * "cookie" from alloc, to be passed to free. But no big deal yet.
1520 */
1521static DEFINE_SPINLOCK(vmap_block_tree_lock);
1522static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1523
1524/*
1525 * We should probably have a fallback mechanism to allocate virtual memory
1526 * out of partially filled vmap blocks. However vmap block sizing should be
1527 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1528 * big problem.
1529 */
1530
1531static unsigned long addr_to_vb_idx(unsigned long addr)
1532{
1533 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1534 addr /= VMAP_BLOCK_SIZE;
1535 return addr;
1536}
1537
1538static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1539{
1540 unsigned long addr;
1541
1542 addr = va_start + (pages_off << PAGE_SHIFT);
1543 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1544 return (void *)addr;
1545}
1546
1547/**
1548 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1549 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1550 * @order: how many 2^order pages should be occupied in newly allocated block
1551 * @gfp_mask: flags for the page level allocator
1552 *
1553 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1554 */
1555static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1556{
1557 struct vmap_block_queue *vbq;
1558 struct vmap_block *vb;
1559 struct vmap_area *va;
1560 unsigned long vb_idx;
1561 int node, err;
1562 void *vaddr;
1563
1564 node = numa_node_id();
1565
1566 vb = kmalloc_node(sizeof(struct vmap_block),
1567 gfp_mask & GFP_RECLAIM_MASK, node);
1568 if (unlikely(!vb))
1569 return ERR_PTR(-ENOMEM);
1570
1571 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1572 VMALLOC_START, VMALLOC_END,
1573 node, gfp_mask);
1574 if (IS_ERR(va)) {
1575 kfree(vb);
1576 return ERR_CAST(va);
1577 }
1578
1579 err = radix_tree_preload(gfp_mask);
1580 if (unlikely(err)) {
1581 kfree(vb);
1582 free_vmap_area(va);
1583 return ERR_PTR(err);
1584 }
1585
1586 vaddr = vmap_block_vaddr(va->va_start, 0);
1587 spin_lock_init(&vb->lock);
1588 vb->va = va;
1589 /* At least something should be left free */
1590 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1591 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1592 vb->dirty = 0;
1593 vb->dirty_min = VMAP_BBMAP_BITS;
1594 vb->dirty_max = 0;
1595 INIT_LIST_HEAD(&vb->free_list);
1596
1597 vb_idx = addr_to_vb_idx(va->va_start);
1598 spin_lock(&vmap_block_tree_lock);
1599 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1600 spin_unlock(&vmap_block_tree_lock);
1601 BUG_ON(err);
1602 radix_tree_preload_end();
1603
1604 vbq = &get_cpu_var(vmap_block_queue);
1605 spin_lock(&vbq->lock);
1606 list_add_tail_rcu(&vb->free_list, &vbq->free);
1607 spin_unlock(&vbq->lock);
1608 put_cpu_var(vmap_block_queue);
1609
1610 return vaddr;
1611}
1612
1613static void free_vmap_block(struct vmap_block *vb)
1614{
1615 struct vmap_block *tmp;
1616 unsigned long vb_idx;
1617
1618 vb_idx = addr_to_vb_idx(vb->va->va_start);
1619 spin_lock(&vmap_block_tree_lock);
1620 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1621 spin_unlock(&vmap_block_tree_lock);
1622 BUG_ON(tmp != vb);
1623
1624 free_vmap_area_noflush(vb->va);
1625 kfree_rcu(vb, rcu_head);
1626}
1627
1628static void purge_fragmented_blocks(int cpu)
1629{
1630 LIST_HEAD(purge);
1631 struct vmap_block *vb;
1632 struct vmap_block *n_vb;
1633 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1634
1635 rcu_read_lock();
1636 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1637
1638 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1639 continue;
1640
1641 spin_lock(&vb->lock);
1642 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1643 vb->free = 0; /* prevent further allocs after releasing lock */
1644 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1645 vb->dirty_min = 0;
1646 vb->dirty_max = VMAP_BBMAP_BITS;
1647 spin_lock(&vbq->lock);
1648 list_del_rcu(&vb->free_list);
1649 spin_unlock(&vbq->lock);
1650 spin_unlock(&vb->lock);
1651 list_add_tail(&vb->purge, &purge);
1652 } else
1653 spin_unlock(&vb->lock);
1654 }
1655 rcu_read_unlock();
1656
1657 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1658 list_del(&vb->purge);
1659 free_vmap_block(vb);
1660 }
1661}
1662
1663static void purge_fragmented_blocks_allcpus(void)
1664{
1665 int cpu;
1666
1667 for_each_possible_cpu(cpu)
1668 purge_fragmented_blocks(cpu);
1669}
1670
1671static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1672{
1673 struct vmap_block_queue *vbq;
1674 struct vmap_block *vb;
1675 void *vaddr = NULL;
1676 unsigned int order;
1677
1678 BUG_ON(offset_in_page(size));
1679 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1680 if (WARN_ON(size == 0)) {
1681 /*
1682 * Allocating 0 bytes isn't what caller wants since
1683 * get_order(0) returns funny result. Just warn and terminate
1684 * early.
1685 */
1686 return NULL;
1687 }
1688 order = get_order(size);
1689
1690 rcu_read_lock();
1691 vbq = &get_cpu_var(vmap_block_queue);
1692 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1693 unsigned long pages_off;
1694
1695 spin_lock(&vb->lock);
1696 if (vb->free < (1UL << order)) {
1697 spin_unlock(&vb->lock);
1698 continue;
1699 }
1700
1701 pages_off = VMAP_BBMAP_BITS - vb->free;
1702 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1703 vb->free -= 1UL << order;
1704 if (vb->free == 0) {
1705 spin_lock(&vbq->lock);
1706 list_del_rcu(&vb->free_list);
1707 spin_unlock(&vbq->lock);
1708 }
1709
1710 spin_unlock(&vb->lock);
1711 break;
1712 }
1713
1714 put_cpu_var(vmap_block_queue);
1715 rcu_read_unlock();
1716
1717 /* Allocate new block if nothing was found */
1718 if (!vaddr)
1719 vaddr = new_vmap_block(order, gfp_mask);
1720
1721 return vaddr;
1722}
1723
1724static void vb_free(unsigned long addr, unsigned long size)
1725{
1726 unsigned long offset;
1727 unsigned long vb_idx;
1728 unsigned int order;
1729 struct vmap_block *vb;
1730
1731 BUG_ON(offset_in_page(size));
1732 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1733
1734 flush_cache_vunmap(addr, addr + size);
1735
1736 order = get_order(size);
1737
1738 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1739
1740 vb_idx = addr_to_vb_idx(addr);
1741 rcu_read_lock();
1742 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1743 rcu_read_unlock();
1744 BUG_ON(!vb);
1745
1746 unmap_kernel_range_noflush(addr, size);
1747
1748 if (debug_pagealloc_enabled_static())
1749 flush_tlb_kernel_range(addr, addr + size);
1750
1751 spin_lock(&vb->lock);
1752
1753 /* Expand dirty range */
1754 vb->dirty_min = min(vb->dirty_min, offset);
1755 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1756
1757 vb->dirty += 1UL << order;
1758 if (vb->dirty == VMAP_BBMAP_BITS) {
1759 BUG_ON(vb->free);
1760 spin_unlock(&vb->lock);
1761 free_vmap_block(vb);
1762 } else
1763 spin_unlock(&vb->lock);
1764}
1765
1766static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1767{
1768 int cpu;
1769
1770 if (unlikely(!vmap_initialized))
1771 return;
1772
1773 might_sleep();
1774
1775 for_each_possible_cpu(cpu) {
1776 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1777 struct vmap_block *vb;
1778
1779 rcu_read_lock();
1780 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1781 spin_lock(&vb->lock);
1782 if (vb->dirty) {
1783 unsigned long va_start = vb->va->va_start;
1784 unsigned long s, e;
1785
1786 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1787 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1788
1789 start = min(s, start);
1790 end = max(e, end);
1791
1792 flush = 1;
1793 }
1794 spin_unlock(&vb->lock);
1795 }
1796 rcu_read_unlock();
1797 }
1798
1799 mutex_lock(&vmap_purge_lock);
1800 purge_fragmented_blocks_allcpus();
1801 if (!__purge_vmap_area_lazy(start, end) && flush)
1802 flush_tlb_kernel_range(start, end);
1803 mutex_unlock(&vmap_purge_lock);
1804}
1805
1806/**
1807 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1808 *
1809 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1810 * to amortize TLB flushing overheads. What this means is that any page you
1811 * have now, may, in a former life, have been mapped into kernel virtual
1812 * address by the vmap layer and so there might be some CPUs with TLB entries
1813 * still referencing that page (additional to the regular 1:1 kernel mapping).
1814 *
1815 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1816 * be sure that none of the pages we have control over will have any aliases
1817 * from the vmap layer.
1818 */
1819void vm_unmap_aliases(void)
1820{
1821 unsigned long start = ULONG_MAX, end = 0;
1822 int flush = 0;
1823
1824 _vm_unmap_aliases(start, end, flush);
1825}
1826EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1827
1828/**
1829 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1830 * @mem: the pointer returned by vm_map_ram
1831 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1832 */
1833void vm_unmap_ram(const void *mem, unsigned int count)
1834{
1835 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1836 unsigned long addr = (unsigned long)mem;
1837 struct vmap_area *va;
1838
1839 might_sleep();
1840 BUG_ON(!addr);
1841 BUG_ON(addr < VMALLOC_START);
1842 BUG_ON(addr > VMALLOC_END);
1843 BUG_ON(!PAGE_ALIGNED(addr));
1844
1845 kasan_poison_vmalloc(mem, size);
1846
1847 if (likely(count <= VMAP_MAX_ALLOC)) {
1848 debug_check_no_locks_freed(mem, size);
1849 vb_free(addr, size);
1850 return;
1851 }
1852
1853 va = find_vmap_area(addr);
1854 BUG_ON(!va);
1855 debug_check_no_locks_freed((void *)va->va_start,
1856 (va->va_end - va->va_start));
1857 free_unmap_vmap_area(va);
1858}
1859EXPORT_SYMBOL(vm_unmap_ram);
1860
1861/**
1862 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1863 * @pages: an array of pointers to the pages to be mapped
1864 * @count: number of pages
1865 * @node: prefer to allocate data structures on this node
1866 *
1867 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1868 * faster than vmap so it's good. But if you mix long-life and short-life
1869 * objects with vm_map_ram(), it could consume lots of address space through
1870 * fragmentation (especially on a 32bit machine). You could see failures in
1871 * the end. Please use this function for short-lived objects.
1872 *
1873 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1874 */
1875void *vm_map_ram(struct page **pages, unsigned int count, int node)
1876{
1877 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1878 unsigned long addr;
1879 void *mem;
1880
1881 if (likely(count <= VMAP_MAX_ALLOC)) {
1882 mem = vb_alloc(size, GFP_KERNEL);
1883 if (IS_ERR(mem))
1884 return NULL;
1885 addr = (unsigned long)mem;
1886 } else {
1887 struct vmap_area *va;
1888 va = alloc_vmap_area(size, PAGE_SIZE,
1889 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1890 if (IS_ERR(va))
1891 return NULL;
1892
1893 addr = va->va_start;
1894 mem = (void *)addr;
1895 }
1896
1897 kasan_unpoison_vmalloc(mem, size);
1898
1899 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1900 vm_unmap_ram(mem, count);
1901 return NULL;
1902 }
1903 return mem;
1904}
1905EXPORT_SYMBOL(vm_map_ram);
1906
1907static struct vm_struct *vmlist __initdata;
1908
1909/**
1910 * vm_area_add_early - add vmap area early during boot
1911 * @vm: vm_struct to add
1912 *
1913 * This function is used to add fixed kernel vm area to vmlist before
1914 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1915 * should contain proper values and the other fields should be zero.
1916 *
1917 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1918 */
1919void __init vm_area_add_early(struct vm_struct *vm)
1920{
1921 struct vm_struct *tmp, **p;
1922
1923 BUG_ON(vmap_initialized);
1924 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1925 if (tmp->addr >= vm->addr) {
1926 BUG_ON(tmp->addr < vm->addr + vm->size);
1927 break;
1928 } else
1929 BUG_ON(tmp->addr + tmp->size > vm->addr);
1930 }
1931 vm->next = *p;
1932 *p = vm;
1933}
1934
1935/**
1936 * vm_area_register_early - register vmap area early during boot
1937 * @vm: vm_struct to register
1938 * @align: requested alignment
1939 *
1940 * This function is used to register kernel vm area before
1941 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1942 * proper values on entry and other fields should be zero. On return,
1943 * vm->addr contains the allocated address.
1944 *
1945 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1946 */
1947void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1948{
1949 static size_t vm_init_off __initdata;
1950 unsigned long addr;
1951
1952 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1953 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1954
1955 vm->addr = (void *)addr;
1956
1957 vm_area_add_early(vm);
1958}
1959
1960static void vmap_init_free_space(void)
1961{
1962 unsigned long vmap_start = 1;
1963 const unsigned long vmap_end = ULONG_MAX;
1964 struct vmap_area *busy, *free;
1965
1966 /*
1967 * B F B B B F
1968 * -|-----|.....|-----|-----|-----|.....|-
1969 * | The KVA space |
1970 * |<--------------------------------->|
1971 */
1972 list_for_each_entry(busy, &vmap_area_list, list) {
1973 if (busy->va_start - vmap_start > 0) {
1974 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1975 if (!WARN_ON_ONCE(!free)) {
1976 free->va_start = vmap_start;
1977 free->va_end = busy->va_start;
1978
1979 insert_vmap_area_augment(free, NULL,
1980 &free_vmap_area_root,
1981 &free_vmap_area_list);
1982 }
1983 }
1984
1985 vmap_start = busy->va_end;
1986 }
1987
1988 if (vmap_end - vmap_start > 0) {
1989 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1990 if (!WARN_ON_ONCE(!free)) {
1991 free->va_start = vmap_start;
1992 free->va_end = vmap_end;
1993
1994 insert_vmap_area_augment(free, NULL,
1995 &free_vmap_area_root,
1996 &free_vmap_area_list);
1997 }
1998 }
1999}
2000
2001void __init vmalloc_init(void)
2002{
2003 struct vmap_area *va;
2004 struct vm_struct *tmp;
2005 int i;
2006
2007 /*
2008 * Create the cache for vmap_area objects.
2009 */
2010 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2011
2012 for_each_possible_cpu(i) {
2013 struct vmap_block_queue *vbq;
2014 struct vfree_deferred *p;
2015
2016 vbq = &per_cpu(vmap_block_queue, i);
2017 spin_lock_init(&vbq->lock);
2018 INIT_LIST_HEAD(&vbq->free);
2019 p = &per_cpu(vfree_deferred, i);
2020 init_llist_head(&p->list);
2021 INIT_WORK(&p->wq, free_work);
2022 }
2023
2024 /* Import existing vmlist entries. */
2025 for (tmp = vmlist; tmp; tmp = tmp->next) {
2026 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2027 if (WARN_ON_ONCE(!va))
2028 continue;
2029
2030 va->va_start = (unsigned long)tmp->addr;
2031 va->va_end = va->va_start + tmp->size;
2032 va->vm = tmp;
2033 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2034 }
2035
2036 /*
2037 * Now we can initialize a free vmap space.
2038 */
2039 vmap_init_free_space();
2040 vmap_initialized = true;
2041}
2042
2043/**
2044 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2045 * @addr: start of the VM area to unmap
2046 * @size: size of the VM area to unmap
2047 *
2048 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2049 * the unmapping and tlb after.
2050 */
2051void unmap_kernel_range(unsigned long addr, unsigned long size)
2052{
2053 unsigned long end = addr + size;
2054
2055 flush_cache_vunmap(addr, end);
2056 unmap_kernel_range_noflush(addr, size);
2057 flush_tlb_kernel_range(addr, end);
2058}
2059
2060static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2061 struct vmap_area *va, unsigned long flags, const void *caller)
2062{
2063 vm->flags = flags;
2064 vm->addr = (void *)va->va_start;
2065 vm->size = va->va_end - va->va_start;
2066 vm->caller = caller;
2067 va->vm = vm;
2068}
2069
2070static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2071 unsigned long flags, const void *caller)
2072{
2073 spin_lock(&vmap_area_lock);
2074 setup_vmalloc_vm_locked(vm, va, flags, caller);
2075 spin_unlock(&vmap_area_lock);
2076}
2077
2078static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2079{
2080 /*
2081 * Before removing VM_UNINITIALIZED,
2082 * we should make sure that vm has proper values.
2083 * Pair with smp_rmb() in show_numa_info().
2084 */
2085 smp_wmb();
2086 vm->flags &= ~VM_UNINITIALIZED;
2087}
2088
2089static struct vm_struct *__get_vm_area_node(unsigned long size,
2090 unsigned long align, unsigned long flags, unsigned long start,
2091 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2092{
2093 struct vmap_area *va;
2094 struct vm_struct *area;
2095 unsigned long requested_size = size;
2096
2097 BUG_ON(in_interrupt());
2098 size = PAGE_ALIGN(size);
2099 if (unlikely(!size))
2100 return NULL;
2101
2102 if (flags & VM_IOREMAP)
2103 align = 1ul << clamp_t(int, get_count_order_long(size),
2104 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2105
2106 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2107 if (unlikely(!area))
2108 return NULL;
2109
2110 if (!(flags & VM_NO_GUARD))
2111 size += PAGE_SIZE;
2112
2113 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2114 if (IS_ERR(va)) {
2115 kfree(area);
2116 return NULL;
2117 }
2118
2119 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2120
2121 setup_vmalloc_vm(area, va, flags, caller);
2122
2123 return area;
2124}
2125
2126struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2127 unsigned long start, unsigned long end,
2128 const void *caller)
2129{
2130 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2131 GFP_KERNEL, caller);
2132}
2133
2134/**
2135 * get_vm_area - reserve a contiguous kernel virtual area
2136 * @size: size of the area
2137 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2138 *
2139 * Search an area of @size in the kernel virtual mapping area,
2140 * and reserved it for out purposes. Returns the area descriptor
2141 * on success or %NULL on failure.
2142 *
2143 * Return: the area descriptor on success or %NULL on failure.
2144 */
2145struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2146{
2147 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2148 NUMA_NO_NODE, GFP_KERNEL,
2149 __builtin_return_address(0));
2150}
2151
2152struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2153 const void *caller)
2154{
2155 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2156 NUMA_NO_NODE, GFP_KERNEL, caller);
2157}
2158
2159/**
2160 * find_vm_area - find a continuous kernel virtual area
2161 * @addr: base address
2162 *
2163 * Search for the kernel VM area starting at @addr, and return it.
2164 * It is up to the caller to do all required locking to keep the returned
2165 * pointer valid.
2166 *
2167 * Return: pointer to the found area or %NULL on faulure
2168 */
2169struct vm_struct *find_vm_area(const void *addr)
2170{
2171 struct vmap_area *va;
2172
2173 va = find_vmap_area((unsigned long)addr);
2174 if (!va)
2175 return NULL;
2176
2177 return va->vm;
2178}
2179
2180/**
2181 * remove_vm_area - find and remove a continuous kernel virtual area
2182 * @addr: base address
2183 *
2184 * Search for the kernel VM area starting at @addr, and remove it.
2185 * This function returns the found VM area, but using it is NOT safe
2186 * on SMP machines, except for its size or flags.
2187 *
2188 * Return: pointer to the found area or %NULL on faulure
2189 */
2190struct vm_struct *remove_vm_area(const void *addr)
2191{
2192 struct vmap_area *va;
2193
2194 might_sleep();
2195
2196 spin_lock(&vmap_area_lock);
2197 va = __find_vmap_area((unsigned long)addr);
2198 if (va && va->vm) {
2199 struct vm_struct *vm = va->vm;
2200
2201 va->vm = NULL;
2202 spin_unlock(&vmap_area_lock);
2203
2204 kasan_free_shadow(vm);
2205 free_unmap_vmap_area(va);
2206
2207 return vm;
2208 }
2209
2210 spin_unlock(&vmap_area_lock);
2211 return NULL;
2212}
2213
2214static inline void set_area_direct_map(const struct vm_struct *area,
2215 int (*set_direct_map)(struct page *page))
2216{
2217 int i;
2218
2219 for (i = 0; i < area->nr_pages; i++)
2220 if (page_address(area->pages[i]))
2221 set_direct_map(area->pages[i]);
2222}
2223
2224/* Handle removing and resetting vm mappings related to the vm_struct. */
2225static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2226{
2227 unsigned long start = ULONG_MAX, end = 0;
2228 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2229 int flush_dmap = 0;
2230 int i;
2231
2232 remove_vm_area(area->addr);
2233
2234 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2235 if (!flush_reset)
2236 return;
2237
2238 /*
2239 * If not deallocating pages, just do the flush of the VM area and
2240 * return.
2241 */
2242 if (!deallocate_pages) {
2243 vm_unmap_aliases();
2244 return;
2245 }
2246
2247 /*
2248 * If execution gets here, flush the vm mapping and reset the direct
2249 * map. Find the start and end range of the direct mappings to make sure
2250 * the vm_unmap_aliases() flush includes the direct map.
2251 */
2252 for (i = 0; i < area->nr_pages; i++) {
2253 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2254 if (addr) {
2255 start = min(addr, start);
2256 end = max(addr + PAGE_SIZE, end);
2257 flush_dmap = 1;
2258 }
2259 }
2260
2261 /*
2262 * Set direct map to something invalid so that it won't be cached if
2263 * there are any accesses after the TLB flush, then flush the TLB and
2264 * reset the direct map permissions to the default.
2265 */
2266 set_area_direct_map(area, set_direct_map_invalid_noflush);
2267 _vm_unmap_aliases(start, end, flush_dmap);
2268 set_area_direct_map(area, set_direct_map_default_noflush);
2269}
2270
2271static void __vunmap(const void *addr, int deallocate_pages)
2272{
2273 struct vm_struct *area;
2274
2275 if (!addr)
2276 return;
2277
2278 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2279 addr))
2280 return;
2281
2282 area = find_vm_area(addr);
2283 if (unlikely(!area)) {
2284 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2285 addr);
2286 return;
2287 }
2288
2289 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2290 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2291
2292 kasan_poison_vmalloc(area->addr, area->size);
2293
2294 vm_remove_mappings(area, deallocate_pages);
2295
2296 if (deallocate_pages) {
2297 int i;
2298
2299 for (i = 0; i < area->nr_pages; i++) {
2300 struct page *page = area->pages[i];
2301
2302 BUG_ON(!page);
2303 __free_pages(page, 0);
2304 }
2305 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2306
2307 kvfree(area->pages);
2308 }
2309
2310 kfree(area);
2311 return;
2312}
2313
2314static inline void __vfree_deferred(const void *addr)
2315{
2316 /*
2317 * Use raw_cpu_ptr() because this can be called from preemptible
2318 * context. Preemption is absolutely fine here, because the llist_add()
2319 * implementation is lockless, so it works even if we are adding to
2320 * another cpu's list. schedule_work() should be fine with this too.
2321 */
2322 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2323
2324 if (llist_add((struct llist_node *)addr, &p->list))
2325 schedule_work(&p->wq);
2326}
2327
2328/**
2329 * vfree_atomic - release memory allocated by vmalloc()
2330 * @addr: memory base address
2331 *
2332 * This one is just like vfree() but can be called in any atomic context
2333 * except NMIs.
2334 */
2335void vfree_atomic(const void *addr)
2336{
2337 BUG_ON(in_nmi());
2338
2339 kmemleak_free(addr);
2340
2341 if (!addr)
2342 return;
2343 __vfree_deferred(addr);
2344}
2345
2346static void __vfree(const void *addr)
2347{
2348 if (unlikely(in_interrupt()))
2349 __vfree_deferred(addr);
2350 else
2351 __vunmap(addr, 1);
2352}
2353
2354/**
2355 * vfree - release memory allocated by vmalloc()
2356 * @addr: memory base address
2357 *
2358 * Free the virtually continuous memory area starting at @addr, as
2359 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2360 * NULL, no operation is performed.
2361 *
2362 * Must not be called in NMI context (strictly speaking, only if we don't
2363 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2364 * conventions for vfree() arch-depenedent would be a really bad idea)
2365 *
2366 * May sleep if called *not* from interrupt context.
2367 *
2368 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2369 */
2370void vfree(const void *addr)
2371{
2372 BUG_ON(in_nmi());
2373
2374 kmemleak_free(addr);
2375
2376 might_sleep_if(!in_interrupt());
2377
2378 if (!addr)
2379 return;
2380
2381 __vfree(addr);
2382}
2383EXPORT_SYMBOL(vfree);
2384
2385/**
2386 * vunmap - release virtual mapping obtained by vmap()
2387 * @addr: memory base address
2388 *
2389 * Free the virtually contiguous memory area starting at @addr,
2390 * which was created from the page array passed to vmap().
2391 *
2392 * Must not be called in interrupt context.
2393 */
2394void vunmap(const void *addr)
2395{
2396 BUG_ON(in_interrupt());
2397 might_sleep();
2398 if (addr)
2399 __vunmap(addr, 0);
2400}
2401EXPORT_SYMBOL(vunmap);
2402
2403/**
2404 * vmap - map an array of pages into virtually contiguous space
2405 * @pages: array of page pointers
2406 * @count: number of pages to map
2407 * @flags: vm_area->flags
2408 * @prot: page protection for the mapping
2409 *
2410 * Maps @count pages from @pages into contiguous kernel virtual
2411 * space.
2412 *
2413 * Return: the address of the area or %NULL on failure
2414 */
2415void *vmap(struct page **pages, unsigned int count,
2416 unsigned long flags, pgprot_t prot)
2417{
2418 struct vm_struct *area;
2419 unsigned long size; /* In bytes */
2420
2421 might_sleep();
2422
2423 if (count > totalram_pages())
2424 return NULL;
2425
2426 size = (unsigned long)count << PAGE_SHIFT;
2427 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2428 if (!area)
2429 return NULL;
2430
2431 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2432 pages) < 0) {
2433 vunmap(area->addr);
2434 return NULL;
2435 }
2436
2437 return area->addr;
2438}
2439EXPORT_SYMBOL(vmap);
2440
2441static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2442 pgprot_t prot, int node)
2443{
2444 struct page **pages;
2445 unsigned int nr_pages, array_size, i;
2446 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2447 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2448 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2449 0 :
2450 __GFP_HIGHMEM;
2451
2452 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2453 array_size = (nr_pages * sizeof(struct page *));
2454
2455 /* Please note that the recursion is strictly bounded. */
2456 if (array_size > PAGE_SIZE) {
2457 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2458 node, area->caller);
2459 } else {
2460 pages = kmalloc_node(array_size, nested_gfp, node);
2461 }
2462
2463 if (!pages) {
2464 remove_vm_area(area->addr);
2465 kfree(area);
2466 return NULL;
2467 }
2468
2469 area->pages = pages;
2470 area->nr_pages = nr_pages;
2471
2472 for (i = 0; i < area->nr_pages; i++) {
2473 struct page *page;
2474
2475 if (node == NUMA_NO_NODE)
2476 page = alloc_page(alloc_mask|highmem_mask);
2477 else
2478 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2479
2480 if (unlikely(!page)) {
2481 /* Successfully allocated i pages, free them in __vunmap() */
2482 area->nr_pages = i;
2483 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2484 goto fail;
2485 }
2486 area->pages[i] = page;
2487 if (gfpflags_allow_blocking(gfp_mask))
2488 cond_resched();
2489 }
2490 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2491
2492 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2493 prot, pages) < 0)
2494 goto fail;
2495
2496 return area->addr;
2497
2498fail:
2499 warn_alloc(gfp_mask, NULL,
2500 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2501 (area->nr_pages*PAGE_SIZE), area->size);
2502 __vfree(area->addr);
2503 return NULL;
2504}
2505
2506/**
2507 * __vmalloc_node_range - allocate virtually contiguous memory
2508 * @size: allocation size
2509 * @align: desired alignment
2510 * @start: vm area range start
2511 * @end: vm area range end
2512 * @gfp_mask: flags for the page level allocator
2513 * @prot: protection mask for the allocated pages
2514 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2515 * @node: node to use for allocation or NUMA_NO_NODE
2516 * @caller: caller's return address
2517 *
2518 * Allocate enough pages to cover @size from the page level
2519 * allocator with @gfp_mask flags. Map them into contiguous
2520 * kernel virtual space, using a pagetable protection of @prot.
2521 *
2522 * Return: the address of the area or %NULL on failure
2523 */
2524void *__vmalloc_node_range(unsigned long size, unsigned long align,
2525 unsigned long start, unsigned long end, gfp_t gfp_mask,
2526 pgprot_t prot, unsigned long vm_flags, int node,
2527 const void *caller)
2528{
2529 struct vm_struct *area;
2530 void *addr;
2531 unsigned long real_size = size;
2532
2533 size = PAGE_ALIGN(size);
2534 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2535 goto fail;
2536
2537 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2538 vm_flags, start, end, node, gfp_mask, caller);
2539 if (!area)
2540 goto fail;
2541
2542 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2543 if (!addr)
2544 return NULL;
2545
2546 /*
2547 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2548 * flag. It means that vm_struct is not fully initialized.
2549 * Now, it is fully initialized, so remove this flag here.
2550 */
2551 clear_vm_uninitialized_flag(area);
2552
2553 kmemleak_vmalloc(area, size, gfp_mask);
2554
2555 return addr;
2556
2557fail:
2558 warn_alloc(gfp_mask, NULL,
2559 "vmalloc: allocation failure: %lu bytes", real_size);
2560 return NULL;
2561}
2562
2563/**
2564 * __vmalloc_node - allocate virtually contiguous memory
2565 * @size: allocation size
2566 * @align: desired alignment
2567 * @gfp_mask: flags for the page level allocator
2568 * @node: node to use for allocation or NUMA_NO_NODE
2569 * @caller: caller's return address
2570 *
2571 * Allocate enough pages to cover @size from the page level allocator with
2572 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2573 *
2574 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2575 * and __GFP_NOFAIL are not supported
2576 *
2577 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2578 * with mm people.
2579 *
2580 * Return: pointer to the allocated memory or %NULL on error
2581 */
2582void *__vmalloc_node(unsigned long size, unsigned long align,
2583 gfp_t gfp_mask, int node, const void *caller)
2584{
2585 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2586 gfp_mask, PAGE_KERNEL, 0, node, caller);
2587}
2588/*
2589 * This is only for performance analysis of vmalloc and stress purpose.
2590 * It is required by vmalloc test module, therefore do not use it other
2591 * than that.
2592 */
2593#ifdef CONFIG_TEST_VMALLOC_MODULE
2594EXPORT_SYMBOL_GPL(__vmalloc_node);
2595#endif
2596
2597void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2598{
2599 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2600 __builtin_return_address(0));
2601}
2602EXPORT_SYMBOL(__vmalloc);
2603
2604/**
2605 * vmalloc - allocate virtually contiguous memory
2606 * @size: allocation size
2607 *
2608 * Allocate enough pages to cover @size from the page level
2609 * allocator and map them into contiguous kernel virtual space.
2610 *
2611 * For tight control over page level allocator and protection flags
2612 * use __vmalloc() instead.
2613 *
2614 * Return: pointer to the allocated memory or %NULL on error
2615 */
2616void *vmalloc(unsigned long size)
2617{
2618 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2619 __builtin_return_address(0));
2620}
2621EXPORT_SYMBOL(vmalloc);
2622
2623/**
2624 * vzalloc - allocate virtually contiguous memory with zero fill
2625 * @size: allocation size
2626 *
2627 * Allocate enough pages to cover @size from the page level
2628 * allocator and map them into contiguous kernel virtual space.
2629 * The memory allocated is set to zero.
2630 *
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
2633 *
2634 * Return: pointer to the allocated memory or %NULL on error
2635 */
2636void *vzalloc(unsigned long size)
2637{
2638 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2639 __builtin_return_address(0));
2640}
2641EXPORT_SYMBOL(vzalloc);
2642
2643/**
2644 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2645 * @size: allocation size
2646 *
2647 * The resulting memory area is zeroed so it can be mapped to userspace
2648 * without leaking data.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652void *vmalloc_user(unsigned long size)
2653{
2654 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2655 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2656 VM_USERMAP, NUMA_NO_NODE,
2657 __builtin_return_address(0));
2658}
2659EXPORT_SYMBOL(vmalloc_user);
2660
2661/**
2662 * vmalloc_node - allocate memory on a specific node
2663 * @size: allocation size
2664 * @node: numa node
2665 *
2666 * Allocate enough pages to cover @size from the page level
2667 * allocator and map them into contiguous kernel virtual space.
2668 *
2669 * For tight control over page level allocator and protection flags
2670 * use __vmalloc() instead.
2671 *
2672 * Return: pointer to the allocated memory or %NULL on error
2673 */
2674void *vmalloc_node(unsigned long size, int node)
2675{
2676 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2677 __builtin_return_address(0));
2678}
2679EXPORT_SYMBOL(vmalloc_node);
2680
2681/**
2682 * vzalloc_node - allocate memory on a specific node with zero fill
2683 * @size: allocation size
2684 * @node: numa node
2685 *
2686 * Allocate enough pages to cover @size from the page level
2687 * allocator and map them into contiguous kernel virtual space.
2688 * The memory allocated is set to zero.
2689 *
2690 * Return: pointer to the allocated memory or %NULL on error
2691 */
2692void *vzalloc_node(unsigned long size, int node)
2693{
2694 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2695 __builtin_return_address(0));
2696}
2697EXPORT_SYMBOL(vzalloc_node);
2698
2699#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2700#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2701#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2702#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2703#else
2704/*
2705 * 64b systems should always have either DMA or DMA32 zones. For others
2706 * GFP_DMA32 should do the right thing and use the normal zone.
2707 */
2708#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2709#endif
2710
2711/**
2712 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2713 * @size: allocation size
2714 *
2715 * Allocate enough 32bit PA addressable pages to cover @size from the
2716 * page level allocator and map them into contiguous kernel virtual space.
2717 *
2718 * Return: pointer to the allocated memory or %NULL on error
2719 */
2720void *vmalloc_32(unsigned long size)
2721{
2722 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2723 __builtin_return_address(0));
2724}
2725EXPORT_SYMBOL(vmalloc_32);
2726
2727/**
2728 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2729 * @size: allocation size
2730 *
2731 * The resulting memory area is 32bit addressable and zeroed so it can be
2732 * mapped to userspace without leaking data.
2733 *
2734 * Return: pointer to the allocated memory or %NULL on error
2735 */
2736void *vmalloc_32_user(unsigned long size)
2737{
2738 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2739 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2740 VM_USERMAP, NUMA_NO_NODE,
2741 __builtin_return_address(0));
2742}
2743EXPORT_SYMBOL(vmalloc_32_user);
2744
2745/*
2746 * small helper routine , copy contents to buf from addr.
2747 * If the page is not present, fill zero.
2748 */
2749
2750static int aligned_vread(char *buf, char *addr, unsigned long count)
2751{
2752 struct page *p;
2753 int copied = 0;
2754
2755 while (count) {
2756 unsigned long offset, length;
2757
2758 offset = offset_in_page(addr);
2759 length = PAGE_SIZE - offset;
2760 if (length > count)
2761 length = count;
2762 p = vmalloc_to_page(addr);
2763 /*
2764 * To do safe access to this _mapped_ area, we need
2765 * lock. But adding lock here means that we need to add
2766 * overhead of vmalloc()/vfree() calles for this _debug_
2767 * interface, rarely used. Instead of that, we'll use
2768 * kmap() and get small overhead in this access function.
2769 */
2770 if (p) {
2771 /*
2772 * we can expect USER0 is not used (see vread/vwrite's
2773 * function description)
2774 */
2775 void *map = kmap_atomic(p);
2776 memcpy(buf, map + offset, length);
2777 kunmap_atomic(map);
2778 } else
2779 memset(buf, 0, length);
2780
2781 addr += length;
2782 buf += length;
2783 copied += length;
2784 count -= length;
2785 }
2786 return copied;
2787}
2788
2789static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2790{
2791 struct page *p;
2792 int copied = 0;
2793
2794 while (count) {
2795 unsigned long offset, length;
2796
2797 offset = offset_in_page(addr);
2798 length = PAGE_SIZE - offset;
2799 if (length > count)
2800 length = count;
2801 p = vmalloc_to_page(addr);
2802 /*
2803 * To do safe access to this _mapped_ area, we need
2804 * lock. But adding lock here means that we need to add
2805 * overhead of vmalloc()/vfree() calles for this _debug_
2806 * interface, rarely used. Instead of that, we'll use
2807 * kmap() and get small overhead in this access function.
2808 */
2809 if (p) {
2810 /*
2811 * we can expect USER0 is not used (see vread/vwrite's
2812 * function description)
2813 */
2814 void *map = kmap_atomic(p);
2815 memcpy(map + offset, buf, length);
2816 kunmap_atomic(map);
2817 }
2818 addr += length;
2819 buf += length;
2820 copied += length;
2821 count -= length;
2822 }
2823 return copied;
2824}
2825
2826/**
2827 * vread() - read vmalloc area in a safe way.
2828 * @buf: buffer for reading data
2829 * @addr: vm address.
2830 * @count: number of bytes to be read.
2831 *
2832 * This function checks that addr is a valid vmalloc'ed area, and
2833 * copy data from that area to a given buffer. If the given memory range
2834 * of [addr...addr+count) includes some valid address, data is copied to
2835 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2836 * IOREMAP area is treated as memory hole and no copy is done.
2837 *
2838 * If [addr...addr+count) doesn't includes any intersects with alive
2839 * vm_struct area, returns 0. @buf should be kernel's buffer.
2840 *
2841 * Note: In usual ops, vread() is never necessary because the caller
2842 * should know vmalloc() area is valid and can use memcpy().
2843 * This is for routines which have to access vmalloc area without
2844 * any information, as /dev/kmem.
2845 *
2846 * Return: number of bytes for which addr and buf should be increased
2847 * (same number as @count) or %0 if [addr...addr+count) doesn't
2848 * include any intersection with valid vmalloc area
2849 */
2850long vread(char *buf, char *addr, unsigned long count)
2851{
2852 struct vmap_area *va;
2853 struct vm_struct *vm;
2854 char *vaddr, *buf_start = buf;
2855 unsigned long buflen = count;
2856 unsigned long n;
2857
2858 /* Don't allow overflow */
2859 if ((unsigned long) addr + count < count)
2860 count = -(unsigned long) addr;
2861
2862 spin_lock(&vmap_area_lock);
2863 list_for_each_entry(va, &vmap_area_list, list) {
2864 if (!count)
2865 break;
2866
2867 if (!va->vm)
2868 continue;
2869
2870 vm = va->vm;
2871 vaddr = (char *) vm->addr;
2872 if (addr >= vaddr + get_vm_area_size(vm))
2873 continue;
2874 while (addr < vaddr) {
2875 if (count == 0)
2876 goto finished;
2877 *buf = '\0';
2878 buf++;
2879 addr++;
2880 count--;
2881 }
2882 n = vaddr + get_vm_area_size(vm) - addr;
2883 if (n > count)
2884 n = count;
2885 if (!(vm->flags & VM_IOREMAP))
2886 aligned_vread(buf, addr, n);
2887 else /* IOREMAP area is treated as memory hole */
2888 memset(buf, 0, n);
2889 buf += n;
2890 addr += n;
2891 count -= n;
2892 }
2893finished:
2894 spin_unlock(&vmap_area_lock);
2895
2896 if (buf == buf_start)
2897 return 0;
2898 /* zero-fill memory holes */
2899 if (buf != buf_start + buflen)
2900 memset(buf, 0, buflen - (buf - buf_start));
2901
2902 return buflen;
2903}
2904
2905/**
2906 * vwrite() - write vmalloc area in a safe way.
2907 * @buf: buffer for source data
2908 * @addr: vm address.
2909 * @count: number of bytes to be read.
2910 *
2911 * This function checks that addr is a valid vmalloc'ed area, and
2912 * copy data from a buffer to the given addr. If specified range of
2913 * [addr...addr+count) includes some valid address, data is copied from
2914 * proper area of @buf. If there are memory holes, no copy to hole.
2915 * IOREMAP area is treated as memory hole and no copy is done.
2916 *
2917 * If [addr...addr+count) doesn't includes any intersects with alive
2918 * vm_struct area, returns 0. @buf should be kernel's buffer.
2919 *
2920 * Note: In usual ops, vwrite() is never necessary because the caller
2921 * should know vmalloc() area is valid and can use memcpy().
2922 * This is for routines which have to access vmalloc area without
2923 * any information, as /dev/kmem.
2924 *
2925 * Return: number of bytes for which addr and buf should be
2926 * increased (same number as @count) or %0 if [addr...addr+count)
2927 * doesn't include any intersection with valid vmalloc area
2928 */
2929long vwrite(char *buf, char *addr, unsigned long count)
2930{
2931 struct vmap_area *va;
2932 struct vm_struct *vm;
2933 char *vaddr;
2934 unsigned long n, buflen;
2935 int copied = 0;
2936
2937 /* Don't allow overflow */
2938 if ((unsigned long) addr + count < count)
2939 count = -(unsigned long) addr;
2940 buflen = count;
2941
2942 spin_lock(&vmap_area_lock);
2943 list_for_each_entry(va, &vmap_area_list, list) {
2944 if (!count)
2945 break;
2946
2947 if (!va->vm)
2948 continue;
2949
2950 vm = va->vm;
2951 vaddr = (char *) vm->addr;
2952 if (addr >= vaddr + get_vm_area_size(vm))
2953 continue;
2954 while (addr < vaddr) {
2955 if (count == 0)
2956 goto finished;
2957 buf++;
2958 addr++;
2959 count--;
2960 }
2961 n = vaddr + get_vm_area_size(vm) - addr;
2962 if (n > count)
2963 n = count;
2964 if (!(vm->flags & VM_IOREMAP)) {
2965 aligned_vwrite(buf, addr, n);
2966 copied++;
2967 }
2968 buf += n;
2969 addr += n;
2970 count -= n;
2971 }
2972finished:
2973 spin_unlock(&vmap_area_lock);
2974 if (!copied)
2975 return 0;
2976 return buflen;
2977}
2978
2979/**
2980 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2981 * @vma: vma to cover
2982 * @uaddr: target user address to start at
2983 * @kaddr: virtual address of vmalloc kernel memory
2984 * @pgoff: offset from @kaddr to start at
2985 * @size: size of map area
2986 *
2987 * Returns: 0 for success, -Exxx on failure
2988 *
2989 * This function checks that @kaddr is a valid vmalloc'ed area,
2990 * and that it is big enough to cover the range starting at
2991 * @uaddr in @vma. Will return failure if that criteria isn't
2992 * met.
2993 *
2994 * Similar to remap_pfn_range() (see mm/memory.c)
2995 */
2996int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2997 void *kaddr, unsigned long pgoff,
2998 unsigned long size)
2999{
3000 struct vm_struct *area;
3001 unsigned long off;
3002 unsigned long end_index;
3003
3004 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3005 return -EINVAL;
3006
3007 size = PAGE_ALIGN(size);
3008
3009 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3010 return -EINVAL;
3011
3012 area = find_vm_area(kaddr);
3013 if (!area)
3014 return -EINVAL;
3015
3016 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3017 return -EINVAL;
3018
3019 if (check_add_overflow(size, off, &end_index) ||
3020 end_index > get_vm_area_size(area))
3021 return -EINVAL;
3022 kaddr += off;
3023
3024 do {
3025 struct page *page = vmalloc_to_page(kaddr);
3026 int ret;
3027
3028 ret = vm_insert_page(vma, uaddr, page);
3029 if (ret)
3030 return ret;
3031
3032 uaddr += PAGE_SIZE;
3033 kaddr += PAGE_SIZE;
3034 size -= PAGE_SIZE;
3035 } while (size > 0);
3036
3037 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3038
3039 return 0;
3040}
3041EXPORT_SYMBOL(remap_vmalloc_range_partial);
3042
3043/**
3044 * remap_vmalloc_range - map vmalloc pages to userspace
3045 * @vma: vma to cover (map full range of vma)
3046 * @addr: vmalloc memory
3047 * @pgoff: number of pages into addr before first page to map
3048 *
3049 * Returns: 0 for success, -Exxx on failure
3050 *
3051 * This function checks that addr is a valid vmalloc'ed area, and
3052 * that it is big enough to cover the vma. Will return failure if
3053 * that criteria isn't met.
3054 *
3055 * Similar to remap_pfn_range() (see mm/memory.c)
3056 */
3057int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3058 unsigned long pgoff)
3059{
3060 return remap_vmalloc_range_partial(vma, vma->vm_start,
3061 addr, pgoff,
3062 vma->vm_end - vma->vm_start);
3063}
3064EXPORT_SYMBOL(remap_vmalloc_range);
3065
3066static int f(pte_t *pte, unsigned long addr, void *data)
3067{
3068 pte_t ***p = data;
3069
3070 if (p) {
3071 *(*p) = pte;
3072 (*p)++;
3073 }
3074 return 0;
3075}
3076
3077/**
3078 * alloc_vm_area - allocate a range of kernel address space
3079 * @size: size of the area
3080 * @ptes: returns the PTEs for the address space
3081 *
3082 * Returns: NULL on failure, vm_struct on success
3083 *
3084 * This function reserves a range of kernel address space, and
3085 * allocates pagetables to map that range. No actual mappings
3086 * are created.
3087 *
3088 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3089 * allocated for the VM area are returned.
3090 */
3091struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3092{
3093 struct vm_struct *area;
3094
3095 area = get_vm_area_caller(size, VM_IOREMAP,
3096 __builtin_return_address(0));
3097 if (area == NULL)
3098 return NULL;
3099
3100 /*
3101 * This ensures that page tables are constructed for this region
3102 * of kernel virtual address space and mapped into init_mm.
3103 */
3104 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3105 size, f, ptes ? &ptes : NULL)) {
3106 free_vm_area(area);
3107 return NULL;
3108 }
3109
3110 return area;
3111}
3112EXPORT_SYMBOL_GPL(alloc_vm_area);
3113
3114void free_vm_area(struct vm_struct *area)
3115{
3116 struct vm_struct *ret;
3117 ret = remove_vm_area(area->addr);
3118 BUG_ON(ret != area);
3119 kfree(area);
3120}
3121EXPORT_SYMBOL_GPL(free_vm_area);
3122
3123#ifdef CONFIG_SMP
3124static struct vmap_area *node_to_va(struct rb_node *n)
3125{
3126 return rb_entry_safe(n, struct vmap_area, rb_node);
3127}
3128
3129/**
3130 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3131 * @addr: target address
3132 *
3133 * Returns: vmap_area if it is found. If there is no such area
3134 * the first highest(reverse order) vmap_area is returned
3135 * i.e. va->va_start < addr && va->va_end < addr or NULL
3136 * if there are no any areas before @addr.
3137 */
3138static struct vmap_area *
3139pvm_find_va_enclose_addr(unsigned long addr)
3140{
3141 struct vmap_area *va, *tmp;
3142 struct rb_node *n;
3143
3144 n = free_vmap_area_root.rb_node;
3145 va = NULL;
3146
3147 while (n) {
3148 tmp = rb_entry(n, struct vmap_area, rb_node);
3149 if (tmp->va_start <= addr) {
3150 va = tmp;
3151 if (tmp->va_end >= addr)
3152 break;
3153
3154 n = n->rb_right;
3155 } else {
3156 n = n->rb_left;
3157 }
3158 }
3159
3160 return va;
3161}
3162
3163/**
3164 * pvm_determine_end_from_reverse - find the highest aligned address
3165 * of free block below VMALLOC_END
3166 * @va:
3167 * in - the VA we start the search(reverse order);
3168 * out - the VA with the highest aligned end address.
3169 *
3170 * Returns: determined end address within vmap_area
3171 */
3172static unsigned long
3173pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3174{
3175 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3176 unsigned long addr;
3177
3178 if (likely(*va)) {
3179 list_for_each_entry_from_reverse((*va),
3180 &free_vmap_area_list, list) {
3181 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3182 if ((*va)->va_start < addr)
3183 return addr;
3184 }
3185 }
3186
3187 return 0;
3188}
3189
3190/**
3191 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3192 * @offsets: array containing offset of each area
3193 * @sizes: array containing size of each area
3194 * @nr_vms: the number of areas to allocate
3195 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3196 *
3197 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3198 * vm_structs on success, %NULL on failure
3199 *
3200 * Percpu allocator wants to use congruent vm areas so that it can
3201 * maintain the offsets among percpu areas. This function allocates
3202 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3203 * be scattered pretty far, distance between two areas easily going up
3204 * to gigabytes. To avoid interacting with regular vmallocs, these
3205 * areas are allocated from top.
3206 *
3207 * Despite its complicated look, this allocator is rather simple. It
3208 * does everything top-down and scans free blocks from the end looking
3209 * for matching base. While scanning, if any of the areas do not fit the
3210 * base address is pulled down to fit the area. Scanning is repeated till
3211 * all the areas fit and then all necessary data structures are inserted
3212 * and the result is returned.
3213 */
3214struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3215 const size_t *sizes, int nr_vms,
3216 size_t align)
3217{
3218 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3219 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3220 struct vmap_area **vas, *va;
3221 struct vm_struct **vms;
3222 int area, area2, last_area, term_area;
3223 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3224 bool purged = false;
3225 enum fit_type type;
3226
3227 /* verify parameters and allocate data structures */
3228 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3229 for (last_area = 0, area = 0; area < nr_vms; area++) {
3230 start = offsets[area];
3231 end = start + sizes[area];
3232
3233 /* is everything aligned properly? */
3234 BUG_ON(!IS_ALIGNED(offsets[area], align));
3235 BUG_ON(!IS_ALIGNED(sizes[area], align));
3236
3237 /* detect the area with the highest address */
3238 if (start > offsets[last_area])
3239 last_area = area;
3240
3241 for (area2 = area + 1; area2 < nr_vms; area2++) {
3242 unsigned long start2 = offsets[area2];
3243 unsigned long end2 = start2 + sizes[area2];
3244
3245 BUG_ON(start2 < end && start < end2);
3246 }
3247 }
3248 last_end = offsets[last_area] + sizes[last_area];
3249
3250 if (vmalloc_end - vmalloc_start < last_end) {
3251 WARN_ON(true);
3252 return NULL;
3253 }
3254
3255 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3256 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3257 if (!vas || !vms)
3258 goto err_free2;
3259
3260 for (area = 0; area < nr_vms; area++) {
3261 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3262 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3263 if (!vas[area] || !vms[area])
3264 goto err_free;
3265 }
3266retry:
3267 spin_lock(&free_vmap_area_lock);
3268
3269 /* start scanning - we scan from the top, begin with the last area */
3270 area = term_area = last_area;
3271 start = offsets[area];
3272 end = start + sizes[area];
3273
3274 va = pvm_find_va_enclose_addr(vmalloc_end);
3275 base = pvm_determine_end_from_reverse(&va, align) - end;
3276
3277 while (true) {
3278 /*
3279 * base might have underflowed, add last_end before
3280 * comparing.
3281 */
3282 if (base + last_end < vmalloc_start + last_end)
3283 goto overflow;
3284
3285 /*
3286 * Fitting base has not been found.
3287 */
3288 if (va == NULL)
3289 goto overflow;
3290
3291 /*
3292 * If required width exceeds current VA block, move
3293 * base downwards and then recheck.
3294 */
3295 if (base + end > va->va_end) {
3296 base = pvm_determine_end_from_reverse(&va, align) - end;
3297 term_area = area;
3298 continue;
3299 }
3300
3301 /*
3302 * If this VA does not fit, move base downwards and recheck.
3303 */
3304 if (base + start < va->va_start) {
3305 va = node_to_va(rb_prev(&va->rb_node));
3306 base = pvm_determine_end_from_reverse(&va, align) - end;
3307 term_area = area;
3308 continue;
3309 }
3310
3311 /*
3312 * This area fits, move on to the previous one. If
3313 * the previous one is the terminal one, we're done.
3314 */
3315 area = (area + nr_vms - 1) % nr_vms;
3316 if (area == term_area)
3317 break;
3318
3319 start = offsets[area];
3320 end = start + sizes[area];
3321 va = pvm_find_va_enclose_addr(base + end);
3322 }
3323
3324 /* we've found a fitting base, insert all va's */
3325 for (area = 0; area < nr_vms; area++) {
3326 int ret;
3327
3328 start = base + offsets[area];
3329 size = sizes[area];
3330
3331 va = pvm_find_va_enclose_addr(start);
3332 if (WARN_ON_ONCE(va == NULL))
3333 /* It is a BUG(), but trigger recovery instead. */
3334 goto recovery;
3335
3336 type = classify_va_fit_type(va, start, size);
3337 if (WARN_ON_ONCE(type == NOTHING_FIT))
3338 /* It is a BUG(), but trigger recovery instead. */
3339 goto recovery;
3340
3341 ret = adjust_va_to_fit_type(va, start, size, type);
3342 if (unlikely(ret))
3343 goto recovery;
3344
3345 /* Allocated area. */
3346 va = vas[area];
3347 va->va_start = start;
3348 va->va_end = start + size;
3349 }
3350
3351 spin_unlock(&free_vmap_area_lock);
3352
3353 /* populate the kasan shadow space */
3354 for (area = 0; area < nr_vms; area++) {
3355 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3356 goto err_free_shadow;
3357
3358 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3359 sizes[area]);
3360 }
3361
3362 /* insert all vm's */
3363 spin_lock(&vmap_area_lock);
3364 for (area = 0; area < nr_vms; area++) {
3365 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3366
3367 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3368 pcpu_get_vm_areas);
3369 }
3370 spin_unlock(&vmap_area_lock);
3371
3372 kfree(vas);
3373 return vms;
3374
3375recovery:
3376 /*
3377 * Remove previously allocated areas. There is no
3378 * need in removing these areas from the busy tree,
3379 * because they are inserted only on the final step
3380 * and when pcpu_get_vm_areas() is success.
3381 */
3382 while (area--) {
3383 orig_start = vas[area]->va_start;
3384 orig_end = vas[area]->va_end;
3385 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3386 &free_vmap_area_list);
3387 kasan_release_vmalloc(orig_start, orig_end,
3388 va->va_start, va->va_end);
3389 vas[area] = NULL;
3390 }
3391
3392overflow:
3393 spin_unlock(&free_vmap_area_lock);
3394 if (!purged) {
3395 purge_vmap_area_lazy();
3396 purged = true;
3397
3398 /* Before "retry", check if we recover. */
3399 for (area = 0; area < nr_vms; area++) {
3400 if (vas[area])
3401 continue;
3402
3403 vas[area] = kmem_cache_zalloc(
3404 vmap_area_cachep, GFP_KERNEL);
3405 if (!vas[area])
3406 goto err_free;
3407 }
3408
3409 goto retry;
3410 }
3411
3412err_free:
3413 for (area = 0; area < nr_vms; area++) {
3414 if (vas[area])
3415 kmem_cache_free(vmap_area_cachep, vas[area]);
3416
3417 kfree(vms[area]);
3418 }
3419err_free2:
3420 kfree(vas);
3421 kfree(vms);
3422 return NULL;
3423
3424err_free_shadow:
3425 spin_lock(&free_vmap_area_lock);
3426 /*
3427 * We release all the vmalloc shadows, even the ones for regions that
3428 * hadn't been successfully added. This relies on kasan_release_vmalloc
3429 * being able to tolerate this case.
3430 */
3431 for (area = 0; area < nr_vms; area++) {
3432 orig_start = vas[area]->va_start;
3433 orig_end = vas[area]->va_end;
3434 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3435 &free_vmap_area_list);
3436 kasan_release_vmalloc(orig_start, orig_end,
3437 va->va_start, va->va_end);
3438 vas[area] = NULL;
3439 kfree(vms[area]);
3440 }
3441 spin_unlock(&free_vmap_area_lock);
3442 kfree(vas);
3443 kfree(vms);
3444 return NULL;
3445}
3446
3447/**
3448 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3449 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3450 * @nr_vms: the number of allocated areas
3451 *
3452 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3453 */
3454void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3455{
3456 int i;
3457
3458 for (i = 0; i < nr_vms; i++)
3459 free_vm_area(vms[i]);
3460 kfree(vms);
3461}
3462#endif /* CONFIG_SMP */
3463
3464#ifdef CONFIG_PROC_FS
3465static void *s_start(struct seq_file *m, loff_t *pos)
3466 __acquires(&vmap_purge_lock)
3467 __acquires(&vmap_area_lock)
3468{
3469 mutex_lock(&vmap_purge_lock);
3470 spin_lock(&vmap_area_lock);
3471
3472 return seq_list_start(&vmap_area_list, *pos);
3473}
3474
3475static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3476{
3477 return seq_list_next(p, &vmap_area_list, pos);
3478}
3479
3480static void s_stop(struct seq_file *m, void *p)
3481 __releases(&vmap_purge_lock)
3482 __releases(&vmap_area_lock)
3483{
3484 mutex_unlock(&vmap_purge_lock);
3485 spin_unlock(&vmap_area_lock);
3486}
3487
3488static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3489{
3490 if (IS_ENABLED(CONFIG_NUMA)) {
3491 unsigned int nr, *counters = m->private;
3492
3493 if (!counters)
3494 return;
3495
3496 if (v->flags & VM_UNINITIALIZED)
3497 return;
3498 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3499 smp_rmb();
3500
3501 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3502
3503 for (nr = 0; nr < v->nr_pages; nr++)
3504 counters[page_to_nid(v->pages[nr])]++;
3505
3506 for_each_node_state(nr, N_HIGH_MEMORY)
3507 if (counters[nr])
3508 seq_printf(m, " N%u=%u", nr, counters[nr]);
3509 }
3510}
3511
3512static void show_purge_info(struct seq_file *m)
3513{
3514 struct llist_node *head;
3515 struct vmap_area *va;
3516
3517 head = READ_ONCE(vmap_purge_list.first);
3518 if (head == NULL)
3519 return;
3520
3521 llist_for_each_entry(va, head, purge_list) {
3522 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3523 (void *)va->va_start, (void *)va->va_end,
3524 va->va_end - va->va_start);
3525 }
3526}
3527
3528static int s_show(struct seq_file *m, void *p)
3529{
3530 struct vmap_area *va;
3531 struct vm_struct *v;
3532
3533 va = list_entry(p, struct vmap_area, list);
3534
3535 /*
3536 * s_show can encounter race with remove_vm_area, !vm on behalf
3537 * of vmap area is being tear down or vm_map_ram allocation.
3538 */
3539 if (!va->vm) {
3540 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3541 (void *)va->va_start, (void *)va->va_end,
3542 va->va_end - va->va_start);
3543
3544 return 0;
3545 }
3546
3547 v = va->vm;
3548
3549 seq_printf(m, "0x%pK-0x%pK %7ld",
3550 v->addr, v->addr + v->size, v->size);
3551
3552 if (v->caller)
3553 seq_printf(m, " %pS", v->caller);
3554
3555 if (v->nr_pages)
3556 seq_printf(m, " pages=%d", v->nr_pages);
3557
3558 if (v->phys_addr)
3559 seq_printf(m, " phys=%pa", &v->phys_addr);
3560
3561 if (v->flags & VM_IOREMAP)
3562 seq_puts(m, " ioremap");
3563
3564 if (v->flags & VM_ALLOC)
3565 seq_puts(m, " vmalloc");
3566
3567 if (v->flags & VM_MAP)
3568 seq_puts(m, " vmap");
3569
3570 if (v->flags & VM_USERMAP)
3571 seq_puts(m, " user");
3572
3573 if (v->flags & VM_DMA_COHERENT)
3574 seq_puts(m, " dma-coherent");
3575
3576 if (is_vmalloc_addr(v->pages))
3577 seq_puts(m, " vpages");
3578
3579 show_numa_info(m, v);
3580 seq_putc(m, '\n');
3581
3582 /*
3583 * As a final step, dump "unpurged" areas. Note,
3584 * that entire "/proc/vmallocinfo" output will not
3585 * be address sorted, because the purge list is not
3586 * sorted.
3587 */
3588 if (list_is_last(&va->list, &vmap_area_list))
3589 show_purge_info(m);
3590
3591 return 0;
3592}
3593
3594static const struct seq_operations vmalloc_op = {
3595 .start = s_start,
3596 .next = s_next,
3597 .stop = s_stop,
3598 .show = s_show,
3599};
3600
3601static int __init proc_vmalloc_init(void)
3602{
3603 if (IS_ENABLED(CONFIG_NUMA))
3604 proc_create_seq_private("vmallocinfo", 0400, NULL,
3605 &vmalloc_op,
3606 nr_node_ids * sizeof(unsigned int), NULL);
3607 else
3608 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3609 return 0;
3610}
3611module_init(proc_vmalloc_init);
3612
3613#endif