]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/vmscan.c
readahead: readahead page allocations are OK to fail
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57/*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int swappiness;
99
100 int order;
101
102 /*
103 * Intend to reclaim enough continuous memory rather than reclaim
104 * enough amount of memory. i.e, mode for high order allocation.
105 */
106 reclaim_mode_t reclaim_mode;
107
108 /* Which cgroup do we reclaim from */
109 struct mem_cgroup *mem_cgroup;
110
111 /*
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
114 */
115 nodemask_t *nodemask;
116};
117
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100. Higher means more swappy.
150 */
151int vm_swappiness = 60;
152long vm_total_pages; /* The total number of pages which the VM controls */
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159#else
160#define scanning_global_lru(sc) (1)
161#endif
162
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 struct scan_control *sc)
165{
166 if (!scanning_global_lru(sc))
167 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169 return &zone->reclaim_stat;
170}
171
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173 struct scan_control *sc, enum lru_list lru)
174{
175 if (!scanning_global_lru(sc))
176 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177
178 return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
182/*
183 * Add a shrinker callback to be called from the vm
184 */
185void register_shrinker(struct shrinker *shrinker)
186{
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
191}
192EXPORT_SYMBOL(register_shrinker);
193
194/*
195 * Remove one
196 */
197void unregister_shrinker(struct shrinker *shrinker)
198{
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
202}
203EXPORT_SYMBOL(unregister_shrinker);
204
205#define SHRINK_BATCH 128
206/*
207 * Call the shrink functions to age shrinkable caches
208 *
209 * Here we assume it costs one seek to replace a lru page and that it also
210 * takes a seek to recreate a cache object. With this in mind we age equal
211 * percentages of the lru and ageable caches. This should balance the seeks
212 * generated by these structures.
213 *
214 * If the vm encountered mapped pages on the LRU it increase the pressure on
215 * slab to avoid swapping.
216 *
217 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 *
219 * `lru_pages' represents the number of on-LRU pages in all the zones which
220 * are eligible for the caller's allocation attempt. It is used for balancing
221 * slab reclaim versus page reclaim.
222 *
223 * Returns the number of slab objects which we shrunk.
224 */
225unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
226 unsigned long lru_pages)
227{
228 struct shrinker *shrinker;
229 unsigned long ret = 0;
230
231 if (scanned == 0)
232 scanned = SWAP_CLUSTER_MAX;
233
234 if (!down_read_trylock(&shrinker_rwsem)) {
235 /* Assume we'll be able to shrink next time */
236 ret = 1;
237 goto out;
238 }
239
240 list_for_each_entry(shrinker, &shrinker_list, list) {
241 unsigned long long delta;
242 unsigned long total_scan;
243 unsigned long max_pass;
244
245 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
246 delta = (4 * scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 shrinker->nr += delta;
250 if (shrinker->nr < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, shrinker->nr);
254 shrinker->nr = max_pass;
255 }
256
257 /*
258 * Avoid risking looping forever due to too large nr value:
259 * never try to free more than twice the estimate number of
260 * freeable entries.
261 */
262 if (shrinker->nr > max_pass * 2)
263 shrinker->nr = max_pass * 2;
264
265 total_scan = shrinker->nr;
266 shrinker->nr = 0;
267
268 while (total_scan >= SHRINK_BATCH) {
269 long this_scan = SHRINK_BATCH;
270 int shrink_ret;
271 int nr_before;
272
273 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
274 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
275 gfp_mask);
276 if (shrink_ret == -1)
277 break;
278 if (shrink_ret < nr_before)
279 ret += nr_before - shrink_ret;
280 count_vm_events(SLABS_SCANNED, this_scan);
281 total_scan -= this_scan;
282
283 cond_resched();
284 }
285
286 shrinker->nr += total_scan;
287 }
288 up_read(&shrinker_rwsem);
289out:
290 cond_resched();
291 return ret;
292}
293
294static void set_reclaim_mode(int priority, struct scan_control *sc,
295 bool sync)
296{
297 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
298
299 /*
300 * Initially assume we are entering either lumpy reclaim or
301 * reclaim/compaction.Depending on the order, we will either set the
302 * sync mode or just reclaim order-0 pages later.
303 */
304 if (COMPACTION_BUILD)
305 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
306 else
307 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
308
309 /*
310 * Avoid using lumpy reclaim or reclaim/compaction if possible by
311 * restricting when its set to either costly allocations or when
312 * under memory pressure
313 */
314 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
315 sc->reclaim_mode |= syncmode;
316 else if (sc->order && priority < DEF_PRIORITY - 2)
317 sc->reclaim_mode |= syncmode;
318 else
319 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
320}
321
322static void reset_reclaim_mode(struct scan_control *sc)
323{
324 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
325}
326
327static inline int is_page_cache_freeable(struct page *page)
328{
329 /*
330 * A freeable page cache page is referenced only by the caller
331 * that isolated the page, the page cache radix tree and
332 * optional buffer heads at page->private.
333 */
334 return page_count(page) - page_has_private(page) == 2;
335}
336
337static int may_write_to_queue(struct backing_dev_info *bdi,
338 struct scan_control *sc)
339{
340 if (current->flags & PF_SWAPWRITE)
341 return 1;
342 if (!bdi_write_congested(bdi))
343 return 1;
344 if (bdi == current->backing_dev_info)
345 return 1;
346
347 /* lumpy reclaim for hugepage often need a lot of write */
348 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
349 return 1;
350 return 0;
351}
352
353/*
354 * We detected a synchronous write error writing a page out. Probably
355 * -ENOSPC. We need to propagate that into the address_space for a subsequent
356 * fsync(), msync() or close().
357 *
358 * The tricky part is that after writepage we cannot touch the mapping: nothing
359 * prevents it from being freed up. But we have a ref on the page and once
360 * that page is locked, the mapping is pinned.
361 *
362 * We're allowed to run sleeping lock_page() here because we know the caller has
363 * __GFP_FS.
364 */
365static void handle_write_error(struct address_space *mapping,
366 struct page *page, int error)
367{
368 lock_page(page);
369 if (page_mapping(page) == mapping)
370 mapping_set_error(mapping, error);
371 unlock_page(page);
372}
373
374/* possible outcome of pageout() */
375typedef enum {
376 /* failed to write page out, page is locked */
377 PAGE_KEEP,
378 /* move page to the active list, page is locked */
379 PAGE_ACTIVATE,
380 /* page has been sent to the disk successfully, page is unlocked */
381 PAGE_SUCCESS,
382 /* page is clean and locked */
383 PAGE_CLEAN,
384} pageout_t;
385
386/*
387 * pageout is called by shrink_page_list() for each dirty page.
388 * Calls ->writepage().
389 */
390static pageout_t pageout(struct page *page, struct address_space *mapping,
391 struct scan_control *sc)
392{
393 /*
394 * If the page is dirty, only perform writeback if that write
395 * will be non-blocking. To prevent this allocation from being
396 * stalled by pagecache activity. But note that there may be
397 * stalls if we need to run get_block(). We could test
398 * PagePrivate for that.
399 *
400 * If this process is currently in __generic_file_aio_write() against
401 * this page's queue, we can perform writeback even if that
402 * will block.
403 *
404 * If the page is swapcache, write it back even if that would
405 * block, for some throttling. This happens by accident, because
406 * swap_backing_dev_info is bust: it doesn't reflect the
407 * congestion state of the swapdevs. Easy to fix, if needed.
408 */
409 if (!is_page_cache_freeable(page))
410 return PAGE_KEEP;
411 if (!mapping) {
412 /*
413 * Some data journaling orphaned pages can have
414 * page->mapping == NULL while being dirty with clean buffers.
415 */
416 if (page_has_private(page)) {
417 if (try_to_free_buffers(page)) {
418 ClearPageDirty(page);
419 printk("%s: orphaned page\n", __func__);
420 return PAGE_CLEAN;
421 }
422 }
423 return PAGE_KEEP;
424 }
425 if (mapping->a_ops->writepage == NULL)
426 return PAGE_ACTIVATE;
427 if (!may_write_to_queue(mapping->backing_dev_info, sc))
428 return PAGE_KEEP;
429
430 if (clear_page_dirty_for_io(page)) {
431 int res;
432 struct writeback_control wbc = {
433 .sync_mode = WB_SYNC_NONE,
434 .nr_to_write = SWAP_CLUSTER_MAX,
435 .range_start = 0,
436 .range_end = LLONG_MAX,
437 .for_reclaim = 1,
438 };
439
440 SetPageReclaim(page);
441 res = mapping->a_ops->writepage(page, &wbc);
442 if (res < 0)
443 handle_write_error(mapping, page, res);
444 if (res == AOP_WRITEPAGE_ACTIVATE) {
445 ClearPageReclaim(page);
446 return PAGE_ACTIVATE;
447 }
448
449 /*
450 * Wait on writeback if requested to. This happens when
451 * direct reclaiming a large contiguous area and the
452 * first attempt to free a range of pages fails.
453 */
454 if (PageWriteback(page) &&
455 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
456 wait_on_page_writeback(page);
457
458 if (!PageWriteback(page)) {
459 /* synchronous write or broken a_ops? */
460 ClearPageReclaim(page);
461 }
462 trace_mm_vmscan_writepage(page,
463 trace_reclaim_flags(page, sc->reclaim_mode));
464 inc_zone_page_state(page, NR_VMSCAN_WRITE);
465 return PAGE_SUCCESS;
466 }
467
468 return PAGE_CLEAN;
469}
470
471/*
472 * Same as remove_mapping, but if the page is removed from the mapping, it
473 * gets returned with a refcount of 0.
474 */
475static int __remove_mapping(struct address_space *mapping, struct page *page)
476{
477 BUG_ON(!PageLocked(page));
478 BUG_ON(mapping != page_mapping(page));
479
480 spin_lock_irq(&mapping->tree_lock);
481 /*
482 * The non racy check for a busy page.
483 *
484 * Must be careful with the order of the tests. When someone has
485 * a ref to the page, it may be possible that they dirty it then
486 * drop the reference. So if PageDirty is tested before page_count
487 * here, then the following race may occur:
488 *
489 * get_user_pages(&page);
490 * [user mapping goes away]
491 * write_to(page);
492 * !PageDirty(page) [good]
493 * SetPageDirty(page);
494 * put_page(page);
495 * !page_count(page) [good, discard it]
496 *
497 * [oops, our write_to data is lost]
498 *
499 * Reversing the order of the tests ensures such a situation cannot
500 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
501 * load is not satisfied before that of page->_count.
502 *
503 * Note that if SetPageDirty is always performed via set_page_dirty,
504 * and thus under tree_lock, then this ordering is not required.
505 */
506 if (!page_freeze_refs(page, 2))
507 goto cannot_free;
508 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
509 if (unlikely(PageDirty(page))) {
510 page_unfreeze_refs(page, 2);
511 goto cannot_free;
512 }
513
514 if (PageSwapCache(page)) {
515 swp_entry_t swap = { .val = page_private(page) };
516 __delete_from_swap_cache(page);
517 spin_unlock_irq(&mapping->tree_lock);
518 swapcache_free(swap, page);
519 } else {
520 void (*freepage)(struct page *);
521
522 freepage = mapping->a_ops->freepage;
523
524 __delete_from_page_cache(page);
525 spin_unlock_irq(&mapping->tree_lock);
526 mem_cgroup_uncharge_cache_page(page);
527
528 if (freepage != NULL)
529 freepage(page);
530 }
531
532 return 1;
533
534cannot_free:
535 spin_unlock_irq(&mapping->tree_lock);
536 return 0;
537}
538
539/*
540 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
541 * someone else has a ref on the page, abort and return 0. If it was
542 * successfully detached, return 1. Assumes the caller has a single ref on
543 * this page.
544 */
545int remove_mapping(struct address_space *mapping, struct page *page)
546{
547 if (__remove_mapping(mapping, page)) {
548 /*
549 * Unfreezing the refcount with 1 rather than 2 effectively
550 * drops the pagecache ref for us without requiring another
551 * atomic operation.
552 */
553 page_unfreeze_refs(page, 1);
554 return 1;
555 }
556 return 0;
557}
558
559/**
560 * putback_lru_page - put previously isolated page onto appropriate LRU list
561 * @page: page to be put back to appropriate lru list
562 *
563 * Add previously isolated @page to appropriate LRU list.
564 * Page may still be unevictable for other reasons.
565 *
566 * lru_lock must not be held, interrupts must be enabled.
567 */
568void putback_lru_page(struct page *page)
569{
570 int lru;
571 int active = !!TestClearPageActive(page);
572 int was_unevictable = PageUnevictable(page);
573
574 VM_BUG_ON(PageLRU(page));
575
576redo:
577 ClearPageUnevictable(page);
578
579 if (page_evictable(page, NULL)) {
580 /*
581 * For evictable pages, we can use the cache.
582 * In event of a race, worst case is we end up with an
583 * unevictable page on [in]active list.
584 * We know how to handle that.
585 */
586 lru = active + page_lru_base_type(page);
587 lru_cache_add_lru(page, lru);
588 } else {
589 /*
590 * Put unevictable pages directly on zone's unevictable
591 * list.
592 */
593 lru = LRU_UNEVICTABLE;
594 add_page_to_unevictable_list(page);
595 /*
596 * When racing with an mlock clearing (page is
597 * unlocked), make sure that if the other thread does
598 * not observe our setting of PG_lru and fails
599 * isolation, we see PG_mlocked cleared below and move
600 * the page back to the evictable list.
601 *
602 * The other side is TestClearPageMlocked().
603 */
604 smp_mb();
605 }
606
607 /*
608 * page's status can change while we move it among lru. If an evictable
609 * page is on unevictable list, it never be freed. To avoid that,
610 * check after we added it to the list, again.
611 */
612 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
613 if (!isolate_lru_page(page)) {
614 put_page(page);
615 goto redo;
616 }
617 /* This means someone else dropped this page from LRU
618 * So, it will be freed or putback to LRU again. There is
619 * nothing to do here.
620 */
621 }
622
623 if (was_unevictable && lru != LRU_UNEVICTABLE)
624 count_vm_event(UNEVICTABLE_PGRESCUED);
625 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
626 count_vm_event(UNEVICTABLE_PGCULLED);
627
628 put_page(page); /* drop ref from isolate */
629}
630
631enum page_references {
632 PAGEREF_RECLAIM,
633 PAGEREF_RECLAIM_CLEAN,
634 PAGEREF_KEEP,
635 PAGEREF_ACTIVATE,
636};
637
638static enum page_references page_check_references(struct page *page,
639 struct scan_control *sc)
640{
641 int referenced_ptes, referenced_page;
642 unsigned long vm_flags;
643
644 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
645 referenced_page = TestClearPageReferenced(page);
646
647 /* Lumpy reclaim - ignore references */
648 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
649 return PAGEREF_RECLAIM;
650
651 /*
652 * Mlock lost the isolation race with us. Let try_to_unmap()
653 * move the page to the unevictable list.
654 */
655 if (vm_flags & VM_LOCKED)
656 return PAGEREF_RECLAIM;
657
658 if (referenced_ptes) {
659 if (PageAnon(page))
660 return PAGEREF_ACTIVATE;
661 /*
662 * All mapped pages start out with page table
663 * references from the instantiating fault, so we need
664 * to look twice if a mapped file page is used more
665 * than once.
666 *
667 * Mark it and spare it for another trip around the
668 * inactive list. Another page table reference will
669 * lead to its activation.
670 *
671 * Note: the mark is set for activated pages as well
672 * so that recently deactivated but used pages are
673 * quickly recovered.
674 */
675 SetPageReferenced(page);
676
677 if (referenced_page)
678 return PAGEREF_ACTIVATE;
679
680 return PAGEREF_KEEP;
681 }
682
683 /* Reclaim if clean, defer dirty pages to writeback */
684 if (referenced_page && !PageSwapBacked(page))
685 return PAGEREF_RECLAIM_CLEAN;
686
687 return PAGEREF_RECLAIM;
688}
689
690static noinline_for_stack void free_page_list(struct list_head *free_pages)
691{
692 struct pagevec freed_pvec;
693 struct page *page, *tmp;
694
695 pagevec_init(&freed_pvec, 1);
696
697 list_for_each_entry_safe(page, tmp, free_pages, lru) {
698 list_del(&page->lru);
699 if (!pagevec_add(&freed_pvec, page)) {
700 __pagevec_free(&freed_pvec);
701 pagevec_reinit(&freed_pvec);
702 }
703 }
704
705 pagevec_free(&freed_pvec);
706}
707
708/*
709 * shrink_page_list() returns the number of reclaimed pages
710 */
711static unsigned long shrink_page_list(struct list_head *page_list,
712 struct zone *zone,
713 struct scan_control *sc)
714{
715 LIST_HEAD(ret_pages);
716 LIST_HEAD(free_pages);
717 int pgactivate = 0;
718 unsigned long nr_dirty = 0;
719 unsigned long nr_congested = 0;
720 unsigned long nr_reclaimed = 0;
721
722 cond_resched();
723
724 while (!list_empty(page_list)) {
725 enum page_references references;
726 struct address_space *mapping;
727 struct page *page;
728 int may_enter_fs;
729
730 cond_resched();
731
732 page = lru_to_page(page_list);
733 list_del(&page->lru);
734
735 if (!trylock_page(page))
736 goto keep;
737
738 VM_BUG_ON(PageActive(page));
739 VM_BUG_ON(page_zone(page) != zone);
740
741 sc->nr_scanned++;
742
743 if (unlikely(!page_evictable(page, NULL)))
744 goto cull_mlocked;
745
746 if (!sc->may_unmap && page_mapped(page))
747 goto keep_locked;
748
749 /* Double the slab pressure for mapped and swapcache pages */
750 if (page_mapped(page) || PageSwapCache(page))
751 sc->nr_scanned++;
752
753 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
754 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
755
756 if (PageWriteback(page)) {
757 /*
758 * Synchronous reclaim is performed in two passes,
759 * first an asynchronous pass over the list to
760 * start parallel writeback, and a second synchronous
761 * pass to wait for the IO to complete. Wait here
762 * for any page for which writeback has already
763 * started.
764 */
765 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
766 may_enter_fs)
767 wait_on_page_writeback(page);
768 else {
769 unlock_page(page);
770 goto keep_lumpy;
771 }
772 }
773
774 references = page_check_references(page, sc);
775 switch (references) {
776 case PAGEREF_ACTIVATE:
777 goto activate_locked;
778 case PAGEREF_KEEP:
779 goto keep_locked;
780 case PAGEREF_RECLAIM:
781 case PAGEREF_RECLAIM_CLEAN:
782 ; /* try to reclaim the page below */
783 }
784
785 /*
786 * Anonymous process memory has backing store?
787 * Try to allocate it some swap space here.
788 */
789 if (PageAnon(page) && !PageSwapCache(page)) {
790 if (!(sc->gfp_mask & __GFP_IO))
791 goto keep_locked;
792 if (!add_to_swap(page))
793 goto activate_locked;
794 may_enter_fs = 1;
795 }
796
797 mapping = page_mapping(page);
798
799 /*
800 * The page is mapped into the page tables of one or more
801 * processes. Try to unmap it here.
802 */
803 if (page_mapped(page) && mapping) {
804 switch (try_to_unmap(page, TTU_UNMAP)) {
805 case SWAP_FAIL:
806 goto activate_locked;
807 case SWAP_AGAIN:
808 goto keep_locked;
809 case SWAP_MLOCK:
810 goto cull_mlocked;
811 case SWAP_SUCCESS:
812 ; /* try to free the page below */
813 }
814 }
815
816 if (PageDirty(page)) {
817 nr_dirty++;
818
819 if (references == PAGEREF_RECLAIM_CLEAN)
820 goto keep_locked;
821 if (!may_enter_fs)
822 goto keep_locked;
823 if (!sc->may_writepage)
824 goto keep_locked;
825
826 /* Page is dirty, try to write it out here */
827 switch (pageout(page, mapping, sc)) {
828 case PAGE_KEEP:
829 nr_congested++;
830 goto keep_locked;
831 case PAGE_ACTIVATE:
832 goto activate_locked;
833 case PAGE_SUCCESS:
834 if (PageWriteback(page))
835 goto keep_lumpy;
836 if (PageDirty(page))
837 goto keep;
838
839 /*
840 * A synchronous write - probably a ramdisk. Go
841 * ahead and try to reclaim the page.
842 */
843 if (!trylock_page(page))
844 goto keep;
845 if (PageDirty(page) || PageWriteback(page))
846 goto keep_locked;
847 mapping = page_mapping(page);
848 case PAGE_CLEAN:
849 ; /* try to free the page below */
850 }
851 }
852
853 /*
854 * If the page has buffers, try to free the buffer mappings
855 * associated with this page. If we succeed we try to free
856 * the page as well.
857 *
858 * We do this even if the page is PageDirty().
859 * try_to_release_page() does not perform I/O, but it is
860 * possible for a page to have PageDirty set, but it is actually
861 * clean (all its buffers are clean). This happens if the
862 * buffers were written out directly, with submit_bh(). ext3
863 * will do this, as well as the blockdev mapping.
864 * try_to_release_page() will discover that cleanness and will
865 * drop the buffers and mark the page clean - it can be freed.
866 *
867 * Rarely, pages can have buffers and no ->mapping. These are
868 * the pages which were not successfully invalidated in
869 * truncate_complete_page(). We try to drop those buffers here
870 * and if that worked, and the page is no longer mapped into
871 * process address space (page_count == 1) it can be freed.
872 * Otherwise, leave the page on the LRU so it is swappable.
873 */
874 if (page_has_private(page)) {
875 if (!try_to_release_page(page, sc->gfp_mask))
876 goto activate_locked;
877 if (!mapping && page_count(page) == 1) {
878 unlock_page(page);
879 if (put_page_testzero(page))
880 goto free_it;
881 else {
882 /*
883 * rare race with speculative reference.
884 * the speculative reference will free
885 * this page shortly, so we may
886 * increment nr_reclaimed here (and
887 * leave it off the LRU).
888 */
889 nr_reclaimed++;
890 continue;
891 }
892 }
893 }
894
895 if (!mapping || !__remove_mapping(mapping, page))
896 goto keep_locked;
897
898 /*
899 * At this point, we have no other references and there is
900 * no way to pick any more up (removed from LRU, removed
901 * from pagecache). Can use non-atomic bitops now (and
902 * we obviously don't have to worry about waking up a process
903 * waiting on the page lock, because there are no references.
904 */
905 __clear_page_locked(page);
906free_it:
907 nr_reclaimed++;
908
909 /*
910 * Is there need to periodically free_page_list? It would
911 * appear not as the counts should be low
912 */
913 list_add(&page->lru, &free_pages);
914 continue;
915
916cull_mlocked:
917 if (PageSwapCache(page))
918 try_to_free_swap(page);
919 unlock_page(page);
920 putback_lru_page(page);
921 reset_reclaim_mode(sc);
922 continue;
923
924activate_locked:
925 /* Not a candidate for swapping, so reclaim swap space. */
926 if (PageSwapCache(page) && vm_swap_full())
927 try_to_free_swap(page);
928 VM_BUG_ON(PageActive(page));
929 SetPageActive(page);
930 pgactivate++;
931keep_locked:
932 unlock_page(page);
933keep:
934 reset_reclaim_mode(sc);
935keep_lumpy:
936 list_add(&page->lru, &ret_pages);
937 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
938 }
939
940 /*
941 * Tag a zone as congested if all the dirty pages encountered were
942 * backed by a congested BDI. In this case, reclaimers should just
943 * back off and wait for congestion to clear because further reclaim
944 * will encounter the same problem
945 */
946 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
947 zone_set_flag(zone, ZONE_CONGESTED);
948
949 free_page_list(&free_pages);
950
951 list_splice(&ret_pages, page_list);
952 count_vm_events(PGACTIVATE, pgactivate);
953 return nr_reclaimed;
954}
955
956/*
957 * Attempt to remove the specified page from its LRU. Only take this page
958 * if it is of the appropriate PageActive status. Pages which are being
959 * freed elsewhere are also ignored.
960 *
961 * page: page to consider
962 * mode: one of the LRU isolation modes defined above
963 *
964 * returns 0 on success, -ve errno on failure.
965 */
966int __isolate_lru_page(struct page *page, int mode, int file)
967{
968 int ret = -EINVAL;
969
970 /* Only take pages on the LRU. */
971 if (!PageLRU(page))
972 return ret;
973
974 /*
975 * When checking the active state, we need to be sure we are
976 * dealing with comparible boolean values. Take the logical not
977 * of each.
978 */
979 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
980 return ret;
981
982 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
983 return ret;
984
985 /*
986 * When this function is being called for lumpy reclaim, we
987 * initially look into all LRU pages, active, inactive and
988 * unevictable; only give shrink_page_list evictable pages.
989 */
990 if (PageUnevictable(page))
991 return ret;
992
993 ret = -EBUSY;
994
995 if (likely(get_page_unless_zero(page))) {
996 /*
997 * Be careful not to clear PageLRU until after we're
998 * sure the page is not being freed elsewhere -- the
999 * page release code relies on it.
1000 */
1001 ClearPageLRU(page);
1002 ret = 0;
1003 }
1004
1005 return ret;
1006}
1007
1008/*
1009 * zone->lru_lock is heavily contended. Some of the functions that
1010 * shrink the lists perform better by taking out a batch of pages
1011 * and working on them outside the LRU lock.
1012 *
1013 * For pagecache intensive workloads, this function is the hottest
1014 * spot in the kernel (apart from copy_*_user functions).
1015 *
1016 * Appropriate locks must be held before calling this function.
1017 *
1018 * @nr_to_scan: The number of pages to look through on the list.
1019 * @src: The LRU list to pull pages off.
1020 * @dst: The temp list to put pages on to.
1021 * @scanned: The number of pages that were scanned.
1022 * @order: The caller's attempted allocation order
1023 * @mode: One of the LRU isolation modes
1024 * @file: True [1] if isolating file [!anon] pages
1025 *
1026 * returns how many pages were moved onto *@dst.
1027 */
1028static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1029 struct list_head *src, struct list_head *dst,
1030 unsigned long *scanned, int order, int mode, int file)
1031{
1032 unsigned long nr_taken = 0;
1033 unsigned long nr_lumpy_taken = 0;
1034 unsigned long nr_lumpy_dirty = 0;
1035 unsigned long nr_lumpy_failed = 0;
1036 unsigned long scan;
1037
1038 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1039 struct page *page;
1040 unsigned long pfn;
1041 unsigned long end_pfn;
1042 unsigned long page_pfn;
1043 int zone_id;
1044
1045 page = lru_to_page(src);
1046 prefetchw_prev_lru_page(page, src, flags);
1047
1048 VM_BUG_ON(!PageLRU(page));
1049
1050 switch (__isolate_lru_page(page, mode, file)) {
1051 case 0:
1052 list_move(&page->lru, dst);
1053 mem_cgroup_del_lru(page);
1054 nr_taken += hpage_nr_pages(page);
1055 break;
1056
1057 case -EBUSY:
1058 /* else it is being freed elsewhere */
1059 list_move(&page->lru, src);
1060 mem_cgroup_rotate_lru_list(page, page_lru(page));
1061 continue;
1062
1063 default:
1064 BUG();
1065 }
1066
1067 if (!order)
1068 continue;
1069
1070 /*
1071 * Attempt to take all pages in the order aligned region
1072 * surrounding the tag page. Only take those pages of
1073 * the same active state as that tag page. We may safely
1074 * round the target page pfn down to the requested order
1075 * as the mem_map is guaranteed valid out to MAX_ORDER,
1076 * where that page is in a different zone we will detect
1077 * it from its zone id and abort this block scan.
1078 */
1079 zone_id = page_zone_id(page);
1080 page_pfn = page_to_pfn(page);
1081 pfn = page_pfn & ~((1 << order) - 1);
1082 end_pfn = pfn + (1 << order);
1083 for (; pfn < end_pfn; pfn++) {
1084 struct page *cursor_page;
1085
1086 /* The target page is in the block, ignore it. */
1087 if (unlikely(pfn == page_pfn))
1088 continue;
1089
1090 /* Avoid holes within the zone. */
1091 if (unlikely(!pfn_valid_within(pfn)))
1092 break;
1093
1094 cursor_page = pfn_to_page(pfn);
1095
1096 /* Check that we have not crossed a zone boundary. */
1097 if (unlikely(page_zone_id(cursor_page) != zone_id))
1098 break;
1099
1100 /*
1101 * If we don't have enough swap space, reclaiming of
1102 * anon page which don't already have a swap slot is
1103 * pointless.
1104 */
1105 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1106 !PageSwapCache(cursor_page))
1107 break;
1108
1109 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1110 list_move(&cursor_page->lru, dst);
1111 mem_cgroup_del_lru(cursor_page);
1112 nr_taken += hpage_nr_pages(page);
1113 nr_lumpy_taken++;
1114 if (PageDirty(cursor_page))
1115 nr_lumpy_dirty++;
1116 scan++;
1117 } else {
1118 /* the page is freed already. */
1119 if (!page_count(cursor_page))
1120 continue;
1121 break;
1122 }
1123 }
1124
1125 /* If we break out of the loop above, lumpy reclaim failed */
1126 if (pfn < end_pfn)
1127 nr_lumpy_failed++;
1128 }
1129
1130 *scanned = scan;
1131
1132 trace_mm_vmscan_lru_isolate(order,
1133 nr_to_scan, scan,
1134 nr_taken,
1135 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1136 mode);
1137 return nr_taken;
1138}
1139
1140static unsigned long isolate_pages_global(unsigned long nr,
1141 struct list_head *dst,
1142 unsigned long *scanned, int order,
1143 int mode, struct zone *z,
1144 int active, int file)
1145{
1146 int lru = LRU_BASE;
1147 if (active)
1148 lru += LRU_ACTIVE;
1149 if (file)
1150 lru += LRU_FILE;
1151 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1152 mode, file);
1153}
1154
1155/*
1156 * clear_active_flags() is a helper for shrink_active_list(), clearing
1157 * any active bits from the pages in the list.
1158 */
1159static unsigned long clear_active_flags(struct list_head *page_list,
1160 unsigned int *count)
1161{
1162 int nr_active = 0;
1163 int lru;
1164 struct page *page;
1165
1166 list_for_each_entry(page, page_list, lru) {
1167 int numpages = hpage_nr_pages(page);
1168 lru = page_lru_base_type(page);
1169 if (PageActive(page)) {
1170 lru += LRU_ACTIVE;
1171 ClearPageActive(page);
1172 nr_active += numpages;
1173 }
1174 if (count)
1175 count[lru] += numpages;
1176 }
1177
1178 return nr_active;
1179}
1180
1181/**
1182 * isolate_lru_page - tries to isolate a page from its LRU list
1183 * @page: page to isolate from its LRU list
1184 *
1185 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1186 * vmstat statistic corresponding to whatever LRU list the page was on.
1187 *
1188 * Returns 0 if the page was removed from an LRU list.
1189 * Returns -EBUSY if the page was not on an LRU list.
1190 *
1191 * The returned page will have PageLRU() cleared. If it was found on
1192 * the active list, it will have PageActive set. If it was found on
1193 * the unevictable list, it will have the PageUnevictable bit set. That flag
1194 * may need to be cleared by the caller before letting the page go.
1195 *
1196 * The vmstat statistic corresponding to the list on which the page was
1197 * found will be decremented.
1198 *
1199 * Restrictions:
1200 * (1) Must be called with an elevated refcount on the page. This is a
1201 * fundamentnal difference from isolate_lru_pages (which is called
1202 * without a stable reference).
1203 * (2) the lru_lock must not be held.
1204 * (3) interrupts must be enabled.
1205 */
1206int isolate_lru_page(struct page *page)
1207{
1208 int ret = -EBUSY;
1209
1210 VM_BUG_ON(!page_count(page));
1211
1212 if (PageLRU(page)) {
1213 struct zone *zone = page_zone(page);
1214
1215 spin_lock_irq(&zone->lru_lock);
1216 if (PageLRU(page)) {
1217 int lru = page_lru(page);
1218 ret = 0;
1219 get_page(page);
1220 ClearPageLRU(page);
1221
1222 del_page_from_lru_list(zone, page, lru);
1223 }
1224 spin_unlock_irq(&zone->lru_lock);
1225 }
1226 return ret;
1227}
1228
1229/*
1230 * Are there way too many processes in the direct reclaim path already?
1231 */
1232static int too_many_isolated(struct zone *zone, int file,
1233 struct scan_control *sc)
1234{
1235 unsigned long inactive, isolated;
1236
1237 if (current_is_kswapd())
1238 return 0;
1239
1240 if (!scanning_global_lru(sc))
1241 return 0;
1242
1243 if (file) {
1244 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1245 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1246 } else {
1247 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1248 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1249 }
1250
1251 return isolated > inactive;
1252}
1253
1254/*
1255 * TODO: Try merging with migrations version of putback_lru_pages
1256 */
1257static noinline_for_stack void
1258putback_lru_pages(struct zone *zone, struct scan_control *sc,
1259 unsigned long nr_anon, unsigned long nr_file,
1260 struct list_head *page_list)
1261{
1262 struct page *page;
1263 struct pagevec pvec;
1264 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1265
1266 pagevec_init(&pvec, 1);
1267
1268 /*
1269 * Put back any unfreeable pages.
1270 */
1271 spin_lock(&zone->lru_lock);
1272 while (!list_empty(page_list)) {
1273 int lru;
1274 page = lru_to_page(page_list);
1275 VM_BUG_ON(PageLRU(page));
1276 list_del(&page->lru);
1277 if (unlikely(!page_evictable(page, NULL))) {
1278 spin_unlock_irq(&zone->lru_lock);
1279 putback_lru_page(page);
1280 spin_lock_irq(&zone->lru_lock);
1281 continue;
1282 }
1283 SetPageLRU(page);
1284 lru = page_lru(page);
1285 add_page_to_lru_list(zone, page, lru);
1286 if (is_active_lru(lru)) {
1287 int file = is_file_lru(lru);
1288 int numpages = hpage_nr_pages(page);
1289 reclaim_stat->recent_rotated[file] += numpages;
1290 }
1291 if (!pagevec_add(&pvec, page)) {
1292 spin_unlock_irq(&zone->lru_lock);
1293 __pagevec_release(&pvec);
1294 spin_lock_irq(&zone->lru_lock);
1295 }
1296 }
1297 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1298 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1299
1300 spin_unlock_irq(&zone->lru_lock);
1301 pagevec_release(&pvec);
1302}
1303
1304static noinline_for_stack void update_isolated_counts(struct zone *zone,
1305 struct scan_control *sc,
1306 unsigned long *nr_anon,
1307 unsigned long *nr_file,
1308 struct list_head *isolated_list)
1309{
1310 unsigned long nr_active;
1311 unsigned int count[NR_LRU_LISTS] = { 0, };
1312 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1313
1314 nr_active = clear_active_flags(isolated_list, count);
1315 __count_vm_events(PGDEACTIVATE, nr_active);
1316
1317 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1318 -count[LRU_ACTIVE_FILE]);
1319 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1320 -count[LRU_INACTIVE_FILE]);
1321 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1322 -count[LRU_ACTIVE_ANON]);
1323 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1324 -count[LRU_INACTIVE_ANON]);
1325
1326 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1327 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1328 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1329 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1330
1331 reclaim_stat->recent_scanned[0] += *nr_anon;
1332 reclaim_stat->recent_scanned[1] += *nr_file;
1333}
1334
1335/*
1336 * Returns true if the caller should wait to clean dirty/writeback pages.
1337 *
1338 * If we are direct reclaiming for contiguous pages and we do not reclaim
1339 * everything in the list, try again and wait for writeback IO to complete.
1340 * This will stall high-order allocations noticeably. Only do that when really
1341 * need to free the pages under high memory pressure.
1342 */
1343static inline bool should_reclaim_stall(unsigned long nr_taken,
1344 unsigned long nr_freed,
1345 int priority,
1346 struct scan_control *sc)
1347{
1348 int lumpy_stall_priority;
1349
1350 /* kswapd should not stall on sync IO */
1351 if (current_is_kswapd())
1352 return false;
1353
1354 /* Only stall on lumpy reclaim */
1355 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1356 return false;
1357
1358 /* If we have relaimed everything on the isolated list, no stall */
1359 if (nr_freed == nr_taken)
1360 return false;
1361
1362 /*
1363 * For high-order allocations, there are two stall thresholds.
1364 * High-cost allocations stall immediately where as lower
1365 * order allocations such as stacks require the scanning
1366 * priority to be much higher before stalling.
1367 */
1368 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1369 lumpy_stall_priority = DEF_PRIORITY;
1370 else
1371 lumpy_stall_priority = DEF_PRIORITY / 3;
1372
1373 return priority <= lumpy_stall_priority;
1374}
1375
1376/*
1377 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1378 * of reclaimed pages
1379 */
1380static noinline_for_stack unsigned long
1381shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1382 struct scan_control *sc, int priority, int file)
1383{
1384 LIST_HEAD(page_list);
1385 unsigned long nr_scanned;
1386 unsigned long nr_reclaimed = 0;
1387 unsigned long nr_taken;
1388 unsigned long nr_anon;
1389 unsigned long nr_file;
1390
1391 while (unlikely(too_many_isolated(zone, file, sc))) {
1392 congestion_wait(BLK_RW_ASYNC, HZ/10);
1393
1394 /* We are about to die and free our memory. Return now. */
1395 if (fatal_signal_pending(current))
1396 return SWAP_CLUSTER_MAX;
1397 }
1398
1399 set_reclaim_mode(priority, sc, false);
1400 lru_add_drain();
1401 spin_lock_irq(&zone->lru_lock);
1402
1403 if (scanning_global_lru(sc)) {
1404 nr_taken = isolate_pages_global(nr_to_scan,
1405 &page_list, &nr_scanned, sc->order,
1406 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1407 ISOLATE_BOTH : ISOLATE_INACTIVE,
1408 zone, 0, file);
1409 zone->pages_scanned += nr_scanned;
1410 if (current_is_kswapd())
1411 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1412 nr_scanned);
1413 else
1414 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1415 nr_scanned);
1416 } else {
1417 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1418 &page_list, &nr_scanned, sc->order,
1419 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1420 ISOLATE_BOTH : ISOLATE_INACTIVE,
1421 zone, sc->mem_cgroup,
1422 0, file);
1423 /*
1424 * mem_cgroup_isolate_pages() keeps track of
1425 * scanned pages on its own.
1426 */
1427 }
1428
1429 if (nr_taken == 0) {
1430 spin_unlock_irq(&zone->lru_lock);
1431 return 0;
1432 }
1433
1434 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1435
1436 spin_unlock_irq(&zone->lru_lock);
1437
1438 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1439
1440 /* Check if we should syncronously wait for writeback */
1441 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1442 set_reclaim_mode(priority, sc, true);
1443 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1444 }
1445
1446 local_irq_disable();
1447 if (current_is_kswapd())
1448 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1449 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1450
1451 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1452
1453 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1454 zone_idx(zone),
1455 nr_scanned, nr_reclaimed,
1456 priority,
1457 trace_shrink_flags(file, sc->reclaim_mode));
1458 return nr_reclaimed;
1459}
1460
1461/*
1462 * This moves pages from the active list to the inactive list.
1463 *
1464 * We move them the other way if the page is referenced by one or more
1465 * processes, from rmap.
1466 *
1467 * If the pages are mostly unmapped, the processing is fast and it is
1468 * appropriate to hold zone->lru_lock across the whole operation. But if
1469 * the pages are mapped, the processing is slow (page_referenced()) so we
1470 * should drop zone->lru_lock around each page. It's impossible to balance
1471 * this, so instead we remove the pages from the LRU while processing them.
1472 * It is safe to rely on PG_active against the non-LRU pages in here because
1473 * nobody will play with that bit on a non-LRU page.
1474 *
1475 * The downside is that we have to touch page->_count against each page.
1476 * But we had to alter page->flags anyway.
1477 */
1478
1479static void move_active_pages_to_lru(struct zone *zone,
1480 struct list_head *list,
1481 enum lru_list lru)
1482{
1483 unsigned long pgmoved = 0;
1484 struct pagevec pvec;
1485 struct page *page;
1486
1487 pagevec_init(&pvec, 1);
1488
1489 while (!list_empty(list)) {
1490 page = lru_to_page(list);
1491
1492 VM_BUG_ON(PageLRU(page));
1493 SetPageLRU(page);
1494
1495 list_move(&page->lru, &zone->lru[lru].list);
1496 mem_cgroup_add_lru_list(page, lru);
1497 pgmoved += hpage_nr_pages(page);
1498
1499 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1500 spin_unlock_irq(&zone->lru_lock);
1501 if (buffer_heads_over_limit)
1502 pagevec_strip(&pvec);
1503 __pagevec_release(&pvec);
1504 spin_lock_irq(&zone->lru_lock);
1505 }
1506 }
1507 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1508 if (!is_active_lru(lru))
1509 __count_vm_events(PGDEACTIVATE, pgmoved);
1510}
1511
1512static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1513 struct scan_control *sc, int priority, int file)
1514{
1515 unsigned long nr_taken;
1516 unsigned long pgscanned;
1517 unsigned long vm_flags;
1518 LIST_HEAD(l_hold); /* The pages which were snipped off */
1519 LIST_HEAD(l_active);
1520 LIST_HEAD(l_inactive);
1521 struct page *page;
1522 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1523 unsigned long nr_rotated = 0;
1524
1525 lru_add_drain();
1526 spin_lock_irq(&zone->lru_lock);
1527 if (scanning_global_lru(sc)) {
1528 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1529 &pgscanned, sc->order,
1530 ISOLATE_ACTIVE, zone,
1531 1, file);
1532 zone->pages_scanned += pgscanned;
1533 } else {
1534 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1535 &pgscanned, sc->order,
1536 ISOLATE_ACTIVE, zone,
1537 sc->mem_cgroup, 1, file);
1538 /*
1539 * mem_cgroup_isolate_pages() keeps track of
1540 * scanned pages on its own.
1541 */
1542 }
1543
1544 reclaim_stat->recent_scanned[file] += nr_taken;
1545
1546 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1547 if (file)
1548 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1549 else
1550 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1551 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1552 spin_unlock_irq(&zone->lru_lock);
1553
1554 while (!list_empty(&l_hold)) {
1555 cond_resched();
1556 page = lru_to_page(&l_hold);
1557 list_del(&page->lru);
1558
1559 if (unlikely(!page_evictable(page, NULL))) {
1560 putback_lru_page(page);
1561 continue;
1562 }
1563
1564 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1565 nr_rotated += hpage_nr_pages(page);
1566 /*
1567 * Identify referenced, file-backed active pages and
1568 * give them one more trip around the active list. So
1569 * that executable code get better chances to stay in
1570 * memory under moderate memory pressure. Anon pages
1571 * are not likely to be evicted by use-once streaming
1572 * IO, plus JVM can create lots of anon VM_EXEC pages,
1573 * so we ignore them here.
1574 */
1575 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1576 list_add(&page->lru, &l_active);
1577 continue;
1578 }
1579 }
1580
1581 ClearPageActive(page); /* we are de-activating */
1582 list_add(&page->lru, &l_inactive);
1583 }
1584
1585 /*
1586 * Move pages back to the lru list.
1587 */
1588 spin_lock_irq(&zone->lru_lock);
1589 /*
1590 * Count referenced pages from currently used mappings as rotated,
1591 * even though only some of them are actually re-activated. This
1592 * helps balance scan pressure between file and anonymous pages in
1593 * get_scan_ratio.
1594 */
1595 reclaim_stat->recent_rotated[file] += nr_rotated;
1596
1597 move_active_pages_to_lru(zone, &l_active,
1598 LRU_ACTIVE + file * LRU_FILE);
1599 move_active_pages_to_lru(zone, &l_inactive,
1600 LRU_BASE + file * LRU_FILE);
1601 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1602 spin_unlock_irq(&zone->lru_lock);
1603}
1604
1605#ifdef CONFIG_SWAP
1606static int inactive_anon_is_low_global(struct zone *zone)
1607{
1608 unsigned long active, inactive;
1609
1610 active = zone_page_state(zone, NR_ACTIVE_ANON);
1611 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1612
1613 if (inactive * zone->inactive_ratio < active)
1614 return 1;
1615
1616 return 0;
1617}
1618
1619/**
1620 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1621 * @zone: zone to check
1622 * @sc: scan control of this context
1623 *
1624 * Returns true if the zone does not have enough inactive anon pages,
1625 * meaning some active anon pages need to be deactivated.
1626 */
1627static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1628{
1629 int low;
1630
1631 /*
1632 * If we don't have swap space, anonymous page deactivation
1633 * is pointless.
1634 */
1635 if (!total_swap_pages)
1636 return 0;
1637
1638 if (scanning_global_lru(sc))
1639 low = inactive_anon_is_low_global(zone);
1640 else
1641 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1642 return low;
1643}
1644#else
1645static inline int inactive_anon_is_low(struct zone *zone,
1646 struct scan_control *sc)
1647{
1648 return 0;
1649}
1650#endif
1651
1652static int inactive_file_is_low_global(struct zone *zone)
1653{
1654 unsigned long active, inactive;
1655
1656 active = zone_page_state(zone, NR_ACTIVE_FILE);
1657 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1658
1659 return (active > inactive);
1660}
1661
1662/**
1663 * inactive_file_is_low - check if file pages need to be deactivated
1664 * @zone: zone to check
1665 * @sc: scan control of this context
1666 *
1667 * When the system is doing streaming IO, memory pressure here
1668 * ensures that active file pages get deactivated, until more
1669 * than half of the file pages are on the inactive list.
1670 *
1671 * Once we get to that situation, protect the system's working
1672 * set from being evicted by disabling active file page aging.
1673 *
1674 * This uses a different ratio than the anonymous pages, because
1675 * the page cache uses a use-once replacement algorithm.
1676 */
1677static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1678{
1679 int low;
1680
1681 if (scanning_global_lru(sc))
1682 low = inactive_file_is_low_global(zone);
1683 else
1684 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1685 return low;
1686}
1687
1688static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1689 int file)
1690{
1691 if (file)
1692 return inactive_file_is_low(zone, sc);
1693 else
1694 return inactive_anon_is_low(zone, sc);
1695}
1696
1697static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1698 struct zone *zone, struct scan_control *sc, int priority)
1699{
1700 int file = is_file_lru(lru);
1701
1702 if (is_active_lru(lru)) {
1703 if (inactive_list_is_low(zone, sc, file))
1704 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1705 return 0;
1706 }
1707
1708 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1709}
1710
1711/*
1712 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1713 * until we collected @swap_cluster_max pages to scan.
1714 */
1715static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1716 unsigned long *nr_saved_scan)
1717{
1718 unsigned long nr;
1719
1720 *nr_saved_scan += nr_to_scan;
1721 nr = *nr_saved_scan;
1722
1723 if (nr >= SWAP_CLUSTER_MAX)
1724 *nr_saved_scan = 0;
1725 else
1726 nr = 0;
1727
1728 return nr;
1729}
1730
1731/*
1732 * Determine how aggressively the anon and file LRU lists should be
1733 * scanned. The relative value of each set of LRU lists is determined
1734 * by looking at the fraction of the pages scanned we did rotate back
1735 * onto the active list instead of evict.
1736 *
1737 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1738 */
1739static void get_scan_count(struct zone *zone, struct scan_control *sc,
1740 unsigned long *nr, int priority)
1741{
1742 unsigned long anon, file, free;
1743 unsigned long anon_prio, file_prio;
1744 unsigned long ap, fp;
1745 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1746 u64 fraction[2], denominator;
1747 enum lru_list l;
1748 int noswap = 0;
1749
1750 /* If we have no swap space, do not bother scanning anon pages. */
1751 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1752 noswap = 1;
1753 fraction[0] = 0;
1754 fraction[1] = 1;
1755 denominator = 1;
1756 goto out;
1757 }
1758
1759 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1760 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1761 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1762 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1763
1764 if (scanning_global_lru(sc)) {
1765 free = zone_page_state(zone, NR_FREE_PAGES);
1766 /* If we have very few page cache pages,
1767 force-scan anon pages. */
1768 if (unlikely(file + free <= high_wmark_pages(zone))) {
1769 fraction[0] = 1;
1770 fraction[1] = 0;
1771 denominator = 1;
1772 goto out;
1773 }
1774 }
1775
1776 /*
1777 * With swappiness at 100, anonymous and file have the same priority.
1778 * This scanning priority is essentially the inverse of IO cost.
1779 */
1780 anon_prio = sc->swappiness;
1781 file_prio = 200 - sc->swappiness;
1782
1783 /*
1784 * OK, so we have swap space and a fair amount of page cache
1785 * pages. We use the recently rotated / recently scanned
1786 * ratios to determine how valuable each cache is.
1787 *
1788 * Because workloads change over time (and to avoid overflow)
1789 * we keep these statistics as a floating average, which ends
1790 * up weighing recent references more than old ones.
1791 *
1792 * anon in [0], file in [1]
1793 */
1794 spin_lock_irq(&zone->lru_lock);
1795 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1796 reclaim_stat->recent_scanned[0] /= 2;
1797 reclaim_stat->recent_rotated[0] /= 2;
1798 }
1799
1800 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1801 reclaim_stat->recent_scanned[1] /= 2;
1802 reclaim_stat->recent_rotated[1] /= 2;
1803 }
1804
1805 /*
1806 * The amount of pressure on anon vs file pages is inversely
1807 * proportional to the fraction of recently scanned pages on
1808 * each list that were recently referenced and in active use.
1809 */
1810 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1811 ap /= reclaim_stat->recent_rotated[0] + 1;
1812
1813 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1814 fp /= reclaim_stat->recent_rotated[1] + 1;
1815 spin_unlock_irq(&zone->lru_lock);
1816
1817 fraction[0] = ap;
1818 fraction[1] = fp;
1819 denominator = ap + fp + 1;
1820out:
1821 for_each_evictable_lru(l) {
1822 int file = is_file_lru(l);
1823 unsigned long scan;
1824
1825 scan = zone_nr_lru_pages(zone, sc, l);
1826 if (priority || noswap) {
1827 scan >>= priority;
1828 scan = div64_u64(scan * fraction[file], denominator);
1829 }
1830 nr[l] = nr_scan_try_batch(scan,
1831 &reclaim_stat->nr_saved_scan[l]);
1832 }
1833}
1834
1835/*
1836 * Reclaim/compaction depends on a number of pages being freed. To avoid
1837 * disruption to the system, a small number of order-0 pages continue to be
1838 * rotated and reclaimed in the normal fashion. However, by the time we get
1839 * back to the allocator and call try_to_compact_zone(), we ensure that
1840 * there are enough free pages for it to be likely successful
1841 */
1842static inline bool should_continue_reclaim(struct zone *zone,
1843 unsigned long nr_reclaimed,
1844 unsigned long nr_scanned,
1845 struct scan_control *sc)
1846{
1847 unsigned long pages_for_compaction;
1848 unsigned long inactive_lru_pages;
1849
1850 /* If not in reclaim/compaction mode, stop */
1851 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1852 return false;
1853
1854 /* Consider stopping depending on scan and reclaim activity */
1855 if (sc->gfp_mask & __GFP_REPEAT) {
1856 /*
1857 * For __GFP_REPEAT allocations, stop reclaiming if the
1858 * full LRU list has been scanned and we are still failing
1859 * to reclaim pages. This full LRU scan is potentially
1860 * expensive but a __GFP_REPEAT caller really wants to succeed
1861 */
1862 if (!nr_reclaimed && !nr_scanned)
1863 return false;
1864 } else {
1865 /*
1866 * For non-__GFP_REPEAT allocations which can presumably
1867 * fail without consequence, stop if we failed to reclaim
1868 * any pages from the last SWAP_CLUSTER_MAX number of
1869 * pages that were scanned. This will return to the
1870 * caller faster at the risk reclaim/compaction and
1871 * the resulting allocation attempt fails
1872 */
1873 if (!nr_reclaimed)
1874 return false;
1875 }
1876
1877 /*
1878 * If we have not reclaimed enough pages for compaction and the
1879 * inactive lists are large enough, continue reclaiming
1880 */
1881 pages_for_compaction = (2UL << sc->order);
1882 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1883 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1884 if (sc->nr_reclaimed < pages_for_compaction &&
1885 inactive_lru_pages > pages_for_compaction)
1886 return true;
1887
1888 /* If compaction would go ahead or the allocation would succeed, stop */
1889 switch (compaction_suitable(zone, sc->order)) {
1890 case COMPACT_PARTIAL:
1891 case COMPACT_CONTINUE:
1892 return false;
1893 default:
1894 return true;
1895 }
1896}
1897
1898/*
1899 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1900 */
1901static void shrink_zone(int priority, struct zone *zone,
1902 struct scan_control *sc)
1903{
1904 unsigned long nr[NR_LRU_LISTS];
1905 unsigned long nr_to_scan;
1906 enum lru_list l;
1907 unsigned long nr_reclaimed, nr_scanned;
1908 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1909
1910restart:
1911 nr_reclaimed = 0;
1912 nr_scanned = sc->nr_scanned;
1913 get_scan_count(zone, sc, nr, priority);
1914
1915 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1916 nr[LRU_INACTIVE_FILE]) {
1917 for_each_evictable_lru(l) {
1918 if (nr[l]) {
1919 nr_to_scan = min_t(unsigned long,
1920 nr[l], SWAP_CLUSTER_MAX);
1921 nr[l] -= nr_to_scan;
1922
1923 nr_reclaimed += shrink_list(l, nr_to_scan,
1924 zone, sc, priority);
1925 }
1926 }
1927 /*
1928 * On large memory systems, scan >> priority can become
1929 * really large. This is fine for the starting priority;
1930 * we want to put equal scanning pressure on each zone.
1931 * However, if the VM has a harder time of freeing pages,
1932 * with multiple processes reclaiming pages, the total
1933 * freeing target can get unreasonably large.
1934 */
1935 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1936 break;
1937 }
1938 sc->nr_reclaimed += nr_reclaimed;
1939
1940 /*
1941 * Even if we did not try to evict anon pages at all, we want to
1942 * rebalance the anon lru active/inactive ratio.
1943 */
1944 if (inactive_anon_is_low(zone, sc))
1945 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1946
1947 /* reclaim/compaction might need reclaim to continue */
1948 if (should_continue_reclaim(zone, nr_reclaimed,
1949 sc->nr_scanned - nr_scanned, sc))
1950 goto restart;
1951
1952 throttle_vm_writeout(sc->gfp_mask);
1953}
1954
1955/*
1956 * This is the direct reclaim path, for page-allocating processes. We only
1957 * try to reclaim pages from zones which will satisfy the caller's allocation
1958 * request.
1959 *
1960 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1961 * Because:
1962 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1963 * allocation or
1964 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1965 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1966 * zone defense algorithm.
1967 *
1968 * If a zone is deemed to be full of pinned pages then just give it a light
1969 * scan then give up on it.
1970 */
1971static void shrink_zones(int priority, struct zonelist *zonelist,
1972 struct scan_control *sc)
1973{
1974 struct zoneref *z;
1975 struct zone *zone;
1976
1977 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1978 gfp_zone(sc->gfp_mask), sc->nodemask) {
1979 if (!populated_zone(zone))
1980 continue;
1981 /*
1982 * Take care memory controller reclaiming has small influence
1983 * to global LRU.
1984 */
1985 if (scanning_global_lru(sc)) {
1986 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1987 continue;
1988 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1989 continue; /* Let kswapd poll it */
1990 }
1991
1992 shrink_zone(priority, zone, sc);
1993 }
1994}
1995
1996static bool zone_reclaimable(struct zone *zone)
1997{
1998 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1999}
2000
2001/* All zones in zonelist are unreclaimable? */
2002static bool all_unreclaimable(struct zonelist *zonelist,
2003 struct scan_control *sc)
2004{
2005 struct zoneref *z;
2006 struct zone *zone;
2007
2008 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2009 gfp_zone(sc->gfp_mask), sc->nodemask) {
2010 if (!populated_zone(zone))
2011 continue;
2012 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2013 continue;
2014 if (!zone->all_unreclaimable)
2015 return false;
2016 }
2017
2018 return true;
2019}
2020
2021/*
2022 * This is the main entry point to direct page reclaim.
2023 *
2024 * If a full scan of the inactive list fails to free enough memory then we
2025 * are "out of memory" and something needs to be killed.
2026 *
2027 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2028 * high - the zone may be full of dirty or under-writeback pages, which this
2029 * caller can't do much about. We kick the writeback threads and take explicit
2030 * naps in the hope that some of these pages can be written. But if the
2031 * allocating task holds filesystem locks which prevent writeout this might not
2032 * work, and the allocation attempt will fail.
2033 *
2034 * returns: 0, if no pages reclaimed
2035 * else, the number of pages reclaimed
2036 */
2037static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2038 struct scan_control *sc)
2039{
2040 int priority;
2041 unsigned long total_scanned = 0;
2042 struct reclaim_state *reclaim_state = current->reclaim_state;
2043 struct zoneref *z;
2044 struct zone *zone;
2045 unsigned long writeback_threshold;
2046
2047 get_mems_allowed();
2048 delayacct_freepages_start();
2049
2050 if (scanning_global_lru(sc))
2051 count_vm_event(ALLOCSTALL);
2052
2053 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2054 sc->nr_scanned = 0;
2055 if (!priority)
2056 disable_swap_token();
2057 shrink_zones(priority, zonelist, sc);
2058 /*
2059 * Don't shrink slabs when reclaiming memory from
2060 * over limit cgroups
2061 */
2062 if (scanning_global_lru(sc)) {
2063 unsigned long lru_pages = 0;
2064 for_each_zone_zonelist(zone, z, zonelist,
2065 gfp_zone(sc->gfp_mask)) {
2066 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2067 continue;
2068
2069 lru_pages += zone_reclaimable_pages(zone);
2070 }
2071
2072 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2073 if (reclaim_state) {
2074 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2075 reclaim_state->reclaimed_slab = 0;
2076 }
2077 }
2078 total_scanned += sc->nr_scanned;
2079 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2080 goto out;
2081
2082 /*
2083 * Try to write back as many pages as we just scanned. This
2084 * tends to cause slow streaming writers to write data to the
2085 * disk smoothly, at the dirtying rate, which is nice. But
2086 * that's undesirable in laptop mode, where we *want* lumpy
2087 * writeout. So in laptop mode, write out the whole world.
2088 */
2089 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2090 if (total_scanned > writeback_threshold) {
2091 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2092 sc->may_writepage = 1;
2093 }
2094
2095 /* Take a nap, wait for some writeback to complete */
2096 if (!sc->hibernation_mode && sc->nr_scanned &&
2097 priority < DEF_PRIORITY - 2) {
2098 struct zone *preferred_zone;
2099
2100 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2101 &cpuset_current_mems_allowed,
2102 &preferred_zone);
2103 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2104 }
2105 }
2106
2107out:
2108 delayacct_freepages_end();
2109 put_mems_allowed();
2110
2111 if (sc->nr_reclaimed)
2112 return sc->nr_reclaimed;
2113
2114 /*
2115 * As hibernation is going on, kswapd is freezed so that it can't mark
2116 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2117 * check.
2118 */
2119 if (oom_killer_disabled)
2120 return 0;
2121
2122 /* top priority shrink_zones still had more to do? don't OOM, then */
2123 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2124 return 1;
2125
2126 return 0;
2127}
2128
2129unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2130 gfp_t gfp_mask, nodemask_t *nodemask)
2131{
2132 unsigned long nr_reclaimed;
2133 struct scan_control sc = {
2134 .gfp_mask = gfp_mask,
2135 .may_writepage = !laptop_mode,
2136 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2137 .may_unmap = 1,
2138 .may_swap = 1,
2139 .swappiness = vm_swappiness,
2140 .order = order,
2141 .mem_cgroup = NULL,
2142 .nodemask = nodemask,
2143 };
2144
2145 trace_mm_vmscan_direct_reclaim_begin(order,
2146 sc.may_writepage,
2147 gfp_mask);
2148
2149 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2150
2151 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2152
2153 return nr_reclaimed;
2154}
2155
2156#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2157
2158unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2159 gfp_t gfp_mask, bool noswap,
2160 unsigned int swappiness,
2161 struct zone *zone)
2162{
2163 struct scan_control sc = {
2164 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2165 .may_writepage = !laptop_mode,
2166 .may_unmap = 1,
2167 .may_swap = !noswap,
2168 .swappiness = swappiness,
2169 .order = 0,
2170 .mem_cgroup = mem,
2171 };
2172 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2173 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2174
2175 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2176 sc.may_writepage,
2177 sc.gfp_mask);
2178
2179 /*
2180 * NOTE: Although we can get the priority field, using it
2181 * here is not a good idea, since it limits the pages we can scan.
2182 * if we don't reclaim here, the shrink_zone from balance_pgdat
2183 * will pick up pages from other mem cgroup's as well. We hack
2184 * the priority and make it zero.
2185 */
2186 shrink_zone(0, zone, &sc);
2187
2188 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2189
2190 return sc.nr_reclaimed;
2191}
2192
2193unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2194 gfp_t gfp_mask,
2195 bool noswap,
2196 unsigned int swappiness)
2197{
2198 struct zonelist *zonelist;
2199 unsigned long nr_reclaimed;
2200 struct scan_control sc = {
2201 .may_writepage = !laptop_mode,
2202 .may_unmap = 1,
2203 .may_swap = !noswap,
2204 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2205 .swappiness = swappiness,
2206 .order = 0,
2207 .mem_cgroup = mem_cont,
2208 .nodemask = NULL, /* we don't care the placement */
2209 };
2210
2211 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2212 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2213 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2214
2215 trace_mm_vmscan_memcg_reclaim_begin(0,
2216 sc.may_writepage,
2217 sc.gfp_mask);
2218
2219 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2220
2221 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2222
2223 return nr_reclaimed;
2224}
2225#endif
2226
2227/*
2228 * pgdat_balanced is used when checking if a node is balanced for high-order
2229 * allocations. Only zones that meet watermarks and are in a zone allowed
2230 * by the callers classzone_idx are added to balanced_pages. The total of
2231 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2232 * for the node to be considered balanced. Forcing all zones to be balanced
2233 * for high orders can cause excessive reclaim when there are imbalanced zones.
2234 * The choice of 25% is due to
2235 * o a 16M DMA zone that is balanced will not balance a zone on any
2236 * reasonable sized machine
2237 * o On all other machines, the top zone must be at least a reasonable
2238 * percentage of the middle zones. For example, on 32-bit x86, highmem
2239 * would need to be at least 256M for it to be balance a whole node.
2240 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2241 * to balance a node on its own. These seemed like reasonable ratios.
2242 */
2243static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2244 int classzone_idx)
2245{
2246 unsigned long present_pages = 0;
2247 int i;
2248
2249 for (i = 0; i <= classzone_idx; i++)
2250 present_pages += pgdat->node_zones[i].present_pages;
2251
2252 return balanced_pages > (present_pages >> 2);
2253}
2254
2255/* is kswapd sleeping prematurely? */
2256static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2257 int classzone_idx)
2258{
2259 int i;
2260 unsigned long balanced = 0;
2261 bool all_zones_ok = true;
2262
2263 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2264 if (remaining)
2265 return true;
2266
2267 /* Check the watermark levels */
2268 for (i = 0; i < pgdat->nr_zones; i++) {
2269 struct zone *zone = pgdat->node_zones + i;
2270
2271 if (!populated_zone(zone))
2272 continue;
2273
2274 /*
2275 * balance_pgdat() skips over all_unreclaimable after
2276 * DEF_PRIORITY. Effectively, it considers them balanced so
2277 * they must be considered balanced here as well if kswapd
2278 * is to sleep
2279 */
2280 if (zone->all_unreclaimable) {
2281 balanced += zone->present_pages;
2282 continue;
2283 }
2284
2285 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2286 classzone_idx, 0))
2287 all_zones_ok = false;
2288 else
2289 balanced += zone->present_pages;
2290 }
2291
2292 /*
2293 * For high-order requests, the balanced zones must contain at least
2294 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2295 * must be balanced
2296 */
2297 if (order)
2298 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2299 else
2300 return !all_zones_ok;
2301}
2302
2303/*
2304 * For kswapd, balance_pgdat() will work across all this node's zones until
2305 * they are all at high_wmark_pages(zone).
2306 *
2307 * Returns the final order kswapd was reclaiming at
2308 *
2309 * There is special handling here for zones which are full of pinned pages.
2310 * This can happen if the pages are all mlocked, or if they are all used by
2311 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2312 * What we do is to detect the case where all pages in the zone have been
2313 * scanned twice and there has been zero successful reclaim. Mark the zone as
2314 * dead and from now on, only perform a short scan. Basically we're polling
2315 * the zone for when the problem goes away.
2316 *
2317 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2318 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2319 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2320 * lower zones regardless of the number of free pages in the lower zones. This
2321 * interoperates with the page allocator fallback scheme to ensure that aging
2322 * of pages is balanced across the zones.
2323 */
2324static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2325 int *classzone_idx)
2326{
2327 int all_zones_ok;
2328 unsigned long balanced;
2329 int priority;
2330 int i;
2331 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2332 unsigned long total_scanned;
2333 struct reclaim_state *reclaim_state = current->reclaim_state;
2334 struct scan_control sc = {
2335 .gfp_mask = GFP_KERNEL,
2336 .may_unmap = 1,
2337 .may_swap = 1,
2338 /*
2339 * kswapd doesn't want to be bailed out while reclaim. because
2340 * we want to put equal scanning pressure on each zone.
2341 */
2342 .nr_to_reclaim = ULONG_MAX,
2343 .swappiness = vm_swappiness,
2344 .order = order,
2345 .mem_cgroup = NULL,
2346 };
2347loop_again:
2348 total_scanned = 0;
2349 sc.nr_reclaimed = 0;
2350 sc.may_writepage = !laptop_mode;
2351 count_vm_event(PAGEOUTRUN);
2352
2353 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2354 unsigned long lru_pages = 0;
2355 int has_under_min_watermark_zone = 0;
2356
2357 /* The swap token gets in the way of swapout... */
2358 if (!priority)
2359 disable_swap_token();
2360
2361 all_zones_ok = 1;
2362 balanced = 0;
2363
2364 /*
2365 * Scan in the highmem->dma direction for the highest
2366 * zone which needs scanning
2367 */
2368 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2369 struct zone *zone = pgdat->node_zones + i;
2370
2371 if (!populated_zone(zone))
2372 continue;
2373
2374 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2375 continue;
2376
2377 /*
2378 * Do some background aging of the anon list, to give
2379 * pages a chance to be referenced before reclaiming.
2380 */
2381 if (inactive_anon_is_low(zone, &sc))
2382 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2383 &sc, priority, 0);
2384
2385 if (!zone_watermark_ok_safe(zone, order,
2386 high_wmark_pages(zone), 0, 0)) {
2387 end_zone = i;
2388 *classzone_idx = i;
2389 break;
2390 }
2391 }
2392 if (i < 0)
2393 goto out;
2394
2395 for (i = 0; i <= end_zone; i++) {
2396 struct zone *zone = pgdat->node_zones + i;
2397
2398 lru_pages += zone_reclaimable_pages(zone);
2399 }
2400
2401 /*
2402 * Now scan the zone in the dma->highmem direction, stopping
2403 * at the last zone which needs scanning.
2404 *
2405 * We do this because the page allocator works in the opposite
2406 * direction. This prevents the page allocator from allocating
2407 * pages behind kswapd's direction of progress, which would
2408 * cause too much scanning of the lower zones.
2409 */
2410 for (i = 0; i <= end_zone; i++) {
2411 struct zone *zone = pgdat->node_zones + i;
2412 int nr_slab;
2413 unsigned long balance_gap;
2414
2415 if (!populated_zone(zone))
2416 continue;
2417
2418 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2419 continue;
2420
2421 sc.nr_scanned = 0;
2422
2423 /*
2424 * Call soft limit reclaim before calling shrink_zone.
2425 * For now we ignore the return value
2426 */
2427 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2428
2429 /*
2430 * We put equal pressure on every zone, unless
2431 * one zone has way too many pages free
2432 * already. The "too many pages" is defined
2433 * as the high wmark plus a "gap" where the
2434 * gap is either the low watermark or 1%
2435 * of the zone, whichever is smaller.
2436 */
2437 balance_gap = min(low_wmark_pages(zone),
2438 (zone->present_pages +
2439 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2440 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2441 if (!zone_watermark_ok_safe(zone, order,
2442 high_wmark_pages(zone) + balance_gap,
2443 end_zone, 0))
2444 shrink_zone(priority, zone, &sc);
2445 reclaim_state->reclaimed_slab = 0;
2446 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2447 lru_pages);
2448 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2449 total_scanned += sc.nr_scanned;
2450
2451 if (zone->all_unreclaimable)
2452 continue;
2453 if (nr_slab == 0 &&
2454 !zone_reclaimable(zone))
2455 zone->all_unreclaimable = 1;
2456 /*
2457 * If we've done a decent amount of scanning and
2458 * the reclaim ratio is low, start doing writepage
2459 * even in laptop mode
2460 */
2461 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2462 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2463 sc.may_writepage = 1;
2464
2465 if (!zone_watermark_ok_safe(zone, order,
2466 high_wmark_pages(zone), end_zone, 0)) {
2467 all_zones_ok = 0;
2468 /*
2469 * We are still under min water mark. This
2470 * means that we have a GFP_ATOMIC allocation
2471 * failure risk. Hurry up!
2472 */
2473 if (!zone_watermark_ok_safe(zone, order,
2474 min_wmark_pages(zone), end_zone, 0))
2475 has_under_min_watermark_zone = 1;
2476 } else {
2477 /*
2478 * If a zone reaches its high watermark,
2479 * consider it to be no longer congested. It's
2480 * possible there are dirty pages backed by
2481 * congested BDIs but as pressure is relieved,
2482 * spectulatively avoid congestion waits
2483 */
2484 zone_clear_flag(zone, ZONE_CONGESTED);
2485 if (i <= *classzone_idx)
2486 balanced += zone->present_pages;
2487 }
2488
2489 }
2490 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2491 break; /* kswapd: all done */
2492 /*
2493 * OK, kswapd is getting into trouble. Take a nap, then take
2494 * another pass across the zones.
2495 */
2496 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2497 if (has_under_min_watermark_zone)
2498 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2499 else
2500 congestion_wait(BLK_RW_ASYNC, HZ/10);
2501 }
2502
2503 /*
2504 * We do this so kswapd doesn't build up large priorities for
2505 * example when it is freeing in parallel with allocators. It
2506 * matches the direct reclaim path behaviour in terms of impact
2507 * on zone->*_priority.
2508 */
2509 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2510 break;
2511 }
2512out:
2513
2514 /*
2515 * order-0: All zones must meet high watermark for a balanced node
2516 * high-order: Balanced zones must make up at least 25% of the node
2517 * for the node to be balanced
2518 */
2519 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2520 cond_resched();
2521
2522 try_to_freeze();
2523
2524 /*
2525 * Fragmentation may mean that the system cannot be
2526 * rebalanced for high-order allocations in all zones.
2527 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2528 * it means the zones have been fully scanned and are still
2529 * not balanced. For high-order allocations, there is
2530 * little point trying all over again as kswapd may
2531 * infinite loop.
2532 *
2533 * Instead, recheck all watermarks at order-0 as they
2534 * are the most important. If watermarks are ok, kswapd will go
2535 * back to sleep. High-order users can still perform direct
2536 * reclaim if they wish.
2537 */
2538 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2539 order = sc.order = 0;
2540
2541 goto loop_again;
2542 }
2543
2544 /*
2545 * If kswapd was reclaiming at a higher order, it has the option of
2546 * sleeping without all zones being balanced. Before it does, it must
2547 * ensure that the watermarks for order-0 on *all* zones are met and
2548 * that the congestion flags are cleared. The congestion flag must
2549 * be cleared as kswapd is the only mechanism that clears the flag
2550 * and it is potentially going to sleep here.
2551 */
2552 if (order) {
2553 for (i = 0; i <= end_zone; i++) {
2554 struct zone *zone = pgdat->node_zones + i;
2555
2556 if (!populated_zone(zone))
2557 continue;
2558
2559 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2560 continue;
2561
2562 /* Confirm the zone is balanced for order-0 */
2563 if (!zone_watermark_ok(zone, 0,
2564 high_wmark_pages(zone), 0, 0)) {
2565 order = sc.order = 0;
2566 goto loop_again;
2567 }
2568
2569 /* If balanced, clear the congested flag */
2570 zone_clear_flag(zone, ZONE_CONGESTED);
2571 }
2572 }
2573
2574 /*
2575 * Return the order we were reclaiming at so sleeping_prematurely()
2576 * makes a decision on the order we were last reclaiming at. However,
2577 * if another caller entered the allocator slow path while kswapd
2578 * was awake, order will remain at the higher level
2579 */
2580 *classzone_idx = end_zone;
2581 return order;
2582}
2583
2584static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2585{
2586 long remaining = 0;
2587 DEFINE_WAIT(wait);
2588
2589 if (freezing(current) || kthread_should_stop())
2590 return;
2591
2592 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2593
2594 /* Try to sleep for a short interval */
2595 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2596 remaining = schedule_timeout(HZ/10);
2597 finish_wait(&pgdat->kswapd_wait, &wait);
2598 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2599 }
2600
2601 /*
2602 * After a short sleep, check if it was a premature sleep. If not, then
2603 * go fully to sleep until explicitly woken up.
2604 */
2605 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2606 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2607
2608 /*
2609 * vmstat counters are not perfectly accurate and the estimated
2610 * value for counters such as NR_FREE_PAGES can deviate from the
2611 * true value by nr_online_cpus * threshold. To avoid the zone
2612 * watermarks being breached while under pressure, we reduce the
2613 * per-cpu vmstat threshold while kswapd is awake and restore
2614 * them before going back to sleep.
2615 */
2616 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2617 schedule();
2618 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2619 } else {
2620 if (remaining)
2621 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2622 else
2623 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2624 }
2625 finish_wait(&pgdat->kswapd_wait, &wait);
2626}
2627
2628/*
2629 * The background pageout daemon, started as a kernel thread
2630 * from the init process.
2631 *
2632 * This basically trickles out pages so that we have _some_
2633 * free memory available even if there is no other activity
2634 * that frees anything up. This is needed for things like routing
2635 * etc, where we otherwise might have all activity going on in
2636 * asynchronous contexts that cannot page things out.
2637 *
2638 * If there are applications that are active memory-allocators
2639 * (most normal use), this basically shouldn't matter.
2640 */
2641static int kswapd(void *p)
2642{
2643 unsigned long order;
2644 int classzone_idx;
2645 pg_data_t *pgdat = (pg_data_t*)p;
2646 struct task_struct *tsk = current;
2647
2648 struct reclaim_state reclaim_state = {
2649 .reclaimed_slab = 0,
2650 };
2651 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2652
2653 lockdep_set_current_reclaim_state(GFP_KERNEL);
2654
2655 if (!cpumask_empty(cpumask))
2656 set_cpus_allowed_ptr(tsk, cpumask);
2657 current->reclaim_state = &reclaim_state;
2658
2659 /*
2660 * Tell the memory management that we're a "memory allocator",
2661 * and that if we need more memory we should get access to it
2662 * regardless (see "__alloc_pages()"). "kswapd" should
2663 * never get caught in the normal page freeing logic.
2664 *
2665 * (Kswapd normally doesn't need memory anyway, but sometimes
2666 * you need a small amount of memory in order to be able to
2667 * page out something else, and this flag essentially protects
2668 * us from recursively trying to free more memory as we're
2669 * trying to free the first piece of memory in the first place).
2670 */
2671 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2672 set_freezable();
2673
2674 order = 0;
2675 classzone_idx = MAX_NR_ZONES - 1;
2676 for ( ; ; ) {
2677 unsigned long new_order;
2678 int new_classzone_idx;
2679 int ret;
2680
2681 new_order = pgdat->kswapd_max_order;
2682 new_classzone_idx = pgdat->classzone_idx;
2683 pgdat->kswapd_max_order = 0;
2684 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2685 if (order < new_order || classzone_idx > new_classzone_idx) {
2686 /*
2687 * Don't sleep if someone wants a larger 'order'
2688 * allocation or has tigher zone constraints
2689 */
2690 order = new_order;
2691 classzone_idx = new_classzone_idx;
2692 } else {
2693 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2694 order = pgdat->kswapd_max_order;
2695 classzone_idx = pgdat->classzone_idx;
2696 pgdat->kswapd_max_order = 0;
2697 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2698 }
2699
2700 ret = try_to_freeze();
2701 if (kthread_should_stop())
2702 break;
2703
2704 /*
2705 * We can speed up thawing tasks if we don't call balance_pgdat
2706 * after returning from the refrigerator
2707 */
2708 if (!ret) {
2709 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2710 order = balance_pgdat(pgdat, order, &classzone_idx);
2711 }
2712 }
2713 return 0;
2714}
2715
2716/*
2717 * A zone is low on free memory, so wake its kswapd task to service it.
2718 */
2719void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2720{
2721 pg_data_t *pgdat;
2722
2723 if (!populated_zone(zone))
2724 return;
2725
2726 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2727 return;
2728 pgdat = zone->zone_pgdat;
2729 if (pgdat->kswapd_max_order < order) {
2730 pgdat->kswapd_max_order = order;
2731 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2732 }
2733 if (!waitqueue_active(&pgdat->kswapd_wait))
2734 return;
2735 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2736 return;
2737
2738 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2739 wake_up_interruptible(&pgdat->kswapd_wait);
2740}
2741
2742/*
2743 * The reclaimable count would be mostly accurate.
2744 * The less reclaimable pages may be
2745 * - mlocked pages, which will be moved to unevictable list when encountered
2746 * - mapped pages, which may require several travels to be reclaimed
2747 * - dirty pages, which is not "instantly" reclaimable
2748 */
2749unsigned long global_reclaimable_pages(void)
2750{
2751 int nr;
2752
2753 nr = global_page_state(NR_ACTIVE_FILE) +
2754 global_page_state(NR_INACTIVE_FILE);
2755
2756 if (nr_swap_pages > 0)
2757 nr += global_page_state(NR_ACTIVE_ANON) +
2758 global_page_state(NR_INACTIVE_ANON);
2759
2760 return nr;
2761}
2762
2763unsigned long zone_reclaimable_pages(struct zone *zone)
2764{
2765 int nr;
2766
2767 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2768 zone_page_state(zone, NR_INACTIVE_FILE);
2769
2770 if (nr_swap_pages > 0)
2771 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2772 zone_page_state(zone, NR_INACTIVE_ANON);
2773
2774 return nr;
2775}
2776
2777#ifdef CONFIG_HIBERNATION
2778/*
2779 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2780 * freed pages.
2781 *
2782 * Rather than trying to age LRUs the aim is to preserve the overall
2783 * LRU order by reclaiming preferentially
2784 * inactive > active > active referenced > active mapped
2785 */
2786unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2787{
2788 struct reclaim_state reclaim_state;
2789 struct scan_control sc = {
2790 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2791 .may_swap = 1,
2792 .may_unmap = 1,
2793 .may_writepage = 1,
2794 .nr_to_reclaim = nr_to_reclaim,
2795 .hibernation_mode = 1,
2796 .swappiness = vm_swappiness,
2797 .order = 0,
2798 };
2799 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2800 struct task_struct *p = current;
2801 unsigned long nr_reclaimed;
2802
2803 p->flags |= PF_MEMALLOC;
2804 lockdep_set_current_reclaim_state(sc.gfp_mask);
2805 reclaim_state.reclaimed_slab = 0;
2806 p->reclaim_state = &reclaim_state;
2807
2808 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2809
2810 p->reclaim_state = NULL;
2811 lockdep_clear_current_reclaim_state();
2812 p->flags &= ~PF_MEMALLOC;
2813
2814 return nr_reclaimed;
2815}
2816#endif /* CONFIG_HIBERNATION */
2817
2818/* It's optimal to keep kswapds on the same CPUs as their memory, but
2819 not required for correctness. So if the last cpu in a node goes
2820 away, we get changed to run anywhere: as the first one comes back,
2821 restore their cpu bindings. */
2822static int __devinit cpu_callback(struct notifier_block *nfb,
2823 unsigned long action, void *hcpu)
2824{
2825 int nid;
2826
2827 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2828 for_each_node_state(nid, N_HIGH_MEMORY) {
2829 pg_data_t *pgdat = NODE_DATA(nid);
2830 const struct cpumask *mask;
2831
2832 mask = cpumask_of_node(pgdat->node_id);
2833
2834 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2835 /* One of our CPUs online: restore mask */
2836 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2837 }
2838 }
2839 return NOTIFY_OK;
2840}
2841
2842/*
2843 * This kswapd start function will be called by init and node-hot-add.
2844 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2845 */
2846int kswapd_run(int nid)
2847{
2848 pg_data_t *pgdat = NODE_DATA(nid);
2849 int ret = 0;
2850
2851 if (pgdat->kswapd)
2852 return 0;
2853
2854 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2855 if (IS_ERR(pgdat->kswapd)) {
2856 /* failure at boot is fatal */
2857 BUG_ON(system_state == SYSTEM_BOOTING);
2858 printk("Failed to start kswapd on node %d\n",nid);
2859 ret = -1;
2860 }
2861 return ret;
2862}
2863
2864/*
2865 * Called by memory hotplug when all memory in a node is offlined.
2866 */
2867void kswapd_stop(int nid)
2868{
2869 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2870
2871 if (kswapd)
2872 kthread_stop(kswapd);
2873}
2874
2875static int __init kswapd_init(void)
2876{
2877 int nid;
2878
2879 swap_setup();
2880 for_each_node_state(nid, N_HIGH_MEMORY)
2881 kswapd_run(nid);
2882 hotcpu_notifier(cpu_callback, 0);
2883 return 0;
2884}
2885
2886module_init(kswapd_init)
2887
2888#ifdef CONFIG_NUMA
2889/*
2890 * Zone reclaim mode
2891 *
2892 * If non-zero call zone_reclaim when the number of free pages falls below
2893 * the watermarks.
2894 */
2895int zone_reclaim_mode __read_mostly;
2896
2897#define RECLAIM_OFF 0
2898#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2899#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2900#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2901
2902/*
2903 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2904 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2905 * a zone.
2906 */
2907#define ZONE_RECLAIM_PRIORITY 4
2908
2909/*
2910 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2911 * occur.
2912 */
2913int sysctl_min_unmapped_ratio = 1;
2914
2915/*
2916 * If the number of slab pages in a zone grows beyond this percentage then
2917 * slab reclaim needs to occur.
2918 */
2919int sysctl_min_slab_ratio = 5;
2920
2921static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2922{
2923 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2924 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2925 zone_page_state(zone, NR_ACTIVE_FILE);
2926
2927 /*
2928 * It's possible for there to be more file mapped pages than
2929 * accounted for by the pages on the file LRU lists because
2930 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2931 */
2932 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2933}
2934
2935/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2936static long zone_pagecache_reclaimable(struct zone *zone)
2937{
2938 long nr_pagecache_reclaimable;
2939 long delta = 0;
2940
2941 /*
2942 * If RECLAIM_SWAP is set, then all file pages are considered
2943 * potentially reclaimable. Otherwise, we have to worry about
2944 * pages like swapcache and zone_unmapped_file_pages() provides
2945 * a better estimate
2946 */
2947 if (zone_reclaim_mode & RECLAIM_SWAP)
2948 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2949 else
2950 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2951
2952 /* If we can't clean pages, remove dirty pages from consideration */
2953 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2954 delta += zone_page_state(zone, NR_FILE_DIRTY);
2955
2956 /* Watch for any possible underflows due to delta */
2957 if (unlikely(delta > nr_pagecache_reclaimable))
2958 delta = nr_pagecache_reclaimable;
2959
2960 return nr_pagecache_reclaimable - delta;
2961}
2962
2963/*
2964 * Try to free up some pages from this zone through reclaim.
2965 */
2966static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2967{
2968 /* Minimum pages needed in order to stay on node */
2969 const unsigned long nr_pages = 1 << order;
2970 struct task_struct *p = current;
2971 struct reclaim_state reclaim_state;
2972 int priority;
2973 struct scan_control sc = {
2974 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2975 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2976 .may_swap = 1,
2977 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2978 SWAP_CLUSTER_MAX),
2979 .gfp_mask = gfp_mask,
2980 .swappiness = vm_swappiness,
2981 .order = order,
2982 };
2983 unsigned long nr_slab_pages0, nr_slab_pages1;
2984
2985 cond_resched();
2986 /*
2987 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2988 * and we also need to be able to write out pages for RECLAIM_WRITE
2989 * and RECLAIM_SWAP.
2990 */
2991 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2992 lockdep_set_current_reclaim_state(gfp_mask);
2993 reclaim_state.reclaimed_slab = 0;
2994 p->reclaim_state = &reclaim_state;
2995
2996 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2997 /*
2998 * Free memory by calling shrink zone with increasing
2999 * priorities until we have enough memory freed.
3000 */
3001 priority = ZONE_RECLAIM_PRIORITY;
3002 do {
3003 shrink_zone(priority, zone, &sc);
3004 priority--;
3005 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3006 }
3007
3008 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3009 if (nr_slab_pages0 > zone->min_slab_pages) {
3010 /*
3011 * shrink_slab() does not currently allow us to determine how
3012 * many pages were freed in this zone. So we take the current
3013 * number of slab pages and shake the slab until it is reduced
3014 * by the same nr_pages that we used for reclaiming unmapped
3015 * pages.
3016 *
3017 * Note that shrink_slab will free memory on all zones and may
3018 * take a long time.
3019 */
3020 for (;;) {
3021 unsigned long lru_pages = zone_reclaimable_pages(zone);
3022
3023 /* No reclaimable slab or very low memory pressure */
3024 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3025 break;
3026
3027 /* Freed enough memory */
3028 nr_slab_pages1 = zone_page_state(zone,
3029 NR_SLAB_RECLAIMABLE);
3030 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3031 break;
3032 }
3033
3034 /*
3035 * Update nr_reclaimed by the number of slab pages we
3036 * reclaimed from this zone.
3037 */
3038 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3039 if (nr_slab_pages1 < nr_slab_pages0)
3040 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3041 }
3042
3043 p->reclaim_state = NULL;
3044 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3045 lockdep_clear_current_reclaim_state();
3046 return sc.nr_reclaimed >= nr_pages;
3047}
3048
3049int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3050{
3051 int node_id;
3052 int ret;
3053
3054 /*
3055 * Zone reclaim reclaims unmapped file backed pages and
3056 * slab pages if we are over the defined limits.
3057 *
3058 * A small portion of unmapped file backed pages is needed for
3059 * file I/O otherwise pages read by file I/O will be immediately
3060 * thrown out if the zone is overallocated. So we do not reclaim
3061 * if less than a specified percentage of the zone is used by
3062 * unmapped file backed pages.
3063 */
3064 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3065 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3066 return ZONE_RECLAIM_FULL;
3067
3068 if (zone->all_unreclaimable)
3069 return ZONE_RECLAIM_FULL;
3070
3071 /*
3072 * Do not scan if the allocation should not be delayed.
3073 */
3074 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3075 return ZONE_RECLAIM_NOSCAN;
3076
3077 /*
3078 * Only run zone reclaim on the local zone or on zones that do not
3079 * have associated processors. This will favor the local processor
3080 * over remote processors and spread off node memory allocations
3081 * as wide as possible.
3082 */
3083 node_id = zone_to_nid(zone);
3084 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3085 return ZONE_RECLAIM_NOSCAN;
3086
3087 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3088 return ZONE_RECLAIM_NOSCAN;
3089
3090 ret = __zone_reclaim(zone, gfp_mask, order);
3091 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3092
3093 if (!ret)
3094 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3095
3096 return ret;
3097}
3098#endif
3099
3100/*
3101 * page_evictable - test whether a page is evictable
3102 * @page: the page to test
3103 * @vma: the VMA in which the page is or will be mapped, may be NULL
3104 *
3105 * Test whether page is evictable--i.e., should be placed on active/inactive
3106 * lists vs unevictable list. The vma argument is !NULL when called from the
3107 * fault path to determine how to instantate a new page.
3108 *
3109 * Reasons page might not be evictable:
3110 * (1) page's mapping marked unevictable
3111 * (2) page is part of an mlocked VMA
3112 *
3113 */
3114int page_evictable(struct page *page, struct vm_area_struct *vma)
3115{
3116
3117 if (mapping_unevictable(page_mapping(page)))
3118 return 0;
3119
3120 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3121 return 0;
3122
3123 return 1;
3124}
3125
3126/**
3127 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3128 * @page: page to check evictability and move to appropriate lru list
3129 * @zone: zone page is in
3130 *
3131 * Checks a page for evictability and moves the page to the appropriate
3132 * zone lru list.
3133 *
3134 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3135 * have PageUnevictable set.
3136 */
3137static void check_move_unevictable_page(struct page *page, struct zone *zone)
3138{
3139 VM_BUG_ON(PageActive(page));
3140
3141retry:
3142 ClearPageUnevictable(page);
3143 if (page_evictable(page, NULL)) {
3144 enum lru_list l = page_lru_base_type(page);
3145
3146 __dec_zone_state(zone, NR_UNEVICTABLE);
3147 list_move(&page->lru, &zone->lru[l].list);
3148 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3149 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3150 __count_vm_event(UNEVICTABLE_PGRESCUED);
3151 } else {
3152 /*
3153 * rotate unevictable list
3154 */
3155 SetPageUnevictable(page);
3156 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3157 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3158 if (page_evictable(page, NULL))
3159 goto retry;
3160 }
3161}
3162
3163/**
3164 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3165 * @mapping: struct address_space to scan for evictable pages
3166 *
3167 * Scan all pages in mapping. Check unevictable pages for
3168 * evictability and move them to the appropriate zone lru list.
3169 */
3170void scan_mapping_unevictable_pages(struct address_space *mapping)
3171{
3172 pgoff_t next = 0;
3173 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3174 PAGE_CACHE_SHIFT;
3175 struct zone *zone;
3176 struct pagevec pvec;
3177
3178 if (mapping->nrpages == 0)
3179 return;
3180
3181 pagevec_init(&pvec, 0);
3182 while (next < end &&
3183 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3184 int i;
3185 int pg_scanned = 0;
3186
3187 zone = NULL;
3188
3189 for (i = 0; i < pagevec_count(&pvec); i++) {
3190 struct page *page = pvec.pages[i];
3191 pgoff_t page_index = page->index;
3192 struct zone *pagezone = page_zone(page);
3193
3194 pg_scanned++;
3195 if (page_index > next)
3196 next = page_index;
3197 next++;
3198
3199 if (pagezone != zone) {
3200 if (zone)
3201 spin_unlock_irq(&zone->lru_lock);
3202 zone = pagezone;
3203 spin_lock_irq(&zone->lru_lock);
3204 }
3205
3206 if (PageLRU(page) && PageUnevictable(page))
3207 check_move_unevictable_page(page, zone);
3208 }
3209 if (zone)
3210 spin_unlock_irq(&zone->lru_lock);
3211 pagevec_release(&pvec);
3212
3213 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3214 }
3215
3216}
3217
3218/**
3219 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3220 * @zone - zone of which to scan the unevictable list
3221 *
3222 * Scan @zone's unevictable LRU lists to check for pages that have become
3223 * evictable. Move those that have to @zone's inactive list where they
3224 * become candidates for reclaim, unless shrink_inactive_zone() decides
3225 * to reactivate them. Pages that are still unevictable are rotated
3226 * back onto @zone's unevictable list.
3227 */
3228#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3229static void scan_zone_unevictable_pages(struct zone *zone)
3230{
3231 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3232 unsigned long scan;
3233 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3234
3235 while (nr_to_scan > 0) {
3236 unsigned long batch_size = min(nr_to_scan,
3237 SCAN_UNEVICTABLE_BATCH_SIZE);
3238
3239 spin_lock_irq(&zone->lru_lock);
3240 for (scan = 0; scan < batch_size; scan++) {
3241 struct page *page = lru_to_page(l_unevictable);
3242
3243 if (!trylock_page(page))
3244 continue;
3245
3246 prefetchw_prev_lru_page(page, l_unevictable, flags);
3247
3248 if (likely(PageLRU(page) && PageUnevictable(page)))
3249 check_move_unevictable_page(page, zone);
3250
3251 unlock_page(page);
3252 }
3253 spin_unlock_irq(&zone->lru_lock);
3254
3255 nr_to_scan -= batch_size;
3256 }
3257}
3258
3259
3260/**
3261 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3262 *
3263 * A really big hammer: scan all zones' unevictable LRU lists to check for
3264 * pages that have become evictable. Move those back to the zones'
3265 * inactive list where they become candidates for reclaim.
3266 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3267 * and we add swap to the system. As such, it runs in the context of a task
3268 * that has possibly/probably made some previously unevictable pages
3269 * evictable.
3270 */
3271static void scan_all_zones_unevictable_pages(void)
3272{
3273 struct zone *zone;
3274
3275 for_each_zone(zone) {
3276 scan_zone_unevictable_pages(zone);
3277 }
3278}
3279
3280/*
3281 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3282 * all nodes' unevictable lists for evictable pages
3283 */
3284unsigned long scan_unevictable_pages;
3285
3286int scan_unevictable_handler(struct ctl_table *table, int write,
3287 void __user *buffer,
3288 size_t *length, loff_t *ppos)
3289{
3290 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3291
3292 if (write && *(unsigned long *)table->data)
3293 scan_all_zones_unevictable_pages();
3294
3295 scan_unevictable_pages = 0;
3296 return 0;
3297}
3298
3299#ifdef CONFIG_NUMA
3300/*
3301 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3302 * a specified node's per zone unevictable lists for evictable pages.
3303 */
3304
3305static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3306 struct sysdev_attribute *attr,
3307 char *buf)
3308{
3309 return sprintf(buf, "0\n"); /* always zero; should fit... */
3310}
3311
3312static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3313 struct sysdev_attribute *attr,
3314 const char *buf, size_t count)
3315{
3316 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3317 struct zone *zone;
3318 unsigned long res;
3319 unsigned long req = strict_strtoul(buf, 10, &res);
3320
3321 if (!req)
3322 return 1; /* zero is no-op */
3323
3324 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3325 if (!populated_zone(zone))
3326 continue;
3327 scan_zone_unevictable_pages(zone);
3328 }
3329 return 1;
3330}
3331
3332
3333static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3334 read_scan_unevictable_node,
3335 write_scan_unevictable_node);
3336
3337int scan_unevictable_register_node(struct node *node)
3338{
3339 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3340}
3341
3342void scan_unevictable_unregister_node(struct node *node)
3343{
3344 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3345}
3346#endif