]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - mm/vmscan.c
mm: vmscan: stall page reclaim and writeback pages based on dirty/writepage pages...
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmpressure.h>
23#include <linux/vmstat.h>
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/compaction.h>
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/delayacct.h>
43#include <linux/sysctl.h>
44#include <linux/oom.h>
45#include <linux/prefetch.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
52#include "internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
57struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96};
97
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
137#ifdef CONFIG_MEMCG
138static bool global_reclaim(struct scan_control *sc)
139{
140 return !sc->target_mem_cgroup;
141}
142#else
143static bool global_reclaim(struct scan_control *sc)
144{
145 return true;
146}
147#endif
148
149static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150{
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
153
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155}
156
157/*
158 * Add a shrinker callback to be called from the vm
159 */
160void register_shrinker(struct shrinker *shrinker)
161{
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
166}
167EXPORT_SYMBOL(register_shrinker);
168
169/*
170 * Remove one
171 */
172void unregister_shrinker(struct shrinker *shrinker)
173{
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
177}
178EXPORT_SYMBOL(unregister_shrinker);
179
180static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183{
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186}
187
188#define SHRINK_BATCH 128
189/*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
205 *
206 * Returns the number of slab objects which we shrunk.
207 */
208unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
211{
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
214
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
285 int nr_before;
286
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
296
297 cond_resched();
298 }
299
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 }
313 up_read(&shrinker_rwsem);
314out:
315 cond_resched();
316 return ret;
317}
318
319static inline int is_page_cache_freeable(struct page *page)
320{
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
326 return page_count(page) - page_has_private(page) == 2;
327}
328
329static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
331{
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339}
340
341/*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355{
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
360}
361
362/* possible outcome of pageout() */
363typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372} pageout_t;
373
374/*
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
377 */
378static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
380{
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
436
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447}
448
449/*
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
452 */
453static int __remove_mapping(struct address_space *mapping, struct page *page)
454{
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
457
458 spin_lock_irq(&mapping->tree_lock);
459 /*
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
483 */
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
490 }
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
505
506 if (freepage != NULL)
507 freepage(page);
508 }
509
510 return 1;
511
512cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
515}
516
517/*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523int remove_mapping(struct address_space *mapping, struct page *page)
524{
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535}
536
537/**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
546void putback_lru_page(struct page *page)
547{
548 int lru;
549 int active = !!TestClearPageActive(page);
550 int was_unevictable = PageUnevictable(page);
551
552 VM_BUG_ON(PageLRU(page));
553
554redo:
555 ClearPageUnevictable(page);
556
557 if (page_evictable(page)) {
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
564 lru = active + page_lru_base_type(page);
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
573 /*
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
577 * isolation/check_move_unevictable_pages,
578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 * the page back to the evictable list.
580 *
581 * The other side is TestClearPageMlocked() or shmem_lock().
582 */
583 smp_mb();
584 }
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
607 put_page(page); /* drop ref from isolate */
608}
609
610enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
613 PAGEREF_KEEP,
614 PAGEREF_ACTIVATE,
615};
616
617static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619{
620 int referenced_ptes, referenced_page;
621 unsigned long vm_flags;
622
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
625 referenced_page = TestClearPageReferenced(page);
626
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
634 if (referenced_ptes) {
635 if (PageSwapBacked(page))
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
653 if (referenced_page || referenced_ptes > 1)
654 return PAGEREF_ACTIVATE;
655
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
662 return PAGEREF_KEEP;
663 }
664
665 /* Reclaim if clean, defer dirty pages to writeback */
666 if (referenced_page && !PageSwapBacked(page))
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
670}
671
672/* Check if a page is dirty or under writeback */
673static void page_check_dirty_writeback(struct page *page,
674 bool *dirty, bool *writeback)
675{
676 /*
677 * Anonymous pages are not handled by flushers and must be written
678 * from reclaim context. Do not stall reclaim based on them
679 */
680 if (!page_is_file_cache(page)) {
681 *dirty = false;
682 *writeback = false;
683 return;
684 }
685
686 /* By default assume that the page flags are accurate */
687 *dirty = PageDirty(page);
688 *writeback = PageWriteback(page);
689}
690
691/*
692 * shrink_page_list() returns the number of reclaimed pages
693 */
694static unsigned long shrink_page_list(struct list_head *page_list,
695 struct zone *zone,
696 struct scan_control *sc,
697 enum ttu_flags ttu_flags,
698 unsigned long *ret_nr_unqueued_dirty,
699 unsigned long *ret_nr_writeback,
700 bool force_reclaim)
701{
702 LIST_HEAD(ret_pages);
703 LIST_HEAD(free_pages);
704 int pgactivate = 0;
705 unsigned long nr_unqueued_dirty = 0;
706 unsigned long nr_dirty = 0;
707 unsigned long nr_congested = 0;
708 unsigned long nr_reclaimed = 0;
709 unsigned long nr_writeback = 0;
710
711 cond_resched();
712
713 mem_cgroup_uncharge_start();
714 while (!list_empty(page_list)) {
715 struct address_space *mapping;
716 struct page *page;
717 int may_enter_fs;
718 enum page_references references = PAGEREF_RECLAIM_CLEAN;
719 bool dirty, writeback;
720
721 cond_resched();
722
723 page = lru_to_page(page_list);
724 list_del(&page->lru);
725
726 if (!trylock_page(page))
727 goto keep;
728
729 VM_BUG_ON(PageActive(page));
730 VM_BUG_ON(page_zone(page) != zone);
731
732 sc->nr_scanned++;
733
734 if (unlikely(!page_evictable(page)))
735 goto cull_mlocked;
736
737 if (!sc->may_unmap && page_mapped(page))
738 goto keep_locked;
739
740 /* Double the slab pressure for mapped and swapcache pages */
741 if (page_mapped(page) || PageSwapCache(page))
742 sc->nr_scanned++;
743
744 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
745 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
746
747 /*
748 * The number of dirty pages determines if a zone is marked
749 * reclaim_congested which affects wait_iff_congested. kswapd
750 * will stall and start writing pages if the tail of the LRU
751 * is all dirty unqueued pages.
752 */
753 page_check_dirty_writeback(page, &dirty, &writeback);
754 if (dirty || writeback)
755 nr_dirty++;
756
757 if (dirty && !writeback)
758 nr_unqueued_dirty++;
759
760 /* Treat this page as congested if underlying BDI is */
761 mapping = page_mapping(page);
762 if (mapping && bdi_write_congested(mapping->backing_dev_info))
763 nr_congested++;
764
765 /*
766 * If a page at the tail of the LRU is under writeback, there
767 * are three cases to consider.
768 *
769 * 1) If reclaim is encountering an excessive number of pages
770 * under writeback and this page is both under writeback and
771 * PageReclaim then it indicates that pages are being queued
772 * for IO but are being recycled through the LRU before the
773 * IO can complete. Waiting on the page itself risks an
774 * indefinite stall if it is impossible to writeback the
775 * page due to IO error or disconnected storage so instead
776 * block for HZ/10 or until some IO completes then clear the
777 * ZONE_WRITEBACK flag to recheck if the condition exists.
778 *
779 * 2) Global reclaim encounters a page, memcg encounters a
780 * page that is not marked for immediate reclaim or
781 * the caller does not have __GFP_IO. In this case mark
782 * the page for immediate reclaim and continue scanning.
783 *
784 * __GFP_IO is checked because a loop driver thread might
785 * enter reclaim, and deadlock if it waits on a page for
786 * which it is needed to do the write (loop masks off
787 * __GFP_IO|__GFP_FS for this reason); but more thought
788 * would probably show more reasons.
789 *
790 * Don't require __GFP_FS, since we're not going into the
791 * FS, just waiting on its writeback completion. Worryingly,
792 * ext4 gfs2 and xfs allocate pages with
793 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
794 * may_enter_fs here is liable to OOM on them.
795 *
796 * 3) memcg encounters a page that is not already marked
797 * PageReclaim. memcg does not have any dirty pages
798 * throttling so we could easily OOM just because too many
799 * pages are in writeback and there is nothing else to
800 * reclaim. Wait for the writeback to complete.
801 */
802 if (PageWriteback(page)) {
803 /* Case 1 above */
804 if (current_is_kswapd() &&
805 PageReclaim(page) &&
806 zone_is_reclaim_writeback(zone)) {
807 unlock_page(page);
808 congestion_wait(BLK_RW_ASYNC, HZ/10);
809 zone_clear_flag(zone, ZONE_WRITEBACK);
810 goto keep;
811
812 /* Case 2 above */
813 } else if (global_reclaim(sc) ||
814 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
815 /*
816 * This is slightly racy - end_page_writeback()
817 * might have just cleared PageReclaim, then
818 * setting PageReclaim here end up interpreted
819 * as PageReadahead - but that does not matter
820 * enough to care. What we do want is for this
821 * page to have PageReclaim set next time memcg
822 * reclaim reaches the tests above, so it will
823 * then wait_on_page_writeback() to avoid OOM;
824 * and it's also appropriate in global reclaim.
825 */
826 SetPageReclaim(page);
827 nr_writeback++;
828
829 goto keep_locked;
830
831 /* Case 3 above */
832 } else {
833 wait_on_page_writeback(page);
834 }
835 }
836
837 if (!force_reclaim)
838 references = page_check_references(page, sc);
839
840 switch (references) {
841 case PAGEREF_ACTIVATE:
842 goto activate_locked;
843 case PAGEREF_KEEP:
844 goto keep_locked;
845 case PAGEREF_RECLAIM:
846 case PAGEREF_RECLAIM_CLEAN:
847 ; /* try to reclaim the page below */
848 }
849
850 /*
851 * Anonymous process memory has backing store?
852 * Try to allocate it some swap space here.
853 */
854 if (PageAnon(page) && !PageSwapCache(page)) {
855 if (!(sc->gfp_mask & __GFP_IO))
856 goto keep_locked;
857 if (!add_to_swap(page, page_list))
858 goto activate_locked;
859 may_enter_fs = 1;
860
861 /* Adding to swap updated mapping */
862 mapping = page_mapping(page);
863 }
864
865 /*
866 * The page is mapped into the page tables of one or more
867 * processes. Try to unmap it here.
868 */
869 if (page_mapped(page) && mapping) {
870 switch (try_to_unmap(page, ttu_flags)) {
871 case SWAP_FAIL:
872 goto activate_locked;
873 case SWAP_AGAIN:
874 goto keep_locked;
875 case SWAP_MLOCK:
876 goto cull_mlocked;
877 case SWAP_SUCCESS:
878 ; /* try to free the page below */
879 }
880 }
881
882 if (PageDirty(page)) {
883 /*
884 * Only kswapd can writeback filesystem pages to
885 * avoid risk of stack overflow but only writeback
886 * if many dirty pages have been encountered.
887 */
888 if (page_is_file_cache(page) &&
889 (!current_is_kswapd() ||
890 !zone_is_reclaim_dirty(zone))) {
891 /*
892 * Immediately reclaim when written back.
893 * Similar in principal to deactivate_page()
894 * except we already have the page isolated
895 * and know it's dirty
896 */
897 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
898 SetPageReclaim(page);
899
900 goto keep_locked;
901 }
902
903 if (references == PAGEREF_RECLAIM_CLEAN)
904 goto keep_locked;
905 if (!may_enter_fs)
906 goto keep_locked;
907 if (!sc->may_writepage)
908 goto keep_locked;
909
910 /* Page is dirty, try to write it out here */
911 switch (pageout(page, mapping, sc)) {
912 case PAGE_KEEP:
913 goto keep_locked;
914 case PAGE_ACTIVATE:
915 goto activate_locked;
916 case PAGE_SUCCESS:
917 if (PageWriteback(page))
918 goto keep;
919 if (PageDirty(page))
920 goto keep;
921
922 /*
923 * A synchronous write - probably a ramdisk. Go
924 * ahead and try to reclaim the page.
925 */
926 if (!trylock_page(page))
927 goto keep;
928 if (PageDirty(page) || PageWriteback(page))
929 goto keep_locked;
930 mapping = page_mapping(page);
931 case PAGE_CLEAN:
932 ; /* try to free the page below */
933 }
934 }
935
936 /*
937 * If the page has buffers, try to free the buffer mappings
938 * associated with this page. If we succeed we try to free
939 * the page as well.
940 *
941 * We do this even if the page is PageDirty().
942 * try_to_release_page() does not perform I/O, but it is
943 * possible for a page to have PageDirty set, but it is actually
944 * clean (all its buffers are clean). This happens if the
945 * buffers were written out directly, with submit_bh(). ext3
946 * will do this, as well as the blockdev mapping.
947 * try_to_release_page() will discover that cleanness and will
948 * drop the buffers and mark the page clean - it can be freed.
949 *
950 * Rarely, pages can have buffers and no ->mapping. These are
951 * the pages which were not successfully invalidated in
952 * truncate_complete_page(). We try to drop those buffers here
953 * and if that worked, and the page is no longer mapped into
954 * process address space (page_count == 1) it can be freed.
955 * Otherwise, leave the page on the LRU so it is swappable.
956 */
957 if (page_has_private(page)) {
958 if (!try_to_release_page(page, sc->gfp_mask))
959 goto activate_locked;
960 if (!mapping && page_count(page) == 1) {
961 unlock_page(page);
962 if (put_page_testzero(page))
963 goto free_it;
964 else {
965 /*
966 * rare race with speculative reference.
967 * the speculative reference will free
968 * this page shortly, so we may
969 * increment nr_reclaimed here (and
970 * leave it off the LRU).
971 */
972 nr_reclaimed++;
973 continue;
974 }
975 }
976 }
977
978 if (!mapping || !__remove_mapping(mapping, page))
979 goto keep_locked;
980
981 /*
982 * At this point, we have no other references and there is
983 * no way to pick any more up (removed from LRU, removed
984 * from pagecache). Can use non-atomic bitops now (and
985 * we obviously don't have to worry about waking up a process
986 * waiting on the page lock, because there are no references.
987 */
988 __clear_page_locked(page);
989free_it:
990 nr_reclaimed++;
991
992 /*
993 * Is there need to periodically free_page_list? It would
994 * appear not as the counts should be low
995 */
996 list_add(&page->lru, &free_pages);
997 continue;
998
999cull_mlocked:
1000 if (PageSwapCache(page))
1001 try_to_free_swap(page);
1002 unlock_page(page);
1003 putback_lru_page(page);
1004 continue;
1005
1006activate_locked:
1007 /* Not a candidate for swapping, so reclaim swap space. */
1008 if (PageSwapCache(page) && vm_swap_full())
1009 try_to_free_swap(page);
1010 VM_BUG_ON(PageActive(page));
1011 SetPageActive(page);
1012 pgactivate++;
1013keep_locked:
1014 unlock_page(page);
1015keep:
1016 list_add(&page->lru, &ret_pages);
1017 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1018 }
1019
1020 /*
1021 * Tag a zone as congested if all the dirty pages encountered were
1022 * backed by a congested BDI. In this case, reclaimers should just
1023 * back off and wait for congestion to clear because further reclaim
1024 * will encounter the same problem
1025 */
1026 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1027 zone_set_flag(zone, ZONE_CONGESTED);
1028
1029 free_hot_cold_page_list(&free_pages, 1);
1030
1031 list_splice(&ret_pages, page_list);
1032 count_vm_events(PGACTIVATE, pgactivate);
1033 mem_cgroup_uncharge_end();
1034 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1035 *ret_nr_writeback += nr_writeback;
1036 return nr_reclaimed;
1037}
1038
1039unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1040 struct list_head *page_list)
1041{
1042 struct scan_control sc = {
1043 .gfp_mask = GFP_KERNEL,
1044 .priority = DEF_PRIORITY,
1045 .may_unmap = 1,
1046 };
1047 unsigned long ret, dummy1, dummy2;
1048 struct page *page, *next;
1049 LIST_HEAD(clean_pages);
1050
1051 list_for_each_entry_safe(page, next, page_list, lru) {
1052 if (page_is_file_cache(page) && !PageDirty(page)) {
1053 ClearPageActive(page);
1054 list_move(&page->lru, &clean_pages);
1055 }
1056 }
1057
1058 ret = shrink_page_list(&clean_pages, zone, &sc,
1059 TTU_UNMAP|TTU_IGNORE_ACCESS,
1060 &dummy1, &dummy2, true);
1061 list_splice(&clean_pages, page_list);
1062 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1063 return ret;
1064}
1065
1066/*
1067 * Attempt to remove the specified page from its LRU. Only take this page
1068 * if it is of the appropriate PageActive status. Pages which are being
1069 * freed elsewhere are also ignored.
1070 *
1071 * page: page to consider
1072 * mode: one of the LRU isolation modes defined above
1073 *
1074 * returns 0 on success, -ve errno on failure.
1075 */
1076int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1077{
1078 int ret = -EINVAL;
1079
1080 /* Only take pages on the LRU. */
1081 if (!PageLRU(page))
1082 return ret;
1083
1084 /* Compaction should not handle unevictable pages but CMA can do so */
1085 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1086 return ret;
1087
1088 ret = -EBUSY;
1089
1090 /*
1091 * To minimise LRU disruption, the caller can indicate that it only
1092 * wants to isolate pages it will be able to operate on without
1093 * blocking - clean pages for the most part.
1094 *
1095 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1096 * is used by reclaim when it is cannot write to backing storage
1097 *
1098 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1099 * that it is possible to migrate without blocking
1100 */
1101 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1102 /* All the caller can do on PageWriteback is block */
1103 if (PageWriteback(page))
1104 return ret;
1105
1106 if (PageDirty(page)) {
1107 struct address_space *mapping;
1108
1109 /* ISOLATE_CLEAN means only clean pages */
1110 if (mode & ISOLATE_CLEAN)
1111 return ret;
1112
1113 /*
1114 * Only pages without mappings or that have a
1115 * ->migratepage callback are possible to migrate
1116 * without blocking
1117 */
1118 mapping = page_mapping(page);
1119 if (mapping && !mapping->a_ops->migratepage)
1120 return ret;
1121 }
1122 }
1123
1124 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1125 return ret;
1126
1127 if (likely(get_page_unless_zero(page))) {
1128 /*
1129 * Be careful not to clear PageLRU until after we're
1130 * sure the page is not being freed elsewhere -- the
1131 * page release code relies on it.
1132 */
1133 ClearPageLRU(page);
1134 ret = 0;
1135 }
1136
1137 return ret;
1138}
1139
1140/*
1141 * zone->lru_lock is heavily contended. Some of the functions that
1142 * shrink the lists perform better by taking out a batch of pages
1143 * and working on them outside the LRU lock.
1144 *
1145 * For pagecache intensive workloads, this function is the hottest
1146 * spot in the kernel (apart from copy_*_user functions).
1147 *
1148 * Appropriate locks must be held before calling this function.
1149 *
1150 * @nr_to_scan: The number of pages to look through on the list.
1151 * @lruvec: The LRU vector to pull pages from.
1152 * @dst: The temp list to put pages on to.
1153 * @nr_scanned: The number of pages that were scanned.
1154 * @sc: The scan_control struct for this reclaim session
1155 * @mode: One of the LRU isolation modes
1156 * @lru: LRU list id for isolating
1157 *
1158 * returns how many pages were moved onto *@dst.
1159 */
1160static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1161 struct lruvec *lruvec, struct list_head *dst,
1162 unsigned long *nr_scanned, struct scan_control *sc,
1163 isolate_mode_t mode, enum lru_list lru)
1164{
1165 struct list_head *src = &lruvec->lists[lru];
1166 unsigned long nr_taken = 0;
1167 unsigned long scan;
1168
1169 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170 struct page *page;
1171 int nr_pages;
1172
1173 page = lru_to_page(src);
1174 prefetchw_prev_lru_page(page, src, flags);
1175
1176 VM_BUG_ON(!PageLRU(page));
1177
1178 switch (__isolate_lru_page(page, mode)) {
1179 case 0:
1180 nr_pages = hpage_nr_pages(page);
1181 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1182 list_move(&page->lru, dst);
1183 nr_taken += nr_pages;
1184 break;
1185
1186 case -EBUSY:
1187 /* else it is being freed elsewhere */
1188 list_move(&page->lru, src);
1189 continue;
1190
1191 default:
1192 BUG();
1193 }
1194 }
1195
1196 *nr_scanned = scan;
1197 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1198 nr_taken, mode, is_file_lru(lru));
1199 return nr_taken;
1200}
1201
1202/**
1203 * isolate_lru_page - tries to isolate a page from its LRU list
1204 * @page: page to isolate from its LRU list
1205 *
1206 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1207 * vmstat statistic corresponding to whatever LRU list the page was on.
1208 *
1209 * Returns 0 if the page was removed from an LRU list.
1210 * Returns -EBUSY if the page was not on an LRU list.
1211 *
1212 * The returned page will have PageLRU() cleared. If it was found on
1213 * the active list, it will have PageActive set. If it was found on
1214 * the unevictable list, it will have the PageUnevictable bit set. That flag
1215 * may need to be cleared by the caller before letting the page go.
1216 *
1217 * The vmstat statistic corresponding to the list on which the page was
1218 * found will be decremented.
1219 *
1220 * Restrictions:
1221 * (1) Must be called with an elevated refcount on the page. This is a
1222 * fundamentnal difference from isolate_lru_pages (which is called
1223 * without a stable reference).
1224 * (2) the lru_lock must not be held.
1225 * (3) interrupts must be enabled.
1226 */
1227int isolate_lru_page(struct page *page)
1228{
1229 int ret = -EBUSY;
1230
1231 VM_BUG_ON(!page_count(page));
1232
1233 if (PageLRU(page)) {
1234 struct zone *zone = page_zone(page);
1235 struct lruvec *lruvec;
1236
1237 spin_lock_irq(&zone->lru_lock);
1238 lruvec = mem_cgroup_page_lruvec(page, zone);
1239 if (PageLRU(page)) {
1240 int lru = page_lru(page);
1241 get_page(page);
1242 ClearPageLRU(page);
1243 del_page_from_lru_list(page, lruvec, lru);
1244 ret = 0;
1245 }
1246 spin_unlock_irq(&zone->lru_lock);
1247 }
1248 return ret;
1249}
1250
1251/*
1252 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1253 * then get resheduled. When there are massive number of tasks doing page
1254 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1255 * the LRU list will go small and be scanned faster than necessary, leading to
1256 * unnecessary swapping, thrashing and OOM.
1257 */
1258static int too_many_isolated(struct zone *zone, int file,
1259 struct scan_control *sc)
1260{
1261 unsigned long inactive, isolated;
1262
1263 if (current_is_kswapd())
1264 return 0;
1265
1266 if (!global_reclaim(sc))
1267 return 0;
1268
1269 if (file) {
1270 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1271 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1272 } else {
1273 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1274 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1275 }
1276
1277 /*
1278 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1279 * won't get blocked by normal direct-reclaimers, forming a circular
1280 * deadlock.
1281 */
1282 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1283 inactive >>= 3;
1284
1285 return isolated > inactive;
1286}
1287
1288static noinline_for_stack void
1289putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1290{
1291 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1292 struct zone *zone = lruvec_zone(lruvec);
1293 LIST_HEAD(pages_to_free);
1294
1295 /*
1296 * Put back any unfreeable pages.
1297 */
1298 while (!list_empty(page_list)) {
1299 struct page *page = lru_to_page(page_list);
1300 int lru;
1301
1302 VM_BUG_ON(PageLRU(page));
1303 list_del(&page->lru);
1304 if (unlikely(!page_evictable(page))) {
1305 spin_unlock_irq(&zone->lru_lock);
1306 putback_lru_page(page);
1307 spin_lock_irq(&zone->lru_lock);
1308 continue;
1309 }
1310
1311 lruvec = mem_cgroup_page_lruvec(page, zone);
1312
1313 SetPageLRU(page);
1314 lru = page_lru(page);
1315 add_page_to_lru_list(page, lruvec, lru);
1316
1317 if (is_active_lru(lru)) {
1318 int file = is_file_lru(lru);
1319 int numpages = hpage_nr_pages(page);
1320 reclaim_stat->recent_rotated[file] += numpages;
1321 }
1322 if (put_page_testzero(page)) {
1323 __ClearPageLRU(page);
1324 __ClearPageActive(page);
1325 del_page_from_lru_list(page, lruvec, lru);
1326
1327 if (unlikely(PageCompound(page))) {
1328 spin_unlock_irq(&zone->lru_lock);
1329 (*get_compound_page_dtor(page))(page);
1330 spin_lock_irq(&zone->lru_lock);
1331 } else
1332 list_add(&page->lru, &pages_to_free);
1333 }
1334 }
1335
1336 /*
1337 * To save our caller's stack, now use input list for pages to free.
1338 */
1339 list_splice(&pages_to_free, page_list);
1340}
1341
1342/*
1343 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1344 * of reclaimed pages
1345 */
1346static noinline_for_stack unsigned long
1347shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1348 struct scan_control *sc, enum lru_list lru)
1349{
1350 LIST_HEAD(page_list);
1351 unsigned long nr_scanned;
1352 unsigned long nr_reclaimed = 0;
1353 unsigned long nr_taken;
1354 unsigned long nr_unqueued_dirty = 0;
1355 unsigned long nr_writeback = 0;
1356 isolate_mode_t isolate_mode = 0;
1357 int file = is_file_lru(lru);
1358 struct zone *zone = lruvec_zone(lruvec);
1359 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1360
1361 while (unlikely(too_many_isolated(zone, file, sc))) {
1362 congestion_wait(BLK_RW_ASYNC, HZ/10);
1363
1364 /* We are about to die and free our memory. Return now. */
1365 if (fatal_signal_pending(current))
1366 return SWAP_CLUSTER_MAX;
1367 }
1368
1369 lru_add_drain();
1370
1371 if (!sc->may_unmap)
1372 isolate_mode |= ISOLATE_UNMAPPED;
1373 if (!sc->may_writepage)
1374 isolate_mode |= ISOLATE_CLEAN;
1375
1376 spin_lock_irq(&zone->lru_lock);
1377
1378 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1379 &nr_scanned, sc, isolate_mode, lru);
1380
1381 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1382 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1383
1384 if (global_reclaim(sc)) {
1385 zone->pages_scanned += nr_scanned;
1386 if (current_is_kswapd())
1387 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1388 else
1389 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1390 }
1391 spin_unlock_irq(&zone->lru_lock);
1392
1393 if (nr_taken == 0)
1394 return 0;
1395
1396 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1397 &nr_unqueued_dirty, &nr_writeback, false);
1398
1399 spin_lock_irq(&zone->lru_lock);
1400
1401 reclaim_stat->recent_scanned[file] += nr_taken;
1402
1403 if (global_reclaim(sc)) {
1404 if (current_is_kswapd())
1405 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1406 nr_reclaimed);
1407 else
1408 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1409 nr_reclaimed);
1410 }
1411
1412 putback_inactive_pages(lruvec, &page_list);
1413
1414 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1415
1416 spin_unlock_irq(&zone->lru_lock);
1417
1418 free_hot_cold_page_list(&page_list, 1);
1419
1420 /*
1421 * If reclaim is isolating dirty pages under writeback, it implies
1422 * that the long-lived page allocation rate is exceeding the page
1423 * laundering rate. Either the global limits are not being effective
1424 * at throttling processes due to the page distribution throughout
1425 * zones or there is heavy usage of a slow backing device. The
1426 * only option is to throttle from reclaim context which is not ideal
1427 * as there is no guarantee the dirtying process is throttled in the
1428 * same way balance_dirty_pages() manages.
1429 *
1430 * This scales the number of dirty pages that must be under writeback
1431 * before throttling depending on priority. It is a simple backoff
1432 * function that has the most effect in the range DEF_PRIORITY to
1433 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1434 * in trouble and reclaim is considered to be in trouble.
1435 *
1436 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1437 * DEF_PRIORITY-1 50% must be PageWriteback
1438 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1439 * ...
1440 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1441 * isolated page is PageWriteback
1442 */
1443 if (nr_writeback && nr_writeback >=
1444 (nr_taken >> (DEF_PRIORITY - sc->priority))) {
1445 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1446 zone_set_flag(zone, ZONE_WRITEBACK);
1447 }
1448
1449 /*
1450 * Similarly, if many dirty pages are encountered that are not
1451 * currently being written then flag that kswapd should start
1452 * writing back pages and stall to give a chance for flushers
1453 * to catch up.
1454 */
1455 if (global_reclaim(sc) && nr_unqueued_dirty == nr_taken) {
1456 congestion_wait(BLK_RW_ASYNC, HZ/10);
1457 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1458 }
1459
1460 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1461 zone_idx(zone),
1462 nr_scanned, nr_reclaimed,
1463 sc->priority,
1464 trace_shrink_flags(file));
1465 return nr_reclaimed;
1466}
1467
1468/*
1469 * This moves pages from the active list to the inactive list.
1470 *
1471 * We move them the other way if the page is referenced by one or more
1472 * processes, from rmap.
1473 *
1474 * If the pages are mostly unmapped, the processing is fast and it is
1475 * appropriate to hold zone->lru_lock across the whole operation. But if
1476 * the pages are mapped, the processing is slow (page_referenced()) so we
1477 * should drop zone->lru_lock around each page. It's impossible to balance
1478 * this, so instead we remove the pages from the LRU while processing them.
1479 * It is safe to rely on PG_active against the non-LRU pages in here because
1480 * nobody will play with that bit on a non-LRU page.
1481 *
1482 * The downside is that we have to touch page->_count against each page.
1483 * But we had to alter page->flags anyway.
1484 */
1485
1486static void move_active_pages_to_lru(struct lruvec *lruvec,
1487 struct list_head *list,
1488 struct list_head *pages_to_free,
1489 enum lru_list lru)
1490{
1491 struct zone *zone = lruvec_zone(lruvec);
1492 unsigned long pgmoved = 0;
1493 struct page *page;
1494 int nr_pages;
1495
1496 while (!list_empty(list)) {
1497 page = lru_to_page(list);
1498 lruvec = mem_cgroup_page_lruvec(page, zone);
1499
1500 VM_BUG_ON(PageLRU(page));
1501 SetPageLRU(page);
1502
1503 nr_pages = hpage_nr_pages(page);
1504 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1505 list_move(&page->lru, &lruvec->lists[lru]);
1506 pgmoved += nr_pages;
1507
1508 if (put_page_testzero(page)) {
1509 __ClearPageLRU(page);
1510 __ClearPageActive(page);
1511 del_page_from_lru_list(page, lruvec, lru);
1512
1513 if (unlikely(PageCompound(page))) {
1514 spin_unlock_irq(&zone->lru_lock);
1515 (*get_compound_page_dtor(page))(page);
1516 spin_lock_irq(&zone->lru_lock);
1517 } else
1518 list_add(&page->lru, pages_to_free);
1519 }
1520 }
1521 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1522 if (!is_active_lru(lru))
1523 __count_vm_events(PGDEACTIVATE, pgmoved);
1524}
1525
1526static void shrink_active_list(unsigned long nr_to_scan,
1527 struct lruvec *lruvec,
1528 struct scan_control *sc,
1529 enum lru_list lru)
1530{
1531 unsigned long nr_taken;
1532 unsigned long nr_scanned;
1533 unsigned long vm_flags;
1534 LIST_HEAD(l_hold); /* The pages which were snipped off */
1535 LIST_HEAD(l_active);
1536 LIST_HEAD(l_inactive);
1537 struct page *page;
1538 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1539 unsigned long nr_rotated = 0;
1540 isolate_mode_t isolate_mode = 0;
1541 int file = is_file_lru(lru);
1542 struct zone *zone = lruvec_zone(lruvec);
1543
1544 lru_add_drain();
1545
1546 if (!sc->may_unmap)
1547 isolate_mode |= ISOLATE_UNMAPPED;
1548 if (!sc->may_writepage)
1549 isolate_mode |= ISOLATE_CLEAN;
1550
1551 spin_lock_irq(&zone->lru_lock);
1552
1553 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1554 &nr_scanned, sc, isolate_mode, lru);
1555 if (global_reclaim(sc))
1556 zone->pages_scanned += nr_scanned;
1557
1558 reclaim_stat->recent_scanned[file] += nr_taken;
1559
1560 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1561 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1562 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1563 spin_unlock_irq(&zone->lru_lock);
1564
1565 while (!list_empty(&l_hold)) {
1566 cond_resched();
1567 page = lru_to_page(&l_hold);
1568 list_del(&page->lru);
1569
1570 if (unlikely(!page_evictable(page))) {
1571 putback_lru_page(page);
1572 continue;
1573 }
1574
1575 if (unlikely(buffer_heads_over_limit)) {
1576 if (page_has_private(page) && trylock_page(page)) {
1577 if (page_has_private(page))
1578 try_to_release_page(page, 0);
1579 unlock_page(page);
1580 }
1581 }
1582
1583 if (page_referenced(page, 0, sc->target_mem_cgroup,
1584 &vm_flags)) {
1585 nr_rotated += hpage_nr_pages(page);
1586 /*
1587 * Identify referenced, file-backed active pages and
1588 * give them one more trip around the active list. So
1589 * that executable code get better chances to stay in
1590 * memory under moderate memory pressure. Anon pages
1591 * are not likely to be evicted by use-once streaming
1592 * IO, plus JVM can create lots of anon VM_EXEC pages,
1593 * so we ignore them here.
1594 */
1595 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1596 list_add(&page->lru, &l_active);
1597 continue;
1598 }
1599 }
1600
1601 ClearPageActive(page); /* we are de-activating */
1602 list_add(&page->lru, &l_inactive);
1603 }
1604
1605 /*
1606 * Move pages back to the lru list.
1607 */
1608 spin_lock_irq(&zone->lru_lock);
1609 /*
1610 * Count referenced pages from currently used mappings as rotated,
1611 * even though only some of them are actually re-activated. This
1612 * helps balance scan pressure between file and anonymous pages in
1613 * get_scan_ratio.
1614 */
1615 reclaim_stat->recent_rotated[file] += nr_rotated;
1616
1617 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1618 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1619 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1620 spin_unlock_irq(&zone->lru_lock);
1621
1622 free_hot_cold_page_list(&l_hold, 1);
1623}
1624
1625#ifdef CONFIG_SWAP
1626static int inactive_anon_is_low_global(struct zone *zone)
1627{
1628 unsigned long active, inactive;
1629
1630 active = zone_page_state(zone, NR_ACTIVE_ANON);
1631 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1632
1633 if (inactive * zone->inactive_ratio < active)
1634 return 1;
1635
1636 return 0;
1637}
1638
1639/**
1640 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1641 * @lruvec: LRU vector to check
1642 *
1643 * Returns true if the zone does not have enough inactive anon pages,
1644 * meaning some active anon pages need to be deactivated.
1645 */
1646static int inactive_anon_is_low(struct lruvec *lruvec)
1647{
1648 /*
1649 * If we don't have swap space, anonymous page deactivation
1650 * is pointless.
1651 */
1652 if (!total_swap_pages)
1653 return 0;
1654
1655 if (!mem_cgroup_disabled())
1656 return mem_cgroup_inactive_anon_is_low(lruvec);
1657
1658 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1659}
1660#else
1661static inline int inactive_anon_is_low(struct lruvec *lruvec)
1662{
1663 return 0;
1664}
1665#endif
1666
1667/**
1668 * inactive_file_is_low - check if file pages need to be deactivated
1669 * @lruvec: LRU vector to check
1670 *
1671 * When the system is doing streaming IO, memory pressure here
1672 * ensures that active file pages get deactivated, until more
1673 * than half of the file pages are on the inactive list.
1674 *
1675 * Once we get to that situation, protect the system's working
1676 * set from being evicted by disabling active file page aging.
1677 *
1678 * This uses a different ratio than the anonymous pages, because
1679 * the page cache uses a use-once replacement algorithm.
1680 */
1681static int inactive_file_is_low(struct lruvec *lruvec)
1682{
1683 unsigned long inactive;
1684 unsigned long active;
1685
1686 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1687 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1688
1689 return active > inactive;
1690}
1691
1692static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1693{
1694 if (is_file_lru(lru))
1695 return inactive_file_is_low(lruvec);
1696 else
1697 return inactive_anon_is_low(lruvec);
1698}
1699
1700static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1701 struct lruvec *lruvec, struct scan_control *sc)
1702{
1703 if (is_active_lru(lru)) {
1704 if (inactive_list_is_low(lruvec, lru))
1705 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1706 return 0;
1707 }
1708
1709 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1710}
1711
1712static int vmscan_swappiness(struct scan_control *sc)
1713{
1714 if (global_reclaim(sc))
1715 return vm_swappiness;
1716 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1717}
1718
1719enum scan_balance {
1720 SCAN_EQUAL,
1721 SCAN_FRACT,
1722 SCAN_ANON,
1723 SCAN_FILE,
1724};
1725
1726/*
1727 * Determine how aggressively the anon and file LRU lists should be
1728 * scanned. The relative value of each set of LRU lists is determined
1729 * by looking at the fraction of the pages scanned we did rotate back
1730 * onto the active list instead of evict.
1731 *
1732 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1733 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1734 */
1735static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1736 unsigned long *nr)
1737{
1738 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1739 u64 fraction[2];
1740 u64 denominator = 0; /* gcc */
1741 struct zone *zone = lruvec_zone(lruvec);
1742 unsigned long anon_prio, file_prio;
1743 enum scan_balance scan_balance;
1744 unsigned long anon, file, free;
1745 bool force_scan = false;
1746 unsigned long ap, fp;
1747 enum lru_list lru;
1748
1749 /*
1750 * If the zone or memcg is small, nr[l] can be 0. This
1751 * results in no scanning on this priority and a potential
1752 * priority drop. Global direct reclaim can go to the next
1753 * zone and tends to have no problems. Global kswapd is for
1754 * zone balancing and it needs to scan a minimum amount. When
1755 * reclaiming for a memcg, a priority drop can cause high
1756 * latencies, so it's better to scan a minimum amount there as
1757 * well.
1758 */
1759 if (current_is_kswapd() && zone->all_unreclaimable)
1760 force_scan = true;
1761 if (!global_reclaim(sc))
1762 force_scan = true;
1763
1764 /* If we have no swap space, do not bother scanning anon pages. */
1765 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1766 scan_balance = SCAN_FILE;
1767 goto out;
1768 }
1769
1770 /*
1771 * Global reclaim will swap to prevent OOM even with no
1772 * swappiness, but memcg users want to use this knob to
1773 * disable swapping for individual groups completely when
1774 * using the memory controller's swap limit feature would be
1775 * too expensive.
1776 */
1777 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1778 scan_balance = SCAN_FILE;
1779 goto out;
1780 }
1781
1782 /*
1783 * Do not apply any pressure balancing cleverness when the
1784 * system is close to OOM, scan both anon and file equally
1785 * (unless the swappiness setting disagrees with swapping).
1786 */
1787 if (!sc->priority && vmscan_swappiness(sc)) {
1788 scan_balance = SCAN_EQUAL;
1789 goto out;
1790 }
1791
1792 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1793 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1794 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1795 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1796
1797 /*
1798 * If it's foreseeable that reclaiming the file cache won't be
1799 * enough to get the zone back into a desirable shape, we have
1800 * to swap. Better start now and leave the - probably heavily
1801 * thrashing - remaining file pages alone.
1802 */
1803 if (global_reclaim(sc)) {
1804 free = zone_page_state(zone, NR_FREE_PAGES);
1805 if (unlikely(file + free <= high_wmark_pages(zone))) {
1806 scan_balance = SCAN_ANON;
1807 goto out;
1808 }
1809 }
1810
1811 /*
1812 * There is enough inactive page cache, do not reclaim
1813 * anything from the anonymous working set right now.
1814 */
1815 if (!inactive_file_is_low(lruvec)) {
1816 scan_balance = SCAN_FILE;
1817 goto out;
1818 }
1819
1820 scan_balance = SCAN_FRACT;
1821
1822 /*
1823 * With swappiness at 100, anonymous and file have the same priority.
1824 * This scanning priority is essentially the inverse of IO cost.
1825 */
1826 anon_prio = vmscan_swappiness(sc);
1827 file_prio = 200 - anon_prio;
1828
1829 /*
1830 * OK, so we have swap space and a fair amount of page cache
1831 * pages. We use the recently rotated / recently scanned
1832 * ratios to determine how valuable each cache is.
1833 *
1834 * Because workloads change over time (and to avoid overflow)
1835 * we keep these statistics as a floating average, which ends
1836 * up weighing recent references more than old ones.
1837 *
1838 * anon in [0], file in [1]
1839 */
1840 spin_lock_irq(&zone->lru_lock);
1841 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1842 reclaim_stat->recent_scanned[0] /= 2;
1843 reclaim_stat->recent_rotated[0] /= 2;
1844 }
1845
1846 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1847 reclaim_stat->recent_scanned[1] /= 2;
1848 reclaim_stat->recent_rotated[1] /= 2;
1849 }
1850
1851 /*
1852 * The amount of pressure on anon vs file pages is inversely
1853 * proportional to the fraction of recently scanned pages on
1854 * each list that were recently referenced and in active use.
1855 */
1856 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1857 ap /= reclaim_stat->recent_rotated[0] + 1;
1858
1859 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1860 fp /= reclaim_stat->recent_rotated[1] + 1;
1861 spin_unlock_irq(&zone->lru_lock);
1862
1863 fraction[0] = ap;
1864 fraction[1] = fp;
1865 denominator = ap + fp + 1;
1866out:
1867 for_each_evictable_lru(lru) {
1868 int file = is_file_lru(lru);
1869 unsigned long size;
1870 unsigned long scan;
1871
1872 size = get_lru_size(lruvec, lru);
1873 scan = size >> sc->priority;
1874
1875 if (!scan && force_scan)
1876 scan = min(size, SWAP_CLUSTER_MAX);
1877
1878 switch (scan_balance) {
1879 case SCAN_EQUAL:
1880 /* Scan lists relative to size */
1881 break;
1882 case SCAN_FRACT:
1883 /*
1884 * Scan types proportional to swappiness and
1885 * their relative recent reclaim efficiency.
1886 */
1887 scan = div64_u64(scan * fraction[file], denominator);
1888 break;
1889 case SCAN_FILE:
1890 case SCAN_ANON:
1891 /* Scan one type exclusively */
1892 if ((scan_balance == SCAN_FILE) != file)
1893 scan = 0;
1894 break;
1895 default:
1896 /* Look ma, no brain */
1897 BUG();
1898 }
1899 nr[lru] = scan;
1900 }
1901}
1902
1903/*
1904 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1905 */
1906static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1907{
1908 unsigned long nr[NR_LRU_LISTS];
1909 unsigned long targets[NR_LRU_LISTS];
1910 unsigned long nr_to_scan;
1911 enum lru_list lru;
1912 unsigned long nr_reclaimed = 0;
1913 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1914 struct blk_plug plug;
1915 bool scan_adjusted = false;
1916
1917 get_scan_count(lruvec, sc, nr);
1918
1919 /* Record the original scan target for proportional adjustments later */
1920 memcpy(targets, nr, sizeof(nr));
1921
1922 blk_start_plug(&plug);
1923 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1924 nr[LRU_INACTIVE_FILE]) {
1925 unsigned long nr_anon, nr_file, percentage;
1926 unsigned long nr_scanned;
1927
1928 for_each_evictable_lru(lru) {
1929 if (nr[lru]) {
1930 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1931 nr[lru] -= nr_to_scan;
1932
1933 nr_reclaimed += shrink_list(lru, nr_to_scan,
1934 lruvec, sc);
1935 }
1936 }
1937
1938 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1939 continue;
1940
1941 /*
1942 * For global direct reclaim, reclaim only the number of pages
1943 * requested. Less care is taken to scan proportionally as it
1944 * is more important to minimise direct reclaim stall latency
1945 * than it is to properly age the LRU lists.
1946 */
1947 if (global_reclaim(sc) && !current_is_kswapd())
1948 break;
1949
1950 /*
1951 * For kswapd and memcg, reclaim at least the number of pages
1952 * requested. Ensure that the anon and file LRUs shrink
1953 * proportionally what was requested by get_scan_count(). We
1954 * stop reclaiming one LRU and reduce the amount scanning
1955 * proportional to the original scan target.
1956 */
1957 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1958 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1959
1960 if (nr_file > nr_anon) {
1961 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1962 targets[LRU_ACTIVE_ANON] + 1;
1963 lru = LRU_BASE;
1964 percentage = nr_anon * 100 / scan_target;
1965 } else {
1966 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1967 targets[LRU_ACTIVE_FILE] + 1;
1968 lru = LRU_FILE;
1969 percentage = nr_file * 100 / scan_target;
1970 }
1971
1972 /* Stop scanning the smaller of the LRU */
1973 nr[lru] = 0;
1974 nr[lru + LRU_ACTIVE] = 0;
1975
1976 /*
1977 * Recalculate the other LRU scan count based on its original
1978 * scan target and the percentage scanning already complete
1979 */
1980 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1981 nr_scanned = targets[lru] - nr[lru];
1982 nr[lru] = targets[lru] * (100 - percentage) / 100;
1983 nr[lru] -= min(nr[lru], nr_scanned);
1984
1985 lru += LRU_ACTIVE;
1986 nr_scanned = targets[lru] - nr[lru];
1987 nr[lru] = targets[lru] * (100 - percentage) / 100;
1988 nr[lru] -= min(nr[lru], nr_scanned);
1989
1990 scan_adjusted = true;
1991 }
1992 blk_finish_plug(&plug);
1993 sc->nr_reclaimed += nr_reclaimed;
1994
1995 /*
1996 * Even if we did not try to evict anon pages at all, we want to
1997 * rebalance the anon lru active/inactive ratio.
1998 */
1999 if (inactive_anon_is_low(lruvec))
2000 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2001 sc, LRU_ACTIVE_ANON);
2002
2003 throttle_vm_writeout(sc->gfp_mask);
2004}
2005
2006/* Use reclaim/compaction for costly allocs or under memory pressure */
2007static bool in_reclaim_compaction(struct scan_control *sc)
2008{
2009 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2010 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2011 sc->priority < DEF_PRIORITY - 2))
2012 return true;
2013
2014 return false;
2015}
2016
2017/*
2018 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2019 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2020 * true if more pages should be reclaimed such that when the page allocator
2021 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2022 * It will give up earlier than that if there is difficulty reclaiming pages.
2023 */
2024static inline bool should_continue_reclaim(struct zone *zone,
2025 unsigned long nr_reclaimed,
2026 unsigned long nr_scanned,
2027 struct scan_control *sc)
2028{
2029 unsigned long pages_for_compaction;
2030 unsigned long inactive_lru_pages;
2031
2032 /* If not in reclaim/compaction mode, stop */
2033 if (!in_reclaim_compaction(sc))
2034 return false;
2035
2036 /* Consider stopping depending on scan and reclaim activity */
2037 if (sc->gfp_mask & __GFP_REPEAT) {
2038 /*
2039 * For __GFP_REPEAT allocations, stop reclaiming if the
2040 * full LRU list has been scanned and we are still failing
2041 * to reclaim pages. This full LRU scan is potentially
2042 * expensive but a __GFP_REPEAT caller really wants to succeed
2043 */
2044 if (!nr_reclaimed && !nr_scanned)
2045 return false;
2046 } else {
2047 /*
2048 * For non-__GFP_REPEAT allocations which can presumably
2049 * fail without consequence, stop if we failed to reclaim
2050 * any pages from the last SWAP_CLUSTER_MAX number of
2051 * pages that were scanned. This will return to the
2052 * caller faster at the risk reclaim/compaction and
2053 * the resulting allocation attempt fails
2054 */
2055 if (!nr_reclaimed)
2056 return false;
2057 }
2058
2059 /*
2060 * If we have not reclaimed enough pages for compaction and the
2061 * inactive lists are large enough, continue reclaiming
2062 */
2063 pages_for_compaction = (2UL << sc->order);
2064 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2065 if (get_nr_swap_pages() > 0)
2066 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2067 if (sc->nr_reclaimed < pages_for_compaction &&
2068 inactive_lru_pages > pages_for_compaction)
2069 return true;
2070
2071 /* If compaction would go ahead or the allocation would succeed, stop */
2072 switch (compaction_suitable(zone, sc->order)) {
2073 case COMPACT_PARTIAL:
2074 case COMPACT_CONTINUE:
2075 return false;
2076 default:
2077 return true;
2078 }
2079}
2080
2081static void shrink_zone(struct zone *zone, struct scan_control *sc)
2082{
2083 unsigned long nr_reclaimed, nr_scanned;
2084
2085 do {
2086 struct mem_cgroup *root = sc->target_mem_cgroup;
2087 struct mem_cgroup_reclaim_cookie reclaim = {
2088 .zone = zone,
2089 .priority = sc->priority,
2090 };
2091 struct mem_cgroup *memcg;
2092
2093 nr_reclaimed = sc->nr_reclaimed;
2094 nr_scanned = sc->nr_scanned;
2095
2096 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2097 do {
2098 struct lruvec *lruvec;
2099
2100 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2101
2102 shrink_lruvec(lruvec, sc);
2103
2104 /*
2105 * Direct reclaim and kswapd have to scan all memory
2106 * cgroups to fulfill the overall scan target for the
2107 * zone.
2108 *
2109 * Limit reclaim, on the other hand, only cares about
2110 * nr_to_reclaim pages to be reclaimed and it will
2111 * retry with decreasing priority if one round over the
2112 * whole hierarchy is not sufficient.
2113 */
2114 if (!global_reclaim(sc) &&
2115 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2116 mem_cgroup_iter_break(root, memcg);
2117 break;
2118 }
2119 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2120 } while (memcg);
2121
2122 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2123 sc->nr_scanned - nr_scanned,
2124 sc->nr_reclaimed - nr_reclaimed);
2125
2126 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2127 sc->nr_scanned - nr_scanned, sc));
2128}
2129
2130/* Returns true if compaction should go ahead for a high-order request */
2131static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2132{
2133 unsigned long balance_gap, watermark;
2134 bool watermark_ok;
2135
2136 /* Do not consider compaction for orders reclaim is meant to satisfy */
2137 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2138 return false;
2139
2140 /*
2141 * Compaction takes time to run and there are potentially other
2142 * callers using the pages just freed. Continue reclaiming until
2143 * there is a buffer of free pages available to give compaction
2144 * a reasonable chance of completing and allocating the page
2145 */
2146 balance_gap = min(low_wmark_pages(zone),
2147 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2148 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2149 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2150 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2151
2152 /*
2153 * If compaction is deferred, reclaim up to a point where
2154 * compaction will have a chance of success when re-enabled
2155 */
2156 if (compaction_deferred(zone, sc->order))
2157 return watermark_ok;
2158
2159 /* If compaction is not ready to start, keep reclaiming */
2160 if (!compaction_suitable(zone, sc->order))
2161 return false;
2162
2163 return watermark_ok;
2164}
2165
2166/*
2167 * This is the direct reclaim path, for page-allocating processes. We only
2168 * try to reclaim pages from zones which will satisfy the caller's allocation
2169 * request.
2170 *
2171 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2172 * Because:
2173 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2174 * allocation or
2175 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2176 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2177 * zone defense algorithm.
2178 *
2179 * If a zone is deemed to be full of pinned pages then just give it a light
2180 * scan then give up on it.
2181 *
2182 * This function returns true if a zone is being reclaimed for a costly
2183 * high-order allocation and compaction is ready to begin. This indicates to
2184 * the caller that it should consider retrying the allocation instead of
2185 * further reclaim.
2186 */
2187static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2188{
2189 struct zoneref *z;
2190 struct zone *zone;
2191 unsigned long nr_soft_reclaimed;
2192 unsigned long nr_soft_scanned;
2193 bool aborted_reclaim = false;
2194
2195 /*
2196 * If the number of buffer_heads in the machine exceeds the maximum
2197 * allowed level, force direct reclaim to scan the highmem zone as
2198 * highmem pages could be pinning lowmem pages storing buffer_heads
2199 */
2200 if (buffer_heads_over_limit)
2201 sc->gfp_mask |= __GFP_HIGHMEM;
2202
2203 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2204 gfp_zone(sc->gfp_mask), sc->nodemask) {
2205 if (!populated_zone(zone))
2206 continue;
2207 /*
2208 * Take care memory controller reclaiming has small influence
2209 * to global LRU.
2210 */
2211 if (global_reclaim(sc)) {
2212 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2213 continue;
2214 if (zone->all_unreclaimable &&
2215 sc->priority != DEF_PRIORITY)
2216 continue; /* Let kswapd poll it */
2217 if (IS_ENABLED(CONFIG_COMPACTION)) {
2218 /*
2219 * If we already have plenty of memory free for
2220 * compaction in this zone, don't free any more.
2221 * Even though compaction is invoked for any
2222 * non-zero order, only frequent costly order
2223 * reclamation is disruptive enough to become a
2224 * noticeable problem, like transparent huge
2225 * page allocations.
2226 */
2227 if (compaction_ready(zone, sc)) {
2228 aborted_reclaim = true;
2229 continue;
2230 }
2231 }
2232 /*
2233 * This steals pages from memory cgroups over softlimit
2234 * and returns the number of reclaimed pages and
2235 * scanned pages. This works for global memory pressure
2236 * and balancing, not for a memcg's limit.
2237 */
2238 nr_soft_scanned = 0;
2239 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2240 sc->order, sc->gfp_mask,
2241 &nr_soft_scanned);
2242 sc->nr_reclaimed += nr_soft_reclaimed;
2243 sc->nr_scanned += nr_soft_scanned;
2244 /* need some check for avoid more shrink_zone() */
2245 }
2246
2247 shrink_zone(zone, sc);
2248 }
2249
2250 return aborted_reclaim;
2251}
2252
2253static bool zone_reclaimable(struct zone *zone)
2254{
2255 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2256}
2257
2258/* All zones in zonelist are unreclaimable? */
2259static bool all_unreclaimable(struct zonelist *zonelist,
2260 struct scan_control *sc)
2261{
2262 struct zoneref *z;
2263 struct zone *zone;
2264
2265 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2266 gfp_zone(sc->gfp_mask), sc->nodemask) {
2267 if (!populated_zone(zone))
2268 continue;
2269 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2270 continue;
2271 if (!zone->all_unreclaimable)
2272 return false;
2273 }
2274
2275 return true;
2276}
2277
2278/*
2279 * This is the main entry point to direct page reclaim.
2280 *
2281 * If a full scan of the inactive list fails to free enough memory then we
2282 * are "out of memory" and something needs to be killed.
2283 *
2284 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2285 * high - the zone may be full of dirty or under-writeback pages, which this
2286 * caller can't do much about. We kick the writeback threads and take explicit
2287 * naps in the hope that some of these pages can be written. But if the
2288 * allocating task holds filesystem locks which prevent writeout this might not
2289 * work, and the allocation attempt will fail.
2290 *
2291 * returns: 0, if no pages reclaimed
2292 * else, the number of pages reclaimed
2293 */
2294static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2295 struct scan_control *sc,
2296 struct shrink_control *shrink)
2297{
2298 unsigned long total_scanned = 0;
2299 struct reclaim_state *reclaim_state = current->reclaim_state;
2300 struct zoneref *z;
2301 struct zone *zone;
2302 unsigned long writeback_threshold;
2303 bool aborted_reclaim;
2304
2305 delayacct_freepages_start();
2306
2307 if (global_reclaim(sc))
2308 count_vm_event(ALLOCSTALL);
2309
2310 do {
2311 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2312 sc->priority);
2313 sc->nr_scanned = 0;
2314 aborted_reclaim = shrink_zones(zonelist, sc);
2315
2316 /*
2317 * Don't shrink slabs when reclaiming memory from
2318 * over limit cgroups
2319 */
2320 if (global_reclaim(sc)) {
2321 unsigned long lru_pages = 0;
2322 for_each_zone_zonelist(zone, z, zonelist,
2323 gfp_zone(sc->gfp_mask)) {
2324 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2325 continue;
2326
2327 lru_pages += zone_reclaimable_pages(zone);
2328 }
2329
2330 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2331 if (reclaim_state) {
2332 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2333 reclaim_state->reclaimed_slab = 0;
2334 }
2335 }
2336 total_scanned += sc->nr_scanned;
2337 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2338 goto out;
2339
2340 /*
2341 * If we're getting trouble reclaiming, start doing
2342 * writepage even in laptop mode.
2343 */
2344 if (sc->priority < DEF_PRIORITY - 2)
2345 sc->may_writepage = 1;
2346
2347 /*
2348 * Try to write back as many pages as we just scanned. This
2349 * tends to cause slow streaming writers to write data to the
2350 * disk smoothly, at the dirtying rate, which is nice. But
2351 * that's undesirable in laptop mode, where we *want* lumpy
2352 * writeout. So in laptop mode, write out the whole world.
2353 */
2354 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2355 if (total_scanned > writeback_threshold) {
2356 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2357 WB_REASON_TRY_TO_FREE_PAGES);
2358 sc->may_writepage = 1;
2359 }
2360
2361 /* Take a nap, wait for some writeback to complete */
2362 if (!sc->hibernation_mode && sc->nr_scanned &&
2363 sc->priority < DEF_PRIORITY - 2) {
2364 struct zone *preferred_zone;
2365
2366 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2367 &cpuset_current_mems_allowed,
2368 &preferred_zone);
2369 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2370 }
2371 } while (--sc->priority >= 0);
2372
2373out:
2374 delayacct_freepages_end();
2375
2376 if (sc->nr_reclaimed)
2377 return sc->nr_reclaimed;
2378
2379 /*
2380 * As hibernation is going on, kswapd is freezed so that it can't mark
2381 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2382 * check.
2383 */
2384 if (oom_killer_disabled)
2385 return 0;
2386
2387 /* Aborted reclaim to try compaction? don't OOM, then */
2388 if (aborted_reclaim)
2389 return 1;
2390
2391 /* top priority shrink_zones still had more to do? don't OOM, then */
2392 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2393 return 1;
2394
2395 return 0;
2396}
2397
2398static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2399{
2400 struct zone *zone;
2401 unsigned long pfmemalloc_reserve = 0;
2402 unsigned long free_pages = 0;
2403 int i;
2404 bool wmark_ok;
2405
2406 for (i = 0; i <= ZONE_NORMAL; i++) {
2407 zone = &pgdat->node_zones[i];
2408 pfmemalloc_reserve += min_wmark_pages(zone);
2409 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2410 }
2411
2412 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2413
2414 /* kswapd must be awake if processes are being throttled */
2415 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2416 pgdat->classzone_idx = min(pgdat->classzone_idx,
2417 (enum zone_type)ZONE_NORMAL);
2418 wake_up_interruptible(&pgdat->kswapd_wait);
2419 }
2420
2421 return wmark_ok;
2422}
2423
2424/*
2425 * Throttle direct reclaimers if backing storage is backed by the network
2426 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2427 * depleted. kswapd will continue to make progress and wake the processes
2428 * when the low watermark is reached.
2429 *
2430 * Returns true if a fatal signal was delivered during throttling. If this
2431 * happens, the page allocator should not consider triggering the OOM killer.
2432 */
2433static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2434 nodemask_t *nodemask)
2435{
2436 struct zone *zone;
2437 int high_zoneidx = gfp_zone(gfp_mask);
2438 pg_data_t *pgdat;
2439
2440 /*
2441 * Kernel threads should not be throttled as they may be indirectly
2442 * responsible for cleaning pages necessary for reclaim to make forward
2443 * progress. kjournald for example may enter direct reclaim while
2444 * committing a transaction where throttling it could forcing other
2445 * processes to block on log_wait_commit().
2446 */
2447 if (current->flags & PF_KTHREAD)
2448 goto out;
2449
2450 /*
2451 * If a fatal signal is pending, this process should not throttle.
2452 * It should return quickly so it can exit and free its memory
2453 */
2454 if (fatal_signal_pending(current))
2455 goto out;
2456
2457 /* Check if the pfmemalloc reserves are ok */
2458 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2459 pgdat = zone->zone_pgdat;
2460 if (pfmemalloc_watermark_ok(pgdat))
2461 goto out;
2462
2463 /* Account for the throttling */
2464 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2465
2466 /*
2467 * If the caller cannot enter the filesystem, it's possible that it
2468 * is due to the caller holding an FS lock or performing a journal
2469 * transaction in the case of a filesystem like ext[3|4]. In this case,
2470 * it is not safe to block on pfmemalloc_wait as kswapd could be
2471 * blocked waiting on the same lock. Instead, throttle for up to a
2472 * second before continuing.
2473 */
2474 if (!(gfp_mask & __GFP_FS)) {
2475 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2476 pfmemalloc_watermark_ok(pgdat), HZ);
2477
2478 goto check_pending;
2479 }
2480
2481 /* Throttle until kswapd wakes the process */
2482 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2483 pfmemalloc_watermark_ok(pgdat));
2484
2485check_pending:
2486 if (fatal_signal_pending(current))
2487 return true;
2488
2489out:
2490 return false;
2491}
2492
2493unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2494 gfp_t gfp_mask, nodemask_t *nodemask)
2495{
2496 unsigned long nr_reclaimed;
2497 struct scan_control sc = {
2498 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2499 .may_writepage = !laptop_mode,
2500 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2501 .may_unmap = 1,
2502 .may_swap = 1,
2503 .order = order,
2504 .priority = DEF_PRIORITY,
2505 .target_mem_cgroup = NULL,
2506 .nodemask = nodemask,
2507 };
2508 struct shrink_control shrink = {
2509 .gfp_mask = sc.gfp_mask,
2510 };
2511
2512 /*
2513 * Do not enter reclaim if fatal signal was delivered while throttled.
2514 * 1 is returned so that the page allocator does not OOM kill at this
2515 * point.
2516 */
2517 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2518 return 1;
2519
2520 trace_mm_vmscan_direct_reclaim_begin(order,
2521 sc.may_writepage,
2522 gfp_mask);
2523
2524 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2525
2526 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2527
2528 return nr_reclaimed;
2529}
2530
2531#ifdef CONFIG_MEMCG
2532
2533unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2534 gfp_t gfp_mask, bool noswap,
2535 struct zone *zone,
2536 unsigned long *nr_scanned)
2537{
2538 struct scan_control sc = {
2539 .nr_scanned = 0,
2540 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2541 .may_writepage = !laptop_mode,
2542 .may_unmap = 1,
2543 .may_swap = !noswap,
2544 .order = 0,
2545 .priority = 0,
2546 .target_mem_cgroup = memcg,
2547 };
2548 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2549
2550 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2551 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2552
2553 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2554 sc.may_writepage,
2555 sc.gfp_mask);
2556
2557 /*
2558 * NOTE: Although we can get the priority field, using it
2559 * here is not a good idea, since it limits the pages we can scan.
2560 * if we don't reclaim here, the shrink_zone from balance_pgdat
2561 * will pick up pages from other mem cgroup's as well. We hack
2562 * the priority and make it zero.
2563 */
2564 shrink_lruvec(lruvec, &sc);
2565
2566 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2567
2568 *nr_scanned = sc.nr_scanned;
2569 return sc.nr_reclaimed;
2570}
2571
2572unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2573 gfp_t gfp_mask,
2574 bool noswap)
2575{
2576 struct zonelist *zonelist;
2577 unsigned long nr_reclaimed;
2578 int nid;
2579 struct scan_control sc = {
2580 .may_writepage = !laptop_mode,
2581 .may_unmap = 1,
2582 .may_swap = !noswap,
2583 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2584 .order = 0,
2585 .priority = DEF_PRIORITY,
2586 .target_mem_cgroup = memcg,
2587 .nodemask = NULL, /* we don't care the placement */
2588 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2590 };
2591 struct shrink_control shrink = {
2592 .gfp_mask = sc.gfp_mask,
2593 };
2594
2595 /*
2596 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2597 * take care of from where we get pages. So the node where we start the
2598 * scan does not need to be the current node.
2599 */
2600 nid = mem_cgroup_select_victim_node(memcg);
2601
2602 zonelist = NODE_DATA(nid)->node_zonelists;
2603
2604 trace_mm_vmscan_memcg_reclaim_begin(0,
2605 sc.may_writepage,
2606 sc.gfp_mask);
2607
2608 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2609
2610 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2611
2612 return nr_reclaimed;
2613}
2614#endif
2615
2616static void age_active_anon(struct zone *zone, struct scan_control *sc)
2617{
2618 struct mem_cgroup *memcg;
2619
2620 if (!total_swap_pages)
2621 return;
2622
2623 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2624 do {
2625 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2626
2627 if (inactive_anon_is_low(lruvec))
2628 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2629 sc, LRU_ACTIVE_ANON);
2630
2631 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2632 } while (memcg);
2633}
2634
2635static bool zone_balanced(struct zone *zone, int order,
2636 unsigned long balance_gap, int classzone_idx)
2637{
2638 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2639 balance_gap, classzone_idx, 0))
2640 return false;
2641
2642 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2643 !compaction_suitable(zone, order))
2644 return false;
2645
2646 return true;
2647}
2648
2649/*
2650 * pgdat_balanced() is used when checking if a node is balanced.
2651 *
2652 * For order-0, all zones must be balanced!
2653 *
2654 * For high-order allocations only zones that meet watermarks and are in a
2655 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2656 * total of balanced pages must be at least 25% of the zones allowed by
2657 * classzone_idx for the node to be considered balanced. Forcing all zones to
2658 * be balanced for high orders can cause excessive reclaim when there are
2659 * imbalanced zones.
2660 * The choice of 25% is due to
2661 * o a 16M DMA zone that is balanced will not balance a zone on any
2662 * reasonable sized machine
2663 * o On all other machines, the top zone must be at least a reasonable
2664 * percentage of the middle zones. For example, on 32-bit x86, highmem
2665 * would need to be at least 256M for it to be balance a whole node.
2666 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2667 * to balance a node on its own. These seemed like reasonable ratios.
2668 */
2669static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2670{
2671 unsigned long managed_pages = 0;
2672 unsigned long balanced_pages = 0;
2673 int i;
2674
2675 /* Check the watermark levels */
2676 for (i = 0; i <= classzone_idx; i++) {
2677 struct zone *zone = pgdat->node_zones + i;
2678
2679 if (!populated_zone(zone))
2680 continue;
2681
2682 managed_pages += zone->managed_pages;
2683
2684 /*
2685 * A special case here:
2686 *
2687 * balance_pgdat() skips over all_unreclaimable after
2688 * DEF_PRIORITY. Effectively, it considers them balanced so
2689 * they must be considered balanced here as well!
2690 */
2691 if (zone->all_unreclaimable) {
2692 balanced_pages += zone->managed_pages;
2693 continue;
2694 }
2695
2696 if (zone_balanced(zone, order, 0, i))
2697 balanced_pages += zone->managed_pages;
2698 else if (!order)
2699 return false;
2700 }
2701
2702 if (order)
2703 return balanced_pages >= (managed_pages >> 2);
2704 else
2705 return true;
2706}
2707
2708/*
2709 * Prepare kswapd for sleeping. This verifies that there are no processes
2710 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2711 *
2712 * Returns true if kswapd is ready to sleep
2713 */
2714static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2715 int classzone_idx)
2716{
2717 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2718 if (remaining)
2719 return false;
2720
2721 /*
2722 * There is a potential race between when kswapd checks its watermarks
2723 * and a process gets throttled. There is also a potential race if
2724 * processes get throttled, kswapd wakes, a large process exits therby
2725 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2726 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2727 * so wake them now if necessary. If necessary, processes will wake
2728 * kswapd and get throttled again
2729 */
2730 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2731 wake_up(&pgdat->pfmemalloc_wait);
2732 return false;
2733 }
2734
2735 return pgdat_balanced(pgdat, order, classzone_idx);
2736}
2737
2738/*
2739 * kswapd shrinks the zone by the number of pages required to reach
2740 * the high watermark.
2741 *
2742 * Returns true if kswapd scanned at least the requested number of pages to
2743 * reclaim or if the lack of progress was due to pages under writeback.
2744 * This is used to determine if the scanning priority needs to be raised.
2745 */
2746static bool kswapd_shrink_zone(struct zone *zone,
2747 int classzone_idx,
2748 struct scan_control *sc,
2749 unsigned long lru_pages,
2750 unsigned long *nr_attempted)
2751{
2752 unsigned long nr_slab;
2753 int testorder = sc->order;
2754 unsigned long balance_gap;
2755 struct reclaim_state *reclaim_state = current->reclaim_state;
2756 struct shrink_control shrink = {
2757 .gfp_mask = sc->gfp_mask,
2758 };
2759 bool lowmem_pressure;
2760
2761 /* Reclaim above the high watermark. */
2762 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2763
2764 /*
2765 * Kswapd reclaims only single pages with compaction enabled. Trying
2766 * too hard to reclaim until contiguous free pages have become
2767 * available can hurt performance by evicting too much useful data
2768 * from memory. Do not reclaim more than needed for compaction.
2769 */
2770 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2771 compaction_suitable(zone, sc->order) !=
2772 COMPACT_SKIPPED)
2773 testorder = 0;
2774
2775 /*
2776 * We put equal pressure on every zone, unless one zone has way too
2777 * many pages free already. The "too many pages" is defined as the
2778 * high wmark plus a "gap" where the gap is either the low
2779 * watermark or 1% of the zone, whichever is smaller.
2780 */
2781 balance_gap = min(low_wmark_pages(zone),
2782 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2783 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2784
2785 /*
2786 * If there is no low memory pressure or the zone is balanced then no
2787 * reclaim is necessary
2788 */
2789 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2790 if (!lowmem_pressure && zone_balanced(zone, testorder,
2791 balance_gap, classzone_idx))
2792 return true;
2793
2794 shrink_zone(zone, sc);
2795
2796 reclaim_state->reclaimed_slab = 0;
2797 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2798 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2799
2800 /* Account for the number of pages attempted to reclaim */
2801 *nr_attempted += sc->nr_to_reclaim;
2802
2803 if (nr_slab == 0 && !zone_reclaimable(zone))
2804 zone->all_unreclaimable = 1;
2805
2806 zone_clear_flag(zone, ZONE_WRITEBACK);
2807
2808 /*
2809 * If a zone reaches its high watermark, consider it to be no longer
2810 * congested. It's possible there are dirty pages backed by congested
2811 * BDIs but as pressure is relieved, speculatively avoid congestion
2812 * waits.
2813 */
2814 if (!zone->all_unreclaimable &&
2815 zone_balanced(zone, testorder, 0, classzone_idx)) {
2816 zone_clear_flag(zone, ZONE_CONGESTED);
2817 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2818 }
2819
2820 return sc->nr_scanned >= sc->nr_to_reclaim;
2821}
2822
2823/*
2824 * For kswapd, balance_pgdat() will work across all this node's zones until
2825 * they are all at high_wmark_pages(zone).
2826 *
2827 * Returns the final order kswapd was reclaiming at
2828 *
2829 * There is special handling here for zones which are full of pinned pages.
2830 * This can happen if the pages are all mlocked, or if they are all used by
2831 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2832 * What we do is to detect the case where all pages in the zone have been
2833 * scanned twice and there has been zero successful reclaim. Mark the zone as
2834 * dead and from now on, only perform a short scan. Basically we're polling
2835 * the zone for when the problem goes away.
2836 *
2837 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2838 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2839 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2840 * lower zones regardless of the number of free pages in the lower zones. This
2841 * interoperates with the page allocator fallback scheme to ensure that aging
2842 * of pages is balanced across the zones.
2843 */
2844static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2845 int *classzone_idx)
2846{
2847 int i;
2848 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2849 unsigned long nr_soft_reclaimed;
2850 unsigned long nr_soft_scanned;
2851 struct scan_control sc = {
2852 .gfp_mask = GFP_KERNEL,
2853 .priority = DEF_PRIORITY,
2854 .may_unmap = 1,
2855 .may_swap = 1,
2856 .may_writepage = !laptop_mode,
2857 .order = order,
2858 .target_mem_cgroup = NULL,
2859 };
2860 count_vm_event(PAGEOUTRUN);
2861
2862 do {
2863 unsigned long lru_pages = 0;
2864 unsigned long nr_attempted = 0;
2865 bool raise_priority = true;
2866 bool pgdat_needs_compaction = (order > 0);
2867
2868 sc.nr_reclaimed = 0;
2869
2870 /*
2871 * Scan in the highmem->dma direction for the highest
2872 * zone which needs scanning
2873 */
2874 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2875 struct zone *zone = pgdat->node_zones + i;
2876
2877 if (!populated_zone(zone))
2878 continue;
2879
2880 if (zone->all_unreclaimable &&
2881 sc.priority != DEF_PRIORITY)
2882 continue;
2883
2884 /*
2885 * Do some background aging of the anon list, to give
2886 * pages a chance to be referenced before reclaiming.
2887 */
2888 age_active_anon(zone, &sc);
2889
2890 /*
2891 * If the number of buffer_heads in the machine
2892 * exceeds the maximum allowed level and this node
2893 * has a highmem zone, force kswapd to reclaim from
2894 * it to relieve lowmem pressure.
2895 */
2896 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2897 end_zone = i;
2898 break;
2899 }
2900
2901 if (!zone_balanced(zone, order, 0, 0)) {
2902 end_zone = i;
2903 break;
2904 } else {
2905 /*
2906 * If balanced, clear the dirty and congested
2907 * flags
2908 */
2909 zone_clear_flag(zone, ZONE_CONGESTED);
2910 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2911 }
2912 }
2913
2914 if (i < 0)
2915 goto out;
2916
2917 for (i = 0; i <= end_zone; i++) {
2918 struct zone *zone = pgdat->node_zones + i;
2919
2920 if (!populated_zone(zone))
2921 continue;
2922
2923 lru_pages += zone_reclaimable_pages(zone);
2924
2925 /*
2926 * If any zone is currently balanced then kswapd will
2927 * not call compaction as it is expected that the
2928 * necessary pages are already available.
2929 */
2930 if (pgdat_needs_compaction &&
2931 zone_watermark_ok(zone, order,
2932 low_wmark_pages(zone),
2933 *classzone_idx, 0))
2934 pgdat_needs_compaction = false;
2935 }
2936
2937 /*
2938 * If we're getting trouble reclaiming, start doing writepage
2939 * even in laptop mode.
2940 */
2941 if (sc.priority < DEF_PRIORITY - 2)
2942 sc.may_writepage = 1;
2943
2944 /*
2945 * Now scan the zone in the dma->highmem direction, stopping
2946 * at the last zone which needs scanning.
2947 *
2948 * We do this because the page allocator works in the opposite
2949 * direction. This prevents the page allocator from allocating
2950 * pages behind kswapd's direction of progress, which would
2951 * cause too much scanning of the lower zones.
2952 */
2953 for (i = 0; i <= end_zone; i++) {
2954 struct zone *zone = pgdat->node_zones + i;
2955
2956 if (!populated_zone(zone))
2957 continue;
2958
2959 if (zone->all_unreclaimable &&
2960 sc.priority != DEF_PRIORITY)
2961 continue;
2962
2963 sc.nr_scanned = 0;
2964
2965 nr_soft_scanned = 0;
2966 /*
2967 * Call soft limit reclaim before calling shrink_zone.
2968 */
2969 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2970 order, sc.gfp_mask,
2971 &nr_soft_scanned);
2972 sc.nr_reclaimed += nr_soft_reclaimed;
2973
2974 /*
2975 * There should be no need to raise the scanning
2976 * priority if enough pages are already being scanned
2977 * that that high watermark would be met at 100%
2978 * efficiency.
2979 */
2980 if (kswapd_shrink_zone(zone, end_zone, &sc,
2981 lru_pages, &nr_attempted))
2982 raise_priority = false;
2983 }
2984
2985 /*
2986 * If the low watermark is met there is no need for processes
2987 * to be throttled on pfmemalloc_wait as they should not be
2988 * able to safely make forward progress. Wake them
2989 */
2990 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2991 pfmemalloc_watermark_ok(pgdat))
2992 wake_up(&pgdat->pfmemalloc_wait);
2993
2994 /*
2995 * Fragmentation may mean that the system cannot be rebalanced
2996 * for high-order allocations in all zones. If twice the
2997 * allocation size has been reclaimed and the zones are still
2998 * not balanced then recheck the watermarks at order-0 to
2999 * prevent kswapd reclaiming excessively. Assume that a
3000 * process requested a high-order can direct reclaim/compact.
3001 */
3002 if (order && sc.nr_reclaimed >= 2UL << order)
3003 order = sc.order = 0;
3004
3005 /* Check if kswapd should be suspending */
3006 if (try_to_freeze() || kthread_should_stop())
3007 break;
3008
3009 /*
3010 * Compact if necessary and kswapd is reclaiming at least the
3011 * high watermark number of pages as requsted
3012 */
3013 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3014 compact_pgdat(pgdat, order);
3015
3016 /*
3017 * Raise priority if scanning rate is too low or there was no
3018 * progress in reclaiming pages
3019 */
3020 if (raise_priority || !sc.nr_reclaimed)
3021 sc.priority--;
3022 } while (sc.priority >= 1 &&
3023 !pgdat_balanced(pgdat, order, *classzone_idx));
3024
3025out:
3026 /*
3027 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3028 * makes a decision on the order we were last reclaiming at. However,
3029 * if another caller entered the allocator slow path while kswapd
3030 * was awake, order will remain at the higher level
3031 */
3032 *classzone_idx = end_zone;
3033 return order;
3034}
3035
3036static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3037{
3038 long remaining = 0;
3039 DEFINE_WAIT(wait);
3040
3041 if (freezing(current) || kthread_should_stop())
3042 return;
3043
3044 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3045
3046 /* Try to sleep for a short interval */
3047 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3048 remaining = schedule_timeout(HZ/10);
3049 finish_wait(&pgdat->kswapd_wait, &wait);
3050 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3051 }
3052
3053 /*
3054 * After a short sleep, check if it was a premature sleep. If not, then
3055 * go fully to sleep until explicitly woken up.
3056 */
3057 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3058 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3059
3060 /*
3061 * vmstat counters are not perfectly accurate and the estimated
3062 * value for counters such as NR_FREE_PAGES can deviate from the
3063 * true value by nr_online_cpus * threshold. To avoid the zone
3064 * watermarks being breached while under pressure, we reduce the
3065 * per-cpu vmstat threshold while kswapd is awake and restore
3066 * them before going back to sleep.
3067 */
3068 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3069
3070 /*
3071 * Compaction records what page blocks it recently failed to
3072 * isolate pages from and skips them in the future scanning.
3073 * When kswapd is going to sleep, it is reasonable to assume
3074 * that pages and compaction may succeed so reset the cache.
3075 */
3076 reset_isolation_suitable(pgdat);
3077
3078 if (!kthread_should_stop())
3079 schedule();
3080
3081 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3082 } else {
3083 if (remaining)
3084 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3085 else
3086 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3087 }
3088 finish_wait(&pgdat->kswapd_wait, &wait);
3089}
3090
3091/*
3092 * The background pageout daemon, started as a kernel thread
3093 * from the init process.
3094 *
3095 * This basically trickles out pages so that we have _some_
3096 * free memory available even if there is no other activity
3097 * that frees anything up. This is needed for things like routing
3098 * etc, where we otherwise might have all activity going on in
3099 * asynchronous contexts that cannot page things out.
3100 *
3101 * If there are applications that are active memory-allocators
3102 * (most normal use), this basically shouldn't matter.
3103 */
3104static int kswapd(void *p)
3105{
3106 unsigned long order, new_order;
3107 unsigned balanced_order;
3108 int classzone_idx, new_classzone_idx;
3109 int balanced_classzone_idx;
3110 pg_data_t *pgdat = (pg_data_t*)p;
3111 struct task_struct *tsk = current;
3112
3113 struct reclaim_state reclaim_state = {
3114 .reclaimed_slab = 0,
3115 };
3116 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3117
3118 lockdep_set_current_reclaim_state(GFP_KERNEL);
3119
3120 if (!cpumask_empty(cpumask))
3121 set_cpus_allowed_ptr(tsk, cpumask);
3122 current->reclaim_state = &reclaim_state;
3123
3124 /*
3125 * Tell the memory management that we're a "memory allocator",
3126 * and that if we need more memory we should get access to it
3127 * regardless (see "__alloc_pages()"). "kswapd" should
3128 * never get caught in the normal page freeing logic.
3129 *
3130 * (Kswapd normally doesn't need memory anyway, but sometimes
3131 * you need a small amount of memory in order to be able to
3132 * page out something else, and this flag essentially protects
3133 * us from recursively trying to free more memory as we're
3134 * trying to free the first piece of memory in the first place).
3135 */
3136 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3137 set_freezable();
3138
3139 order = new_order = 0;
3140 balanced_order = 0;
3141 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3142 balanced_classzone_idx = classzone_idx;
3143 for ( ; ; ) {
3144 bool ret;
3145
3146 /*
3147 * If the last balance_pgdat was unsuccessful it's unlikely a
3148 * new request of a similar or harder type will succeed soon
3149 * so consider going to sleep on the basis we reclaimed at
3150 */
3151 if (balanced_classzone_idx >= new_classzone_idx &&
3152 balanced_order == new_order) {
3153 new_order = pgdat->kswapd_max_order;
3154 new_classzone_idx = pgdat->classzone_idx;
3155 pgdat->kswapd_max_order = 0;
3156 pgdat->classzone_idx = pgdat->nr_zones - 1;
3157 }
3158
3159 if (order < new_order || classzone_idx > new_classzone_idx) {
3160 /*
3161 * Don't sleep if someone wants a larger 'order'
3162 * allocation or has tigher zone constraints
3163 */
3164 order = new_order;
3165 classzone_idx = new_classzone_idx;
3166 } else {
3167 kswapd_try_to_sleep(pgdat, balanced_order,
3168 balanced_classzone_idx);
3169 order = pgdat->kswapd_max_order;
3170 classzone_idx = pgdat->classzone_idx;
3171 new_order = order;
3172 new_classzone_idx = classzone_idx;
3173 pgdat->kswapd_max_order = 0;
3174 pgdat->classzone_idx = pgdat->nr_zones - 1;
3175 }
3176
3177 ret = try_to_freeze();
3178 if (kthread_should_stop())
3179 break;
3180
3181 /*
3182 * We can speed up thawing tasks if we don't call balance_pgdat
3183 * after returning from the refrigerator
3184 */
3185 if (!ret) {
3186 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3187 balanced_classzone_idx = classzone_idx;
3188 balanced_order = balance_pgdat(pgdat, order,
3189 &balanced_classzone_idx);
3190 }
3191 }
3192
3193 current->reclaim_state = NULL;
3194 return 0;
3195}
3196
3197/*
3198 * A zone is low on free memory, so wake its kswapd task to service it.
3199 */
3200void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3201{
3202 pg_data_t *pgdat;
3203
3204 if (!populated_zone(zone))
3205 return;
3206
3207 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3208 return;
3209 pgdat = zone->zone_pgdat;
3210 if (pgdat->kswapd_max_order < order) {
3211 pgdat->kswapd_max_order = order;
3212 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3213 }
3214 if (!waitqueue_active(&pgdat->kswapd_wait))
3215 return;
3216 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3217 return;
3218
3219 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3220 wake_up_interruptible(&pgdat->kswapd_wait);
3221}
3222
3223/*
3224 * The reclaimable count would be mostly accurate.
3225 * The less reclaimable pages may be
3226 * - mlocked pages, which will be moved to unevictable list when encountered
3227 * - mapped pages, which may require several travels to be reclaimed
3228 * - dirty pages, which is not "instantly" reclaimable
3229 */
3230unsigned long global_reclaimable_pages(void)
3231{
3232 int nr;
3233
3234 nr = global_page_state(NR_ACTIVE_FILE) +
3235 global_page_state(NR_INACTIVE_FILE);
3236
3237 if (get_nr_swap_pages() > 0)
3238 nr += global_page_state(NR_ACTIVE_ANON) +
3239 global_page_state(NR_INACTIVE_ANON);
3240
3241 return nr;
3242}
3243
3244unsigned long zone_reclaimable_pages(struct zone *zone)
3245{
3246 int nr;
3247
3248 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3249 zone_page_state(zone, NR_INACTIVE_FILE);
3250
3251 if (get_nr_swap_pages() > 0)
3252 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3253 zone_page_state(zone, NR_INACTIVE_ANON);
3254
3255 return nr;
3256}
3257
3258#ifdef CONFIG_HIBERNATION
3259/*
3260 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3261 * freed pages.
3262 *
3263 * Rather than trying to age LRUs the aim is to preserve the overall
3264 * LRU order by reclaiming preferentially
3265 * inactive > active > active referenced > active mapped
3266 */
3267unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3268{
3269 struct reclaim_state reclaim_state;
3270 struct scan_control sc = {
3271 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3272 .may_swap = 1,
3273 .may_unmap = 1,
3274 .may_writepage = 1,
3275 .nr_to_reclaim = nr_to_reclaim,
3276 .hibernation_mode = 1,
3277 .order = 0,
3278 .priority = DEF_PRIORITY,
3279 };
3280 struct shrink_control shrink = {
3281 .gfp_mask = sc.gfp_mask,
3282 };
3283 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3284 struct task_struct *p = current;
3285 unsigned long nr_reclaimed;
3286
3287 p->flags |= PF_MEMALLOC;
3288 lockdep_set_current_reclaim_state(sc.gfp_mask);
3289 reclaim_state.reclaimed_slab = 0;
3290 p->reclaim_state = &reclaim_state;
3291
3292 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3293
3294 p->reclaim_state = NULL;
3295 lockdep_clear_current_reclaim_state();
3296 p->flags &= ~PF_MEMALLOC;
3297
3298 return nr_reclaimed;
3299}
3300#endif /* CONFIG_HIBERNATION */
3301
3302/* It's optimal to keep kswapds on the same CPUs as their memory, but
3303 not required for correctness. So if the last cpu in a node goes
3304 away, we get changed to run anywhere: as the first one comes back,
3305 restore their cpu bindings. */
3306static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3307 void *hcpu)
3308{
3309 int nid;
3310
3311 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3312 for_each_node_state(nid, N_MEMORY) {
3313 pg_data_t *pgdat = NODE_DATA(nid);
3314 const struct cpumask *mask;
3315
3316 mask = cpumask_of_node(pgdat->node_id);
3317
3318 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3319 /* One of our CPUs online: restore mask */
3320 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3321 }
3322 }
3323 return NOTIFY_OK;
3324}
3325
3326/*
3327 * This kswapd start function will be called by init and node-hot-add.
3328 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3329 */
3330int kswapd_run(int nid)
3331{
3332 pg_data_t *pgdat = NODE_DATA(nid);
3333 int ret = 0;
3334
3335 if (pgdat->kswapd)
3336 return 0;
3337
3338 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3339 if (IS_ERR(pgdat->kswapd)) {
3340 /* failure at boot is fatal */
3341 BUG_ON(system_state == SYSTEM_BOOTING);
3342 pr_err("Failed to start kswapd on node %d\n", nid);
3343 ret = PTR_ERR(pgdat->kswapd);
3344 pgdat->kswapd = NULL;
3345 }
3346 return ret;
3347}
3348
3349/*
3350 * Called by memory hotplug when all memory in a node is offlined. Caller must
3351 * hold lock_memory_hotplug().
3352 */
3353void kswapd_stop(int nid)
3354{
3355 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3356
3357 if (kswapd) {
3358 kthread_stop(kswapd);
3359 NODE_DATA(nid)->kswapd = NULL;
3360 }
3361}
3362
3363static int __init kswapd_init(void)
3364{
3365 int nid;
3366
3367 swap_setup();
3368 for_each_node_state(nid, N_MEMORY)
3369 kswapd_run(nid);
3370 hotcpu_notifier(cpu_callback, 0);
3371 return 0;
3372}
3373
3374module_init(kswapd_init)
3375
3376#ifdef CONFIG_NUMA
3377/*
3378 * Zone reclaim mode
3379 *
3380 * If non-zero call zone_reclaim when the number of free pages falls below
3381 * the watermarks.
3382 */
3383int zone_reclaim_mode __read_mostly;
3384
3385#define RECLAIM_OFF 0
3386#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3387#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3388#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3389
3390/*
3391 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3392 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3393 * a zone.
3394 */
3395#define ZONE_RECLAIM_PRIORITY 4
3396
3397/*
3398 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3399 * occur.
3400 */
3401int sysctl_min_unmapped_ratio = 1;
3402
3403/*
3404 * If the number of slab pages in a zone grows beyond this percentage then
3405 * slab reclaim needs to occur.
3406 */
3407int sysctl_min_slab_ratio = 5;
3408
3409static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3410{
3411 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3412 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3413 zone_page_state(zone, NR_ACTIVE_FILE);
3414
3415 /*
3416 * It's possible for there to be more file mapped pages than
3417 * accounted for by the pages on the file LRU lists because
3418 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3419 */
3420 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3421}
3422
3423/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3424static long zone_pagecache_reclaimable(struct zone *zone)
3425{
3426 long nr_pagecache_reclaimable;
3427 long delta = 0;
3428
3429 /*
3430 * If RECLAIM_SWAP is set, then all file pages are considered
3431 * potentially reclaimable. Otherwise, we have to worry about
3432 * pages like swapcache and zone_unmapped_file_pages() provides
3433 * a better estimate
3434 */
3435 if (zone_reclaim_mode & RECLAIM_SWAP)
3436 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3437 else
3438 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3439
3440 /* If we can't clean pages, remove dirty pages from consideration */
3441 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3442 delta += zone_page_state(zone, NR_FILE_DIRTY);
3443
3444 /* Watch for any possible underflows due to delta */
3445 if (unlikely(delta > nr_pagecache_reclaimable))
3446 delta = nr_pagecache_reclaimable;
3447
3448 return nr_pagecache_reclaimable - delta;
3449}
3450
3451/*
3452 * Try to free up some pages from this zone through reclaim.
3453 */
3454static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3455{
3456 /* Minimum pages needed in order to stay on node */
3457 const unsigned long nr_pages = 1 << order;
3458 struct task_struct *p = current;
3459 struct reclaim_state reclaim_state;
3460 struct scan_control sc = {
3461 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3462 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3463 .may_swap = 1,
3464 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3465 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3466 .order = order,
3467 .priority = ZONE_RECLAIM_PRIORITY,
3468 };
3469 struct shrink_control shrink = {
3470 .gfp_mask = sc.gfp_mask,
3471 };
3472 unsigned long nr_slab_pages0, nr_slab_pages1;
3473
3474 cond_resched();
3475 /*
3476 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3477 * and we also need to be able to write out pages for RECLAIM_WRITE
3478 * and RECLAIM_SWAP.
3479 */
3480 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3481 lockdep_set_current_reclaim_state(gfp_mask);
3482 reclaim_state.reclaimed_slab = 0;
3483 p->reclaim_state = &reclaim_state;
3484
3485 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3486 /*
3487 * Free memory by calling shrink zone with increasing
3488 * priorities until we have enough memory freed.
3489 */
3490 do {
3491 shrink_zone(zone, &sc);
3492 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3493 }
3494
3495 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3496 if (nr_slab_pages0 > zone->min_slab_pages) {
3497 /*
3498 * shrink_slab() does not currently allow us to determine how
3499 * many pages were freed in this zone. So we take the current
3500 * number of slab pages and shake the slab until it is reduced
3501 * by the same nr_pages that we used for reclaiming unmapped
3502 * pages.
3503 *
3504 * Note that shrink_slab will free memory on all zones and may
3505 * take a long time.
3506 */
3507 for (;;) {
3508 unsigned long lru_pages = zone_reclaimable_pages(zone);
3509
3510 /* No reclaimable slab or very low memory pressure */
3511 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3512 break;
3513
3514 /* Freed enough memory */
3515 nr_slab_pages1 = zone_page_state(zone,
3516 NR_SLAB_RECLAIMABLE);
3517 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3518 break;
3519 }
3520
3521 /*
3522 * Update nr_reclaimed by the number of slab pages we
3523 * reclaimed from this zone.
3524 */
3525 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3526 if (nr_slab_pages1 < nr_slab_pages0)
3527 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3528 }
3529
3530 p->reclaim_state = NULL;
3531 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3532 lockdep_clear_current_reclaim_state();
3533 return sc.nr_reclaimed >= nr_pages;
3534}
3535
3536int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3537{
3538 int node_id;
3539 int ret;
3540
3541 /*
3542 * Zone reclaim reclaims unmapped file backed pages and
3543 * slab pages if we are over the defined limits.
3544 *
3545 * A small portion of unmapped file backed pages is needed for
3546 * file I/O otherwise pages read by file I/O will be immediately
3547 * thrown out if the zone is overallocated. So we do not reclaim
3548 * if less than a specified percentage of the zone is used by
3549 * unmapped file backed pages.
3550 */
3551 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3552 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3553 return ZONE_RECLAIM_FULL;
3554
3555 if (zone->all_unreclaimable)
3556 return ZONE_RECLAIM_FULL;
3557
3558 /*
3559 * Do not scan if the allocation should not be delayed.
3560 */
3561 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3562 return ZONE_RECLAIM_NOSCAN;
3563
3564 /*
3565 * Only run zone reclaim on the local zone or on zones that do not
3566 * have associated processors. This will favor the local processor
3567 * over remote processors and spread off node memory allocations
3568 * as wide as possible.
3569 */
3570 node_id = zone_to_nid(zone);
3571 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3572 return ZONE_RECLAIM_NOSCAN;
3573
3574 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3575 return ZONE_RECLAIM_NOSCAN;
3576
3577 ret = __zone_reclaim(zone, gfp_mask, order);
3578 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3579
3580 if (!ret)
3581 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3582
3583 return ret;
3584}
3585#endif
3586
3587/*
3588 * page_evictable - test whether a page is evictable
3589 * @page: the page to test
3590 *
3591 * Test whether page is evictable--i.e., should be placed on active/inactive
3592 * lists vs unevictable list.
3593 *
3594 * Reasons page might not be evictable:
3595 * (1) page's mapping marked unevictable
3596 * (2) page is part of an mlocked VMA
3597 *
3598 */
3599int page_evictable(struct page *page)
3600{
3601 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3602}
3603
3604#ifdef CONFIG_SHMEM
3605/**
3606 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3607 * @pages: array of pages to check
3608 * @nr_pages: number of pages to check
3609 *
3610 * Checks pages for evictability and moves them to the appropriate lru list.
3611 *
3612 * This function is only used for SysV IPC SHM_UNLOCK.
3613 */
3614void check_move_unevictable_pages(struct page **pages, int nr_pages)
3615{
3616 struct lruvec *lruvec;
3617 struct zone *zone = NULL;
3618 int pgscanned = 0;
3619 int pgrescued = 0;
3620 int i;
3621
3622 for (i = 0; i < nr_pages; i++) {
3623 struct page *page = pages[i];
3624 struct zone *pagezone;
3625
3626 pgscanned++;
3627 pagezone = page_zone(page);
3628 if (pagezone != zone) {
3629 if (zone)
3630 spin_unlock_irq(&zone->lru_lock);
3631 zone = pagezone;
3632 spin_lock_irq(&zone->lru_lock);
3633 }
3634 lruvec = mem_cgroup_page_lruvec(page, zone);
3635
3636 if (!PageLRU(page) || !PageUnevictable(page))
3637 continue;
3638
3639 if (page_evictable(page)) {
3640 enum lru_list lru = page_lru_base_type(page);
3641
3642 VM_BUG_ON(PageActive(page));
3643 ClearPageUnevictable(page);
3644 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3645 add_page_to_lru_list(page, lruvec, lru);
3646 pgrescued++;
3647 }
3648 }
3649
3650 if (zone) {
3651 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3652 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3653 spin_unlock_irq(&zone->lru_lock);
3654 }
3655}
3656#endif /* CONFIG_SHMEM */
3657
3658static void warn_scan_unevictable_pages(void)
3659{
3660 printk_once(KERN_WARNING
3661 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3662 "disabled for lack of a legitimate use case. If you have "
3663 "one, please send an email to linux-mm@kvack.org.\n",
3664 current->comm);
3665}
3666
3667/*
3668 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3669 * all nodes' unevictable lists for evictable pages
3670 */
3671unsigned long scan_unevictable_pages;
3672
3673int scan_unevictable_handler(struct ctl_table *table, int write,
3674 void __user *buffer,
3675 size_t *length, loff_t *ppos)
3676{
3677 warn_scan_unevictable_pages();
3678 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3679 scan_unevictable_pages = 0;
3680 return 0;
3681}
3682
3683#ifdef CONFIG_NUMA
3684/*
3685 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3686 * a specified node's per zone unevictable lists for evictable pages.
3687 */
3688
3689static ssize_t read_scan_unevictable_node(struct device *dev,
3690 struct device_attribute *attr,
3691 char *buf)
3692{
3693 warn_scan_unevictable_pages();
3694 return sprintf(buf, "0\n"); /* always zero; should fit... */
3695}
3696
3697static ssize_t write_scan_unevictable_node(struct device *dev,
3698 struct device_attribute *attr,
3699 const char *buf, size_t count)
3700{
3701 warn_scan_unevictable_pages();
3702 return 1;
3703}
3704
3705
3706static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3707 read_scan_unevictable_node,
3708 write_scan_unevictable_node);
3709
3710int scan_unevictable_register_node(struct node *node)
3711{
3712 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3713}
3714
3715void scan_unevictable_unregister_node(struct node *node)
3716{
3717 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3718}
3719#endif