]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
4 | * | |
5 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
6 | * kswapd added: 7.1.96 sct | |
7 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
8 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
9 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | |
10 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
11 | */ | |
12 | ||
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
14 | ||
15 | #include <linux/mm.h> | |
16 | #include <linux/sched/mm.h> | |
17 | #include <linux/module.h> | |
18 | #include <linux/gfp.h> | |
19 | #include <linux/kernel_stat.h> | |
20 | #include <linux/swap.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/init.h> | |
23 | #include <linux/highmem.h> | |
24 | #include <linux/vmpressure.h> | |
25 | #include <linux/vmstat.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/writeback.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
30 | buffer_heads_over_limit */ | |
31 | #include <linux/mm_inline.h> | |
32 | #include <linux/backing-dev.h> | |
33 | #include <linux/rmap.h> | |
34 | #include <linux/topology.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/cpuset.h> | |
37 | #include <linux/compaction.h> | |
38 | #include <linux/notifier.h> | |
39 | #include <linux/rwsem.h> | |
40 | #include <linux/delay.h> | |
41 | #include <linux/kthread.h> | |
42 | #include <linux/freezer.h> | |
43 | #include <linux/memcontrol.h> | |
44 | #include <linux/migrate.h> | |
45 | #include <linux/delayacct.h> | |
46 | #include <linux/sysctl.h> | |
47 | #include <linux/oom.h> | |
48 | #include <linux/pagevec.h> | |
49 | #include <linux/prefetch.h> | |
50 | #include <linux/printk.h> | |
51 | #include <linux/dax.h> | |
52 | #include <linux/psi.h> | |
53 | ||
54 | #include <asm/tlbflush.h> | |
55 | #include <asm/div64.h> | |
56 | ||
57 | #include <linux/swapops.h> | |
58 | #include <linux/balloon_compaction.h> | |
59 | ||
60 | #include "internal.h" | |
61 | ||
62 | #define CREATE_TRACE_POINTS | |
63 | #include <trace/events/vmscan.h> | |
64 | ||
65 | struct scan_control { | |
66 | /* How many pages shrink_list() should reclaim */ | |
67 | unsigned long nr_to_reclaim; | |
68 | ||
69 | /* | |
70 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
71 | * are scanned. | |
72 | */ | |
73 | nodemask_t *nodemask; | |
74 | ||
75 | /* | |
76 | * The memory cgroup that hit its limit and as a result is the | |
77 | * primary target of this reclaim invocation. | |
78 | */ | |
79 | struct mem_cgroup *target_mem_cgroup; | |
80 | ||
81 | /* | |
82 | * Scan pressure balancing between anon and file LRUs | |
83 | */ | |
84 | unsigned long anon_cost; | |
85 | unsigned long file_cost; | |
86 | ||
87 | /* Can active pages be deactivated as part of reclaim? */ | |
88 | #define DEACTIVATE_ANON 1 | |
89 | #define DEACTIVATE_FILE 2 | |
90 | unsigned int may_deactivate:2; | |
91 | unsigned int force_deactivate:1; | |
92 | unsigned int skipped_deactivate:1; | |
93 | ||
94 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ | |
95 | unsigned int may_writepage:1; | |
96 | ||
97 | /* Can mapped pages be reclaimed? */ | |
98 | unsigned int may_unmap:1; | |
99 | ||
100 | /* Can pages be swapped as part of reclaim? */ | |
101 | unsigned int may_swap:1; | |
102 | ||
103 | /* | |
104 | * Cgroup memory below memory.low is protected as long as we | |
105 | * don't threaten to OOM. If any cgroup is reclaimed at | |
106 | * reduced force or passed over entirely due to its memory.low | |
107 | * setting (memcg_low_skipped), and nothing is reclaimed as a | |
108 | * result, then go back for one more cycle that reclaims the protected | |
109 | * memory (memcg_low_reclaim) to avert OOM. | |
110 | */ | |
111 | unsigned int memcg_low_reclaim:1; | |
112 | unsigned int memcg_low_skipped:1; | |
113 | ||
114 | unsigned int hibernation_mode:1; | |
115 | ||
116 | /* One of the zones is ready for compaction */ | |
117 | unsigned int compaction_ready:1; | |
118 | ||
119 | /* There is easily reclaimable cold cache in the current node */ | |
120 | unsigned int cache_trim_mode:1; | |
121 | ||
122 | /* The file pages on the current node are dangerously low */ | |
123 | unsigned int file_is_tiny:1; | |
124 | ||
125 | /* Always discard instead of demoting to lower tier memory */ | |
126 | unsigned int no_demotion:1; | |
127 | ||
128 | /* Allocation order */ | |
129 | s8 order; | |
130 | ||
131 | /* Scan (total_size >> priority) pages at once */ | |
132 | s8 priority; | |
133 | ||
134 | /* The highest zone to isolate pages for reclaim from */ | |
135 | s8 reclaim_idx; | |
136 | ||
137 | /* This context's GFP mask */ | |
138 | gfp_t gfp_mask; | |
139 | ||
140 | /* Incremented by the number of inactive pages that were scanned */ | |
141 | unsigned long nr_scanned; | |
142 | ||
143 | /* Number of pages freed so far during a call to shrink_zones() */ | |
144 | unsigned long nr_reclaimed; | |
145 | ||
146 | struct { | |
147 | unsigned int dirty; | |
148 | unsigned int unqueued_dirty; | |
149 | unsigned int congested; | |
150 | unsigned int writeback; | |
151 | unsigned int immediate; | |
152 | unsigned int file_taken; | |
153 | unsigned int taken; | |
154 | } nr; | |
155 | ||
156 | /* for recording the reclaimed slab by now */ | |
157 | struct reclaim_state reclaim_state; | |
158 | }; | |
159 | ||
160 | #ifdef ARCH_HAS_PREFETCHW | |
161 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
162 | do { \ | |
163 | if ((_page)->lru.prev != _base) { \ | |
164 | struct page *prev; \ | |
165 | \ | |
166 | prev = lru_to_page(&(_page->lru)); \ | |
167 | prefetchw(&prev->_field); \ | |
168 | } \ | |
169 | } while (0) | |
170 | #else | |
171 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
172 | #endif | |
173 | ||
174 | /* | |
175 | * From 0 .. 200. Higher means more swappy. | |
176 | */ | |
177 | int vm_swappiness = 60; | |
178 | ||
179 | static void set_task_reclaim_state(struct task_struct *task, | |
180 | struct reclaim_state *rs) | |
181 | { | |
182 | /* Check for an overwrite */ | |
183 | WARN_ON_ONCE(rs && task->reclaim_state); | |
184 | ||
185 | /* Check for the nulling of an already-nulled member */ | |
186 | WARN_ON_ONCE(!rs && !task->reclaim_state); | |
187 | ||
188 | task->reclaim_state = rs; | |
189 | } | |
190 | ||
191 | static LIST_HEAD(shrinker_list); | |
192 | static DECLARE_RWSEM(shrinker_rwsem); | |
193 | ||
194 | #ifdef CONFIG_MEMCG | |
195 | static int shrinker_nr_max; | |
196 | ||
197 | /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ | |
198 | static inline int shrinker_map_size(int nr_items) | |
199 | { | |
200 | return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); | |
201 | } | |
202 | ||
203 | static inline int shrinker_defer_size(int nr_items) | |
204 | { | |
205 | return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); | |
206 | } | |
207 | ||
208 | static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, | |
209 | int nid) | |
210 | { | |
211 | return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, | |
212 | lockdep_is_held(&shrinker_rwsem)); | |
213 | } | |
214 | ||
215 | static int expand_one_shrinker_info(struct mem_cgroup *memcg, | |
216 | int map_size, int defer_size, | |
217 | int old_map_size, int old_defer_size) | |
218 | { | |
219 | struct shrinker_info *new, *old; | |
220 | struct mem_cgroup_per_node *pn; | |
221 | int nid; | |
222 | int size = map_size + defer_size; | |
223 | ||
224 | for_each_node(nid) { | |
225 | pn = memcg->nodeinfo[nid]; | |
226 | old = shrinker_info_protected(memcg, nid); | |
227 | /* Not yet online memcg */ | |
228 | if (!old) | |
229 | return 0; | |
230 | ||
231 | new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); | |
232 | if (!new) | |
233 | return -ENOMEM; | |
234 | ||
235 | new->nr_deferred = (atomic_long_t *)(new + 1); | |
236 | new->map = (void *)new->nr_deferred + defer_size; | |
237 | ||
238 | /* map: set all old bits, clear all new bits */ | |
239 | memset(new->map, (int)0xff, old_map_size); | |
240 | memset((void *)new->map + old_map_size, 0, map_size - old_map_size); | |
241 | /* nr_deferred: copy old values, clear all new values */ | |
242 | memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); | |
243 | memset((void *)new->nr_deferred + old_defer_size, 0, | |
244 | defer_size - old_defer_size); | |
245 | ||
246 | rcu_assign_pointer(pn->shrinker_info, new); | |
247 | kvfree_rcu(old, rcu); | |
248 | } | |
249 | ||
250 | return 0; | |
251 | } | |
252 | ||
253 | void free_shrinker_info(struct mem_cgroup *memcg) | |
254 | { | |
255 | struct mem_cgroup_per_node *pn; | |
256 | struct shrinker_info *info; | |
257 | int nid; | |
258 | ||
259 | for_each_node(nid) { | |
260 | pn = memcg->nodeinfo[nid]; | |
261 | info = rcu_dereference_protected(pn->shrinker_info, true); | |
262 | kvfree(info); | |
263 | rcu_assign_pointer(pn->shrinker_info, NULL); | |
264 | } | |
265 | } | |
266 | ||
267 | int alloc_shrinker_info(struct mem_cgroup *memcg) | |
268 | { | |
269 | struct shrinker_info *info; | |
270 | int nid, size, ret = 0; | |
271 | int map_size, defer_size = 0; | |
272 | ||
273 | down_write(&shrinker_rwsem); | |
274 | map_size = shrinker_map_size(shrinker_nr_max); | |
275 | defer_size = shrinker_defer_size(shrinker_nr_max); | |
276 | size = map_size + defer_size; | |
277 | for_each_node(nid) { | |
278 | info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); | |
279 | if (!info) { | |
280 | free_shrinker_info(memcg); | |
281 | ret = -ENOMEM; | |
282 | break; | |
283 | } | |
284 | info->nr_deferred = (atomic_long_t *)(info + 1); | |
285 | info->map = (void *)info->nr_deferred + defer_size; | |
286 | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); | |
287 | } | |
288 | up_write(&shrinker_rwsem); | |
289 | ||
290 | return ret; | |
291 | } | |
292 | ||
293 | static inline bool need_expand(int nr_max) | |
294 | { | |
295 | return round_up(nr_max, BITS_PER_LONG) > | |
296 | round_up(shrinker_nr_max, BITS_PER_LONG); | |
297 | } | |
298 | ||
299 | static int expand_shrinker_info(int new_id) | |
300 | { | |
301 | int ret = 0; | |
302 | int new_nr_max = new_id + 1; | |
303 | int map_size, defer_size = 0; | |
304 | int old_map_size, old_defer_size = 0; | |
305 | struct mem_cgroup *memcg; | |
306 | ||
307 | if (!need_expand(new_nr_max)) | |
308 | goto out; | |
309 | ||
310 | if (!root_mem_cgroup) | |
311 | goto out; | |
312 | ||
313 | lockdep_assert_held(&shrinker_rwsem); | |
314 | ||
315 | map_size = shrinker_map_size(new_nr_max); | |
316 | defer_size = shrinker_defer_size(new_nr_max); | |
317 | old_map_size = shrinker_map_size(shrinker_nr_max); | |
318 | old_defer_size = shrinker_defer_size(shrinker_nr_max); | |
319 | ||
320 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
321 | do { | |
322 | ret = expand_one_shrinker_info(memcg, map_size, defer_size, | |
323 | old_map_size, old_defer_size); | |
324 | if (ret) { | |
325 | mem_cgroup_iter_break(NULL, memcg); | |
326 | goto out; | |
327 | } | |
328 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
329 | out: | |
330 | if (!ret) | |
331 | shrinker_nr_max = new_nr_max; | |
332 | ||
333 | return ret; | |
334 | } | |
335 | ||
336 | void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) | |
337 | { | |
338 | if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { | |
339 | struct shrinker_info *info; | |
340 | ||
341 | rcu_read_lock(); | |
342 | info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); | |
343 | /* Pairs with smp mb in shrink_slab() */ | |
344 | smp_mb__before_atomic(); | |
345 | set_bit(shrinker_id, info->map); | |
346 | rcu_read_unlock(); | |
347 | } | |
348 | } | |
349 | ||
350 | static DEFINE_IDR(shrinker_idr); | |
351 | ||
352 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | |
353 | { | |
354 | int id, ret = -ENOMEM; | |
355 | ||
356 | if (mem_cgroup_disabled()) | |
357 | return -ENOSYS; | |
358 | ||
359 | down_write(&shrinker_rwsem); | |
360 | /* This may call shrinker, so it must use down_read_trylock() */ | |
361 | id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); | |
362 | if (id < 0) | |
363 | goto unlock; | |
364 | ||
365 | if (id >= shrinker_nr_max) { | |
366 | if (expand_shrinker_info(id)) { | |
367 | idr_remove(&shrinker_idr, id); | |
368 | goto unlock; | |
369 | } | |
370 | } | |
371 | shrinker->id = id; | |
372 | ret = 0; | |
373 | unlock: | |
374 | up_write(&shrinker_rwsem); | |
375 | return ret; | |
376 | } | |
377 | ||
378 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
379 | { | |
380 | int id = shrinker->id; | |
381 | ||
382 | BUG_ON(id < 0); | |
383 | ||
384 | lockdep_assert_held(&shrinker_rwsem); | |
385 | ||
386 | idr_remove(&shrinker_idr, id); | |
387 | } | |
388 | ||
389 | static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, | |
390 | struct mem_cgroup *memcg) | |
391 | { | |
392 | struct shrinker_info *info; | |
393 | ||
394 | info = shrinker_info_protected(memcg, nid); | |
395 | return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); | |
396 | } | |
397 | ||
398 | static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, | |
399 | struct mem_cgroup *memcg) | |
400 | { | |
401 | struct shrinker_info *info; | |
402 | ||
403 | info = shrinker_info_protected(memcg, nid); | |
404 | return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); | |
405 | } | |
406 | ||
407 | void reparent_shrinker_deferred(struct mem_cgroup *memcg) | |
408 | { | |
409 | int i, nid; | |
410 | long nr; | |
411 | struct mem_cgroup *parent; | |
412 | struct shrinker_info *child_info, *parent_info; | |
413 | ||
414 | parent = parent_mem_cgroup(memcg); | |
415 | if (!parent) | |
416 | parent = root_mem_cgroup; | |
417 | ||
418 | /* Prevent from concurrent shrinker_info expand */ | |
419 | down_read(&shrinker_rwsem); | |
420 | for_each_node(nid) { | |
421 | child_info = shrinker_info_protected(memcg, nid); | |
422 | parent_info = shrinker_info_protected(parent, nid); | |
423 | for (i = 0; i < shrinker_nr_max; i++) { | |
424 | nr = atomic_long_read(&child_info->nr_deferred[i]); | |
425 | atomic_long_add(nr, &parent_info->nr_deferred[i]); | |
426 | } | |
427 | } | |
428 | up_read(&shrinker_rwsem); | |
429 | } | |
430 | ||
431 | static bool cgroup_reclaim(struct scan_control *sc) | |
432 | { | |
433 | return sc->target_mem_cgroup; | |
434 | } | |
435 | ||
436 | /** | |
437 | * writeback_throttling_sane - is the usual dirty throttling mechanism available? | |
438 | * @sc: scan_control in question | |
439 | * | |
440 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
441 | * completely broken with the legacy memcg and direct stalling in | |
442 | * shrink_page_list() is used for throttling instead, which lacks all the | |
443 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
444 | * allocation and configurability. | |
445 | * | |
446 | * This function tests whether the vmscan currently in progress can assume | |
447 | * that the normal dirty throttling mechanism is operational. | |
448 | */ | |
449 | static bool writeback_throttling_sane(struct scan_control *sc) | |
450 | { | |
451 | if (!cgroup_reclaim(sc)) | |
452 | return true; | |
453 | #ifdef CONFIG_CGROUP_WRITEBACK | |
454 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
455 | return true; | |
456 | #endif | |
457 | return false; | |
458 | } | |
459 | #else | |
460 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | |
461 | { | |
462 | return -ENOSYS; | |
463 | } | |
464 | ||
465 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
466 | { | |
467 | } | |
468 | ||
469 | static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, | |
470 | struct mem_cgroup *memcg) | |
471 | { | |
472 | return 0; | |
473 | } | |
474 | ||
475 | static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, | |
476 | struct mem_cgroup *memcg) | |
477 | { | |
478 | return 0; | |
479 | } | |
480 | ||
481 | static bool cgroup_reclaim(struct scan_control *sc) | |
482 | { | |
483 | return false; | |
484 | } | |
485 | ||
486 | static bool writeback_throttling_sane(struct scan_control *sc) | |
487 | { | |
488 | return true; | |
489 | } | |
490 | #endif | |
491 | ||
492 | static long xchg_nr_deferred(struct shrinker *shrinker, | |
493 | struct shrink_control *sc) | |
494 | { | |
495 | int nid = sc->nid; | |
496 | ||
497 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | |
498 | nid = 0; | |
499 | ||
500 | if (sc->memcg && | |
501 | (shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
502 | return xchg_nr_deferred_memcg(nid, shrinker, | |
503 | sc->memcg); | |
504 | ||
505 | return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
506 | } | |
507 | ||
508 | ||
509 | static long add_nr_deferred(long nr, struct shrinker *shrinker, | |
510 | struct shrink_control *sc) | |
511 | { | |
512 | int nid = sc->nid; | |
513 | ||
514 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | |
515 | nid = 0; | |
516 | ||
517 | if (sc->memcg && | |
518 | (shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
519 | return add_nr_deferred_memcg(nr, nid, shrinker, | |
520 | sc->memcg); | |
521 | ||
522 | return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); | |
523 | } | |
524 | ||
525 | static bool can_demote(int nid, struct scan_control *sc) | |
526 | { | |
527 | if (!numa_demotion_enabled) | |
528 | return false; | |
529 | if (sc) { | |
530 | if (sc->no_demotion) | |
531 | return false; | |
532 | /* It is pointless to do demotion in memcg reclaim */ | |
533 | if (cgroup_reclaim(sc)) | |
534 | return false; | |
535 | } | |
536 | if (next_demotion_node(nid) == NUMA_NO_NODE) | |
537 | return false; | |
538 | ||
539 | return true; | |
540 | } | |
541 | ||
542 | static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, | |
543 | int nid, | |
544 | struct scan_control *sc) | |
545 | { | |
546 | if (memcg == NULL) { | |
547 | /* | |
548 | * For non-memcg reclaim, is there | |
549 | * space in any swap device? | |
550 | */ | |
551 | if (get_nr_swap_pages() > 0) | |
552 | return true; | |
553 | } else { | |
554 | /* Is the memcg below its swap limit? */ | |
555 | if (mem_cgroup_get_nr_swap_pages(memcg) > 0) | |
556 | return true; | |
557 | } | |
558 | ||
559 | /* | |
560 | * The page can not be swapped. | |
561 | * | |
562 | * Can it be reclaimed from this node via demotion? | |
563 | */ | |
564 | return can_demote(nid, sc); | |
565 | } | |
566 | ||
567 | /* | |
568 | * This misses isolated pages which are not accounted for to save counters. | |
569 | * As the data only determines if reclaim or compaction continues, it is | |
570 | * not expected that isolated pages will be a dominating factor. | |
571 | */ | |
572 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
573 | { | |
574 | unsigned long nr; | |
575 | ||
576 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
577 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
578 | if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) | |
579 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | |
580 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
581 | ||
582 | return nr; | |
583 | } | |
584 | ||
585 | /** | |
586 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
587 | * @lruvec: lru vector | |
588 | * @lru: lru to use | |
589 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) | |
590 | */ | |
591 | static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, | |
592 | int zone_idx) | |
593 | { | |
594 | unsigned long size = 0; | |
595 | int zid; | |
596 | ||
597 | for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { | |
598 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; | |
599 | ||
600 | if (!managed_zone(zone)) | |
601 | continue; | |
602 | ||
603 | if (!mem_cgroup_disabled()) | |
604 | size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | |
605 | else | |
606 | size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); | |
607 | } | |
608 | return size; | |
609 | } | |
610 | ||
611 | /* | |
612 | * Add a shrinker callback to be called from the vm. | |
613 | */ | |
614 | int prealloc_shrinker(struct shrinker *shrinker) | |
615 | { | |
616 | unsigned int size; | |
617 | int err; | |
618 | ||
619 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { | |
620 | err = prealloc_memcg_shrinker(shrinker); | |
621 | if (err != -ENOSYS) | |
622 | return err; | |
623 | ||
624 | shrinker->flags &= ~SHRINKER_MEMCG_AWARE; | |
625 | } | |
626 | ||
627 | size = sizeof(*shrinker->nr_deferred); | |
628 | if (shrinker->flags & SHRINKER_NUMA_AWARE) | |
629 | size *= nr_node_ids; | |
630 | ||
631 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
632 | if (!shrinker->nr_deferred) | |
633 | return -ENOMEM; | |
634 | ||
635 | return 0; | |
636 | } | |
637 | ||
638 | void free_prealloced_shrinker(struct shrinker *shrinker) | |
639 | { | |
640 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { | |
641 | down_write(&shrinker_rwsem); | |
642 | unregister_memcg_shrinker(shrinker); | |
643 | up_write(&shrinker_rwsem); | |
644 | return; | |
645 | } | |
646 | ||
647 | kfree(shrinker->nr_deferred); | |
648 | shrinker->nr_deferred = NULL; | |
649 | } | |
650 | ||
651 | void register_shrinker_prepared(struct shrinker *shrinker) | |
652 | { | |
653 | down_write(&shrinker_rwsem); | |
654 | list_add_tail(&shrinker->list, &shrinker_list); | |
655 | shrinker->flags |= SHRINKER_REGISTERED; | |
656 | up_write(&shrinker_rwsem); | |
657 | } | |
658 | ||
659 | int register_shrinker(struct shrinker *shrinker) | |
660 | { | |
661 | int err = prealloc_shrinker(shrinker); | |
662 | ||
663 | if (err) | |
664 | return err; | |
665 | register_shrinker_prepared(shrinker); | |
666 | return 0; | |
667 | } | |
668 | EXPORT_SYMBOL(register_shrinker); | |
669 | ||
670 | /* | |
671 | * Remove one | |
672 | */ | |
673 | void unregister_shrinker(struct shrinker *shrinker) | |
674 | { | |
675 | if (!(shrinker->flags & SHRINKER_REGISTERED)) | |
676 | return; | |
677 | ||
678 | down_write(&shrinker_rwsem); | |
679 | list_del(&shrinker->list); | |
680 | shrinker->flags &= ~SHRINKER_REGISTERED; | |
681 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | |
682 | unregister_memcg_shrinker(shrinker); | |
683 | up_write(&shrinker_rwsem); | |
684 | ||
685 | kfree(shrinker->nr_deferred); | |
686 | shrinker->nr_deferred = NULL; | |
687 | } | |
688 | EXPORT_SYMBOL(unregister_shrinker); | |
689 | ||
690 | #define SHRINK_BATCH 128 | |
691 | ||
692 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, | |
693 | struct shrinker *shrinker, int priority) | |
694 | { | |
695 | unsigned long freed = 0; | |
696 | unsigned long long delta; | |
697 | long total_scan; | |
698 | long freeable; | |
699 | long nr; | |
700 | long new_nr; | |
701 | long batch_size = shrinker->batch ? shrinker->batch | |
702 | : SHRINK_BATCH; | |
703 | long scanned = 0, next_deferred; | |
704 | ||
705 | freeable = shrinker->count_objects(shrinker, shrinkctl); | |
706 | if (freeable == 0 || freeable == SHRINK_EMPTY) | |
707 | return freeable; | |
708 | ||
709 | /* | |
710 | * copy the current shrinker scan count into a local variable | |
711 | * and zero it so that other concurrent shrinker invocations | |
712 | * don't also do this scanning work. | |
713 | */ | |
714 | nr = xchg_nr_deferred(shrinker, shrinkctl); | |
715 | ||
716 | if (shrinker->seeks) { | |
717 | delta = freeable >> priority; | |
718 | delta *= 4; | |
719 | do_div(delta, shrinker->seeks); | |
720 | } else { | |
721 | /* | |
722 | * These objects don't require any IO to create. Trim | |
723 | * them aggressively under memory pressure to keep | |
724 | * them from causing refetches in the IO caches. | |
725 | */ | |
726 | delta = freeable / 2; | |
727 | } | |
728 | ||
729 | total_scan = nr >> priority; | |
730 | total_scan += delta; | |
731 | total_scan = min(total_scan, (2 * freeable)); | |
732 | ||
733 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
734 | freeable, delta, total_scan, priority); | |
735 | ||
736 | /* | |
737 | * Normally, we should not scan less than batch_size objects in one | |
738 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
739 | * than batch_size objects in total and we are really tight on memory, | |
740 | * we will try to reclaim all available objects, otherwise we can end | |
741 | * up failing allocations although there are plenty of reclaimable | |
742 | * objects spread over several slabs with usage less than the | |
743 | * batch_size. | |
744 | * | |
745 | * We detect the "tight on memory" situations by looking at the total | |
746 | * number of objects we want to scan (total_scan). If it is greater | |
747 | * than the total number of objects on slab (freeable), we must be | |
748 | * scanning at high prio and therefore should try to reclaim as much as | |
749 | * possible. | |
750 | */ | |
751 | while (total_scan >= batch_size || | |
752 | total_scan >= freeable) { | |
753 | unsigned long ret; | |
754 | unsigned long nr_to_scan = min(batch_size, total_scan); | |
755 | ||
756 | shrinkctl->nr_to_scan = nr_to_scan; | |
757 | shrinkctl->nr_scanned = nr_to_scan; | |
758 | ret = shrinker->scan_objects(shrinker, shrinkctl); | |
759 | if (ret == SHRINK_STOP) | |
760 | break; | |
761 | freed += ret; | |
762 | ||
763 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); | |
764 | total_scan -= shrinkctl->nr_scanned; | |
765 | scanned += shrinkctl->nr_scanned; | |
766 | ||
767 | cond_resched(); | |
768 | } | |
769 | ||
770 | /* | |
771 | * The deferred work is increased by any new work (delta) that wasn't | |
772 | * done, decreased by old deferred work that was done now. | |
773 | * | |
774 | * And it is capped to two times of the freeable items. | |
775 | */ | |
776 | next_deferred = max_t(long, (nr + delta - scanned), 0); | |
777 | next_deferred = min(next_deferred, (2 * freeable)); | |
778 | ||
779 | /* | |
780 | * move the unused scan count back into the shrinker in a | |
781 | * manner that handles concurrent updates. | |
782 | */ | |
783 | new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); | |
784 | ||
785 | trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); | |
786 | return freed; | |
787 | } | |
788 | ||
789 | #ifdef CONFIG_MEMCG | |
790 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | |
791 | struct mem_cgroup *memcg, int priority) | |
792 | { | |
793 | struct shrinker_info *info; | |
794 | unsigned long ret, freed = 0; | |
795 | int i; | |
796 | ||
797 | if (!mem_cgroup_online(memcg)) | |
798 | return 0; | |
799 | ||
800 | if (!down_read_trylock(&shrinker_rwsem)) | |
801 | return 0; | |
802 | ||
803 | info = shrinker_info_protected(memcg, nid); | |
804 | if (unlikely(!info)) | |
805 | goto unlock; | |
806 | ||
807 | for_each_set_bit(i, info->map, shrinker_nr_max) { | |
808 | struct shrink_control sc = { | |
809 | .gfp_mask = gfp_mask, | |
810 | .nid = nid, | |
811 | .memcg = memcg, | |
812 | }; | |
813 | struct shrinker *shrinker; | |
814 | ||
815 | shrinker = idr_find(&shrinker_idr, i); | |
816 | if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { | |
817 | if (!shrinker) | |
818 | clear_bit(i, info->map); | |
819 | continue; | |
820 | } | |
821 | ||
822 | /* Call non-slab shrinkers even though kmem is disabled */ | |
823 | if (!memcg_kmem_enabled() && | |
824 | !(shrinker->flags & SHRINKER_NONSLAB)) | |
825 | continue; | |
826 | ||
827 | ret = do_shrink_slab(&sc, shrinker, priority); | |
828 | if (ret == SHRINK_EMPTY) { | |
829 | clear_bit(i, info->map); | |
830 | /* | |
831 | * After the shrinker reported that it had no objects to | |
832 | * free, but before we cleared the corresponding bit in | |
833 | * the memcg shrinker map, a new object might have been | |
834 | * added. To make sure, we have the bit set in this | |
835 | * case, we invoke the shrinker one more time and reset | |
836 | * the bit if it reports that it is not empty anymore. | |
837 | * The memory barrier here pairs with the barrier in | |
838 | * set_shrinker_bit(): | |
839 | * | |
840 | * list_lru_add() shrink_slab_memcg() | |
841 | * list_add_tail() clear_bit() | |
842 | * <MB> <MB> | |
843 | * set_bit() do_shrink_slab() | |
844 | */ | |
845 | smp_mb__after_atomic(); | |
846 | ret = do_shrink_slab(&sc, shrinker, priority); | |
847 | if (ret == SHRINK_EMPTY) | |
848 | ret = 0; | |
849 | else | |
850 | set_shrinker_bit(memcg, nid, i); | |
851 | } | |
852 | freed += ret; | |
853 | ||
854 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
855 | freed = freed ? : 1; | |
856 | break; | |
857 | } | |
858 | } | |
859 | unlock: | |
860 | up_read(&shrinker_rwsem); | |
861 | return freed; | |
862 | } | |
863 | #else /* CONFIG_MEMCG */ | |
864 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | |
865 | struct mem_cgroup *memcg, int priority) | |
866 | { | |
867 | return 0; | |
868 | } | |
869 | #endif /* CONFIG_MEMCG */ | |
870 | ||
871 | /** | |
872 | * shrink_slab - shrink slab caches | |
873 | * @gfp_mask: allocation context | |
874 | * @nid: node whose slab caches to target | |
875 | * @memcg: memory cgroup whose slab caches to target | |
876 | * @priority: the reclaim priority | |
877 | * | |
878 | * Call the shrink functions to age shrinkable caches. | |
879 | * | |
880 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, | |
881 | * unaware shrinkers will receive a node id of 0 instead. | |
882 | * | |
883 | * @memcg specifies the memory cgroup to target. Unaware shrinkers | |
884 | * are called only if it is the root cgroup. | |
885 | * | |
886 | * @priority is sc->priority, we take the number of objects and >> by priority | |
887 | * in order to get the scan target. | |
888 | * | |
889 | * Returns the number of reclaimed slab objects. | |
890 | */ | |
891 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, | |
892 | struct mem_cgroup *memcg, | |
893 | int priority) | |
894 | { | |
895 | unsigned long ret, freed = 0; | |
896 | struct shrinker *shrinker; | |
897 | ||
898 | /* | |
899 | * The root memcg might be allocated even though memcg is disabled | |
900 | * via "cgroup_disable=memory" boot parameter. This could make | |
901 | * mem_cgroup_is_root() return false, then just run memcg slab | |
902 | * shrink, but skip global shrink. This may result in premature | |
903 | * oom. | |
904 | */ | |
905 | if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) | |
906 | return shrink_slab_memcg(gfp_mask, nid, memcg, priority); | |
907 | ||
908 | if (!down_read_trylock(&shrinker_rwsem)) | |
909 | goto out; | |
910 | ||
911 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
912 | struct shrink_control sc = { | |
913 | .gfp_mask = gfp_mask, | |
914 | .nid = nid, | |
915 | .memcg = memcg, | |
916 | }; | |
917 | ||
918 | ret = do_shrink_slab(&sc, shrinker, priority); | |
919 | if (ret == SHRINK_EMPTY) | |
920 | ret = 0; | |
921 | freed += ret; | |
922 | /* | |
923 | * Bail out if someone want to register a new shrinker to | |
924 | * prevent the registration from being stalled for long periods | |
925 | * by parallel ongoing shrinking. | |
926 | */ | |
927 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
928 | freed = freed ? : 1; | |
929 | break; | |
930 | } | |
931 | } | |
932 | ||
933 | up_read(&shrinker_rwsem); | |
934 | out: | |
935 | cond_resched(); | |
936 | return freed; | |
937 | } | |
938 | ||
939 | void drop_slab_node(int nid) | |
940 | { | |
941 | unsigned long freed; | |
942 | int shift = 0; | |
943 | ||
944 | do { | |
945 | struct mem_cgroup *memcg = NULL; | |
946 | ||
947 | if (fatal_signal_pending(current)) | |
948 | return; | |
949 | ||
950 | freed = 0; | |
951 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
952 | do { | |
953 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); | |
954 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
955 | } while ((freed >> shift++) > 1); | |
956 | } | |
957 | ||
958 | void drop_slab(void) | |
959 | { | |
960 | int nid; | |
961 | ||
962 | for_each_online_node(nid) | |
963 | drop_slab_node(nid); | |
964 | } | |
965 | ||
966 | static inline int is_page_cache_freeable(struct page *page) | |
967 | { | |
968 | /* | |
969 | * A freeable page cache page is referenced only by the caller | |
970 | * that isolated the page, the page cache and optional buffer | |
971 | * heads at page->private. | |
972 | */ | |
973 | int page_cache_pins = thp_nr_pages(page); | |
974 | return page_count(page) - page_has_private(page) == 1 + page_cache_pins; | |
975 | } | |
976 | ||
977 | static int may_write_to_inode(struct inode *inode) | |
978 | { | |
979 | if (current->flags & PF_SWAPWRITE) | |
980 | return 1; | |
981 | if (!inode_write_congested(inode)) | |
982 | return 1; | |
983 | if (inode_to_bdi(inode) == current->backing_dev_info) | |
984 | return 1; | |
985 | return 0; | |
986 | } | |
987 | ||
988 | /* | |
989 | * We detected a synchronous write error writing a page out. Probably | |
990 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
991 | * fsync(), msync() or close(). | |
992 | * | |
993 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
994 | * prevents it from being freed up. But we have a ref on the page and once | |
995 | * that page is locked, the mapping is pinned. | |
996 | * | |
997 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
998 | * __GFP_FS. | |
999 | */ | |
1000 | static void handle_write_error(struct address_space *mapping, | |
1001 | struct page *page, int error) | |
1002 | { | |
1003 | lock_page(page); | |
1004 | if (page_mapping(page) == mapping) | |
1005 | mapping_set_error(mapping, error); | |
1006 | unlock_page(page); | |
1007 | } | |
1008 | ||
1009 | /* possible outcome of pageout() */ | |
1010 | typedef enum { | |
1011 | /* failed to write page out, page is locked */ | |
1012 | PAGE_KEEP, | |
1013 | /* move page to the active list, page is locked */ | |
1014 | PAGE_ACTIVATE, | |
1015 | /* page has been sent to the disk successfully, page is unlocked */ | |
1016 | PAGE_SUCCESS, | |
1017 | /* page is clean and locked */ | |
1018 | PAGE_CLEAN, | |
1019 | } pageout_t; | |
1020 | ||
1021 | /* | |
1022 | * pageout is called by shrink_page_list() for each dirty page. | |
1023 | * Calls ->writepage(). | |
1024 | */ | |
1025 | static pageout_t pageout(struct page *page, struct address_space *mapping) | |
1026 | { | |
1027 | /* | |
1028 | * If the page is dirty, only perform writeback if that write | |
1029 | * will be non-blocking. To prevent this allocation from being | |
1030 | * stalled by pagecache activity. But note that there may be | |
1031 | * stalls if we need to run get_block(). We could test | |
1032 | * PagePrivate for that. | |
1033 | * | |
1034 | * If this process is currently in __generic_file_write_iter() against | |
1035 | * this page's queue, we can perform writeback even if that | |
1036 | * will block. | |
1037 | * | |
1038 | * If the page is swapcache, write it back even if that would | |
1039 | * block, for some throttling. This happens by accident, because | |
1040 | * swap_backing_dev_info is bust: it doesn't reflect the | |
1041 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1042 | */ | |
1043 | if (!is_page_cache_freeable(page)) | |
1044 | return PAGE_KEEP; | |
1045 | if (!mapping) { | |
1046 | /* | |
1047 | * Some data journaling orphaned pages can have | |
1048 | * page->mapping == NULL while being dirty with clean buffers. | |
1049 | */ | |
1050 | if (page_has_private(page)) { | |
1051 | if (try_to_free_buffers(page)) { | |
1052 | ClearPageDirty(page); | |
1053 | pr_info("%s: orphaned page\n", __func__); | |
1054 | return PAGE_CLEAN; | |
1055 | } | |
1056 | } | |
1057 | return PAGE_KEEP; | |
1058 | } | |
1059 | if (mapping->a_ops->writepage == NULL) | |
1060 | return PAGE_ACTIVATE; | |
1061 | if (!may_write_to_inode(mapping->host)) | |
1062 | return PAGE_KEEP; | |
1063 | ||
1064 | if (clear_page_dirty_for_io(page)) { | |
1065 | int res; | |
1066 | struct writeback_control wbc = { | |
1067 | .sync_mode = WB_SYNC_NONE, | |
1068 | .nr_to_write = SWAP_CLUSTER_MAX, | |
1069 | .range_start = 0, | |
1070 | .range_end = LLONG_MAX, | |
1071 | .for_reclaim = 1, | |
1072 | }; | |
1073 | ||
1074 | SetPageReclaim(page); | |
1075 | res = mapping->a_ops->writepage(page, &wbc); | |
1076 | if (res < 0) | |
1077 | handle_write_error(mapping, page, res); | |
1078 | if (res == AOP_WRITEPAGE_ACTIVATE) { | |
1079 | ClearPageReclaim(page); | |
1080 | return PAGE_ACTIVATE; | |
1081 | } | |
1082 | ||
1083 | if (!PageWriteback(page)) { | |
1084 | /* synchronous write or broken a_ops? */ | |
1085 | ClearPageReclaim(page); | |
1086 | } | |
1087 | trace_mm_vmscan_writepage(page); | |
1088 | inc_node_page_state(page, NR_VMSCAN_WRITE); | |
1089 | return PAGE_SUCCESS; | |
1090 | } | |
1091 | ||
1092 | return PAGE_CLEAN; | |
1093 | } | |
1094 | ||
1095 | /* | |
1096 | * Same as remove_mapping, but if the page is removed from the mapping, it | |
1097 | * gets returned with a refcount of 0. | |
1098 | */ | |
1099 | static int __remove_mapping(struct address_space *mapping, struct page *page, | |
1100 | bool reclaimed, struct mem_cgroup *target_memcg) | |
1101 | { | |
1102 | int refcount; | |
1103 | void *shadow = NULL; | |
1104 | ||
1105 | BUG_ON(!PageLocked(page)); | |
1106 | BUG_ON(mapping != page_mapping(page)); | |
1107 | ||
1108 | xa_lock_irq(&mapping->i_pages); | |
1109 | /* | |
1110 | * The non racy check for a busy page. | |
1111 | * | |
1112 | * Must be careful with the order of the tests. When someone has | |
1113 | * a ref to the page, it may be possible that they dirty it then | |
1114 | * drop the reference. So if PageDirty is tested before page_count | |
1115 | * here, then the following race may occur: | |
1116 | * | |
1117 | * get_user_pages(&page); | |
1118 | * [user mapping goes away] | |
1119 | * write_to(page); | |
1120 | * !PageDirty(page) [good] | |
1121 | * SetPageDirty(page); | |
1122 | * put_page(page); | |
1123 | * !page_count(page) [good, discard it] | |
1124 | * | |
1125 | * [oops, our write_to data is lost] | |
1126 | * | |
1127 | * Reversing the order of the tests ensures such a situation cannot | |
1128 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
1129 | * load is not satisfied before that of page->_refcount. | |
1130 | * | |
1131 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
1132 | * and thus under the i_pages lock, then this ordering is not required. | |
1133 | */ | |
1134 | refcount = 1 + compound_nr(page); | |
1135 | if (!page_ref_freeze(page, refcount)) | |
1136 | goto cannot_free; | |
1137 | /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ | |
1138 | if (unlikely(PageDirty(page))) { | |
1139 | page_ref_unfreeze(page, refcount); | |
1140 | goto cannot_free; | |
1141 | } | |
1142 | ||
1143 | if (PageSwapCache(page)) { | |
1144 | swp_entry_t swap = { .val = page_private(page) }; | |
1145 | mem_cgroup_swapout(page, swap); | |
1146 | if (reclaimed && !mapping_exiting(mapping)) | |
1147 | shadow = workingset_eviction(page, target_memcg); | |
1148 | __delete_from_swap_cache(page, swap, shadow); | |
1149 | xa_unlock_irq(&mapping->i_pages); | |
1150 | put_swap_page(page, swap); | |
1151 | } else { | |
1152 | void (*freepage)(struct page *); | |
1153 | ||
1154 | freepage = mapping->a_ops->freepage; | |
1155 | /* | |
1156 | * Remember a shadow entry for reclaimed file cache in | |
1157 | * order to detect refaults, thus thrashing, later on. | |
1158 | * | |
1159 | * But don't store shadows in an address space that is | |
1160 | * already exiting. This is not just an optimization, | |
1161 | * inode reclaim needs to empty out the radix tree or | |
1162 | * the nodes are lost. Don't plant shadows behind its | |
1163 | * back. | |
1164 | * | |
1165 | * We also don't store shadows for DAX mappings because the | |
1166 | * only page cache pages found in these are zero pages | |
1167 | * covering holes, and because we don't want to mix DAX | |
1168 | * exceptional entries and shadow exceptional entries in the | |
1169 | * same address_space. | |
1170 | */ | |
1171 | if (reclaimed && page_is_file_lru(page) && | |
1172 | !mapping_exiting(mapping) && !dax_mapping(mapping)) | |
1173 | shadow = workingset_eviction(page, target_memcg); | |
1174 | __delete_from_page_cache(page, shadow); | |
1175 | xa_unlock_irq(&mapping->i_pages); | |
1176 | ||
1177 | if (freepage != NULL) | |
1178 | freepage(page); | |
1179 | } | |
1180 | ||
1181 | return 1; | |
1182 | ||
1183 | cannot_free: | |
1184 | xa_unlock_irq(&mapping->i_pages); | |
1185 | return 0; | |
1186 | } | |
1187 | ||
1188 | /* | |
1189 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
1190 | * someone else has a ref on the page, abort and return 0. If it was | |
1191 | * successfully detached, return 1. Assumes the caller has a single ref on | |
1192 | * this page. | |
1193 | */ | |
1194 | int remove_mapping(struct address_space *mapping, struct page *page) | |
1195 | { | |
1196 | if (__remove_mapping(mapping, page, false, NULL)) { | |
1197 | /* | |
1198 | * Unfreezing the refcount with 1 rather than 2 effectively | |
1199 | * drops the pagecache ref for us without requiring another | |
1200 | * atomic operation. | |
1201 | */ | |
1202 | page_ref_unfreeze(page, 1); | |
1203 | return 1; | |
1204 | } | |
1205 | return 0; | |
1206 | } | |
1207 | ||
1208 | /** | |
1209 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
1210 | * @page: page to be put back to appropriate lru list | |
1211 | * | |
1212 | * Add previously isolated @page to appropriate LRU list. | |
1213 | * Page may still be unevictable for other reasons. | |
1214 | * | |
1215 | * lru_lock must not be held, interrupts must be enabled. | |
1216 | */ | |
1217 | void putback_lru_page(struct page *page) | |
1218 | { | |
1219 | lru_cache_add(page); | |
1220 | put_page(page); /* drop ref from isolate */ | |
1221 | } | |
1222 | ||
1223 | enum page_references { | |
1224 | PAGEREF_RECLAIM, | |
1225 | PAGEREF_RECLAIM_CLEAN, | |
1226 | PAGEREF_KEEP, | |
1227 | PAGEREF_ACTIVATE, | |
1228 | }; | |
1229 | ||
1230 | static enum page_references page_check_references(struct page *page, | |
1231 | struct scan_control *sc) | |
1232 | { | |
1233 | int referenced_ptes, referenced_page; | |
1234 | unsigned long vm_flags; | |
1235 | ||
1236 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, | |
1237 | &vm_flags); | |
1238 | referenced_page = TestClearPageReferenced(page); | |
1239 | ||
1240 | /* | |
1241 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
1242 | * move the page to the unevictable list. | |
1243 | */ | |
1244 | if (vm_flags & VM_LOCKED) | |
1245 | return PAGEREF_RECLAIM; | |
1246 | ||
1247 | if (referenced_ptes) { | |
1248 | /* | |
1249 | * All mapped pages start out with page table | |
1250 | * references from the instantiating fault, so we need | |
1251 | * to look twice if a mapped file page is used more | |
1252 | * than once. | |
1253 | * | |
1254 | * Mark it and spare it for another trip around the | |
1255 | * inactive list. Another page table reference will | |
1256 | * lead to its activation. | |
1257 | * | |
1258 | * Note: the mark is set for activated pages as well | |
1259 | * so that recently deactivated but used pages are | |
1260 | * quickly recovered. | |
1261 | */ | |
1262 | SetPageReferenced(page); | |
1263 | ||
1264 | if (referenced_page || referenced_ptes > 1) | |
1265 | return PAGEREF_ACTIVATE; | |
1266 | ||
1267 | /* | |
1268 | * Activate file-backed executable pages after first usage. | |
1269 | */ | |
1270 | if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) | |
1271 | return PAGEREF_ACTIVATE; | |
1272 | ||
1273 | return PAGEREF_KEEP; | |
1274 | } | |
1275 | ||
1276 | /* Reclaim if clean, defer dirty pages to writeback */ | |
1277 | if (referenced_page && !PageSwapBacked(page)) | |
1278 | return PAGEREF_RECLAIM_CLEAN; | |
1279 | ||
1280 | return PAGEREF_RECLAIM; | |
1281 | } | |
1282 | ||
1283 | /* Check if a page is dirty or under writeback */ | |
1284 | static void page_check_dirty_writeback(struct page *page, | |
1285 | bool *dirty, bool *writeback) | |
1286 | { | |
1287 | struct address_space *mapping; | |
1288 | ||
1289 | /* | |
1290 | * Anonymous pages are not handled by flushers and must be written | |
1291 | * from reclaim context. Do not stall reclaim based on them | |
1292 | */ | |
1293 | if (!page_is_file_lru(page) || | |
1294 | (PageAnon(page) && !PageSwapBacked(page))) { | |
1295 | *dirty = false; | |
1296 | *writeback = false; | |
1297 | return; | |
1298 | } | |
1299 | ||
1300 | /* By default assume that the page flags are accurate */ | |
1301 | *dirty = PageDirty(page); | |
1302 | *writeback = PageWriteback(page); | |
1303 | ||
1304 | /* Verify dirty/writeback state if the filesystem supports it */ | |
1305 | if (!page_has_private(page)) | |
1306 | return; | |
1307 | ||
1308 | mapping = page_mapping(page); | |
1309 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
1310 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | |
1311 | } | |
1312 | ||
1313 | static struct page *alloc_demote_page(struct page *page, unsigned long node) | |
1314 | { | |
1315 | struct migration_target_control mtc = { | |
1316 | /* | |
1317 | * Allocate from 'node', or fail quickly and quietly. | |
1318 | * When this happens, 'page' will likely just be discarded | |
1319 | * instead of migrated. | |
1320 | */ | |
1321 | .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | | |
1322 | __GFP_THISNODE | __GFP_NOWARN | | |
1323 | __GFP_NOMEMALLOC | GFP_NOWAIT, | |
1324 | .nid = node | |
1325 | }; | |
1326 | ||
1327 | return alloc_migration_target(page, (unsigned long)&mtc); | |
1328 | } | |
1329 | ||
1330 | /* | |
1331 | * Take pages on @demote_list and attempt to demote them to | |
1332 | * another node. Pages which are not demoted are left on | |
1333 | * @demote_pages. | |
1334 | */ | |
1335 | static unsigned int demote_page_list(struct list_head *demote_pages, | |
1336 | struct pglist_data *pgdat) | |
1337 | { | |
1338 | int target_nid = next_demotion_node(pgdat->node_id); | |
1339 | unsigned int nr_succeeded; | |
1340 | int err; | |
1341 | ||
1342 | if (list_empty(demote_pages)) | |
1343 | return 0; | |
1344 | ||
1345 | if (target_nid == NUMA_NO_NODE) | |
1346 | return 0; | |
1347 | ||
1348 | /* Demotion ignores all cpuset and mempolicy settings */ | |
1349 | err = migrate_pages(demote_pages, alloc_demote_page, NULL, | |
1350 | target_nid, MIGRATE_ASYNC, MR_DEMOTION, | |
1351 | &nr_succeeded); | |
1352 | ||
1353 | if (current_is_kswapd()) | |
1354 | __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); | |
1355 | else | |
1356 | __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); | |
1357 | ||
1358 | return nr_succeeded; | |
1359 | } | |
1360 | ||
1361 | /* | |
1362 | * shrink_page_list() returns the number of reclaimed pages | |
1363 | */ | |
1364 | static unsigned int shrink_page_list(struct list_head *page_list, | |
1365 | struct pglist_data *pgdat, | |
1366 | struct scan_control *sc, | |
1367 | struct reclaim_stat *stat, | |
1368 | bool ignore_references) | |
1369 | { | |
1370 | LIST_HEAD(ret_pages); | |
1371 | LIST_HEAD(free_pages); | |
1372 | LIST_HEAD(demote_pages); | |
1373 | unsigned int nr_reclaimed = 0; | |
1374 | unsigned int pgactivate = 0; | |
1375 | bool do_demote_pass; | |
1376 | ||
1377 | memset(stat, 0, sizeof(*stat)); | |
1378 | cond_resched(); | |
1379 | do_demote_pass = can_demote(pgdat->node_id, sc); | |
1380 | ||
1381 | retry: | |
1382 | while (!list_empty(page_list)) { | |
1383 | struct address_space *mapping; | |
1384 | struct page *page; | |
1385 | enum page_references references = PAGEREF_RECLAIM; | |
1386 | bool dirty, writeback, may_enter_fs; | |
1387 | unsigned int nr_pages; | |
1388 | ||
1389 | cond_resched(); | |
1390 | ||
1391 | page = lru_to_page(page_list); | |
1392 | list_del(&page->lru); | |
1393 | ||
1394 | if (!trylock_page(page)) | |
1395 | goto keep; | |
1396 | ||
1397 | VM_BUG_ON_PAGE(PageActive(page), page); | |
1398 | ||
1399 | nr_pages = compound_nr(page); | |
1400 | ||
1401 | /* Account the number of base pages even though THP */ | |
1402 | sc->nr_scanned += nr_pages; | |
1403 | ||
1404 | if (unlikely(!page_evictable(page))) | |
1405 | goto activate_locked; | |
1406 | ||
1407 | if (!sc->may_unmap && page_mapped(page)) | |
1408 | goto keep_locked; | |
1409 | ||
1410 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | |
1411 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
1412 | ||
1413 | /* | |
1414 | * The number of dirty pages determines if a node is marked | |
1415 | * reclaim_congested which affects wait_iff_congested. kswapd | |
1416 | * will stall and start writing pages if the tail of the LRU | |
1417 | * is all dirty unqueued pages. | |
1418 | */ | |
1419 | page_check_dirty_writeback(page, &dirty, &writeback); | |
1420 | if (dirty || writeback) | |
1421 | stat->nr_dirty++; | |
1422 | ||
1423 | if (dirty && !writeback) | |
1424 | stat->nr_unqueued_dirty++; | |
1425 | ||
1426 | /* | |
1427 | * Treat this page as congested if the underlying BDI is or if | |
1428 | * pages are cycling through the LRU so quickly that the | |
1429 | * pages marked for immediate reclaim are making it to the | |
1430 | * end of the LRU a second time. | |
1431 | */ | |
1432 | mapping = page_mapping(page); | |
1433 | if (((dirty || writeback) && mapping && | |
1434 | inode_write_congested(mapping->host)) || | |
1435 | (writeback && PageReclaim(page))) | |
1436 | stat->nr_congested++; | |
1437 | ||
1438 | /* | |
1439 | * If a page at the tail of the LRU is under writeback, there | |
1440 | * are three cases to consider. | |
1441 | * | |
1442 | * 1) If reclaim is encountering an excessive number of pages | |
1443 | * under writeback and this page is both under writeback and | |
1444 | * PageReclaim then it indicates that pages are being queued | |
1445 | * for IO but are being recycled through the LRU before the | |
1446 | * IO can complete. Waiting on the page itself risks an | |
1447 | * indefinite stall if it is impossible to writeback the | |
1448 | * page due to IO error or disconnected storage so instead | |
1449 | * note that the LRU is being scanned too quickly and the | |
1450 | * caller can stall after page list has been processed. | |
1451 | * | |
1452 | * 2) Global or new memcg reclaim encounters a page that is | |
1453 | * not marked for immediate reclaim, or the caller does not | |
1454 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
1455 | * not to fs). In this case mark the page for immediate | |
1456 | * reclaim and continue scanning. | |
1457 | * | |
1458 | * Require may_enter_fs because we would wait on fs, which | |
1459 | * may not have submitted IO yet. And the loop driver might | |
1460 | * enter reclaim, and deadlock if it waits on a page for | |
1461 | * which it is needed to do the write (loop masks off | |
1462 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1463 | * would probably show more reasons. | |
1464 | * | |
1465 | * 3) Legacy memcg encounters a page that is already marked | |
1466 | * PageReclaim. memcg does not have any dirty pages | |
1467 | * throttling so we could easily OOM just because too many | |
1468 | * pages are in writeback and there is nothing else to | |
1469 | * reclaim. Wait for the writeback to complete. | |
1470 | * | |
1471 | * In cases 1) and 2) we activate the pages to get them out of | |
1472 | * the way while we continue scanning for clean pages on the | |
1473 | * inactive list and refilling from the active list. The | |
1474 | * observation here is that waiting for disk writes is more | |
1475 | * expensive than potentially causing reloads down the line. | |
1476 | * Since they're marked for immediate reclaim, they won't put | |
1477 | * memory pressure on the cache working set any longer than it | |
1478 | * takes to write them to disk. | |
1479 | */ | |
1480 | if (PageWriteback(page)) { | |
1481 | /* Case 1 above */ | |
1482 | if (current_is_kswapd() && | |
1483 | PageReclaim(page) && | |
1484 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { | |
1485 | stat->nr_immediate++; | |
1486 | goto activate_locked; | |
1487 | ||
1488 | /* Case 2 above */ | |
1489 | } else if (writeback_throttling_sane(sc) || | |
1490 | !PageReclaim(page) || !may_enter_fs) { | |
1491 | /* | |
1492 | * This is slightly racy - end_page_writeback() | |
1493 | * might have just cleared PageReclaim, then | |
1494 | * setting PageReclaim here end up interpreted | |
1495 | * as PageReadahead - but that does not matter | |
1496 | * enough to care. What we do want is for this | |
1497 | * page to have PageReclaim set next time memcg | |
1498 | * reclaim reaches the tests above, so it will | |
1499 | * then wait_on_page_writeback() to avoid OOM; | |
1500 | * and it's also appropriate in global reclaim. | |
1501 | */ | |
1502 | SetPageReclaim(page); | |
1503 | stat->nr_writeback++; | |
1504 | goto activate_locked; | |
1505 | ||
1506 | /* Case 3 above */ | |
1507 | } else { | |
1508 | unlock_page(page); | |
1509 | wait_on_page_writeback(page); | |
1510 | /* then go back and try same page again */ | |
1511 | list_add_tail(&page->lru, page_list); | |
1512 | continue; | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | if (!ignore_references) | |
1517 | references = page_check_references(page, sc); | |
1518 | ||
1519 | switch (references) { | |
1520 | case PAGEREF_ACTIVATE: | |
1521 | goto activate_locked; | |
1522 | case PAGEREF_KEEP: | |
1523 | stat->nr_ref_keep += nr_pages; | |
1524 | goto keep_locked; | |
1525 | case PAGEREF_RECLAIM: | |
1526 | case PAGEREF_RECLAIM_CLEAN: | |
1527 | ; /* try to reclaim the page below */ | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | * Before reclaiming the page, try to relocate | |
1532 | * its contents to another node. | |
1533 | */ | |
1534 | if (do_demote_pass && | |
1535 | (thp_migration_supported() || !PageTransHuge(page))) { | |
1536 | list_add(&page->lru, &demote_pages); | |
1537 | unlock_page(page); | |
1538 | continue; | |
1539 | } | |
1540 | ||
1541 | /* | |
1542 | * Anonymous process memory has backing store? | |
1543 | * Try to allocate it some swap space here. | |
1544 | * Lazyfree page could be freed directly | |
1545 | */ | |
1546 | if (PageAnon(page) && PageSwapBacked(page)) { | |
1547 | if (!PageSwapCache(page)) { | |
1548 | if (!(sc->gfp_mask & __GFP_IO)) | |
1549 | goto keep_locked; | |
1550 | if (page_maybe_dma_pinned(page)) | |
1551 | goto keep_locked; | |
1552 | if (PageTransHuge(page)) { | |
1553 | /* cannot split THP, skip it */ | |
1554 | if (!can_split_huge_page(page, NULL)) | |
1555 | goto activate_locked; | |
1556 | /* | |
1557 | * Split pages without a PMD map right | |
1558 | * away. Chances are some or all of the | |
1559 | * tail pages can be freed without IO. | |
1560 | */ | |
1561 | if (!compound_mapcount(page) && | |
1562 | split_huge_page_to_list(page, | |
1563 | page_list)) | |
1564 | goto activate_locked; | |
1565 | } | |
1566 | if (!add_to_swap(page)) { | |
1567 | if (!PageTransHuge(page)) | |
1568 | goto activate_locked_split; | |
1569 | /* Fallback to swap normal pages */ | |
1570 | if (split_huge_page_to_list(page, | |
1571 | page_list)) | |
1572 | goto activate_locked; | |
1573 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1574 | count_vm_event(THP_SWPOUT_FALLBACK); | |
1575 | #endif | |
1576 | if (!add_to_swap(page)) | |
1577 | goto activate_locked_split; | |
1578 | } | |
1579 | ||
1580 | may_enter_fs = true; | |
1581 | ||
1582 | /* Adding to swap updated mapping */ | |
1583 | mapping = page_mapping(page); | |
1584 | } | |
1585 | } else if (unlikely(PageTransHuge(page))) { | |
1586 | /* Split file THP */ | |
1587 | if (split_huge_page_to_list(page, page_list)) | |
1588 | goto keep_locked; | |
1589 | } | |
1590 | ||
1591 | /* | |
1592 | * THP may get split above, need minus tail pages and update | |
1593 | * nr_pages to avoid accounting tail pages twice. | |
1594 | * | |
1595 | * The tail pages that are added into swap cache successfully | |
1596 | * reach here. | |
1597 | */ | |
1598 | if ((nr_pages > 1) && !PageTransHuge(page)) { | |
1599 | sc->nr_scanned -= (nr_pages - 1); | |
1600 | nr_pages = 1; | |
1601 | } | |
1602 | ||
1603 | /* | |
1604 | * The page is mapped into the page tables of one or more | |
1605 | * processes. Try to unmap it here. | |
1606 | */ | |
1607 | if (page_mapped(page)) { | |
1608 | enum ttu_flags flags = TTU_BATCH_FLUSH; | |
1609 | bool was_swapbacked = PageSwapBacked(page); | |
1610 | ||
1611 | if (unlikely(PageTransHuge(page))) | |
1612 | flags |= TTU_SPLIT_HUGE_PMD; | |
1613 | ||
1614 | try_to_unmap(page, flags); | |
1615 | if (page_mapped(page)) { | |
1616 | stat->nr_unmap_fail += nr_pages; | |
1617 | if (!was_swapbacked && PageSwapBacked(page)) | |
1618 | stat->nr_lazyfree_fail += nr_pages; | |
1619 | goto activate_locked; | |
1620 | } | |
1621 | } | |
1622 | ||
1623 | if (PageDirty(page)) { | |
1624 | /* | |
1625 | * Only kswapd can writeback filesystem pages | |
1626 | * to avoid risk of stack overflow. But avoid | |
1627 | * injecting inefficient single-page IO into | |
1628 | * flusher writeback as much as possible: only | |
1629 | * write pages when we've encountered many | |
1630 | * dirty pages, and when we've already scanned | |
1631 | * the rest of the LRU for clean pages and see | |
1632 | * the same dirty pages again (PageReclaim). | |
1633 | */ | |
1634 | if (page_is_file_lru(page) && | |
1635 | (!current_is_kswapd() || !PageReclaim(page) || | |
1636 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | |
1637 | /* | |
1638 | * Immediately reclaim when written back. | |
1639 | * Similar in principal to deactivate_page() | |
1640 | * except we already have the page isolated | |
1641 | * and know it's dirty | |
1642 | */ | |
1643 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); | |
1644 | SetPageReclaim(page); | |
1645 | ||
1646 | goto activate_locked; | |
1647 | } | |
1648 | ||
1649 | if (references == PAGEREF_RECLAIM_CLEAN) | |
1650 | goto keep_locked; | |
1651 | if (!may_enter_fs) | |
1652 | goto keep_locked; | |
1653 | if (!sc->may_writepage) | |
1654 | goto keep_locked; | |
1655 | ||
1656 | /* | |
1657 | * Page is dirty. Flush the TLB if a writable entry | |
1658 | * potentially exists to avoid CPU writes after IO | |
1659 | * starts and then write it out here. | |
1660 | */ | |
1661 | try_to_unmap_flush_dirty(); | |
1662 | switch (pageout(page, mapping)) { | |
1663 | case PAGE_KEEP: | |
1664 | goto keep_locked; | |
1665 | case PAGE_ACTIVATE: | |
1666 | goto activate_locked; | |
1667 | case PAGE_SUCCESS: | |
1668 | stat->nr_pageout += thp_nr_pages(page); | |
1669 | ||
1670 | if (PageWriteback(page)) | |
1671 | goto keep; | |
1672 | if (PageDirty(page)) | |
1673 | goto keep; | |
1674 | ||
1675 | /* | |
1676 | * A synchronous write - probably a ramdisk. Go | |
1677 | * ahead and try to reclaim the page. | |
1678 | */ | |
1679 | if (!trylock_page(page)) | |
1680 | goto keep; | |
1681 | if (PageDirty(page) || PageWriteback(page)) | |
1682 | goto keep_locked; | |
1683 | mapping = page_mapping(page); | |
1684 | fallthrough; | |
1685 | case PAGE_CLEAN: | |
1686 | ; /* try to free the page below */ | |
1687 | } | |
1688 | } | |
1689 | ||
1690 | /* | |
1691 | * If the page has buffers, try to free the buffer mappings | |
1692 | * associated with this page. If we succeed we try to free | |
1693 | * the page as well. | |
1694 | * | |
1695 | * We do this even if the page is PageDirty(). | |
1696 | * try_to_release_page() does not perform I/O, but it is | |
1697 | * possible for a page to have PageDirty set, but it is actually | |
1698 | * clean (all its buffers are clean). This happens if the | |
1699 | * buffers were written out directly, with submit_bh(). ext3 | |
1700 | * will do this, as well as the blockdev mapping. | |
1701 | * try_to_release_page() will discover that cleanness and will | |
1702 | * drop the buffers and mark the page clean - it can be freed. | |
1703 | * | |
1704 | * Rarely, pages can have buffers and no ->mapping. These are | |
1705 | * the pages which were not successfully invalidated in | |
1706 | * truncate_cleanup_page(). We try to drop those buffers here | |
1707 | * and if that worked, and the page is no longer mapped into | |
1708 | * process address space (page_count == 1) it can be freed. | |
1709 | * Otherwise, leave the page on the LRU so it is swappable. | |
1710 | */ | |
1711 | if (page_has_private(page)) { | |
1712 | if (!try_to_release_page(page, sc->gfp_mask)) | |
1713 | goto activate_locked; | |
1714 | if (!mapping && page_count(page) == 1) { | |
1715 | unlock_page(page); | |
1716 | if (put_page_testzero(page)) | |
1717 | goto free_it; | |
1718 | else { | |
1719 | /* | |
1720 | * rare race with speculative reference. | |
1721 | * the speculative reference will free | |
1722 | * this page shortly, so we may | |
1723 | * increment nr_reclaimed here (and | |
1724 | * leave it off the LRU). | |
1725 | */ | |
1726 | nr_reclaimed++; | |
1727 | continue; | |
1728 | } | |
1729 | } | |
1730 | } | |
1731 | ||
1732 | if (PageAnon(page) && !PageSwapBacked(page)) { | |
1733 | /* follow __remove_mapping for reference */ | |
1734 | if (!page_ref_freeze(page, 1)) | |
1735 | goto keep_locked; | |
1736 | /* | |
1737 | * The page has only one reference left, which is | |
1738 | * from the isolation. After the caller puts the | |
1739 | * page back on lru and drops the reference, the | |
1740 | * page will be freed anyway. It doesn't matter | |
1741 | * which lru it goes. So we don't bother checking | |
1742 | * PageDirty here. | |
1743 | */ | |
1744 | count_vm_event(PGLAZYFREED); | |
1745 | count_memcg_page_event(page, PGLAZYFREED); | |
1746 | } else if (!mapping || !__remove_mapping(mapping, page, true, | |
1747 | sc->target_mem_cgroup)) | |
1748 | goto keep_locked; | |
1749 | ||
1750 | unlock_page(page); | |
1751 | free_it: | |
1752 | /* | |
1753 | * THP may get swapped out in a whole, need account | |
1754 | * all base pages. | |
1755 | */ | |
1756 | nr_reclaimed += nr_pages; | |
1757 | ||
1758 | /* | |
1759 | * Is there need to periodically free_page_list? It would | |
1760 | * appear not as the counts should be low | |
1761 | */ | |
1762 | if (unlikely(PageTransHuge(page))) | |
1763 | destroy_compound_page(page); | |
1764 | else | |
1765 | list_add(&page->lru, &free_pages); | |
1766 | continue; | |
1767 | ||
1768 | activate_locked_split: | |
1769 | /* | |
1770 | * The tail pages that are failed to add into swap cache | |
1771 | * reach here. Fixup nr_scanned and nr_pages. | |
1772 | */ | |
1773 | if (nr_pages > 1) { | |
1774 | sc->nr_scanned -= (nr_pages - 1); | |
1775 | nr_pages = 1; | |
1776 | } | |
1777 | activate_locked: | |
1778 | /* Not a candidate for swapping, so reclaim swap space. */ | |
1779 | if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || | |
1780 | PageMlocked(page))) | |
1781 | try_to_free_swap(page); | |
1782 | VM_BUG_ON_PAGE(PageActive(page), page); | |
1783 | if (!PageMlocked(page)) { | |
1784 | int type = page_is_file_lru(page); | |
1785 | SetPageActive(page); | |
1786 | stat->nr_activate[type] += nr_pages; | |
1787 | count_memcg_page_event(page, PGACTIVATE); | |
1788 | } | |
1789 | keep_locked: | |
1790 | unlock_page(page); | |
1791 | keep: | |
1792 | list_add(&page->lru, &ret_pages); | |
1793 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); | |
1794 | } | |
1795 | /* 'page_list' is always empty here */ | |
1796 | ||
1797 | /* Migrate pages selected for demotion */ | |
1798 | nr_reclaimed += demote_page_list(&demote_pages, pgdat); | |
1799 | /* Pages that could not be demoted are still in @demote_pages */ | |
1800 | if (!list_empty(&demote_pages)) { | |
1801 | /* Pages which failed to demoted go back on @page_list for retry: */ | |
1802 | list_splice_init(&demote_pages, page_list); | |
1803 | do_demote_pass = false; | |
1804 | goto retry; | |
1805 | } | |
1806 | ||
1807 | pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; | |
1808 | ||
1809 | mem_cgroup_uncharge_list(&free_pages); | |
1810 | try_to_unmap_flush(); | |
1811 | free_unref_page_list(&free_pages); | |
1812 | ||
1813 | list_splice(&ret_pages, page_list); | |
1814 | count_vm_events(PGACTIVATE, pgactivate); | |
1815 | ||
1816 | return nr_reclaimed; | |
1817 | } | |
1818 | ||
1819 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, | |
1820 | struct list_head *page_list) | |
1821 | { | |
1822 | struct scan_control sc = { | |
1823 | .gfp_mask = GFP_KERNEL, | |
1824 | .may_unmap = 1, | |
1825 | }; | |
1826 | struct reclaim_stat stat; | |
1827 | unsigned int nr_reclaimed; | |
1828 | struct page *page, *next; | |
1829 | LIST_HEAD(clean_pages); | |
1830 | unsigned int noreclaim_flag; | |
1831 | ||
1832 | list_for_each_entry_safe(page, next, page_list, lru) { | |
1833 | if (!PageHuge(page) && page_is_file_lru(page) && | |
1834 | !PageDirty(page) && !__PageMovable(page) && | |
1835 | !PageUnevictable(page)) { | |
1836 | ClearPageActive(page); | |
1837 | list_move(&page->lru, &clean_pages); | |
1838 | } | |
1839 | } | |
1840 | ||
1841 | /* | |
1842 | * We should be safe here since we are only dealing with file pages and | |
1843 | * we are not kswapd and therefore cannot write dirty file pages. But | |
1844 | * call memalloc_noreclaim_save() anyway, just in case these conditions | |
1845 | * change in the future. | |
1846 | */ | |
1847 | noreclaim_flag = memalloc_noreclaim_save(); | |
1848 | nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, | |
1849 | &stat, true); | |
1850 | memalloc_noreclaim_restore(noreclaim_flag); | |
1851 | ||
1852 | list_splice(&clean_pages, page_list); | |
1853 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | |
1854 | -(long)nr_reclaimed); | |
1855 | /* | |
1856 | * Since lazyfree pages are isolated from file LRU from the beginning, | |
1857 | * they will rotate back to anonymous LRU in the end if it failed to | |
1858 | * discard so isolated count will be mismatched. | |
1859 | * Compensate the isolated count for both LRU lists. | |
1860 | */ | |
1861 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, | |
1862 | stat.nr_lazyfree_fail); | |
1863 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | |
1864 | -(long)stat.nr_lazyfree_fail); | |
1865 | return nr_reclaimed; | |
1866 | } | |
1867 | ||
1868 | /* | |
1869 | * Attempt to remove the specified page from its LRU. Only take this page | |
1870 | * if it is of the appropriate PageActive status. Pages which are being | |
1871 | * freed elsewhere are also ignored. | |
1872 | * | |
1873 | * page: page to consider | |
1874 | * mode: one of the LRU isolation modes defined above | |
1875 | * | |
1876 | * returns true on success, false on failure. | |
1877 | */ | |
1878 | bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) | |
1879 | { | |
1880 | /* Only take pages on the LRU. */ | |
1881 | if (!PageLRU(page)) | |
1882 | return false; | |
1883 | ||
1884 | /* Compaction should not handle unevictable pages but CMA can do so */ | |
1885 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
1886 | return false; | |
1887 | ||
1888 | /* | |
1889 | * To minimise LRU disruption, the caller can indicate that it only | |
1890 | * wants to isolate pages it will be able to operate on without | |
1891 | * blocking - clean pages for the most part. | |
1892 | * | |
1893 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
1894 | * that it is possible to migrate without blocking | |
1895 | */ | |
1896 | if (mode & ISOLATE_ASYNC_MIGRATE) { | |
1897 | /* All the caller can do on PageWriteback is block */ | |
1898 | if (PageWriteback(page)) | |
1899 | return false; | |
1900 | ||
1901 | if (PageDirty(page)) { | |
1902 | struct address_space *mapping; | |
1903 | bool migrate_dirty; | |
1904 | ||
1905 | /* | |
1906 | * Only pages without mappings or that have a | |
1907 | * ->migratepage callback are possible to migrate | |
1908 | * without blocking. However, we can be racing with | |
1909 | * truncation so it's necessary to lock the page | |
1910 | * to stabilise the mapping as truncation holds | |
1911 | * the page lock until after the page is removed | |
1912 | * from the page cache. | |
1913 | */ | |
1914 | if (!trylock_page(page)) | |
1915 | return false; | |
1916 | ||
1917 | mapping = page_mapping(page); | |
1918 | migrate_dirty = !mapping || mapping->a_ops->migratepage; | |
1919 | unlock_page(page); | |
1920 | if (!migrate_dirty) | |
1921 | return false; | |
1922 | } | |
1923 | } | |
1924 | ||
1925 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) | |
1926 | return false; | |
1927 | ||
1928 | return true; | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * Update LRU sizes after isolating pages. The LRU size updates must | |
1933 | * be complete before mem_cgroup_update_lru_size due to a sanity check. | |
1934 | */ | |
1935 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
1936 | enum lru_list lru, unsigned long *nr_zone_taken) | |
1937 | { | |
1938 | int zid; | |
1939 | ||
1940 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1941 | if (!nr_zone_taken[zid]) | |
1942 | continue; | |
1943 | ||
1944 | update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
1945 | } | |
1946 | ||
1947 | } | |
1948 | ||
1949 | /* | |
1950 | * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. | |
1951 | * | |
1952 | * lruvec->lru_lock is heavily contended. Some of the functions that | |
1953 | * shrink the lists perform better by taking out a batch of pages | |
1954 | * and working on them outside the LRU lock. | |
1955 | * | |
1956 | * For pagecache intensive workloads, this function is the hottest | |
1957 | * spot in the kernel (apart from copy_*_user functions). | |
1958 | * | |
1959 | * Lru_lock must be held before calling this function. | |
1960 | * | |
1961 | * @nr_to_scan: The number of eligible pages to look through on the list. | |
1962 | * @lruvec: The LRU vector to pull pages from. | |
1963 | * @dst: The temp list to put pages on to. | |
1964 | * @nr_scanned: The number of pages that were scanned. | |
1965 | * @sc: The scan_control struct for this reclaim session | |
1966 | * @lru: LRU list id for isolating | |
1967 | * | |
1968 | * returns how many pages were moved onto *@dst. | |
1969 | */ | |
1970 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |
1971 | struct lruvec *lruvec, struct list_head *dst, | |
1972 | unsigned long *nr_scanned, struct scan_control *sc, | |
1973 | enum lru_list lru) | |
1974 | { | |
1975 | struct list_head *src = &lruvec->lists[lru]; | |
1976 | unsigned long nr_taken = 0; | |
1977 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; | |
1978 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; | |
1979 | unsigned long skipped = 0; | |
1980 | unsigned long scan, total_scan, nr_pages; | |
1981 | LIST_HEAD(pages_skipped); | |
1982 | isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); | |
1983 | ||
1984 | total_scan = 0; | |
1985 | scan = 0; | |
1986 | while (scan < nr_to_scan && !list_empty(src)) { | |
1987 | struct page *page; | |
1988 | ||
1989 | page = lru_to_page(src); | |
1990 | prefetchw_prev_lru_page(page, src, flags); | |
1991 | ||
1992 | nr_pages = compound_nr(page); | |
1993 | total_scan += nr_pages; | |
1994 | ||
1995 | if (page_zonenum(page) > sc->reclaim_idx) { | |
1996 | list_move(&page->lru, &pages_skipped); | |
1997 | nr_skipped[page_zonenum(page)] += nr_pages; | |
1998 | continue; | |
1999 | } | |
2000 | ||
2001 | /* | |
2002 | * Do not count skipped pages because that makes the function | |
2003 | * return with no isolated pages if the LRU mostly contains | |
2004 | * ineligible pages. This causes the VM to not reclaim any | |
2005 | * pages, triggering a premature OOM. | |
2006 | * | |
2007 | * Account all tail pages of THP. This would not cause | |
2008 | * premature OOM since __isolate_lru_page() returns -EBUSY | |
2009 | * only when the page is being freed somewhere else. | |
2010 | */ | |
2011 | scan += nr_pages; | |
2012 | if (!__isolate_lru_page_prepare(page, mode)) { | |
2013 | /* It is being freed elsewhere */ | |
2014 | list_move(&page->lru, src); | |
2015 | continue; | |
2016 | } | |
2017 | /* | |
2018 | * Be careful not to clear PageLRU until after we're | |
2019 | * sure the page is not being freed elsewhere -- the | |
2020 | * page release code relies on it. | |
2021 | */ | |
2022 | if (unlikely(!get_page_unless_zero(page))) { | |
2023 | list_move(&page->lru, src); | |
2024 | continue; | |
2025 | } | |
2026 | ||
2027 | if (!TestClearPageLRU(page)) { | |
2028 | /* Another thread is already isolating this page */ | |
2029 | put_page(page); | |
2030 | list_move(&page->lru, src); | |
2031 | continue; | |
2032 | } | |
2033 | ||
2034 | nr_taken += nr_pages; | |
2035 | nr_zone_taken[page_zonenum(page)] += nr_pages; | |
2036 | list_move(&page->lru, dst); | |
2037 | } | |
2038 | ||
2039 | /* | |
2040 | * Splice any skipped pages to the start of the LRU list. Note that | |
2041 | * this disrupts the LRU order when reclaiming for lower zones but | |
2042 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
2043 | * scanning would soon rescan the same pages to skip and put the | |
2044 | * system at risk of premature OOM. | |
2045 | */ | |
2046 | if (!list_empty(&pages_skipped)) { | |
2047 | int zid; | |
2048 | ||
2049 | list_splice(&pages_skipped, src); | |
2050 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
2051 | if (!nr_skipped[zid]) | |
2052 | continue; | |
2053 | ||
2054 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
2055 | skipped += nr_skipped[zid]; | |
2056 | } | |
2057 | } | |
2058 | *nr_scanned = total_scan; | |
2059 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, | |
2060 | total_scan, skipped, nr_taken, mode, lru); | |
2061 | update_lru_sizes(lruvec, lru, nr_zone_taken); | |
2062 | return nr_taken; | |
2063 | } | |
2064 | ||
2065 | /** | |
2066 | * isolate_lru_page - tries to isolate a page from its LRU list | |
2067 | * @page: page to isolate from its LRU list | |
2068 | * | |
2069 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
2070 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
2071 | * | |
2072 | * Returns 0 if the page was removed from an LRU list. | |
2073 | * Returns -EBUSY if the page was not on an LRU list. | |
2074 | * | |
2075 | * The returned page will have PageLRU() cleared. If it was found on | |
2076 | * the active list, it will have PageActive set. If it was found on | |
2077 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
2078 | * may need to be cleared by the caller before letting the page go. | |
2079 | * | |
2080 | * The vmstat statistic corresponding to the list on which the page was | |
2081 | * found will be decremented. | |
2082 | * | |
2083 | * Restrictions: | |
2084 | * | |
2085 | * (1) Must be called with an elevated refcount on the page. This is a | |
2086 | * fundamental difference from isolate_lru_pages (which is called | |
2087 | * without a stable reference). | |
2088 | * (2) the lru_lock must not be held. | |
2089 | * (3) interrupts must be enabled. | |
2090 | */ | |
2091 | int isolate_lru_page(struct page *page) | |
2092 | { | |
2093 | int ret = -EBUSY; | |
2094 | ||
2095 | VM_BUG_ON_PAGE(!page_count(page), page); | |
2096 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); | |
2097 | ||
2098 | if (TestClearPageLRU(page)) { | |
2099 | struct lruvec *lruvec; | |
2100 | ||
2101 | get_page(page); | |
2102 | lruvec = lock_page_lruvec_irq(page); | |
2103 | del_page_from_lru_list(page, lruvec); | |
2104 | unlock_page_lruvec_irq(lruvec); | |
2105 | ret = 0; | |
2106 | } | |
2107 | ||
2108 | return ret; | |
2109 | } | |
2110 | ||
2111 | /* | |
2112 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and | |
2113 | * then get rescheduled. When there are massive number of tasks doing page | |
2114 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
2115 | * the LRU list will go small and be scanned faster than necessary, leading to | |
2116 | * unnecessary swapping, thrashing and OOM. | |
2117 | */ | |
2118 | static int too_many_isolated(struct pglist_data *pgdat, int file, | |
2119 | struct scan_control *sc) | |
2120 | { | |
2121 | unsigned long inactive, isolated; | |
2122 | ||
2123 | if (current_is_kswapd()) | |
2124 | return 0; | |
2125 | ||
2126 | if (!writeback_throttling_sane(sc)) | |
2127 | return 0; | |
2128 | ||
2129 | if (file) { | |
2130 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); | |
2131 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
2132 | } else { | |
2133 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); | |
2134 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
2135 | } | |
2136 | ||
2137 | /* | |
2138 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
2139 | * won't get blocked by normal direct-reclaimers, forming a circular | |
2140 | * deadlock. | |
2141 | */ | |
2142 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | |
2143 | inactive >>= 3; | |
2144 | ||
2145 | return isolated > inactive; | |
2146 | } | |
2147 | ||
2148 | /* | |
2149 | * move_pages_to_lru() moves pages from private @list to appropriate LRU list. | |
2150 | * On return, @list is reused as a list of pages to be freed by the caller. | |
2151 | * | |
2152 | * Returns the number of pages moved to the given lruvec. | |
2153 | */ | |
2154 | static unsigned int move_pages_to_lru(struct lruvec *lruvec, | |
2155 | struct list_head *list) | |
2156 | { | |
2157 | int nr_pages, nr_moved = 0; | |
2158 | LIST_HEAD(pages_to_free); | |
2159 | struct page *page; | |
2160 | ||
2161 | while (!list_empty(list)) { | |
2162 | page = lru_to_page(list); | |
2163 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
2164 | list_del(&page->lru); | |
2165 | if (unlikely(!page_evictable(page))) { | |
2166 | spin_unlock_irq(&lruvec->lru_lock); | |
2167 | putback_lru_page(page); | |
2168 | spin_lock_irq(&lruvec->lru_lock); | |
2169 | continue; | |
2170 | } | |
2171 | ||
2172 | /* | |
2173 | * The SetPageLRU needs to be kept here for list integrity. | |
2174 | * Otherwise: | |
2175 | * #0 move_pages_to_lru #1 release_pages | |
2176 | * if !put_page_testzero | |
2177 | * if (put_page_testzero()) | |
2178 | * !PageLRU //skip lru_lock | |
2179 | * SetPageLRU() | |
2180 | * list_add(&page->lru,) | |
2181 | * list_add(&page->lru,) | |
2182 | */ | |
2183 | SetPageLRU(page); | |
2184 | ||
2185 | if (unlikely(put_page_testzero(page))) { | |
2186 | __clear_page_lru_flags(page); | |
2187 | ||
2188 | if (unlikely(PageCompound(page))) { | |
2189 | spin_unlock_irq(&lruvec->lru_lock); | |
2190 | destroy_compound_page(page); | |
2191 | spin_lock_irq(&lruvec->lru_lock); | |
2192 | } else | |
2193 | list_add(&page->lru, &pages_to_free); | |
2194 | ||
2195 | continue; | |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * All pages were isolated from the same lruvec (and isolation | |
2200 | * inhibits memcg migration). | |
2201 | */ | |
2202 | VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); | |
2203 | add_page_to_lru_list(page, lruvec); | |
2204 | nr_pages = thp_nr_pages(page); | |
2205 | nr_moved += nr_pages; | |
2206 | if (PageActive(page)) | |
2207 | workingset_age_nonresident(lruvec, nr_pages); | |
2208 | } | |
2209 | ||
2210 | /* | |
2211 | * To save our caller's stack, now use input list for pages to free. | |
2212 | */ | |
2213 | list_splice(&pages_to_free, list); | |
2214 | ||
2215 | return nr_moved; | |
2216 | } | |
2217 | ||
2218 | /* | |
2219 | * If a kernel thread (such as nfsd for loop-back mounts) services | |
2220 | * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. | |
2221 | * In that case we should only throttle if the backing device it is | |
2222 | * writing to is congested. In other cases it is safe to throttle. | |
2223 | */ | |
2224 | static int current_may_throttle(void) | |
2225 | { | |
2226 | return !(current->flags & PF_LOCAL_THROTTLE) || | |
2227 | current->backing_dev_info == NULL || | |
2228 | bdi_write_congested(current->backing_dev_info); | |
2229 | } | |
2230 | ||
2231 | /* | |
2232 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number | |
2233 | * of reclaimed pages | |
2234 | */ | |
2235 | static unsigned long | |
2236 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, | |
2237 | struct scan_control *sc, enum lru_list lru) | |
2238 | { | |
2239 | LIST_HEAD(page_list); | |
2240 | unsigned long nr_scanned; | |
2241 | unsigned int nr_reclaimed = 0; | |
2242 | unsigned long nr_taken; | |
2243 | struct reclaim_stat stat; | |
2244 | bool file = is_file_lru(lru); | |
2245 | enum vm_event_item item; | |
2246 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2247 | bool stalled = false; | |
2248 | ||
2249 | while (unlikely(too_many_isolated(pgdat, file, sc))) { | |
2250 | if (stalled) | |
2251 | return 0; | |
2252 | ||
2253 | /* wait a bit for the reclaimer. */ | |
2254 | msleep(100); | |
2255 | stalled = true; | |
2256 | ||
2257 | /* We are about to die and free our memory. Return now. */ | |
2258 | if (fatal_signal_pending(current)) | |
2259 | return SWAP_CLUSTER_MAX; | |
2260 | } | |
2261 | ||
2262 | lru_add_drain(); | |
2263 | ||
2264 | spin_lock_irq(&lruvec->lru_lock); | |
2265 | ||
2266 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, | |
2267 | &nr_scanned, sc, lru); | |
2268 | ||
2269 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
2270 | item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; | |
2271 | if (!cgroup_reclaim(sc)) | |
2272 | __count_vm_events(item, nr_scanned); | |
2273 | __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); | |
2274 | __count_vm_events(PGSCAN_ANON + file, nr_scanned); | |
2275 | ||
2276 | spin_unlock_irq(&lruvec->lru_lock); | |
2277 | ||
2278 | if (nr_taken == 0) | |
2279 | return 0; | |
2280 | ||
2281 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); | |
2282 | ||
2283 | spin_lock_irq(&lruvec->lru_lock); | |
2284 | move_pages_to_lru(lruvec, &page_list); | |
2285 | ||
2286 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
2287 | item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; | |
2288 | if (!cgroup_reclaim(sc)) | |
2289 | __count_vm_events(item, nr_reclaimed); | |
2290 | __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); | |
2291 | __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); | |
2292 | spin_unlock_irq(&lruvec->lru_lock); | |
2293 | ||
2294 | lru_note_cost(lruvec, file, stat.nr_pageout); | |
2295 | mem_cgroup_uncharge_list(&page_list); | |
2296 | free_unref_page_list(&page_list); | |
2297 | ||
2298 | /* | |
2299 | * If dirty pages are scanned that are not queued for IO, it | |
2300 | * implies that flushers are not doing their job. This can | |
2301 | * happen when memory pressure pushes dirty pages to the end of | |
2302 | * the LRU before the dirty limits are breached and the dirty | |
2303 | * data has expired. It can also happen when the proportion of | |
2304 | * dirty pages grows not through writes but through memory | |
2305 | * pressure reclaiming all the clean cache. And in some cases, | |
2306 | * the flushers simply cannot keep up with the allocation | |
2307 | * rate. Nudge the flusher threads in case they are asleep. | |
2308 | */ | |
2309 | if (stat.nr_unqueued_dirty == nr_taken) | |
2310 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
2311 | ||
2312 | sc->nr.dirty += stat.nr_dirty; | |
2313 | sc->nr.congested += stat.nr_congested; | |
2314 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
2315 | sc->nr.writeback += stat.nr_writeback; | |
2316 | sc->nr.immediate += stat.nr_immediate; | |
2317 | sc->nr.taken += nr_taken; | |
2318 | if (file) | |
2319 | sc->nr.file_taken += nr_taken; | |
2320 | ||
2321 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | |
2322 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); | |
2323 | return nr_reclaimed; | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | * shrink_active_list() moves pages from the active LRU to the inactive LRU. | |
2328 | * | |
2329 | * We move them the other way if the page is referenced by one or more | |
2330 | * processes. | |
2331 | * | |
2332 | * If the pages are mostly unmapped, the processing is fast and it is | |
2333 | * appropriate to hold lru_lock across the whole operation. But if | |
2334 | * the pages are mapped, the processing is slow (page_referenced()), so | |
2335 | * we should drop lru_lock around each page. It's impossible to balance | |
2336 | * this, so instead we remove the pages from the LRU while processing them. | |
2337 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
2338 | * nobody will play with that bit on a non-LRU page. | |
2339 | * | |
2340 | * The downside is that we have to touch page->_refcount against each page. | |
2341 | * But we had to alter page->flags anyway. | |
2342 | */ | |
2343 | static void shrink_active_list(unsigned long nr_to_scan, | |
2344 | struct lruvec *lruvec, | |
2345 | struct scan_control *sc, | |
2346 | enum lru_list lru) | |
2347 | { | |
2348 | unsigned long nr_taken; | |
2349 | unsigned long nr_scanned; | |
2350 | unsigned long vm_flags; | |
2351 | LIST_HEAD(l_hold); /* The pages which were snipped off */ | |
2352 | LIST_HEAD(l_active); | |
2353 | LIST_HEAD(l_inactive); | |
2354 | struct page *page; | |
2355 | unsigned nr_deactivate, nr_activate; | |
2356 | unsigned nr_rotated = 0; | |
2357 | int file = is_file_lru(lru); | |
2358 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2359 | ||
2360 | lru_add_drain(); | |
2361 | ||
2362 | spin_lock_irq(&lruvec->lru_lock); | |
2363 | ||
2364 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, | |
2365 | &nr_scanned, sc, lru); | |
2366 | ||
2367 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
2368 | ||
2369 | if (!cgroup_reclaim(sc)) | |
2370 | __count_vm_events(PGREFILL, nr_scanned); | |
2371 | __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); | |
2372 | ||
2373 | spin_unlock_irq(&lruvec->lru_lock); | |
2374 | ||
2375 | while (!list_empty(&l_hold)) { | |
2376 | cond_resched(); | |
2377 | page = lru_to_page(&l_hold); | |
2378 | list_del(&page->lru); | |
2379 | ||
2380 | if (unlikely(!page_evictable(page))) { | |
2381 | putback_lru_page(page); | |
2382 | continue; | |
2383 | } | |
2384 | ||
2385 | if (unlikely(buffer_heads_over_limit)) { | |
2386 | if (page_has_private(page) && trylock_page(page)) { | |
2387 | if (page_has_private(page)) | |
2388 | try_to_release_page(page, 0); | |
2389 | unlock_page(page); | |
2390 | } | |
2391 | } | |
2392 | ||
2393 | if (page_referenced(page, 0, sc->target_mem_cgroup, | |
2394 | &vm_flags)) { | |
2395 | /* | |
2396 | * Identify referenced, file-backed active pages and | |
2397 | * give them one more trip around the active list. So | |
2398 | * that executable code get better chances to stay in | |
2399 | * memory under moderate memory pressure. Anon pages | |
2400 | * are not likely to be evicted by use-once streaming | |
2401 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
2402 | * so we ignore them here. | |
2403 | */ | |
2404 | if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { | |
2405 | nr_rotated += thp_nr_pages(page); | |
2406 | list_add(&page->lru, &l_active); | |
2407 | continue; | |
2408 | } | |
2409 | } | |
2410 | ||
2411 | ClearPageActive(page); /* we are de-activating */ | |
2412 | SetPageWorkingset(page); | |
2413 | list_add(&page->lru, &l_inactive); | |
2414 | } | |
2415 | ||
2416 | /* | |
2417 | * Move pages back to the lru list. | |
2418 | */ | |
2419 | spin_lock_irq(&lruvec->lru_lock); | |
2420 | ||
2421 | nr_activate = move_pages_to_lru(lruvec, &l_active); | |
2422 | nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); | |
2423 | /* Keep all free pages in l_active list */ | |
2424 | list_splice(&l_inactive, &l_active); | |
2425 | ||
2426 | __count_vm_events(PGDEACTIVATE, nr_deactivate); | |
2427 | __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); | |
2428 | ||
2429 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
2430 | spin_unlock_irq(&lruvec->lru_lock); | |
2431 | ||
2432 | mem_cgroup_uncharge_list(&l_active); | |
2433 | free_unref_page_list(&l_active); | |
2434 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, | |
2435 | nr_deactivate, nr_rotated, sc->priority, file); | |
2436 | } | |
2437 | ||
2438 | unsigned long reclaim_pages(struct list_head *page_list) | |
2439 | { | |
2440 | int nid = NUMA_NO_NODE; | |
2441 | unsigned int nr_reclaimed = 0; | |
2442 | LIST_HEAD(node_page_list); | |
2443 | struct reclaim_stat dummy_stat; | |
2444 | struct page *page; | |
2445 | unsigned int noreclaim_flag; | |
2446 | struct scan_control sc = { | |
2447 | .gfp_mask = GFP_KERNEL, | |
2448 | .may_writepage = 1, | |
2449 | .may_unmap = 1, | |
2450 | .may_swap = 1, | |
2451 | .no_demotion = 1, | |
2452 | }; | |
2453 | ||
2454 | noreclaim_flag = memalloc_noreclaim_save(); | |
2455 | ||
2456 | while (!list_empty(page_list)) { | |
2457 | page = lru_to_page(page_list); | |
2458 | if (nid == NUMA_NO_NODE) { | |
2459 | nid = page_to_nid(page); | |
2460 | INIT_LIST_HEAD(&node_page_list); | |
2461 | } | |
2462 | ||
2463 | if (nid == page_to_nid(page)) { | |
2464 | ClearPageActive(page); | |
2465 | list_move(&page->lru, &node_page_list); | |
2466 | continue; | |
2467 | } | |
2468 | ||
2469 | nr_reclaimed += shrink_page_list(&node_page_list, | |
2470 | NODE_DATA(nid), | |
2471 | &sc, &dummy_stat, false); | |
2472 | while (!list_empty(&node_page_list)) { | |
2473 | page = lru_to_page(&node_page_list); | |
2474 | list_del(&page->lru); | |
2475 | putback_lru_page(page); | |
2476 | } | |
2477 | ||
2478 | nid = NUMA_NO_NODE; | |
2479 | } | |
2480 | ||
2481 | if (!list_empty(&node_page_list)) { | |
2482 | nr_reclaimed += shrink_page_list(&node_page_list, | |
2483 | NODE_DATA(nid), | |
2484 | &sc, &dummy_stat, false); | |
2485 | while (!list_empty(&node_page_list)) { | |
2486 | page = lru_to_page(&node_page_list); | |
2487 | list_del(&page->lru); | |
2488 | putback_lru_page(page); | |
2489 | } | |
2490 | } | |
2491 | ||
2492 | memalloc_noreclaim_restore(noreclaim_flag); | |
2493 | ||
2494 | return nr_reclaimed; | |
2495 | } | |
2496 | ||
2497 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | |
2498 | struct lruvec *lruvec, struct scan_control *sc) | |
2499 | { | |
2500 | if (is_active_lru(lru)) { | |
2501 | if (sc->may_deactivate & (1 << is_file_lru(lru))) | |
2502 | shrink_active_list(nr_to_scan, lruvec, sc, lru); | |
2503 | else | |
2504 | sc->skipped_deactivate = 1; | |
2505 | return 0; | |
2506 | } | |
2507 | ||
2508 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | |
2509 | } | |
2510 | ||
2511 | /* | |
2512 | * The inactive anon list should be small enough that the VM never has | |
2513 | * to do too much work. | |
2514 | * | |
2515 | * The inactive file list should be small enough to leave most memory | |
2516 | * to the established workingset on the scan-resistant active list, | |
2517 | * but large enough to avoid thrashing the aggregate readahead window. | |
2518 | * | |
2519 | * Both inactive lists should also be large enough that each inactive | |
2520 | * page has a chance to be referenced again before it is reclaimed. | |
2521 | * | |
2522 | * If that fails and refaulting is observed, the inactive list grows. | |
2523 | * | |
2524 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages | |
2525 | * on this LRU, maintained by the pageout code. An inactive_ratio | |
2526 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. | |
2527 | * | |
2528 | * total target max | |
2529 | * memory ratio inactive | |
2530 | * ------------------------------------- | |
2531 | * 10MB 1 5MB | |
2532 | * 100MB 1 50MB | |
2533 | * 1GB 3 250MB | |
2534 | * 10GB 10 0.9GB | |
2535 | * 100GB 31 3GB | |
2536 | * 1TB 101 10GB | |
2537 | * 10TB 320 32GB | |
2538 | */ | |
2539 | static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) | |
2540 | { | |
2541 | enum lru_list active_lru = inactive_lru + LRU_ACTIVE; | |
2542 | unsigned long inactive, active; | |
2543 | unsigned long inactive_ratio; | |
2544 | unsigned long gb; | |
2545 | ||
2546 | inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); | |
2547 | active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); | |
2548 | ||
2549 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
2550 | if (gb) | |
2551 | inactive_ratio = int_sqrt(10 * gb); | |
2552 | else | |
2553 | inactive_ratio = 1; | |
2554 | ||
2555 | return inactive * inactive_ratio < active; | |
2556 | } | |
2557 | ||
2558 | enum scan_balance { | |
2559 | SCAN_EQUAL, | |
2560 | SCAN_FRACT, | |
2561 | SCAN_ANON, | |
2562 | SCAN_FILE, | |
2563 | }; | |
2564 | ||
2565 | /* | |
2566 | * Determine how aggressively the anon and file LRU lists should be | |
2567 | * scanned. The relative value of each set of LRU lists is determined | |
2568 | * by looking at the fraction of the pages scanned we did rotate back | |
2569 | * onto the active list instead of evict. | |
2570 | * | |
2571 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan | |
2572 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
2573 | */ | |
2574 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, | |
2575 | unsigned long *nr) | |
2576 | { | |
2577 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2578 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
2579 | unsigned long anon_cost, file_cost, total_cost; | |
2580 | int swappiness = mem_cgroup_swappiness(memcg); | |
2581 | u64 fraction[ANON_AND_FILE]; | |
2582 | u64 denominator = 0; /* gcc */ | |
2583 | enum scan_balance scan_balance; | |
2584 | unsigned long ap, fp; | |
2585 | enum lru_list lru; | |
2586 | ||
2587 | /* If we have no swap space, do not bother scanning anon pages. */ | |
2588 | if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { | |
2589 | scan_balance = SCAN_FILE; | |
2590 | goto out; | |
2591 | } | |
2592 | ||
2593 | /* | |
2594 | * Global reclaim will swap to prevent OOM even with no | |
2595 | * swappiness, but memcg users want to use this knob to | |
2596 | * disable swapping for individual groups completely when | |
2597 | * using the memory controller's swap limit feature would be | |
2598 | * too expensive. | |
2599 | */ | |
2600 | if (cgroup_reclaim(sc) && !swappiness) { | |
2601 | scan_balance = SCAN_FILE; | |
2602 | goto out; | |
2603 | } | |
2604 | ||
2605 | /* | |
2606 | * Do not apply any pressure balancing cleverness when the | |
2607 | * system is close to OOM, scan both anon and file equally | |
2608 | * (unless the swappiness setting disagrees with swapping). | |
2609 | */ | |
2610 | if (!sc->priority && swappiness) { | |
2611 | scan_balance = SCAN_EQUAL; | |
2612 | goto out; | |
2613 | } | |
2614 | ||
2615 | /* | |
2616 | * If the system is almost out of file pages, force-scan anon. | |
2617 | */ | |
2618 | if (sc->file_is_tiny) { | |
2619 | scan_balance = SCAN_ANON; | |
2620 | goto out; | |
2621 | } | |
2622 | ||
2623 | /* | |
2624 | * If there is enough inactive page cache, we do not reclaim | |
2625 | * anything from the anonymous working right now. | |
2626 | */ | |
2627 | if (sc->cache_trim_mode) { | |
2628 | scan_balance = SCAN_FILE; | |
2629 | goto out; | |
2630 | } | |
2631 | ||
2632 | scan_balance = SCAN_FRACT; | |
2633 | /* | |
2634 | * Calculate the pressure balance between anon and file pages. | |
2635 | * | |
2636 | * The amount of pressure we put on each LRU is inversely | |
2637 | * proportional to the cost of reclaiming each list, as | |
2638 | * determined by the share of pages that are refaulting, times | |
2639 | * the relative IO cost of bringing back a swapped out | |
2640 | * anonymous page vs reloading a filesystem page (swappiness). | |
2641 | * | |
2642 | * Although we limit that influence to ensure no list gets | |
2643 | * left behind completely: at least a third of the pressure is | |
2644 | * applied, before swappiness. | |
2645 | * | |
2646 | * With swappiness at 100, anon and file have equal IO cost. | |
2647 | */ | |
2648 | total_cost = sc->anon_cost + sc->file_cost; | |
2649 | anon_cost = total_cost + sc->anon_cost; | |
2650 | file_cost = total_cost + sc->file_cost; | |
2651 | total_cost = anon_cost + file_cost; | |
2652 | ||
2653 | ap = swappiness * (total_cost + 1); | |
2654 | ap /= anon_cost + 1; | |
2655 | ||
2656 | fp = (200 - swappiness) * (total_cost + 1); | |
2657 | fp /= file_cost + 1; | |
2658 | ||
2659 | fraction[0] = ap; | |
2660 | fraction[1] = fp; | |
2661 | denominator = ap + fp; | |
2662 | out: | |
2663 | for_each_evictable_lru(lru) { | |
2664 | int file = is_file_lru(lru); | |
2665 | unsigned long lruvec_size; | |
2666 | unsigned long low, min; | |
2667 | unsigned long scan; | |
2668 | ||
2669 | lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | |
2670 | mem_cgroup_protection(sc->target_mem_cgroup, memcg, | |
2671 | &min, &low); | |
2672 | ||
2673 | if (min || low) { | |
2674 | /* | |
2675 | * Scale a cgroup's reclaim pressure by proportioning | |
2676 | * its current usage to its memory.low or memory.min | |
2677 | * setting. | |
2678 | * | |
2679 | * This is important, as otherwise scanning aggression | |
2680 | * becomes extremely binary -- from nothing as we | |
2681 | * approach the memory protection threshold, to totally | |
2682 | * nominal as we exceed it. This results in requiring | |
2683 | * setting extremely liberal protection thresholds. It | |
2684 | * also means we simply get no protection at all if we | |
2685 | * set it too low, which is not ideal. | |
2686 | * | |
2687 | * If there is any protection in place, we reduce scan | |
2688 | * pressure by how much of the total memory used is | |
2689 | * within protection thresholds. | |
2690 | * | |
2691 | * There is one special case: in the first reclaim pass, | |
2692 | * we skip over all groups that are within their low | |
2693 | * protection. If that fails to reclaim enough pages to | |
2694 | * satisfy the reclaim goal, we come back and override | |
2695 | * the best-effort low protection. However, we still | |
2696 | * ideally want to honor how well-behaved groups are in | |
2697 | * that case instead of simply punishing them all | |
2698 | * equally. As such, we reclaim them based on how much | |
2699 | * memory they are using, reducing the scan pressure | |
2700 | * again by how much of the total memory used is under | |
2701 | * hard protection. | |
2702 | */ | |
2703 | unsigned long cgroup_size = mem_cgroup_size(memcg); | |
2704 | unsigned long protection; | |
2705 | ||
2706 | /* memory.low scaling, make sure we retry before OOM */ | |
2707 | if (!sc->memcg_low_reclaim && low > min) { | |
2708 | protection = low; | |
2709 | sc->memcg_low_skipped = 1; | |
2710 | } else { | |
2711 | protection = min; | |
2712 | } | |
2713 | ||
2714 | /* Avoid TOCTOU with earlier protection check */ | |
2715 | cgroup_size = max(cgroup_size, protection); | |
2716 | ||
2717 | scan = lruvec_size - lruvec_size * protection / | |
2718 | (cgroup_size + 1); | |
2719 | ||
2720 | /* | |
2721 | * Minimally target SWAP_CLUSTER_MAX pages to keep | |
2722 | * reclaim moving forwards, avoiding decrementing | |
2723 | * sc->priority further than desirable. | |
2724 | */ | |
2725 | scan = max(scan, SWAP_CLUSTER_MAX); | |
2726 | } else { | |
2727 | scan = lruvec_size; | |
2728 | } | |
2729 | ||
2730 | scan >>= sc->priority; | |
2731 | ||
2732 | /* | |
2733 | * If the cgroup's already been deleted, make sure to | |
2734 | * scrape out the remaining cache. | |
2735 | */ | |
2736 | if (!scan && !mem_cgroup_online(memcg)) | |
2737 | scan = min(lruvec_size, SWAP_CLUSTER_MAX); | |
2738 | ||
2739 | switch (scan_balance) { | |
2740 | case SCAN_EQUAL: | |
2741 | /* Scan lists relative to size */ | |
2742 | break; | |
2743 | case SCAN_FRACT: | |
2744 | /* | |
2745 | * Scan types proportional to swappiness and | |
2746 | * their relative recent reclaim efficiency. | |
2747 | * Make sure we don't miss the last page on | |
2748 | * the offlined memory cgroups because of a | |
2749 | * round-off error. | |
2750 | */ | |
2751 | scan = mem_cgroup_online(memcg) ? | |
2752 | div64_u64(scan * fraction[file], denominator) : | |
2753 | DIV64_U64_ROUND_UP(scan * fraction[file], | |
2754 | denominator); | |
2755 | break; | |
2756 | case SCAN_FILE: | |
2757 | case SCAN_ANON: | |
2758 | /* Scan one type exclusively */ | |
2759 | if ((scan_balance == SCAN_FILE) != file) | |
2760 | scan = 0; | |
2761 | break; | |
2762 | default: | |
2763 | /* Look ma, no brain */ | |
2764 | BUG(); | |
2765 | } | |
2766 | ||
2767 | nr[lru] = scan; | |
2768 | } | |
2769 | } | |
2770 | ||
2771 | /* | |
2772 | * Anonymous LRU management is a waste if there is | |
2773 | * ultimately no way to reclaim the memory. | |
2774 | */ | |
2775 | static bool can_age_anon_pages(struct pglist_data *pgdat, | |
2776 | struct scan_control *sc) | |
2777 | { | |
2778 | /* Aging the anon LRU is valuable if swap is present: */ | |
2779 | if (total_swap_pages > 0) | |
2780 | return true; | |
2781 | ||
2782 | /* Also valuable if anon pages can be demoted: */ | |
2783 | return can_demote(pgdat->node_id, sc); | |
2784 | } | |
2785 | ||
2786 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
2787 | { | |
2788 | unsigned long nr[NR_LRU_LISTS]; | |
2789 | unsigned long targets[NR_LRU_LISTS]; | |
2790 | unsigned long nr_to_scan; | |
2791 | enum lru_list lru; | |
2792 | unsigned long nr_reclaimed = 0; | |
2793 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2794 | struct blk_plug plug; | |
2795 | bool scan_adjusted; | |
2796 | ||
2797 | get_scan_count(lruvec, sc, nr); | |
2798 | ||
2799 | /* Record the original scan target for proportional adjustments later */ | |
2800 | memcpy(targets, nr, sizeof(nr)); | |
2801 | ||
2802 | /* | |
2803 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2804 | * event that can occur when there is little memory pressure e.g. | |
2805 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2806 | * when the requested number of pages are reclaimed when scanning at | |
2807 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2808 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2809 | * do a batch of work at once. For memcg reclaim one check is made to | |
2810 | * abort proportional reclaim if either the file or anon lru has already | |
2811 | * dropped to zero at the first pass. | |
2812 | */ | |
2813 | scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && | |
2814 | sc->priority == DEF_PRIORITY); | |
2815 | ||
2816 | blk_start_plug(&plug); | |
2817 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2818 | nr[LRU_INACTIVE_FILE]) { | |
2819 | unsigned long nr_anon, nr_file, percentage; | |
2820 | unsigned long nr_scanned; | |
2821 | ||
2822 | for_each_evictable_lru(lru) { | |
2823 | if (nr[lru]) { | |
2824 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2825 | nr[lru] -= nr_to_scan; | |
2826 | ||
2827 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
2828 | lruvec, sc); | |
2829 | } | |
2830 | } | |
2831 | ||
2832 | cond_resched(); | |
2833 | ||
2834 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) | |
2835 | continue; | |
2836 | ||
2837 | /* | |
2838 | * For kswapd and memcg, reclaim at least the number of pages | |
2839 | * requested. Ensure that the anon and file LRUs are scanned | |
2840 | * proportionally what was requested by get_scan_count(). We | |
2841 | * stop reclaiming one LRU and reduce the amount scanning | |
2842 | * proportional to the original scan target. | |
2843 | */ | |
2844 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
2845 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
2846 | ||
2847 | /* | |
2848 | * It's just vindictive to attack the larger once the smaller | |
2849 | * has gone to zero. And given the way we stop scanning the | |
2850 | * smaller below, this makes sure that we only make one nudge | |
2851 | * towards proportionality once we've got nr_to_reclaim. | |
2852 | */ | |
2853 | if (!nr_file || !nr_anon) | |
2854 | break; | |
2855 | ||
2856 | if (nr_file > nr_anon) { | |
2857 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
2858 | targets[LRU_ACTIVE_ANON] + 1; | |
2859 | lru = LRU_BASE; | |
2860 | percentage = nr_anon * 100 / scan_target; | |
2861 | } else { | |
2862 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
2863 | targets[LRU_ACTIVE_FILE] + 1; | |
2864 | lru = LRU_FILE; | |
2865 | percentage = nr_file * 100 / scan_target; | |
2866 | } | |
2867 | ||
2868 | /* Stop scanning the smaller of the LRU */ | |
2869 | nr[lru] = 0; | |
2870 | nr[lru + LRU_ACTIVE] = 0; | |
2871 | ||
2872 | /* | |
2873 | * Recalculate the other LRU scan count based on its original | |
2874 | * scan target and the percentage scanning already complete | |
2875 | */ | |
2876 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
2877 | nr_scanned = targets[lru] - nr[lru]; | |
2878 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2879 | nr[lru] -= min(nr[lru], nr_scanned); | |
2880 | ||
2881 | lru += LRU_ACTIVE; | |
2882 | nr_scanned = targets[lru] - nr[lru]; | |
2883 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2884 | nr[lru] -= min(nr[lru], nr_scanned); | |
2885 | ||
2886 | scan_adjusted = true; | |
2887 | } | |
2888 | blk_finish_plug(&plug); | |
2889 | sc->nr_reclaimed += nr_reclaimed; | |
2890 | ||
2891 | /* | |
2892 | * Even if we did not try to evict anon pages at all, we want to | |
2893 | * rebalance the anon lru active/inactive ratio. | |
2894 | */ | |
2895 | if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && | |
2896 | inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
2897 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
2898 | sc, LRU_ACTIVE_ANON); | |
2899 | } | |
2900 | ||
2901 | /* Use reclaim/compaction for costly allocs or under memory pressure */ | |
2902 | static bool in_reclaim_compaction(struct scan_control *sc) | |
2903 | { | |
2904 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && | |
2905 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || | |
2906 | sc->priority < DEF_PRIORITY - 2)) | |
2907 | return true; | |
2908 | ||
2909 | return false; | |
2910 | } | |
2911 | ||
2912 | /* | |
2913 | * Reclaim/compaction is used for high-order allocation requests. It reclaims | |
2914 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
2915 | * true if more pages should be reclaimed such that when the page allocator | |
2916 | * calls try_to_compact_pages() that it will have enough free pages to succeed. | |
2917 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
2918 | */ | |
2919 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, | |
2920 | unsigned long nr_reclaimed, | |
2921 | struct scan_control *sc) | |
2922 | { | |
2923 | unsigned long pages_for_compaction; | |
2924 | unsigned long inactive_lru_pages; | |
2925 | int z; | |
2926 | ||
2927 | /* If not in reclaim/compaction mode, stop */ | |
2928 | if (!in_reclaim_compaction(sc)) | |
2929 | return false; | |
2930 | ||
2931 | /* | |
2932 | * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX | |
2933 | * number of pages that were scanned. This will return to the caller | |
2934 | * with the risk reclaim/compaction and the resulting allocation attempt | |
2935 | * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL | |
2936 | * allocations through requiring that the full LRU list has been scanned | |
2937 | * first, by assuming that zero delta of sc->nr_scanned means full LRU | |
2938 | * scan, but that approximation was wrong, and there were corner cases | |
2939 | * where always a non-zero amount of pages were scanned. | |
2940 | */ | |
2941 | if (!nr_reclaimed) | |
2942 | return false; | |
2943 | ||
2944 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
2945 | for (z = 0; z <= sc->reclaim_idx; z++) { | |
2946 | struct zone *zone = &pgdat->node_zones[z]; | |
2947 | if (!managed_zone(zone)) | |
2948 | continue; | |
2949 | ||
2950 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | |
2951 | case COMPACT_SUCCESS: | |
2952 | case COMPACT_CONTINUE: | |
2953 | return false; | |
2954 | default: | |
2955 | /* check next zone */ | |
2956 | ; | |
2957 | } | |
2958 | } | |
2959 | ||
2960 | /* | |
2961 | * If we have not reclaimed enough pages for compaction and the | |
2962 | * inactive lists are large enough, continue reclaiming | |
2963 | */ | |
2964 | pages_for_compaction = compact_gap(sc->order); | |
2965 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | |
2966 | if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) | |
2967 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); | |
2968 | ||
2969 | return inactive_lru_pages > pages_for_compaction; | |
2970 | } | |
2971 | ||
2972 | static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) | |
2973 | { | |
2974 | struct mem_cgroup *target_memcg = sc->target_mem_cgroup; | |
2975 | struct mem_cgroup *memcg; | |
2976 | ||
2977 | memcg = mem_cgroup_iter(target_memcg, NULL, NULL); | |
2978 | do { | |
2979 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
2980 | unsigned long reclaimed; | |
2981 | unsigned long scanned; | |
2982 | ||
2983 | /* | |
2984 | * This loop can become CPU-bound when target memcgs | |
2985 | * aren't eligible for reclaim - either because they | |
2986 | * don't have any reclaimable pages, or because their | |
2987 | * memory is explicitly protected. Avoid soft lockups. | |
2988 | */ | |
2989 | cond_resched(); | |
2990 | ||
2991 | mem_cgroup_calculate_protection(target_memcg, memcg); | |
2992 | ||
2993 | if (mem_cgroup_below_min(memcg)) { | |
2994 | /* | |
2995 | * Hard protection. | |
2996 | * If there is no reclaimable memory, OOM. | |
2997 | */ | |
2998 | continue; | |
2999 | } else if (mem_cgroup_below_low(memcg)) { | |
3000 | /* | |
3001 | * Soft protection. | |
3002 | * Respect the protection only as long as | |
3003 | * there is an unprotected supply | |
3004 | * of reclaimable memory from other cgroups. | |
3005 | */ | |
3006 | if (!sc->memcg_low_reclaim) { | |
3007 | sc->memcg_low_skipped = 1; | |
3008 | continue; | |
3009 | } | |
3010 | memcg_memory_event(memcg, MEMCG_LOW); | |
3011 | } | |
3012 | ||
3013 | reclaimed = sc->nr_reclaimed; | |
3014 | scanned = sc->nr_scanned; | |
3015 | ||
3016 | shrink_lruvec(lruvec, sc); | |
3017 | ||
3018 | shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, | |
3019 | sc->priority); | |
3020 | ||
3021 | /* Record the group's reclaim efficiency */ | |
3022 | vmpressure(sc->gfp_mask, memcg, false, | |
3023 | sc->nr_scanned - scanned, | |
3024 | sc->nr_reclaimed - reclaimed); | |
3025 | ||
3026 | } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); | |
3027 | } | |
3028 | ||
3029 | static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) | |
3030 | { | |
3031 | struct reclaim_state *reclaim_state = current->reclaim_state; | |
3032 | unsigned long nr_reclaimed, nr_scanned; | |
3033 | struct lruvec *target_lruvec; | |
3034 | bool reclaimable = false; | |
3035 | unsigned long file; | |
3036 | ||
3037 | target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); | |
3038 | ||
3039 | again: | |
3040 | /* | |
3041 | * Flush the memory cgroup stats, so that we read accurate per-memcg | |
3042 | * lruvec stats for heuristics. | |
3043 | */ | |
3044 | mem_cgroup_flush_stats(); | |
3045 | ||
3046 | memset(&sc->nr, 0, sizeof(sc->nr)); | |
3047 | ||
3048 | nr_reclaimed = sc->nr_reclaimed; | |
3049 | nr_scanned = sc->nr_scanned; | |
3050 | ||
3051 | /* | |
3052 | * Determine the scan balance between anon and file LRUs. | |
3053 | */ | |
3054 | spin_lock_irq(&target_lruvec->lru_lock); | |
3055 | sc->anon_cost = target_lruvec->anon_cost; | |
3056 | sc->file_cost = target_lruvec->file_cost; | |
3057 | spin_unlock_irq(&target_lruvec->lru_lock); | |
3058 | ||
3059 | /* | |
3060 | * Target desirable inactive:active list ratios for the anon | |
3061 | * and file LRU lists. | |
3062 | */ | |
3063 | if (!sc->force_deactivate) { | |
3064 | unsigned long refaults; | |
3065 | ||
3066 | refaults = lruvec_page_state(target_lruvec, | |
3067 | WORKINGSET_ACTIVATE_ANON); | |
3068 | if (refaults != target_lruvec->refaults[0] || | |
3069 | inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) | |
3070 | sc->may_deactivate |= DEACTIVATE_ANON; | |
3071 | else | |
3072 | sc->may_deactivate &= ~DEACTIVATE_ANON; | |
3073 | ||
3074 | /* | |
3075 | * When refaults are being observed, it means a new | |
3076 | * workingset is being established. Deactivate to get | |
3077 | * rid of any stale active pages quickly. | |
3078 | */ | |
3079 | refaults = lruvec_page_state(target_lruvec, | |
3080 | WORKINGSET_ACTIVATE_FILE); | |
3081 | if (refaults != target_lruvec->refaults[1] || | |
3082 | inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) | |
3083 | sc->may_deactivate |= DEACTIVATE_FILE; | |
3084 | else | |
3085 | sc->may_deactivate &= ~DEACTIVATE_FILE; | |
3086 | } else | |
3087 | sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; | |
3088 | ||
3089 | /* | |
3090 | * If we have plenty of inactive file pages that aren't | |
3091 | * thrashing, try to reclaim those first before touching | |
3092 | * anonymous pages. | |
3093 | */ | |
3094 | file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); | |
3095 | if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) | |
3096 | sc->cache_trim_mode = 1; | |
3097 | else | |
3098 | sc->cache_trim_mode = 0; | |
3099 | ||
3100 | /* | |
3101 | * Prevent the reclaimer from falling into the cache trap: as | |
3102 | * cache pages start out inactive, every cache fault will tip | |
3103 | * the scan balance towards the file LRU. And as the file LRU | |
3104 | * shrinks, so does the window for rotation from references. | |
3105 | * This means we have a runaway feedback loop where a tiny | |
3106 | * thrashing file LRU becomes infinitely more attractive than | |
3107 | * anon pages. Try to detect this based on file LRU size. | |
3108 | */ | |
3109 | if (!cgroup_reclaim(sc)) { | |
3110 | unsigned long total_high_wmark = 0; | |
3111 | unsigned long free, anon; | |
3112 | int z; | |
3113 | ||
3114 | free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | |
3115 | file = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
3116 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
3117 | ||
3118 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
3119 | struct zone *zone = &pgdat->node_zones[z]; | |
3120 | if (!managed_zone(zone)) | |
3121 | continue; | |
3122 | ||
3123 | total_high_wmark += high_wmark_pages(zone); | |
3124 | } | |
3125 | ||
3126 | /* | |
3127 | * Consider anon: if that's low too, this isn't a | |
3128 | * runaway file reclaim problem, but rather just | |
3129 | * extreme pressure. Reclaim as per usual then. | |
3130 | */ | |
3131 | anon = node_page_state(pgdat, NR_INACTIVE_ANON); | |
3132 | ||
3133 | sc->file_is_tiny = | |
3134 | file + free <= total_high_wmark && | |
3135 | !(sc->may_deactivate & DEACTIVATE_ANON) && | |
3136 | anon >> sc->priority; | |
3137 | } | |
3138 | ||
3139 | shrink_node_memcgs(pgdat, sc); | |
3140 | ||
3141 | if (reclaim_state) { | |
3142 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
3143 | reclaim_state->reclaimed_slab = 0; | |
3144 | } | |
3145 | ||
3146 | /* Record the subtree's reclaim efficiency */ | |
3147 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
3148 | sc->nr_scanned - nr_scanned, | |
3149 | sc->nr_reclaimed - nr_reclaimed); | |
3150 | ||
3151 | if (sc->nr_reclaimed - nr_reclaimed) | |
3152 | reclaimable = true; | |
3153 | ||
3154 | if (current_is_kswapd()) { | |
3155 | /* | |
3156 | * If reclaim is isolating dirty pages under writeback, | |
3157 | * it implies that the long-lived page allocation rate | |
3158 | * is exceeding the page laundering rate. Either the | |
3159 | * global limits are not being effective at throttling | |
3160 | * processes due to the page distribution throughout | |
3161 | * zones or there is heavy usage of a slow backing | |
3162 | * device. The only option is to throttle from reclaim | |
3163 | * context which is not ideal as there is no guarantee | |
3164 | * the dirtying process is throttled in the same way | |
3165 | * balance_dirty_pages() manages. | |
3166 | * | |
3167 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | |
3168 | * count the number of pages under pages flagged for | |
3169 | * immediate reclaim and stall if any are encountered | |
3170 | * in the nr_immediate check below. | |
3171 | */ | |
3172 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | |
3173 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
3174 | ||
3175 | /* Allow kswapd to start writing pages during reclaim.*/ | |
3176 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) | |
3177 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
3178 | ||
3179 | /* | |
3180 | * If kswapd scans pages marked for immediate | |
3181 | * reclaim and under writeback (nr_immediate), it | |
3182 | * implies that pages are cycling through the LRU | |
3183 | * faster than they are written so also forcibly stall. | |
3184 | */ | |
3185 | if (sc->nr.immediate) | |
3186 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
3187 | } | |
3188 | ||
3189 | /* | |
3190 | * Tag a node/memcg as congested if all the dirty pages | |
3191 | * scanned were backed by a congested BDI and | |
3192 | * wait_iff_congested will stall. | |
3193 | * | |
3194 | * Legacy memcg will stall in page writeback so avoid forcibly | |
3195 | * stalling in wait_iff_congested(). | |
3196 | */ | |
3197 | if ((current_is_kswapd() || | |
3198 | (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && | |
3199 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | |
3200 | set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); | |
3201 | ||
3202 | /* | |
3203 | * Stall direct reclaim for IO completions if underlying BDIs | |
3204 | * and node is congested. Allow kswapd to continue until it | |
3205 | * starts encountering unqueued dirty pages or cycling through | |
3206 | * the LRU too quickly. | |
3207 | */ | |
3208 | if (!current_is_kswapd() && current_may_throttle() && | |
3209 | !sc->hibernation_mode && | |
3210 | test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) | |
3211 | wait_iff_congested(BLK_RW_ASYNC, HZ/10); | |
3212 | ||
3213 | if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, | |
3214 | sc)) | |
3215 | goto again; | |
3216 | ||
3217 | /* | |
3218 | * Kswapd gives up on balancing particular nodes after too | |
3219 | * many failures to reclaim anything from them and goes to | |
3220 | * sleep. On reclaim progress, reset the failure counter. A | |
3221 | * successful direct reclaim run will revive a dormant kswapd. | |
3222 | */ | |
3223 | if (reclaimable) | |
3224 | pgdat->kswapd_failures = 0; | |
3225 | } | |
3226 | ||
3227 | /* | |
3228 | * Returns true if compaction should go ahead for a costly-order request, or | |
3229 | * the allocation would already succeed without compaction. Return false if we | |
3230 | * should reclaim first. | |
3231 | */ | |
3232 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
3233 | { | |
3234 | unsigned long watermark; | |
3235 | enum compact_result suitable; | |
3236 | ||
3237 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); | |
3238 | if (suitable == COMPACT_SUCCESS) | |
3239 | /* Allocation should succeed already. Don't reclaim. */ | |
3240 | return true; | |
3241 | if (suitable == COMPACT_SKIPPED) | |
3242 | /* Compaction cannot yet proceed. Do reclaim. */ | |
3243 | return false; | |
3244 | ||
3245 | /* | |
3246 | * Compaction is already possible, but it takes time to run and there | |
3247 | * are potentially other callers using the pages just freed. So proceed | |
3248 | * with reclaim to make a buffer of free pages available to give | |
3249 | * compaction a reasonable chance of completing and allocating the page. | |
3250 | * Note that we won't actually reclaim the whole buffer in one attempt | |
3251 | * as the target watermark in should_continue_reclaim() is lower. But if | |
3252 | * we are already above the high+gap watermark, don't reclaim at all. | |
3253 | */ | |
3254 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); | |
3255 | ||
3256 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); | |
3257 | } | |
3258 | ||
3259 | /* | |
3260 | * This is the direct reclaim path, for page-allocating processes. We only | |
3261 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
3262 | * request. | |
3263 | * | |
3264 | * If a zone is deemed to be full of pinned pages then just give it a light | |
3265 | * scan then give up on it. | |
3266 | */ | |
3267 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) | |
3268 | { | |
3269 | struct zoneref *z; | |
3270 | struct zone *zone; | |
3271 | unsigned long nr_soft_reclaimed; | |
3272 | unsigned long nr_soft_scanned; | |
3273 | gfp_t orig_mask; | |
3274 | pg_data_t *last_pgdat = NULL; | |
3275 | ||
3276 | /* | |
3277 | * If the number of buffer_heads in the machine exceeds the maximum | |
3278 | * allowed level, force direct reclaim to scan the highmem zone as | |
3279 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
3280 | */ | |
3281 | orig_mask = sc->gfp_mask; | |
3282 | if (buffer_heads_over_limit) { | |
3283 | sc->gfp_mask |= __GFP_HIGHMEM; | |
3284 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); | |
3285 | } | |
3286 | ||
3287 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
3288 | sc->reclaim_idx, sc->nodemask) { | |
3289 | /* | |
3290 | * Take care memory controller reclaiming has small influence | |
3291 | * to global LRU. | |
3292 | */ | |
3293 | if (!cgroup_reclaim(sc)) { | |
3294 | if (!cpuset_zone_allowed(zone, | |
3295 | GFP_KERNEL | __GFP_HARDWALL)) | |
3296 | continue; | |
3297 | ||
3298 | /* | |
3299 | * If we already have plenty of memory free for | |
3300 | * compaction in this zone, don't free any more. | |
3301 | * Even though compaction is invoked for any | |
3302 | * non-zero order, only frequent costly order | |
3303 | * reclamation is disruptive enough to become a | |
3304 | * noticeable problem, like transparent huge | |
3305 | * page allocations. | |
3306 | */ | |
3307 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
3308 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
3309 | compaction_ready(zone, sc)) { | |
3310 | sc->compaction_ready = true; | |
3311 | continue; | |
3312 | } | |
3313 | ||
3314 | /* | |
3315 | * Shrink each node in the zonelist once. If the | |
3316 | * zonelist is ordered by zone (not the default) then a | |
3317 | * node may be shrunk multiple times but in that case | |
3318 | * the user prefers lower zones being preserved. | |
3319 | */ | |
3320 | if (zone->zone_pgdat == last_pgdat) | |
3321 | continue; | |
3322 | ||
3323 | /* | |
3324 | * This steals pages from memory cgroups over softlimit | |
3325 | * and returns the number of reclaimed pages and | |
3326 | * scanned pages. This works for global memory pressure | |
3327 | * and balancing, not for a memcg's limit. | |
3328 | */ | |
3329 | nr_soft_scanned = 0; | |
3330 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, | |
3331 | sc->order, sc->gfp_mask, | |
3332 | &nr_soft_scanned); | |
3333 | sc->nr_reclaimed += nr_soft_reclaimed; | |
3334 | sc->nr_scanned += nr_soft_scanned; | |
3335 | /* need some check for avoid more shrink_zone() */ | |
3336 | } | |
3337 | ||
3338 | /* See comment about same check for global reclaim above */ | |
3339 | if (zone->zone_pgdat == last_pgdat) | |
3340 | continue; | |
3341 | last_pgdat = zone->zone_pgdat; | |
3342 | shrink_node(zone->zone_pgdat, sc); | |
3343 | } | |
3344 | ||
3345 | /* | |
3346 | * Restore to original mask to avoid the impact on the caller if we | |
3347 | * promoted it to __GFP_HIGHMEM. | |
3348 | */ | |
3349 | sc->gfp_mask = orig_mask; | |
3350 | } | |
3351 | ||
3352 | static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) | |
3353 | { | |
3354 | struct lruvec *target_lruvec; | |
3355 | unsigned long refaults; | |
3356 | ||
3357 | target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); | |
3358 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); | |
3359 | target_lruvec->refaults[0] = refaults; | |
3360 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); | |
3361 | target_lruvec->refaults[1] = refaults; | |
3362 | } | |
3363 | ||
3364 | /* | |
3365 | * This is the main entry point to direct page reclaim. | |
3366 | * | |
3367 | * If a full scan of the inactive list fails to free enough memory then we | |
3368 | * are "out of memory" and something needs to be killed. | |
3369 | * | |
3370 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
3371 | * high - the zone may be full of dirty or under-writeback pages, which this | |
3372 | * caller can't do much about. We kick the writeback threads and take explicit | |
3373 | * naps in the hope that some of these pages can be written. But if the | |
3374 | * allocating task holds filesystem locks which prevent writeout this might not | |
3375 | * work, and the allocation attempt will fail. | |
3376 | * | |
3377 | * returns: 0, if no pages reclaimed | |
3378 | * else, the number of pages reclaimed | |
3379 | */ | |
3380 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |
3381 | struct scan_control *sc) | |
3382 | { | |
3383 | int initial_priority = sc->priority; | |
3384 | pg_data_t *last_pgdat; | |
3385 | struct zoneref *z; | |
3386 | struct zone *zone; | |
3387 | retry: | |
3388 | delayacct_freepages_start(); | |
3389 | ||
3390 | if (!cgroup_reclaim(sc)) | |
3391 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); | |
3392 | ||
3393 | do { | |
3394 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | |
3395 | sc->priority); | |
3396 | sc->nr_scanned = 0; | |
3397 | shrink_zones(zonelist, sc); | |
3398 | ||
3399 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) | |
3400 | break; | |
3401 | ||
3402 | if (sc->compaction_ready) | |
3403 | break; | |
3404 | ||
3405 | /* | |
3406 | * If we're getting trouble reclaiming, start doing | |
3407 | * writepage even in laptop mode. | |
3408 | */ | |
3409 | if (sc->priority < DEF_PRIORITY - 2) | |
3410 | sc->may_writepage = 1; | |
3411 | } while (--sc->priority >= 0); | |
3412 | ||
3413 | last_pgdat = NULL; | |
3414 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | |
3415 | sc->nodemask) { | |
3416 | if (zone->zone_pgdat == last_pgdat) | |
3417 | continue; | |
3418 | last_pgdat = zone->zone_pgdat; | |
3419 | ||
3420 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | |
3421 | ||
3422 | if (cgroup_reclaim(sc)) { | |
3423 | struct lruvec *lruvec; | |
3424 | ||
3425 | lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, | |
3426 | zone->zone_pgdat); | |
3427 | clear_bit(LRUVEC_CONGESTED, &lruvec->flags); | |
3428 | } | |
3429 | } | |
3430 | ||
3431 | delayacct_freepages_end(); | |
3432 | ||
3433 | if (sc->nr_reclaimed) | |
3434 | return sc->nr_reclaimed; | |
3435 | ||
3436 | /* Aborted reclaim to try compaction? don't OOM, then */ | |
3437 | if (sc->compaction_ready) | |
3438 | return 1; | |
3439 | ||
3440 | /* | |
3441 | * We make inactive:active ratio decisions based on the node's | |
3442 | * composition of memory, but a restrictive reclaim_idx or a | |
3443 | * memory.low cgroup setting can exempt large amounts of | |
3444 | * memory from reclaim. Neither of which are very common, so | |
3445 | * instead of doing costly eligibility calculations of the | |
3446 | * entire cgroup subtree up front, we assume the estimates are | |
3447 | * good, and retry with forcible deactivation if that fails. | |
3448 | */ | |
3449 | if (sc->skipped_deactivate) { | |
3450 | sc->priority = initial_priority; | |
3451 | sc->force_deactivate = 1; | |
3452 | sc->skipped_deactivate = 0; | |
3453 | goto retry; | |
3454 | } | |
3455 | ||
3456 | /* Untapped cgroup reserves? Don't OOM, retry. */ | |
3457 | if (sc->memcg_low_skipped) { | |
3458 | sc->priority = initial_priority; | |
3459 | sc->force_deactivate = 0; | |
3460 | sc->memcg_low_reclaim = 1; | |
3461 | sc->memcg_low_skipped = 0; | |
3462 | goto retry; | |
3463 | } | |
3464 | ||
3465 | return 0; | |
3466 | } | |
3467 | ||
3468 | static bool allow_direct_reclaim(pg_data_t *pgdat) | |
3469 | { | |
3470 | struct zone *zone; | |
3471 | unsigned long pfmemalloc_reserve = 0; | |
3472 | unsigned long free_pages = 0; | |
3473 | int i; | |
3474 | bool wmark_ok; | |
3475 | ||
3476 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3477 | return true; | |
3478 | ||
3479 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
3480 | zone = &pgdat->node_zones[i]; | |
3481 | if (!managed_zone(zone)) | |
3482 | continue; | |
3483 | ||
3484 | if (!zone_reclaimable_pages(zone)) | |
3485 | continue; | |
3486 | ||
3487 | pfmemalloc_reserve += min_wmark_pages(zone); | |
3488 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
3489 | } | |
3490 | ||
3491 | /* If there are no reserves (unexpected config) then do not throttle */ | |
3492 | if (!pfmemalloc_reserve) | |
3493 | return true; | |
3494 | ||
3495 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
3496 | ||
3497 | /* kswapd must be awake if processes are being throttled */ | |
3498 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
3499 | if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) | |
3500 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); | |
3501 | ||
3502 | wake_up_interruptible(&pgdat->kswapd_wait); | |
3503 | } | |
3504 | ||
3505 | return wmark_ok; | |
3506 | } | |
3507 | ||
3508 | /* | |
3509 | * Throttle direct reclaimers if backing storage is backed by the network | |
3510 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
3511 | * depleted. kswapd will continue to make progress and wake the processes | |
3512 | * when the low watermark is reached. | |
3513 | * | |
3514 | * Returns true if a fatal signal was delivered during throttling. If this | |
3515 | * happens, the page allocator should not consider triggering the OOM killer. | |
3516 | */ | |
3517 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | |
3518 | nodemask_t *nodemask) | |
3519 | { | |
3520 | struct zoneref *z; | |
3521 | struct zone *zone; | |
3522 | pg_data_t *pgdat = NULL; | |
3523 | ||
3524 | /* | |
3525 | * Kernel threads should not be throttled as they may be indirectly | |
3526 | * responsible for cleaning pages necessary for reclaim to make forward | |
3527 | * progress. kjournald for example may enter direct reclaim while | |
3528 | * committing a transaction where throttling it could forcing other | |
3529 | * processes to block on log_wait_commit(). | |
3530 | */ | |
3531 | if (current->flags & PF_KTHREAD) | |
3532 | goto out; | |
3533 | ||
3534 | /* | |
3535 | * If a fatal signal is pending, this process should not throttle. | |
3536 | * It should return quickly so it can exit and free its memory | |
3537 | */ | |
3538 | if (fatal_signal_pending(current)) | |
3539 | goto out; | |
3540 | ||
3541 | /* | |
3542 | * Check if the pfmemalloc reserves are ok by finding the first node | |
3543 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
3544 | * GFP_KERNEL will be required for allocating network buffers when | |
3545 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
3546 | * | |
3547 | * Throttling is based on the first usable node and throttled processes | |
3548 | * wait on a queue until kswapd makes progress and wakes them. There | |
3549 | * is an affinity then between processes waking up and where reclaim | |
3550 | * progress has been made assuming the process wakes on the same node. | |
3551 | * More importantly, processes running on remote nodes will not compete | |
3552 | * for remote pfmemalloc reserves and processes on different nodes | |
3553 | * should make reasonable progress. | |
3554 | */ | |
3555 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
3556 | gfp_zone(gfp_mask), nodemask) { | |
3557 | if (zone_idx(zone) > ZONE_NORMAL) | |
3558 | continue; | |
3559 | ||
3560 | /* Throttle based on the first usable node */ | |
3561 | pgdat = zone->zone_pgdat; | |
3562 | if (allow_direct_reclaim(pgdat)) | |
3563 | goto out; | |
3564 | break; | |
3565 | } | |
3566 | ||
3567 | /* If no zone was usable by the allocation flags then do not throttle */ | |
3568 | if (!pgdat) | |
3569 | goto out; | |
3570 | ||
3571 | /* Account for the throttling */ | |
3572 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
3573 | ||
3574 | /* | |
3575 | * If the caller cannot enter the filesystem, it's possible that it | |
3576 | * is due to the caller holding an FS lock or performing a journal | |
3577 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
3578 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
3579 | * blocked waiting on the same lock. Instead, throttle for up to a | |
3580 | * second before continuing. | |
3581 | */ | |
3582 | if (!(gfp_mask & __GFP_FS)) | |
3583 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
3584 | allow_direct_reclaim(pgdat), HZ); | |
3585 | else | |
3586 | /* Throttle until kswapd wakes the process */ | |
3587 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
3588 | allow_direct_reclaim(pgdat)); | |
3589 | ||
3590 | if (fatal_signal_pending(current)) | |
3591 | return true; | |
3592 | ||
3593 | out: | |
3594 | return false; | |
3595 | } | |
3596 | ||
3597 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |
3598 | gfp_t gfp_mask, nodemask_t *nodemask) | |
3599 | { | |
3600 | unsigned long nr_reclaimed; | |
3601 | struct scan_control sc = { | |
3602 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
3603 | .gfp_mask = current_gfp_context(gfp_mask), | |
3604 | .reclaim_idx = gfp_zone(gfp_mask), | |
3605 | .order = order, | |
3606 | .nodemask = nodemask, | |
3607 | .priority = DEF_PRIORITY, | |
3608 | .may_writepage = !laptop_mode, | |
3609 | .may_unmap = 1, | |
3610 | .may_swap = 1, | |
3611 | }; | |
3612 | ||
3613 | /* | |
3614 | * scan_control uses s8 fields for order, priority, and reclaim_idx. | |
3615 | * Confirm they are large enough for max values. | |
3616 | */ | |
3617 | BUILD_BUG_ON(MAX_ORDER > S8_MAX); | |
3618 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | |
3619 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | |
3620 | ||
3621 | /* | |
3622 | * Do not enter reclaim if fatal signal was delivered while throttled. | |
3623 | * 1 is returned so that the page allocator does not OOM kill at this | |
3624 | * point. | |
3625 | */ | |
3626 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) | |
3627 | return 1; | |
3628 | ||
3629 | set_task_reclaim_state(current, &sc.reclaim_state); | |
3630 | trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); | |
3631 | ||
3632 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
3633 | ||
3634 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
3635 | set_task_reclaim_state(current, NULL); | |
3636 | ||
3637 | return nr_reclaimed; | |
3638 | } | |
3639 | ||
3640 | #ifdef CONFIG_MEMCG | |
3641 | ||
3642 | /* Only used by soft limit reclaim. Do not reuse for anything else. */ | |
3643 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, | |
3644 | gfp_t gfp_mask, bool noswap, | |
3645 | pg_data_t *pgdat, | |
3646 | unsigned long *nr_scanned) | |
3647 | { | |
3648 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
3649 | struct scan_control sc = { | |
3650 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
3651 | .target_mem_cgroup = memcg, | |
3652 | .may_writepage = !laptop_mode, | |
3653 | .may_unmap = 1, | |
3654 | .reclaim_idx = MAX_NR_ZONES - 1, | |
3655 | .may_swap = !noswap, | |
3656 | }; | |
3657 | ||
3658 | WARN_ON_ONCE(!current->reclaim_state); | |
3659 | ||
3660 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | |
3661 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
3662 | ||
3663 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, | |
3664 | sc.gfp_mask); | |
3665 | ||
3666 | /* | |
3667 | * NOTE: Although we can get the priority field, using it | |
3668 | * here is not a good idea, since it limits the pages we can scan. | |
3669 | * if we don't reclaim here, the shrink_node from balance_pgdat | |
3670 | * will pick up pages from other mem cgroup's as well. We hack | |
3671 | * the priority and make it zero. | |
3672 | */ | |
3673 | shrink_lruvec(lruvec, &sc); | |
3674 | ||
3675 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
3676 | ||
3677 | *nr_scanned = sc.nr_scanned; | |
3678 | ||
3679 | return sc.nr_reclaimed; | |
3680 | } | |
3681 | ||
3682 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, | |
3683 | unsigned long nr_pages, | |
3684 | gfp_t gfp_mask, | |
3685 | bool may_swap) | |
3686 | { | |
3687 | unsigned long nr_reclaimed; | |
3688 | unsigned int noreclaim_flag; | |
3689 | struct scan_control sc = { | |
3690 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
3691 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | | |
3692 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
3693 | .reclaim_idx = MAX_NR_ZONES - 1, | |
3694 | .target_mem_cgroup = memcg, | |
3695 | .priority = DEF_PRIORITY, | |
3696 | .may_writepage = !laptop_mode, | |
3697 | .may_unmap = 1, | |
3698 | .may_swap = may_swap, | |
3699 | }; | |
3700 | /* | |
3701 | * Traverse the ZONELIST_FALLBACK zonelist of the current node to put | |
3702 | * equal pressure on all the nodes. This is based on the assumption that | |
3703 | * the reclaim does not bail out early. | |
3704 | */ | |
3705 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
3706 | ||
3707 | set_task_reclaim_state(current, &sc.reclaim_state); | |
3708 | trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); | |
3709 | noreclaim_flag = memalloc_noreclaim_save(); | |
3710 | ||
3711 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
3712 | ||
3713 | memalloc_noreclaim_restore(noreclaim_flag); | |
3714 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
3715 | set_task_reclaim_state(current, NULL); | |
3716 | ||
3717 | return nr_reclaimed; | |
3718 | } | |
3719 | #endif | |
3720 | ||
3721 | static void age_active_anon(struct pglist_data *pgdat, | |
3722 | struct scan_control *sc) | |
3723 | { | |
3724 | struct mem_cgroup *memcg; | |
3725 | struct lruvec *lruvec; | |
3726 | ||
3727 | if (!can_age_anon_pages(pgdat, sc)) | |
3728 | return; | |
3729 | ||
3730 | lruvec = mem_cgroup_lruvec(NULL, pgdat); | |
3731 | if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
3732 | return; | |
3733 | ||
3734 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
3735 | do { | |
3736 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
3737 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
3738 | sc, LRU_ACTIVE_ANON); | |
3739 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
3740 | } while (memcg); | |
3741 | } | |
3742 | ||
3743 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) | |
3744 | { | |
3745 | int i; | |
3746 | struct zone *zone; | |
3747 | ||
3748 | /* | |
3749 | * Check for watermark boosts top-down as the higher zones | |
3750 | * are more likely to be boosted. Both watermarks and boosts | |
3751 | * should not be checked at the same time as reclaim would | |
3752 | * start prematurely when there is no boosting and a lower | |
3753 | * zone is balanced. | |
3754 | */ | |
3755 | for (i = highest_zoneidx; i >= 0; i--) { | |
3756 | zone = pgdat->node_zones + i; | |
3757 | if (!managed_zone(zone)) | |
3758 | continue; | |
3759 | ||
3760 | if (zone->watermark_boost) | |
3761 | return true; | |
3762 | } | |
3763 | ||
3764 | return false; | |
3765 | } | |
3766 | ||
3767 | /* | |
3768 | * Returns true if there is an eligible zone balanced for the request order | |
3769 | * and highest_zoneidx | |
3770 | */ | |
3771 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) | |
3772 | { | |
3773 | int i; | |
3774 | unsigned long mark = -1; | |
3775 | struct zone *zone; | |
3776 | ||
3777 | /* | |
3778 | * Check watermarks bottom-up as lower zones are more likely to | |
3779 | * meet watermarks. | |
3780 | */ | |
3781 | for (i = 0; i <= highest_zoneidx; i++) { | |
3782 | zone = pgdat->node_zones + i; | |
3783 | ||
3784 | if (!managed_zone(zone)) | |
3785 | continue; | |
3786 | ||
3787 | mark = high_wmark_pages(zone); | |
3788 | if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) | |
3789 | return true; | |
3790 | } | |
3791 | ||
3792 | /* | |
3793 | * If a node has no populated zone within highest_zoneidx, it does not | |
3794 | * need balancing by definition. This can happen if a zone-restricted | |
3795 | * allocation tries to wake a remote kswapd. | |
3796 | */ | |
3797 | if (mark == -1) | |
3798 | return true; | |
3799 | ||
3800 | return false; | |
3801 | } | |
3802 | ||
3803 | /* Clear pgdat state for congested, dirty or under writeback. */ | |
3804 | static void clear_pgdat_congested(pg_data_t *pgdat) | |
3805 | { | |
3806 | struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); | |
3807 | ||
3808 | clear_bit(LRUVEC_CONGESTED, &lruvec->flags); | |
3809 | clear_bit(PGDAT_DIRTY, &pgdat->flags); | |
3810 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
3811 | } | |
3812 | ||
3813 | /* | |
3814 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
3815 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
3816 | * | |
3817 | * Returns true if kswapd is ready to sleep | |
3818 | */ | |
3819 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, | |
3820 | int highest_zoneidx) | |
3821 | { | |
3822 | /* | |
3823 | * The throttled processes are normally woken up in balance_pgdat() as | |
3824 | * soon as allow_direct_reclaim() is true. But there is a potential | |
3825 | * race between when kswapd checks the watermarks and a process gets | |
3826 | * throttled. There is also a potential race if processes get | |
3827 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
3828 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
3829 | * the wake up checks. If kswapd is going to sleep, no process should | |
3830 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
3831 | * the wake up is premature, processes will wake kswapd and get | |
3832 | * throttled again. The difference from wake ups in balance_pgdat() is | |
3833 | * that here we are under prepare_to_wait(). | |
3834 | */ | |
3835 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) | |
3836 | wake_up_all(&pgdat->pfmemalloc_wait); | |
3837 | ||
3838 | /* Hopeless node, leave it to direct reclaim */ | |
3839 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3840 | return true; | |
3841 | ||
3842 | if (pgdat_balanced(pgdat, order, highest_zoneidx)) { | |
3843 | clear_pgdat_congested(pgdat); | |
3844 | return true; | |
3845 | } | |
3846 | ||
3847 | return false; | |
3848 | } | |
3849 | ||
3850 | /* | |
3851 | * kswapd shrinks a node of pages that are at or below the highest usable | |
3852 | * zone that is currently unbalanced. | |
3853 | * | |
3854 | * Returns true if kswapd scanned at least the requested number of pages to | |
3855 | * reclaim or if the lack of progress was due to pages under writeback. | |
3856 | * This is used to determine if the scanning priority needs to be raised. | |
3857 | */ | |
3858 | static bool kswapd_shrink_node(pg_data_t *pgdat, | |
3859 | struct scan_control *sc) | |
3860 | { | |
3861 | struct zone *zone; | |
3862 | int z; | |
3863 | ||
3864 | /* Reclaim a number of pages proportional to the number of zones */ | |
3865 | sc->nr_to_reclaim = 0; | |
3866 | for (z = 0; z <= sc->reclaim_idx; z++) { | |
3867 | zone = pgdat->node_zones + z; | |
3868 | if (!managed_zone(zone)) | |
3869 | continue; | |
3870 | ||
3871 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); | |
3872 | } | |
3873 | ||
3874 | /* | |
3875 | * Historically care was taken to put equal pressure on all zones but | |
3876 | * now pressure is applied based on node LRU order. | |
3877 | */ | |
3878 | shrink_node(pgdat, sc); | |
3879 | ||
3880 | /* | |
3881 | * Fragmentation may mean that the system cannot be rebalanced for | |
3882 | * high-order allocations. If twice the allocation size has been | |
3883 | * reclaimed then recheck watermarks only at order-0 to prevent | |
3884 | * excessive reclaim. Assume that a process requested a high-order | |
3885 | * can direct reclaim/compact. | |
3886 | */ | |
3887 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) | |
3888 | sc->order = 0; | |
3889 | ||
3890 | return sc->nr_scanned >= sc->nr_to_reclaim; | |
3891 | } | |
3892 | ||
3893 | /* Page allocator PCP high watermark is lowered if reclaim is active. */ | |
3894 | static inline void | |
3895 | update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) | |
3896 | { | |
3897 | int i; | |
3898 | struct zone *zone; | |
3899 | ||
3900 | for (i = 0; i <= highest_zoneidx; i++) { | |
3901 | zone = pgdat->node_zones + i; | |
3902 | ||
3903 | if (!managed_zone(zone)) | |
3904 | continue; | |
3905 | ||
3906 | if (active) | |
3907 | set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
3908 | else | |
3909 | clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
3910 | } | |
3911 | } | |
3912 | ||
3913 | static inline void | |
3914 | set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
3915 | { | |
3916 | update_reclaim_active(pgdat, highest_zoneidx, true); | |
3917 | } | |
3918 | ||
3919 | static inline void | |
3920 | clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
3921 | { | |
3922 | update_reclaim_active(pgdat, highest_zoneidx, false); | |
3923 | } | |
3924 | ||
3925 | /* | |
3926 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones | |
3927 | * that are eligible for use by the caller until at least one zone is | |
3928 | * balanced. | |
3929 | * | |
3930 | * Returns the order kswapd finished reclaiming at. | |
3931 | * | |
3932 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
3933 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is | |
3934 | * found to have free_pages <= high_wmark_pages(zone), any page in that zone | |
3935 | * or lower is eligible for reclaim until at least one usable zone is | |
3936 | * balanced. | |
3937 | */ | |
3938 | static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) | |
3939 | { | |
3940 | int i; | |
3941 | unsigned long nr_soft_reclaimed; | |
3942 | unsigned long nr_soft_scanned; | |
3943 | unsigned long pflags; | |
3944 | unsigned long nr_boost_reclaim; | |
3945 | unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; | |
3946 | bool boosted; | |
3947 | struct zone *zone; | |
3948 | struct scan_control sc = { | |
3949 | .gfp_mask = GFP_KERNEL, | |
3950 | .order = order, | |
3951 | .may_unmap = 1, | |
3952 | }; | |
3953 | ||
3954 | set_task_reclaim_state(current, &sc.reclaim_state); | |
3955 | psi_memstall_enter(&pflags); | |
3956 | __fs_reclaim_acquire(_THIS_IP_); | |
3957 | ||
3958 | count_vm_event(PAGEOUTRUN); | |
3959 | ||
3960 | /* | |
3961 | * Account for the reclaim boost. Note that the zone boost is left in | |
3962 | * place so that parallel allocations that are near the watermark will | |
3963 | * stall or direct reclaim until kswapd is finished. | |
3964 | */ | |
3965 | nr_boost_reclaim = 0; | |
3966 | for (i = 0; i <= highest_zoneidx; i++) { | |
3967 | zone = pgdat->node_zones + i; | |
3968 | if (!managed_zone(zone)) | |
3969 | continue; | |
3970 | ||
3971 | nr_boost_reclaim += zone->watermark_boost; | |
3972 | zone_boosts[i] = zone->watermark_boost; | |
3973 | } | |
3974 | boosted = nr_boost_reclaim; | |
3975 | ||
3976 | restart: | |
3977 | set_reclaim_active(pgdat, highest_zoneidx); | |
3978 | sc.priority = DEF_PRIORITY; | |
3979 | do { | |
3980 | unsigned long nr_reclaimed = sc.nr_reclaimed; | |
3981 | bool raise_priority = true; | |
3982 | bool balanced; | |
3983 | bool ret; | |
3984 | ||
3985 | sc.reclaim_idx = highest_zoneidx; | |
3986 | ||
3987 | /* | |
3988 | * If the number of buffer_heads exceeds the maximum allowed | |
3989 | * then consider reclaiming from all zones. This has a dual | |
3990 | * purpose -- on 64-bit systems it is expected that | |
3991 | * buffer_heads are stripped during active rotation. On 32-bit | |
3992 | * systems, highmem pages can pin lowmem memory and shrinking | |
3993 | * buffers can relieve lowmem pressure. Reclaim may still not | |
3994 | * go ahead if all eligible zones for the original allocation | |
3995 | * request are balanced to avoid excessive reclaim from kswapd. | |
3996 | */ | |
3997 | if (buffer_heads_over_limit) { | |
3998 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
3999 | zone = pgdat->node_zones + i; | |
4000 | if (!managed_zone(zone)) | |
4001 | continue; | |
4002 | ||
4003 | sc.reclaim_idx = i; | |
4004 | break; | |
4005 | } | |
4006 | } | |
4007 | ||
4008 | /* | |
4009 | * If the pgdat is imbalanced then ignore boosting and preserve | |
4010 | * the watermarks for a later time and restart. Note that the | |
4011 | * zone watermarks will be still reset at the end of balancing | |
4012 | * on the grounds that the normal reclaim should be enough to | |
4013 | * re-evaluate if boosting is required when kswapd next wakes. | |
4014 | */ | |
4015 | balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); | |
4016 | if (!balanced && nr_boost_reclaim) { | |
4017 | nr_boost_reclaim = 0; | |
4018 | goto restart; | |
4019 | } | |
4020 | ||
4021 | /* | |
4022 | * If boosting is not active then only reclaim if there are no | |
4023 | * eligible zones. Note that sc.reclaim_idx is not used as | |
4024 | * buffer_heads_over_limit may have adjusted it. | |
4025 | */ | |
4026 | if (!nr_boost_reclaim && balanced) | |
4027 | goto out; | |
4028 | ||
4029 | /* Limit the priority of boosting to avoid reclaim writeback */ | |
4030 | if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) | |
4031 | raise_priority = false; | |
4032 | ||
4033 | /* | |
4034 | * Do not writeback or swap pages for boosted reclaim. The | |
4035 | * intent is to relieve pressure not issue sub-optimal IO | |
4036 | * from reclaim context. If no pages are reclaimed, the | |
4037 | * reclaim will be aborted. | |
4038 | */ | |
4039 | sc.may_writepage = !laptop_mode && !nr_boost_reclaim; | |
4040 | sc.may_swap = !nr_boost_reclaim; | |
4041 | ||
4042 | /* | |
4043 | * Do some background aging of the anon list, to give | |
4044 | * pages a chance to be referenced before reclaiming. All | |
4045 | * pages are rotated regardless of classzone as this is | |
4046 | * about consistent aging. | |
4047 | */ | |
4048 | age_active_anon(pgdat, &sc); | |
4049 | ||
4050 | /* | |
4051 | * If we're getting trouble reclaiming, start doing writepage | |
4052 | * even in laptop mode. | |
4053 | */ | |
4054 | if (sc.priority < DEF_PRIORITY - 2) | |
4055 | sc.may_writepage = 1; | |
4056 | ||
4057 | /* Call soft limit reclaim before calling shrink_node. */ | |
4058 | sc.nr_scanned = 0; | |
4059 | nr_soft_scanned = 0; | |
4060 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, | |
4061 | sc.gfp_mask, &nr_soft_scanned); | |
4062 | sc.nr_reclaimed += nr_soft_reclaimed; | |
4063 | ||
4064 | /* | |
4065 | * There should be no need to raise the scanning priority if | |
4066 | * enough pages are already being scanned that that high | |
4067 | * watermark would be met at 100% efficiency. | |
4068 | */ | |
4069 | if (kswapd_shrink_node(pgdat, &sc)) | |
4070 | raise_priority = false; | |
4071 | ||
4072 | /* | |
4073 | * If the low watermark is met there is no need for processes | |
4074 | * to be throttled on pfmemalloc_wait as they should not be | |
4075 | * able to safely make forward progress. Wake them | |
4076 | */ | |
4077 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
4078 | allow_direct_reclaim(pgdat)) | |
4079 | wake_up_all(&pgdat->pfmemalloc_wait); | |
4080 | ||
4081 | /* Check if kswapd should be suspending */ | |
4082 | __fs_reclaim_release(_THIS_IP_); | |
4083 | ret = try_to_freeze(); | |
4084 | __fs_reclaim_acquire(_THIS_IP_); | |
4085 | if (ret || kthread_should_stop()) | |
4086 | break; | |
4087 | ||
4088 | /* | |
4089 | * Raise priority if scanning rate is too low or there was no | |
4090 | * progress in reclaiming pages | |
4091 | */ | |
4092 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; | |
4093 | nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); | |
4094 | ||
4095 | /* | |
4096 | * If reclaim made no progress for a boost, stop reclaim as | |
4097 | * IO cannot be queued and it could be an infinite loop in | |
4098 | * extreme circumstances. | |
4099 | */ | |
4100 | if (nr_boost_reclaim && !nr_reclaimed) | |
4101 | break; | |
4102 | ||
4103 | if (raise_priority || !nr_reclaimed) | |
4104 | sc.priority--; | |
4105 | } while (sc.priority >= 1); | |
4106 | ||
4107 | if (!sc.nr_reclaimed) | |
4108 | pgdat->kswapd_failures++; | |
4109 | ||
4110 | out: | |
4111 | clear_reclaim_active(pgdat, highest_zoneidx); | |
4112 | ||
4113 | /* If reclaim was boosted, account for the reclaim done in this pass */ | |
4114 | if (boosted) { | |
4115 | unsigned long flags; | |
4116 | ||
4117 | for (i = 0; i <= highest_zoneidx; i++) { | |
4118 | if (!zone_boosts[i]) | |
4119 | continue; | |
4120 | ||
4121 | /* Increments are under the zone lock */ | |
4122 | zone = pgdat->node_zones + i; | |
4123 | spin_lock_irqsave(&zone->lock, flags); | |
4124 | zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); | |
4125 | spin_unlock_irqrestore(&zone->lock, flags); | |
4126 | } | |
4127 | ||
4128 | /* | |
4129 | * As there is now likely space, wakeup kcompact to defragment | |
4130 | * pageblocks. | |
4131 | */ | |
4132 | wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); | |
4133 | } | |
4134 | ||
4135 | snapshot_refaults(NULL, pgdat); | |
4136 | __fs_reclaim_release(_THIS_IP_); | |
4137 | psi_memstall_leave(&pflags); | |
4138 | set_task_reclaim_state(current, NULL); | |
4139 | ||
4140 | /* | |
4141 | * Return the order kswapd stopped reclaiming at as | |
4142 | * prepare_kswapd_sleep() takes it into account. If another caller | |
4143 | * entered the allocator slow path while kswapd was awake, order will | |
4144 | * remain at the higher level. | |
4145 | */ | |
4146 | return sc.order; | |
4147 | } | |
4148 | ||
4149 | /* | |
4150 | * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to | |
4151 | * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is | |
4152 | * not a valid index then either kswapd runs for first time or kswapd couldn't | |
4153 | * sleep after previous reclaim attempt (node is still unbalanced). In that | |
4154 | * case return the zone index of the previous kswapd reclaim cycle. | |
4155 | */ | |
4156 | static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, | |
4157 | enum zone_type prev_highest_zoneidx) | |
4158 | { | |
4159 | enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | |
4160 | ||
4161 | return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; | |
4162 | } | |
4163 | ||
4164 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, | |
4165 | unsigned int highest_zoneidx) | |
4166 | { | |
4167 | long remaining = 0; | |
4168 | DEFINE_WAIT(wait); | |
4169 | ||
4170 | if (freezing(current) || kthread_should_stop()) | |
4171 | return; | |
4172 | ||
4173 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
4174 | ||
4175 | /* | |
4176 | * Try to sleep for a short interval. Note that kcompactd will only be | |
4177 | * woken if it is possible to sleep for a short interval. This is | |
4178 | * deliberate on the assumption that if reclaim cannot keep an | |
4179 | * eligible zone balanced that it's also unlikely that compaction will | |
4180 | * succeed. | |
4181 | */ | |
4182 | if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | |
4183 | /* | |
4184 | * Compaction records what page blocks it recently failed to | |
4185 | * isolate pages from and skips them in the future scanning. | |
4186 | * When kswapd is going to sleep, it is reasonable to assume | |
4187 | * that pages and compaction may succeed so reset the cache. | |
4188 | */ | |
4189 | reset_isolation_suitable(pgdat); | |
4190 | ||
4191 | /* | |
4192 | * We have freed the memory, now we should compact it to make | |
4193 | * allocation of the requested order possible. | |
4194 | */ | |
4195 | wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); | |
4196 | ||
4197 | remaining = schedule_timeout(HZ/10); | |
4198 | ||
4199 | /* | |
4200 | * If woken prematurely then reset kswapd_highest_zoneidx and | |
4201 | * order. The values will either be from a wakeup request or | |
4202 | * the previous request that slept prematurely. | |
4203 | */ | |
4204 | if (remaining) { | |
4205 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, | |
4206 | kswapd_highest_zoneidx(pgdat, | |
4207 | highest_zoneidx)); | |
4208 | ||
4209 | if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) | |
4210 | WRITE_ONCE(pgdat->kswapd_order, reclaim_order); | |
4211 | } | |
4212 | ||
4213 | finish_wait(&pgdat->kswapd_wait, &wait); | |
4214 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
4215 | } | |
4216 | ||
4217 | /* | |
4218 | * After a short sleep, check if it was a premature sleep. If not, then | |
4219 | * go fully to sleep until explicitly woken up. | |
4220 | */ | |
4221 | if (!remaining && | |
4222 | prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | |
4223 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | |
4224 | ||
4225 | /* | |
4226 | * vmstat counters are not perfectly accurate and the estimated | |
4227 | * value for counters such as NR_FREE_PAGES can deviate from the | |
4228 | * true value by nr_online_cpus * threshold. To avoid the zone | |
4229 | * watermarks being breached while under pressure, we reduce the | |
4230 | * per-cpu vmstat threshold while kswapd is awake and restore | |
4231 | * them before going back to sleep. | |
4232 | */ | |
4233 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
4234 | ||
4235 | if (!kthread_should_stop()) | |
4236 | schedule(); | |
4237 | ||
4238 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); | |
4239 | } else { | |
4240 | if (remaining) | |
4241 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
4242 | else | |
4243 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
4244 | } | |
4245 | finish_wait(&pgdat->kswapd_wait, &wait); | |
4246 | } | |
4247 | ||
4248 | /* | |
4249 | * The background pageout daemon, started as a kernel thread | |
4250 | * from the init process. | |
4251 | * | |
4252 | * This basically trickles out pages so that we have _some_ | |
4253 | * free memory available even if there is no other activity | |
4254 | * that frees anything up. This is needed for things like routing | |
4255 | * etc, where we otherwise might have all activity going on in | |
4256 | * asynchronous contexts that cannot page things out. | |
4257 | * | |
4258 | * If there are applications that are active memory-allocators | |
4259 | * (most normal use), this basically shouldn't matter. | |
4260 | */ | |
4261 | static int kswapd(void *p) | |
4262 | { | |
4263 | unsigned int alloc_order, reclaim_order; | |
4264 | unsigned int highest_zoneidx = MAX_NR_ZONES - 1; | |
4265 | pg_data_t *pgdat = (pg_data_t *)p; | |
4266 | struct task_struct *tsk = current; | |
4267 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | |
4268 | ||
4269 | if (!cpumask_empty(cpumask)) | |
4270 | set_cpus_allowed_ptr(tsk, cpumask); | |
4271 | ||
4272 | /* | |
4273 | * Tell the memory management that we're a "memory allocator", | |
4274 | * and that if we need more memory we should get access to it | |
4275 | * regardless (see "__alloc_pages()"). "kswapd" should | |
4276 | * never get caught in the normal page freeing logic. | |
4277 | * | |
4278 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
4279 | * you need a small amount of memory in order to be able to | |
4280 | * page out something else, and this flag essentially protects | |
4281 | * us from recursively trying to free more memory as we're | |
4282 | * trying to free the first piece of memory in the first place). | |
4283 | */ | |
4284 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; | |
4285 | set_freezable(); | |
4286 | ||
4287 | WRITE_ONCE(pgdat->kswapd_order, 0); | |
4288 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | |
4289 | for ( ; ; ) { | |
4290 | bool ret; | |
4291 | ||
4292 | alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); | |
4293 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, | |
4294 | highest_zoneidx); | |
4295 | ||
4296 | kswapd_try_sleep: | |
4297 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
4298 | highest_zoneidx); | |
4299 | ||
4300 | /* Read the new order and highest_zoneidx */ | |
4301 | alloc_order = READ_ONCE(pgdat->kswapd_order); | |
4302 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, | |
4303 | highest_zoneidx); | |
4304 | WRITE_ONCE(pgdat->kswapd_order, 0); | |
4305 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | |
4306 | ||
4307 | ret = try_to_freeze(); | |
4308 | if (kthread_should_stop()) | |
4309 | break; | |
4310 | ||
4311 | /* | |
4312 | * We can speed up thawing tasks if we don't call balance_pgdat | |
4313 | * after returning from the refrigerator | |
4314 | */ | |
4315 | if (ret) | |
4316 | continue; | |
4317 | ||
4318 | /* | |
4319 | * Reclaim begins at the requested order but if a high-order | |
4320 | * reclaim fails then kswapd falls back to reclaiming for | |
4321 | * order-0. If that happens, kswapd will consider sleeping | |
4322 | * for the order it finished reclaiming at (reclaim_order) | |
4323 | * but kcompactd is woken to compact for the original | |
4324 | * request (alloc_order). | |
4325 | */ | |
4326 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, | |
4327 | alloc_order); | |
4328 | reclaim_order = balance_pgdat(pgdat, alloc_order, | |
4329 | highest_zoneidx); | |
4330 | if (reclaim_order < alloc_order) | |
4331 | goto kswapd_try_sleep; | |
4332 | } | |
4333 | ||
4334 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); | |
4335 | ||
4336 | return 0; | |
4337 | } | |
4338 | ||
4339 | /* | |
4340 | * A zone is low on free memory or too fragmented for high-order memory. If | |
4341 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | |
4342 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim | |
4343 | * has failed or is not needed, still wake up kcompactd if only compaction is | |
4344 | * needed. | |
4345 | */ | |
4346 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, | |
4347 | enum zone_type highest_zoneidx) | |
4348 | { | |
4349 | pg_data_t *pgdat; | |
4350 | enum zone_type curr_idx; | |
4351 | ||
4352 | if (!managed_zone(zone)) | |
4353 | return; | |
4354 | ||
4355 | if (!cpuset_zone_allowed(zone, gfp_flags)) | |
4356 | return; | |
4357 | ||
4358 | pgdat = zone->zone_pgdat; | |
4359 | curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | |
4360 | ||
4361 | if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) | |
4362 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); | |
4363 | ||
4364 | if (READ_ONCE(pgdat->kswapd_order) < order) | |
4365 | WRITE_ONCE(pgdat->kswapd_order, order); | |
4366 | ||
4367 | if (!waitqueue_active(&pgdat->kswapd_wait)) | |
4368 | return; | |
4369 | ||
4370 | /* Hopeless node, leave it to direct reclaim if possible */ | |
4371 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | |
4372 | (pgdat_balanced(pgdat, order, highest_zoneidx) && | |
4373 | !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { | |
4374 | /* | |
4375 | * There may be plenty of free memory available, but it's too | |
4376 | * fragmented for high-order allocations. Wake up kcompactd | |
4377 | * and rely on compaction_suitable() to determine if it's | |
4378 | * needed. If it fails, it will defer subsequent attempts to | |
4379 | * ratelimit its work. | |
4380 | */ | |
4381 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | |
4382 | wakeup_kcompactd(pgdat, order, highest_zoneidx); | |
4383 | return; | |
4384 | } | |
4385 | ||
4386 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, | |
4387 | gfp_flags); | |
4388 | wake_up_interruptible(&pgdat->kswapd_wait); | |
4389 | } | |
4390 | ||
4391 | #ifdef CONFIG_HIBERNATION | |
4392 | /* | |
4393 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | |
4394 | * freed pages. | |
4395 | * | |
4396 | * Rather than trying to age LRUs the aim is to preserve the overall | |
4397 | * LRU order by reclaiming preferentially | |
4398 | * inactive > active > active referenced > active mapped | |
4399 | */ | |
4400 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | |
4401 | { | |
4402 | struct scan_control sc = { | |
4403 | .nr_to_reclaim = nr_to_reclaim, | |
4404 | .gfp_mask = GFP_HIGHUSER_MOVABLE, | |
4405 | .reclaim_idx = MAX_NR_ZONES - 1, | |
4406 | .priority = DEF_PRIORITY, | |
4407 | .may_writepage = 1, | |
4408 | .may_unmap = 1, | |
4409 | .may_swap = 1, | |
4410 | .hibernation_mode = 1, | |
4411 | }; | |
4412 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
4413 | unsigned long nr_reclaimed; | |
4414 | unsigned int noreclaim_flag; | |
4415 | ||
4416 | fs_reclaim_acquire(sc.gfp_mask); | |
4417 | noreclaim_flag = memalloc_noreclaim_save(); | |
4418 | set_task_reclaim_state(current, &sc.reclaim_state); | |
4419 | ||
4420 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
4421 | ||
4422 | set_task_reclaim_state(current, NULL); | |
4423 | memalloc_noreclaim_restore(noreclaim_flag); | |
4424 | fs_reclaim_release(sc.gfp_mask); | |
4425 | ||
4426 | return nr_reclaimed; | |
4427 | } | |
4428 | #endif /* CONFIG_HIBERNATION */ | |
4429 | ||
4430 | /* | |
4431 | * This kswapd start function will be called by init and node-hot-add. | |
4432 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
4433 | */ | |
4434 | void kswapd_run(int nid) | |
4435 | { | |
4436 | pg_data_t *pgdat = NODE_DATA(nid); | |
4437 | ||
4438 | if (pgdat->kswapd) | |
4439 | return; | |
4440 | ||
4441 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
4442 | if (IS_ERR(pgdat->kswapd)) { | |
4443 | /* failure at boot is fatal */ | |
4444 | BUG_ON(system_state < SYSTEM_RUNNING); | |
4445 | pr_err("Failed to start kswapd on node %d\n", nid); | |
4446 | pgdat->kswapd = NULL; | |
4447 | } | |
4448 | } | |
4449 | ||
4450 | /* | |
4451 | * Called by memory hotplug when all memory in a node is offlined. Caller must | |
4452 | * hold mem_hotplug_begin/end(). | |
4453 | */ | |
4454 | void kswapd_stop(int nid) | |
4455 | { | |
4456 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
4457 | ||
4458 | if (kswapd) { | |
4459 | kthread_stop(kswapd); | |
4460 | NODE_DATA(nid)->kswapd = NULL; | |
4461 | } | |
4462 | } | |
4463 | ||
4464 | static int __init kswapd_init(void) | |
4465 | { | |
4466 | int nid; | |
4467 | ||
4468 | swap_setup(); | |
4469 | for_each_node_state(nid, N_MEMORY) | |
4470 | kswapd_run(nid); | |
4471 | return 0; | |
4472 | } | |
4473 | ||
4474 | module_init(kswapd_init) | |
4475 | ||
4476 | #ifdef CONFIG_NUMA | |
4477 | /* | |
4478 | * Node reclaim mode | |
4479 | * | |
4480 | * If non-zero call node_reclaim when the number of free pages falls below | |
4481 | * the watermarks. | |
4482 | */ | |
4483 | int node_reclaim_mode __read_mostly; | |
4484 | ||
4485 | /* | |
4486 | * Priority for NODE_RECLAIM. This determines the fraction of pages | |
4487 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
4488 | * a zone. | |
4489 | */ | |
4490 | #define NODE_RECLAIM_PRIORITY 4 | |
4491 | ||
4492 | /* | |
4493 | * Percentage of pages in a zone that must be unmapped for node_reclaim to | |
4494 | * occur. | |
4495 | */ | |
4496 | int sysctl_min_unmapped_ratio = 1; | |
4497 | ||
4498 | /* | |
4499 | * If the number of slab pages in a zone grows beyond this percentage then | |
4500 | * slab reclaim needs to occur. | |
4501 | */ | |
4502 | int sysctl_min_slab_ratio = 5; | |
4503 | ||
4504 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) | |
4505 | { | |
4506 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); | |
4507 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
4508 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
4509 | ||
4510 | /* | |
4511 | * It's possible for there to be more file mapped pages than | |
4512 | * accounted for by the pages on the file LRU lists because | |
4513 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
4514 | */ | |
4515 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
4516 | } | |
4517 | ||
4518 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
4519 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) | |
4520 | { | |
4521 | unsigned long nr_pagecache_reclaimable; | |
4522 | unsigned long delta = 0; | |
4523 | ||
4524 | /* | |
4525 | * If RECLAIM_UNMAP is set, then all file pages are considered | |
4526 | * potentially reclaimable. Otherwise, we have to worry about | |
4527 | * pages like swapcache and node_unmapped_file_pages() provides | |
4528 | * a better estimate | |
4529 | */ | |
4530 | if (node_reclaim_mode & RECLAIM_UNMAP) | |
4531 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
4532 | else | |
4533 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); | |
4534 | ||
4535 | /* If we can't clean pages, remove dirty pages from consideration */ | |
4536 | if (!(node_reclaim_mode & RECLAIM_WRITE)) | |
4537 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
4538 | ||
4539 | /* Watch for any possible underflows due to delta */ | |
4540 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
4541 | delta = nr_pagecache_reclaimable; | |
4542 | ||
4543 | return nr_pagecache_reclaimable - delta; | |
4544 | } | |
4545 | ||
4546 | /* | |
4547 | * Try to free up some pages from this node through reclaim. | |
4548 | */ | |
4549 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
4550 | { | |
4551 | /* Minimum pages needed in order to stay on node */ | |
4552 | const unsigned long nr_pages = 1 << order; | |
4553 | struct task_struct *p = current; | |
4554 | unsigned int noreclaim_flag; | |
4555 | struct scan_control sc = { | |
4556 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
4557 | .gfp_mask = current_gfp_context(gfp_mask), | |
4558 | .order = order, | |
4559 | .priority = NODE_RECLAIM_PRIORITY, | |
4560 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
4561 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
4562 | .may_swap = 1, | |
4563 | .reclaim_idx = gfp_zone(gfp_mask), | |
4564 | }; | |
4565 | unsigned long pflags; | |
4566 | ||
4567 | trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, | |
4568 | sc.gfp_mask); | |
4569 | ||
4570 | cond_resched(); | |
4571 | psi_memstall_enter(&pflags); | |
4572 | fs_reclaim_acquire(sc.gfp_mask); | |
4573 | /* | |
4574 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP | |
4575 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
4576 | * and RECLAIM_UNMAP. | |
4577 | */ | |
4578 | noreclaim_flag = memalloc_noreclaim_save(); | |
4579 | p->flags |= PF_SWAPWRITE; | |
4580 | set_task_reclaim_state(p, &sc.reclaim_state); | |
4581 | ||
4582 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { | |
4583 | /* | |
4584 | * Free memory by calling shrink node with increasing | |
4585 | * priorities until we have enough memory freed. | |
4586 | */ | |
4587 | do { | |
4588 | shrink_node(pgdat, &sc); | |
4589 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
4590 | } | |
4591 | ||
4592 | set_task_reclaim_state(p, NULL); | |
4593 | current->flags &= ~PF_SWAPWRITE; | |
4594 | memalloc_noreclaim_restore(noreclaim_flag); | |
4595 | fs_reclaim_release(sc.gfp_mask); | |
4596 | psi_memstall_leave(&pflags); | |
4597 | ||
4598 | trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); | |
4599 | ||
4600 | return sc.nr_reclaimed >= nr_pages; | |
4601 | } | |
4602 | ||
4603 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
4604 | { | |
4605 | int ret; | |
4606 | ||
4607 | /* | |
4608 | * Node reclaim reclaims unmapped file backed pages and | |
4609 | * slab pages if we are over the defined limits. | |
4610 | * | |
4611 | * A small portion of unmapped file backed pages is needed for | |
4612 | * file I/O otherwise pages read by file I/O will be immediately | |
4613 | * thrown out if the node is overallocated. So we do not reclaim | |
4614 | * if less than a specified percentage of the node is used by | |
4615 | * unmapped file backed pages. | |
4616 | */ | |
4617 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && | |
4618 | node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= | |
4619 | pgdat->min_slab_pages) | |
4620 | return NODE_RECLAIM_FULL; | |
4621 | ||
4622 | /* | |
4623 | * Do not scan if the allocation should not be delayed. | |
4624 | */ | |
4625 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) | |
4626 | return NODE_RECLAIM_NOSCAN; | |
4627 | ||
4628 | /* | |
4629 | * Only run node reclaim on the local node or on nodes that do not | |
4630 | * have associated processors. This will favor the local processor | |
4631 | * over remote processors and spread off node memory allocations | |
4632 | * as wide as possible. | |
4633 | */ | |
4634 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) | |
4635 | return NODE_RECLAIM_NOSCAN; | |
4636 | ||
4637 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) | |
4638 | return NODE_RECLAIM_NOSCAN; | |
4639 | ||
4640 | ret = __node_reclaim(pgdat, gfp_mask, order); | |
4641 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
4642 | ||
4643 | if (!ret) | |
4644 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
4645 | ||
4646 | return ret; | |
4647 | } | |
4648 | #endif | |
4649 | ||
4650 | /** | |
4651 | * check_move_unevictable_pages - check pages for evictability and move to | |
4652 | * appropriate zone lru list | |
4653 | * @pvec: pagevec with lru pages to check | |
4654 | * | |
4655 | * Checks pages for evictability, if an evictable page is in the unevictable | |
4656 | * lru list, moves it to the appropriate evictable lru list. This function | |
4657 | * should be only used for lru pages. | |
4658 | */ | |
4659 | void check_move_unevictable_pages(struct pagevec *pvec) | |
4660 | { | |
4661 | struct lruvec *lruvec = NULL; | |
4662 | int pgscanned = 0; | |
4663 | int pgrescued = 0; | |
4664 | int i; | |
4665 | ||
4666 | for (i = 0; i < pvec->nr; i++) { | |
4667 | struct page *page = pvec->pages[i]; | |
4668 | int nr_pages; | |
4669 | ||
4670 | if (PageTransTail(page)) | |
4671 | continue; | |
4672 | ||
4673 | nr_pages = thp_nr_pages(page); | |
4674 | pgscanned += nr_pages; | |
4675 | ||
4676 | /* block memcg migration during page moving between lru */ | |
4677 | if (!TestClearPageLRU(page)) | |
4678 | continue; | |
4679 | ||
4680 | lruvec = relock_page_lruvec_irq(page, lruvec); | |
4681 | if (page_evictable(page) && PageUnevictable(page)) { | |
4682 | del_page_from_lru_list(page, lruvec); | |
4683 | ClearPageUnevictable(page); | |
4684 | add_page_to_lru_list(page, lruvec); | |
4685 | pgrescued += nr_pages; | |
4686 | } | |
4687 | SetPageLRU(page); | |
4688 | } | |
4689 | ||
4690 | if (lruvec) { | |
4691 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
4692 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
4693 | unlock_page_lruvec_irq(lruvec); | |
4694 | } else if (pgscanned) { | |
4695 | count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
4696 | } | |
4697 | } | |
4698 | EXPORT_SYMBOL_GPL(check_move_unevictable_pages); |