]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - net/ceph/messenger.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / net / ceph / messenger.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85static bool con_flag_valid(unsigned long con_flag)
86{
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97}
98
99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100{
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104}
105
106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107{
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111}
112
113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114{
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118}
119
120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122{
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126}
127
128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130{
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134}
135
136/* Slab caches for frequently-allocated structures */
137
138static struct kmem_cache *ceph_msg_cache;
139
140#ifdef CONFIG_LOCKDEP
141static struct lock_class_key socket_class;
142#endif
143
144static void queue_con(struct ceph_connection *con);
145static void cancel_con(struct ceph_connection *con);
146static void ceph_con_workfn(struct work_struct *);
147static void con_fault(struct ceph_connection *con);
148
149/*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161struct page *ceph_zero_page; /* used in certain error cases */
162
163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164{
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193}
194EXPORT_SYMBOL(ceph_pr_addr);
195
196void ceph_encode_my_addr(struct ceph_messenger *msgr)
197{
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203}
204
205/*
206 * work queue for all reading and writing to/from the socket.
207 */
208static struct workqueue_struct *ceph_msgr_wq;
209
210static int ceph_msgr_slab_init(void)
211{
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218}
219
220static void ceph_msgr_slab_exit(void)
221{
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225}
226
227static void _ceph_msgr_exit(void)
228{
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239}
240
241int __init ceph_msgr_init(void)
242{
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262}
263
264void ceph_msgr_exit(void)
265{
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269}
270
271void ceph_msgr_flush(void)
272{
273 flush_workqueue(ceph_msgr_wq);
274}
275EXPORT_SYMBOL(ceph_msgr_flush);
276
277/* Connection socket state transition functions */
278
279static void con_sock_state_init(struct ceph_connection *con)
280{
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288}
289
290static void con_sock_state_connecting(struct ceph_connection *con)
291{
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299}
300
301static void con_sock_state_connected(struct ceph_connection *con)
302{
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310}
311
312static void con_sock_state_closing(struct ceph_connection *con)
313{
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323}
324
325static void con_sock_state_closed(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337}
338
339/*
340 * socket callback functions
341 */
342
343/* data available on socket, or listen socket received a connect */
344static void ceph_sock_data_ready(struct sock *sk)
345{
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356}
357
358/* socket has buffer space for writing */
359static void ceph_sock_write_space(struct sock *sk)
360{
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379}
380
381/* socket's state has changed */
382static void ceph_sock_state_change(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407}
408
409/*
410 * set up socket callbacks
411 */
412static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414{
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420}
421
422
423/*
424 * socket helpers
425 */
426
427/*
428 * initiate connection to a remote socket.
429 */
430int ceph_tcp_connect(struct ceph_connection *con)
431{
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449
450#ifdef CONFIG_LOCKDEP
451 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
452#endif
453
454 set_sock_callbacks(sock, con);
455
456 con_sock_state_connecting(con);
457 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
458 O_NONBLOCK);
459 if (ret == -EINPROGRESS) {
460 dout("connect %s EINPROGRESS sk_state = %u\n",
461 ceph_pr_addr(&con->peer_addr),
462 sock->sk->sk_state);
463 } else if (ret < 0) {
464 pr_err("connect %s error %d\n",
465 ceph_pr_addr(&con->peer_addr), ret);
466 sock_release(sock);
467 return ret;
468 }
469
470 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
471 tcp_sock_set_nodelay(sock->sk);
472
473 con->sock = sock;
474 return 0;
475}
476
477/*
478 * Shutdown/close the socket for the given connection.
479 */
480int ceph_con_close_socket(struct ceph_connection *con)
481{
482 int rc = 0;
483
484 dout("%s con %p sock %p\n", __func__, con, con->sock);
485 if (con->sock) {
486 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
487 sock_release(con->sock);
488 con->sock = NULL;
489 }
490
491 /*
492 * Forcibly clear the SOCK_CLOSED flag. It gets set
493 * independent of the connection mutex, and we could have
494 * received a socket close event before we had the chance to
495 * shut the socket down.
496 */
497 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
498
499 con_sock_state_closed(con);
500 return rc;
501}
502
503static void ceph_con_reset_protocol(struct ceph_connection *con)
504{
505 dout("%s con %p\n", __func__, con);
506
507 ceph_con_close_socket(con);
508 if (con->in_msg) {
509 WARN_ON(con->in_msg->con != con);
510 ceph_msg_put(con->in_msg);
511 con->in_msg = NULL;
512 }
513 if (con->out_msg) {
514 WARN_ON(con->out_msg->con != con);
515 ceph_msg_put(con->out_msg);
516 con->out_msg = NULL;
517 }
518
519 if (ceph_msgr2(from_msgr(con->msgr)))
520 ceph_con_v2_reset_protocol(con);
521 else
522 ceph_con_v1_reset_protocol(con);
523}
524
525/*
526 * Reset a connection. Discard all incoming and outgoing messages
527 * and clear *_seq state.
528 */
529static void ceph_msg_remove(struct ceph_msg *msg)
530{
531 list_del_init(&msg->list_head);
532
533 ceph_msg_put(msg);
534}
535
536static void ceph_msg_remove_list(struct list_head *head)
537{
538 while (!list_empty(head)) {
539 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
540 list_head);
541 ceph_msg_remove(msg);
542 }
543}
544
545void ceph_con_reset_session(struct ceph_connection *con)
546{
547 dout("%s con %p\n", __func__, con);
548
549 WARN_ON(con->in_msg);
550 WARN_ON(con->out_msg);
551 ceph_msg_remove_list(&con->out_queue);
552 ceph_msg_remove_list(&con->out_sent);
553 con->out_seq = 0;
554 con->in_seq = 0;
555 con->in_seq_acked = 0;
556
557 if (ceph_msgr2(from_msgr(con->msgr)))
558 ceph_con_v2_reset_session(con);
559 else
560 ceph_con_v1_reset_session(con);
561}
562
563/*
564 * mark a peer down. drop any open connections.
565 */
566void ceph_con_close(struct ceph_connection *con)
567{
568 mutex_lock(&con->mutex);
569 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
570 con->state = CEPH_CON_S_CLOSED;
571
572 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
573 connect */
574 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
575 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
576 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
577
578 ceph_con_reset_protocol(con);
579 ceph_con_reset_session(con);
580 cancel_con(con);
581 mutex_unlock(&con->mutex);
582}
583EXPORT_SYMBOL(ceph_con_close);
584
585/*
586 * Reopen a closed connection, with a new peer address.
587 */
588void ceph_con_open(struct ceph_connection *con,
589 __u8 entity_type, __u64 entity_num,
590 struct ceph_entity_addr *addr)
591{
592 mutex_lock(&con->mutex);
593 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
594
595 WARN_ON(con->state != CEPH_CON_S_CLOSED);
596 con->state = CEPH_CON_S_PREOPEN;
597
598 con->peer_name.type = (__u8) entity_type;
599 con->peer_name.num = cpu_to_le64(entity_num);
600
601 memcpy(&con->peer_addr, addr, sizeof(*addr));
602 con->delay = 0; /* reset backoff memory */
603 mutex_unlock(&con->mutex);
604 queue_con(con);
605}
606EXPORT_SYMBOL(ceph_con_open);
607
608/*
609 * return true if this connection ever successfully opened
610 */
611bool ceph_con_opened(struct ceph_connection *con)
612{
613 if (ceph_msgr2(from_msgr(con->msgr)))
614 return ceph_con_v2_opened(con);
615
616 return ceph_con_v1_opened(con);
617}
618
619/*
620 * initialize a new connection.
621 */
622void ceph_con_init(struct ceph_connection *con, void *private,
623 const struct ceph_connection_operations *ops,
624 struct ceph_messenger *msgr)
625{
626 dout("con_init %p\n", con);
627 memset(con, 0, sizeof(*con));
628 con->private = private;
629 con->ops = ops;
630 con->msgr = msgr;
631
632 con_sock_state_init(con);
633
634 mutex_init(&con->mutex);
635 INIT_LIST_HEAD(&con->out_queue);
636 INIT_LIST_HEAD(&con->out_sent);
637 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
638
639 con->state = CEPH_CON_S_CLOSED;
640}
641EXPORT_SYMBOL(ceph_con_init);
642
643/*
644 * We maintain a global counter to order connection attempts. Get
645 * a unique seq greater than @gt.
646 */
647u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
648{
649 u32 ret;
650
651 spin_lock(&msgr->global_seq_lock);
652 if (msgr->global_seq < gt)
653 msgr->global_seq = gt;
654 ret = ++msgr->global_seq;
655 spin_unlock(&msgr->global_seq_lock);
656 return ret;
657}
658
659/*
660 * Discard messages that have been acked by the server.
661 */
662void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
663{
664 struct ceph_msg *msg;
665 u64 seq;
666
667 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
668 while (!list_empty(&con->out_sent)) {
669 msg = list_first_entry(&con->out_sent, struct ceph_msg,
670 list_head);
671 WARN_ON(msg->needs_out_seq);
672 seq = le64_to_cpu(msg->hdr.seq);
673 if (seq > ack_seq)
674 break;
675
676 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
677 msg, seq);
678 ceph_msg_remove(msg);
679 }
680}
681
682/*
683 * Discard messages that have been requeued in con_fault(), up to
684 * reconnect_seq. This avoids gratuitously resending messages that
685 * the server had received and handled prior to reconnect.
686 */
687void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
688{
689 struct ceph_msg *msg;
690 u64 seq;
691
692 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
693 while (!list_empty(&con->out_queue)) {
694 msg = list_first_entry(&con->out_queue, struct ceph_msg,
695 list_head);
696 if (msg->needs_out_seq)
697 break;
698 seq = le64_to_cpu(msg->hdr.seq);
699 if (seq > reconnect_seq)
700 break;
701
702 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
703 msg, seq);
704 ceph_msg_remove(msg);
705 }
706}
707
708#ifdef CONFIG_BLOCK
709
710/*
711 * For a bio data item, a piece is whatever remains of the next
712 * entry in the current bio iovec, or the first entry in the next
713 * bio in the list.
714 */
715static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
716 size_t length)
717{
718 struct ceph_msg_data *data = cursor->data;
719 struct ceph_bio_iter *it = &cursor->bio_iter;
720
721 cursor->resid = min_t(size_t, length, data->bio_length);
722 *it = data->bio_pos;
723 if (cursor->resid < it->iter.bi_size)
724 it->iter.bi_size = cursor->resid;
725
726 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
727 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
728}
729
730static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
731 size_t *page_offset,
732 size_t *length)
733{
734 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
735 cursor->bio_iter.iter);
736
737 *page_offset = bv.bv_offset;
738 *length = bv.bv_len;
739 return bv.bv_page;
740}
741
742static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
743 size_t bytes)
744{
745 struct ceph_bio_iter *it = &cursor->bio_iter;
746 struct page *page = bio_iter_page(it->bio, it->iter);
747
748 BUG_ON(bytes > cursor->resid);
749 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
750 cursor->resid -= bytes;
751 bio_advance_iter(it->bio, &it->iter, bytes);
752
753 if (!cursor->resid) {
754 BUG_ON(!cursor->last_piece);
755 return false; /* no more data */
756 }
757
758 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
759 page == bio_iter_page(it->bio, it->iter)))
760 return false; /* more bytes to process in this segment */
761
762 if (!it->iter.bi_size) {
763 it->bio = it->bio->bi_next;
764 it->iter = it->bio->bi_iter;
765 if (cursor->resid < it->iter.bi_size)
766 it->iter.bi_size = cursor->resid;
767 }
768
769 BUG_ON(cursor->last_piece);
770 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
771 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
772 return true;
773}
774#endif /* CONFIG_BLOCK */
775
776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 size_t length)
778{
779 struct ceph_msg_data *data = cursor->data;
780 struct bio_vec *bvecs = data->bvec_pos.bvecs;
781
782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 cursor->bvec_iter = data->bvec_pos.iter;
784 cursor->bvec_iter.bi_size = cursor->resid;
785
786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787 cursor->last_piece =
788 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
789}
790
791static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
792 size_t *page_offset,
793 size_t *length)
794{
795 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
796 cursor->bvec_iter);
797
798 *page_offset = bv.bv_offset;
799 *length = bv.bv_len;
800 return bv.bv_page;
801}
802
803static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
804 size_t bytes)
805{
806 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
807 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
808
809 BUG_ON(bytes > cursor->resid);
810 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
811 cursor->resid -= bytes;
812 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
813
814 if (!cursor->resid) {
815 BUG_ON(!cursor->last_piece);
816 return false; /* no more data */
817 }
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->last_piece);
824 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
825 cursor->last_piece =
826 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
827 return true;
828}
829
830/*
831 * For a page array, a piece comes from the first page in the array
832 * that has not already been fully consumed.
833 */
834static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
835 size_t length)
836{
837 struct ceph_msg_data *data = cursor->data;
838 int page_count;
839
840 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
841
842 BUG_ON(!data->pages);
843 BUG_ON(!data->length);
844
845 cursor->resid = min(length, data->length);
846 page_count = calc_pages_for(data->alignment, (u64)data->length);
847 cursor->page_offset = data->alignment & ~PAGE_MASK;
848 cursor->page_index = 0;
849 BUG_ON(page_count > (int)USHRT_MAX);
850 cursor->page_count = (unsigned short)page_count;
851 BUG_ON(length > SIZE_MAX - cursor->page_offset);
852 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
853}
854
855static struct page *
856ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
857 size_t *page_offset, size_t *length)
858{
859 struct ceph_msg_data *data = cursor->data;
860
861 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
862
863 BUG_ON(cursor->page_index >= cursor->page_count);
864 BUG_ON(cursor->page_offset >= PAGE_SIZE);
865
866 *page_offset = cursor->page_offset;
867 if (cursor->last_piece)
868 *length = cursor->resid;
869 else
870 *length = PAGE_SIZE - *page_offset;
871
872 return data->pages[cursor->page_index];
873}
874
875static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
876 size_t bytes)
877{
878 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
879
880 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
881
882 /* Advance the cursor page offset */
883
884 cursor->resid -= bytes;
885 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
886 if (!bytes || cursor->page_offset)
887 return false; /* more bytes to process in the current page */
888
889 if (!cursor->resid)
890 return false; /* no more data */
891
892 /* Move on to the next page; offset is already at 0 */
893
894 BUG_ON(cursor->page_index >= cursor->page_count);
895 cursor->page_index++;
896 cursor->last_piece = cursor->resid <= PAGE_SIZE;
897
898 return true;
899}
900
901/*
902 * For a pagelist, a piece is whatever remains to be consumed in the
903 * first page in the list, or the front of the next page.
904 */
905static void
906ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
907 size_t length)
908{
909 struct ceph_msg_data *data = cursor->data;
910 struct ceph_pagelist *pagelist;
911 struct page *page;
912
913 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
914
915 pagelist = data->pagelist;
916 BUG_ON(!pagelist);
917
918 if (!length)
919 return; /* pagelist can be assigned but empty */
920
921 BUG_ON(list_empty(&pagelist->head));
922 page = list_first_entry(&pagelist->head, struct page, lru);
923
924 cursor->resid = min(length, pagelist->length);
925 cursor->page = page;
926 cursor->offset = 0;
927 cursor->last_piece = cursor->resid <= PAGE_SIZE;
928}
929
930static struct page *
931ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
932 size_t *page_offset, size_t *length)
933{
934 struct ceph_msg_data *data = cursor->data;
935 struct ceph_pagelist *pagelist;
936
937 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
938
939 pagelist = data->pagelist;
940 BUG_ON(!pagelist);
941
942 BUG_ON(!cursor->page);
943 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
944
945 /* offset of first page in pagelist is always 0 */
946 *page_offset = cursor->offset & ~PAGE_MASK;
947 if (cursor->last_piece)
948 *length = cursor->resid;
949 else
950 *length = PAGE_SIZE - *page_offset;
951
952 return cursor->page;
953}
954
955static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
956 size_t bytes)
957{
958 struct ceph_msg_data *data = cursor->data;
959 struct ceph_pagelist *pagelist;
960
961 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
962
963 pagelist = data->pagelist;
964 BUG_ON(!pagelist);
965
966 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
967 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
968
969 /* Advance the cursor offset */
970
971 cursor->resid -= bytes;
972 cursor->offset += bytes;
973 /* offset of first page in pagelist is always 0 */
974 if (!bytes || cursor->offset & ~PAGE_MASK)
975 return false; /* more bytes to process in the current page */
976
977 if (!cursor->resid)
978 return false; /* no more data */
979
980 /* Move on to the next page */
981
982 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
983 cursor->page = list_next_entry(cursor->page, lru);
984 cursor->last_piece = cursor->resid <= PAGE_SIZE;
985
986 return true;
987}
988
989/*
990 * Message data is handled (sent or received) in pieces, where each
991 * piece resides on a single page. The network layer might not
992 * consume an entire piece at once. A data item's cursor keeps
993 * track of which piece is next to process and how much remains to
994 * be processed in that piece. It also tracks whether the current
995 * piece is the last one in the data item.
996 */
997static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
998{
999 size_t length = cursor->total_resid;
1000
1001 switch (cursor->data->type) {
1002 case CEPH_MSG_DATA_PAGELIST:
1003 ceph_msg_data_pagelist_cursor_init(cursor, length);
1004 break;
1005 case CEPH_MSG_DATA_PAGES:
1006 ceph_msg_data_pages_cursor_init(cursor, length);
1007 break;
1008#ifdef CONFIG_BLOCK
1009 case CEPH_MSG_DATA_BIO:
1010 ceph_msg_data_bio_cursor_init(cursor, length);
1011 break;
1012#endif /* CONFIG_BLOCK */
1013 case CEPH_MSG_DATA_BVECS:
1014 ceph_msg_data_bvecs_cursor_init(cursor, length);
1015 break;
1016 case CEPH_MSG_DATA_NONE:
1017 default:
1018 /* BUG(); */
1019 break;
1020 }
1021 cursor->need_crc = true;
1022}
1023
1024void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1025 struct ceph_msg *msg, size_t length)
1026{
1027 BUG_ON(!length);
1028 BUG_ON(length > msg->data_length);
1029 BUG_ON(!msg->num_data_items);
1030
1031 cursor->total_resid = length;
1032 cursor->data = msg->data;
1033
1034 __ceph_msg_data_cursor_init(cursor);
1035}
1036
1037/*
1038 * Return the page containing the next piece to process for a given
1039 * data item, and supply the page offset and length of that piece.
1040 * Indicate whether this is the last piece in this data item.
1041 */
1042struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1043 size_t *page_offset, size_t *length,
1044 bool *last_piece)
1045{
1046 struct page *page;
1047
1048 switch (cursor->data->type) {
1049 case CEPH_MSG_DATA_PAGELIST:
1050 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1051 break;
1052 case CEPH_MSG_DATA_PAGES:
1053 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1054 break;
1055#ifdef CONFIG_BLOCK
1056 case CEPH_MSG_DATA_BIO:
1057 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1058 break;
1059#endif /* CONFIG_BLOCK */
1060 case CEPH_MSG_DATA_BVECS:
1061 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1062 break;
1063 case CEPH_MSG_DATA_NONE:
1064 default:
1065 page = NULL;
1066 break;
1067 }
1068
1069 BUG_ON(!page);
1070 BUG_ON(*page_offset + *length > PAGE_SIZE);
1071 BUG_ON(!*length);
1072 BUG_ON(*length > cursor->resid);
1073 if (last_piece)
1074 *last_piece = cursor->last_piece;
1075
1076 return page;
1077}
1078
1079/*
1080 * Returns true if the result moves the cursor on to the next piece
1081 * of the data item.
1082 */
1083void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1084{
1085 bool new_piece;
1086
1087 BUG_ON(bytes > cursor->resid);
1088 switch (cursor->data->type) {
1089 case CEPH_MSG_DATA_PAGELIST:
1090 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1091 break;
1092 case CEPH_MSG_DATA_PAGES:
1093 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1094 break;
1095#ifdef CONFIG_BLOCK
1096 case CEPH_MSG_DATA_BIO:
1097 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1098 break;
1099#endif /* CONFIG_BLOCK */
1100 case CEPH_MSG_DATA_BVECS:
1101 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1102 break;
1103 case CEPH_MSG_DATA_NONE:
1104 default:
1105 BUG();
1106 break;
1107 }
1108 cursor->total_resid -= bytes;
1109
1110 if (!cursor->resid && cursor->total_resid) {
1111 WARN_ON(!cursor->last_piece);
1112 cursor->data++;
1113 __ceph_msg_data_cursor_init(cursor);
1114 new_piece = true;
1115 }
1116 cursor->need_crc = new_piece;
1117}
1118
1119u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1120 unsigned int length)
1121{
1122 char *kaddr;
1123
1124 kaddr = kmap(page);
1125 BUG_ON(kaddr == NULL);
1126 crc = crc32c(crc, kaddr + page_offset, length);
1127 kunmap(page);
1128
1129 return crc;
1130}
1131
1132bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1133{
1134 struct sockaddr_storage ss = addr->in_addr; /* align */
1135 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1136 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1137
1138 switch (ss.ss_family) {
1139 case AF_INET:
1140 return addr4->s_addr == htonl(INADDR_ANY);
1141 case AF_INET6:
1142 return ipv6_addr_any(addr6);
1143 default:
1144 return true;
1145 }
1146}
1147
1148int ceph_addr_port(const struct ceph_entity_addr *addr)
1149{
1150 switch (get_unaligned(&addr->in_addr.ss_family)) {
1151 case AF_INET:
1152 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1153 case AF_INET6:
1154 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1155 }
1156 return 0;
1157}
1158
1159void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1160{
1161 switch (get_unaligned(&addr->in_addr.ss_family)) {
1162 case AF_INET:
1163 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1164 break;
1165 case AF_INET6:
1166 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1167 break;
1168 }
1169}
1170
1171/*
1172 * Unlike other *_pton function semantics, zero indicates success.
1173 */
1174static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1175 char delim, const char **ipend)
1176{
1177 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1178
1179 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1180 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1181 return 0;
1182 }
1183
1184 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1185 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1186 return 0;
1187 }
1188
1189 return -EINVAL;
1190}
1191
1192/*
1193 * Extract hostname string and resolve using kernel DNS facility.
1194 */
1195#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1196static int ceph_dns_resolve_name(const char *name, size_t namelen,
1197 struct ceph_entity_addr *addr, char delim, const char **ipend)
1198{
1199 const char *end, *delim_p;
1200 char *colon_p, *ip_addr = NULL;
1201 int ip_len, ret;
1202
1203 /*
1204 * The end of the hostname occurs immediately preceding the delimiter or
1205 * the port marker (':') where the delimiter takes precedence.
1206 */
1207 delim_p = memchr(name, delim, namelen);
1208 colon_p = memchr(name, ':', namelen);
1209
1210 if (delim_p && colon_p)
1211 end = delim_p < colon_p ? delim_p : colon_p;
1212 else if (!delim_p && colon_p)
1213 end = colon_p;
1214 else {
1215 end = delim_p;
1216 if (!end) /* case: hostname:/ */
1217 end = name + namelen;
1218 }
1219
1220 if (end <= name)
1221 return -EINVAL;
1222
1223 /* do dns_resolve upcall */
1224 ip_len = dns_query(current->nsproxy->net_ns,
1225 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1226 if (ip_len > 0)
1227 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1228 else
1229 ret = -ESRCH;
1230
1231 kfree(ip_addr);
1232
1233 *ipend = end;
1234
1235 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1236 ret, ret ? "failed" : ceph_pr_addr(addr));
1237
1238 return ret;
1239}
1240#else
1241static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1242 struct ceph_entity_addr *addr, char delim, const char **ipend)
1243{
1244 return -EINVAL;
1245}
1246#endif
1247
1248/*
1249 * Parse a server name (IP or hostname). If a valid IP address is not found
1250 * then try to extract a hostname to resolve using userspace DNS upcall.
1251 */
1252static int ceph_parse_server_name(const char *name, size_t namelen,
1253 struct ceph_entity_addr *addr, char delim, const char **ipend)
1254{
1255 int ret;
1256
1257 ret = ceph_pton(name, namelen, addr, delim, ipend);
1258 if (ret)
1259 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1260
1261 return ret;
1262}
1263
1264/*
1265 * Parse an ip[:port] list into an addr array. Use the default
1266 * monitor port if a port isn't specified.
1267 */
1268int ceph_parse_ips(const char *c, const char *end,
1269 struct ceph_entity_addr *addr,
1270 int max_count, int *count)
1271{
1272 int i, ret = -EINVAL;
1273 const char *p = c;
1274
1275 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1276 for (i = 0; i < max_count; i++) {
1277 const char *ipend;
1278 int port;
1279 char delim = ',';
1280
1281 if (*p == '[') {
1282 delim = ']';
1283 p++;
1284 }
1285
1286 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1287 if (ret)
1288 goto bad;
1289 ret = -EINVAL;
1290
1291 p = ipend;
1292
1293 if (delim == ']') {
1294 if (*p != ']') {
1295 dout("missing matching ']'\n");
1296 goto bad;
1297 }
1298 p++;
1299 }
1300
1301 /* port? */
1302 if (p < end && *p == ':') {
1303 port = 0;
1304 p++;
1305 while (p < end && *p >= '0' && *p <= '9') {
1306 port = (port * 10) + (*p - '0');
1307 p++;
1308 }
1309 if (port == 0)
1310 port = CEPH_MON_PORT;
1311 else if (port > 65535)
1312 goto bad;
1313 } else {
1314 port = CEPH_MON_PORT;
1315 }
1316
1317 ceph_addr_set_port(&addr[i], port);
1318 /*
1319 * We want the type to be set according to ms_mode
1320 * option, but options are normally parsed after mon
1321 * addresses. Rather than complicating parsing, set
1322 * to LEGACY and override in build_initial_monmap()
1323 * for mon addresses and ceph_messenger_init() for
1324 * ip option.
1325 */
1326 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1327 addr[i].nonce = 0;
1328
1329 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1330
1331 if (p == end)
1332 break;
1333 if (*p != ',')
1334 goto bad;
1335 p++;
1336 }
1337
1338 if (p != end)
1339 goto bad;
1340
1341 if (count)
1342 *count = i + 1;
1343 return 0;
1344
1345bad:
1346 return ret;
1347}
1348
1349/*
1350 * Process message. This happens in the worker thread. The callback should
1351 * be careful not to do anything that waits on other incoming messages or it
1352 * may deadlock.
1353 */
1354void ceph_con_process_message(struct ceph_connection *con)
1355{
1356 struct ceph_msg *msg = con->in_msg;
1357
1358 BUG_ON(con->in_msg->con != con);
1359 con->in_msg = NULL;
1360
1361 /* if first message, set peer_name */
1362 if (con->peer_name.type == 0)
1363 con->peer_name = msg->hdr.src;
1364
1365 con->in_seq++;
1366 mutex_unlock(&con->mutex);
1367
1368 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1369 msg, le64_to_cpu(msg->hdr.seq),
1370 ENTITY_NAME(msg->hdr.src),
1371 le16_to_cpu(msg->hdr.type),
1372 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1373 le32_to_cpu(msg->hdr.front_len),
1374 le32_to_cpu(msg->hdr.middle_len),
1375 le32_to_cpu(msg->hdr.data_len),
1376 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1377 con->ops->dispatch(con, msg);
1378
1379 mutex_lock(&con->mutex);
1380}
1381
1382/*
1383 * Atomically queue work on a connection after the specified delay.
1384 * Bump @con reference to avoid races with connection teardown.
1385 * Returns 0 if work was queued, or an error code otherwise.
1386 */
1387static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1388{
1389 if (!con->ops->get(con)) {
1390 dout("%s %p ref count 0\n", __func__, con);
1391 return -ENOENT;
1392 }
1393
1394 if (delay >= HZ)
1395 delay = round_jiffies_relative(delay);
1396
1397 dout("%s %p %lu\n", __func__, con, delay);
1398 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1399 dout("%s %p - already queued\n", __func__, con);
1400 con->ops->put(con);
1401 return -EBUSY;
1402 }
1403
1404 return 0;
1405}
1406
1407static void queue_con(struct ceph_connection *con)
1408{
1409 (void) queue_con_delay(con, 0);
1410}
1411
1412static void cancel_con(struct ceph_connection *con)
1413{
1414 if (cancel_delayed_work(&con->work)) {
1415 dout("%s %p\n", __func__, con);
1416 con->ops->put(con);
1417 }
1418}
1419
1420static bool con_sock_closed(struct ceph_connection *con)
1421{
1422 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1423 return false;
1424
1425#define CASE(x) \
1426 case CEPH_CON_S_ ## x: \
1427 con->error_msg = "socket closed (con state " #x ")"; \
1428 break;
1429
1430 switch (con->state) {
1431 CASE(CLOSED);
1432 CASE(PREOPEN);
1433 CASE(V1_BANNER);
1434 CASE(V1_CONNECT_MSG);
1435 CASE(V2_BANNER_PREFIX);
1436 CASE(V2_BANNER_PAYLOAD);
1437 CASE(V2_HELLO);
1438 CASE(V2_AUTH);
1439 CASE(V2_AUTH_SIGNATURE);
1440 CASE(V2_SESSION_CONNECT);
1441 CASE(V2_SESSION_RECONNECT);
1442 CASE(OPEN);
1443 CASE(STANDBY);
1444 default:
1445 BUG();
1446 }
1447#undef CASE
1448
1449 return true;
1450}
1451
1452static bool con_backoff(struct ceph_connection *con)
1453{
1454 int ret;
1455
1456 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1457 return false;
1458
1459 ret = queue_con_delay(con, con->delay);
1460 if (ret) {
1461 dout("%s: con %p FAILED to back off %lu\n", __func__,
1462 con, con->delay);
1463 BUG_ON(ret == -ENOENT);
1464 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1465 }
1466
1467 return true;
1468}
1469
1470/* Finish fault handling; con->mutex must *not* be held here */
1471
1472static void con_fault_finish(struct ceph_connection *con)
1473{
1474 dout("%s %p\n", __func__, con);
1475
1476 /*
1477 * in case we faulted due to authentication, invalidate our
1478 * current tickets so that we can get new ones.
1479 */
1480 if (con->v1.auth_retry) {
1481 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1482 if (con->ops->invalidate_authorizer)
1483 con->ops->invalidate_authorizer(con);
1484 con->v1.auth_retry = 0;
1485 }
1486
1487 if (con->ops->fault)
1488 con->ops->fault(con);
1489}
1490
1491/*
1492 * Do some work on a connection. Drop a connection ref when we're done.
1493 */
1494static void ceph_con_workfn(struct work_struct *work)
1495{
1496 struct ceph_connection *con = container_of(work, struct ceph_connection,
1497 work.work);
1498 bool fault;
1499
1500 mutex_lock(&con->mutex);
1501 while (true) {
1502 int ret;
1503
1504 if ((fault = con_sock_closed(con))) {
1505 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1506 break;
1507 }
1508 if (con_backoff(con)) {
1509 dout("%s: con %p BACKOFF\n", __func__, con);
1510 break;
1511 }
1512 if (con->state == CEPH_CON_S_STANDBY) {
1513 dout("%s: con %p STANDBY\n", __func__, con);
1514 break;
1515 }
1516 if (con->state == CEPH_CON_S_CLOSED) {
1517 dout("%s: con %p CLOSED\n", __func__, con);
1518 BUG_ON(con->sock);
1519 break;
1520 }
1521 if (con->state == CEPH_CON_S_PREOPEN) {
1522 dout("%s: con %p PREOPEN\n", __func__, con);
1523 BUG_ON(con->sock);
1524 }
1525
1526 if (ceph_msgr2(from_msgr(con->msgr)))
1527 ret = ceph_con_v2_try_read(con);
1528 else
1529 ret = ceph_con_v1_try_read(con);
1530 if (ret < 0) {
1531 if (ret == -EAGAIN)
1532 continue;
1533 if (!con->error_msg)
1534 con->error_msg = "socket error on read";
1535 fault = true;
1536 break;
1537 }
1538
1539 if (ceph_msgr2(from_msgr(con->msgr)))
1540 ret = ceph_con_v2_try_write(con);
1541 else
1542 ret = ceph_con_v1_try_write(con);
1543 if (ret < 0) {
1544 if (ret == -EAGAIN)
1545 continue;
1546 if (!con->error_msg)
1547 con->error_msg = "socket error on write";
1548 fault = true;
1549 }
1550
1551 break; /* If we make it to here, we're done */
1552 }
1553 if (fault)
1554 con_fault(con);
1555 mutex_unlock(&con->mutex);
1556
1557 if (fault)
1558 con_fault_finish(con);
1559
1560 con->ops->put(con);
1561}
1562
1563/*
1564 * Generic error/fault handler. A retry mechanism is used with
1565 * exponential backoff
1566 */
1567static void con_fault(struct ceph_connection *con)
1568{
1569 dout("fault %p state %d to peer %s\n",
1570 con, con->state, ceph_pr_addr(&con->peer_addr));
1571
1572 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1573 ceph_pr_addr(&con->peer_addr), con->error_msg);
1574 con->error_msg = NULL;
1575
1576 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1577 con->state == CEPH_CON_S_CLOSED);
1578
1579 ceph_con_reset_protocol(con);
1580
1581 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1582 dout("fault on LOSSYTX channel, marking CLOSED\n");
1583 con->state = CEPH_CON_S_CLOSED;
1584 return;
1585 }
1586
1587 /* Requeue anything that hasn't been acked */
1588 list_splice_init(&con->out_sent, &con->out_queue);
1589
1590 /* If there are no messages queued or keepalive pending, place
1591 * the connection in a STANDBY state */
1592 if (list_empty(&con->out_queue) &&
1593 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1594 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1595 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1596 con->state = CEPH_CON_S_STANDBY;
1597 } else {
1598 /* retry after a delay. */
1599 con->state = CEPH_CON_S_PREOPEN;
1600 if (!con->delay) {
1601 con->delay = BASE_DELAY_INTERVAL;
1602 } else if (con->delay < MAX_DELAY_INTERVAL) {
1603 con->delay *= 2;
1604 if (con->delay > MAX_DELAY_INTERVAL)
1605 con->delay = MAX_DELAY_INTERVAL;
1606 }
1607 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1608 queue_con(con);
1609 }
1610}
1611
1612void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1613{
1614 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1615 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1616 ceph_encode_my_addr(msgr);
1617}
1618
1619/*
1620 * initialize a new messenger instance
1621 */
1622void ceph_messenger_init(struct ceph_messenger *msgr,
1623 struct ceph_entity_addr *myaddr)
1624{
1625 spin_lock_init(&msgr->global_seq_lock);
1626
1627 if (myaddr) {
1628 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1629 sizeof(msgr->inst.addr.in_addr));
1630 ceph_addr_set_port(&msgr->inst.addr, 0);
1631 }
1632
1633 /*
1634 * Since nautilus, clients are identified using type ANY.
1635 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1636 */
1637 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1638
1639 /* generate a random non-zero nonce */
1640 do {
1641 get_random_bytes(&msgr->inst.addr.nonce,
1642 sizeof(msgr->inst.addr.nonce));
1643 } while (!msgr->inst.addr.nonce);
1644 ceph_encode_my_addr(msgr);
1645
1646 atomic_set(&msgr->stopping, 0);
1647 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1648
1649 dout("%s %p\n", __func__, msgr);
1650}
1651
1652void ceph_messenger_fini(struct ceph_messenger *msgr)
1653{
1654 put_net(read_pnet(&msgr->net));
1655}
1656
1657static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1658{
1659 if (msg->con)
1660 msg->con->ops->put(msg->con);
1661
1662 msg->con = con ? con->ops->get(con) : NULL;
1663 BUG_ON(msg->con != con);
1664}
1665
1666static void clear_standby(struct ceph_connection *con)
1667{
1668 /* come back from STANDBY? */
1669 if (con->state == CEPH_CON_S_STANDBY) {
1670 dout("clear_standby %p and ++connect_seq\n", con);
1671 con->state = CEPH_CON_S_PREOPEN;
1672 con->v1.connect_seq++;
1673 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1674 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1675 }
1676}
1677
1678/*
1679 * Queue up an outgoing message on the given connection.
1680 *
1681 * Consumes a ref on @msg.
1682 */
1683void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1684{
1685 /* set src+dst */
1686 msg->hdr.src = con->msgr->inst.name;
1687 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1688 msg->needs_out_seq = true;
1689
1690 mutex_lock(&con->mutex);
1691
1692 if (con->state == CEPH_CON_S_CLOSED) {
1693 dout("con_send %p closed, dropping %p\n", con, msg);
1694 ceph_msg_put(msg);
1695 mutex_unlock(&con->mutex);
1696 return;
1697 }
1698
1699 msg_con_set(msg, con);
1700
1701 BUG_ON(!list_empty(&msg->list_head));
1702 list_add_tail(&msg->list_head, &con->out_queue);
1703 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1704 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1705 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1706 le32_to_cpu(msg->hdr.front_len),
1707 le32_to_cpu(msg->hdr.middle_len),
1708 le32_to_cpu(msg->hdr.data_len));
1709
1710 clear_standby(con);
1711 mutex_unlock(&con->mutex);
1712
1713 /* if there wasn't anything waiting to send before, queue
1714 * new work */
1715 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1716 queue_con(con);
1717}
1718EXPORT_SYMBOL(ceph_con_send);
1719
1720/*
1721 * Revoke a message that was previously queued for send
1722 */
1723void ceph_msg_revoke(struct ceph_msg *msg)
1724{
1725 struct ceph_connection *con = msg->con;
1726
1727 if (!con) {
1728 dout("%s msg %p null con\n", __func__, msg);
1729 return; /* Message not in our possession */
1730 }
1731
1732 mutex_lock(&con->mutex);
1733 if (list_empty(&msg->list_head)) {
1734 WARN_ON(con->out_msg == msg);
1735 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1736 mutex_unlock(&con->mutex);
1737 return;
1738 }
1739
1740 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1741 msg->hdr.seq = 0;
1742 ceph_msg_remove(msg);
1743
1744 if (con->out_msg == msg) {
1745 WARN_ON(con->state != CEPH_CON_S_OPEN);
1746 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1747 if (ceph_msgr2(from_msgr(con->msgr)))
1748 ceph_con_v2_revoke(con);
1749 else
1750 ceph_con_v1_revoke(con);
1751 ceph_msg_put(con->out_msg);
1752 con->out_msg = NULL;
1753 } else {
1754 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1755 con, msg, con->out_msg);
1756 }
1757 mutex_unlock(&con->mutex);
1758}
1759
1760/*
1761 * Revoke a message that we may be reading data into
1762 */
1763void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1764{
1765 struct ceph_connection *con = msg->con;
1766
1767 if (!con) {
1768 dout("%s msg %p null con\n", __func__, msg);
1769 return; /* Message not in our possession */
1770 }
1771
1772 mutex_lock(&con->mutex);
1773 if (con->in_msg == msg) {
1774 WARN_ON(con->state != CEPH_CON_S_OPEN);
1775 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1776 if (ceph_msgr2(from_msgr(con->msgr)))
1777 ceph_con_v2_revoke_incoming(con);
1778 else
1779 ceph_con_v1_revoke_incoming(con);
1780 ceph_msg_put(con->in_msg);
1781 con->in_msg = NULL;
1782 } else {
1783 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1784 con, msg, con->in_msg);
1785 }
1786 mutex_unlock(&con->mutex);
1787}
1788
1789/*
1790 * Queue a keepalive byte to ensure the tcp connection is alive.
1791 */
1792void ceph_con_keepalive(struct ceph_connection *con)
1793{
1794 dout("con_keepalive %p\n", con);
1795 mutex_lock(&con->mutex);
1796 clear_standby(con);
1797 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1798 mutex_unlock(&con->mutex);
1799
1800 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1801 queue_con(con);
1802}
1803EXPORT_SYMBOL(ceph_con_keepalive);
1804
1805bool ceph_con_keepalive_expired(struct ceph_connection *con,
1806 unsigned long interval)
1807{
1808 if (interval > 0 &&
1809 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1810 struct timespec64 now;
1811 struct timespec64 ts;
1812 ktime_get_real_ts64(&now);
1813 jiffies_to_timespec64(interval, &ts);
1814 ts = timespec64_add(con->last_keepalive_ack, ts);
1815 return timespec64_compare(&now, &ts) >= 0;
1816 }
1817 return false;
1818}
1819
1820static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1821{
1822 BUG_ON(msg->num_data_items >= msg->max_data_items);
1823 return &msg->data[msg->num_data_items++];
1824}
1825
1826static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1827{
1828 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1829 int num_pages = calc_pages_for(data->alignment, data->length);
1830 ceph_release_page_vector(data->pages, num_pages);
1831 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1832 ceph_pagelist_release(data->pagelist);
1833 }
1834}
1835
1836void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1837 size_t length, size_t alignment, bool own_pages)
1838{
1839 struct ceph_msg_data *data;
1840
1841 BUG_ON(!pages);
1842 BUG_ON(!length);
1843
1844 data = ceph_msg_data_add(msg);
1845 data->type = CEPH_MSG_DATA_PAGES;
1846 data->pages = pages;
1847 data->length = length;
1848 data->alignment = alignment & ~PAGE_MASK;
1849 data->own_pages = own_pages;
1850
1851 msg->data_length += length;
1852}
1853EXPORT_SYMBOL(ceph_msg_data_add_pages);
1854
1855void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1856 struct ceph_pagelist *pagelist)
1857{
1858 struct ceph_msg_data *data;
1859
1860 BUG_ON(!pagelist);
1861 BUG_ON(!pagelist->length);
1862
1863 data = ceph_msg_data_add(msg);
1864 data->type = CEPH_MSG_DATA_PAGELIST;
1865 refcount_inc(&pagelist->refcnt);
1866 data->pagelist = pagelist;
1867
1868 msg->data_length += pagelist->length;
1869}
1870EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1871
1872#ifdef CONFIG_BLOCK
1873void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1874 u32 length)
1875{
1876 struct ceph_msg_data *data;
1877
1878 data = ceph_msg_data_add(msg);
1879 data->type = CEPH_MSG_DATA_BIO;
1880 data->bio_pos = *bio_pos;
1881 data->bio_length = length;
1882
1883 msg->data_length += length;
1884}
1885EXPORT_SYMBOL(ceph_msg_data_add_bio);
1886#endif /* CONFIG_BLOCK */
1887
1888void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1889 struct ceph_bvec_iter *bvec_pos)
1890{
1891 struct ceph_msg_data *data;
1892
1893 data = ceph_msg_data_add(msg);
1894 data->type = CEPH_MSG_DATA_BVECS;
1895 data->bvec_pos = *bvec_pos;
1896
1897 msg->data_length += bvec_pos->iter.bi_size;
1898}
1899EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1900
1901/*
1902 * construct a new message with given type, size
1903 * the new msg has a ref count of 1.
1904 */
1905struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1906 gfp_t flags, bool can_fail)
1907{
1908 struct ceph_msg *m;
1909
1910 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1911 if (m == NULL)
1912 goto out;
1913
1914 m->hdr.type = cpu_to_le16(type);
1915 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1916 m->hdr.front_len = cpu_to_le32(front_len);
1917
1918 INIT_LIST_HEAD(&m->list_head);
1919 kref_init(&m->kref);
1920
1921 /* front */
1922 if (front_len) {
1923 m->front.iov_base = ceph_kvmalloc(front_len, flags);
1924 if (m->front.iov_base == NULL) {
1925 dout("ceph_msg_new can't allocate %d bytes\n",
1926 front_len);
1927 goto out2;
1928 }
1929 } else {
1930 m->front.iov_base = NULL;
1931 }
1932 m->front_alloc_len = m->front.iov_len = front_len;
1933
1934 if (max_data_items) {
1935 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1936 flags);
1937 if (!m->data)
1938 goto out2;
1939
1940 m->max_data_items = max_data_items;
1941 }
1942
1943 dout("ceph_msg_new %p front %d\n", m, front_len);
1944 return m;
1945
1946out2:
1947 ceph_msg_put(m);
1948out:
1949 if (!can_fail) {
1950 pr_err("msg_new can't create type %d front %d\n", type,
1951 front_len);
1952 WARN_ON(1);
1953 } else {
1954 dout("msg_new can't create type %d front %d\n", type,
1955 front_len);
1956 }
1957 return NULL;
1958}
1959EXPORT_SYMBOL(ceph_msg_new2);
1960
1961struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1962 bool can_fail)
1963{
1964 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1965}
1966EXPORT_SYMBOL(ceph_msg_new);
1967
1968/*
1969 * Allocate "middle" portion of a message, if it is needed and wasn't
1970 * allocated by alloc_msg. This allows us to read a small fixed-size
1971 * per-type header in the front and then gracefully fail (i.e.,
1972 * propagate the error to the caller based on info in the front) when
1973 * the middle is too large.
1974 */
1975static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1976{
1977 int type = le16_to_cpu(msg->hdr.type);
1978 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1979
1980 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1981 ceph_msg_type_name(type), middle_len);
1982 BUG_ON(!middle_len);
1983 BUG_ON(msg->middle);
1984
1985 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1986 if (!msg->middle)
1987 return -ENOMEM;
1988 return 0;
1989}
1990
1991/*
1992 * Allocate a message for receiving an incoming message on a
1993 * connection, and save the result in con->in_msg. Uses the
1994 * connection's private alloc_msg op if available.
1995 *
1996 * Returns 0 on success, or a negative error code.
1997 *
1998 * On success, if we set *skip = 1:
1999 * - the next message should be skipped and ignored.
2000 * - con->in_msg == NULL
2001 * or if we set *skip = 0:
2002 * - con->in_msg is non-null.
2003 * On error (ENOMEM, EAGAIN, ...),
2004 * - con->in_msg == NULL
2005 */
2006int ceph_con_in_msg_alloc(struct ceph_connection *con,
2007 struct ceph_msg_header *hdr, int *skip)
2008{
2009 int middle_len = le32_to_cpu(hdr->middle_len);
2010 struct ceph_msg *msg;
2011 int ret = 0;
2012
2013 BUG_ON(con->in_msg != NULL);
2014 BUG_ON(!con->ops->alloc_msg);
2015
2016 mutex_unlock(&con->mutex);
2017 msg = con->ops->alloc_msg(con, hdr, skip);
2018 mutex_lock(&con->mutex);
2019 if (con->state != CEPH_CON_S_OPEN) {
2020 if (msg)
2021 ceph_msg_put(msg);
2022 return -EAGAIN;
2023 }
2024 if (msg) {
2025 BUG_ON(*skip);
2026 msg_con_set(msg, con);
2027 con->in_msg = msg;
2028 } else {
2029 /*
2030 * Null message pointer means either we should skip
2031 * this message or we couldn't allocate memory. The
2032 * former is not an error.
2033 */
2034 if (*skip)
2035 return 0;
2036
2037 con->error_msg = "error allocating memory for incoming message";
2038 return -ENOMEM;
2039 }
2040 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2041
2042 if (middle_len && !con->in_msg->middle) {
2043 ret = ceph_alloc_middle(con, con->in_msg);
2044 if (ret < 0) {
2045 ceph_msg_put(con->in_msg);
2046 con->in_msg = NULL;
2047 }
2048 }
2049
2050 return ret;
2051}
2052
2053void ceph_con_get_out_msg(struct ceph_connection *con)
2054{
2055 struct ceph_msg *msg;
2056
2057 BUG_ON(list_empty(&con->out_queue));
2058 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2059 WARN_ON(msg->con != con);
2060
2061 /*
2062 * Put the message on "sent" list using a ref from ceph_con_send().
2063 * It is put when the message is acked or revoked.
2064 */
2065 list_move_tail(&msg->list_head, &con->out_sent);
2066
2067 /*
2068 * Only assign outgoing seq # if we haven't sent this message
2069 * yet. If it is requeued, resend with it's original seq.
2070 */
2071 if (msg->needs_out_seq) {
2072 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2073 msg->needs_out_seq = false;
2074
2075 if (con->ops->reencode_message)
2076 con->ops->reencode_message(msg);
2077 }
2078
2079 /*
2080 * Get a ref for out_msg. It is put when we are done sending the
2081 * message or in case of a fault.
2082 */
2083 WARN_ON(con->out_msg);
2084 con->out_msg = ceph_msg_get(msg);
2085}
2086
2087/*
2088 * Free a generically kmalloc'd message.
2089 */
2090static void ceph_msg_free(struct ceph_msg *m)
2091{
2092 dout("%s %p\n", __func__, m);
2093 kvfree(m->front.iov_base);
2094 kfree(m->data);
2095 kmem_cache_free(ceph_msg_cache, m);
2096}
2097
2098static void ceph_msg_release(struct kref *kref)
2099{
2100 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2101 int i;
2102
2103 dout("%s %p\n", __func__, m);
2104 WARN_ON(!list_empty(&m->list_head));
2105
2106 msg_con_set(m, NULL);
2107
2108 /* drop middle, data, if any */
2109 if (m->middle) {
2110 ceph_buffer_put(m->middle);
2111 m->middle = NULL;
2112 }
2113
2114 for (i = 0; i < m->num_data_items; i++)
2115 ceph_msg_data_destroy(&m->data[i]);
2116
2117 if (m->pool)
2118 ceph_msgpool_put(m->pool, m);
2119 else
2120 ceph_msg_free(m);
2121}
2122
2123struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2124{
2125 dout("%s %p (was %d)\n", __func__, msg,
2126 kref_read(&msg->kref));
2127 kref_get(&msg->kref);
2128 return msg;
2129}
2130EXPORT_SYMBOL(ceph_msg_get);
2131
2132void ceph_msg_put(struct ceph_msg *msg)
2133{
2134 dout("%s %p (was %d)\n", __func__, msg,
2135 kref_read(&msg->kref));
2136 kref_put(&msg->kref, ceph_msg_release);
2137}
2138EXPORT_SYMBOL(ceph_msg_put);
2139
2140void ceph_msg_dump(struct ceph_msg *msg)
2141{
2142 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2143 msg->front_alloc_len, msg->data_length);
2144 print_hex_dump(KERN_DEBUG, "header: ",
2145 DUMP_PREFIX_OFFSET, 16, 1,
2146 &msg->hdr, sizeof(msg->hdr), true);
2147 print_hex_dump(KERN_DEBUG, " front: ",
2148 DUMP_PREFIX_OFFSET, 16, 1,
2149 msg->front.iov_base, msg->front.iov_len, true);
2150 if (msg->middle)
2151 print_hex_dump(KERN_DEBUG, "middle: ",
2152 DUMP_PREFIX_OFFSET, 16, 1,
2153 msg->middle->vec.iov_base,
2154 msg->middle->vec.iov_len, true);
2155 print_hex_dump(KERN_DEBUG, "footer: ",
2156 DUMP_PREFIX_OFFSET, 16, 1,
2157 &msg->footer, sizeof(msg->footer), true);
2158}
2159EXPORT_SYMBOL(ceph_msg_dump);