]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - net/core/dev.c
net: remove a stale comment for dl_next
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141static DEFINE_SPINLOCK(ptype_lock);
142static DEFINE_SPINLOCK(offload_lock);
143struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144struct list_head ptype_all __read_mostly; /* Taps */
145static struct list_head offload_base __read_mostly;
146
147/*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166DEFINE_RWLOCK(dev_base_lock);
167EXPORT_SYMBOL(dev_base_lock);
168
169seqcount_t devnet_rename_seq;
170
171static inline void dev_base_seq_inc(struct net *net)
172{
173 while (++net->dev_base_seq == 0);
174}
175
176static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177{
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181}
182
183static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184{
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186}
187
188static inline void rps_lock(struct softnet_data *sd)
189{
190#ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192#endif
193}
194
195static inline void rps_unlock(struct softnet_data *sd)
196{
197#ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199#endif
200}
201
202/* Device list insertion */
203static int list_netdevice(struct net_device *dev)
204{
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219}
220
221/* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224static void unlist_netdevice(struct net_device *dev)
225{
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236}
237
238/*
239 * Our notifier list
240 */
241
242static RAW_NOTIFIER_HEAD(netdev_chain);
243
244/*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252#ifdef CONFIG_LOCKDEP
253/*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295{
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303}
304
305static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307{
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313}
314
315static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316{
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323}
324#else
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328}
329static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330{
331}
332#endif
333
334/*******************************************************************************
335
336 Protocol management and registration routines
337
338*******************************************************************************/
339
340/*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356static inline struct list_head *ptype_head(const struct packet_type *pt)
357{
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362}
363
364/**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377void dev_add_pack(struct packet_type *pt)
378{
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384}
385EXPORT_SYMBOL(dev_add_pack);
386
387/**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400void __dev_remove_pack(struct packet_type *pt)
401{
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415out:
416 spin_unlock(&ptype_lock);
417}
418EXPORT_SYMBOL(__dev_remove_pack);
419
420/**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432void dev_remove_pack(struct packet_type *pt)
433{
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437}
438EXPORT_SYMBOL(dev_remove_pack);
439
440
441/**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453void dev_add_offload(struct packet_offload *po)
454{
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460}
461EXPORT_SYMBOL(dev_add_offload);
462
463/**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476void __dev_remove_offload(struct packet_offload *po)
477{
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491out:
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(__dev_remove_offload);
495
496/**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508void dev_remove_offload(struct packet_offload *po)
509{
510 __dev_remove_offload(po);
511
512 synchronize_net();
513}
514EXPORT_SYMBOL(dev_remove_offload);
515
516/******************************************************************************
517
518 Device Boot-time Settings Routines
519
520*******************************************************************************/
521
522/* Boot time configuration table */
523static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525/**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534static int netdev_boot_setup_add(char *name, struct ifmap *map)
535{
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550}
551
552/**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561int netdev_boot_setup_check(struct net_device *dev)
562{
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577}
578EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581/**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591unsigned long netdev_boot_base(const char *prefix, int unit)
592{
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610}
611
612/*
613 * Saves at boot time configured settings for any netdevice.
614 */
615int __init netdev_boot_setup(char *str)
616{
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637}
638
639__setup("netdev=", netdev_boot_setup);
640
641/*******************************************************************************
642
643 Device Interface Subroutines
644
645*******************************************************************************/
646
647/**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659struct net_device *__dev_get_by_name(struct net *net, const char *name)
660{
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669}
670EXPORT_SYMBOL(__dev_get_by_name);
671
672/**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685{
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694}
695EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697/**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709struct net_device *dev_get_by_name(struct net *net, const char *name)
710{
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719}
720EXPORT_SYMBOL(dev_get_by_name);
721
722/**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_index);
746
747/**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759{
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768}
769EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772/**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783struct net_device *dev_get_by_index(struct net *net, int ifindex)
784{
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793}
794EXPORT_SYMBOL(dev_get_by_index);
795
796/**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812{
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825{
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838{
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850}
851EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853/**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866{
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877}
878EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880/**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888bool dev_valid_name(const char *name)
889{
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903}
904EXPORT_SYMBOL(dev_valid_name);
905
906/**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922{
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970}
971
972/**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986int dev_alloc_name(struct net_device *dev, const char *name)
987{
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998}
999EXPORT_SYMBOL(dev_alloc_name);
1000
1001static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004{
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012}
1013
1014static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017{
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031}
1032
1033/**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041int dev_change_name(struct net_device *dev, const char *newname)
1042{
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107}
1108
1109/**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118{
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139}
1140
1141
1142/**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148void netdev_features_change(struct net_device *dev)
1149{
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151}
1152EXPORT_SYMBOL(netdev_features_change);
1153
1154/**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162void netdev_state_change(struct net_device *dev)
1163{
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168}
1169EXPORT_SYMBOL(netdev_state_change);
1170
1171/**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181void netdev_notify_peers(struct net_device *dev)
1182{
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186}
1187EXPORT_SYMBOL(netdev_notify_peers);
1188
1189static int __dev_open(struct net_device *dev)
1190{
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233}
1234
1235/**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247int dev_open(struct net_device *dev)
1248{
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262}
1263EXPORT_SYMBOL(dev_open);
1264
1265static int __dev_close_many(struct list_head *head)
1266{
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306}
1307
1308static int __dev_close(struct net_device *dev)
1309{
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324}
1325
1326static int dev_close_many(struct list_head *head)
1327{
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345}
1346
1347/**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356int dev_close(struct net_device *dev)
1357{
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374}
1375EXPORT_SYMBOL(dev_close);
1376
1377
1378/**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386void dev_disable_lro(struct net_device *dev)
1387{
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400}
1401EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404static int dev_boot_phase = 1;
1405
1406/**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420int register_netdevice_notifier(struct notifier_block *nb)
1421{
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469}
1470EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472/**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486int unregister_netdevice_notifier(struct notifier_block *nb)
1487{
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506unlock:
1507 rtnl_unlock();
1508 return err;
1509}
1510EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512/**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522{
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525}
1526EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528static struct static_key netstamp_needed __read_mostly;
1529#ifdef HAVE_JUMP_LABEL
1530/* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534static atomic_t netstamp_needed_deferred;
1535#endif
1536
1537void net_enable_timestamp(void)
1538{
1539#ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547#endif
1548 static_key_slow_inc(&netstamp_needed);
1549}
1550EXPORT_SYMBOL(net_enable_timestamp);
1551
1552void net_disable_timestamp(void)
1553{
1554#ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1558 }
1559#endif
1560 static_key_slow_dec(&netstamp_needed);
1561}
1562EXPORT_SYMBOL(net_disable_timestamp);
1563
1564static inline void net_timestamp_set(struct sk_buff *skb)
1565{
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1569}
1570
1571#define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1575 } \
1576
1577static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1579{
1580 unsigned int len;
1581
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1584
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1588
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1591 */
1592 if (skb_is_gso(skb))
1593 return true;
1594
1595 return false;
1596}
1597
1598/**
1599 * dev_forward_skb - loopback an skb to another netif
1600 *
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1603 *
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1607 *
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1611 *
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1615 */
1616int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617{
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1623 }
1624 }
1625
1626 skb_orphan(skb);
1627
1628 if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 atomic_long_inc(&dev->rx_dropped);
1630 kfree_skb(skb);
1631 return NET_RX_DROP;
1632 }
1633 skb->skb_iif = 0;
1634 skb->dev = dev;
1635 skb_dst_drop(skb);
1636 skb->tstamp.tv64 = 0;
1637 skb->pkt_type = PACKET_HOST;
1638 skb->protocol = eth_type_trans(skb, dev);
1639 skb->mark = 0;
1640 secpath_reset(skb);
1641 nf_reset(skb);
1642 nf_reset_trace(skb);
1643 return netif_rx(skb);
1644}
1645EXPORT_SYMBOL_GPL(dev_forward_skb);
1646
1647static inline int deliver_skb(struct sk_buff *skb,
1648 struct packet_type *pt_prev,
1649 struct net_device *orig_dev)
1650{
1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1652 return -ENOMEM;
1653 atomic_inc(&skb->users);
1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1655}
1656
1657static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658{
1659 if (!ptype->af_packet_priv || !skb->sk)
1660 return false;
1661
1662 if (ptype->id_match)
1663 return ptype->id_match(ptype, skb->sk);
1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1665 return true;
1666
1667 return false;
1668}
1669
1670/*
1671 * Support routine. Sends outgoing frames to any network
1672 * taps currently in use.
1673 */
1674
1675static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676{
1677 struct packet_type *ptype;
1678 struct sk_buff *skb2 = NULL;
1679 struct packet_type *pt_prev = NULL;
1680
1681 rcu_read_lock();
1682 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 /* Never send packets back to the socket
1684 * they originated from - MvS (miquels@drinkel.ow.org)
1685 */
1686 if ((ptype->dev == dev || !ptype->dev) &&
1687 (!skb_loop_sk(ptype, skb))) {
1688 if (pt_prev) {
1689 deliver_skb(skb2, pt_prev, skb->dev);
1690 pt_prev = ptype;
1691 continue;
1692 }
1693
1694 skb2 = skb_clone(skb, GFP_ATOMIC);
1695 if (!skb2)
1696 break;
1697
1698 net_timestamp_set(skb2);
1699
1700 /* skb->nh should be correctly
1701 set by sender, so that the second statement is
1702 just protection against buggy protocols.
1703 */
1704 skb_reset_mac_header(skb2);
1705
1706 if (skb_network_header(skb2) < skb2->data ||
1707 skb2->network_header > skb2->tail) {
1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 ntohs(skb2->protocol),
1710 dev->name);
1711 skb_reset_network_header(skb2);
1712 }
1713
1714 skb2->transport_header = skb2->network_header;
1715 skb2->pkt_type = PACKET_OUTGOING;
1716 pt_prev = ptype;
1717 }
1718 }
1719 if (pt_prev)
1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1721 rcu_read_unlock();
1722}
1723
1724/**
1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726 * @dev: Network device
1727 * @txq: number of queues available
1728 *
1729 * If real_num_tx_queues is changed the tc mappings may no longer be
1730 * valid. To resolve this verify the tc mapping remains valid and if
1731 * not NULL the mapping. With no priorities mapping to this
1732 * offset/count pair it will no longer be used. In the worst case TC0
1733 * is invalid nothing can be done so disable priority mappings. If is
1734 * expected that drivers will fix this mapping if they can before
1735 * calling netif_set_real_num_tx_queues.
1736 */
1737static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738{
1739 int i;
1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741
1742 /* If TC0 is invalidated disable TC mapping */
1743 if (tc->offset + tc->count > txq) {
1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1745 dev->num_tc = 0;
1746 return;
1747 }
1748
1749 /* Invalidated prio to tc mappings set to TC0 */
1750 for (i = 1; i < TC_BITMASK + 1; i++) {
1751 int q = netdev_get_prio_tc_map(dev, i);
1752
1753 tc = &dev->tc_to_txq[q];
1754 if (tc->offset + tc->count > txq) {
1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1756 i, q);
1757 netdev_set_prio_tc_map(dev, i, 0);
1758 }
1759 }
1760}
1761
1762#ifdef CONFIG_XPS
1763static DEFINE_MUTEX(xps_map_mutex);
1764#define xmap_dereference(P) \
1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766
1767static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1768 int cpu, u16 index)
1769{
1770 struct xps_map *map = NULL;
1771 int pos;
1772
1773 if (dev_maps)
1774 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775
1776 for (pos = 0; map && pos < map->len; pos++) {
1777 if (map->queues[pos] == index) {
1778 if (map->len > 1) {
1779 map->queues[pos] = map->queues[--map->len];
1780 } else {
1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 kfree_rcu(map, rcu);
1783 map = NULL;
1784 }
1785 break;
1786 }
1787 }
1788
1789 return map;
1790}
1791
1792static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793{
1794 struct xps_dev_maps *dev_maps;
1795 int cpu, i;
1796 bool active = false;
1797
1798 mutex_lock(&xps_map_mutex);
1799 dev_maps = xmap_dereference(dev->xps_maps);
1800
1801 if (!dev_maps)
1802 goto out_no_maps;
1803
1804 for_each_possible_cpu(cpu) {
1805 for (i = index; i < dev->num_tx_queues; i++) {
1806 if (!remove_xps_queue(dev_maps, cpu, i))
1807 break;
1808 }
1809 if (i == dev->num_tx_queues)
1810 active = true;
1811 }
1812
1813 if (!active) {
1814 RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 kfree_rcu(dev_maps, rcu);
1816 }
1817
1818 for (i = index; i < dev->num_tx_queues; i++)
1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1820 NUMA_NO_NODE);
1821
1822out_no_maps:
1823 mutex_unlock(&xps_map_mutex);
1824}
1825
1826static struct xps_map *expand_xps_map(struct xps_map *map,
1827 int cpu, u16 index)
1828{
1829 struct xps_map *new_map;
1830 int alloc_len = XPS_MIN_MAP_ALLOC;
1831 int i, pos;
1832
1833 for (pos = 0; map && pos < map->len; pos++) {
1834 if (map->queues[pos] != index)
1835 continue;
1836 return map;
1837 }
1838
1839 /* Need to add queue to this CPU's existing map */
1840 if (map) {
1841 if (pos < map->alloc_len)
1842 return map;
1843
1844 alloc_len = map->alloc_len * 2;
1845 }
1846
1847 /* Need to allocate new map to store queue on this CPU's map */
1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1849 cpu_to_node(cpu));
1850 if (!new_map)
1851 return NULL;
1852
1853 for (i = 0; i < pos; i++)
1854 new_map->queues[i] = map->queues[i];
1855 new_map->alloc_len = alloc_len;
1856 new_map->len = pos;
1857
1858 return new_map;
1859}
1860
1861int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862{
1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 struct xps_map *map, *new_map;
1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 int cpu, numa_node_id = -2;
1867 bool active = false;
1868
1869 mutex_lock(&xps_map_mutex);
1870
1871 dev_maps = xmap_dereference(dev->xps_maps);
1872
1873 /* allocate memory for queue storage */
1874 for_each_online_cpu(cpu) {
1875 if (!cpumask_test_cpu(cpu, mask))
1876 continue;
1877
1878 if (!new_dev_maps)
1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 if (!new_dev_maps) {
1881 mutex_unlock(&xps_map_mutex);
1882 return -ENOMEM;
1883 }
1884
1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1886 NULL;
1887
1888 map = expand_xps_map(map, cpu, index);
1889 if (!map)
1890 goto error;
1891
1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1893 }
1894
1895 if (!new_dev_maps)
1896 goto out_no_new_maps;
1897
1898 for_each_possible_cpu(cpu) {
1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 /* add queue to CPU maps */
1901 int pos = 0;
1902
1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 while ((pos < map->len) && (map->queues[pos] != index))
1905 pos++;
1906
1907 if (pos == map->len)
1908 map->queues[map->len++] = index;
1909#ifdef CONFIG_NUMA
1910 if (numa_node_id == -2)
1911 numa_node_id = cpu_to_node(cpu);
1912 else if (numa_node_id != cpu_to_node(cpu))
1913 numa_node_id = -1;
1914#endif
1915 } else if (dev_maps) {
1916 /* fill in the new device map from the old device map */
1917 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 }
1920
1921 }
1922
1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924
1925 /* Cleanup old maps */
1926 if (dev_maps) {
1927 for_each_possible_cpu(cpu) {
1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 if (map && map != new_map)
1931 kfree_rcu(map, rcu);
1932 }
1933
1934 kfree_rcu(dev_maps, rcu);
1935 }
1936
1937 dev_maps = new_dev_maps;
1938 active = true;
1939
1940out_no_new_maps:
1941 /* update Tx queue numa node */
1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 (numa_node_id >= 0) ? numa_node_id :
1944 NUMA_NO_NODE);
1945
1946 if (!dev_maps)
1947 goto out_no_maps;
1948
1949 /* removes queue from unused CPUs */
1950 for_each_possible_cpu(cpu) {
1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1952 continue;
1953
1954 if (remove_xps_queue(dev_maps, cpu, index))
1955 active = true;
1956 }
1957
1958 /* free map if not active */
1959 if (!active) {
1960 RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 kfree_rcu(dev_maps, rcu);
1962 }
1963
1964out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966
1967 return 0;
1968error:
1969 /* remove any maps that we added */
1970 for_each_possible_cpu(cpu) {
1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1973 NULL;
1974 if (new_map && new_map != map)
1975 kfree(new_map);
1976 }
1977
1978 mutex_unlock(&xps_map_mutex);
1979
1980 kfree(new_dev_maps);
1981 return -ENOMEM;
1982}
1983EXPORT_SYMBOL(netif_set_xps_queue);
1984
1985#endif
1986/*
1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989 */
1990int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991{
1992 int rc;
1993
1994 if (txq < 1 || txq > dev->num_tx_queues)
1995 return -EINVAL;
1996
1997 if (dev->reg_state == NETREG_REGISTERED ||
1998 dev->reg_state == NETREG_UNREGISTERING) {
1999 ASSERT_RTNL();
2000
2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2002 txq);
2003 if (rc)
2004 return rc;
2005
2006 if (dev->num_tc)
2007 netif_setup_tc(dev, txq);
2008
2009 if (txq < dev->real_num_tx_queues) {
2010 qdisc_reset_all_tx_gt(dev, txq);
2011#ifdef CONFIG_XPS
2012 netif_reset_xps_queues_gt(dev, txq);
2013#endif
2014 }
2015 }
2016
2017 dev->real_num_tx_queues = txq;
2018 return 0;
2019}
2020EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021
2022#ifdef CONFIG_RPS
2023/**
2024 * netif_set_real_num_rx_queues - set actual number of RX queues used
2025 * @dev: Network device
2026 * @rxq: Actual number of RX queues
2027 *
2028 * This must be called either with the rtnl_lock held or before
2029 * registration of the net device. Returns 0 on success, or a
2030 * negative error code. If called before registration, it always
2031 * succeeds.
2032 */
2033int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034{
2035 int rc;
2036
2037 if (rxq < 1 || rxq > dev->num_rx_queues)
2038 return -EINVAL;
2039
2040 if (dev->reg_state == NETREG_REGISTERED) {
2041 ASSERT_RTNL();
2042
2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2044 rxq);
2045 if (rc)
2046 return rc;
2047 }
2048
2049 dev->real_num_rx_queues = rxq;
2050 return 0;
2051}
2052EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2053#endif
2054
2055/**
2056 * netif_get_num_default_rss_queues - default number of RSS queues
2057 *
2058 * This routine should set an upper limit on the number of RSS queues
2059 * used by default by multiqueue devices.
2060 */
2061int netif_get_num_default_rss_queues(void)
2062{
2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064}
2065EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066
2067static inline void __netif_reschedule(struct Qdisc *q)
2068{
2069 struct softnet_data *sd;
2070 unsigned long flags;
2071
2072 local_irq_save(flags);
2073 sd = &__get_cpu_var(softnet_data);
2074 q->next_sched = NULL;
2075 *sd->output_queue_tailp = q;
2076 sd->output_queue_tailp = &q->next_sched;
2077 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 local_irq_restore(flags);
2079}
2080
2081void __netif_schedule(struct Qdisc *q)
2082{
2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 __netif_reschedule(q);
2085}
2086EXPORT_SYMBOL(__netif_schedule);
2087
2088void dev_kfree_skb_irq(struct sk_buff *skb)
2089{
2090 if (atomic_dec_and_test(&skb->users)) {
2091 struct softnet_data *sd;
2092 unsigned long flags;
2093
2094 local_irq_save(flags);
2095 sd = &__get_cpu_var(softnet_data);
2096 skb->next = sd->completion_queue;
2097 sd->completion_queue = skb;
2098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 local_irq_restore(flags);
2100 }
2101}
2102EXPORT_SYMBOL(dev_kfree_skb_irq);
2103
2104void dev_kfree_skb_any(struct sk_buff *skb)
2105{
2106 if (in_irq() || irqs_disabled())
2107 dev_kfree_skb_irq(skb);
2108 else
2109 dev_kfree_skb(skb);
2110}
2111EXPORT_SYMBOL(dev_kfree_skb_any);
2112
2113
2114/**
2115 * netif_device_detach - mark device as removed
2116 * @dev: network device
2117 *
2118 * Mark device as removed from system and therefore no longer available.
2119 */
2120void netif_device_detach(struct net_device *dev)
2121{
2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 netif_running(dev)) {
2124 netif_tx_stop_all_queues(dev);
2125 }
2126}
2127EXPORT_SYMBOL(netif_device_detach);
2128
2129/**
2130 * netif_device_attach - mark device as attached
2131 * @dev: network device
2132 *
2133 * Mark device as attached from system and restart if needed.
2134 */
2135void netif_device_attach(struct net_device *dev)
2136{
2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 netif_running(dev)) {
2139 netif_tx_wake_all_queues(dev);
2140 __netdev_watchdog_up(dev);
2141 }
2142}
2143EXPORT_SYMBOL(netif_device_attach);
2144
2145static void skb_warn_bad_offload(const struct sk_buff *skb)
2146{
2147 static const netdev_features_t null_features = 0;
2148 struct net_device *dev = skb->dev;
2149 const char *driver = "";
2150
2151 if (dev && dev->dev.parent)
2152 driver = dev_driver_string(dev->dev.parent);
2153
2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2155 "gso_type=%d ip_summed=%d\n",
2156 driver, dev ? &dev->features : &null_features,
2157 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2159 skb_shinfo(skb)->gso_type, skb->ip_summed);
2160}
2161
2162/*
2163 * Invalidate hardware checksum when packet is to be mangled, and
2164 * complete checksum manually on outgoing path.
2165 */
2166int skb_checksum_help(struct sk_buff *skb)
2167{
2168 __wsum csum;
2169 int ret = 0, offset;
2170
2171 if (skb->ip_summed == CHECKSUM_COMPLETE)
2172 goto out_set_summed;
2173
2174 if (unlikely(skb_shinfo(skb)->gso_size)) {
2175 skb_warn_bad_offload(skb);
2176 return -EINVAL;
2177 }
2178
2179 /* Before computing a checksum, we should make sure no frag could
2180 * be modified by an external entity : checksum could be wrong.
2181 */
2182 if (skb_has_shared_frag(skb)) {
2183 ret = __skb_linearize(skb);
2184 if (ret)
2185 goto out;
2186 }
2187
2188 offset = skb_checksum_start_offset(skb);
2189 BUG_ON(offset >= skb_headlen(skb));
2190 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2191
2192 offset += skb->csum_offset;
2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2194
2195 if (skb_cloned(skb) &&
2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2198 if (ret)
2199 goto out;
2200 }
2201
2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2203out_set_summed:
2204 skb->ip_summed = CHECKSUM_NONE;
2205out:
2206 return ret;
2207}
2208EXPORT_SYMBOL(skb_checksum_help);
2209
2210__be16 skb_network_protocol(struct sk_buff *skb)
2211{
2212 __be16 type = skb->protocol;
2213 int vlan_depth = ETH_HLEN;
2214
2215 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2216 struct vlan_hdr *vh;
2217
2218 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2219 return 0;
2220
2221 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2222 type = vh->h_vlan_encapsulated_proto;
2223 vlan_depth += VLAN_HLEN;
2224 }
2225
2226 return type;
2227}
2228
2229/**
2230 * skb_mac_gso_segment - mac layer segmentation handler.
2231 * @skb: buffer to segment
2232 * @features: features for the output path (see dev->features)
2233 */
2234struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2235 netdev_features_t features)
2236{
2237 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2238 struct packet_offload *ptype;
2239 __be16 type = skb_network_protocol(skb);
2240
2241 if (unlikely(!type))
2242 return ERR_PTR(-EINVAL);
2243
2244 __skb_pull(skb, skb->mac_len);
2245
2246 rcu_read_lock();
2247 list_for_each_entry_rcu(ptype, &offload_base, list) {
2248 if (ptype->type == type && ptype->callbacks.gso_segment) {
2249 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2250 int err;
2251
2252 err = ptype->callbacks.gso_send_check(skb);
2253 segs = ERR_PTR(err);
2254 if (err || skb_gso_ok(skb, features))
2255 break;
2256 __skb_push(skb, (skb->data -
2257 skb_network_header(skb)));
2258 }
2259 segs = ptype->callbacks.gso_segment(skb, features);
2260 break;
2261 }
2262 }
2263 rcu_read_unlock();
2264
2265 __skb_push(skb, skb->data - skb_mac_header(skb));
2266
2267 return segs;
2268}
2269EXPORT_SYMBOL(skb_mac_gso_segment);
2270
2271
2272/* openvswitch calls this on rx path, so we need a different check.
2273 */
2274static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2275{
2276 if (tx_path)
2277 return skb->ip_summed != CHECKSUM_PARTIAL;
2278 else
2279 return skb->ip_summed == CHECKSUM_NONE;
2280}
2281
2282/**
2283 * __skb_gso_segment - Perform segmentation on skb.
2284 * @skb: buffer to segment
2285 * @features: features for the output path (see dev->features)
2286 * @tx_path: whether it is called in TX path
2287 *
2288 * This function segments the given skb and returns a list of segments.
2289 *
2290 * It may return NULL if the skb requires no segmentation. This is
2291 * only possible when GSO is used for verifying header integrity.
2292 */
2293struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2294 netdev_features_t features, bool tx_path)
2295{
2296 if (unlikely(skb_needs_check(skb, tx_path))) {
2297 int err;
2298
2299 skb_warn_bad_offload(skb);
2300
2301 if (skb_header_cloned(skb) &&
2302 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2303 return ERR_PTR(err);
2304 }
2305
2306 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2307 skb_reset_mac_header(skb);
2308 skb_reset_mac_len(skb);
2309
2310 return skb_mac_gso_segment(skb, features);
2311}
2312EXPORT_SYMBOL(__skb_gso_segment);
2313
2314/* Take action when hardware reception checksum errors are detected. */
2315#ifdef CONFIG_BUG
2316void netdev_rx_csum_fault(struct net_device *dev)
2317{
2318 if (net_ratelimit()) {
2319 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2320 dump_stack();
2321 }
2322}
2323EXPORT_SYMBOL(netdev_rx_csum_fault);
2324#endif
2325
2326/* Actually, we should eliminate this check as soon as we know, that:
2327 * 1. IOMMU is present and allows to map all the memory.
2328 * 2. No high memory really exists on this machine.
2329 */
2330
2331static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2332{
2333#ifdef CONFIG_HIGHMEM
2334 int i;
2335 if (!(dev->features & NETIF_F_HIGHDMA)) {
2336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2338 if (PageHighMem(skb_frag_page(frag)))
2339 return 1;
2340 }
2341 }
2342
2343 if (PCI_DMA_BUS_IS_PHYS) {
2344 struct device *pdev = dev->dev.parent;
2345
2346 if (!pdev)
2347 return 0;
2348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2350 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2351 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2352 return 1;
2353 }
2354 }
2355#endif
2356 return 0;
2357}
2358
2359struct dev_gso_cb {
2360 void (*destructor)(struct sk_buff *skb);
2361};
2362
2363#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2364
2365static void dev_gso_skb_destructor(struct sk_buff *skb)
2366{
2367 struct dev_gso_cb *cb;
2368
2369 do {
2370 struct sk_buff *nskb = skb->next;
2371
2372 skb->next = nskb->next;
2373 nskb->next = NULL;
2374 kfree_skb(nskb);
2375 } while (skb->next);
2376
2377 cb = DEV_GSO_CB(skb);
2378 if (cb->destructor)
2379 cb->destructor(skb);
2380}
2381
2382/**
2383 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2384 * @skb: buffer to segment
2385 * @features: device features as applicable to this skb
2386 *
2387 * This function segments the given skb and stores the list of segments
2388 * in skb->next.
2389 */
2390static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2391{
2392 struct sk_buff *segs;
2393
2394 segs = skb_gso_segment(skb, features);
2395
2396 /* Verifying header integrity only. */
2397 if (!segs)
2398 return 0;
2399
2400 if (IS_ERR(segs))
2401 return PTR_ERR(segs);
2402
2403 skb->next = segs;
2404 DEV_GSO_CB(skb)->destructor = skb->destructor;
2405 skb->destructor = dev_gso_skb_destructor;
2406
2407 return 0;
2408}
2409
2410static netdev_features_t harmonize_features(struct sk_buff *skb,
2411 __be16 protocol, netdev_features_t features)
2412{
2413 if (skb->ip_summed != CHECKSUM_NONE &&
2414 !can_checksum_protocol(features, protocol)) {
2415 features &= ~NETIF_F_ALL_CSUM;
2416 } else if (illegal_highdma(skb->dev, skb)) {
2417 features &= ~NETIF_F_SG;
2418 }
2419
2420 return features;
2421}
2422
2423netdev_features_t netif_skb_features(struct sk_buff *skb)
2424{
2425 __be16 protocol = skb->protocol;
2426 netdev_features_t features = skb->dev->features;
2427
2428 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2429 features &= ~NETIF_F_GSO_MASK;
2430
2431 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2432 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2433 protocol = veh->h_vlan_encapsulated_proto;
2434 } else if (!vlan_tx_tag_present(skb)) {
2435 return harmonize_features(skb, protocol, features);
2436 }
2437
2438 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2439 NETIF_F_HW_VLAN_STAG_TX);
2440
2441 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) {
2442 return harmonize_features(skb, protocol, features);
2443 } else {
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2446 NETIF_F_HW_VLAN_STAG_TX;
2447 return harmonize_features(skb, protocol, features);
2448 }
2449}
2450EXPORT_SYMBOL(netif_skb_features);
2451
2452/*
2453 * Returns true if either:
2454 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2455 * 2. skb is fragmented and the device does not support SG.
2456 */
2457static inline int skb_needs_linearize(struct sk_buff *skb,
2458 int features)
2459{
2460 return skb_is_nonlinear(skb) &&
2461 ((skb_has_frag_list(skb) &&
2462 !(features & NETIF_F_FRAGLIST)) ||
2463 (skb_shinfo(skb)->nr_frags &&
2464 !(features & NETIF_F_SG)));
2465}
2466
2467int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2468 struct netdev_queue *txq)
2469{
2470 const struct net_device_ops *ops = dev->netdev_ops;
2471 int rc = NETDEV_TX_OK;
2472 unsigned int skb_len;
2473
2474 if (likely(!skb->next)) {
2475 netdev_features_t features;
2476
2477 /*
2478 * If device doesn't need skb->dst, release it right now while
2479 * its hot in this cpu cache
2480 */
2481 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2482 skb_dst_drop(skb);
2483
2484 features = netif_skb_features(skb);
2485
2486 if (vlan_tx_tag_present(skb) &&
2487 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2488 skb = __vlan_put_tag(skb, skb->vlan_proto,
2489 vlan_tx_tag_get(skb));
2490 if (unlikely(!skb))
2491 goto out;
2492
2493 skb->vlan_tci = 0;
2494 }
2495
2496 /* If encapsulation offload request, verify we are testing
2497 * hardware encapsulation features instead of standard
2498 * features for the netdev
2499 */
2500 if (skb->encapsulation)
2501 features &= dev->hw_enc_features;
2502
2503 if (netif_needs_gso(skb, features)) {
2504 if (unlikely(dev_gso_segment(skb, features)))
2505 goto out_kfree_skb;
2506 if (skb->next)
2507 goto gso;
2508 } else {
2509 if (skb_needs_linearize(skb, features) &&
2510 __skb_linearize(skb))
2511 goto out_kfree_skb;
2512
2513 /* If packet is not checksummed and device does not
2514 * support checksumming for this protocol, complete
2515 * checksumming here.
2516 */
2517 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2518 if (skb->encapsulation)
2519 skb_set_inner_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 else
2522 skb_set_transport_header(skb,
2523 skb_checksum_start_offset(skb));
2524 if (!(features & NETIF_F_ALL_CSUM) &&
2525 skb_checksum_help(skb))
2526 goto out_kfree_skb;
2527 }
2528 }
2529
2530 if (!list_empty(&ptype_all))
2531 dev_queue_xmit_nit(skb, dev);
2532
2533 skb_len = skb->len;
2534 rc = ops->ndo_start_xmit(skb, dev);
2535 trace_net_dev_xmit(skb, rc, dev, skb_len);
2536 if (rc == NETDEV_TX_OK)
2537 txq_trans_update(txq);
2538 return rc;
2539 }
2540
2541gso:
2542 do {
2543 struct sk_buff *nskb = skb->next;
2544
2545 skb->next = nskb->next;
2546 nskb->next = NULL;
2547
2548 /*
2549 * If device doesn't need nskb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(nskb);
2554
2555 if (!list_empty(&ptype_all))
2556 dev_queue_xmit_nit(nskb, dev);
2557
2558 skb_len = nskb->len;
2559 rc = ops->ndo_start_xmit(nskb, dev);
2560 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2561 if (unlikely(rc != NETDEV_TX_OK)) {
2562 if (rc & ~NETDEV_TX_MASK)
2563 goto out_kfree_gso_skb;
2564 nskb->next = skb->next;
2565 skb->next = nskb;
2566 return rc;
2567 }
2568 txq_trans_update(txq);
2569 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2570 return NETDEV_TX_BUSY;
2571 } while (skb->next);
2572
2573out_kfree_gso_skb:
2574 if (likely(skb->next == NULL))
2575 skb->destructor = DEV_GSO_CB(skb)->destructor;
2576out_kfree_skb:
2577 kfree_skb(skb);
2578out:
2579 return rc;
2580}
2581
2582static void qdisc_pkt_len_init(struct sk_buff *skb)
2583{
2584 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2585
2586 qdisc_skb_cb(skb)->pkt_len = skb->len;
2587
2588 /* To get more precise estimation of bytes sent on wire,
2589 * we add to pkt_len the headers size of all segments
2590 */
2591 if (shinfo->gso_size) {
2592 unsigned int hdr_len;
2593 u16 gso_segs = shinfo->gso_segs;
2594
2595 /* mac layer + network layer */
2596 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2597
2598 /* + transport layer */
2599 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2600 hdr_len += tcp_hdrlen(skb);
2601 else
2602 hdr_len += sizeof(struct udphdr);
2603
2604 if (shinfo->gso_type & SKB_GSO_DODGY)
2605 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2606 shinfo->gso_size);
2607
2608 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2609 }
2610}
2611
2612static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2613 struct net_device *dev,
2614 struct netdev_queue *txq)
2615{
2616 spinlock_t *root_lock = qdisc_lock(q);
2617 bool contended;
2618 int rc;
2619
2620 qdisc_pkt_len_init(skb);
2621 qdisc_calculate_pkt_len(skb, q);
2622 /*
2623 * Heuristic to force contended enqueues to serialize on a
2624 * separate lock before trying to get qdisc main lock.
2625 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2626 * and dequeue packets faster.
2627 */
2628 contended = qdisc_is_running(q);
2629 if (unlikely(contended))
2630 spin_lock(&q->busylock);
2631
2632 spin_lock(root_lock);
2633 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2634 kfree_skb(skb);
2635 rc = NET_XMIT_DROP;
2636 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2637 qdisc_run_begin(q)) {
2638 /*
2639 * This is a work-conserving queue; there are no old skbs
2640 * waiting to be sent out; and the qdisc is not running -
2641 * xmit the skb directly.
2642 */
2643 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2644 skb_dst_force(skb);
2645
2646 qdisc_bstats_update(q, skb);
2647
2648 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2649 if (unlikely(contended)) {
2650 spin_unlock(&q->busylock);
2651 contended = false;
2652 }
2653 __qdisc_run(q);
2654 } else
2655 qdisc_run_end(q);
2656
2657 rc = NET_XMIT_SUCCESS;
2658 } else {
2659 skb_dst_force(skb);
2660 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2661 if (qdisc_run_begin(q)) {
2662 if (unlikely(contended)) {
2663 spin_unlock(&q->busylock);
2664 contended = false;
2665 }
2666 __qdisc_run(q);
2667 }
2668 }
2669 spin_unlock(root_lock);
2670 if (unlikely(contended))
2671 spin_unlock(&q->busylock);
2672 return rc;
2673}
2674
2675#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2676static void skb_update_prio(struct sk_buff *skb)
2677{
2678 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2679
2680 if (!skb->priority && skb->sk && map) {
2681 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2682
2683 if (prioidx < map->priomap_len)
2684 skb->priority = map->priomap[prioidx];
2685 }
2686}
2687#else
2688#define skb_update_prio(skb)
2689#endif
2690
2691static DEFINE_PER_CPU(int, xmit_recursion);
2692#define RECURSION_LIMIT 10
2693
2694/**
2695 * dev_loopback_xmit - loop back @skb
2696 * @skb: buffer to transmit
2697 */
2698int dev_loopback_xmit(struct sk_buff *skb)
2699{
2700 skb_reset_mac_header(skb);
2701 __skb_pull(skb, skb_network_offset(skb));
2702 skb->pkt_type = PACKET_LOOPBACK;
2703 skb->ip_summed = CHECKSUM_UNNECESSARY;
2704 WARN_ON(!skb_dst(skb));
2705 skb_dst_force(skb);
2706 netif_rx_ni(skb);
2707 return 0;
2708}
2709EXPORT_SYMBOL(dev_loopback_xmit);
2710
2711/**
2712 * dev_queue_xmit - transmit a buffer
2713 * @skb: buffer to transmit
2714 *
2715 * Queue a buffer for transmission to a network device. The caller must
2716 * have set the device and priority and built the buffer before calling
2717 * this function. The function can be called from an interrupt.
2718 *
2719 * A negative errno code is returned on a failure. A success does not
2720 * guarantee the frame will be transmitted as it may be dropped due
2721 * to congestion or traffic shaping.
2722 *
2723 * -----------------------------------------------------------------------------------
2724 * I notice this method can also return errors from the queue disciplines,
2725 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2726 * be positive.
2727 *
2728 * Regardless of the return value, the skb is consumed, so it is currently
2729 * difficult to retry a send to this method. (You can bump the ref count
2730 * before sending to hold a reference for retry if you are careful.)
2731 *
2732 * When calling this method, interrupts MUST be enabled. This is because
2733 * the BH enable code must have IRQs enabled so that it will not deadlock.
2734 * --BLG
2735 */
2736int dev_queue_xmit(struct sk_buff *skb)
2737{
2738 struct net_device *dev = skb->dev;
2739 struct netdev_queue *txq;
2740 struct Qdisc *q;
2741 int rc = -ENOMEM;
2742
2743 skb_reset_mac_header(skb);
2744
2745 /* Disable soft irqs for various locks below. Also
2746 * stops preemption for RCU.
2747 */
2748 rcu_read_lock_bh();
2749
2750 skb_update_prio(skb);
2751
2752 txq = netdev_pick_tx(dev, skb);
2753 q = rcu_dereference_bh(txq->qdisc);
2754
2755#ifdef CONFIG_NET_CLS_ACT
2756 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2757#endif
2758 trace_net_dev_queue(skb);
2759 if (q->enqueue) {
2760 rc = __dev_xmit_skb(skb, q, dev, txq);
2761 goto out;
2762 }
2763
2764 /* The device has no queue. Common case for software devices:
2765 loopback, all the sorts of tunnels...
2766
2767 Really, it is unlikely that netif_tx_lock protection is necessary
2768 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2769 counters.)
2770 However, it is possible, that they rely on protection
2771 made by us here.
2772
2773 Check this and shot the lock. It is not prone from deadlocks.
2774 Either shot noqueue qdisc, it is even simpler 8)
2775 */
2776 if (dev->flags & IFF_UP) {
2777 int cpu = smp_processor_id(); /* ok because BHs are off */
2778
2779 if (txq->xmit_lock_owner != cpu) {
2780
2781 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2782 goto recursion_alert;
2783
2784 HARD_TX_LOCK(dev, txq, cpu);
2785
2786 if (!netif_xmit_stopped(txq)) {
2787 __this_cpu_inc(xmit_recursion);
2788 rc = dev_hard_start_xmit(skb, dev, txq);
2789 __this_cpu_dec(xmit_recursion);
2790 if (dev_xmit_complete(rc)) {
2791 HARD_TX_UNLOCK(dev, txq);
2792 goto out;
2793 }
2794 }
2795 HARD_TX_UNLOCK(dev, txq);
2796 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2797 dev->name);
2798 } else {
2799 /* Recursion is detected! It is possible,
2800 * unfortunately
2801 */
2802recursion_alert:
2803 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2804 dev->name);
2805 }
2806 }
2807
2808 rc = -ENETDOWN;
2809 rcu_read_unlock_bh();
2810
2811 kfree_skb(skb);
2812 return rc;
2813out:
2814 rcu_read_unlock_bh();
2815 return rc;
2816}
2817EXPORT_SYMBOL(dev_queue_xmit);
2818
2819
2820/*=======================================================================
2821 Receiver routines
2822 =======================================================================*/
2823
2824int netdev_max_backlog __read_mostly = 1000;
2825EXPORT_SYMBOL(netdev_max_backlog);
2826
2827int netdev_tstamp_prequeue __read_mostly = 1;
2828int netdev_budget __read_mostly = 300;
2829int weight_p __read_mostly = 64; /* old backlog weight */
2830
2831/* Called with irq disabled */
2832static inline void ____napi_schedule(struct softnet_data *sd,
2833 struct napi_struct *napi)
2834{
2835 list_add_tail(&napi->poll_list, &sd->poll_list);
2836 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2837}
2838
2839#ifdef CONFIG_RPS
2840
2841/* One global table that all flow-based protocols share. */
2842struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2843EXPORT_SYMBOL(rps_sock_flow_table);
2844
2845struct static_key rps_needed __read_mostly;
2846
2847static struct rps_dev_flow *
2848set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2849 struct rps_dev_flow *rflow, u16 next_cpu)
2850{
2851 if (next_cpu != RPS_NO_CPU) {
2852#ifdef CONFIG_RFS_ACCEL
2853 struct netdev_rx_queue *rxqueue;
2854 struct rps_dev_flow_table *flow_table;
2855 struct rps_dev_flow *old_rflow;
2856 u32 flow_id;
2857 u16 rxq_index;
2858 int rc;
2859
2860 /* Should we steer this flow to a different hardware queue? */
2861 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2862 !(dev->features & NETIF_F_NTUPLE))
2863 goto out;
2864 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2865 if (rxq_index == skb_get_rx_queue(skb))
2866 goto out;
2867
2868 rxqueue = dev->_rx + rxq_index;
2869 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2870 if (!flow_table)
2871 goto out;
2872 flow_id = skb->rxhash & flow_table->mask;
2873 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2874 rxq_index, flow_id);
2875 if (rc < 0)
2876 goto out;
2877 old_rflow = rflow;
2878 rflow = &flow_table->flows[flow_id];
2879 rflow->filter = rc;
2880 if (old_rflow->filter == rflow->filter)
2881 old_rflow->filter = RPS_NO_FILTER;
2882 out:
2883#endif
2884 rflow->last_qtail =
2885 per_cpu(softnet_data, next_cpu).input_queue_head;
2886 }
2887
2888 rflow->cpu = next_cpu;
2889 return rflow;
2890}
2891
2892/*
2893 * get_rps_cpu is called from netif_receive_skb and returns the target
2894 * CPU from the RPS map of the receiving queue for a given skb.
2895 * rcu_read_lock must be held on entry.
2896 */
2897static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2898 struct rps_dev_flow **rflowp)
2899{
2900 struct netdev_rx_queue *rxqueue;
2901 struct rps_map *map;
2902 struct rps_dev_flow_table *flow_table;
2903 struct rps_sock_flow_table *sock_flow_table;
2904 int cpu = -1;
2905 u16 tcpu;
2906
2907 if (skb_rx_queue_recorded(skb)) {
2908 u16 index = skb_get_rx_queue(skb);
2909 if (unlikely(index >= dev->real_num_rx_queues)) {
2910 WARN_ONCE(dev->real_num_rx_queues > 1,
2911 "%s received packet on queue %u, but number "
2912 "of RX queues is %u\n",
2913 dev->name, index, dev->real_num_rx_queues);
2914 goto done;
2915 }
2916 rxqueue = dev->_rx + index;
2917 } else
2918 rxqueue = dev->_rx;
2919
2920 map = rcu_dereference(rxqueue->rps_map);
2921 if (map) {
2922 if (map->len == 1 &&
2923 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2924 tcpu = map->cpus[0];
2925 if (cpu_online(tcpu))
2926 cpu = tcpu;
2927 goto done;
2928 }
2929 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2930 goto done;
2931 }
2932
2933 skb_reset_network_header(skb);
2934 if (!skb_get_rxhash(skb))
2935 goto done;
2936
2937 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2938 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2939 if (flow_table && sock_flow_table) {
2940 u16 next_cpu;
2941 struct rps_dev_flow *rflow;
2942
2943 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2944 tcpu = rflow->cpu;
2945
2946 next_cpu = sock_flow_table->ents[skb->rxhash &
2947 sock_flow_table->mask];
2948
2949 /*
2950 * If the desired CPU (where last recvmsg was done) is
2951 * different from current CPU (one in the rx-queue flow
2952 * table entry), switch if one of the following holds:
2953 * - Current CPU is unset (equal to RPS_NO_CPU).
2954 * - Current CPU is offline.
2955 * - The current CPU's queue tail has advanced beyond the
2956 * last packet that was enqueued using this table entry.
2957 * This guarantees that all previous packets for the flow
2958 * have been dequeued, thus preserving in order delivery.
2959 */
2960 if (unlikely(tcpu != next_cpu) &&
2961 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2962 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2963 rflow->last_qtail)) >= 0)) {
2964 tcpu = next_cpu;
2965 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2966 }
2967
2968 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2969 *rflowp = rflow;
2970 cpu = tcpu;
2971 goto done;
2972 }
2973 }
2974
2975 if (map) {
2976 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2977
2978 if (cpu_online(tcpu)) {
2979 cpu = tcpu;
2980 goto done;
2981 }
2982 }
2983
2984done:
2985 return cpu;
2986}
2987
2988#ifdef CONFIG_RFS_ACCEL
2989
2990/**
2991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2992 * @dev: Device on which the filter was set
2993 * @rxq_index: RX queue index
2994 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2995 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2996 *
2997 * Drivers that implement ndo_rx_flow_steer() should periodically call
2998 * this function for each installed filter and remove the filters for
2999 * which it returns %true.
3000 */
3001bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3002 u32 flow_id, u16 filter_id)
3003{
3004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3005 struct rps_dev_flow_table *flow_table;
3006 struct rps_dev_flow *rflow;
3007 bool expire = true;
3008 int cpu;
3009
3010 rcu_read_lock();
3011 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3012 if (flow_table && flow_id <= flow_table->mask) {
3013 rflow = &flow_table->flows[flow_id];
3014 cpu = ACCESS_ONCE(rflow->cpu);
3015 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3016 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3017 rflow->last_qtail) <
3018 (int)(10 * flow_table->mask)))
3019 expire = false;
3020 }
3021 rcu_read_unlock();
3022 return expire;
3023}
3024EXPORT_SYMBOL(rps_may_expire_flow);
3025
3026#endif /* CONFIG_RFS_ACCEL */
3027
3028/* Called from hardirq (IPI) context */
3029static void rps_trigger_softirq(void *data)
3030{
3031 struct softnet_data *sd = data;
3032
3033 ____napi_schedule(sd, &sd->backlog);
3034 sd->received_rps++;
3035}
3036
3037#endif /* CONFIG_RPS */
3038
3039/*
3040 * Check if this softnet_data structure is another cpu one
3041 * If yes, queue it to our IPI list and return 1
3042 * If no, return 0
3043 */
3044static int rps_ipi_queued(struct softnet_data *sd)
3045{
3046#ifdef CONFIG_RPS
3047 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3048
3049 if (sd != mysd) {
3050 sd->rps_ipi_next = mysd->rps_ipi_list;
3051 mysd->rps_ipi_list = sd;
3052
3053 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3054 return 1;
3055 }
3056#endif /* CONFIG_RPS */
3057 return 0;
3058}
3059
3060/*
3061 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3062 * queue (may be a remote CPU queue).
3063 */
3064static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3065 unsigned int *qtail)
3066{
3067 struct softnet_data *sd;
3068 unsigned long flags;
3069
3070 sd = &per_cpu(softnet_data, cpu);
3071
3072 local_irq_save(flags);
3073
3074 rps_lock(sd);
3075 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3076 if (skb_queue_len(&sd->input_pkt_queue)) {
3077enqueue:
3078 __skb_queue_tail(&sd->input_pkt_queue, skb);
3079 input_queue_tail_incr_save(sd, qtail);
3080 rps_unlock(sd);
3081 local_irq_restore(flags);
3082 return NET_RX_SUCCESS;
3083 }
3084
3085 /* Schedule NAPI for backlog device
3086 * We can use non atomic operation since we own the queue lock
3087 */
3088 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3089 if (!rps_ipi_queued(sd))
3090 ____napi_schedule(sd, &sd->backlog);
3091 }
3092 goto enqueue;
3093 }
3094
3095 sd->dropped++;
3096 rps_unlock(sd);
3097
3098 local_irq_restore(flags);
3099
3100 atomic_long_inc(&skb->dev->rx_dropped);
3101 kfree_skb(skb);
3102 return NET_RX_DROP;
3103}
3104
3105/**
3106 * netif_rx - post buffer to the network code
3107 * @skb: buffer to post
3108 *
3109 * This function receives a packet from a device driver and queues it for
3110 * the upper (protocol) levels to process. It always succeeds. The buffer
3111 * may be dropped during processing for congestion control or by the
3112 * protocol layers.
3113 *
3114 * return values:
3115 * NET_RX_SUCCESS (no congestion)
3116 * NET_RX_DROP (packet was dropped)
3117 *
3118 */
3119
3120int netif_rx(struct sk_buff *skb)
3121{
3122 int ret;
3123
3124 /* if netpoll wants it, pretend we never saw it */
3125 if (netpoll_rx(skb))
3126 return NET_RX_DROP;
3127
3128 net_timestamp_check(netdev_tstamp_prequeue, skb);
3129
3130 trace_netif_rx(skb);
3131#ifdef CONFIG_RPS
3132 if (static_key_false(&rps_needed)) {
3133 struct rps_dev_flow voidflow, *rflow = &voidflow;
3134 int cpu;
3135
3136 preempt_disable();
3137 rcu_read_lock();
3138
3139 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3140 if (cpu < 0)
3141 cpu = smp_processor_id();
3142
3143 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3144
3145 rcu_read_unlock();
3146 preempt_enable();
3147 } else
3148#endif
3149 {
3150 unsigned int qtail;
3151 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3152 put_cpu();
3153 }
3154 return ret;
3155}
3156EXPORT_SYMBOL(netif_rx);
3157
3158int netif_rx_ni(struct sk_buff *skb)
3159{
3160 int err;
3161
3162 preempt_disable();
3163 err = netif_rx(skb);
3164 if (local_softirq_pending())
3165 do_softirq();
3166 preempt_enable();
3167
3168 return err;
3169}
3170EXPORT_SYMBOL(netif_rx_ni);
3171
3172static void net_tx_action(struct softirq_action *h)
3173{
3174 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3175
3176 if (sd->completion_queue) {
3177 struct sk_buff *clist;
3178
3179 local_irq_disable();
3180 clist = sd->completion_queue;
3181 sd->completion_queue = NULL;
3182 local_irq_enable();
3183
3184 while (clist) {
3185 struct sk_buff *skb = clist;
3186 clist = clist->next;
3187
3188 WARN_ON(atomic_read(&skb->users));
3189 trace_kfree_skb(skb, net_tx_action);
3190 __kfree_skb(skb);
3191 }
3192 }
3193
3194 if (sd->output_queue) {
3195 struct Qdisc *head;
3196
3197 local_irq_disable();
3198 head = sd->output_queue;
3199 sd->output_queue = NULL;
3200 sd->output_queue_tailp = &sd->output_queue;
3201 local_irq_enable();
3202
3203 while (head) {
3204 struct Qdisc *q = head;
3205 spinlock_t *root_lock;
3206
3207 head = head->next_sched;
3208
3209 root_lock = qdisc_lock(q);
3210 if (spin_trylock(root_lock)) {
3211 smp_mb__before_clear_bit();
3212 clear_bit(__QDISC_STATE_SCHED,
3213 &q->state);
3214 qdisc_run(q);
3215 spin_unlock(root_lock);
3216 } else {
3217 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3218 &q->state)) {
3219 __netif_reschedule(q);
3220 } else {
3221 smp_mb__before_clear_bit();
3222 clear_bit(__QDISC_STATE_SCHED,
3223 &q->state);
3224 }
3225 }
3226 }
3227 }
3228}
3229
3230#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3231 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3232/* This hook is defined here for ATM LANE */
3233int (*br_fdb_test_addr_hook)(struct net_device *dev,
3234 unsigned char *addr) __read_mostly;
3235EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3236#endif
3237
3238#ifdef CONFIG_NET_CLS_ACT
3239/* TODO: Maybe we should just force sch_ingress to be compiled in
3240 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3241 * a compare and 2 stores extra right now if we dont have it on
3242 * but have CONFIG_NET_CLS_ACT
3243 * NOTE: This doesn't stop any functionality; if you dont have
3244 * the ingress scheduler, you just can't add policies on ingress.
3245 *
3246 */
3247static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3248{
3249 struct net_device *dev = skb->dev;
3250 u32 ttl = G_TC_RTTL(skb->tc_verd);
3251 int result = TC_ACT_OK;
3252 struct Qdisc *q;
3253
3254 if (unlikely(MAX_RED_LOOP < ttl++)) {
3255 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3256 skb->skb_iif, dev->ifindex);
3257 return TC_ACT_SHOT;
3258 }
3259
3260 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3261 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3262
3263 q = rxq->qdisc;
3264 if (q != &noop_qdisc) {
3265 spin_lock(qdisc_lock(q));
3266 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3267 result = qdisc_enqueue_root(skb, q);
3268 spin_unlock(qdisc_lock(q));
3269 }
3270
3271 return result;
3272}
3273
3274static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3275 struct packet_type **pt_prev,
3276 int *ret, struct net_device *orig_dev)
3277{
3278 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3279
3280 if (!rxq || rxq->qdisc == &noop_qdisc)
3281 goto out;
3282
3283 if (*pt_prev) {
3284 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3285 *pt_prev = NULL;
3286 }
3287
3288 switch (ing_filter(skb, rxq)) {
3289 case TC_ACT_SHOT:
3290 case TC_ACT_STOLEN:
3291 kfree_skb(skb);
3292 return NULL;
3293 }
3294
3295out:
3296 skb->tc_verd = 0;
3297 return skb;
3298}
3299#endif
3300
3301/**
3302 * netdev_rx_handler_register - register receive handler
3303 * @dev: device to register a handler for
3304 * @rx_handler: receive handler to register
3305 * @rx_handler_data: data pointer that is used by rx handler
3306 *
3307 * Register a receive hander for a device. This handler will then be
3308 * called from __netif_receive_skb. A negative errno code is returned
3309 * on a failure.
3310 *
3311 * The caller must hold the rtnl_mutex.
3312 *
3313 * For a general description of rx_handler, see enum rx_handler_result.
3314 */
3315int netdev_rx_handler_register(struct net_device *dev,
3316 rx_handler_func_t *rx_handler,
3317 void *rx_handler_data)
3318{
3319 ASSERT_RTNL();
3320
3321 if (dev->rx_handler)
3322 return -EBUSY;
3323
3324 /* Note: rx_handler_data must be set before rx_handler */
3325 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3326 rcu_assign_pointer(dev->rx_handler, rx_handler);
3327
3328 return 0;
3329}
3330EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3331
3332/**
3333 * netdev_rx_handler_unregister - unregister receive handler
3334 * @dev: device to unregister a handler from
3335 *
3336 * Unregister a receive handler from a device.
3337 *
3338 * The caller must hold the rtnl_mutex.
3339 */
3340void netdev_rx_handler_unregister(struct net_device *dev)
3341{
3342
3343 ASSERT_RTNL();
3344 RCU_INIT_POINTER(dev->rx_handler, NULL);
3345 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3346 * section has a guarantee to see a non NULL rx_handler_data
3347 * as well.
3348 */
3349 synchronize_net();
3350 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3351}
3352EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3353
3354/*
3355 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3356 * the special handling of PFMEMALLOC skbs.
3357 */
3358static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3359{
3360 switch (skb->protocol) {
3361 case __constant_htons(ETH_P_ARP):
3362 case __constant_htons(ETH_P_IP):
3363 case __constant_htons(ETH_P_IPV6):
3364 case __constant_htons(ETH_P_8021Q):
3365 case __constant_htons(ETH_P_8021AD):
3366 return true;
3367 default:
3368 return false;
3369 }
3370}
3371
3372static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3373{
3374 struct packet_type *ptype, *pt_prev;
3375 rx_handler_func_t *rx_handler;
3376 struct net_device *orig_dev;
3377 struct net_device *null_or_dev;
3378 bool deliver_exact = false;
3379 int ret = NET_RX_DROP;
3380 __be16 type;
3381
3382 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3383
3384 trace_netif_receive_skb(skb);
3385
3386 /* if we've gotten here through NAPI, check netpoll */
3387 if (netpoll_receive_skb(skb))
3388 goto out;
3389
3390 orig_dev = skb->dev;
3391
3392 skb_reset_network_header(skb);
3393 if (!skb_transport_header_was_set(skb))
3394 skb_reset_transport_header(skb);
3395 skb_reset_mac_len(skb);
3396
3397 pt_prev = NULL;
3398
3399 rcu_read_lock();
3400
3401another_round:
3402 skb->skb_iif = skb->dev->ifindex;
3403
3404 __this_cpu_inc(softnet_data.processed);
3405
3406 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3407 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3408 skb = vlan_untag(skb);
3409 if (unlikely(!skb))
3410 goto unlock;
3411 }
3412
3413#ifdef CONFIG_NET_CLS_ACT
3414 if (skb->tc_verd & TC_NCLS) {
3415 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3416 goto ncls;
3417 }
3418#endif
3419
3420 if (pfmemalloc)
3421 goto skip_taps;
3422
3423 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3424 if (!ptype->dev || ptype->dev == skb->dev) {
3425 if (pt_prev)
3426 ret = deliver_skb(skb, pt_prev, orig_dev);
3427 pt_prev = ptype;
3428 }
3429 }
3430
3431skip_taps:
3432#ifdef CONFIG_NET_CLS_ACT
3433 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3434 if (!skb)
3435 goto unlock;
3436ncls:
3437#endif
3438
3439 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3440 goto drop;
3441
3442 if (vlan_tx_tag_present(skb)) {
3443 if (pt_prev) {
3444 ret = deliver_skb(skb, pt_prev, orig_dev);
3445 pt_prev = NULL;
3446 }
3447 if (vlan_do_receive(&skb))
3448 goto another_round;
3449 else if (unlikely(!skb))
3450 goto unlock;
3451 }
3452
3453 rx_handler = rcu_dereference(skb->dev->rx_handler);
3454 if (rx_handler) {
3455 if (pt_prev) {
3456 ret = deliver_skb(skb, pt_prev, orig_dev);
3457 pt_prev = NULL;
3458 }
3459 switch (rx_handler(&skb)) {
3460 case RX_HANDLER_CONSUMED:
3461 ret = NET_RX_SUCCESS;
3462 goto unlock;
3463 case RX_HANDLER_ANOTHER:
3464 goto another_round;
3465 case RX_HANDLER_EXACT:
3466 deliver_exact = true;
3467 case RX_HANDLER_PASS:
3468 break;
3469 default:
3470 BUG();
3471 }
3472 }
3473
3474 if (vlan_tx_nonzero_tag_present(skb))
3475 skb->pkt_type = PACKET_OTHERHOST;
3476
3477 /* deliver only exact match when indicated */
3478 null_or_dev = deliver_exact ? skb->dev : NULL;
3479
3480 type = skb->protocol;
3481 list_for_each_entry_rcu(ptype,
3482 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3483 if (ptype->type == type &&
3484 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3485 ptype->dev == orig_dev)) {
3486 if (pt_prev)
3487 ret = deliver_skb(skb, pt_prev, orig_dev);
3488 pt_prev = ptype;
3489 }
3490 }
3491
3492 if (pt_prev) {
3493 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3494 goto drop;
3495 else
3496 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3497 } else {
3498drop:
3499 atomic_long_inc(&skb->dev->rx_dropped);
3500 kfree_skb(skb);
3501 /* Jamal, now you will not able to escape explaining
3502 * me how you were going to use this. :-)
3503 */
3504 ret = NET_RX_DROP;
3505 }
3506
3507unlock:
3508 rcu_read_unlock();
3509out:
3510 return ret;
3511}
3512
3513static int __netif_receive_skb(struct sk_buff *skb)
3514{
3515 int ret;
3516
3517 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3518 unsigned long pflags = current->flags;
3519
3520 /*
3521 * PFMEMALLOC skbs are special, they should
3522 * - be delivered to SOCK_MEMALLOC sockets only
3523 * - stay away from userspace
3524 * - have bounded memory usage
3525 *
3526 * Use PF_MEMALLOC as this saves us from propagating the allocation
3527 * context down to all allocation sites.
3528 */
3529 current->flags |= PF_MEMALLOC;
3530 ret = __netif_receive_skb_core(skb, true);
3531 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3532 } else
3533 ret = __netif_receive_skb_core(skb, false);
3534
3535 return ret;
3536}
3537
3538/**
3539 * netif_receive_skb - process receive buffer from network
3540 * @skb: buffer to process
3541 *
3542 * netif_receive_skb() is the main receive data processing function.
3543 * It always succeeds. The buffer may be dropped during processing
3544 * for congestion control or by the protocol layers.
3545 *
3546 * This function may only be called from softirq context and interrupts
3547 * should be enabled.
3548 *
3549 * Return values (usually ignored):
3550 * NET_RX_SUCCESS: no congestion
3551 * NET_RX_DROP: packet was dropped
3552 */
3553int netif_receive_skb(struct sk_buff *skb)
3554{
3555 net_timestamp_check(netdev_tstamp_prequeue, skb);
3556
3557 if (skb_defer_rx_timestamp(skb))
3558 return NET_RX_SUCCESS;
3559
3560#ifdef CONFIG_RPS
3561 if (static_key_false(&rps_needed)) {
3562 struct rps_dev_flow voidflow, *rflow = &voidflow;
3563 int cpu, ret;
3564
3565 rcu_read_lock();
3566
3567 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3568
3569 if (cpu >= 0) {
3570 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3571 rcu_read_unlock();
3572 return ret;
3573 }
3574 rcu_read_unlock();
3575 }
3576#endif
3577 return __netif_receive_skb(skb);
3578}
3579EXPORT_SYMBOL(netif_receive_skb);
3580
3581/* Network device is going away, flush any packets still pending
3582 * Called with irqs disabled.
3583 */
3584static void flush_backlog(void *arg)
3585{
3586 struct net_device *dev = arg;
3587 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3588 struct sk_buff *skb, *tmp;
3589
3590 rps_lock(sd);
3591 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3592 if (skb->dev == dev) {
3593 __skb_unlink(skb, &sd->input_pkt_queue);
3594 kfree_skb(skb);
3595 input_queue_head_incr(sd);
3596 }
3597 }
3598 rps_unlock(sd);
3599
3600 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3601 if (skb->dev == dev) {
3602 __skb_unlink(skb, &sd->process_queue);
3603 kfree_skb(skb);
3604 input_queue_head_incr(sd);
3605 }
3606 }
3607}
3608
3609static int napi_gro_complete(struct sk_buff *skb)
3610{
3611 struct packet_offload *ptype;
3612 __be16 type = skb->protocol;
3613 struct list_head *head = &offload_base;
3614 int err = -ENOENT;
3615
3616 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3617
3618 if (NAPI_GRO_CB(skb)->count == 1) {
3619 skb_shinfo(skb)->gso_size = 0;
3620 goto out;
3621 }
3622
3623 rcu_read_lock();
3624 list_for_each_entry_rcu(ptype, head, list) {
3625 if (ptype->type != type || !ptype->callbacks.gro_complete)
3626 continue;
3627
3628 err = ptype->callbacks.gro_complete(skb);
3629 break;
3630 }
3631 rcu_read_unlock();
3632
3633 if (err) {
3634 WARN_ON(&ptype->list == head);
3635 kfree_skb(skb);
3636 return NET_RX_SUCCESS;
3637 }
3638
3639out:
3640 return netif_receive_skb(skb);
3641}
3642
3643/* napi->gro_list contains packets ordered by age.
3644 * youngest packets at the head of it.
3645 * Complete skbs in reverse order to reduce latencies.
3646 */
3647void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3648{
3649 struct sk_buff *skb, *prev = NULL;
3650
3651 /* scan list and build reverse chain */
3652 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3653 skb->prev = prev;
3654 prev = skb;
3655 }
3656
3657 for (skb = prev; skb; skb = prev) {
3658 skb->next = NULL;
3659
3660 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3661 return;
3662
3663 prev = skb->prev;
3664 napi_gro_complete(skb);
3665 napi->gro_count--;
3666 }
3667
3668 napi->gro_list = NULL;
3669}
3670EXPORT_SYMBOL(napi_gro_flush);
3671
3672static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3673{
3674 struct sk_buff *p;
3675 unsigned int maclen = skb->dev->hard_header_len;
3676
3677 for (p = napi->gro_list; p; p = p->next) {
3678 unsigned long diffs;
3679
3680 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3681 diffs |= p->vlan_tci ^ skb->vlan_tci;
3682 if (maclen == ETH_HLEN)
3683 diffs |= compare_ether_header(skb_mac_header(p),
3684 skb_gro_mac_header(skb));
3685 else if (!diffs)
3686 diffs = memcmp(skb_mac_header(p),
3687 skb_gro_mac_header(skb),
3688 maclen);
3689 NAPI_GRO_CB(p)->same_flow = !diffs;
3690 NAPI_GRO_CB(p)->flush = 0;
3691 }
3692}
3693
3694static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3695{
3696 struct sk_buff **pp = NULL;
3697 struct packet_offload *ptype;
3698 __be16 type = skb->protocol;
3699 struct list_head *head = &offload_base;
3700 int same_flow;
3701 enum gro_result ret;
3702
3703 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3704 goto normal;
3705
3706 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3707 goto normal;
3708
3709 gro_list_prepare(napi, skb);
3710
3711 rcu_read_lock();
3712 list_for_each_entry_rcu(ptype, head, list) {
3713 if (ptype->type != type || !ptype->callbacks.gro_receive)
3714 continue;
3715
3716 skb_set_network_header(skb, skb_gro_offset(skb));
3717 skb_reset_mac_len(skb);
3718 NAPI_GRO_CB(skb)->same_flow = 0;
3719 NAPI_GRO_CB(skb)->flush = 0;
3720 NAPI_GRO_CB(skb)->free = 0;
3721
3722 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3723 break;
3724 }
3725 rcu_read_unlock();
3726
3727 if (&ptype->list == head)
3728 goto normal;
3729
3730 same_flow = NAPI_GRO_CB(skb)->same_flow;
3731 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3732
3733 if (pp) {
3734 struct sk_buff *nskb = *pp;
3735
3736 *pp = nskb->next;
3737 nskb->next = NULL;
3738 napi_gro_complete(nskb);
3739 napi->gro_count--;
3740 }
3741
3742 if (same_flow)
3743 goto ok;
3744
3745 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3746 goto normal;
3747
3748 napi->gro_count++;
3749 NAPI_GRO_CB(skb)->count = 1;
3750 NAPI_GRO_CB(skb)->age = jiffies;
3751 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3752 skb->next = napi->gro_list;
3753 napi->gro_list = skb;
3754 ret = GRO_HELD;
3755
3756pull:
3757 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3758 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3759
3760 BUG_ON(skb->end - skb->tail < grow);
3761
3762 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3763
3764 skb->tail += grow;
3765 skb->data_len -= grow;
3766
3767 skb_shinfo(skb)->frags[0].page_offset += grow;
3768 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3769
3770 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3771 skb_frag_unref(skb, 0);
3772 memmove(skb_shinfo(skb)->frags,
3773 skb_shinfo(skb)->frags + 1,
3774 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3775 }
3776 }
3777
3778ok:
3779 return ret;
3780
3781normal:
3782 ret = GRO_NORMAL;
3783 goto pull;
3784}
3785
3786
3787static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3788{
3789 switch (ret) {
3790 case GRO_NORMAL:
3791 if (netif_receive_skb(skb))
3792 ret = GRO_DROP;
3793 break;
3794
3795 case GRO_DROP:
3796 kfree_skb(skb);
3797 break;
3798
3799 case GRO_MERGED_FREE:
3800 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3801 kmem_cache_free(skbuff_head_cache, skb);
3802 else
3803 __kfree_skb(skb);
3804 break;
3805
3806 case GRO_HELD:
3807 case GRO_MERGED:
3808 break;
3809 }
3810
3811 return ret;
3812}
3813
3814static void skb_gro_reset_offset(struct sk_buff *skb)
3815{
3816 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3817 const skb_frag_t *frag0 = &pinfo->frags[0];
3818
3819 NAPI_GRO_CB(skb)->data_offset = 0;
3820 NAPI_GRO_CB(skb)->frag0 = NULL;
3821 NAPI_GRO_CB(skb)->frag0_len = 0;
3822
3823 if (skb->mac_header == skb->tail &&
3824 pinfo->nr_frags &&
3825 !PageHighMem(skb_frag_page(frag0))) {
3826 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3827 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3828 }
3829}
3830
3831gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3832{
3833 skb_gro_reset_offset(skb);
3834
3835 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3836}
3837EXPORT_SYMBOL(napi_gro_receive);
3838
3839static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3840{
3841 __skb_pull(skb, skb_headlen(skb));
3842 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3843 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3844 skb->vlan_tci = 0;
3845 skb->dev = napi->dev;
3846 skb->skb_iif = 0;
3847
3848 napi->skb = skb;
3849}
3850
3851struct sk_buff *napi_get_frags(struct napi_struct *napi)
3852{
3853 struct sk_buff *skb = napi->skb;
3854
3855 if (!skb) {
3856 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3857 if (skb)
3858 napi->skb = skb;
3859 }
3860 return skb;
3861}
3862EXPORT_SYMBOL(napi_get_frags);
3863
3864static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3865 gro_result_t ret)
3866{
3867 switch (ret) {
3868 case GRO_NORMAL:
3869 case GRO_HELD:
3870 skb->protocol = eth_type_trans(skb, skb->dev);
3871
3872 if (ret == GRO_HELD)
3873 skb_gro_pull(skb, -ETH_HLEN);
3874 else if (netif_receive_skb(skb))
3875 ret = GRO_DROP;
3876 break;
3877
3878 case GRO_DROP:
3879 case GRO_MERGED_FREE:
3880 napi_reuse_skb(napi, skb);
3881 break;
3882
3883 case GRO_MERGED:
3884 break;
3885 }
3886
3887 return ret;
3888}
3889
3890static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3891{
3892 struct sk_buff *skb = napi->skb;
3893 struct ethhdr *eth;
3894 unsigned int hlen;
3895 unsigned int off;
3896
3897 napi->skb = NULL;
3898
3899 skb_reset_mac_header(skb);
3900 skb_gro_reset_offset(skb);
3901
3902 off = skb_gro_offset(skb);
3903 hlen = off + sizeof(*eth);
3904 eth = skb_gro_header_fast(skb, off);
3905 if (skb_gro_header_hard(skb, hlen)) {
3906 eth = skb_gro_header_slow(skb, hlen, off);
3907 if (unlikely(!eth)) {
3908 napi_reuse_skb(napi, skb);
3909 skb = NULL;
3910 goto out;
3911 }
3912 }
3913
3914 skb_gro_pull(skb, sizeof(*eth));
3915
3916 /*
3917 * This works because the only protocols we care about don't require
3918 * special handling. We'll fix it up properly at the end.
3919 */
3920 skb->protocol = eth->h_proto;
3921
3922out:
3923 return skb;
3924}
3925
3926gro_result_t napi_gro_frags(struct napi_struct *napi)
3927{
3928 struct sk_buff *skb = napi_frags_skb(napi);
3929
3930 if (!skb)
3931 return GRO_DROP;
3932
3933 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3934}
3935EXPORT_SYMBOL(napi_gro_frags);
3936
3937/*
3938 * net_rps_action sends any pending IPI's for rps.
3939 * Note: called with local irq disabled, but exits with local irq enabled.
3940 */
3941static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3942{
3943#ifdef CONFIG_RPS
3944 struct softnet_data *remsd = sd->rps_ipi_list;
3945
3946 if (remsd) {
3947 sd->rps_ipi_list = NULL;
3948
3949 local_irq_enable();
3950
3951 /* Send pending IPI's to kick RPS processing on remote cpus. */
3952 while (remsd) {
3953 struct softnet_data *next = remsd->rps_ipi_next;
3954
3955 if (cpu_online(remsd->cpu))
3956 __smp_call_function_single(remsd->cpu,
3957 &remsd->csd, 0);
3958 remsd = next;
3959 }
3960 } else
3961#endif
3962 local_irq_enable();
3963}
3964
3965static int process_backlog(struct napi_struct *napi, int quota)
3966{
3967 int work = 0;
3968 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3969
3970#ifdef CONFIG_RPS
3971 /* Check if we have pending ipi, its better to send them now,
3972 * not waiting net_rx_action() end.
3973 */
3974 if (sd->rps_ipi_list) {
3975 local_irq_disable();
3976 net_rps_action_and_irq_enable(sd);
3977 }
3978#endif
3979 napi->weight = weight_p;
3980 local_irq_disable();
3981 while (work < quota) {
3982 struct sk_buff *skb;
3983 unsigned int qlen;
3984
3985 while ((skb = __skb_dequeue(&sd->process_queue))) {
3986 local_irq_enable();
3987 __netif_receive_skb(skb);
3988 local_irq_disable();
3989 input_queue_head_incr(sd);
3990 if (++work >= quota) {
3991 local_irq_enable();
3992 return work;
3993 }
3994 }
3995
3996 rps_lock(sd);
3997 qlen = skb_queue_len(&sd->input_pkt_queue);
3998 if (qlen)
3999 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4000 &sd->process_queue);
4001
4002 if (qlen < quota - work) {
4003 /*
4004 * Inline a custom version of __napi_complete().
4005 * only current cpu owns and manipulates this napi,
4006 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4007 * we can use a plain write instead of clear_bit(),
4008 * and we dont need an smp_mb() memory barrier.
4009 */
4010 list_del(&napi->poll_list);
4011 napi->state = 0;
4012
4013 quota = work + qlen;
4014 }
4015 rps_unlock(sd);
4016 }
4017 local_irq_enable();
4018
4019 return work;
4020}
4021
4022/**
4023 * __napi_schedule - schedule for receive
4024 * @n: entry to schedule
4025 *
4026 * The entry's receive function will be scheduled to run
4027 */
4028void __napi_schedule(struct napi_struct *n)
4029{
4030 unsigned long flags;
4031
4032 local_irq_save(flags);
4033 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4034 local_irq_restore(flags);
4035}
4036EXPORT_SYMBOL(__napi_schedule);
4037
4038void __napi_complete(struct napi_struct *n)
4039{
4040 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4041 BUG_ON(n->gro_list);
4042
4043 list_del(&n->poll_list);
4044 smp_mb__before_clear_bit();
4045 clear_bit(NAPI_STATE_SCHED, &n->state);
4046}
4047EXPORT_SYMBOL(__napi_complete);
4048
4049void napi_complete(struct napi_struct *n)
4050{
4051 unsigned long flags;
4052
4053 /*
4054 * don't let napi dequeue from the cpu poll list
4055 * just in case its running on a different cpu
4056 */
4057 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4058 return;
4059
4060 napi_gro_flush(n, false);
4061 local_irq_save(flags);
4062 __napi_complete(n);
4063 local_irq_restore(flags);
4064}
4065EXPORT_SYMBOL(napi_complete);
4066
4067void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4068 int (*poll)(struct napi_struct *, int), int weight)
4069{
4070 INIT_LIST_HEAD(&napi->poll_list);
4071 napi->gro_count = 0;
4072 napi->gro_list = NULL;
4073 napi->skb = NULL;
4074 napi->poll = poll;
4075 if (weight > NAPI_POLL_WEIGHT)
4076 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4077 weight, dev->name);
4078 napi->weight = weight;
4079 list_add(&napi->dev_list, &dev->napi_list);
4080 napi->dev = dev;
4081#ifdef CONFIG_NETPOLL
4082 spin_lock_init(&napi->poll_lock);
4083 napi->poll_owner = -1;
4084#endif
4085 set_bit(NAPI_STATE_SCHED, &napi->state);
4086}
4087EXPORT_SYMBOL(netif_napi_add);
4088
4089void netif_napi_del(struct napi_struct *napi)
4090{
4091 struct sk_buff *skb, *next;
4092
4093 list_del_init(&napi->dev_list);
4094 napi_free_frags(napi);
4095
4096 for (skb = napi->gro_list; skb; skb = next) {
4097 next = skb->next;
4098 skb->next = NULL;
4099 kfree_skb(skb);
4100 }
4101
4102 napi->gro_list = NULL;
4103 napi->gro_count = 0;
4104}
4105EXPORT_SYMBOL(netif_napi_del);
4106
4107static void net_rx_action(struct softirq_action *h)
4108{
4109 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4110 unsigned long time_limit = jiffies + 2;
4111 int budget = netdev_budget;
4112 void *have;
4113
4114 local_irq_disable();
4115
4116 while (!list_empty(&sd->poll_list)) {
4117 struct napi_struct *n;
4118 int work, weight;
4119
4120 /* If softirq window is exhuasted then punt.
4121 * Allow this to run for 2 jiffies since which will allow
4122 * an average latency of 1.5/HZ.
4123 */
4124 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4125 goto softnet_break;
4126
4127 local_irq_enable();
4128
4129 /* Even though interrupts have been re-enabled, this
4130 * access is safe because interrupts can only add new
4131 * entries to the tail of this list, and only ->poll()
4132 * calls can remove this head entry from the list.
4133 */
4134 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4135
4136 have = netpoll_poll_lock(n);
4137
4138 weight = n->weight;
4139
4140 /* This NAPI_STATE_SCHED test is for avoiding a race
4141 * with netpoll's poll_napi(). Only the entity which
4142 * obtains the lock and sees NAPI_STATE_SCHED set will
4143 * actually make the ->poll() call. Therefore we avoid
4144 * accidentally calling ->poll() when NAPI is not scheduled.
4145 */
4146 work = 0;
4147 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4148 work = n->poll(n, weight);
4149 trace_napi_poll(n);
4150 }
4151
4152 WARN_ON_ONCE(work > weight);
4153
4154 budget -= work;
4155
4156 local_irq_disable();
4157
4158 /* Drivers must not modify the NAPI state if they
4159 * consume the entire weight. In such cases this code
4160 * still "owns" the NAPI instance and therefore can
4161 * move the instance around on the list at-will.
4162 */
4163 if (unlikely(work == weight)) {
4164 if (unlikely(napi_disable_pending(n))) {
4165 local_irq_enable();
4166 napi_complete(n);
4167 local_irq_disable();
4168 } else {
4169 if (n->gro_list) {
4170 /* flush too old packets
4171 * If HZ < 1000, flush all packets.
4172 */
4173 local_irq_enable();
4174 napi_gro_flush(n, HZ >= 1000);
4175 local_irq_disable();
4176 }
4177 list_move_tail(&n->poll_list, &sd->poll_list);
4178 }
4179 }
4180
4181 netpoll_poll_unlock(have);
4182 }
4183out:
4184 net_rps_action_and_irq_enable(sd);
4185
4186#ifdef CONFIG_NET_DMA
4187 /*
4188 * There may not be any more sk_buffs coming right now, so push
4189 * any pending DMA copies to hardware
4190 */
4191 dma_issue_pending_all();
4192#endif
4193
4194 return;
4195
4196softnet_break:
4197 sd->time_squeeze++;
4198 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4199 goto out;
4200}
4201
4202struct netdev_upper {
4203 struct net_device *dev;
4204 bool master;
4205 struct list_head list;
4206 struct rcu_head rcu;
4207 struct list_head search_list;
4208};
4209
4210static void __append_search_uppers(struct list_head *search_list,
4211 struct net_device *dev)
4212{
4213 struct netdev_upper *upper;
4214
4215 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4216 /* check if this upper is not already in search list */
4217 if (list_empty(&upper->search_list))
4218 list_add_tail(&upper->search_list, search_list);
4219 }
4220}
4221
4222static bool __netdev_search_upper_dev(struct net_device *dev,
4223 struct net_device *upper_dev)
4224{
4225 LIST_HEAD(search_list);
4226 struct netdev_upper *upper;
4227 struct netdev_upper *tmp;
4228 bool ret = false;
4229
4230 __append_search_uppers(&search_list, dev);
4231 list_for_each_entry(upper, &search_list, search_list) {
4232 if (upper->dev == upper_dev) {
4233 ret = true;
4234 break;
4235 }
4236 __append_search_uppers(&search_list, upper->dev);
4237 }
4238 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4239 INIT_LIST_HEAD(&upper->search_list);
4240 return ret;
4241}
4242
4243static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4244 struct net_device *upper_dev)
4245{
4246 struct netdev_upper *upper;
4247
4248 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4249 if (upper->dev == upper_dev)
4250 return upper;
4251 }
4252 return NULL;
4253}
4254
4255/**
4256 * netdev_has_upper_dev - Check if device is linked to an upper device
4257 * @dev: device
4258 * @upper_dev: upper device to check
4259 *
4260 * Find out if a device is linked to specified upper device and return true
4261 * in case it is. Note that this checks only immediate upper device,
4262 * not through a complete stack of devices. The caller must hold the RTNL lock.
4263 */
4264bool netdev_has_upper_dev(struct net_device *dev,
4265 struct net_device *upper_dev)
4266{
4267 ASSERT_RTNL();
4268
4269 return __netdev_find_upper(dev, upper_dev);
4270}
4271EXPORT_SYMBOL(netdev_has_upper_dev);
4272
4273/**
4274 * netdev_has_any_upper_dev - Check if device is linked to some device
4275 * @dev: device
4276 *
4277 * Find out if a device is linked to an upper device and return true in case
4278 * it is. The caller must hold the RTNL lock.
4279 */
4280bool netdev_has_any_upper_dev(struct net_device *dev)
4281{
4282 ASSERT_RTNL();
4283
4284 return !list_empty(&dev->upper_dev_list);
4285}
4286EXPORT_SYMBOL(netdev_has_any_upper_dev);
4287
4288/**
4289 * netdev_master_upper_dev_get - Get master upper device
4290 * @dev: device
4291 *
4292 * Find a master upper device and return pointer to it or NULL in case
4293 * it's not there. The caller must hold the RTNL lock.
4294 */
4295struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4296{
4297 struct netdev_upper *upper;
4298
4299 ASSERT_RTNL();
4300
4301 if (list_empty(&dev->upper_dev_list))
4302 return NULL;
4303
4304 upper = list_first_entry(&dev->upper_dev_list,
4305 struct netdev_upper, list);
4306 if (likely(upper->master))
4307 return upper->dev;
4308 return NULL;
4309}
4310EXPORT_SYMBOL(netdev_master_upper_dev_get);
4311
4312/**
4313 * netdev_master_upper_dev_get_rcu - Get master upper device
4314 * @dev: device
4315 *
4316 * Find a master upper device and return pointer to it or NULL in case
4317 * it's not there. The caller must hold the RCU read lock.
4318 */
4319struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4320{
4321 struct netdev_upper *upper;
4322
4323 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4324 struct netdev_upper, list);
4325 if (upper && likely(upper->master))
4326 return upper->dev;
4327 return NULL;
4328}
4329EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4330
4331static int __netdev_upper_dev_link(struct net_device *dev,
4332 struct net_device *upper_dev, bool master)
4333{
4334 struct netdev_upper *upper;
4335
4336 ASSERT_RTNL();
4337
4338 if (dev == upper_dev)
4339 return -EBUSY;
4340
4341 /* To prevent loops, check if dev is not upper device to upper_dev. */
4342 if (__netdev_search_upper_dev(upper_dev, dev))
4343 return -EBUSY;
4344
4345 if (__netdev_find_upper(dev, upper_dev))
4346 return -EEXIST;
4347
4348 if (master && netdev_master_upper_dev_get(dev))
4349 return -EBUSY;
4350
4351 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4352 if (!upper)
4353 return -ENOMEM;
4354
4355 upper->dev = upper_dev;
4356 upper->master = master;
4357 INIT_LIST_HEAD(&upper->search_list);
4358
4359 /* Ensure that master upper link is always the first item in list. */
4360 if (master)
4361 list_add_rcu(&upper->list, &dev->upper_dev_list);
4362 else
4363 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4364 dev_hold(upper_dev);
4365
4366 return 0;
4367}
4368
4369/**
4370 * netdev_upper_dev_link - Add a link to the upper device
4371 * @dev: device
4372 * @upper_dev: new upper device
4373 *
4374 * Adds a link to device which is upper to this one. The caller must hold
4375 * the RTNL lock. On a failure a negative errno code is returned.
4376 * On success the reference counts are adjusted and the function
4377 * returns zero.
4378 */
4379int netdev_upper_dev_link(struct net_device *dev,
4380 struct net_device *upper_dev)
4381{
4382 return __netdev_upper_dev_link(dev, upper_dev, false);
4383}
4384EXPORT_SYMBOL(netdev_upper_dev_link);
4385
4386/**
4387 * netdev_master_upper_dev_link - Add a master link to the upper device
4388 * @dev: device
4389 * @upper_dev: new upper device
4390 *
4391 * Adds a link to device which is upper to this one. In this case, only
4392 * one master upper device can be linked, although other non-master devices
4393 * might be linked as well. The caller must hold the RTNL lock.
4394 * On a failure a negative errno code is returned. On success the reference
4395 * counts are adjusted and the function returns zero.
4396 */
4397int netdev_master_upper_dev_link(struct net_device *dev,
4398 struct net_device *upper_dev)
4399{
4400 return __netdev_upper_dev_link(dev, upper_dev, true);
4401}
4402EXPORT_SYMBOL(netdev_master_upper_dev_link);
4403
4404/**
4405 * netdev_upper_dev_unlink - Removes a link to upper device
4406 * @dev: device
4407 * @upper_dev: new upper device
4408 *
4409 * Removes a link to device which is upper to this one. The caller must hold
4410 * the RTNL lock.
4411 */
4412void netdev_upper_dev_unlink(struct net_device *dev,
4413 struct net_device *upper_dev)
4414{
4415 struct netdev_upper *upper;
4416
4417 ASSERT_RTNL();
4418
4419 upper = __netdev_find_upper(dev, upper_dev);
4420 if (!upper)
4421 return;
4422 list_del_rcu(&upper->list);
4423 dev_put(upper_dev);
4424 kfree_rcu(upper, rcu);
4425}
4426EXPORT_SYMBOL(netdev_upper_dev_unlink);
4427
4428static void dev_change_rx_flags(struct net_device *dev, int flags)
4429{
4430 const struct net_device_ops *ops = dev->netdev_ops;
4431
4432 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4433 ops->ndo_change_rx_flags(dev, flags);
4434}
4435
4436static int __dev_set_promiscuity(struct net_device *dev, int inc)
4437{
4438 unsigned int old_flags = dev->flags;
4439 kuid_t uid;
4440 kgid_t gid;
4441
4442 ASSERT_RTNL();
4443
4444 dev->flags |= IFF_PROMISC;
4445 dev->promiscuity += inc;
4446 if (dev->promiscuity == 0) {
4447 /*
4448 * Avoid overflow.
4449 * If inc causes overflow, untouch promisc and return error.
4450 */
4451 if (inc < 0)
4452 dev->flags &= ~IFF_PROMISC;
4453 else {
4454 dev->promiscuity -= inc;
4455 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4456 dev->name);
4457 return -EOVERFLOW;
4458 }
4459 }
4460 if (dev->flags != old_flags) {
4461 pr_info("device %s %s promiscuous mode\n",
4462 dev->name,
4463 dev->flags & IFF_PROMISC ? "entered" : "left");
4464 if (audit_enabled) {
4465 current_uid_gid(&uid, &gid);
4466 audit_log(current->audit_context, GFP_ATOMIC,
4467 AUDIT_ANOM_PROMISCUOUS,
4468 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4469 dev->name, (dev->flags & IFF_PROMISC),
4470 (old_flags & IFF_PROMISC),
4471 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4472 from_kuid(&init_user_ns, uid),
4473 from_kgid(&init_user_ns, gid),
4474 audit_get_sessionid(current));
4475 }
4476
4477 dev_change_rx_flags(dev, IFF_PROMISC);
4478 }
4479 return 0;
4480}
4481
4482/**
4483 * dev_set_promiscuity - update promiscuity count on a device
4484 * @dev: device
4485 * @inc: modifier
4486 *
4487 * Add or remove promiscuity from a device. While the count in the device
4488 * remains above zero the interface remains promiscuous. Once it hits zero
4489 * the device reverts back to normal filtering operation. A negative inc
4490 * value is used to drop promiscuity on the device.
4491 * Return 0 if successful or a negative errno code on error.
4492 */
4493int dev_set_promiscuity(struct net_device *dev, int inc)
4494{
4495 unsigned int old_flags = dev->flags;
4496 int err;
4497
4498 err = __dev_set_promiscuity(dev, inc);
4499 if (err < 0)
4500 return err;
4501 if (dev->flags != old_flags)
4502 dev_set_rx_mode(dev);
4503 return err;
4504}
4505EXPORT_SYMBOL(dev_set_promiscuity);
4506
4507/**
4508 * dev_set_allmulti - update allmulti count on a device
4509 * @dev: device
4510 * @inc: modifier
4511 *
4512 * Add or remove reception of all multicast frames to a device. While the
4513 * count in the device remains above zero the interface remains listening
4514 * to all interfaces. Once it hits zero the device reverts back to normal
4515 * filtering operation. A negative @inc value is used to drop the counter
4516 * when releasing a resource needing all multicasts.
4517 * Return 0 if successful or a negative errno code on error.
4518 */
4519
4520int dev_set_allmulti(struct net_device *dev, int inc)
4521{
4522 unsigned int old_flags = dev->flags;
4523
4524 ASSERT_RTNL();
4525
4526 dev->flags |= IFF_ALLMULTI;
4527 dev->allmulti += inc;
4528 if (dev->allmulti == 0) {
4529 /*
4530 * Avoid overflow.
4531 * If inc causes overflow, untouch allmulti and return error.
4532 */
4533 if (inc < 0)
4534 dev->flags &= ~IFF_ALLMULTI;
4535 else {
4536 dev->allmulti -= inc;
4537 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4538 dev->name);
4539 return -EOVERFLOW;
4540 }
4541 }
4542 if (dev->flags ^ old_flags) {
4543 dev_change_rx_flags(dev, IFF_ALLMULTI);
4544 dev_set_rx_mode(dev);
4545 }
4546 return 0;
4547}
4548EXPORT_SYMBOL(dev_set_allmulti);
4549
4550/*
4551 * Upload unicast and multicast address lists to device and
4552 * configure RX filtering. When the device doesn't support unicast
4553 * filtering it is put in promiscuous mode while unicast addresses
4554 * are present.
4555 */
4556void __dev_set_rx_mode(struct net_device *dev)
4557{
4558 const struct net_device_ops *ops = dev->netdev_ops;
4559
4560 /* dev_open will call this function so the list will stay sane. */
4561 if (!(dev->flags&IFF_UP))
4562 return;
4563
4564 if (!netif_device_present(dev))
4565 return;
4566
4567 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4568 /* Unicast addresses changes may only happen under the rtnl,
4569 * therefore calling __dev_set_promiscuity here is safe.
4570 */
4571 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4572 __dev_set_promiscuity(dev, 1);
4573 dev->uc_promisc = true;
4574 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4575 __dev_set_promiscuity(dev, -1);
4576 dev->uc_promisc = false;
4577 }
4578 }
4579
4580 if (ops->ndo_set_rx_mode)
4581 ops->ndo_set_rx_mode(dev);
4582}
4583
4584void dev_set_rx_mode(struct net_device *dev)
4585{
4586 netif_addr_lock_bh(dev);
4587 __dev_set_rx_mode(dev);
4588 netif_addr_unlock_bh(dev);
4589}
4590
4591/**
4592 * dev_get_flags - get flags reported to userspace
4593 * @dev: device
4594 *
4595 * Get the combination of flag bits exported through APIs to userspace.
4596 */
4597unsigned int dev_get_flags(const struct net_device *dev)
4598{
4599 unsigned int flags;
4600
4601 flags = (dev->flags & ~(IFF_PROMISC |
4602 IFF_ALLMULTI |
4603 IFF_RUNNING |
4604 IFF_LOWER_UP |
4605 IFF_DORMANT)) |
4606 (dev->gflags & (IFF_PROMISC |
4607 IFF_ALLMULTI));
4608
4609 if (netif_running(dev)) {
4610 if (netif_oper_up(dev))
4611 flags |= IFF_RUNNING;
4612 if (netif_carrier_ok(dev))
4613 flags |= IFF_LOWER_UP;
4614 if (netif_dormant(dev))
4615 flags |= IFF_DORMANT;
4616 }
4617
4618 return flags;
4619}
4620EXPORT_SYMBOL(dev_get_flags);
4621
4622int __dev_change_flags(struct net_device *dev, unsigned int flags)
4623{
4624 unsigned int old_flags = dev->flags;
4625 int ret;
4626
4627 ASSERT_RTNL();
4628
4629 /*
4630 * Set the flags on our device.
4631 */
4632
4633 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4634 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4635 IFF_AUTOMEDIA)) |
4636 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4637 IFF_ALLMULTI));
4638
4639 /*
4640 * Load in the correct multicast list now the flags have changed.
4641 */
4642
4643 if ((old_flags ^ flags) & IFF_MULTICAST)
4644 dev_change_rx_flags(dev, IFF_MULTICAST);
4645
4646 dev_set_rx_mode(dev);
4647
4648 /*
4649 * Have we downed the interface. We handle IFF_UP ourselves
4650 * according to user attempts to set it, rather than blindly
4651 * setting it.
4652 */
4653
4654 ret = 0;
4655 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4656 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4657
4658 if (!ret)
4659 dev_set_rx_mode(dev);
4660 }
4661
4662 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4663 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4664
4665 dev->gflags ^= IFF_PROMISC;
4666 dev_set_promiscuity(dev, inc);
4667 }
4668
4669 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4670 is important. Some (broken) drivers set IFF_PROMISC, when
4671 IFF_ALLMULTI is requested not asking us and not reporting.
4672 */
4673 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4674 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4675
4676 dev->gflags ^= IFF_ALLMULTI;
4677 dev_set_allmulti(dev, inc);
4678 }
4679
4680 return ret;
4681}
4682
4683void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4684{
4685 unsigned int changes = dev->flags ^ old_flags;
4686
4687 if (changes & IFF_UP) {
4688 if (dev->flags & IFF_UP)
4689 call_netdevice_notifiers(NETDEV_UP, dev);
4690 else
4691 call_netdevice_notifiers(NETDEV_DOWN, dev);
4692 }
4693
4694 if (dev->flags & IFF_UP &&
4695 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4696 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4697}
4698
4699/**
4700 * dev_change_flags - change device settings
4701 * @dev: device
4702 * @flags: device state flags
4703 *
4704 * Change settings on device based state flags. The flags are
4705 * in the userspace exported format.
4706 */
4707int dev_change_flags(struct net_device *dev, unsigned int flags)
4708{
4709 int ret;
4710 unsigned int changes, old_flags = dev->flags;
4711
4712 ret = __dev_change_flags(dev, flags);
4713 if (ret < 0)
4714 return ret;
4715
4716 changes = old_flags ^ dev->flags;
4717 if (changes)
4718 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4719
4720 __dev_notify_flags(dev, old_flags);
4721 return ret;
4722}
4723EXPORT_SYMBOL(dev_change_flags);
4724
4725/**
4726 * dev_set_mtu - Change maximum transfer unit
4727 * @dev: device
4728 * @new_mtu: new transfer unit
4729 *
4730 * Change the maximum transfer size of the network device.
4731 */
4732int dev_set_mtu(struct net_device *dev, int new_mtu)
4733{
4734 const struct net_device_ops *ops = dev->netdev_ops;
4735 int err;
4736
4737 if (new_mtu == dev->mtu)
4738 return 0;
4739
4740 /* MTU must be positive. */
4741 if (new_mtu < 0)
4742 return -EINVAL;
4743
4744 if (!netif_device_present(dev))
4745 return -ENODEV;
4746
4747 err = 0;
4748 if (ops->ndo_change_mtu)
4749 err = ops->ndo_change_mtu(dev, new_mtu);
4750 else
4751 dev->mtu = new_mtu;
4752
4753 if (!err)
4754 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4755 return err;
4756}
4757EXPORT_SYMBOL(dev_set_mtu);
4758
4759/**
4760 * dev_set_group - Change group this device belongs to
4761 * @dev: device
4762 * @new_group: group this device should belong to
4763 */
4764void dev_set_group(struct net_device *dev, int new_group)
4765{
4766 dev->group = new_group;
4767}
4768EXPORT_SYMBOL(dev_set_group);
4769
4770/**
4771 * dev_set_mac_address - Change Media Access Control Address
4772 * @dev: device
4773 * @sa: new address
4774 *
4775 * Change the hardware (MAC) address of the device
4776 */
4777int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4778{
4779 const struct net_device_ops *ops = dev->netdev_ops;
4780 int err;
4781
4782 if (!ops->ndo_set_mac_address)
4783 return -EOPNOTSUPP;
4784 if (sa->sa_family != dev->type)
4785 return -EINVAL;
4786 if (!netif_device_present(dev))
4787 return -ENODEV;
4788 err = ops->ndo_set_mac_address(dev, sa);
4789 if (err)
4790 return err;
4791 dev->addr_assign_type = NET_ADDR_SET;
4792 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4793 add_device_randomness(dev->dev_addr, dev->addr_len);
4794 return 0;
4795}
4796EXPORT_SYMBOL(dev_set_mac_address);
4797
4798/**
4799 * dev_change_carrier - Change device carrier
4800 * @dev: device
4801 * @new_carrier: new value
4802 *
4803 * Change device carrier
4804 */
4805int dev_change_carrier(struct net_device *dev, bool new_carrier)
4806{
4807 const struct net_device_ops *ops = dev->netdev_ops;
4808
4809 if (!ops->ndo_change_carrier)
4810 return -EOPNOTSUPP;
4811 if (!netif_device_present(dev))
4812 return -ENODEV;
4813 return ops->ndo_change_carrier(dev, new_carrier);
4814}
4815EXPORT_SYMBOL(dev_change_carrier);
4816
4817/**
4818 * dev_new_index - allocate an ifindex
4819 * @net: the applicable net namespace
4820 *
4821 * Returns a suitable unique value for a new device interface
4822 * number. The caller must hold the rtnl semaphore or the
4823 * dev_base_lock to be sure it remains unique.
4824 */
4825static int dev_new_index(struct net *net)
4826{
4827 int ifindex = net->ifindex;
4828 for (;;) {
4829 if (++ifindex <= 0)
4830 ifindex = 1;
4831 if (!__dev_get_by_index(net, ifindex))
4832 return net->ifindex = ifindex;
4833 }
4834}
4835
4836/* Delayed registration/unregisteration */
4837static LIST_HEAD(net_todo_list);
4838
4839static void net_set_todo(struct net_device *dev)
4840{
4841 list_add_tail(&dev->todo_list, &net_todo_list);
4842}
4843
4844static void rollback_registered_many(struct list_head *head)
4845{
4846 struct net_device *dev, *tmp;
4847
4848 BUG_ON(dev_boot_phase);
4849 ASSERT_RTNL();
4850
4851 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4852 /* Some devices call without registering
4853 * for initialization unwind. Remove those
4854 * devices and proceed with the remaining.
4855 */
4856 if (dev->reg_state == NETREG_UNINITIALIZED) {
4857 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4858 dev->name, dev);
4859
4860 WARN_ON(1);
4861 list_del(&dev->unreg_list);
4862 continue;
4863 }
4864 dev->dismantle = true;
4865 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4866 }
4867
4868 /* If device is running, close it first. */
4869 dev_close_many(head);
4870
4871 list_for_each_entry(dev, head, unreg_list) {
4872 /* And unlink it from device chain. */
4873 unlist_netdevice(dev);
4874
4875 dev->reg_state = NETREG_UNREGISTERING;
4876 }
4877
4878 synchronize_net();
4879
4880 list_for_each_entry(dev, head, unreg_list) {
4881 /* Shutdown queueing discipline. */
4882 dev_shutdown(dev);
4883
4884
4885 /* Notify protocols, that we are about to destroy
4886 this device. They should clean all the things.
4887 */
4888 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4889
4890 if (!dev->rtnl_link_ops ||
4891 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4892 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4893
4894 /*
4895 * Flush the unicast and multicast chains
4896 */
4897 dev_uc_flush(dev);
4898 dev_mc_flush(dev);
4899
4900 if (dev->netdev_ops->ndo_uninit)
4901 dev->netdev_ops->ndo_uninit(dev);
4902
4903 /* Notifier chain MUST detach us all upper devices. */
4904 WARN_ON(netdev_has_any_upper_dev(dev));
4905
4906 /* Remove entries from kobject tree */
4907 netdev_unregister_kobject(dev);
4908#ifdef CONFIG_XPS
4909 /* Remove XPS queueing entries */
4910 netif_reset_xps_queues_gt(dev, 0);
4911#endif
4912 }
4913
4914 synchronize_net();
4915
4916 list_for_each_entry(dev, head, unreg_list)
4917 dev_put(dev);
4918}
4919
4920static void rollback_registered(struct net_device *dev)
4921{
4922 LIST_HEAD(single);
4923
4924 list_add(&dev->unreg_list, &single);
4925 rollback_registered_many(&single);
4926 list_del(&single);
4927}
4928
4929static netdev_features_t netdev_fix_features(struct net_device *dev,
4930 netdev_features_t features)
4931{
4932 /* Fix illegal checksum combinations */
4933 if ((features & NETIF_F_HW_CSUM) &&
4934 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4935 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4936 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4937 }
4938
4939 /* TSO requires that SG is present as well. */
4940 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4941 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4942 features &= ~NETIF_F_ALL_TSO;
4943 }
4944
4945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4946 !(features & NETIF_F_IP_CSUM)) {
4947 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4948 features &= ~NETIF_F_TSO;
4949 features &= ~NETIF_F_TSO_ECN;
4950 }
4951
4952 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4953 !(features & NETIF_F_IPV6_CSUM)) {
4954 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4955 features &= ~NETIF_F_TSO6;
4956 }
4957
4958 /* TSO ECN requires that TSO is present as well. */
4959 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4960 features &= ~NETIF_F_TSO_ECN;
4961
4962 /* Software GSO depends on SG. */
4963 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4964 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4965 features &= ~NETIF_F_GSO;
4966 }
4967
4968 /* UFO needs SG and checksumming */
4969 if (features & NETIF_F_UFO) {
4970 /* maybe split UFO into V4 and V6? */
4971 if (!((features & NETIF_F_GEN_CSUM) ||
4972 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4973 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4974 netdev_dbg(dev,
4975 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4976 features &= ~NETIF_F_UFO;
4977 }
4978
4979 if (!(features & NETIF_F_SG)) {
4980 netdev_dbg(dev,
4981 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4982 features &= ~NETIF_F_UFO;
4983 }
4984 }
4985
4986 return features;
4987}
4988
4989int __netdev_update_features(struct net_device *dev)
4990{
4991 netdev_features_t features;
4992 int err = 0;
4993
4994 ASSERT_RTNL();
4995
4996 features = netdev_get_wanted_features(dev);
4997
4998 if (dev->netdev_ops->ndo_fix_features)
4999 features = dev->netdev_ops->ndo_fix_features(dev, features);
5000
5001 /* driver might be less strict about feature dependencies */
5002 features = netdev_fix_features(dev, features);
5003
5004 if (dev->features == features)
5005 return 0;
5006
5007 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5008 &dev->features, &features);
5009
5010 if (dev->netdev_ops->ndo_set_features)
5011 err = dev->netdev_ops->ndo_set_features(dev, features);
5012
5013 if (unlikely(err < 0)) {
5014 netdev_err(dev,
5015 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5016 err, &features, &dev->features);
5017 return -1;
5018 }
5019
5020 if (!err)
5021 dev->features = features;
5022
5023 return 1;
5024}
5025
5026/**
5027 * netdev_update_features - recalculate device features
5028 * @dev: the device to check
5029 *
5030 * Recalculate dev->features set and send notifications if it
5031 * has changed. Should be called after driver or hardware dependent
5032 * conditions might have changed that influence the features.
5033 */
5034void netdev_update_features(struct net_device *dev)
5035{
5036 if (__netdev_update_features(dev))
5037 netdev_features_change(dev);
5038}
5039EXPORT_SYMBOL(netdev_update_features);
5040
5041/**
5042 * netdev_change_features - recalculate device features
5043 * @dev: the device to check
5044 *
5045 * Recalculate dev->features set and send notifications even
5046 * if they have not changed. Should be called instead of
5047 * netdev_update_features() if also dev->vlan_features might
5048 * have changed to allow the changes to be propagated to stacked
5049 * VLAN devices.
5050 */
5051void netdev_change_features(struct net_device *dev)
5052{
5053 __netdev_update_features(dev);
5054 netdev_features_change(dev);
5055}
5056EXPORT_SYMBOL(netdev_change_features);
5057
5058/**
5059 * netif_stacked_transfer_operstate - transfer operstate
5060 * @rootdev: the root or lower level device to transfer state from
5061 * @dev: the device to transfer operstate to
5062 *
5063 * Transfer operational state from root to device. This is normally
5064 * called when a stacking relationship exists between the root
5065 * device and the device(a leaf device).
5066 */
5067void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5068 struct net_device *dev)
5069{
5070 if (rootdev->operstate == IF_OPER_DORMANT)
5071 netif_dormant_on(dev);
5072 else
5073 netif_dormant_off(dev);
5074
5075 if (netif_carrier_ok(rootdev)) {
5076 if (!netif_carrier_ok(dev))
5077 netif_carrier_on(dev);
5078 } else {
5079 if (netif_carrier_ok(dev))
5080 netif_carrier_off(dev);
5081 }
5082}
5083EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5084
5085#ifdef CONFIG_RPS
5086static int netif_alloc_rx_queues(struct net_device *dev)
5087{
5088 unsigned int i, count = dev->num_rx_queues;
5089 struct netdev_rx_queue *rx;
5090
5091 BUG_ON(count < 1);
5092
5093 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5094 if (!rx)
5095 return -ENOMEM;
5096
5097 dev->_rx = rx;
5098
5099 for (i = 0; i < count; i++)
5100 rx[i].dev = dev;
5101 return 0;
5102}
5103#endif
5104
5105static void netdev_init_one_queue(struct net_device *dev,
5106 struct netdev_queue *queue, void *_unused)
5107{
5108 /* Initialize queue lock */
5109 spin_lock_init(&queue->_xmit_lock);
5110 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5111 queue->xmit_lock_owner = -1;
5112 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5113 queue->dev = dev;
5114#ifdef CONFIG_BQL
5115 dql_init(&queue->dql, HZ);
5116#endif
5117}
5118
5119static int netif_alloc_netdev_queues(struct net_device *dev)
5120{
5121 unsigned int count = dev->num_tx_queues;
5122 struct netdev_queue *tx;
5123
5124 BUG_ON(count < 1);
5125
5126 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5127 if (!tx)
5128 return -ENOMEM;
5129
5130 dev->_tx = tx;
5131
5132 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5133 spin_lock_init(&dev->tx_global_lock);
5134
5135 return 0;
5136}
5137
5138/**
5139 * register_netdevice - register a network device
5140 * @dev: device to register
5141 *
5142 * Take a completed network device structure and add it to the kernel
5143 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5144 * chain. 0 is returned on success. A negative errno code is returned
5145 * on a failure to set up the device, or if the name is a duplicate.
5146 *
5147 * Callers must hold the rtnl semaphore. You may want
5148 * register_netdev() instead of this.
5149 *
5150 * BUGS:
5151 * The locking appears insufficient to guarantee two parallel registers
5152 * will not get the same name.
5153 */
5154
5155int register_netdevice(struct net_device *dev)
5156{
5157 int ret;
5158 struct net *net = dev_net(dev);
5159
5160 BUG_ON(dev_boot_phase);
5161 ASSERT_RTNL();
5162
5163 might_sleep();
5164
5165 /* When net_device's are persistent, this will be fatal. */
5166 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5167 BUG_ON(!net);
5168
5169 spin_lock_init(&dev->addr_list_lock);
5170 netdev_set_addr_lockdep_class(dev);
5171
5172 dev->iflink = -1;
5173
5174 ret = dev_get_valid_name(net, dev, dev->name);
5175 if (ret < 0)
5176 goto out;
5177
5178 /* Init, if this function is available */
5179 if (dev->netdev_ops->ndo_init) {
5180 ret = dev->netdev_ops->ndo_init(dev);
5181 if (ret) {
5182 if (ret > 0)
5183 ret = -EIO;
5184 goto out;
5185 }
5186 }
5187
5188 if (((dev->hw_features | dev->features) &
5189 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5190 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5191 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5192 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5193 ret = -EINVAL;
5194 goto err_uninit;
5195 }
5196
5197 ret = -EBUSY;
5198 if (!dev->ifindex)
5199 dev->ifindex = dev_new_index(net);
5200 else if (__dev_get_by_index(net, dev->ifindex))
5201 goto err_uninit;
5202
5203 if (dev->iflink == -1)
5204 dev->iflink = dev->ifindex;
5205
5206 /* Transfer changeable features to wanted_features and enable
5207 * software offloads (GSO and GRO).
5208 */
5209 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5210 dev->features |= NETIF_F_SOFT_FEATURES;
5211 dev->wanted_features = dev->features & dev->hw_features;
5212
5213 /* Turn on no cache copy if HW is doing checksum */
5214 if (!(dev->flags & IFF_LOOPBACK)) {
5215 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5216 if (dev->features & NETIF_F_ALL_CSUM) {
5217 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5218 dev->features |= NETIF_F_NOCACHE_COPY;
5219 }
5220 }
5221
5222 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5223 */
5224 dev->vlan_features |= NETIF_F_HIGHDMA;
5225
5226 /* Make NETIF_F_SG inheritable to tunnel devices.
5227 */
5228 dev->hw_enc_features |= NETIF_F_SG;
5229
5230 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5231 ret = notifier_to_errno(ret);
5232 if (ret)
5233 goto err_uninit;
5234
5235 ret = netdev_register_kobject(dev);
5236 if (ret)
5237 goto err_uninit;
5238 dev->reg_state = NETREG_REGISTERED;
5239
5240 __netdev_update_features(dev);
5241
5242 /*
5243 * Default initial state at registry is that the
5244 * device is present.
5245 */
5246
5247 set_bit(__LINK_STATE_PRESENT, &dev->state);
5248
5249 linkwatch_init_dev(dev);
5250
5251 dev_init_scheduler(dev);
5252 dev_hold(dev);
5253 list_netdevice(dev);
5254 add_device_randomness(dev->dev_addr, dev->addr_len);
5255
5256 /* If the device has permanent device address, driver should
5257 * set dev_addr and also addr_assign_type should be set to
5258 * NET_ADDR_PERM (default value).
5259 */
5260 if (dev->addr_assign_type == NET_ADDR_PERM)
5261 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5262
5263 /* Notify protocols, that a new device appeared. */
5264 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5265 ret = notifier_to_errno(ret);
5266 if (ret) {
5267 rollback_registered(dev);
5268 dev->reg_state = NETREG_UNREGISTERED;
5269 }
5270 /*
5271 * Prevent userspace races by waiting until the network
5272 * device is fully setup before sending notifications.
5273 */
5274 if (!dev->rtnl_link_ops ||
5275 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5276 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5277
5278out:
5279 return ret;
5280
5281err_uninit:
5282 if (dev->netdev_ops->ndo_uninit)
5283 dev->netdev_ops->ndo_uninit(dev);
5284 goto out;
5285}
5286EXPORT_SYMBOL(register_netdevice);
5287
5288/**
5289 * init_dummy_netdev - init a dummy network device for NAPI
5290 * @dev: device to init
5291 *
5292 * This takes a network device structure and initialize the minimum
5293 * amount of fields so it can be used to schedule NAPI polls without
5294 * registering a full blown interface. This is to be used by drivers
5295 * that need to tie several hardware interfaces to a single NAPI
5296 * poll scheduler due to HW limitations.
5297 */
5298int init_dummy_netdev(struct net_device *dev)
5299{
5300 /* Clear everything. Note we don't initialize spinlocks
5301 * are they aren't supposed to be taken by any of the
5302 * NAPI code and this dummy netdev is supposed to be
5303 * only ever used for NAPI polls
5304 */
5305 memset(dev, 0, sizeof(struct net_device));
5306
5307 /* make sure we BUG if trying to hit standard
5308 * register/unregister code path
5309 */
5310 dev->reg_state = NETREG_DUMMY;
5311
5312 /* NAPI wants this */
5313 INIT_LIST_HEAD(&dev->napi_list);
5314
5315 /* a dummy interface is started by default */
5316 set_bit(__LINK_STATE_PRESENT, &dev->state);
5317 set_bit(__LINK_STATE_START, &dev->state);
5318
5319 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5320 * because users of this 'device' dont need to change
5321 * its refcount.
5322 */
5323
5324 return 0;
5325}
5326EXPORT_SYMBOL_GPL(init_dummy_netdev);
5327
5328
5329/**
5330 * register_netdev - register a network device
5331 * @dev: device to register
5332 *
5333 * Take a completed network device structure and add it to the kernel
5334 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5335 * chain. 0 is returned on success. A negative errno code is returned
5336 * on a failure to set up the device, or if the name is a duplicate.
5337 *
5338 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5339 * and expands the device name if you passed a format string to
5340 * alloc_netdev.
5341 */
5342int register_netdev(struct net_device *dev)
5343{
5344 int err;
5345
5346 rtnl_lock();
5347 err = register_netdevice(dev);
5348 rtnl_unlock();
5349 return err;
5350}
5351EXPORT_SYMBOL(register_netdev);
5352
5353int netdev_refcnt_read(const struct net_device *dev)
5354{
5355 int i, refcnt = 0;
5356
5357 for_each_possible_cpu(i)
5358 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5359 return refcnt;
5360}
5361EXPORT_SYMBOL(netdev_refcnt_read);
5362
5363/**
5364 * netdev_wait_allrefs - wait until all references are gone.
5365 * @dev: target net_device
5366 *
5367 * This is called when unregistering network devices.
5368 *
5369 * Any protocol or device that holds a reference should register
5370 * for netdevice notification, and cleanup and put back the
5371 * reference if they receive an UNREGISTER event.
5372 * We can get stuck here if buggy protocols don't correctly
5373 * call dev_put.
5374 */
5375static void netdev_wait_allrefs(struct net_device *dev)
5376{
5377 unsigned long rebroadcast_time, warning_time;
5378 int refcnt;
5379
5380 linkwatch_forget_dev(dev);
5381
5382 rebroadcast_time = warning_time = jiffies;
5383 refcnt = netdev_refcnt_read(dev);
5384
5385 while (refcnt != 0) {
5386 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5387 rtnl_lock();
5388
5389 /* Rebroadcast unregister notification */
5390 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5391
5392 __rtnl_unlock();
5393 rcu_barrier();
5394 rtnl_lock();
5395
5396 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5397 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5398 &dev->state)) {
5399 /* We must not have linkwatch events
5400 * pending on unregister. If this
5401 * happens, we simply run the queue
5402 * unscheduled, resulting in a noop
5403 * for this device.
5404 */
5405 linkwatch_run_queue();
5406 }
5407
5408 __rtnl_unlock();
5409
5410 rebroadcast_time = jiffies;
5411 }
5412
5413 msleep(250);
5414
5415 refcnt = netdev_refcnt_read(dev);
5416
5417 if (time_after(jiffies, warning_time + 10 * HZ)) {
5418 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5419 dev->name, refcnt);
5420 warning_time = jiffies;
5421 }
5422 }
5423}
5424
5425/* The sequence is:
5426 *
5427 * rtnl_lock();
5428 * ...
5429 * register_netdevice(x1);
5430 * register_netdevice(x2);
5431 * ...
5432 * unregister_netdevice(y1);
5433 * unregister_netdevice(y2);
5434 * ...
5435 * rtnl_unlock();
5436 * free_netdev(y1);
5437 * free_netdev(y2);
5438 *
5439 * We are invoked by rtnl_unlock().
5440 * This allows us to deal with problems:
5441 * 1) We can delete sysfs objects which invoke hotplug
5442 * without deadlocking with linkwatch via keventd.
5443 * 2) Since we run with the RTNL semaphore not held, we can sleep
5444 * safely in order to wait for the netdev refcnt to drop to zero.
5445 *
5446 * We must not return until all unregister events added during
5447 * the interval the lock was held have been completed.
5448 */
5449void netdev_run_todo(void)
5450{
5451 struct list_head list;
5452
5453 /* Snapshot list, allow later requests */
5454 list_replace_init(&net_todo_list, &list);
5455
5456 __rtnl_unlock();
5457
5458
5459 /* Wait for rcu callbacks to finish before next phase */
5460 if (!list_empty(&list))
5461 rcu_barrier();
5462
5463 while (!list_empty(&list)) {
5464 struct net_device *dev
5465 = list_first_entry(&list, struct net_device, todo_list);
5466 list_del(&dev->todo_list);
5467
5468 rtnl_lock();
5469 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5470 __rtnl_unlock();
5471
5472 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5473 pr_err("network todo '%s' but state %d\n",
5474 dev->name, dev->reg_state);
5475 dump_stack();
5476 continue;
5477 }
5478
5479 dev->reg_state = NETREG_UNREGISTERED;
5480
5481 on_each_cpu(flush_backlog, dev, 1);
5482
5483 netdev_wait_allrefs(dev);
5484
5485 /* paranoia */
5486 BUG_ON(netdev_refcnt_read(dev));
5487 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5488 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5489 WARN_ON(dev->dn_ptr);
5490
5491 if (dev->destructor)
5492 dev->destructor(dev);
5493
5494 /* Free network device */
5495 kobject_put(&dev->dev.kobj);
5496 }
5497}
5498
5499/* Convert net_device_stats to rtnl_link_stats64. They have the same
5500 * fields in the same order, with only the type differing.
5501 */
5502void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5503 const struct net_device_stats *netdev_stats)
5504{
5505#if BITS_PER_LONG == 64
5506 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5507 memcpy(stats64, netdev_stats, sizeof(*stats64));
5508#else
5509 size_t i, n = sizeof(*stats64) / sizeof(u64);
5510 const unsigned long *src = (const unsigned long *)netdev_stats;
5511 u64 *dst = (u64 *)stats64;
5512
5513 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5514 sizeof(*stats64) / sizeof(u64));
5515 for (i = 0; i < n; i++)
5516 dst[i] = src[i];
5517#endif
5518}
5519EXPORT_SYMBOL(netdev_stats_to_stats64);
5520
5521/**
5522 * dev_get_stats - get network device statistics
5523 * @dev: device to get statistics from
5524 * @storage: place to store stats
5525 *
5526 * Get network statistics from device. Return @storage.
5527 * The device driver may provide its own method by setting
5528 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5529 * otherwise the internal statistics structure is used.
5530 */
5531struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5532 struct rtnl_link_stats64 *storage)
5533{
5534 const struct net_device_ops *ops = dev->netdev_ops;
5535
5536 if (ops->ndo_get_stats64) {
5537 memset(storage, 0, sizeof(*storage));
5538 ops->ndo_get_stats64(dev, storage);
5539 } else if (ops->ndo_get_stats) {
5540 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5541 } else {
5542 netdev_stats_to_stats64(storage, &dev->stats);
5543 }
5544 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5545 return storage;
5546}
5547EXPORT_SYMBOL(dev_get_stats);
5548
5549struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5550{
5551 struct netdev_queue *queue = dev_ingress_queue(dev);
5552
5553#ifdef CONFIG_NET_CLS_ACT
5554 if (queue)
5555 return queue;
5556 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5557 if (!queue)
5558 return NULL;
5559 netdev_init_one_queue(dev, queue, NULL);
5560 queue->qdisc = &noop_qdisc;
5561 queue->qdisc_sleeping = &noop_qdisc;
5562 rcu_assign_pointer(dev->ingress_queue, queue);
5563#endif
5564 return queue;
5565}
5566
5567static const struct ethtool_ops default_ethtool_ops;
5568
5569void netdev_set_default_ethtool_ops(struct net_device *dev,
5570 const struct ethtool_ops *ops)
5571{
5572 if (dev->ethtool_ops == &default_ethtool_ops)
5573 dev->ethtool_ops = ops;
5574}
5575EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5576
5577/**
5578 * alloc_netdev_mqs - allocate network device
5579 * @sizeof_priv: size of private data to allocate space for
5580 * @name: device name format string
5581 * @setup: callback to initialize device
5582 * @txqs: the number of TX subqueues to allocate
5583 * @rxqs: the number of RX subqueues to allocate
5584 *
5585 * Allocates a struct net_device with private data area for driver use
5586 * and performs basic initialization. Also allocates subquue structs
5587 * for each queue on the device.
5588 */
5589struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5590 void (*setup)(struct net_device *),
5591 unsigned int txqs, unsigned int rxqs)
5592{
5593 struct net_device *dev;
5594 size_t alloc_size;
5595 struct net_device *p;
5596
5597 BUG_ON(strlen(name) >= sizeof(dev->name));
5598
5599 if (txqs < 1) {
5600 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5601 return NULL;
5602 }
5603
5604#ifdef CONFIG_RPS
5605 if (rxqs < 1) {
5606 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5607 return NULL;
5608 }
5609#endif
5610
5611 alloc_size = sizeof(struct net_device);
5612 if (sizeof_priv) {
5613 /* ensure 32-byte alignment of private area */
5614 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5615 alloc_size += sizeof_priv;
5616 }
5617 /* ensure 32-byte alignment of whole construct */
5618 alloc_size += NETDEV_ALIGN - 1;
5619
5620 p = kzalloc(alloc_size, GFP_KERNEL);
5621 if (!p)
5622 return NULL;
5623
5624 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5625 dev->padded = (char *)dev - (char *)p;
5626
5627 dev->pcpu_refcnt = alloc_percpu(int);
5628 if (!dev->pcpu_refcnt)
5629 goto free_p;
5630
5631 if (dev_addr_init(dev))
5632 goto free_pcpu;
5633
5634 dev_mc_init(dev);
5635 dev_uc_init(dev);
5636
5637 dev_net_set(dev, &init_net);
5638
5639 dev->gso_max_size = GSO_MAX_SIZE;
5640 dev->gso_max_segs = GSO_MAX_SEGS;
5641
5642 INIT_LIST_HEAD(&dev->napi_list);
5643 INIT_LIST_HEAD(&dev->unreg_list);
5644 INIT_LIST_HEAD(&dev->link_watch_list);
5645 INIT_LIST_HEAD(&dev->upper_dev_list);
5646 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5647 setup(dev);
5648
5649 dev->num_tx_queues = txqs;
5650 dev->real_num_tx_queues = txqs;
5651 if (netif_alloc_netdev_queues(dev))
5652 goto free_all;
5653
5654#ifdef CONFIG_RPS
5655 dev->num_rx_queues = rxqs;
5656 dev->real_num_rx_queues = rxqs;
5657 if (netif_alloc_rx_queues(dev))
5658 goto free_all;
5659#endif
5660
5661 strcpy(dev->name, name);
5662 dev->group = INIT_NETDEV_GROUP;
5663 if (!dev->ethtool_ops)
5664 dev->ethtool_ops = &default_ethtool_ops;
5665 return dev;
5666
5667free_all:
5668 free_netdev(dev);
5669 return NULL;
5670
5671free_pcpu:
5672 free_percpu(dev->pcpu_refcnt);
5673 kfree(dev->_tx);
5674#ifdef CONFIG_RPS
5675 kfree(dev->_rx);
5676#endif
5677
5678free_p:
5679 kfree(p);
5680 return NULL;
5681}
5682EXPORT_SYMBOL(alloc_netdev_mqs);
5683
5684/**
5685 * free_netdev - free network device
5686 * @dev: device
5687 *
5688 * This function does the last stage of destroying an allocated device
5689 * interface. The reference to the device object is released.
5690 * If this is the last reference then it will be freed.
5691 */
5692void free_netdev(struct net_device *dev)
5693{
5694 struct napi_struct *p, *n;
5695
5696 release_net(dev_net(dev));
5697
5698 kfree(dev->_tx);
5699#ifdef CONFIG_RPS
5700 kfree(dev->_rx);
5701#endif
5702
5703 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5704
5705 /* Flush device addresses */
5706 dev_addr_flush(dev);
5707
5708 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5709 netif_napi_del(p);
5710
5711 free_percpu(dev->pcpu_refcnt);
5712 dev->pcpu_refcnt = NULL;
5713
5714 /* Compatibility with error handling in drivers */
5715 if (dev->reg_state == NETREG_UNINITIALIZED) {
5716 kfree((char *)dev - dev->padded);
5717 return;
5718 }
5719
5720 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5721 dev->reg_state = NETREG_RELEASED;
5722
5723 /* will free via device release */
5724 put_device(&dev->dev);
5725}
5726EXPORT_SYMBOL(free_netdev);
5727
5728/**
5729 * synchronize_net - Synchronize with packet receive processing
5730 *
5731 * Wait for packets currently being received to be done.
5732 * Does not block later packets from starting.
5733 */
5734void synchronize_net(void)
5735{
5736 might_sleep();
5737 if (rtnl_is_locked())
5738 synchronize_rcu_expedited();
5739 else
5740 synchronize_rcu();
5741}
5742EXPORT_SYMBOL(synchronize_net);
5743
5744/**
5745 * unregister_netdevice_queue - remove device from the kernel
5746 * @dev: device
5747 * @head: list
5748 *
5749 * This function shuts down a device interface and removes it
5750 * from the kernel tables.
5751 * If head not NULL, device is queued to be unregistered later.
5752 *
5753 * Callers must hold the rtnl semaphore. You may want
5754 * unregister_netdev() instead of this.
5755 */
5756
5757void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5758{
5759 ASSERT_RTNL();
5760
5761 if (head) {
5762 list_move_tail(&dev->unreg_list, head);
5763 } else {
5764 rollback_registered(dev);
5765 /* Finish processing unregister after unlock */
5766 net_set_todo(dev);
5767 }
5768}
5769EXPORT_SYMBOL(unregister_netdevice_queue);
5770
5771/**
5772 * unregister_netdevice_many - unregister many devices
5773 * @head: list of devices
5774 */
5775void unregister_netdevice_many(struct list_head *head)
5776{
5777 struct net_device *dev;
5778
5779 if (!list_empty(head)) {
5780 rollback_registered_many(head);
5781 list_for_each_entry(dev, head, unreg_list)
5782 net_set_todo(dev);
5783 }
5784}
5785EXPORT_SYMBOL(unregister_netdevice_many);
5786
5787/**
5788 * unregister_netdev - remove device from the kernel
5789 * @dev: device
5790 *
5791 * This function shuts down a device interface and removes it
5792 * from the kernel tables.
5793 *
5794 * This is just a wrapper for unregister_netdevice that takes
5795 * the rtnl semaphore. In general you want to use this and not
5796 * unregister_netdevice.
5797 */
5798void unregister_netdev(struct net_device *dev)
5799{
5800 rtnl_lock();
5801 unregister_netdevice(dev);
5802 rtnl_unlock();
5803}
5804EXPORT_SYMBOL(unregister_netdev);
5805
5806/**
5807 * dev_change_net_namespace - move device to different nethost namespace
5808 * @dev: device
5809 * @net: network namespace
5810 * @pat: If not NULL name pattern to try if the current device name
5811 * is already taken in the destination network namespace.
5812 *
5813 * This function shuts down a device interface and moves it
5814 * to a new network namespace. On success 0 is returned, on
5815 * a failure a netagive errno code is returned.
5816 *
5817 * Callers must hold the rtnl semaphore.
5818 */
5819
5820int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5821{
5822 int err;
5823
5824 ASSERT_RTNL();
5825
5826 /* Don't allow namespace local devices to be moved. */
5827 err = -EINVAL;
5828 if (dev->features & NETIF_F_NETNS_LOCAL)
5829 goto out;
5830
5831 /* Ensure the device has been registrered */
5832 if (dev->reg_state != NETREG_REGISTERED)
5833 goto out;
5834
5835 /* Get out if there is nothing todo */
5836 err = 0;
5837 if (net_eq(dev_net(dev), net))
5838 goto out;
5839
5840 /* Pick the destination device name, and ensure
5841 * we can use it in the destination network namespace.
5842 */
5843 err = -EEXIST;
5844 if (__dev_get_by_name(net, dev->name)) {
5845 /* We get here if we can't use the current device name */
5846 if (!pat)
5847 goto out;
5848 if (dev_get_valid_name(net, dev, pat) < 0)
5849 goto out;
5850 }
5851
5852 /*
5853 * And now a mini version of register_netdevice unregister_netdevice.
5854 */
5855
5856 /* If device is running close it first. */
5857 dev_close(dev);
5858
5859 /* And unlink it from device chain */
5860 err = -ENODEV;
5861 unlist_netdevice(dev);
5862
5863 synchronize_net();
5864
5865 /* Shutdown queueing discipline. */
5866 dev_shutdown(dev);
5867
5868 /* Notify protocols, that we are about to destroy
5869 this device. They should clean all the things.
5870
5871 Note that dev->reg_state stays at NETREG_REGISTERED.
5872 This is wanted because this way 8021q and macvlan know
5873 the device is just moving and can keep their slaves up.
5874 */
5875 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5876 rcu_barrier();
5877 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5878 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5879
5880 /*
5881 * Flush the unicast and multicast chains
5882 */
5883 dev_uc_flush(dev);
5884 dev_mc_flush(dev);
5885
5886 /* Send a netdev-removed uevent to the old namespace */
5887 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5888
5889 /* Actually switch the network namespace */
5890 dev_net_set(dev, net);
5891
5892 /* If there is an ifindex conflict assign a new one */
5893 if (__dev_get_by_index(net, dev->ifindex)) {
5894 int iflink = (dev->iflink == dev->ifindex);
5895 dev->ifindex = dev_new_index(net);
5896 if (iflink)
5897 dev->iflink = dev->ifindex;
5898 }
5899
5900 /* Send a netdev-add uevent to the new namespace */
5901 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5902
5903 /* Fixup kobjects */
5904 err = device_rename(&dev->dev, dev->name);
5905 WARN_ON(err);
5906
5907 /* Add the device back in the hashes */
5908 list_netdevice(dev);
5909
5910 /* Notify protocols, that a new device appeared. */
5911 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5912
5913 /*
5914 * Prevent userspace races by waiting until the network
5915 * device is fully setup before sending notifications.
5916 */
5917 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5918
5919 synchronize_net();
5920 err = 0;
5921out:
5922 return err;
5923}
5924EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5925
5926static int dev_cpu_callback(struct notifier_block *nfb,
5927 unsigned long action,
5928 void *ocpu)
5929{
5930 struct sk_buff **list_skb;
5931 struct sk_buff *skb;
5932 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5933 struct softnet_data *sd, *oldsd;
5934
5935 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5936 return NOTIFY_OK;
5937
5938 local_irq_disable();
5939 cpu = smp_processor_id();
5940 sd = &per_cpu(softnet_data, cpu);
5941 oldsd = &per_cpu(softnet_data, oldcpu);
5942
5943 /* Find end of our completion_queue. */
5944 list_skb = &sd->completion_queue;
5945 while (*list_skb)
5946 list_skb = &(*list_skb)->next;
5947 /* Append completion queue from offline CPU. */
5948 *list_skb = oldsd->completion_queue;
5949 oldsd->completion_queue = NULL;
5950
5951 /* Append output queue from offline CPU. */
5952 if (oldsd->output_queue) {
5953 *sd->output_queue_tailp = oldsd->output_queue;
5954 sd->output_queue_tailp = oldsd->output_queue_tailp;
5955 oldsd->output_queue = NULL;
5956 oldsd->output_queue_tailp = &oldsd->output_queue;
5957 }
5958 /* Append NAPI poll list from offline CPU. */
5959 if (!list_empty(&oldsd->poll_list)) {
5960 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5961 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5962 }
5963
5964 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5965 local_irq_enable();
5966
5967 /* Process offline CPU's input_pkt_queue */
5968 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5969 netif_rx(skb);
5970 input_queue_head_incr(oldsd);
5971 }
5972 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5973 netif_rx(skb);
5974 input_queue_head_incr(oldsd);
5975 }
5976
5977 return NOTIFY_OK;
5978}
5979
5980
5981/**
5982 * netdev_increment_features - increment feature set by one
5983 * @all: current feature set
5984 * @one: new feature set
5985 * @mask: mask feature set
5986 *
5987 * Computes a new feature set after adding a device with feature set
5988 * @one to the master device with current feature set @all. Will not
5989 * enable anything that is off in @mask. Returns the new feature set.
5990 */
5991netdev_features_t netdev_increment_features(netdev_features_t all,
5992 netdev_features_t one, netdev_features_t mask)
5993{
5994 if (mask & NETIF_F_GEN_CSUM)
5995 mask |= NETIF_F_ALL_CSUM;
5996 mask |= NETIF_F_VLAN_CHALLENGED;
5997
5998 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5999 all &= one | ~NETIF_F_ALL_FOR_ALL;
6000
6001 /* If one device supports hw checksumming, set for all. */
6002 if (all & NETIF_F_GEN_CSUM)
6003 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6004
6005 return all;
6006}
6007EXPORT_SYMBOL(netdev_increment_features);
6008
6009static struct hlist_head *netdev_create_hash(void)
6010{
6011 int i;
6012 struct hlist_head *hash;
6013
6014 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6015 if (hash != NULL)
6016 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6017 INIT_HLIST_HEAD(&hash[i]);
6018
6019 return hash;
6020}
6021
6022/* Initialize per network namespace state */
6023static int __net_init netdev_init(struct net *net)
6024{
6025 if (net != &init_net)
6026 INIT_LIST_HEAD(&net->dev_base_head);
6027
6028 net->dev_name_head = netdev_create_hash();
6029 if (net->dev_name_head == NULL)
6030 goto err_name;
6031
6032 net->dev_index_head = netdev_create_hash();
6033 if (net->dev_index_head == NULL)
6034 goto err_idx;
6035
6036 return 0;
6037
6038err_idx:
6039 kfree(net->dev_name_head);
6040err_name:
6041 return -ENOMEM;
6042}
6043
6044/**
6045 * netdev_drivername - network driver for the device
6046 * @dev: network device
6047 *
6048 * Determine network driver for device.
6049 */
6050const char *netdev_drivername(const struct net_device *dev)
6051{
6052 const struct device_driver *driver;
6053 const struct device *parent;
6054 const char *empty = "";
6055
6056 parent = dev->dev.parent;
6057 if (!parent)
6058 return empty;
6059
6060 driver = parent->driver;
6061 if (driver && driver->name)
6062 return driver->name;
6063 return empty;
6064}
6065
6066static int __netdev_printk(const char *level, const struct net_device *dev,
6067 struct va_format *vaf)
6068{
6069 int r;
6070
6071 if (dev && dev->dev.parent) {
6072 r = dev_printk_emit(level[1] - '0',
6073 dev->dev.parent,
6074 "%s %s %s: %pV",
6075 dev_driver_string(dev->dev.parent),
6076 dev_name(dev->dev.parent),
6077 netdev_name(dev), vaf);
6078 } else if (dev) {
6079 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6080 } else {
6081 r = printk("%s(NULL net_device): %pV", level, vaf);
6082 }
6083
6084 return r;
6085}
6086
6087int netdev_printk(const char *level, const struct net_device *dev,
6088 const char *format, ...)
6089{
6090 struct va_format vaf;
6091 va_list args;
6092 int r;
6093
6094 va_start(args, format);
6095
6096 vaf.fmt = format;
6097 vaf.va = &args;
6098
6099 r = __netdev_printk(level, dev, &vaf);
6100
6101 va_end(args);
6102
6103 return r;
6104}
6105EXPORT_SYMBOL(netdev_printk);
6106
6107#define define_netdev_printk_level(func, level) \
6108int func(const struct net_device *dev, const char *fmt, ...) \
6109{ \
6110 int r; \
6111 struct va_format vaf; \
6112 va_list args; \
6113 \
6114 va_start(args, fmt); \
6115 \
6116 vaf.fmt = fmt; \
6117 vaf.va = &args; \
6118 \
6119 r = __netdev_printk(level, dev, &vaf); \
6120 \
6121 va_end(args); \
6122 \
6123 return r; \
6124} \
6125EXPORT_SYMBOL(func);
6126
6127define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6128define_netdev_printk_level(netdev_alert, KERN_ALERT);
6129define_netdev_printk_level(netdev_crit, KERN_CRIT);
6130define_netdev_printk_level(netdev_err, KERN_ERR);
6131define_netdev_printk_level(netdev_warn, KERN_WARNING);
6132define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6133define_netdev_printk_level(netdev_info, KERN_INFO);
6134
6135static void __net_exit netdev_exit(struct net *net)
6136{
6137 kfree(net->dev_name_head);
6138 kfree(net->dev_index_head);
6139}
6140
6141static struct pernet_operations __net_initdata netdev_net_ops = {
6142 .init = netdev_init,
6143 .exit = netdev_exit,
6144};
6145
6146static void __net_exit default_device_exit(struct net *net)
6147{
6148 struct net_device *dev, *aux;
6149 /*
6150 * Push all migratable network devices back to the
6151 * initial network namespace
6152 */
6153 rtnl_lock();
6154 for_each_netdev_safe(net, dev, aux) {
6155 int err;
6156 char fb_name[IFNAMSIZ];
6157
6158 /* Ignore unmoveable devices (i.e. loopback) */
6159 if (dev->features & NETIF_F_NETNS_LOCAL)
6160 continue;
6161
6162 /* Leave virtual devices for the generic cleanup */
6163 if (dev->rtnl_link_ops)
6164 continue;
6165
6166 /* Push remaining network devices to init_net */
6167 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6168 err = dev_change_net_namespace(dev, &init_net, fb_name);
6169 if (err) {
6170 pr_emerg("%s: failed to move %s to init_net: %d\n",
6171 __func__, dev->name, err);
6172 BUG();
6173 }
6174 }
6175 rtnl_unlock();
6176}
6177
6178static void __net_exit default_device_exit_batch(struct list_head *net_list)
6179{
6180 /* At exit all network devices most be removed from a network
6181 * namespace. Do this in the reverse order of registration.
6182 * Do this across as many network namespaces as possible to
6183 * improve batching efficiency.
6184 */
6185 struct net_device *dev;
6186 struct net *net;
6187 LIST_HEAD(dev_kill_list);
6188
6189 rtnl_lock();
6190 list_for_each_entry(net, net_list, exit_list) {
6191 for_each_netdev_reverse(net, dev) {
6192 if (dev->rtnl_link_ops)
6193 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6194 else
6195 unregister_netdevice_queue(dev, &dev_kill_list);
6196 }
6197 }
6198 unregister_netdevice_many(&dev_kill_list);
6199 list_del(&dev_kill_list);
6200 rtnl_unlock();
6201}
6202
6203static struct pernet_operations __net_initdata default_device_ops = {
6204 .exit = default_device_exit,
6205 .exit_batch = default_device_exit_batch,
6206};
6207
6208/*
6209 * Initialize the DEV module. At boot time this walks the device list and
6210 * unhooks any devices that fail to initialise (normally hardware not
6211 * present) and leaves us with a valid list of present and active devices.
6212 *
6213 */
6214
6215/*
6216 * This is called single threaded during boot, so no need
6217 * to take the rtnl semaphore.
6218 */
6219static int __init net_dev_init(void)
6220{
6221 int i, rc = -ENOMEM;
6222
6223 BUG_ON(!dev_boot_phase);
6224
6225 if (dev_proc_init())
6226 goto out;
6227
6228 if (netdev_kobject_init())
6229 goto out;
6230
6231 INIT_LIST_HEAD(&ptype_all);
6232 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6233 INIT_LIST_HEAD(&ptype_base[i]);
6234
6235 INIT_LIST_HEAD(&offload_base);
6236
6237 if (register_pernet_subsys(&netdev_net_ops))
6238 goto out;
6239
6240 /*
6241 * Initialise the packet receive queues.
6242 */
6243
6244 for_each_possible_cpu(i) {
6245 struct softnet_data *sd = &per_cpu(softnet_data, i);
6246
6247 memset(sd, 0, sizeof(*sd));
6248 skb_queue_head_init(&sd->input_pkt_queue);
6249 skb_queue_head_init(&sd->process_queue);
6250 sd->completion_queue = NULL;
6251 INIT_LIST_HEAD(&sd->poll_list);
6252 sd->output_queue = NULL;
6253 sd->output_queue_tailp = &sd->output_queue;
6254#ifdef CONFIG_RPS
6255 sd->csd.func = rps_trigger_softirq;
6256 sd->csd.info = sd;
6257 sd->csd.flags = 0;
6258 sd->cpu = i;
6259#endif
6260
6261 sd->backlog.poll = process_backlog;
6262 sd->backlog.weight = weight_p;
6263 sd->backlog.gro_list = NULL;
6264 sd->backlog.gro_count = 0;
6265 }
6266
6267 dev_boot_phase = 0;
6268
6269 /* The loopback device is special if any other network devices
6270 * is present in a network namespace the loopback device must
6271 * be present. Since we now dynamically allocate and free the
6272 * loopback device ensure this invariant is maintained by
6273 * keeping the loopback device as the first device on the
6274 * list of network devices. Ensuring the loopback devices
6275 * is the first device that appears and the last network device
6276 * that disappears.
6277 */
6278 if (register_pernet_device(&loopback_net_ops))
6279 goto out;
6280
6281 if (register_pernet_device(&default_device_ops))
6282 goto out;
6283
6284 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6285 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6286
6287 hotcpu_notifier(dev_cpu_callback, 0);
6288 dst_init();
6289 rc = 0;
6290out:
6291 return rc;
6292}
6293
6294subsys_initcall(net_dev_init);