]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - net/core/skbuff.c
net: Store virtual address instead of page in netdev_alloc_cache
[mirror_ubuntu-eoan-kernel.git] / net / core / skbuff.c
... / ...
CommitLineData
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <asm/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __read_mostly;
81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82
83/**
84 * skb_panic - private function for out-of-line support
85 * @skb: buffer
86 * @sz: size
87 * @addr: address
88 * @msg: skb_over_panic or skb_under_panic
89 *
90 * Out-of-line support for skb_put() and skb_push().
91 * Called via the wrapper skb_over_panic() or skb_under_panic().
92 * Keep out of line to prevent kernel bloat.
93 * __builtin_return_address is not used because it is not always reliable.
94 */
95static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 const char msg[])
97{
98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 msg, addr, skb->len, sz, skb->head, skb->data,
100 (unsigned long)skb->tail, (unsigned long)skb->end,
101 skb->dev ? skb->dev->name : "<NULL>");
102 BUG();
103}
104
105static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106{
107 skb_panic(skb, sz, addr, __func__);
108}
109
110static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111{
112 skb_panic(skb, sz, addr, __func__);
113}
114
115/*
116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117 * the caller if emergency pfmemalloc reserves are being used. If it is and
118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119 * may be used. Otherwise, the packet data may be discarded until enough
120 * memory is free
121 */
122#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124
125static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 unsigned long ip, bool *pfmemalloc)
127{
128 void *obj;
129 bool ret_pfmemalloc = false;
130
131 /*
132 * Try a regular allocation, when that fails and we're not entitled
133 * to the reserves, fail.
134 */
135 obj = kmalloc_node_track_caller(size,
136 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 node);
138 if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 goto out;
140
141 /* Try again but now we are using pfmemalloc reserves */
142 ret_pfmemalloc = true;
143 obj = kmalloc_node_track_caller(size, flags, node);
144
145out:
146 if (pfmemalloc)
147 *pfmemalloc = ret_pfmemalloc;
148
149 return obj;
150}
151
152/* Allocate a new skbuff. We do this ourselves so we can fill in a few
153 * 'private' fields and also do memory statistics to find all the
154 * [BEEP] leaks.
155 *
156 */
157
158struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159{
160 struct sk_buff *skb;
161
162 /* Get the HEAD */
163 skb = kmem_cache_alloc_node(skbuff_head_cache,
164 gfp_mask & ~__GFP_DMA, node);
165 if (!skb)
166 goto out;
167
168 /*
169 * Only clear those fields we need to clear, not those that we will
170 * actually initialise below. Hence, don't put any more fields after
171 * the tail pointer in struct sk_buff!
172 */
173 memset(skb, 0, offsetof(struct sk_buff, tail));
174 skb->head = NULL;
175 skb->truesize = sizeof(struct sk_buff);
176 atomic_set(&skb->users, 1);
177
178 skb->mac_header = (typeof(skb->mac_header))~0U;
179out:
180 return skb;
181}
182
183/**
184 * __alloc_skb - allocate a network buffer
185 * @size: size to allocate
186 * @gfp_mask: allocation mask
187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188 * instead of head cache and allocate a cloned (child) skb.
189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190 * allocations in case the data is required for writeback
191 * @node: numa node to allocate memory on
192 *
193 * Allocate a new &sk_buff. The returned buffer has no headroom and a
194 * tail room of at least size bytes. The object has a reference count
195 * of one. The return is the buffer. On a failure the return is %NULL.
196 *
197 * Buffers may only be allocated from interrupts using a @gfp_mask of
198 * %GFP_ATOMIC.
199 */
200struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 int flags, int node)
202{
203 struct kmem_cache *cache;
204 struct skb_shared_info *shinfo;
205 struct sk_buff *skb;
206 u8 *data;
207 bool pfmemalloc;
208
209 cache = (flags & SKB_ALLOC_FCLONE)
210 ? skbuff_fclone_cache : skbuff_head_cache;
211
212 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 gfp_mask |= __GFP_MEMALLOC;
214
215 /* Get the HEAD */
216 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 if (!skb)
218 goto out;
219 prefetchw(skb);
220
221 /* We do our best to align skb_shared_info on a separate cache
222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 * Both skb->head and skb_shared_info are cache line aligned.
225 */
226 size = SKB_DATA_ALIGN(size);
227 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 if (!data)
230 goto nodata;
231 /* kmalloc(size) might give us more room than requested.
232 * Put skb_shared_info exactly at the end of allocated zone,
233 * to allow max possible filling before reallocation.
234 */
235 size = SKB_WITH_OVERHEAD(ksize(data));
236 prefetchw(data + size);
237
238 /*
239 * Only clear those fields we need to clear, not those that we will
240 * actually initialise below. Hence, don't put any more fields after
241 * the tail pointer in struct sk_buff!
242 */
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 /* Account for allocated memory : skb + skb->head */
245 skb->truesize = SKB_TRUESIZE(size);
246 skb->pfmemalloc = pfmemalloc;
247 atomic_set(&skb->users, 1);
248 skb->head = data;
249 skb->data = data;
250 skb_reset_tail_pointer(skb);
251 skb->end = skb->tail + size;
252 skb->mac_header = (typeof(skb->mac_header))~0U;
253 skb->transport_header = (typeof(skb->transport_header))~0U;
254
255 /* make sure we initialize shinfo sequentially */
256 shinfo = skb_shinfo(skb);
257 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 atomic_set(&shinfo->dataref, 1);
259 kmemcheck_annotate_variable(shinfo->destructor_arg);
260
261 if (flags & SKB_ALLOC_FCLONE) {
262 struct sk_buff_fclones *fclones;
263
264 fclones = container_of(skb, struct sk_buff_fclones, skb1);
265
266 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 skb->fclone = SKB_FCLONE_ORIG;
268 atomic_set(&fclones->fclone_ref, 1);
269
270 fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 fclones->skb2.pfmemalloc = pfmemalloc;
272 }
273out:
274 return skb;
275nodata:
276 kmem_cache_free(cache, skb);
277 skb = NULL;
278 goto out;
279}
280EXPORT_SYMBOL(__alloc_skb);
281
282/**
283 * __build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of data, or 0 if head was kmalloced
286 *
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc() only if
289 * @frag_size is 0, otherwise data should come from the page allocator
290 * or vmalloc()
291 * The return is the new skb buffer.
292 * On a failure the return is %NULL, and @data is not freed.
293 * Notes :
294 * Before IO, driver allocates only data buffer where NIC put incoming frame
295 * Driver should add room at head (NET_SKB_PAD) and
296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
298 * before giving packet to stack.
299 * RX rings only contains data buffers, not full skbs.
300 */
301struct sk_buff *__build_skb(void *data, unsigned int frag_size)
302{
303 struct skb_shared_info *shinfo;
304 struct sk_buff *skb;
305 unsigned int size = frag_size ? : ksize(data);
306
307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 if (!skb)
309 return NULL;
310
311 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
312
313 memset(skb, 0, offsetof(struct sk_buff, tail));
314 skb->truesize = SKB_TRUESIZE(size);
315 atomic_set(&skb->users, 1);
316 skb->head = data;
317 skb->data = data;
318 skb_reset_tail_pointer(skb);
319 skb->end = skb->tail + size;
320 skb->mac_header = (typeof(skb->mac_header))~0U;
321 skb->transport_header = (typeof(skb->transport_header))~0U;
322
323 /* make sure we initialize shinfo sequentially */
324 shinfo = skb_shinfo(skb);
325 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 atomic_set(&shinfo->dataref, 1);
327 kmemcheck_annotate_variable(shinfo->destructor_arg);
328
329 return skb;
330}
331
332/* build_skb() is wrapper over __build_skb(), that specifically
333 * takes care of skb->head and skb->pfmemalloc
334 * This means that if @frag_size is not zero, then @data must be backed
335 * by a page fragment, not kmalloc() or vmalloc()
336 */
337struct sk_buff *build_skb(void *data, unsigned int frag_size)
338{
339 struct sk_buff *skb = __build_skb(data, frag_size);
340
341 if (skb && frag_size) {
342 skb->head_frag = 1;
343 if (virt_to_head_page(data)->pfmemalloc)
344 skb->pfmemalloc = 1;
345 }
346 return skb;
347}
348EXPORT_SYMBOL(build_skb);
349
350struct netdev_alloc_cache {
351 void * va;
352#if (PAGE_SIZE < NETDEV_FRAG_PAGE_MAX_SIZE)
353 __u16 offset;
354 __u16 size;
355#else
356 __u32 offset;
357#endif
358 /* we maintain a pagecount bias, so that we dont dirty cache line
359 * containing page->_count every time we allocate a fragment.
360 */
361 unsigned int pagecnt_bias;
362 bool pfmemalloc;
363};
364static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
365static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
366
367static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
368 gfp_t gfp_mask)
369{
370 struct page *page = NULL;
371 gfp_t gfp = gfp_mask;
372
373#if (PAGE_SIZE < NETDEV_FRAG_PAGE_MAX_SIZE)
374 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
375 __GFP_NOMEMALLOC;
376 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
377 NETDEV_FRAG_PAGE_MAX_ORDER);
378 nc->size = page ? NETDEV_FRAG_PAGE_MAX_SIZE : PAGE_SIZE;
379#endif
380 if (unlikely(!page))
381 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
382
383 nc->va = page ? page_address(page) : NULL;
384
385 return page;
386}
387
388static void *__alloc_page_frag(struct netdev_alloc_cache *nc,
389 unsigned int fragsz, gfp_t gfp_mask)
390{
391 unsigned int size = PAGE_SIZE;
392 struct page *page;
393 int offset;
394
395 if (unlikely(!nc->va)) {
396refill:
397 page = __page_frag_refill(nc, gfp_mask);
398 if (!page)
399 return NULL;
400
401#if (PAGE_SIZE < NETDEV_FRAG_PAGE_MAX_SIZE)
402 /* if size can vary use size else just use PAGE_SIZE */
403 size = nc->size;
404#endif
405 /* Even if we own the page, we do not use atomic_set().
406 * This would break get_page_unless_zero() users.
407 */
408 atomic_add(size - 1, &page->_count);
409
410 /* reset page count bias and offset to start of new frag */
411 nc->pfmemalloc = page->pfmemalloc;
412 nc->pagecnt_bias = size;
413 nc->offset = size;
414 }
415
416 offset = nc->offset - fragsz;
417 if (unlikely(offset < 0)) {
418 page = virt_to_page(nc->va);
419
420 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
421 goto refill;
422
423#if (PAGE_SIZE < NETDEV_FRAG_PAGE_MAX_SIZE)
424 /* if size can vary use size else just use PAGE_SIZE */
425 size = nc->size;
426#endif
427 /* OK, page count is 0, we can safely set it */
428 atomic_set(&page->_count, size);
429
430 /* reset page count bias and offset to start of new frag */
431 nc->pagecnt_bias = size;
432 offset = size - fragsz;
433 }
434
435 nc->pagecnt_bias--;
436 nc->offset = offset;
437
438 return nc->va + offset;
439}
440
441static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
442{
443 struct netdev_alloc_cache *nc;
444 unsigned long flags;
445 void *data;
446
447 local_irq_save(flags);
448 nc = this_cpu_ptr(&netdev_alloc_cache);
449 data = __alloc_page_frag(nc, fragsz, gfp_mask);
450 local_irq_restore(flags);
451 return data;
452}
453
454/**
455 * netdev_alloc_frag - allocate a page fragment
456 * @fragsz: fragment size
457 *
458 * Allocates a frag from a page for receive buffer.
459 * Uses GFP_ATOMIC allocations.
460 */
461void *netdev_alloc_frag(unsigned int fragsz)
462{
463 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
464}
465EXPORT_SYMBOL(netdev_alloc_frag);
466
467static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
468{
469 struct netdev_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
470
471 return __alloc_page_frag(nc, fragsz, gfp_mask);
472}
473
474void *napi_alloc_frag(unsigned int fragsz)
475{
476 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
477}
478EXPORT_SYMBOL(napi_alloc_frag);
479
480/**
481 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
482 * @dev: network device to receive on
483 * @length: length to allocate
484 * @gfp_mask: get_free_pages mask, passed to alloc_skb
485 *
486 * Allocate a new &sk_buff and assign it a usage count of one. The
487 * buffer has NET_SKB_PAD headroom built in. Users should allocate
488 * the headroom they think they need without accounting for the
489 * built in space. The built in space is used for optimisations.
490 *
491 * %NULL is returned if there is no free memory.
492 */
493struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
494 gfp_t gfp_mask)
495{
496 struct netdev_alloc_cache *nc;
497 unsigned long flags;
498 struct sk_buff *skb;
499 bool pfmemalloc;
500 void *data;
501
502 len += NET_SKB_PAD;
503
504 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
505 (gfp_mask & (__GFP_WAIT | GFP_DMA)))
506 return __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
507
508 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
509 len = SKB_DATA_ALIGN(len);
510
511 if (sk_memalloc_socks())
512 gfp_mask |= __GFP_MEMALLOC;
513
514 local_irq_save(flags);
515
516 nc = this_cpu_ptr(&netdev_alloc_cache);
517 data = __alloc_page_frag(nc, len, gfp_mask);
518 pfmemalloc = nc->pfmemalloc;
519
520 local_irq_restore(flags);
521
522 if (unlikely(!data))
523 return NULL;
524
525 skb = __build_skb(data, len);
526 if (unlikely(!skb)) {
527 put_page(virt_to_head_page(data));
528 return NULL;
529 }
530
531 /* use OR instead of assignment to avoid clearing of bits in mask */
532 if (pfmemalloc)
533 skb->pfmemalloc = 1;
534 skb->head_frag = 1;
535
536 skb_reserve(skb, NET_SKB_PAD);
537 skb->dev = dev;
538
539 return skb;
540}
541EXPORT_SYMBOL(__netdev_alloc_skb);
542
543/**
544 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
545 * @napi: napi instance this buffer was allocated for
546 * @length: length to allocate
547 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
548 *
549 * Allocate a new sk_buff for use in NAPI receive. This buffer will
550 * attempt to allocate the head from a special reserved region used
551 * only for NAPI Rx allocation. By doing this we can save several
552 * CPU cycles by avoiding having to disable and re-enable IRQs.
553 *
554 * %NULL is returned if there is no free memory.
555 */
556struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
557 gfp_t gfp_mask)
558{
559 struct netdev_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
560 struct sk_buff *skb;
561 void *data;
562
563 len += NET_SKB_PAD + NET_IP_ALIGN;
564
565 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
566 (gfp_mask & (__GFP_WAIT | GFP_DMA)))
567 return __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
568
569 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
570 len = SKB_DATA_ALIGN(len);
571
572 if (sk_memalloc_socks())
573 gfp_mask |= __GFP_MEMALLOC;
574
575 data = __alloc_page_frag(nc, len, gfp_mask);
576 if (unlikely(!data))
577 return NULL;
578
579 skb = __build_skb(data, len);
580 if (unlikely(!skb)) {
581 put_page(virt_to_head_page(data));
582 return NULL;
583 }
584
585 /* use OR instead of assignment to avoid clearing of bits in mask */
586 if (nc->pfmemalloc)
587 skb->pfmemalloc = 1;
588 skb->head_frag = 1;
589
590 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
591 skb->dev = napi->dev;
592
593 return skb;
594}
595EXPORT_SYMBOL(__napi_alloc_skb);
596
597void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
598 int size, unsigned int truesize)
599{
600 skb_fill_page_desc(skb, i, page, off, size);
601 skb->len += size;
602 skb->data_len += size;
603 skb->truesize += truesize;
604}
605EXPORT_SYMBOL(skb_add_rx_frag);
606
607void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
608 unsigned int truesize)
609{
610 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
611
612 skb_frag_size_add(frag, size);
613 skb->len += size;
614 skb->data_len += size;
615 skb->truesize += truesize;
616}
617EXPORT_SYMBOL(skb_coalesce_rx_frag);
618
619static void skb_drop_list(struct sk_buff **listp)
620{
621 kfree_skb_list(*listp);
622 *listp = NULL;
623}
624
625static inline void skb_drop_fraglist(struct sk_buff *skb)
626{
627 skb_drop_list(&skb_shinfo(skb)->frag_list);
628}
629
630static void skb_clone_fraglist(struct sk_buff *skb)
631{
632 struct sk_buff *list;
633
634 skb_walk_frags(skb, list)
635 skb_get(list);
636}
637
638static void skb_free_head(struct sk_buff *skb)
639{
640 if (skb->head_frag)
641 put_page(virt_to_head_page(skb->head));
642 else
643 kfree(skb->head);
644}
645
646static void skb_release_data(struct sk_buff *skb)
647{
648 struct skb_shared_info *shinfo = skb_shinfo(skb);
649 int i;
650
651 if (skb->cloned &&
652 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
653 &shinfo->dataref))
654 return;
655
656 for (i = 0; i < shinfo->nr_frags; i++)
657 __skb_frag_unref(&shinfo->frags[i]);
658
659 /*
660 * If skb buf is from userspace, we need to notify the caller
661 * the lower device DMA has done;
662 */
663 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
664 struct ubuf_info *uarg;
665
666 uarg = shinfo->destructor_arg;
667 if (uarg->callback)
668 uarg->callback(uarg, true);
669 }
670
671 if (shinfo->frag_list)
672 kfree_skb_list(shinfo->frag_list);
673
674 skb_free_head(skb);
675}
676
677/*
678 * Free an skbuff by memory without cleaning the state.
679 */
680static void kfree_skbmem(struct sk_buff *skb)
681{
682 struct sk_buff_fclones *fclones;
683
684 switch (skb->fclone) {
685 case SKB_FCLONE_UNAVAILABLE:
686 kmem_cache_free(skbuff_head_cache, skb);
687 return;
688
689 case SKB_FCLONE_ORIG:
690 fclones = container_of(skb, struct sk_buff_fclones, skb1);
691
692 /* We usually free the clone (TX completion) before original skb
693 * This test would have no chance to be true for the clone,
694 * while here, branch prediction will be good.
695 */
696 if (atomic_read(&fclones->fclone_ref) == 1)
697 goto fastpath;
698 break;
699
700 default: /* SKB_FCLONE_CLONE */
701 fclones = container_of(skb, struct sk_buff_fclones, skb2);
702 break;
703 }
704 if (!atomic_dec_and_test(&fclones->fclone_ref))
705 return;
706fastpath:
707 kmem_cache_free(skbuff_fclone_cache, fclones);
708}
709
710static void skb_release_head_state(struct sk_buff *skb)
711{
712 skb_dst_drop(skb);
713#ifdef CONFIG_XFRM
714 secpath_put(skb->sp);
715#endif
716 if (skb->destructor) {
717 WARN_ON(in_irq());
718 skb->destructor(skb);
719 }
720#if IS_ENABLED(CONFIG_NF_CONNTRACK)
721 nf_conntrack_put(skb->nfct);
722#endif
723#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
724 nf_bridge_put(skb->nf_bridge);
725#endif
726}
727
728/* Free everything but the sk_buff shell. */
729static void skb_release_all(struct sk_buff *skb)
730{
731 skb_release_head_state(skb);
732 if (likely(skb->head))
733 skb_release_data(skb);
734}
735
736/**
737 * __kfree_skb - private function
738 * @skb: buffer
739 *
740 * Free an sk_buff. Release anything attached to the buffer.
741 * Clean the state. This is an internal helper function. Users should
742 * always call kfree_skb
743 */
744
745void __kfree_skb(struct sk_buff *skb)
746{
747 skb_release_all(skb);
748 kfree_skbmem(skb);
749}
750EXPORT_SYMBOL(__kfree_skb);
751
752/**
753 * kfree_skb - free an sk_buff
754 * @skb: buffer to free
755 *
756 * Drop a reference to the buffer and free it if the usage count has
757 * hit zero.
758 */
759void kfree_skb(struct sk_buff *skb)
760{
761 if (unlikely(!skb))
762 return;
763 if (likely(atomic_read(&skb->users) == 1))
764 smp_rmb();
765 else if (likely(!atomic_dec_and_test(&skb->users)))
766 return;
767 trace_kfree_skb(skb, __builtin_return_address(0));
768 __kfree_skb(skb);
769}
770EXPORT_SYMBOL(kfree_skb);
771
772void kfree_skb_list(struct sk_buff *segs)
773{
774 while (segs) {
775 struct sk_buff *next = segs->next;
776
777 kfree_skb(segs);
778 segs = next;
779 }
780}
781EXPORT_SYMBOL(kfree_skb_list);
782
783/**
784 * skb_tx_error - report an sk_buff xmit error
785 * @skb: buffer that triggered an error
786 *
787 * Report xmit error if a device callback is tracking this skb.
788 * skb must be freed afterwards.
789 */
790void skb_tx_error(struct sk_buff *skb)
791{
792 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
793 struct ubuf_info *uarg;
794
795 uarg = skb_shinfo(skb)->destructor_arg;
796 if (uarg->callback)
797 uarg->callback(uarg, false);
798 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
799 }
800}
801EXPORT_SYMBOL(skb_tx_error);
802
803/**
804 * consume_skb - free an skbuff
805 * @skb: buffer to free
806 *
807 * Drop a ref to the buffer and free it if the usage count has hit zero
808 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
809 * is being dropped after a failure and notes that
810 */
811void consume_skb(struct sk_buff *skb)
812{
813 if (unlikely(!skb))
814 return;
815 if (likely(atomic_read(&skb->users) == 1))
816 smp_rmb();
817 else if (likely(!atomic_dec_and_test(&skb->users)))
818 return;
819 trace_consume_skb(skb);
820 __kfree_skb(skb);
821}
822EXPORT_SYMBOL(consume_skb);
823
824/* Make sure a field is enclosed inside headers_start/headers_end section */
825#define CHECK_SKB_FIELD(field) \
826 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
827 offsetof(struct sk_buff, headers_start)); \
828 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
829 offsetof(struct sk_buff, headers_end)); \
830
831static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
832{
833 new->tstamp = old->tstamp;
834 /* We do not copy old->sk */
835 new->dev = old->dev;
836 memcpy(new->cb, old->cb, sizeof(old->cb));
837 skb_dst_copy(new, old);
838#ifdef CONFIG_XFRM
839 new->sp = secpath_get(old->sp);
840#endif
841 __nf_copy(new, old, false);
842
843 /* Note : this field could be in headers_start/headers_end section
844 * It is not yet because we do not want to have a 16 bit hole
845 */
846 new->queue_mapping = old->queue_mapping;
847
848 memcpy(&new->headers_start, &old->headers_start,
849 offsetof(struct sk_buff, headers_end) -
850 offsetof(struct sk_buff, headers_start));
851 CHECK_SKB_FIELD(protocol);
852 CHECK_SKB_FIELD(csum);
853 CHECK_SKB_FIELD(hash);
854 CHECK_SKB_FIELD(priority);
855 CHECK_SKB_FIELD(skb_iif);
856 CHECK_SKB_FIELD(vlan_proto);
857 CHECK_SKB_FIELD(vlan_tci);
858 CHECK_SKB_FIELD(transport_header);
859 CHECK_SKB_FIELD(network_header);
860 CHECK_SKB_FIELD(mac_header);
861 CHECK_SKB_FIELD(inner_protocol);
862 CHECK_SKB_FIELD(inner_transport_header);
863 CHECK_SKB_FIELD(inner_network_header);
864 CHECK_SKB_FIELD(inner_mac_header);
865 CHECK_SKB_FIELD(mark);
866#ifdef CONFIG_NETWORK_SECMARK
867 CHECK_SKB_FIELD(secmark);
868#endif
869#ifdef CONFIG_NET_RX_BUSY_POLL
870 CHECK_SKB_FIELD(napi_id);
871#endif
872#ifdef CONFIG_XPS
873 CHECK_SKB_FIELD(sender_cpu);
874#endif
875#ifdef CONFIG_NET_SCHED
876 CHECK_SKB_FIELD(tc_index);
877#ifdef CONFIG_NET_CLS_ACT
878 CHECK_SKB_FIELD(tc_verd);
879#endif
880#endif
881
882}
883
884/*
885 * You should not add any new code to this function. Add it to
886 * __copy_skb_header above instead.
887 */
888static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
889{
890#define C(x) n->x = skb->x
891
892 n->next = n->prev = NULL;
893 n->sk = NULL;
894 __copy_skb_header(n, skb);
895
896 C(len);
897 C(data_len);
898 C(mac_len);
899 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
900 n->cloned = 1;
901 n->nohdr = 0;
902 n->destructor = NULL;
903 C(tail);
904 C(end);
905 C(head);
906 C(head_frag);
907 C(data);
908 C(truesize);
909 atomic_set(&n->users, 1);
910
911 atomic_inc(&(skb_shinfo(skb)->dataref));
912 skb->cloned = 1;
913
914 return n;
915#undef C
916}
917
918/**
919 * skb_morph - morph one skb into another
920 * @dst: the skb to receive the contents
921 * @src: the skb to supply the contents
922 *
923 * This is identical to skb_clone except that the target skb is
924 * supplied by the user.
925 *
926 * The target skb is returned upon exit.
927 */
928struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
929{
930 skb_release_all(dst);
931 return __skb_clone(dst, src);
932}
933EXPORT_SYMBOL_GPL(skb_morph);
934
935/**
936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
937 * @skb: the skb to modify
938 * @gfp_mask: allocation priority
939 *
940 * This must be called on SKBTX_DEV_ZEROCOPY skb.
941 * It will copy all frags into kernel and drop the reference
942 * to userspace pages.
943 *
944 * If this function is called from an interrupt gfp_mask() must be
945 * %GFP_ATOMIC.
946 *
947 * Returns 0 on success or a negative error code on failure
948 * to allocate kernel memory to copy to.
949 */
950int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
951{
952 int i;
953 int num_frags = skb_shinfo(skb)->nr_frags;
954 struct page *page, *head = NULL;
955 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
956
957 for (i = 0; i < num_frags; i++) {
958 u8 *vaddr;
959 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
960
961 page = alloc_page(gfp_mask);
962 if (!page) {
963 while (head) {
964 struct page *next = (struct page *)page_private(head);
965 put_page(head);
966 head = next;
967 }
968 return -ENOMEM;
969 }
970 vaddr = kmap_atomic(skb_frag_page(f));
971 memcpy(page_address(page),
972 vaddr + f->page_offset, skb_frag_size(f));
973 kunmap_atomic(vaddr);
974 set_page_private(page, (unsigned long)head);
975 head = page;
976 }
977
978 /* skb frags release userspace buffers */
979 for (i = 0; i < num_frags; i++)
980 skb_frag_unref(skb, i);
981
982 uarg->callback(uarg, false);
983
984 /* skb frags point to kernel buffers */
985 for (i = num_frags - 1; i >= 0; i--) {
986 __skb_fill_page_desc(skb, i, head, 0,
987 skb_shinfo(skb)->frags[i].size);
988 head = (struct page *)page_private(head);
989 }
990
991 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
992 return 0;
993}
994EXPORT_SYMBOL_GPL(skb_copy_ubufs);
995
996/**
997 * skb_clone - duplicate an sk_buff
998 * @skb: buffer to clone
999 * @gfp_mask: allocation priority
1000 *
1001 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1002 * copies share the same packet data but not structure. The new
1003 * buffer has a reference count of 1. If the allocation fails the
1004 * function returns %NULL otherwise the new buffer is returned.
1005 *
1006 * If this function is called from an interrupt gfp_mask() must be
1007 * %GFP_ATOMIC.
1008 */
1009
1010struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1011{
1012 struct sk_buff_fclones *fclones = container_of(skb,
1013 struct sk_buff_fclones,
1014 skb1);
1015 struct sk_buff *n;
1016
1017 if (skb_orphan_frags(skb, gfp_mask))
1018 return NULL;
1019
1020 if (skb->fclone == SKB_FCLONE_ORIG &&
1021 atomic_read(&fclones->fclone_ref) == 1) {
1022 n = &fclones->skb2;
1023 atomic_set(&fclones->fclone_ref, 2);
1024 } else {
1025 if (skb_pfmemalloc(skb))
1026 gfp_mask |= __GFP_MEMALLOC;
1027
1028 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1029 if (!n)
1030 return NULL;
1031
1032 kmemcheck_annotate_bitfield(n, flags1);
1033 n->fclone = SKB_FCLONE_UNAVAILABLE;
1034 }
1035
1036 return __skb_clone(n, skb);
1037}
1038EXPORT_SYMBOL(skb_clone);
1039
1040static void skb_headers_offset_update(struct sk_buff *skb, int off)
1041{
1042 /* Only adjust this if it actually is csum_start rather than csum */
1043 if (skb->ip_summed == CHECKSUM_PARTIAL)
1044 skb->csum_start += off;
1045 /* {transport,network,mac}_header and tail are relative to skb->head */
1046 skb->transport_header += off;
1047 skb->network_header += off;
1048 if (skb_mac_header_was_set(skb))
1049 skb->mac_header += off;
1050 skb->inner_transport_header += off;
1051 skb->inner_network_header += off;
1052 skb->inner_mac_header += off;
1053}
1054
1055static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1056{
1057 __copy_skb_header(new, old);
1058
1059 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1060 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1061 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1062}
1063
1064static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1065{
1066 if (skb_pfmemalloc(skb))
1067 return SKB_ALLOC_RX;
1068 return 0;
1069}
1070
1071/**
1072 * skb_copy - create private copy of an sk_buff
1073 * @skb: buffer to copy
1074 * @gfp_mask: allocation priority
1075 *
1076 * Make a copy of both an &sk_buff and its data. This is used when the
1077 * caller wishes to modify the data and needs a private copy of the
1078 * data to alter. Returns %NULL on failure or the pointer to the buffer
1079 * on success. The returned buffer has a reference count of 1.
1080 *
1081 * As by-product this function converts non-linear &sk_buff to linear
1082 * one, so that &sk_buff becomes completely private and caller is allowed
1083 * to modify all the data of returned buffer. This means that this
1084 * function is not recommended for use in circumstances when only
1085 * header is going to be modified. Use pskb_copy() instead.
1086 */
1087
1088struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1089{
1090 int headerlen = skb_headroom(skb);
1091 unsigned int size = skb_end_offset(skb) + skb->data_len;
1092 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1093 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1094
1095 if (!n)
1096 return NULL;
1097
1098 /* Set the data pointer */
1099 skb_reserve(n, headerlen);
1100 /* Set the tail pointer and length */
1101 skb_put(n, skb->len);
1102
1103 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1104 BUG();
1105
1106 copy_skb_header(n, skb);
1107 return n;
1108}
1109EXPORT_SYMBOL(skb_copy);
1110
1111/**
1112 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1113 * @skb: buffer to copy
1114 * @headroom: headroom of new skb
1115 * @gfp_mask: allocation priority
1116 * @fclone: if true allocate the copy of the skb from the fclone
1117 * cache instead of the head cache; it is recommended to set this
1118 * to true for the cases where the copy will likely be cloned
1119 *
1120 * Make a copy of both an &sk_buff and part of its data, located
1121 * in header. Fragmented data remain shared. This is used when
1122 * the caller wishes to modify only header of &sk_buff and needs
1123 * private copy of the header to alter. Returns %NULL on failure
1124 * or the pointer to the buffer on success.
1125 * The returned buffer has a reference count of 1.
1126 */
1127
1128struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1129 gfp_t gfp_mask, bool fclone)
1130{
1131 unsigned int size = skb_headlen(skb) + headroom;
1132 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1133 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1134
1135 if (!n)
1136 goto out;
1137
1138 /* Set the data pointer */
1139 skb_reserve(n, headroom);
1140 /* Set the tail pointer and length */
1141 skb_put(n, skb_headlen(skb));
1142 /* Copy the bytes */
1143 skb_copy_from_linear_data(skb, n->data, n->len);
1144
1145 n->truesize += skb->data_len;
1146 n->data_len = skb->data_len;
1147 n->len = skb->len;
1148
1149 if (skb_shinfo(skb)->nr_frags) {
1150 int i;
1151
1152 if (skb_orphan_frags(skb, gfp_mask)) {
1153 kfree_skb(n);
1154 n = NULL;
1155 goto out;
1156 }
1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1159 skb_frag_ref(skb, i);
1160 }
1161 skb_shinfo(n)->nr_frags = i;
1162 }
1163
1164 if (skb_has_frag_list(skb)) {
1165 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1166 skb_clone_fraglist(n);
1167 }
1168
1169 copy_skb_header(n, skb);
1170out:
1171 return n;
1172}
1173EXPORT_SYMBOL(__pskb_copy_fclone);
1174
1175/**
1176 * pskb_expand_head - reallocate header of &sk_buff
1177 * @skb: buffer to reallocate
1178 * @nhead: room to add at head
1179 * @ntail: room to add at tail
1180 * @gfp_mask: allocation priority
1181 *
1182 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1183 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1184 * reference count of 1. Returns zero in the case of success or error,
1185 * if expansion failed. In the last case, &sk_buff is not changed.
1186 *
1187 * All the pointers pointing into skb header may change and must be
1188 * reloaded after call to this function.
1189 */
1190
1191int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1192 gfp_t gfp_mask)
1193{
1194 int i;
1195 u8 *data;
1196 int size = nhead + skb_end_offset(skb) + ntail;
1197 long off;
1198
1199 BUG_ON(nhead < 0);
1200
1201 if (skb_shared(skb))
1202 BUG();
1203
1204 size = SKB_DATA_ALIGN(size);
1205
1206 if (skb_pfmemalloc(skb))
1207 gfp_mask |= __GFP_MEMALLOC;
1208 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1209 gfp_mask, NUMA_NO_NODE, NULL);
1210 if (!data)
1211 goto nodata;
1212 size = SKB_WITH_OVERHEAD(ksize(data));
1213
1214 /* Copy only real data... and, alas, header. This should be
1215 * optimized for the cases when header is void.
1216 */
1217 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1218
1219 memcpy((struct skb_shared_info *)(data + size),
1220 skb_shinfo(skb),
1221 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1222
1223 /*
1224 * if shinfo is shared we must drop the old head gracefully, but if it
1225 * is not we can just drop the old head and let the existing refcount
1226 * be since all we did is relocate the values
1227 */
1228 if (skb_cloned(skb)) {
1229 /* copy this zero copy skb frags */
1230 if (skb_orphan_frags(skb, gfp_mask))
1231 goto nofrags;
1232 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1233 skb_frag_ref(skb, i);
1234
1235 if (skb_has_frag_list(skb))
1236 skb_clone_fraglist(skb);
1237
1238 skb_release_data(skb);
1239 } else {
1240 skb_free_head(skb);
1241 }
1242 off = (data + nhead) - skb->head;
1243
1244 skb->head = data;
1245 skb->head_frag = 0;
1246 skb->data += off;
1247#ifdef NET_SKBUFF_DATA_USES_OFFSET
1248 skb->end = size;
1249 off = nhead;
1250#else
1251 skb->end = skb->head + size;
1252#endif
1253 skb->tail += off;
1254 skb_headers_offset_update(skb, nhead);
1255 skb->cloned = 0;
1256 skb->hdr_len = 0;
1257 skb->nohdr = 0;
1258 atomic_set(&skb_shinfo(skb)->dataref, 1);
1259 return 0;
1260
1261nofrags:
1262 kfree(data);
1263nodata:
1264 return -ENOMEM;
1265}
1266EXPORT_SYMBOL(pskb_expand_head);
1267
1268/* Make private copy of skb with writable head and some headroom */
1269
1270struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1271{
1272 struct sk_buff *skb2;
1273 int delta = headroom - skb_headroom(skb);
1274
1275 if (delta <= 0)
1276 skb2 = pskb_copy(skb, GFP_ATOMIC);
1277 else {
1278 skb2 = skb_clone(skb, GFP_ATOMIC);
1279 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1280 GFP_ATOMIC)) {
1281 kfree_skb(skb2);
1282 skb2 = NULL;
1283 }
1284 }
1285 return skb2;
1286}
1287EXPORT_SYMBOL(skb_realloc_headroom);
1288
1289/**
1290 * skb_copy_expand - copy and expand sk_buff
1291 * @skb: buffer to copy
1292 * @newheadroom: new free bytes at head
1293 * @newtailroom: new free bytes at tail
1294 * @gfp_mask: allocation priority
1295 *
1296 * Make a copy of both an &sk_buff and its data and while doing so
1297 * allocate additional space.
1298 *
1299 * This is used when the caller wishes to modify the data and needs a
1300 * private copy of the data to alter as well as more space for new fields.
1301 * Returns %NULL on failure or the pointer to the buffer
1302 * on success. The returned buffer has a reference count of 1.
1303 *
1304 * You must pass %GFP_ATOMIC as the allocation priority if this function
1305 * is called from an interrupt.
1306 */
1307struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1308 int newheadroom, int newtailroom,
1309 gfp_t gfp_mask)
1310{
1311 /*
1312 * Allocate the copy buffer
1313 */
1314 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1315 gfp_mask, skb_alloc_rx_flag(skb),
1316 NUMA_NO_NODE);
1317 int oldheadroom = skb_headroom(skb);
1318 int head_copy_len, head_copy_off;
1319
1320 if (!n)
1321 return NULL;
1322
1323 skb_reserve(n, newheadroom);
1324
1325 /* Set the tail pointer and length */
1326 skb_put(n, skb->len);
1327
1328 head_copy_len = oldheadroom;
1329 head_copy_off = 0;
1330 if (newheadroom <= head_copy_len)
1331 head_copy_len = newheadroom;
1332 else
1333 head_copy_off = newheadroom - head_copy_len;
1334
1335 /* Copy the linear header and data. */
1336 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1337 skb->len + head_copy_len))
1338 BUG();
1339
1340 copy_skb_header(n, skb);
1341
1342 skb_headers_offset_update(n, newheadroom - oldheadroom);
1343
1344 return n;
1345}
1346EXPORT_SYMBOL(skb_copy_expand);
1347
1348/**
1349 * skb_pad - zero pad the tail of an skb
1350 * @skb: buffer to pad
1351 * @pad: space to pad
1352 *
1353 * Ensure that a buffer is followed by a padding area that is zero
1354 * filled. Used by network drivers which may DMA or transfer data
1355 * beyond the buffer end onto the wire.
1356 *
1357 * May return error in out of memory cases. The skb is freed on error.
1358 */
1359
1360int skb_pad(struct sk_buff *skb, int pad)
1361{
1362 int err;
1363 int ntail;
1364
1365 /* If the skbuff is non linear tailroom is always zero.. */
1366 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1367 memset(skb->data+skb->len, 0, pad);
1368 return 0;
1369 }
1370
1371 ntail = skb->data_len + pad - (skb->end - skb->tail);
1372 if (likely(skb_cloned(skb) || ntail > 0)) {
1373 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1374 if (unlikely(err))
1375 goto free_skb;
1376 }
1377
1378 /* FIXME: The use of this function with non-linear skb's really needs
1379 * to be audited.
1380 */
1381 err = skb_linearize(skb);
1382 if (unlikely(err))
1383 goto free_skb;
1384
1385 memset(skb->data + skb->len, 0, pad);
1386 return 0;
1387
1388free_skb:
1389 kfree_skb(skb);
1390 return err;
1391}
1392EXPORT_SYMBOL(skb_pad);
1393
1394/**
1395 * pskb_put - add data to the tail of a potentially fragmented buffer
1396 * @skb: start of the buffer to use
1397 * @tail: tail fragment of the buffer to use
1398 * @len: amount of data to add
1399 *
1400 * This function extends the used data area of the potentially
1401 * fragmented buffer. @tail must be the last fragment of @skb -- or
1402 * @skb itself. If this would exceed the total buffer size the kernel
1403 * will panic. A pointer to the first byte of the extra data is
1404 * returned.
1405 */
1406
1407unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1408{
1409 if (tail != skb) {
1410 skb->data_len += len;
1411 skb->len += len;
1412 }
1413 return skb_put(tail, len);
1414}
1415EXPORT_SYMBOL_GPL(pskb_put);
1416
1417/**
1418 * skb_put - add data to a buffer
1419 * @skb: buffer to use
1420 * @len: amount of data to add
1421 *
1422 * This function extends the used data area of the buffer. If this would
1423 * exceed the total buffer size the kernel will panic. A pointer to the
1424 * first byte of the extra data is returned.
1425 */
1426unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1427{
1428 unsigned char *tmp = skb_tail_pointer(skb);
1429 SKB_LINEAR_ASSERT(skb);
1430 skb->tail += len;
1431 skb->len += len;
1432 if (unlikely(skb->tail > skb->end))
1433 skb_over_panic(skb, len, __builtin_return_address(0));
1434 return tmp;
1435}
1436EXPORT_SYMBOL(skb_put);
1437
1438/**
1439 * skb_push - add data to the start of a buffer
1440 * @skb: buffer to use
1441 * @len: amount of data to add
1442 *
1443 * This function extends the used data area of the buffer at the buffer
1444 * start. If this would exceed the total buffer headroom the kernel will
1445 * panic. A pointer to the first byte of the extra data is returned.
1446 */
1447unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1448{
1449 skb->data -= len;
1450 skb->len += len;
1451 if (unlikely(skb->data<skb->head))
1452 skb_under_panic(skb, len, __builtin_return_address(0));
1453 return skb->data;
1454}
1455EXPORT_SYMBOL(skb_push);
1456
1457/**
1458 * skb_pull - remove data from the start of a buffer
1459 * @skb: buffer to use
1460 * @len: amount of data to remove
1461 *
1462 * This function removes data from the start of a buffer, returning
1463 * the memory to the headroom. A pointer to the next data in the buffer
1464 * is returned. Once the data has been pulled future pushes will overwrite
1465 * the old data.
1466 */
1467unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1468{
1469 return skb_pull_inline(skb, len);
1470}
1471EXPORT_SYMBOL(skb_pull);
1472
1473/**
1474 * skb_trim - remove end from a buffer
1475 * @skb: buffer to alter
1476 * @len: new length
1477 *
1478 * Cut the length of a buffer down by removing data from the tail. If
1479 * the buffer is already under the length specified it is not modified.
1480 * The skb must be linear.
1481 */
1482void skb_trim(struct sk_buff *skb, unsigned int len)
1483{
1484 if (skb->len > len)
1485 __skb_trim(skb, len);
1486}
1487EXPORT_SYMBOL(skb_trim);
1488
1489/* Trims skb to length len. It can change skb pointers.
1490 */
1491
1492int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1493{
1494 struct sk_buff **fragp;
1495 struct sk_buff *frag;
1496 int offset = skb_headlen(skb);
1497 int nfrags = skb_shinfo(skb)->nr_frags;
1498 int i;
1499 int err;
1500
1501 if (skb_cloned(skb) &&
1502 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1503 return err;
1504
1505 i = 0;
1506 if (offset >= len)
1507 goto drop_pages;
1508
1509 for (; i < nfrags; i++) {
1510 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1511
1512 if (end < len) {
1513 offset = end;
1514 continue;
1515 }
1516
1517 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1518
1519drop_pages:
1520 skb_shinfo(skb)->nr_frags = i;
1521
1522 for (; i < nfrags; i++)
1523 skb_frag_unref(skb, i);
1524
1525 if (skb_has_frag_list(skb))
1526 skb_drop_fraglist(skb);
1527 goto done;
1528 }
1529
1530 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1531 fragp = &frag->next) {
1532 int end = offset + frag->len;
1533
1534 if (skb_shared(frag)) {
1535 struct sk_buff *nfrag;
1536
1537 nfrag = skb_clone(frag, GFP_ATOMIC);
1538 if (unlikely(!nfrag))
1539 return -ENOMEM;
1540
1541 nfrag->next = frag->next;
1542 consume_skb(frag);
1543 frag = nfrag;
1544 *fragp = frag;
1545 }
1546
1547 if (end < len) {
1548 offset = end;
1549 continue;
1550 }
1551
1552 if (end > len &&
1553 unlikely((err = pskb_trim(frag, len - offset))))
1554 return err;
1555
1556 if (frag->next)
1557 skb_drop_list(&frag->next);
1558 break;
1559 }
1560
1561done:
1562 if (len > skb_headlen(skb)) {
1563 skb->data_len -= skb->len - len;
1564 skb->len = len;
1565 } else {
1566 skb->len = len;
1567 skb->data_len = 0;
1568 skb_set_tail_pointer(skb, len);
1569 }
1570
1571 return 0;
1572}
1573EXPORT_SYMBOL(___pskb_trim);
1574
1575/**
1576 * __pskb_pull_tail - advance tail of skb header
1577 * @skb: buffer to reallocate
1578 * @delta: number of bytes to advance tail
1579 *
1580 * The function makes a sense only on a fragmented &sk_buff,
1581 * it expands header moving its tail forward and copying necessary
1582 * data from fragmented part.
1583 *
1584 * &sk_buff MUST have reference count of 1.
1585 *
1586 * Returns %NULL (and &sk_buff does not change) if pull failed
1587 * or value of new tail of skb in the case of success.
1588 *
1589 * All the pointers pointing into skb header may change and must be
1590 * reloaded after call to this function.
1591 */
1592
1593/* Moves tail of skb head forward, copying data from fragmented part,
1594 * when it is necessary.
1595 * 1. It may fail due to malloc failure.
1596 * 2. It may change skb pointers.
1597 *
1598 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1599 */
1600unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1601{
1602 /* If skb has not enough free space at tail, get new one
1603 * plus 128 bytes for future expansions. If we have enough
1604 * room at tail, reallocate without expansion only if skb is cloned.
1605 */
1606 int i, k, eat = (skb->tail + delta) - skb->end;
1607
1608 if (eat > 0 || skb_cloned(skb)) {
1609 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1610 GFP_ATOMIC))
1611 return NULL;
1612 }
1613
1614 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1615 BUG();
1616
1617 /* Optimization: no fragments, no reasons to preestimate
1618 * size of pulled pages. Superb.
1619 */
1620 if (!skb_has_frag_list(skb))
1621 goto pull_pages;
1622
1623 /* Estimate size of pulled pages. */
1624 eat = delta;
1625 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1626 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1627
1628 if (size >= eat)
1629 goto pull_pages;
1630 eat -= size;
1631 }
1632
1633 /* If we need update frag list, we are in troubles.
1634 * Certainly, it possible to add an offset to skb data,
1635 * but taking into account that pulling is expected to
1636 * be very rare operation, it is worth to fight against
1637 * further bloating skb head and crucify ourselves here instead.
1638 * Pure masohism, indeed. 8)8)
1639 */
1640 if (eat) {
1641 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1642 struct sk_buff *clone = NULL;
1643 struct sk_buff *insp = NULL;
1644
1645 do {
1646 BUG_ON(!list);
1647
1648 if (list->len <= eat) {
1649 /* Eaten as whole. */
1650 eat -= list->len;
1651 list = list->next;
1652 insp = list;
1653 } else {
1654 /* Eaten partially. */
1655
1656 if (skb_shared(list)) {
1657 /* Sucks! We need to fork list. :-( */
1658 clone = skb_clone(list, GFP_ATOMIC);
1659 if (!clone)
1660 return NULL;
1661 insp = list->next;
1662 list = clone;
1663 } else {
1664 /* This may be pulled without
1665 * problems. */
1666 insp = list;
1667 }
1668 if (!pskb_pull(list, eat)) {
1669 kfree_skb(clone);
1670 return NULL;
1671 }
1672 break;
1673 }
1674 } while (eat);
1675
1676 /* Free pulled out fragments. */
1677 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1678 skb_shinfo(skb)->frag_list = list->next;
1679 kfree_skb(list);
1680 }
1681 /* And insert new clone at head. */
1682 if (clone) {
1683 clone->next = list;
1684 skb_shinfo(skb)->frag_list = clone;
1685 }
1686 }
1687 /* Success! Now we may commit changes to skb data. */
1688
1689pull_pages:
1690 eat = delta;
1691 k = 0;
1692 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1693 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1694
1695 if (size <= eat) {
1696 skb_frag_unref(skb, i);
1697 eat -= size;
1698 } else {
1699 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1700 if (eat) {
1701 skb_shinfo(skb)->frags[k].page_offset += eat;
1702 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1703 eat = 0;
1704 }
1705 k++;
1706 }
1707 }
1708 skb_shinfo(skb)->nr_frags = k;
1709
1710 skb->tail += delta;
1711 skb->data_len -= delta;
1712
1713 return skb_tail_pointer(skb);
1714}
1715EXPORT_SYMBOL(__pskb_pull_tail);
1716
1717/**
1718 * skb_copy_bits - copy bits from skb to kernel buffer
1719 * @skb: source skb
1720 * @offset: offset in source
1721 * @to: destination buffer
1722 * @len: number of bytes to copy
1723 *
1724 * Copy the specified number of bytes from the source skb to the
1725 * destination buffer.
1726 *
1727 * CAUTION ! :
1728 * If its prototype is ever changed,
1729 * check arch/{*}/net/{*}.S files,
1730 * since it is called from BPF assembly code.
1731 */
1732int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1733{
1734 int start = skb_headlen(skb);
1735 struct sk_buff *frag_iter;
1736 int i, copy;
1737
1738 if (offset > (int)skb->len - len)
1739 goto fault;
1740
1741 /* Copy header. */
1742 if ((copy = start - offset) > 0) {
1743 if (copy > len)
1744 copy = len;
1745 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1746 if ((len -= copy) == 0)
1747 return 0;
1748 offset += copy;
1749 to += copy;
1750 }
1751
1752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1753 int end;
1754 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1755
1756 WARN_ON(start > offset + len);
1757
1758 end = start + skb_frag_size(f);
1759 if ((copy = end - offset) > 0) {
1760 u8 *vaddr;
1761
1762 if (copy > len)
1763 copy = len;
1764
1765 vaddr = kmap_atomic(skb_frag_page(f));
1766 memcpy(to,
1767 vaddr + f->page_offset + offset - start,
1768 copy);
1769 kunmap_atomic(vaddr);
1770
1771 if ((len -= copy) == 0)
1772 return 0;
1773 offset += copy;
1774 to += copy;
1775 }
1776 start = end;
1777 }
1778
1779 skb_walk_frags(skb, frag_iter) {
1780 int end;
1781
1782 WARN_ON(start > offset + len);
1783
1784 end = start + frag_iter->len;
1785 if ((copy = end - offset) > 0) {
1786 if (copy > len)
1787 copy = len;
1788 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1789 goto fault;
1790 if ((len -= copy) == 0)
1791 return 0;
1792 offset += copy;
1793 to += copy;
1794 }
1795 start = end;
1796 }
1797
1798 if (!len)
1799 return 0;
1800
1801fault:
1802 return -EFAULT;
1803}
1804EXPORT_SYMBOL(skb_copy_bits);
1805
1806/*
1807 * Callback from splice_to_pipe(), if we need to release some pages
1808 * at the end of the spd in case we error'ed out in filling the pipe.
1809 */
1810static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1811{
1812 put_page(spd->pages[i]);
1813}
1814
1815static struct page *linear_to_page(struct page *page, unsigned int *len,
1816 unsigned int *offset,
1817 struct sock *sk)
1818{
1819 struct page_frag *pfrag = sk_page_frag(sk);
1820
1821 if (!sk_page_frag_refill(sk, pfrag))
1822 return NULL;
1823
1824 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1825
1826 memcpy(page_address(pfrag->page) + pfrag->offset,
1827 page_address(page) + *offset, *len);
1828 *offset = pfrag->offset;
1829 pfrag->offset += *len;
1830
1831 return pfrag->page;
1832}
1833
1834static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1835 struct page *page,
1836 unsigned int offset)
1837{
1838 return spd->nr_pages &&
1839 spd->pages[spd->nr_pages - 1] == page &&
1840 (spd->partial[spd->nr_pages - 1].offset +
1841 spd->partial[spd->nr_pages - 1].len == offset);
1842}
1843
1844/*
1845 * Fill page/offset/length into spd, if it can hold more pages.
1846 */
1847static bool spd_fill_page(struct splice_pipe_desc *spd,
1848 struct pipe_inode_info *pipe, struct page *page,
1849 unsigned int *len, unsigned int offset,
1850 bool linear,
1851 struct sock *sk)
1852{
1853 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1854 return true;
1855
1856 if (linear) {
1857 page = linear_to_page(page, len, &offset, sk);
1858 if (!page)
1859 return true;
1860 }
1861 if (spd_can_coalesce(spd, page, offset)) {
1862 spd->partial[spd->nr_pages - 1].len += *len;
1863 return false;
1864 }
1865 get_page(page);
1866 spd->pages[spd->nr_pages] = page;
1867 spd->partial[spd->nr_pages].len = *len;
1868 spd->partial[spd->nr_pages].offset = offset;
1869 spd->nr_pages++;
1870
1871 return false;
1872}
1873
1874static bool __splice_segment(struct page *page, unsigned int poff,
1875 unsigned int plen, unsigned int *off,
1876 unsigned int *len,
1877 struct splice_pipe_desc *spd, bool linear,
1878 struct sock *sk,
1879 struct pipe_inode_info *pipe)
1880{
1881 if (!*len)
1882 return true;
1883
1884 /* skip this segment if already processed */
1885 if (*off >= plen) {
1886 *off -= plen;
1887 return false;
1888 }
1889
1890 /* ignore any bits we already processed */
1891 poff += *off;
1892 plen -= *off;
1893 *off = 0;
1894
1895 do {
1896 unsigned int flen = min(*len, plen);
1897
1898 if (spd_fill_page(spd, pipe, page, &flen, poff,
1899 linear, sk))
1900 return true;
1901 poff += flen;
1902 plen -= flen;
1903 *len -= flen;
1904 } while (*len && plen);
1905
1906 return false;
1907}
1908
1909/*
1910 * Map linear and fragment data from the skb to spd. It reports true if the
1911 * pipe is full or if we already spliced the requested length.
1912 */
1913static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1914 unsigned int *offset, unsigned int *len,
1915 struct splice_pipe_desc *spd, struct sock *sk)
1916{
1917 int seg;
1918
1919 /* map the linear part :
1920 * If skb->head_frag is set, this 'linear' part is backed by a
1921 * fragment, and if the head is not shared with any clones then
1922 * we can avoid a copy since we own the head portion of this page.
1923 */
1924 if (__splice_segment(virt_to_page(skb->data),
1925 (unsigned long) skb->data & (PAGE_SIZE - 1),
1926 skb_headlen(skb),
1927 offset, len, spd,
1928 skb_head_is_locked(skb),
1929 sk, pipe))
1930 return true;
1931
1932 /*
1933 * then map the fragments
1934 */
1935 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1936 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1937
1938 if (__splice_segment(skb_frag_page(f),
1939 f->page_offset, skb_frag_size(f),
1940 offset, len, spd, false, sk, pipe))
1941 return true;
1942 }
1943
1944 return false;
1945}
1946
1947/*
1948 * Map data from the skb to a pipe. Should handle both the linear part,
1949 * the fragments, and the frag list. It does NOT handle frag lists within
1950 * the frag list, if such a thing exists. We'd probably need to recurse to
1951 * handle that cleanly.
1952 */
1953int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1954 struct pipe_inode_info *pipe, unsigned int tlen,
1955 unsigned int flags)
1956{
1957 struct partial_page partial[MAX_SKB_FRAGS];
1958 struct page *pages[MAX_SKB_FRAGS];
1959 struct splice_pipe_desc spd = {
1960 .pages = pages,
1961 .partial = partial,
1962 .nr_pages_max = MAX_SKB_FRAGS,
1963 .flags = flags,
1964 .ops = &nosteal_pipe_buf_ops,
1965 .spd_release = sock_spd_release,
1966 };
1967 struct sk_buff *frag_iter;
1968 struct sock *sk = skb->sk;
1969 int ret = 0;
1970
1971 /*
1972 * __skb_splice_bits() only fails if the output has no room left,
1973 * so no point in going over the frag_list for the error case.
1974 */
1975 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1976 goto done;
1977 else if (!tlen)
1978 goto done;
1979
1980 /*
1981 * now see if we have a frag_list to map
1982 */
1983 skb_walk_frags(skb, frag_iter) {
1984 if (!tlen)
1985 break;
1986 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1987 break;
1988 }
1989
1990done:
1991 if (spd.nr_pages) {
1992 /*
1993 * Drop the socket lock, otherwise we have reverse
1994 * locking dependencies between sk_lock and i_mutex
1995 * here as compared to sendfile(). We enter here
1996 * with the socket lock held, and splice_to_pipe() will
1997 * grab the pipe inode lock. For sendfile() emulation,
1998 * we call into ->sendpage() with the i_mutex lock held
1999 * and networking will grab the socket lock.
2000 */
2001 release_sock(sk);
2002 ret = splice_to_pipe(pipe, &spd);
2003 lock_sock(sk);
2004 }
2005
2006 return ret;
2007}
2008
2009/**
2010 * skb_store_bits - store bits from kernel buffer to skb
2011 * @skb: destination buffer
2012 * @offset: offset in destination
2013 * @from: source buffer
2014 * @len: number of bytes to copy
2015 *
2016 * Copy the specified number of bytes from the source buffer to the
2017 * destination skb. This function handles all the messy bits of
2018 * traversing fragment lists and such.
2019 */
2020
2021int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2022{
2023 int start = skb_headlen(skb);
2024 struct sk_buff *frag_iter;
2025 int i, copy;
2026
2027 if (offset > (int)skb->len - len)
2028 goto fault;
2029
2030 if ((copy = start - offset) > 0) {
2031 if (copy > len)
2032 copy = len;
2033 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2034 if ((len -= copy) == 0)
2035 return 0;
2036 offset += copy;
2037 from += copy;
2038 }
2039
2040 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2041 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2042 int end;
2043
2044 WARN_ON(start > offset + len);
2045
2046 end = start + skb_frag_size(frag);
2047 if ((copy = end - offset) > 0) {
2048 u8 *vaddr;
2049
2050 if (copy > len)
2051 copy = len;
2052
2053 vaddr = kmap_atomic(skb_frag_page(frag));
2054 memcpy(vaddr + frag->page_offset + offset - start,
2055 from, copy);
2056 kunmap_atomic(vaddr);
2057
2058 if ((len -= copy) == 0)
2059 return 0;
2060 offset += copy;
2061 from += copy;
2062 }
2063 start = end;
2064 }
2065
2066 skb_walk_frags(skb, frag_iter) {
2067 int end;
2068
2069 WARN_ON(start > offset + len);
2070
2071 end = start + frag_iter->len;
2072 if ((copy = end - offset) > 0) {
2073 if (copy > len)
2074 copy = len;
2075 if (skb_store_bits(frag_iter, offset - start,
2076 from, copy))
2077 goto fault;
2078 if ((len -= copy) == 0)
2079 return 0;
2080 offset += copy;
2081 from += copy;
2082 }
2083 start = end;
2084 }
2085 if (!len)
2086 return 0;
2087
2088fault:
2089 return -EFAULT;
2090}
2091EXPORT_SYMBOL(skb_store_bits);
2092
2093/* Checksum skb data. */
2094__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2095 __wsum csum, const struct skb_checksum_ops *ops)
2096{
2097 int start = skb_headlen(skb);
2098 int i, copy = start - offset;
2099 struct sk_buff *frag_iter;
2100 int pos = 0;
2101
2102 /* Checksum header. */
2103 if (copy > 0) {
2104 if (copy > len)
2105 copy = len;
2106 csum = ops->update(skb->data + offset, copy, csum);
2107 if ((len -= copy) == 0)
2108 return csum;
2109 offset += copy;
2110 pos = copy;
2111 }
2112
2113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2114 int end;
2115 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2116
2117 WARN_ON(start > offset + len);
2118
2119 end = start + skb_frag_size(frag);
2120 if ((copy = end - offset) > 0) {
2121 __wsum csum2;
2122 u8 *vaddr;
2123
2124 if (copy > len)
2125 copy = len;
2126 vaddr = kmap_atomic(skb_frag_page(frag));
2127 csum2 = ops->update(vaddr + frag->page_offset +
2128 offset - start, copy, 0);
2129 kunmap_atomic(vaddr);
2130 csum = ops->combine(csum, csum2, pos, copy);
2131 if (!(len -= copy))
2132 return csum;
2133 offset += copy;
2134 pos += copy;
2135 }
2136 start = end;
2137 }
2138
2139 skb_walk_frags(skb, frag_iter) {
2140 int end;
2141
2142 WARN_ON(start > offset + len);
2143
2144 end = start + frag_iter->len;
2145 if ((copy = end - offset) > 0) {
2146 __wsum csum2;
2147 if (copy > len)
2148 copy = len;
2149 csum2 = __skb_checksum(frag_iter, offset - start,
2150 copy, 0, ops);
2151 csum = ops->combine(csum, csum2, pos, copy);
2152 if ((len -= copy) == 0)
2153 return csum;
2154 offset += copy;
2155 pos += copy;
2156 }
2157 start = end;
2158 }
2159 BUG_ON(len);
2160
2161 return csum;
2162}
2163EXPORT_SYMBOL(__skb_checksum);
2164
2165__wsum skb_checksum(const struct sk_buff *skb, int offset,
2166 int len, __wsum csum)
2167{
2168 const struct skb_checksum_ops ops = {
2169 .update = csum_partial_ext,
2170 .combine = csum_block_add_ext,
2171 };
2172
2173 return __skb_checksum(skb, offset, len, csum, &ops);
2174}
2175EXPORT_SYMBOL(skb_checksum);
2176
2177/* Both of above in one bottle. */
2178
2179__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2180 u8 *to, int len, __wsum csum)
2181{
2182 int start = skb_headlen(skb);
2183 int i, copy = start - offset;
2184 struct sk_buff *frag_iter;
2185 int pos = 0;
2186
2187 /* Copy header. */
2188 if (copy > 0) {
2189 if (copy > len)
2190 copy = len;
2191 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2192 copy, csum);
2193 if ((len -= copy) == 0)
2194 return csum;
2195 offset += copy;
2196 to += copy;
2197 pos = copy;
2198 }
2199
2200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2201 int end;
2202
2203 WARN_ON(start > offset + len);
2204
2205 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2206 if ((copy = end - offset) > 0) {
2207 __wsum csum2;
2208 u8 *vaddr;
2209 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2210
2211 if (copy > len)
2212 copy = len;
2213 vaddr = kmap_atomic(skb_frag_page(frag));
2214 csum2 = csum_partial_copy_nocheck(vaddr +
2215 frag->page_offset +
2216 offset - start, to,
2217 copy, 0);
2218 kunmap_atomic(vaddr);
2219 csum = csum_block_add(csum, csum2, pos);
2220 if (!(len -= copy))
2221 return csum;
2222 offset += copy;
2223 to += copy;
2224 pos += copy;
2225 }
2226 start = end;
2227 }
2228
2229 skb_walk_frags(skb, frag_iter) {
2230 __wsum csum2;
2231 int end;
2232
2233 WARN_ON(start > offset + len);
2234
2235 end = start + frag_iter->len;
2236 if ((copy = end - offset) > 0) {
2237 if (copy > len)
2238 copy = len;
2239 csum2 = skb_copy_and_csum_bits(frag_iter,
2240 offset - start,
2241 to, copy, 0);
2242 csum = csum_block_add(csum, csum2, pos);
2243 if ((len -= copy) == 0)
2244 return csum;
2245 offset += copy;
2246 to += copy;
2247 pos += copy;
2248 }
2249 start = end;
2250 }
2251 BUG_ON(len);
2252 return csum;
2253}
2254EXPORT_SYMBOL(skb_copy_and_csum_bits);
2255
2256 /**
2257 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2258 * @from: source buffer
2259 *
2260 * Calculates the amount of linear headroom needed in the 'to' skb passed
2261 * into skb_zerocopy().
2262 */
2263unsigned int
2264skb_zerocopy_headlen(const struct sk_buff *from)
2265{
2266 unsigned int hlen = 0;
2267
2268 if (!from->head_frag ||
2269 skb_headlen(from) < L1_CACHE_BYTES ||
2270 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2271 hlen = skb_headlen(from);
2272
2273 if (skb_has_frag_list(from))
2274 hlen = from->len;
2275
2276 return hlen;
2277}
2278EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2279
2280/**
2281 * skb_zerocopy - Zero copy skb to skb
2282 * @to: destination buffer
2283 * @from: source buffer
2284 * @len: number of bytes to copy from source buffer
2285 * @hlen: size of linear headroom in destination buffer
2286 *
2287 * Copies up to `len` bytes from `from` to `to` by creating references
2288 * to the frags in the source buffer.
2289 *
2290 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2291 * headroom in the `to` buffer.
2292 *
2293 * Return value:
2294 * 0: everything is OK
2295 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2296 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2297 */
2298int
2299skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2300{
2301 int i, j = 0;
2302 int plen = 0; /* length of skb->head fragment */
2303 int ret;
2304 struct page *page;
2305 unsigned int offset;
2306
2307 BUG_ON(!from->head_frag && !hlen);
2308
2309 /* dont bother with small payloads */
2310 if (len <= skb_tailroom(to))
2311 return skb_copy_bits(from, 0, skb_put(to, len), len);
2312
2313 if (hlen) {
2314 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2315 if (unlikely(ret))
2316 return ret;
2317 len -= hlen;
2318 } else {
2319 plen = min_t(int, skb_headlen(from), len);
2320 if (plen) {
2321 page = virt_to_head_page(from->head);
2322 offset = from->data - (unsigned char *)page_address(page);
2323 __skb_fill_page_desc(to, 0, page, offset, plen);
2324 get_page(page);
2325 j = 1;
2326 len -= plen;
2327 }
2328 }
2329
2330 to->truesize += len + plen;
2331 to->len += len + plen;
2332 to->data_len += len + plen;
2333
2334 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2335 skb_tx_error(from);
2336 return -ENOMEM;
2337 }
2338
2339 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2340 if (!len)
2341 break;
2342 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2343 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2344 len -= skb_shinfo(to)->frags[j].size;
2345 skb_frag_ref(to, j);
2346 j++;
2347 }
2348 skb_shinfo(to)->nr_frags = j;
2349
2350 return 0;
2351}
2352EXPORT_SYMBOL_GPL(skb_zerocopy);
2353
2354void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2355{
2356 __wsum csum;
2357 long csstart;
2358
2359 if (skb->ip_summed == CHECKSUM_PARTIAL)
2360 csstart = skb_checksum_start_offset(skb);
2361 else
2362 csstart = skb_headlen(skb);
2363
2364 BUG_ON(csstart > skb_headlen(skb));
2365
2366 skb_copy_from_linear_data(skb, to, csstart);
2367
2368 csum = 0;
2369 if (csstart != skb->len)
2370 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2371 skb->len - csstart, 0);
2372
2373 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2374 long csstuff = csstart + skb->csum_offset;
2375
2376 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2377 }
2378}
2379EXPORT_SYMBOL(skb_copy_and_csum_dev);
2380
2381/**
2382 * skb_dequeue - remove from the head of the queue
2383 * @list: list to dequeue from
2384 *
2385 * Remove the head of the list. The list lock is taken so the function
2386 * may be used safely with other locking list functions. The head item is
2387 * returned or %NULL if the list is empty.
2388 */
2389
2390struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2391{
2392 unsigned long flags;
2393 struct sk_buff *result;
2394
2395 spin_lock_irqsave(&list->lock, flags);
2396 result = __skb_dequeue(list);
2397 spin_unlock_irqrestore(&list->lock, flags);
2398 return result;
2399}
2400EXPORT_SYMBOL(skb_dequeue);
2401
2402/**
2403 * skb_dequeue_tail - remove from the tail of the queue
2404 * @list: list to dequeue from
2405 *
2406 * Remove the tail of the list. The list lock is taken so the function
2407 * may be used safely with other locking list functions. The tail item is
2408 * returned or %NULL if the list is empty.
2409 */
2410struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2411{
2412 unsigned long flags;
2413 struct sk_buff *result;
2414
2415 spin_lock_irqsave(&list->lock, flags);
2416 result = __skb_dequeue_tail(list);
2417 spin_unlock_irqrestore(&list->lock, flags);
2418 return result;
2419}
2420EXPORT_SYMBOL(skb_dequeue_tail);
2421
2422/**
2423 * skb_queue_purge - empty a list
2424 * @list: list to empty
2425 *
2426 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2427 * the list and one reference dropped. This function takes the list
2428 * lock and is atomic with respect to other list locking functions.
2429 */
2430void skb_queue_purge(struct sk_buff_head *list)
2431{
2432 struct sk_buff *skb;
2433 while ((skb = skb_dequeue(list)) != NULL)
2434 kfree_skb(skb);
2435}
2436EXPORT_SYMBOL(skb_queue_purge);
2437
2438/**
2439 * skb_queue_head - queue a buffer at the list head
2440 * @list: list to use
2441 * @newsk: buffer to queue
2442 *
2443 * Queue a buffer at the start of the list. This function takes the
2444 * list lock and can be used safely with other locking &sk_buff functions
2445 * safely.
2446 *
2447 * A buffer cannot be placed on two lists at the same time.
2448 */
2449void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2450{
2451 unsigned long flags;
2452
2453 spin_lock_irqsave(&list->lock, flags);
2454 __skb_queue_head(list, newsk);
2455 spin_unlock_irqrestore(&list->lock, flags);
2456}
2457EXPORT_SYMBOL(skb_queue_head);
2458
2459/**
2460 * skb_queue_tail - queue a buffer at the list tail
2461 * @list: list to use
2462 * @newsk: buffer to queue
2463 *
2464 * Queue a buffer at the tail of the list. This function takes the
2465 * list lock and can be used safely with other locking &sk_buff functions
2466 * safely.
2467 *
2468 * A buffer cannot be placed on two lists at the same time.
2469 */
2470void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2471{
2472 unsigned long flags;
2473
2474 spin_lock_irqsave(&list->lock, flags);
2475 __skb_queue_tail(list, newsk);
2476 spin_unlock_irqrestore(&list->lock, flags);
2477}
2478EXPORT_SYMBOL(skb_queue_tail);
2479
2480/**
2481 * skb_unlink - remove a buffer from a list
2482 * @skb: buffer to remove
2483 * @list: list to use
2484 *
2485 * Remove a packet from a list. The list locks are taken and this
2486 * function is atomic with respect to other list locked calls
2487 *
2488 * You must know what list the SKB is on.
2489 */
2490void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2491{
2492 unsigned long flags;
2493
2494 spin_lock_irqsave(&list->lock, flags);
2495 __skb_unlink(skb, list);
2496 spin_unlock_irqrestore(&list->lock, flags);
2497}
2498EXPORT_SYMBOL(skb_unlink);
2499
2500/**
2501 * skb_append - append a buffer
2502 * @old: buffer to insert after
2503 * @newsk: buffer to insert
2504 * @list: list to use
2505 *
2506 * Place a packet after a given packet in a list. The list locks are taken
2507 * and this function is atomic with respect to other list locked calls.
2508 * A buffer cannot be placed on two lists at the same time.
2509 */
2510void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2511{
2512 unsigned long flags;
2513
2514 spin_lock_irqsave(&list->lock, flags);
2515 __skb_queue_after(list, old, newsk);
2516 spin_unlock_irqrestore(&list->lock, flags);
2517}
2518EXPORT_SYMBOL(skb_append);
2519
2520/**
2521 * skb_insert - insert a buffer
2522 * @old: buffer to insert before
2523 * @newsk: buffer to insert
2524 * @list: list to use
2525 *
2526 * Place a packet before a given packet in a list. The list locks are
2527 * taken and this function is atomic with respect to other list locked
2528 * calls.
2529 *
2530 * A buffer cannot be placed on two lists at the same time.
2531 */
2532void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2533{
2534 unsigned long flags;
2535
2536 spin_lock_irqsave(&list->lock, flags);
2537 __skb_insert(newsk, old->prev, old, list);
2538 spin_unlock_irqrestore(&list->lock, flags);
2539}
2540EXPORT_SYMBOL(skb_insert);
2541
2542static inline void skb_split_inside_header(struct sk_buff *skb,
2543 struct sk_buff* skb1,
2544 const u32 len, const int pos)
2545{
2546 int i;
2547
2548 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2549 pos - len);
2550 /* And move data appendix as is. */
2551 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2552 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2553
2554 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2555 skb_shinfo(skb)->nr_frags = 0;
2556 skb1->data_len = skb->data_len;
2557 skb1->len += skb1->data_len;
2558 skb->data_len = 0;
2559 skb->len = len;
2560 skb_set_tail_pointer(skb, len);
2561}
2562
2563static inline void skb_split_no_header(struct sk_buff *skb,
2564 struct sk_buff* skb1,
2565 const u32 len, int pos)
2566{
2567 int i, k = 0;
2568 const int nfrags = skb_shinfo(skb)->nr_frags;
2569
2570 skb_shinfo(skb)->nr_frags = 0;
2571 skb1->len = skb1->data_len = skb->len - len;
2572 skb->len = len;
2573 skb->data_len = len - pos;
2574
2575 for (i = 0; i < nfrags; i++) {
2576 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2577
2578 if (pos + size > len) {
2579 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2580
2581 if (pos < len) {
2582 /* Split frag.
2583 * We have two variants in this case:
2584 * 1. Move all the frag to the second
2585 * part, if it is possible. F.e.
2586 * this approach is mandatory for TUX,
2587 * where splitting is expensive.
2588 * 2. Split is accurately. We make this.
2589 */
2590 skb_frag_ref(skb, i);
2591 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2592 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2593 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2594 skb_shinfo(skb)->nr_frags++;
2595 }
2596 k++;
2597 } else
2598 skb_shinfo(skb)->nr_frags++;
2599 pos += size;
2600 }
2601 skb_shinfo(skb1)->nr_frags = k;
2602}
2603
2604/**
2605 * skb_split - Split fragmented skb to two parts at length len.
2606 * @skb: the buffer to split
2607 * @skb1: the buffer to receive the second part
2608 * @len: new length for skb
2609 */
2610void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2611{
2612 int pos = skb_headlen(skb);
2613
2614 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2615 if (len < pos) /* Split line is inside header. */
2616 skb_split_inside_header(skb, skb1, len, pos);
2617 else /* Second chunk has no header, nothing to copy. */
2618 skb_split_no_header(skb, skb1, len, pos);
2619}
2620EXPORT_SYMBOL(skb_split);
2621
2622/* Shifting from/to a cloned skb is a no-go.
2623 *
2624 * Caller cannot keep skb_shinfo related pointers past calling here!
2625 */
2626static int skb_prepare_for_shift(struct sk_buff *skb)
2627{
2628 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2629}
2630
2631/**
2632 * skb_shift - Shifts paged data partially from skb to another
2633 * @tgt: buffer into which tail data gets added
2634 * @skb: buffer from which the paged data comes from
2635 * @shiftlen: shift up to this many bytes
2636 *
2637 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2638 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2639 * It's up to caller to free skb if everything was shifted.
2640 *
2641 * If @tgt runs out of frags, the whole operation is aborted.
2642 *
2643 * Skb cannot include anything else but paged data while tgt is allowed
2644 * to have non-paged data as well.
2645 *
2646 * TODO: full sized shift could be optimized but that would need
2647 * specialized skb free'er to handle frags without up-to-date nr_frags.
2648 */
2649int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2650{
2651 int from, to, merge, todo;
2652 struct skb_frag_struct *fragfrom, *fragto;
2653
2654 BUG_ON(shiftlen > skb->len);
2655 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2656
2657 todo = shiftlen;
2658 from = 0;
2659 to = skb_shinfo(tgt)->nr_frags;
2660 fragfrom = &skb_shinfo(skb)->frags[from];
2661
2662 /* Actual merge is delayed until the point when we know we can
2663 * commit all, so that we don't have to undo partial changes
2664 */
2665 if (!to ||
2666 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2667 fragfrom->page_offset)) {
2668 merge = -1;
2669 } else {
2670 merge = to - 1;
2671
2672 todo -= skb_frag_size(fragfrom);
2673 if (todo < 0) {
2674 if (skb_prepare_for_shift(skb) ||
2675 skb_prepare_for_shift(tgt))
2676 return 0;
2677
2678 /* All previous frag pointers might be stale! */
2679 fragfrom = &skb_shinfo(skb)->frags[from];
2680 fragto = &skb_shinfo(tgt)->frags[merge];
2681
2682 skb_frag_size_add(fragto, shiftlen);
2683 skb_frag_size_sub(fragfrom, shiftlen);
2684 fragfrom->page_offset += shiftlen;
2685
2686 goto onlymerged;
2687 }
2688
2689 from++;
2690 }
2691
2692 /* Skip full, not-fitting skb to avoid expensive operations */
2693 if ((shiftlen == skb->len) &&
2694 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2695 return 0;
2696
2697 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2698 return 0;
2699
2700 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2701 if (to == MAX_SKB_FRAGS)
2702 return 0;
2703
2704 fragfrom = &skb_shinfo(skb)->frags[from];
2705 fragto = &skb_shinfo(tgt)->frags[to];
2706
2707 if (todo >= skb_frag_size(fragfrom)) {
2708 *fragto = *fragfrom;
2709 todo -= skb_frag_size(fragfrom);
2710 from++;
2711 to++;
2712
2713 } else {
2714 __skb_frag_ref(fragfrom);
2715 fragto->page = fragfrom->page;
2716 fragto->page_offset = fragfrom->page_offset;
2717 skb_frag_size_set(fragto, todo);
2718
2719 fragfrom->page_offset += todo;
2720 skb_frag_size_sub(fragfrom, todo);
2721 todo = 0;
2722
2723 to++;
2724 break;
2725 }
2726 }
2727
2728 /* Ready to "commit" this state change to tgt */
2729 skb_shinfo(tgt)->nr_frags = to;
2730
2731 if (merge >= 0) {
2732 fragfrom = &skb_shinfo(skb)->frags[0];
2733 fragto = &skb_shinfo(tgt)->frags[merge];
2734
2735 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2736 __skb_frag_unref(fragfrom);
2737 }
2738
2739 /* Reposition in the original skb */
2740 to = 0;
2741 while (from < skb_shinfo(skb)->nr_frags)
2742 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2743 skb_shinfo(skb)->nr_frags = to;
2744
2745 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2746
2747onlymerged:
2748 /* Most likely the tgt won't ever need its checksum anymore, skb on
2749 * the other hand might need it if it needs to be resent
2750 */
2751 tgt->ip_summed = CHECKSUM_PARTIAL;
2752 skb->ip_summed = CHECKSUM_PARTIAL;
2753
2754 /* Yak, is it really working this way? Some helper please? */
2755 skb->len -= shiftlen;
2756 skb->data_len -= shiftlen;
2757 skb->truesize -= shiftlen;
2758 tgt->len += shiftlen;
2759 tgt->data_len += shiftlen;
2760 tgt->truesize += shiftlen;
2761
2762 return shiftlen;
2763}
2764
2765/**
2766 * skb_prepare_seq_read - Prepare a sequential read of skb data
2767 * @skb: the buffer to read
2768 * @from: lower offset of data to be read
2769 * @to: upper offset of data to be read
2770 * @st: state variable
2771 *
2772 * Initializes the specified state variable. Must be called before
2773 * invoking skb_seq_read() for the first time.
2774 */
2775void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2776 unsigned int to, struct skb_seq_state *st)
2777{
2778 st->lower_offset = from;
2779 st->upper_offset = to;
2780 st->root_skb = st->cur_skb = skb;
2781 st->frag_idx = st->stepped_offset = 0;
2782 st->frag_data = NULL;
2783}
2784EXPORT_SYMBOL(skb_prepare_seq_read);
2785
2786/**
2787 * skb_seq_read - Sequentially read skb data
2788 * @consumed: number of bytes consumed by the caller so far
2789 * @data: destination pointer for data to be returned
2790 * @st: state variable
2791 *
2792 * Reads a block of skb data at @consumed relative to the
2793 * lower offset specified to skb_prepare_seq_read(). Assigns
2794 * the head of the data block to @data and returns the length
2795 * of the block or 0 if the end of the skb data or the upper
2796 * offset has been reached.
2797 *
2798 * The caller is not required to consume all of the data
2799 * returned, i.e. @consumed is typically set to the number
2800 * of bytes already consumed and the next call to
2801 * skb_seq_read() will return the remaining part of the block.
2802 *
2803 * Note 1: The size of each block of data returned can be arbitrary,
2804 * this limitation is the cost for zerocopy sequential
2805 * reads of potentially non linear data.
2806 *
2807 * Note 2: Fragment lists within fragments are not implemented
2808 * at the moment, state->root_skb could be replaced with
2809 * a stack for this purpose.
2810 */
2811unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2812 struct skb_seq_state *st)
2813{
2814 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2815 skb_frag_t *frag;
2816
2817 if (unlikely(abs_offset >= st->upper_offset)) {
2818 if (st->frag_data) {
2819 kunmap_atomic(st->frag_data);
2820 st->frag_data = NULL;
2821 }
2822 return 0;
2823 }
2824
2825next_skb:
2826 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2827
2828 if (abs_offset < block_limit && !st->frag_data) {
2829 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2830 return block_limit - abs_offset;
2831 }
2832
2833 if (st->frag_idx == 0 && !st->frag_data)
2834 st->stepped_offset += skb_headlen(st->cur_skb);
2835
2836 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2837 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2838 block_limit = skb_frag_size(frag) + st->stepped_offset;
2839
2840 if (abs_offset < block_limit) {
2841 if (!st->frag_data)
2842 st->frag_data = kmap_atomic(skb_frag_page(frag));
2843
2844 *data = (u8 *) st->frag_data + frag->page_offset +
2845 (abs_offset - st->stepped_offset);
2846
2847 return block_limit - abs_offset;
2848 }
2849
2850 if (st->frag_data) {
2851 kunmap_atomic(st->frag_data);
2852 st->frag_data = NULL;
2853 }
2854
2855 st->frag_idx++;
2856 st->stepped_offset += skb_frag_size(frag);
2857 }
2858
2859 if (st->frag_data) {
2860 kunmap_atomic(st->frag_data);
2861 st->frag_data = NULL;
2862 }
2863
2864 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2865 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2866 st->frag_idx = 0;
2867 goto next_skb;
2868 } else if (st->cur_skb->next) {
2869 st->cur_skb = st->cur_skb->next;
2870 st->frag_idx = 0;
2871 goto next_skb;
2872 }
2873
2874 return 0;
2875}
2876EXPORT_SYMBOL(skb_seq_read);
2877
2878/**
2879 * skb_abort_seq_read - Abort a sequential read of skb data
2880 * @st: state variable
2881 *
2882 * Must be called if skb_seq_read() was not called until it
2883 * returned 0.
2884 */
2885void skb_abort_seq_read(struct skb_seq_state *st)
2886{
2887 if (st->frag_data)
2888 kunmap_atomic(st->frag_data);
2889}
2890EXPORT_SYMBOL(skb_abort_seq_read);
2891
2892#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2893
2894static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2895 struct ts_config *conf,
2896 struct ts_state *state)
2897{
2898 return skb_seq_read(offset, text, TS_SKB_CB(state));
2899}
2900
2901static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2902{
2903 skb_abort_seq_read(TS_SKB_CB(state));
2904}
2905
2906/**
2907 * skb_find_text - Find a text pattern in skb data
2908 * @skb: the buffer to look in
2909 * @from: search offset
2910 * @to: search limit
2911 * @config: textsearch configuration
2912 *
2913 * Finds a pattern in the skb data according to the specified
2914 * textsearch configuration. Use textsearch_next() to retrieve
2915 * subsequent occurrences of the pattern. Returns the offset
2916 * to the first occurrence or UINT_MAX if no match was found.
2917 */
2918unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2919 unsigned int to, struct ts_config *config)
2920{
2921 struct ts_state state;
2922 unsigned int ret;
2923
2924 config->get_next_block = skb_ts_get_next_block;
2925 config->finish = skb_ts_finish;
2926
2927 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2928
2929 ret = textsearch_find(config, &state);
2930 return (ret <= to - from ? ret : UINT_MAX);
2931}
2932EXPORT_SYMBOL(skb_find_text);
2933
2934/**
2935 * skb_append_datato_frags - append the user data to a skb
2936 * @sk: sock structure
2937 * @skb: skb structure to be appended with user data.
2938 * @getfrag: call back function to be used for getting the user data
2939 * @from: pointer to user message iov
2940 * @length: length of the iov message
2941 *
2942 * Description: This procedure append the user data in the fragment part
2943 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2944 */
2945int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2946 int (*getfrag)(void *from, char *to, int offset,
2947 int len, int odd, struct sk_buff *skb),
2948 void *from, int length)
2949{
2950 int frg_cnt = skb_shinfo(skb)->nr_frags;
2951 int copy;
2952 int offset = 0;
2953 int ret;
2954 struct page_frag *pfrag = &current->task_frag;
2955
2956 do {
2957 /* Return error if we don't have space for new frag */
2958 if (frg_cnt >= MAX_SKB_FRAGS)
2959 return -EMSGSIZE;
2960
2961 if (!sk_page_frag_refill(sk, pfrag))
2962 return -ENOMEM;
2963
2964 /* copy the user data to page */
2965 copy = min_t(int, length, pfrag->size - pfrag->offset);
2966
2967 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2968 offset, copy, 0, skb);
2969 if (ret < 0)
2970 return -EFAULT;
2971
2972 /* copy was successful so update the size parameters */
2973 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2974 copy);
2975 frg_cnt++;
2976 pfrag->offset += copy;
2977 get_page(pfrag->page);
2978
2979 skb->truesize += copy;
2980 atomic_add(copy, &sk->sk_wmem_alloc);
2981 skb->len += copy;
2982 skb->data_len += copy;
2983 offset += copy;
2984 length -= copy;
2985
2986 } while (length > 0);
2987
2988 return 0;
2989}
2990EXPORT_SYMBOL(skb_append_datato_frags);
2991
2992/**
2993 * skb_pull_rcsum - pull skb and update receive checksum
2994 * @skb: buffer to update
2995 * @len: length of data pulled
2996 *
2997 * This function performs an skb_pull on the packet and updates
2998 * the CHECKSUM_COMPLETE checksum. It should be used on
2999 * receive path processing instead of skb_pull unless you know
3000 * that the checksum difference is zero (e.g., a valid IP header)
3001 * or you are setting ip_summed to CHECKSUM_NONE.
3002 */
3003unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3004{
3005 BUG_ON(len > skb->len);
3006 skb->len -= len;
3007 BUG_ON(skb->len < skb->data_len);
3008 skb_postpull_rcsum(skb, skb->data, len);
3009 return skb->data += len;
3010}
3011EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3012
3013/**
3014 * skb_segment - Perform protocol segmentation on skb.
3015 * @head_skb: buffer to segment
3016 * @features: features for the output path (see dev->features)
3017 *
3018 * This function performs segmentation on the given skb. It returns
3019 * a pointer to the first in a list of new skbs for the segments.
3020 * In case of error it returns ERR_PTR(err).
3021 */
3022struct sk_buff *skb_segment(struct sk_buff *head_skb,
3023 netdev_features_t features)
3024{
3025 struct sk_buff *segs = NULL;
3026 struct sk_buff *tail = NULL;
3027 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3028 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3029 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3030 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3031 struct sk_buff *frag_skb = head_skb;
3032 unsigned int offset = doffset;
3033 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3034 unsigned int headroom;
3035 unsigned int len;
3036 __be16 proto;
3037 bool csum;
3038 int sg = !!(features & NETIF_F_SG);
3039 int nfrags = skb_shinfo(head_skb)->nr_frags;
3040 int err = -ENOMEM;
3041 int i = 0;
3042 int pos;
3043 int dummy;
3044
3045 __skb_push(head_skb, doffset);
3046 proto = skb_network_protocol(head_skb, &dummy);
3047 if (unlikely(!proto))
3048 return ERR_PTR(-EINVAL);
3049
3050 csum = !head_skb->encap_hdr_csum &&
3051 !!can_checksum_protocol(features, proto);
3052
3053 headroom = skb_headroom(head_skb);
3054 pos = skb_headlen(head_skb);
3055
3056 do {
3057 struct sk_buff *nskb;
3058 skb_frag_t *nskb_frag;
3059 int hsize;
3060 int size;
3061
3062 len = head_skb->len - offset;
3063 if (len > mss)
3064 len = mss;
3065
3066 hsize = skb_headlen(head_skb) - offset;
3067 if (hsize < 0)
3068 hsize = 0;
3069 if (hsize > len || !sg)
3070 hsize = len;
3071
3072 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3073 (skb_headlen(list_skb) == len || sg)) {
3074 BUG_ON(skb_headlen(list_skb) > len);
3075
3076 i = 0;
3077 nfrags = skb_shinfo(list_skb)->nr_frags;
3078 frag = skb_shinfo(list_skb)->frags;
3079 frag_skb = list_skb;
3080 pos += skb_headlen(list_skb);
3081
3082 while (pos < offset + len) {
3083 BUG_ON(i >= nfrags);
3084
3085 size = skb_frag_size(frag);
3086 if (pos + size > offset + len)
3087 break;
3088
3089 i++;
3090 pos += size;
3091 frag++;
3092 }
3093
3094 nskb = skb_clone(list_skb, GFP_ATOMIC);
3095 list_skb = list_skb->next;
3096
3097 if (unlikely(!nskb))
3098 goto err;
3099
3100 if (unlikely(pskb_trim(nskb, len))) {
3101 kfree_skb(nskb);
3102 goto err;
3103 }
3104
3105 hsize = skb_end_offset(nskb);
3106 if (skb_cow_head(nskb, doffset + headroom)) {
3107 kfree_skb(nskb);
3108 goto err;
3109 }
3110
3111 nskb->truesize += skb_end_offset(nskb) - hsize;
3112 skb_release_head_state(nskb);
3113 __skb_push(nskb, doffset);
3114 } else {
3115 nskb = __alloc_skb(hsize + doffset + headroom,
3116 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3117 NUMA_NO_NODE);
3118
3119 if (unlikely(!nskb))
3120 goto err;
3121
3122 skb_reserve(nskb, headroom);
3123 __skb_put(nskb, doffset);
3124 }
3125
3126 if (segs)
3127 tail->next = nskb;
3128 else
3129 segs = nskb;
3130 tail = nskb;
3131
3132 __copy_skb_header(nskb, head_skb);
3133
3134 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3135 skb_reset_mac_len(nskb);
3136
3137 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3138 nskb->data - tnl_hlen,
3139 doffset + tnl_hlen);
3140
3141 if (nskb->len == len + doffset)
3142 goto perform_csum_check;
3143
3144 if (!sg && !nskb->remcsum_offload) {
3145 nskb->ip_summed = CHECKSUM_NONE;
3146 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3147 skb_put(nskb, len),
3148 len, 0);
3149 SKB_GSO_CB(nskb)->csum_start =
3150 skb_headroom(nskb) + doffset;
3151 continue;
3152 }
3153
3154 nskb_frag = skb_shinfo(nskb)->frags;
3155
3156 skb_copy_from_linear_data_offset(head_skb, offset,
3157 skb_put(nskb, hsize), hsize);
3158
3159 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3160 SKBTX_SHARED_FRAG;
3161
3162 while (pos < offset + len) {
3163 if (i >= nfrags) {
3164 BUG_ON(skb_headlen(list_skb));
3165
3166 i = 0;
3167 nfrags = skb_shinfo(list_skb)->nr_frags;
3168 frag = skb_shinfo(list_skb)->frags;
3169 frag_skb = list_skb;
3170
3171 BUG_ON(!nfrags);
3172
3173 list_skb = list_skb->next;
3174 }
3175
3176 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3177 MAX_SKB_FRAGS)) {
3178 net_warn_ratelimited(
3179 "skb_segment: too many frags: %u %u\n",
3180 pos, mss);
3181 goto err;
3182 }
3183
3184 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3185 goto err;
3186
3187 *nskb_frag = *frag;
3188 __skb_frag_ref(nskb_frag);
3189 size = skb_frag_size(nskb_frag);
3190
3191 if (pos < offset) {
3192 nskb_frag->page_offset += offset - pos;
3193 skb_frag_size_sub(nskb_frag, offset - pos);
3194 }
3195
3196 skb_shinfo(nskb)->nr_frags++;
3197
3198 if (pos + size <= offset + len) {
3199 i++;
3200 frag++;
3201 pos += size;
3202 } else {
3203 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3204 goto skip_fraglist;
3205 }
3206
3207 nskb_frag++;
3208 }
3209
3210skip_fraglist:
3211 nskb->data_len = len - hsize;
3212 nskb->len += nskb->data_len;
3213 nskb->truesize += nskb->data_len;
3214
3215perform_csum_check:
3216 if (!csum && !nskb->remcsum_offload) {
3217 nskb->csum = skb_checksum(nskb, doffset,
3218 nskb->len - doffset, 0);
3219 nskb->ip_summed = CHECKSUM_NONE;
3220 SKB_GSO_CB(nskb)->csum_start =
3221 skb_headroom(nskb) + doffset;
3222 }
3223 } while ((offset += len) < head_skb->len);
3224
3225 /* Some callers want to get the end of the list.
3226 * Put it in segs->prev to avoid walking the list.
3227 * (see validate_xmit_skb_list() for example)
3228 */
3229 segs->prev = tail;
3230
3231 /* Following permits correct backpressure, for protocols
3232 * using skb_set_owner_w().
3233 * Idea is to tranfert ownership from head_skb to last segment.
3234 */
3235 if (head_skb->destructor == sock_wfree) {
3236 swap(tail->truesize, head_skb->truesize);
3237 swap(tail->destructor, head_skb->destructor);
3238 swap(tail->sk, head_skb->sk);
3239 }
3240 return segs;
3241
3242err:
3243 kfree_skb_list(segs);
3244 return ERR_PTR(err);
3245}
3246EXPORT_SYMBOL_GPL(skb_segment);
3247
3248int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3249{
3250 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3251 unsigned int offset = skb_gro_offset(skb);
3252 unsigned int headlen = skb_headlen(skb);
3253 unsigned int len = skb_gro_len(skb);
3254 struct sk_buff *lp, *p = *head;
3255 unsigned int delta_truesize;
3256
3257 if (unlikely(p->len + len >= 65536))
3258 return -E2BIG;
3259
3260 lp = NAPI_GRO_CB(p)->last;
3261 pinfo = skb_shinfo(lp);
3262
3263 if (headlen <= offset) {
3264 skb_frag_t *frag;
3265 skb_frag_t *frag2;
3266 int i = skbinfo->nr_frags;
3267 int nr_frags = pinfo->nr_frags + i;
3268
3269 if (nr_frags > MAX_SKB_FRAGS)
3270 goto merge;
3271
3272 offset -= headlen;
3273 pinfo->nr_frags = nr_frags;
3274 skbinfo->nr_frags = 0;
3275
3276 frag = pinfo->frags + nr_frags;
3277 frag2 = skbinfo->frags + i;
3278 do {
3279 *--frag = *--frag2;
3280 } while (--i);
3281
3282 frag->page_offset += offset;
3283 skb_frag_size_sub(frag, offset);
3284
3285 /* all fragments truesize : remove (head size + sk_buff) */
3286 delta_truesize = skb->truesize -
3287 SKB_TRUESIZE(skb_end_offset(skb));
3288
3289 skb->truesize -= skb->data_len;
3290 skb->len -= skb->data_len;
3291 skb->data_len = 0;
3292
3293 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3294 goto done;
3295 } else if (skb->head_frag) {
3296 int nr_frags = pinfo->nr_frags;
3297 skb_frag_t *frag = pinfo->frags + nr_frags;
3298 struct page *page = virt_to_head_page(skb->head);
3299 unsigned int first_size = headlen - offset;
3300 unsigned int first_offset;
3301
3302 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3303 goto merge;
3304
3305 first_offset = skb->data -
3306 (unsigned char *)page_address(page) +
3307 offset;
3308
3309 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3310
3311 frag->page.p = page;
3312 frag->page_offset = first_offset;
3313 skb_frag_size_set(frag, first_size);
3314
3315 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3316 /* We dont need to clear skbinfo->nr_frags here */
3317
3318 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3319 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3320 goto done;
3321 }
3322
3323merge:
3324 delta_truesize = skb->truesize;
3325 if (offset > headlen) {
3326 unsigned int eat = offset - headlen;
3327
3328 skbinfo->frags[0].page_offset += eat;
3329 skb_frag_size_sub(&skbinfo->frags[0], eat);
3330 skb->data_len -= eat;
3331 skb->len -= eat;
3332 offset = headlen;
3333 }
3334
3335 __skb_pull(skb, offset);
3336
3337 if (NAPI_GRO_CB(p)->last == p)
3338 skb_shinfo(p)->frag_list = skb;
3339 else
3340 NAPI_GRO_CB(p)->last->next = skb;
3341 NAPI_GRO_CB(p)->last = skb;
3342 __skb_header_release(skb);
3343 lp = p;
3344
3345done:
3346 NAPI_GRO_CB(p)->count++;
3347 p->data_len += len;
3348 p->truesize += delta_truesize;
3349 p->len += len;
3350 if (lp != p) {
3351 lp->data_len += len;
3352 lp->truesize += delta_truesize;
3353 lp->len += len;
3354 }
3355 NAPI_GRO_CB(skb)->same_flow = 1;
3356 return 0;
3357}
3358
3359void __init skb_init(void)
3360{
3361 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3362 sizeof(struct sk_buff),
3363 0,
3364 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3365 NULL);
3366 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3367 sizeof(struct sk_buff_fclones),
3368 0,
3369 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3370 NULL);
3371}
3372
3373/**
3374 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3375 * @skb: Socket buffer containing the buffers to be mapped
3376 * @sg: The scatter-gather list to map into
3377 * @offset: The offset into the buffer's contents to start mapping
3378 * @len: Length of buffer space to be mapped
3379 *
3380 * Fill the specified scatter-gather list with mappings/pointers into a
3381 * region of the buffer space attached to a socket buffer.
3382 */
3383static int
3384__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3385{
3386 int start = skb_headlen(skb);
3387 int i, copy = start - offset;
3388 struct sk_buff *frag_iter;
3389 int elt = 0;
3390
3391 if (copy > 0) {
3392 if (copy > len)
3393 copy = len;
3394 sg_set_buf(sg, skb->data + offset, copy);
3395 elt++;
3396 if ((len -= copy) == 0)
3397 return elt;
3398 offset += copy;
3399 }
3400
3401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3402 int end;
3403
3404 WARN_ON(start > offset + len);
3405
3406 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3407 if ((copy = end - offset) > 0) {
3408 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3409
3410 if (copy > len)
3411 copy = len;
3412 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3413 frag->page_offset+offset-start);
3414 elt++;
3415 if (!(len -= copy))
3416 return elt;
3417 offset += copy;
3418 }
3419 start = end;
3420 }
3421
3422 skb_walk_frags(skb, frag_iter) {
3423 int end;
3424
3425 WARN_ON(start > offset + len);
3426
3427 end = start + frag_iter->len;
3428 if ((copy = end - offset) > 0) {
3429 if (copy > len)
3430 copy = len;
3431 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3432 copy);
3433 if ((len -= copy) == 0)
3434 return elt;
3435 offset += copy;
3436 }
3437 start = end;
3438 }
3439 BUG_ON(len);
3440 return elt;
3441}
3442
3443/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3444 * sglist without mark the sg which contain last skb data as the end.
3445 * So the caller can mannipulate sg list as will when padding new data after
3446 * the first call without calling sg_unmark_end to expend sg list.
3447 *
3448 * Scenario to use skb_to_sgvec_nomark:
3449 * 1. sg_init_table
3450 * 2. skb_to_sgvec_nomark(payload1)
3451 * 3. skb_to_sgvec_nomark(payload2)
3452 *
3453 * This is equivalent to:
3454 * 1. sg_init_table
3455 * 2. skb_to_sgvec(payload1)
3456 * 3. sg_unmark_end
3457 * 4. skb_to_sgvec(payload2)
3458 *
3459 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3460 * is more preferable.
3461 */
3462int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3463 int offset, int len)
3464{
3465 return __skb_to_sgvec(skb, sg, offset, len);
3466}
3467EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3468
3469int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3470{
3471 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3472
3473 sg_mark_end(&sg[nsg - 1]);
3474
3475 return nsg;
3476}
3477EXPORT_SYMBOL_GPL(skb_to_sgvec);
3478
3479/**
3480 * skb_cow_data - Check that a socket buffer's data buffers are writable
3481 * @skb: The socket buffer to check.
3482 * @tailbits: Amount of trailing space to be added
3483 * @trailer: Returned pointer to the skb where the @tailbits space begins
3484 *
3485 * Make sure that the data buffers attached to a socket buffer are
3486 * writable. If they are not, private copies are made of the data buffers
3487 * and the socket buffer is set to use these instead.
3488 *
3489 * If @tailbits is given, make sure that there is space to write @tailbits
3490 * bytes of data beyond current end of socket buffer. @trailer will be
3491 * set to point to the skb in which this space begins.
3492 *
3493 * The number of scatterlist elements required to completely map the
3494 * COW'd and extended socket buffer will be returned.
3495 */
3496int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3497{
3498 int copyflag;
3499 int elt;
3500 struct sk_buff *skb1, **skb_p;
3501
3502 /* If skb is cloned or its head is paged, reallocate
3503 * head pulling out all the pages (pages are considered not writable
3504 * at the moment even if they are anonymous).
3505 */
3506 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3507 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3508 return -ENOMEM;
3509
3510 /* Easy case. Most of packets will go this way. */
3511 if (!skb_has_frag_list(skb)) {
3512 /* A little of trouble, not enough of space for trailer.
3513 * This should not happen, when stack is tuned to generate
3514 * good frames. OK, on miss we reallocate and reserve even more
3515 * space, 128 bytes is fair. */
3516
3517 if (skb_tailroom(skb) < tailbits &&
3518 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3519 return -ENOMEM;
3520
3521 /* Voila! */
3522 *trailer = skb;
3523 return 1;
3524 }
3525
3526 /* Misery. We are in troubles, going to mincer fragments... */
3527
3528 elt = 1;
3529 skb_p = &skb_shinfo(skb)->frag_list;
3530 copyflag = 0;
3531
3532 while ((skb1 = *skb_p) != NULL) {
3533 int ntail = 0;
3534
3535 /* The fragment is partially pulled by someone,
3536 * this can happen on input. Copy it and everything
3537 * after it. */
3538
3539 if (skb_shared(skb1))
3540 copyflag = 1;
3541
3542 /* If the skb is the last, worry about trailer. */
3543
3544 if (skb1->next == NULL && tailbits) {
3545 if (skb_shinfo(skb1)->nr_frags ||
3546 skb_has_frag_list(skb1) ||
3547 skb_tailroom(skb1) < tailbits)
3548 ntail = tailbits + 128;
3549 }
3550
3551 if (copyflag ||
3552 skb_cloned(skb1) ||
3553 ntail ||
3554 skb_shinfo(skb1)->nr_frags ||
3555 skb_has_frag_list(skb1)) {
3556 struct sk_buff *skb2;
3557
3558 /* Fuck, we are miserable poor guys... */
3559 if (ntail == 0)
3560 skb2 = skb_copy(skb1, GFP_ATOMIC);
3561 else
3562 skb2 = skb_copy_expand(skb1,
3563 skb_headroom(skb1),
3564 ntail,
3565 GFP_ATOMIC);
3566 if (unlikely(skb2 == NULL))
3567 return -ENOMEM;
3568
3569 if (skb1->sk)
3570 skb_set_owner_w(skb2, skb1->sk);
3571
3572 /* Looking around. Are we still alive?
3573 * OK, link new skb, drop old one */
3574
3575 skb2->next = skb1->next;
3576 *skb_p = skb2;
3577 kfree_skb(skb1);
3578 skb1 = skb2;
3579 }
3580 elt++;
3581 *trailer = skb1;
3582 skb_p = &skb1->next;
3583 }
3584
3585 return elt;
3586}
3587EXPORT_SYMBOL_GPL(skb_cow_data);
3588
3589static void sock_rmem_free(struct sk_buff *skb)
3590{
3591 struct sock *sk = skb->sk;
3592
3593 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3594}
3595
3596/*
3597 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3598 */
3599int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3600{
3601 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3602 (unsigned int)sk->sk_rcvbuf)
3603 return -ENOMEM;
3604
3605 skb_orphan(skb);
3606 skb->sk = sk;
3607 skb->destructor = sock_rmem_free;
3608 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3609
3610 /* before exiting rcu section, make sure dst is refcounted */
3611 skb_dst_force(skb);
3612
3613 skb_queue_tail(&sk->sk_error_queue, skb);
3614 if (!sock_flag(sk, SOCK_DEAD))
3615 sk->sk_data_ready(sk);
3616 return 0;
3617}
3618EXPORT_SYMBOL(sock_queue_err_skb);
3619
3620struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3621{
3622 struct sk_buff_head *q = &sk->sk_error_queue;
3623 struct sk_buff *skb, *skb_next;
3624 unsigned long flags;
3625 int err = 0;
3626
3627 spin_lock_irqsave(&q->lock, flags);
3628 skb = __skb_dequeue(q);
3629 if (skb && (skb_next = skb_peek(q)))
3630 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3631 spin_unlock_irqrestore(&q->lock, flags);
3632
3633 sk->sk_err = err;
3634 if (err)
3635 sk->sk_error_report(sk);
3636
3637 return skb;
3638}
3639EXPORT_SYMBOL(sock_dequeue_err_skb);
3640
3641/**
3642 * skb_clone_sk - create clone of skb, and take reference to socket
3643 * @skb: the skb to clone
3644 *
3645 * This function creates a clone of a buffer that holds a reference on
3646 * sk_refcnt. Buffers created via this function are meant to be
3647 * returned using sock_queue_err_skb, or free via kfree_skb.
3648 *
3649 * When passing buffers allocated with this function to sock_queue_err_skb
3650 * it is necessary to wrap the call with sock_hold/sock_put in order to
3651 * prevent the socket from being released prior to being enqueued on
3652 * the sk_error_queue.
3653 */
3654struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3655{
3656 struct sock *sk = skb->sk;
3657 struct sk_buff *clone;
3658
3659 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3660 return NULL;
3661
3662 clone = skb_clone(skb, GFP_ATOMIC);
3663 if (!clone) {
3664 sock_put(sk);
3665 return NULL;
3666 }
3667
3668 clone->sk = sk;
3669 clone->destructor = sock_efree;
3670
3671 return clone;
3672}
3673EXPORT_SYMBOL(skb_clone_sk);
3674
3675static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3676 struct sock *sk,
3677 int tstype)
3678{
3679 struct sock_exterr_skb *serr;
3680 int err;
3681
3682 serr = SKB_EXT_ERR(skb);
3683 memset(serr, 0, sizeof(*serr));
3684 serr->ee.ee_errno = ENOMSG;
3685 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3686 serr->ee.ee_info = tstype;
3687 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3688 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3689 if (sk->sk_protocol == IPPROTO_TCP)
3690 serr->ee.ee_data -= sk->sk_tskey;
3691 }
3692
3693 err = sock_queue_err_skb(sk, skb);
3694
3695 if (err)
3696 kfree_skb(skb);
3697}
3698
3699static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3700{
3701 bool ret;
3702
3703 if (likely(sysctl_tstamp_allow_data || tsonly))
3704 return true;
3705
3706 read_lock_bh(&sk->sk_callback_lock);
3707 ret = sk->sk_socket && sk->sk_socket->file &&
3708 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3709 read_unlock_bh(&sk->sk_callback_lock);
3710 return ret;
3711}
3712
3713void skb_complete_tx_timestamp(struct sk_buff *skb,
3714 struct skb_shared_hwtstamps *hwtstamps)
3715{
3716 struct sock *sk = skb->sk;
3717
3718 if (!skb_may_tx_timestamp(sk, false))
3719 return;
3720
3721 /* take a reference to prevent skb_orphan() from freeing the socket */
3722 sock_hold(sk);
3723
3724 *skb_hwtstamps(skb) = *hwtstamps;
3725 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3726
3727 sock_put(sk);
3728}
3729EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3730
3731void __skb_tstamp_tx(struct sk_buff *orig_skb,
3732 struct skb_shared_hwtstamps *hwtstamps,
3733 struct sock *sk, int tstype)
3734{
3735 struct sk_buff *skb;
3736 bool tsonly;
3737
3738 if (!sk)
3739 return;
3740
3741 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3742 if (!skb_may_tx_timestamp(sk, tsonly))
3743 return;
3744
3745 if (tsonly)
3746 skb = alloc_skb(0, GFP_ATOMIC);
3747 else
3748 skb = skb_clone(orig_skb, GFP_ATOMIC);
3749 if (!skb)
3750 return;
3751
3752 if (tsonly) {
3753 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3754 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3755 }
3756
3757 if (hwtstamps)
3758 *skb_hwtstamps(skb) = *hwtstamps;
3759 else
3760 skb->tstamp = ktime_get_real();
3761
3762 __skb_complete_tx_timestamp(skb, sk, tstype);
3763}
3764EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3765
3766void skb_tstamp_tx(struct sk_buff *orig_skb,
3767 struct skb_shared_hwtstamps *hwtstamps)
3768{
3769 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3770 SCM_TSTAMP_SND);
3771}
3772EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3773
3774void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3775{
3776 struct sock *sk = skb->sk;
3777 struct sock_exterr_skb *serr;
3778 int err;
3779
3780 skb->wifi_acked_valid = 1;
3781 skb->wifi_acked = acked;
3782
3783 serr = SKB_EXT_ERR(skb);
3784 memset(serr, 0, sizeof(*serr));
3785 serr->ee.ee_errno = ENOMSG;
3786 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3787
3788 /* take a reference to prevent skb_orphan() from freeing the socket */
3789 sock_hold(sk);
3790
3791 err = sock_queue_err_skb(sk, skb);
3792 if (err)
3793 kfree_skb(skb);
3794
3795 sock_put(sk);
3796}
3797EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3798
3799/**
3800 * skb_partial_csum_set - set up and verify partial csum values for packet
3801 * @skb: the skb to set
3802 * @start: the number of bytes after skb->data to start checksumming.
3803 * @off: the offset from start to place the checksum.
3804 *
3805 * For untrusted partially-checksummed packets, we need to make sure the values
3806 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3807 *
3808 * This function checks and sets those values and skb->ip_summed: if this
3809 * returns false you should drop the packet.
3810 */
3811bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3812{
3813 if (unlikely(start > skb_headlen(skb)) ||
3814 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3815 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3816 start, off, skb_headlen(skb));
3817 return false;
3818 }
3819 skb->ip_summed = CHECKSUM_PARTIAL;
3820 skb->csum_start = skb_headroom(skb) + start;
3821 skb->csum_offset = off;
3822 skb_set_transport_header(skb, start);
3823 return true;
3824}
3825EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3826
3827static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3828 unsigned int max)
3829{
3830 if (skb_headlen(skb) >= len)
3831 return 0;
3832
3833 /* If we need to pullup then pullup to the max, so we
3834 * won't need to do it again.
3835 */
3836 if (max > skb->len)
3837 max = skb->len;
3838
3839 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3840 return -ENOMEM;
3841
3842 if (skb_headlen(skb) < len)
3843 return -EPROTO;
3844
3845 return 0;
3846}
3847
3848#define MAX_TCP_HDR_LEN (15 * 4)
3849
3850static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3851 typeof(IPPROTO_IP) proto,
3852 unsigned int off)
3853{
3854 switch (proto) {
3855 int err;
3856
3857 case IPPROTO_TCP:
3858 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3859 off + MAX_TCP_HDR_LEN);
3860 if (!err && !skb_partial_csum_set(skb, off,
3861 offsetof(struct tcphdr,
3862 check)))
3863 err = -EPROTO;
3864 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3865
3866 case IPPROTO_UDP:
3867 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3868 off + sizeof(struct udphdr));
3869 if (!err && !skb_partial_csum_set(skb, off,
3870 offsetof(struct udphdr,
3871 check)))
3872 err = -EPROTO;
3873 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3874 }
3875
3876 return ERR_PTR(-EPROTO);
3877}
3878
3879/* This value should be large enough to cover a tagged ethernet header plus
3880 * maximally sized IP and TCP or UDP headers.
3881 */
3882#define MAX_IP_HDR_LEN 128
3883
3884static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3885{
3886 unsigned int off;
3887 bool fragment;
3888 __sum16 *csum;
3889 int err;
3890
3891 fragment = false;
3892
3893 err = skb_maybe_pull_tail(skb,
3894 sizeof(struct iphdr),
3895 MAX_IP_HDR_LEN);
3896 if (err < 0)
3897 goto out;
3898
3899 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3900 fragment = true;
3901
3902 off = ip_hdrlen(skb);
3903
3904 err = -EPROTO;
3905
3906 if (fragment)
3907 goto out;
3908
3909 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3910 if (IS_ERR(csum))
3911 return PTR_ERR(csum);
3912
3913 if (recalculate)
3914 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3915 ip_hdr(skb)->daddr,
3916 skb->len - off,
3917 ip_hdr(skb)->protocol, 0);
3918 err = 0;
3919
3920out:
3921 return err;
3922}
3923
3924/* This value should be large enough to cover a tagged ethernet header plus
3925 * an IPv6 header, all options, and a maximal TCP or UDP header.
3926 */
3927#define MAX_IPV6_HDR_LEN 256
3928
3929#define OPT_HDR(type, skb, off) \
3930 (type *)(skb_network_header(skb) + (off))
3931
3932static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3933{
3934 int err;
3935 u8 nexthdr;
3936 unsigned int off;
3937 unsigned int len;
3938 bool fragment;
3939 bool done;
3940 __sum16 *csum;
3941
3942 fragment = false;
3943 done = false;
3944
3945 off = sizeof(struct ipv6hdr);
3946
3947 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3948 if (err < 0)
3949 goto out;
3950
3951 nexthdr = ipv6_hdr(skb)->nexthdr;
3952
3953 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3954 while (off <= len && !done) {
3955 switch (nexthdr) {
3956 case IPPROTO_DSTOPTS:
3957 case IPPROTO_HOPOPTS:
3958 case IPPROTO_ROUTING: {
3959 struct ipv6_opt_hdr *hp;
3960
3961 err = skb_maybe_pull_tail(skb,
3962 off +
3963 sizeof(struct ipv6_opt_hdr),
3964 MAX_IPV6_HDR_LEN);
3965 if (err < 0)
3966 goto out;
3967
3968 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3969 nexthdr = hp->nexthdr;
3970 off += ipv6_optlen(hp);
3971 break;
3972 }
3973 case IPPROTO_AH: {
3974 struct ip_auth_hdr *hp;
3975
3976 err = skb_maybe_pull_tail(skb,
3977 off +
3978 sizeof(struct ip_auth_hdr),
3979 MAX_IPV6_HDR_LEN);
3980 if (err < 0)
3981 goto out;
3982
3983 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3984 nexthdr = hp->nexthdr;
3985 off += ipv6_authlen(hp);
3986 break;
3987 }
3988 case IPPROTO_FRAGMENT: {
3989 struct frag_hdr *hp;
3990
3991 err = skb_maybe_pull_tail(skb,
3992 off +
3993 sizeof(struct frag_hdr),
3994 MAX_IPV6_HDR_LEN);
3995 if (err < 0)
3996 goto out;
3997
3998 hp = OPT_HDR(struct frag_hdr, skb, off);
3999
4000 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4001 fragment = true;
4002
4003 nexthdr = hp->nexthdr;
4004 off += sizeof(struct frag_hdr);
4005 break;
4006 }
4007 default:
4008 done = true;
4009 break;
4010 }
4011 }
4012
4013 err = -EPROTO;
4014
4015 if (!done || fragment)
4016 goto out;
4017
4018 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4019 if (IS_ERR(csum))
4020 return PTR_ERR(csum);
4021
4022 if (recalculate)
4023 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4024 &ipv6_hdr(skb)->daddr,
4025 skb->len - off, nexthdr, 0);
4026 err = 0;
4027
4028out:
4029 return err;
4030}
4031
4032/**
4033 * skb_checksum_setup - set up partial checksum offset
4034 * @skb: the skb to set up
4035 * @recalculate: if true the pseudo-header checksum will be recalculated
4036 */
4037int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4038{
4039 int err;
4040
4041 switch (skb->protocol) {
4042 case htons(ETH_P_IP):
4043 err = skb_checksum_setup_ipv4(skb, recalculate);
4044 break;
4045
4046 case htons(ETH_P_IPV6):
4047 err = skb_checksum_setup_ipv6(skb, recalculate);
4048 break;
4049
4050 default:
4051 err = -EPROTO;
4052 break;
4053 }
4054
4055 return err;
4056}
4057EXPORT_SYMBOL(skb_checksum_setup);
4058
4059/**
4060 * skb_checksum_maybe_trim - maybe trims the given skb
4061 * @skb: the skb to check
4062 * @transport_len: the data length beyond the network header
4063 *
4064 * Checks whether the given skb has data beyond the given transport length.
4065 * If so, returns a cloned skb trimmed to this transport length.
4066 * Otherwise returns the provided skb. Returns NULL in error cases
4067 * (e.g. transport_len exceeds skb length or out-of-memory).
4068 *
4069 * Caller needs to set the skb transport header and release the returned skb.
4070 * Provided skb is consumed.
4071 */
4072static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4073 unsigned int transport_len)
4074{
4075 struct sk_buff *skb_chk;
4076 unsigned int len = skb_transport_offset(skb) + transport_len;
4077 int ret;
4078
4079 if (skb->len < len) {
4080 kfree_skb(skb);
4081 return NULL;
4082 } else if (skb->len == len) {
4083 return skb;
4084 }
4085
4086 skb_chk = skb_clone(skb, GFP_ATOMIC);
4087 kfree_skb(skb);
4088
4089 if (!skb_chk)
4090 return NULL;
4091
4092 ret = pskb_trim_rcsum(skb_chk, len);
4093 if (ret) {
4094 kfree_skb(skb_chk);
4095 return NULL;
4096 }
4097
4098 return skb_chk;
4099}
4100
4101/**
4102 * skb_checksum_trimmed - validate checksum of an skb
4103 * @skb: the skb to check
4104 * @transport_len: the data length beyond the network header
4105 * @skb_chkf: checksum function to use
4106 *
4107 * Applies the given checksum function skb_chkf to the provided skb.
4108 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4109 *
4110 * If the skb has data beyond the given transport length, then a
4111 * trimmed & cloned skb is checked and returned.
4112 *
4113 * Caller needs to set the skb transport header and release the returned skb.
4114 * Provided skb is consumed.
4115 */
4116struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4117 unsigned int transport_len,
4118 __sum16(*skb_chkf)(struct sk_buff *skb))
4119{
4120 struct sk_buff *skb_chk;
4121 unsigned int offset = skb_transport_offset(skb);
4122 __sum16 ret;
4123
4124 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4125 if (!skb_chk)
4126 return NULL;
4127
4128 if (!pskb_may_pull(skb_chk, offset)) {
4129 kfree_skb(skb_chk);
4130 return NULL;
4131 }
4132
4133 __skb_pull(skb_chk, offset);
4134 ret = skb_chkf(skb_chk);
4135 __skb_push(skb_chk, offset);
4136
4137 if (ret) {
4138 kfree_skb(skb_chk);
4139 return NULL;
4140 }
4141
4142 return skb_chk;
4143}
4144EXPORT_SYMBOL(skb_checksum_trimmed);
4145
4146void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4147{
4148 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4149 skb->dev->name);
4150}
4151EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4152
4153void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4154{
4155 if (head_stolen) {
4156 skb_release_head_state(skb);
4157 kmem_cache_free(skbuff_head_cache, skb);
4158 } else {
4159 __kfree_skb(skb);
4160 }
4161}
4162EXPORT_SYMBOL(kfree_skb_partial);
4163
4164/**
4165 * skb_try_coalesce - try to merge skb to prior one
4166 * @to: prior buffer
4167 * @from: buffer to add
4168 * @fragstolen: pointer to boolean
4169 * @delta_truesize: how much more was allocated than was requested
4170 */
4171bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4172 bool *fragstolen, int *delta_truesize)
4173{
4174 int i, delta, len = from->len;
4175
4176 *fragstolen = false;
4177
4178 if (skb_cloned(to))
4179 return false;
4180
4181 if (len <= skb_tailroom(to)) {
4182 if (len)
4183 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4184 *delta_truesize = 0;
4185 return true;
4186 }
4187
4188 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4189 return false;
4190
4191 if (skb_headlen(from) != 0) {
4192 struct page *page;
4193 unsigned int offset;
4194
4195 if (skb_shinfo(to)->nr_frags +
4196 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4197 return false;
4198
4199 if (skb_head_is_locked(from))
4200 return false;
4201
4202 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4203
4204 page = virt_to_head_page(from->head);
4205 offset = from->data - (unsigned char *)page_address(page);
4206
4207 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4208 page, offset, skb_headlen(from));
4209 *fragstolen = true;
4210 } else {
4211 if (skb_shinfo(to)->nr_frags +
4212 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4213 return false;
4214
4215 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4216 }
4217
4218 WARN_ON_ONCE(delta < len);
4219
4220 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4221 skb_shinfo(from)->frags,
4222 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4223 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4224
4225 if (!skb_cloned(from))
4226 skb_shinfo(from)->nr_frags = 0;
4227
4228 /* if the skb is not cloned this does nothing
4229 * since we set nr_frags to 0.
4230 */
4231 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4232 skb_frag_ref(from, i);
4233
4234 to->truesize += delta;
4235 to->len += len;
4236 to->data_len += len;
4237
4238 *delta_truesize = delta;
4239 return true;
4240}
4241EXPORT_SYMBOL(skb_try_coalesce);
4242
4243/**
4244 * skb_scrub_packet - scrub an skb
4245 *
4246 * @skb: buffer to clean
4247 * @xnet: packet is crossing netns
4248 *
4249 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4250 * into/from a tunnel. Some information have to be cleared during these
4251 * operations.
4252 * skb_scrub_packet can also be used to clean a skb before injecting it in
4253 * another namespace (@xnet == true). We have to clear all information in the
4254 * skb that could impact namespace isolation.
4255 */
4256void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4257{
4258 skb->tstamp.tv64 = 0;
4259 skb->pkt_type = PACKET_HOST;
4260 skb->skb_iif = 0;
4261 skb->ignore_df = 0;
4262 skb_dst_drop(skb);
4263 skb_sender_cpu_clear(skb);
4264 secpath_reset(skb);
4265 nf_reset(skb);
4266 nf_reset_trace(skb);
4267
4268 if (!xnet)
4269 return;
4270
4271 skb_orphan(skb);
4272 skb->mark = 0;
4273}
4274EXPORT_SYMBOL_GPL(skb_scrub_packet);
4275
4276/**
4277 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4278 *
4279 * @skb: GSO skb
4280 *
4281 * skb_gso_transport_seglen is used to determine the real size of the
4282 * individual segments, including Layer4 headers (TCP/UDP).
4283 *
4284 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4285 */
4286unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4287{
4288 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4289 unsigned int thlen = 0;
4290
4291 if (skb->encapsulation) {
4292 thlen = skb_inner_transport_header(skb) -
4293 skb_transport_header(skb);
4294
4295 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4296 thlen += inner_tcp_hdrlen(skb);
4297 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4298 thlen = tcp_hdrlen(skb);
4299 }
4300 /* UFO sets gso_size to the size of the fragmentation
4301 * payload, i.e. the size of the L4 (UDP) header is already
4302 * accounted for.
4303 */
4304 return thlen + shinfo->gso_size;
4305}
4306EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4307
4308static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4309{
4310 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4311 kfree_skb(skb);
4312 return NULL;
4313 }
4314
4315 memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4316 skb->mac_header += VLAN_HLEN;
4317 return skb;
4318}
4319
4320struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4321{
4322 struct vlan_hdr *vhdr;
4323 u16 vlan_tci;
4324
4325 if (unlikely(skb_vlan_tag_present(skb))) {
4326 /* vlan_tci is already set-up so leave this for another time */
4327 return skb;
4328 }
4329
4330 skb = skb_share_check(skb, GFP_ATOMIC);
4331 if (unlikely(!skb))
4332 goto err_free;
4333
4334 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4335 goto err_free;
4336
4337 vhdr = (struct vlan_hdr *)skb->data;
4338 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4339 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4340
4341 skb_pull_rcsum(skb, VLAN_HLEN);
4342 vlan_set_encap_proto(skb, vhdr);
4343
4344 skb = skb_reorder_vlan_header(skb);
4345 if (unlikely(!skb))
4346 goto err_free;
4347
4348 skb_reset_network_header(skb);
4349 skb_reset_transport_header(skb);
4350 skb_reset_mac_len(skb);
4351
4352 return skb;
4353
4354err_free:
4355 kfree_skb(skb);
4356 return NULL;
4357}
4358EXPORT_SYMBOL(skb_vlan_untag);
4359
4360int skb_ensure_writable(struct sk_buff *skb, int write_len)
4361{
4362 if (!pskb_may_pull(skb, write_len))
4363 return -ENOMEM;
4364
4365 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4366 return 0;
4367
4368 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4369}
4370EXPORT_SYMBOL(skb_ensure_writable);
4371
4372/* remove VLAN header from packet and update csum accordingly. */
4373static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4374{
4375 struct vlan_hdr *vhdr;
4376 unsigned int offset = skb->data - skb_mac_header(skb);
4377 int err;
4378
4379 __skb_push(skb, offset);
4380 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4381 if (unlikely(err))
4382 goto pull;
4383
4384 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4385
4386 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4387 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4388
4389 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4390 __skb_pull(skb, VLAN_HLEN);
4391
4392 vlan_set_encap_proto(skb, vhdr);
4393 skb->mac_header += VLAN_HLEN;
4394
4395 if (skb_network_offset(skb) < ETH_HLEN)
4396 skb_set_network_header(skb, ETH_HLEN);
4397
4398 skb_reset_mac_len(skb);
4399pull:
4400 __skb_pull(skb, offset);
4401
4402 return err;
4403}
4404
4405int skb_vlan_pop(struct sk_buff *skb)
4406{
4407 u16 vlan_tci;
4408 __be16 vlan_proto;
4409 int err;
4410
4411 if (likely(skb_vlan_tag_present(skb))) {
4412 skb->vlan_tci = 0;
4413 } else {
4414 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4415 skb->protocol != htons(ETH_P_8021AD)) ||
4416 skb->len < VLAN_ETH_HLEN))
4417 return 0;
4418
4419 err = __skb_vlan_pop(skb, &vlan_tci);
4420 if (err)
4421 return err;
4422 }
4423 /* move next vlan tag to hw accel tag */
4424 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4425 skb->protocol != htons(ETH_P_8021AD)) ||
4426 skb->len < VLAN_ETH_HLEN))
4427 return 0;
4428
4429 vlan_proto = skb->protocol;
4430 err = __skb_vlan_pop(skb, &vlan_tci);
4431 if (unlikely(err))
4432 return err;
4433
4434 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4435 return 0;
4436}
4437EXPORT_SYMBOL(skb_vlan_pop);
4438
4439int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4440{
4441 if (skb_vlan_tag_present(skb)) {
4442 unsigned int offset = skb->data - skb_mac_header(skb);
4443 int err;
4444
4445 /* __vlan_insert_tag expect skb->data pointing to mac header.
4446 * So change skb->data before calling it and change back to
4447 * original position later
4448 */
4449 __skb_push(skb, offset);
4450 err = __vlan_insert_tag(skb, skb->vlan_proto,
4451 skb_vlan_tag_get(skb));
4452 if (err)
4453 return err;
4454 skb->protocol = skb->vlan_proto;
4455 skb->mac_len += VLAN_HLEN;
4456 __skb_pull(skb, offset);
4457
4458 if (skb->ip_summed == CHECKSUM_COMPLETE)
4459 skb->csum = csum_add(skb->csum, csum_partial(skb->data
4460 + (2 * ETH_ALEN), VLAN_HLEN, 0));
4461 }
4462 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4463 return 0;
4464}
4465EXPORT_SYMBOL(skb_vlan_push);
4466
4467/**
4468 * alloc_skb_with_frags - allocate skb with page frags
4469 *
4470 * @header_len: size of linear part
4471 * @data_len: needed length in frags
4472 * @max_page_order: max page order desired.
4473 * @errcode: pointer to error code if any
4474 * @gfp_mask: allocation mask
4475 *
4476 * This can be used to allocate a paged skb, given a maximal order for frags.
4477 */
4478struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4479 unsigned long data_len,
4480 int max_page_order,
4481 int *errcode,
4482 gfp_t gfp_mask)
4483{
4484 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4485 unsigned long chunk;
4486 struct sk_buff *skb;
4487 struct page *page;
4488 gfp_t gfp_head;
4489 int i;
4490
4491 *errcode = -EMSGSIZE;
4492 /* Note this test could be relaxed, if we succeed to allocate
4493 * high order pages...
4494 */
4495 if (npages > MAX_SKB_FRAGS)
4496 return NULL;
4497
4498 gfp_head = gfp_mask;
4499 if (gfp_head & __GFP_WAIT)
4500 gfp_head |= __GFP_REPEAT;
4501
4502 *errcode = -ENOBUFS;
4503 skb = alloc_skb(header_len, gfp_head);
4504 if (!skb)
4505 return NULL;
4506
4507 skb->truesize += npages << PAGE_SHIFT;
4508
4509 for (i = 0; npages > 0; i++) {
4510 int order = max_page_order;
4511
4512 while (order) {
4513 if (npages >= 1 << order) {
4514 page = alloc_pages(gfp_mask |
4515 __GFP_COMP |
4516 __GFP_NOWARN |
4517 __GFP_NORETRY,
4518 order);
4519 if (page)
4520 goto fill_page;
4521 /* Do not retry other high order allocations */
4522 order = 1;
4523 max_page_order = 0;
4524 }
4525 order--;
4526 }
4527 page = alloc_page(gfp_mask);
4528 if (!page)
4529 goto failure;
4530fill_page:
4531 chunk = min_t(unsigned long, data_len,
4532 PAGE_SIZE << order);
4533 skb_fill_page_desc(skb, i, page, 0, chunk);
4534 data_len -= chunk;
4535 npages -= 1 << order;
4536 }
4537 return skb;
4538
4539failure:
4540 kfree_skb(skb);
4541 return NULL;
4542}
4543EXPORT_SYMBOL(alloc_skb_with_frags);